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Abstract

This dissertation includes three main topics: Dynamics of outgoing inner shell pho-

toionized electrons and Auger decay electrons, an investigation into the recently proposed

mechanism of below threshold dielectronic recombination and electron impact fine-structure

excitation of Ne+ and Ne2+ at very low temperatures.

For the first topic, we compare our time-dependent numerical method with a widely used

analytical one at different photo-electron energies. We determine that the time-dependent

numerical method is more accurate in the low and medium energy region. We apply this

method to investigate inner shell photo-ionization followed by Auger decay in Kr at low

energies (including as low as zero atomic units of energy). We investigate an interesting

feature in the relative angular distribution of the outgoing electrons. To confirm the validity

of this phenomenon, we use a Classical Trajectory Monte Carlo Method to re-simulate the

process, with similar results being generated. A physical mechanism is identified for the

unusual features in the relative angular distribution.

The second topic concerns a newly proposed mechanism for dielectronic recombination.

The traditional definition for dielectronic recombination only counts the contribution of

above threshold (or positive energy) resonances which can be accessed via free electrons.

This definition leads to several problems when the temperature is very low. For example,

the dielectronic recombination coefficient becomes very sensitive to the energy position of

resonances and whether they are above or below threshold. Moving a resonance by a few

meV from above to below threshold can change the dielectronic recombination rate coefficient

by large values, often factors of 10 or 100. A new recombination mechanism was proposed

recently, pointing out that certain below threshold resonances should also be counted in

the rate coefficient calculation due to an interaction with Rydberg electrons. This new
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mechanism has not been an experimentally confirmed. We proposed that below threshold

satellite line observation can be used to prove the existence of this new mechanism. We also

develop a method to identify ions with near threshold resonances and several key ions are

selected to re-evaluate their dielectronic recombination rate coefficient with the inclusion of

below threshold resonances contributions.

For the last topic, we calculate collision strengths, effective collision strengths and ex-

citation rate coefficients for fine-structure electron impact excitation of Ne+ and Ne2+ using

different R-matrix techniques and different target expansions. We compare target energies

and Einstein A coefficients with NIST values, and compare calculated effective collision

strengths with existing values. A recommended dataset is provided for each ion, along with

an estimate of the uncertainty in the collision data. This work has important applications

in ultra-low temperature astrophysical plasmas.
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Chapter 1

INTRODUCTION

In this chapter an overview is provided for the physical mechanisms investigated in the

later chapters, a description is also given of the important areas of application for each of

the projects. Two of the chapters have been published (chapters 2 and 3 [1, 2]) and one has

been submitted for publication (Chapter 6).

1.1 Electron dynamics for inner shell photoionization followed by Auger decay

Considering first the study of inner shell photoionization followed by Auger decay. The

application of this work is for the study of electron dynamics in X-ray photoionization ex-

periments at such as the Advanced Light Source (ALS - https://www-als.lbl.gov/). If

an X-ray photon interacts with an atom, there are various mechanisms that can lead to

the ejection of several electrons. This process can happen in the form of sequentially losing

electrons one by one, or simultaneously all at once, with generally the former one being

the dominant mechanism. If the energy of X-rays is higher than the inner-shell ionization

potential, electrons in those inner shell are inclined to be photo-ionized. Then the atom can

auto-ionize via an Auger decay.

The process of inner-shell photoionization followed by Auger decay is illustrated in

Figure 1.1 using Neon as an example. After absorbing a photon with energy more than the

ionization potential, the electron in the K-shell will be ionized. This free (photo-ionized)

electron will travel away from the atom. Then the atom with an inner shell hole is not stable,

one electron in an outer subshell can decay to a lower subshell to fill the hole and the extra

energy can be given to another bound electron. If the extra energy is large enough to ionize

the electron it will also be emitted from the atom and one will have two outgoing electrons
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that can interact with each other. It is the interaction of these outgoing electrons that is the

focus of chapters 2 and 3 of this dissertation.

Figure 1.1: Schematic showing the process of K-shell photo-ionization followed by Auger
decay

The inner-shell photo-ionization followed by Auger decay is an important and challeng-

ing research topic in AMO physics. Firstly, the dominant ionization mechanism in the x-ray

regime is core-shell photo-ionization followed by Auger decay (except for K-shell ionization

of heavy atoms, where fluorescent decay can dominate). Also this topic is important because

Auger spectroscopy is a powerful probe of electron correlations in atoms [3]. Thirdly, this

study also provides an ideal environment to study ultra-fast phenomena which is critical in

understanding different dynamics, such as radiation damage, chemical reactions, etc. Be-

cause the core-hole lifetimes are typically a few femto-seconds for shallow core levels in the

soft x-ray region and 1 fs or less for deep core levels, these system are natural laboratories

in which to study ultrafast dynamics [4]. And lastly, this process results in three charged

particles, which is relatively difficult to describe quantum mechanically or classically.

The study of post-collision interaction (PCI) is an important means of investigating the

dynamics of photo-emission. In general, PCI results from the change in the coulomb potential

felt by the slow moving photo-electron when Auger decay occurs. This is reflected in the

line shape and peak position of the photo-electron energy distribution. Another important
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quantity studied in the following chapters is the relative angular distribution of the two

outgoing electrons which shows the influence of the electron-electron interaction.

There are two projects related to this topic which will be described in Chapters 2 and 3.

Chapter 2 contains a comparison of two quantum mechanical methods used to describe the

inner shell photo-ionization followed by Auger decay in Neon. One of the two methods is to

numerically solve the Time Dependent Schrödinger Equation (TDSE), in which all three pairs

of interactions are fully considered. The other group of methods is also a quantum mechanical

method, but based on the solution of the Stationary Schrödinger Equation (SSE). All three

pairs of interactions are taken into account but with different approximations according to

different situations. We will show that the TDSE method works well in the low photo-

electron energy regime both in calculating the photo-electron energy and relative angular

distributions. In Chapter 3, we investigate the same topic in the low photo-electron energy

distribution for Kr. To confirm the validity of a surprising shape in the relative angular

distribution for low photo-electron energies, we recalculate this distribution with a Classical

Trajectory Monte Carlo (CTMC) method, with similar results being obtained.

1.2 The contribution of near threshold resonances to dielectronic recombination

rate

The second topic of this dissertation concerns near threshold resonances in dielectronic

recombination. When an electron collides with an ion, several kinds of process can happen.

If the energy of the electron is high enough, one electron of the ion can be knocked out via

an electron-impact single ionization. Also the electron can be captured directly by the ion,

causing a recombination. The three types of recombination usually considered are Radiative

Recombination (RR), Dielectronic Recombination, and three-body recombination. In RR a

free electron is captured into the potential well of the ion and a photon is emitted, the RR

rate coefficient drops off quickly with increasing temperature and so is most important in low

temperature plasmas. Three-body recombination involves a collision of two free electrons in
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the presence of the ion, with one of the electrons losing enough energy to be captured into

a bound state of the recombined ion. It is usually small unless the electron densities in the

plasma become very large (typically greater than 1× 1016 cm−3). The remaining process

of Dielectronic Recombination (DR) involves two steps. Firstly, a positive ion captures a

free (positive energy) electron into one of its bound states. The extra energy from this

electron promotes another electron of the ion to an excited state. Thus, the ion becomes

doubly-excited. This first step is called resonance capture. Then this doubly-excited ion

can stabilize via radiative dacay (either a core electron decay (Type I) or Rydberg electron

decay (Type II)). If the final state is below the ionization potential then the recombination

process is complete and the ion has gained an electron. Using a Beryllium-like case as an

example, the two processes can be illustrated with equations:

1s22s2(1S0) + e→ 1s22s2p(1P1)nl (1.1)

1s22s2p(1P1)nl → 1s22s2(1S0)nl + hν (Type I) (1.2)

→ 1s22s2p(1P1)n′l′ + hν ′ (Type II). (1.3)

DR was first recognised and quantified by Massey and Bates [5] as a recombination

process. It can have an important effect on the ionisation equilibrium, level populations

and time evolution of the plasma ions in a variety of astrophysical and laboratory plasmas.

Most applications of dielectronic recombination have concentrated on this particular aspect

but its importance as a mechanism producing spectral lines has also been investigated, with

satellite line spectroscopy being key to many plasma diagnostics [6].

DR always plays a more important role than RR does in high-temperature plasmas. At

low temperatures the two processes can be competitive. However, DR is often an important

recombination process for ions found in low temperate and low density photoionized plasmas.
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The focus on the low temperature DR rate coefficients in this dissertation will be for these

photoionized plasmas (e.g. planetary nebulae).

Since the pioneering work by Burgess [7], various theoretical methods have been used to

calculate DR rate coefficients of many atomic ions [8, 9]. For example DR rate coefficients

based upon the work of Badnell et al. [8] are used in the Atomic Data and Analysis Structure

(ADAS www.adas.ac.uk) database to model both laboratory and astrophysical plasmas.

There are, however, several problems existing in the current DR databases, particularly for

low temperature plasmas. For example, the DR rate coefficient can be very sensitive to the

low energy resonance position. Eliminating one resonance near threshold can change the DR

rate coefficients by a few order of magnitude, as was found in the case of O4+ [10]. This is

shown in Fig. 1.2 where the removal of one resonance at 60 meV above threshold changes

the DR rate coefficient by two orders of magnitude at low temperatures. Another indication

of the importance of this topic is that theoretical calculations for DR rate coefficient may

be very difference from the experimental data [11]. Near threshold resonances could be

contributing factors to both of these phenomena.

A new mechanism for Dieletronic Recombination was proposed recently by Robicheaux

et al. [12]. At low temperatures for specific plasma conditions, it is possible that electrons

can capture into below threshold doubly excited states. However, the current definition of

DR only counts the contribution of above threshold resonances, so these below threshold con-

tributions are not included in DR databases. The new mechanism suggests that we should

re-define the DR rate coefficient to include role of the below threshold resonances. Including

the below threshold resonances in the DR calculation was shown to eliminate the hyper sen-

sitivity of the rate coefficient to the near threshold energy positions of doubly excited states

for Mg8+ [12]. The existence of this new mechanism has not be demonstrated in atomic

experiments, because the below threshold resonance contribution can not be measured in
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Figure 1.2: Figures taken from Fogle et al. [10]. Top figure shows the measured resonance
spectrum for O4+, as measured on the CRYING experiment. The dashed line shows the RR
contribution, the solid line shows the DR contribution. Note the large single resonance at 60
meV. The lower figure shows the Maxwellian rate coefficient based upon the measurements.
The solid line shows the rate coefficient with the resonance at 60 meV included, the dashed
line shows the rate coefficient with this one resonance removed. The circles and the triangles
show two theoretical calculations.
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traditional beam experiments. It requires the presence of Rydberg electrons for the recom-

bined ion, which provide a source of ‘negative energy’ electrons. Populating such Rydberg

states would be common in plasma environments, but not in atomic beam experiments.

We propose in chapter 4 of this disseration an alternate method to prove the exisitence

of below threshold recombination, namely to search for satellite lines from below threshold

resonances. The below threshold resonances should undergo radiative decay and a Type I

radiation would produce a satellite line that could be measured. Traditional satellite lines

have been studied extensively [6], but this would be the first detection of a satellite line

populated via below threshold recombination.

So two projects will be included in this dissertation about this topic. Chapter 4 is a

description of the search for spectroscopic evidence of below threshold contributions to the

dielectronic recombination. Chapter 5 focuses on identifing the ions with near threshold

resonances and re-evaluating some of their DR rate coefficients.

1.2.1 A search for possible evidence of the existence of the below threshold

Dielectronic Recombination

In chapter 4 of this dissertation we propose that below threshold satellite lines could

be used as evidence of below threshold recombination. We describe here what satellite line

emission is and how it could serve this purpose. Type I radiative decay in the DR process

(i.e. core radiative decay) is the second step of the DR process and can create a photon

called a satellite line. Consider the emission from a Be-like ion that is recombining via DR.

The Be-like ion will have a strong spectral line corresponding to

1s22s2p(1P1)→ 1s22s2(1S0) + hνres. (1.4)

Starting from the same initial state and considering a dielectronic capture one would

have
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1s22s2(1S0) + e→ 1s22s2p(1P1)nl→ 1s22s2(1S0)nl + hνsat . (1.5)

Note that the frequence of this satellite line photon from the B-like system (νsat) is

usually very close to the resonance line from the Be-like ion (νres). This is particularly

true if the n-shell of the captured electron is high as it will only have a small effect on the

wavelength of the photon emitted from the core radiative decay. For this reason it is called

a satellite line. If such a satellite line could be detected from a doubly excited state that is

below the ionization potential and can only be populated via below threshold recombination,

it would serve as strong evidence of this new recombination mechanism. Thus, searching

for satellite line emission from below threshold resonance transitions is an optimal way to

directly verify the existence of the below threshold resonance DR.

An ideal candidate for searching for the below threshold satellite line should satisfy a

number of conditions, these are described further in chapter 4. The main points of note are:

1. The doubly excited state must be just below the ionization potential and be embedded

in the ‘Rydberg continuum’. This will be described in more detail in chapters 4 and 5.

This means that there is only a small energy window below threshold within which the

double excited states can contribute to below threshold DR, usually less than 1 eV.

2. The satellite line must be strong, so for satellite lines the core radiative transition

should be a dipole allowed transition.

3. The wavelength of the satellite line should be resolvable from the main resonance

transition.

After checking different sequences of ions using NIST levels, C3+ satisfies all the con-

ditions above and becomes an ideal candidate for this search. Due to the importance of

knowing the exact wavelength of the satellite line photon, it is important that one has ac-

curate energies for the below threshold double excited states. Thus our search was limited
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Figure 1.3: Images of Abell 30, figure taken from [13]. The left hand figure shows an Hα
image and the center figure shows an O III image. Both of these were taken from ground
based observations, the star can be seen in the center of the image. The right hand image
shows an O III image with taken using HST WFPC2 and the F502N filter, the knot of
interest is circled in red.

to systems with below threshold doubly excited states that had energies listed in NIST [14]

with high accuracy. Due to the problems mentioned above, DR theory calculations would

have too large an uncertainty to be used for spectroscopic accuracy.

Other conditions also have to be met for below threshold recombination to be possible.

The density and temperature of the plasmas also should be in an appropriate range to satisfy

the Condition (1) for the ‘Rydberg continuum’. An ideal environment for the C3+ below

threshold satellite line observation is an knot of plasma in the planetary nebula known as

Abell 30. Thus our search will focus on this object. Figure 1.3 shows a visible image of this

object, more details are presented in Chapter 4 and in Appendix C.

1.2.2 Identification of ions with near threshold resonance in Be-like and Li-like

sequences and new Dielectronic Recombination rate coefficients for C3+

and Mg8+

The ions with near threshold resonances are those whose DR rate coefficients in current

database could be missing large contributions. To solve the problem, we should identify

which ions have near threshold resonances. We define the near threshold as the cases where
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there resonances falling in the energy region [- Z
2

202 Ryd: Z
2

202 Ryd] about the threshold. An

important result of this work is the identification of which ions have no near threshold res-

onances; these can be used in current databases with confidence. The method used in this

dissertation to identify the remaining ions that require new DR rate coefficient calculations

via a check of the resonance positions. We use both the NIST energy level information and a

DR resonance plot generated by the AUTOSTRUCTURE code [16, 17] to look for the cases

with resonances in the aforementioned energy range. The NIST energies give us the most ac-

curate resonance positions (but could be missing resonances) and the AUTOSTRUCTURE

calculations can provide us with all of the resonances that we are interested in. We examine

two sequences, Li-like and Be-like. From the list of cases with potential near threshold reso-

nances, we select C3+ and Mg8+ to recalculate their DR rate coefficients by the inclusion of

below threshold resonance contributions. The population distribution of the negative energy

electrons is generated by the ADAS204 code [15]. The DR rate coefficients are calculated

by the AUTOSTRUCTURE code [16, 17] for the above threshold resonance contribution

and by a modified AUTOSTRUCTURE and a new post-processor for the below threshold

resonances. More details are presented in Chapter 5 and Appendix C.

1.3 The importance of electron impact fine-structure excitation in low temper-

ature astrophysical plasmas

When an electron interacts with an atom or ion, one possible process is that it excites

this atom or ion. Fine-structure excitation of the levels within the ground term of atoms

or ions is a particularly interesting case. They require very little energy to excite, and in

environments without enough energy to populate the excited terms they then provide one of

the few possible electron cooling mechanisms in plasma. Thus, such transitions act as one of

the most important cooling mechanism in most interstellar environments, especially in those

regions where electrons are the primary colliders [18]. This process is also important in the

analysis of ultraviolet absorption lines. Also, fine-structure transitions are a useful diagnostic
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tool for plasmas. Provided there are accurate excitation rate coefficients, various physical

quantities, such as electron density and temperature can be inferred from the observed

spectrum.

This physical process has been studied extensively. However, an important plasma

parameter space has not received much attention, namely very low temperatures such as

those in the interstellar medium. In chapter 6, we study this process for Ne+ and Ne2+ using

different R-matrix approaches [19]. The temperature that we are interested in extends to

10 K. After comparing different calculations, we recommend a set of data and evaluate an

uncertainty on the excitation data.
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Chapter 2

COMPARISON OF DIFFERENT QUANTUM MECHANICAL METHODS FOR INNER

SHELL PHOTO-IONIZATION FOLLOWED BY AUGER DECAY

This chapter considers different methods that can be used to calculate the dynamics of

an Auger electron being ejected in the presence of a slow moving photo-electron. We are

interested primarily in the Post Collision Interaction (PCI) and the effects on the energy

and angular distributions of the photo-electron. We will first review earlier approaches, then

describe and compare some methods that were developed as part of this project. The aim

is to determine a summary of the region of validity of the wide range of methods that are

used.

2.1 Background

The phenomenon of photo-ionization followed by Auger decay has been extensively

studied in the past decades both theoretically [20–40] and experimentally [3, 4, 39, 41–

51]. This is an interesting system to study for several reasons. Firstly, the Auger decay

distorts the photo-electron energy distribution. The energy distribution becomes broader,

the peak of the distribution decreases and is shifted to smaller energy because of the abrupt

increase in the ion’s charge after the Auger decay. This phenomenon is one example of

post collision interaction (PCI) effects [26]. The PCI implies an account of an interaction

between the photo-electron, the Auger electron and the ion field which varies during the

Auger decay. This system is also interesting because the strong interaction between the

two ejected electrons distorts the distribution of the angle between them. The two electrons

interact with each other strongly, particularly when the electron emitted later in time has the

larger energy and, thus, must pass the electron emitted earlier. A third reason for interest is
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that the photo-electron which has been ionized may be recaptured to a bound state of the

ion due to the PCI effect [52–61]. Recapture takes place only for low photo-electron energies.

In earlier studies, various two-body models, which include a classical model [27], a

”shake-down” model [28, 29], a semi-classical model [30, 31], a quasi-molecular adiabatic

model [32] and a quantum mechanical model [33–35], have been used to describe the interac-

tion of the photo-electron with the ion field. Later, other models were used to approximately

include a presence of a third particle - an Auger electron. Ogurtsov proposed a new version

of a classical-model to deal with cases when the energies of all the electrons are comparable

[36]. Junya Mizuno and co-workers studied this problem by solving the classical Coulomb

three-body problem [37]. Niehaus’ semi-classical model was reformulated in Ref. [38] to take

into account the time it takes for the fast Auger electron to overtake the slow electron. The

same effect was considered quantum mechanically in papers [62, 63].

Another group of quantum mechanical approaches [22, 23, 25] considers the problem as a

three-body problem and takes into account the Coulomb interactions between three charged

particles: two emitted electrons and a receding ion. These models are applied widely to

study the PCI effects. Following convention, we refer to them as the SSE approach because

they are based on the solution of the Stationary Schrödinger Equation. The SSE approach

allows one to obtain the PCI distorted angular dependent cross sections. In this chapter we

select the three most common models within the SSE approach to investigate: the Eikonal

Approximation (EIA) [22], the Eikonal Approximation with Exact Account of the Electron-

Electron interaction (EIAEIE) [23] and the Semi-Classical Approximation (SCA) [25]. The

three models have been demonstrated to work well in calculating the energy distribution over

a wide energy region, and one of the three, the eikonal approximation with exact account

of the electron-electron interaction, has been found to calculate the angular distribution in

good agreement with experiment, except for cases with low photo-electron energy.

As with any quantum mechanical three-body problem, the SSE approach has the limi-

tation which comes from the approximate consideration for some of the interactions between
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each pair of the particles. This approximation is more accurate when the photo-electron is

energetic, but has larger uncertainties in systems with low photo-electron energy, and it is

worse if the Auger electron energy is also low. Thus, an approach that can take into account

all the interactions more precisely is needed for this energy region. The approach developed

in Refs. [20, 21, 64] meets this requirement. It is based on the numerical solution of the

time-dependent Schrödinger equation (the TDSE approach), free from any physical sim-

plification in interactions between the emitted particles and restricted mainly by numerical

implementation. The aim of this paper is to check the applicability of this recently developed

approach [20, 21, 64] (particularly to show its use in the low photo-electron energy region)

and test its consistency with the SSE approach. To achieve this aim, we compare the two

most important physical quantities in studying the PCI effects, the photo-electron energy

and angular distributions, calculated by the TDSE and SSE approaches. Our comparisons

are for both low and higher photo-electron energies and we also compare some of our calcu-

lations in the low photo-electron energy region with experimental data. Note that carrying

out the calculations within the TDSE method and using the numerical implementation of

the method discussed we have restricted ourselves with some approximations which simplify

the calculation dramatically and will be discussed in Sections 2.2 and 2.4. Thus, by com-

bining the TDSE and SSE approaches, the PCI effects can be accurately calculated over an

extended range, including near threshold photo-electron energies.

The energy and angular distributions are mainly determined by three parameters; these

are the excess energy of the incident photon above the threshold which is the photo-electron

energy, E1, the Auger electron energy, E2, and the energy width of the inner shell vacancy,

Γ. E1 can be adjusted by changing the photon energy, the energy released by the electron

which fills the vacancy determines E2, and Γ is proportional to the inverse of the inner

vacancy life-time. So experimentally, we can choose different values for E1 while E2 and Γ

are determined by the atomic species. We perform calculations of nine cases in our paper:

six of them are real cases for the system of Ne 1s photo-ionization followed by KLL Auger
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decay (where Γ = 0.01 and E2 = 29.4 [4]) and the other three are fictitious cases which have

no direct experimental significance but will be very helpful in testing the accuracy of the

TDSE approach and highlighting its advantage at low photo-electron energy.

The chapter is organized as follows: in Sec. 2.2 we introduce the TDSE approach

briefly; the SSE approach models are discussed in Sec. 2.3; in Sec. 2.4, we compare the

results calculated by the TDSE and SSE approaches, and we also compare some of these

theoretical results with experimental data; the last section contains our conclusion.

Atomic system units are used throughout this chapter unless stated otherwise.

2.2 A brief introduction to the TDSE approach

The whole process of the inner shell photoionization with subsequent Auger decay can

be divided into two main steps, before and after the Auger decay. Only the photoelectron

(e1) is emitted from the nucleus before the Auger decay, so the Hamiltonian for the first

step is H1 = p2
1/2 +V (r1, t). After the Auger decay, the Auger electron (e2) is also detached

from the ion. The Hamiltonian will be composed of three parts, and can be expressed as

H = H1 +H2 +H3, where H2 = p2
2/2+V (r2, t) is for e2 and H3 = 1/r12 is for the interaction

between e1 and e2.

The method applied to study this problem in our projects is referred to as the Time-

Dependent Schrödinger Equation (TDSE) method [20, 21]. This method is based on the

time-dependent close coupling (TDCC) method [64–66] with two main modifications. One

is that the technique for the wave function propagation in the TDSE method [20, 21] is an

implicit split-operator method, while in the TDCC method the wave function is updated

with the leapfrog algorithm [64–66]. Instead of a multipole expansion, the cos(θ12) in the

e-e interaction Hamiltonian operator 1/r12 is evaluated with a discrete variable in the TDSE

method, which is the second modification.

We use two Schrödinger equations to describe the process before and after the Auger

decay in the TDSE method. The equation for the process before the Auger decay is a
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time-independent Schrödinger equation with an extra term for the photon absorption:

(E1 + i
Γ

2
−H1)F1 = Dφg (2.1)

where E1 is the initial photo-electron energy, Dφg is the dipole operator acting on the orbit

that absorbs photon, F1 is the photo-electron wave function and Γ is the width of the inner

vacancy (it is inverse of the life time the inner hole). The potential in H1 is taken as −1/r1

and Dφg is taken to be r1e
−r2

1 , a simple short-range function. The expressions for H1 or

Dφg is not in an exact form, but have little influence on the physical quantities in which

we are interested. This is because because the important interactions take place far outside

the core region. Γ is proportional to the inverse of the inner vacancy’s life-time. The wave

function of the photo-electron, F1, has the form of a damped continuum wave at energy E1;

the spatial extent of F1 increases when E1 increases or Γ decreases.

Equation (2.2) is the time-dependent Schrödinger Equation with source term that de-

scribes the process after the Auger decay. The two-electron wave function Λ(r1, r2, t) is the

solution of

i
∂Λ

∂t
−HΛ = S(t)F1(r1)F2(r2) (2.2)

where S(t) is the strength of the source, F1(r1) and F2(r2) is the source for the photoelectron

and Auger electron, respectively. We use an expression from [21] S(t) = 1/{1 + exp[10(1−

5t/tf )]} where tf is the final time of the calculation [21]; this form is chosen to make S(t)

start at ∼ 0 at t=0 and smoothly transit to 1 well before tf . The potential in H1 and H2

is taken to be −2/r, because the ion is double-charged after the Auger decay. We use the

wave function before the Auger decay F1(r1) as the source term of e1. For e2, the continuum

wave function at the Auger electron’s initial energy E2 is used as the source term.

The two-electron wave function Λ can be expressed as:

Λ =
∑
`1,`2

RLS
`1`2

(r1, r2, t)
∑
m1,m2

C`1`2L
m1m20Y`1m1(Ω1)Y`2m2(Ω2) (2.3)
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where C`1`2`3
m1m2m3

is a Clebsch-Gordan coefficient, Ω is the solid angle and Y`m(Ω) is a spherical

harmonic. We will approximately consider that e1 and e2 have the same angular momentum

in Chapters 2 and 3, `1 = `2 = `. Then Eq. (2.3) is simplified as:

Λ =
∑
`

(−1)`√
4π

R`(r1, r2, t)Y`0(cos θ12) (2.4)

where θ12 is the relative angle between the two ejected electrons.

We can extract different physical properties from the two-electron wave-function Λ. The

time-dependent position of each electron can be obtained from Λ. At early times, the Auger

electron travels behind the photo-electron. After a certain time, the Auger electron will be

at large radial distance from the nucleus than the photo-electron and will continue to large

distance, perhaps changing the direction of the photo-electron.

With the total wave-function Λ, the energy distribution Pεi can be calculated:

A`(ε1, ε2) =

∫ ∫
dr1dr2φ

∗
ε1`

(r1)φ∗ε2`(r2)R`(r1, r2, t) (2.5)

Pεi =

∫
dεj

`max∑
`=0

|A`(ε1, ε2)|2 (2.6)

where i, j = 1, 2 and i 6= j (1 and 2 correspond to the photo-electron and Auger electron,

respectively.), εi is always positive energy, Pεi is the energy distribution, and φεi`(ri) is elec-

tron continuum eigen wave function; for the photo-electron, the continuum wave is evaluated

using a potential of −2/r while for the Auger electron the potential is −1/r.

We can also calculate the angular distribution of the electrons with positive energy. The

angle of interest is the relative angle between the two electrons. The angular distribution,

Dk(cos θ12), can be calculated:

Dk =

∫ ∫
dε1dε2

∣∣∣∣∣
`max∑
`=0

(−1)`Y ∗`0(cos θ12)A`(ε1, ε2)

∣∣∣∣∣
2

(2.7)
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One point that deserves emphasis is that the angular distribution Dk only counts elec-

trons with positive energies and those that are captured to the bound states during the

Auger process are excluded.

One particular interesting quantity to study is referred to as the PED which is a prob-

ability distribution for the photo-electron energy and relative angle. It can be calculated

via:

PED =

∫
dε2

∣∣∣∣∣
`max∑
`=0

(−1)`Y ∗`0(cos θ12)A`(ε1, ε2)

∣∣∣∣∣
2

, (2.8)

The other quantity is the angular momentum distribution for the ionized photo-electrons

P` which can be calculated via:

P`(t) =

∫
dε2

∫
dε1 |A`(ε1, ε2)|2 . (2.9)

Figure 2.1 displays the angular momentum distribution at different times. The distri-

bution is concentrated in ` = 0 at early times. With the increase of time, the probability

for larger angular momentum increases because the interaction between the two electrons

becomes stronger. The P` needs to become small for several ` before `max.

We use all of the physical quantities to check the convergence of the calculation. For

example we can check if the calculation converges with respect to the time step, the spatial

grid width, the energy grid width and the number of angular momenta. Usually larger

energy requires a smaller spatial step to achieve convergence because the spatial grid has

to be much less than the wave length of the Auger electron. We also find that cases with

a stronger interaction require more angular momenta. The number of angular momenta to

get converged results is 70 for the case (E1 = 0.3, E2 = 1.0,Γ = 0.02), and for other cases

such as (E1 = 0.3, E2 = 29.4,Γ = 0.01) 15 are sufficient for convergence. The interaction

between the two electrons is stronger when they have comparable velocities. Also, we can

check if these quantities are converged with respect to time. We extend the calculation time
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Figure 2.1: The angular momentum distribution at different times. The wave-function is
mostly at ` = 0 at early time because the two ejected electrons start with zero angular
momentum. At later times, the angular momentum of each electron can increase due to the
electron-electron interaction. After t = 423.36, the Auger electron passes the photo-electron
and thus the angular momentum distribution stays the same.
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tf until the physical quantities are no longer changing. Usually, we can obtain converged

photo-electron energy and angular momentum distributions at early times in the simulation.

It requires more time for the angular and Auger electron energy distributions to converge.

The advantage of the TDSE approach lies in its accuracy in calculating the different

physical quantities. This is a fully quantum mechanical method, and all of the interactions

between each pair of charged particles are considered without any simplification which is very

important when the two emitted electrons propagate with low energies. The work in Ref.

[21] displays the angular distribution comparison between the calculated and experimental

data in the system of Neon 1s photo-ionization followed by Auger decay with low photo-

electron energy but high Auger electron energy. The good agreement in the comparison

demonstrates the validity of this theoretical method in the low photo-electron energy region.

Experimental data for cases with both the photo-electron and Auger electron in low energy

region are needed to demonstrate the importance of considering all the interactions precisely.

2.3 Models of SSE approach

We will compare results of calculations of the angular and the energy distributions

within the TDSE approach with results using the SSE approach. The models which have

taken into account the interaction between the receding ion, the photo- and Auger electrons

and were evaluated within the SSE approach are the eikonal approximation (EIA) [22],

the eikonal approach with account of the exact interaction between the emitting electrons

(EIAEIE) [22, 24], and the semi-classical approximation (SCA) [25]. All these models present

the amplitude of the process to be proportional to the overlap integral between the photo-

electron wave functions calculated before and after the Auger decay:

A ∼
〈
ψk
∣∣ψ′ε〉 (2.10)
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where ψk(~r) is the wave function of the photo-electron with momentum ~k moving in the field

of the double charged ion and the Auger electron, ψ′ε(~r) (the F1 in the TDSE approach)

is the photo-electron wave function moving in the field of the single charged ion with the

complex energy ε − iΓ/2. These functions are calculated via the solution of the stationary

Schrödinger equations.

Evaluating an amplitude within the EIA approximation, it is assumed that the in-

teraction between each pair of charged particles (the photo-electron with the ion and the

photo-electron with the Auger electron) occurs mainly at large distances where the kinetic

energy is much more than the potential energy of the interacting particles, Wkin � Wpot.

This condition leads to the limitation of the energies of the slow photo-electron, E1:

E1 � Γ2/3 (E0/2)1/3 (2.11)

where E0 is the atomic unit of energy. On the other hand, the case of similar energies for

the photo- and Auger electrons when they are emitted at small relative angles violates the

condition of the applicability of the EIA approximation. Note that the inaccurate accounting

of the electrons’ interaction leads to the impossibility of calculating the total PCI distortion

factor for angular distribution of the emitted electrons (when it is integrated over all the

energies of the emitted electrons) [24].

The EIA approximation was extended to the case when the emitted electrons have

comparable velocities and are ejected at small relative angles. In this case, the interaction

between the photo- and Auger electrons has to be taken into account more precisely. This

has been done within the EIAEIE approach [23] where the movement of the photo-electron

is considered in the eikonal approximation but the Coulomb interaction between the emit-

ted electrons is taken into account exactly within the quantum mechanical approach. The

EIAEIE approach allows one to calculate the energy and angular distributions of the emitted
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electrons for a wide range of energies and angles for the ejection of the photo- and Auger

electrons, except from the cases where the condition in Eq. (2.11) breaks down.

The semi-classical approach, SCA, uses the WKB wave functions for calculating of the

overlap integral and leads also to the angular dependent PCI distortion cross section [25].

It can be applied to the case of low energy photo-electron ejection which lies beyond the

condition in Eq. (2.11). However, the energy distribution calculation within the SCA method

is faced with another restriction, which is

0 < v1/|v2 − v1| < 1 (2.12)

where v1, v2 are the velocities of the photo- and Auger electron, respectively. If the relative

velocity of the emitted electrons is small and they lie in the region where v1/|v2 − v1| > 1,

the SCA approach can not be used. This restriction is connected with the fact that the point

of the stationary phase (this method is used for evaluation of the overlap integral) in the

region considered is going to infinity and the stationary phase method breaks down.

An advantage of the SSE approach is the fact that all three models considered here give

the analytical expressions for the amplitudes and cross sections that can be used for analysis

and calculation of the energy and angular distributions in a wide region of energies and

angles of electron emission. A numerical implementation of these formulae is straightforward

and reduces to the calculation of some special functions in the complex plane. Note that

calculations within the considered models of the SSE approach carried out in the region

of their applicability agree quite well with measurements both of energy distributions (see

e.g.[39]) and of the angular distributions [44, 45, 49].

Some further examples of the levels of agreement are given here. The line shapes of the

2.7 eV 4d photo-electrons in Xe (Γ= 110 meV) calculated within the EIA approach agree

very well with the measured energy distributions in papers [39] and [67]. Also the energy dis-

tributions of the 2p photo-electrons in Ar (Γ = 118 meV) calculated by the EIA model agree
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Mthod Condition Valid regime

EIA E1 � Γ2/3 (E0/2)1/3 High energy regime and the two electrons
are ejected at different directions.

EIAEIE E1 � Γ2/3 (E0/2)1/3 High energy regime
SCA 0 < v1/|v2 − v1| < 1 Low photo-electron energy regime or

large relative velocity beteen two ejected electrons
TDSE Satisfy computational resources Low and high enenrgy regime

Table 2.1: Condition summary for different methods

well with the measured ones for the excess photon energies 3 eV, 9 eV and 12 eV but dis-

agree for the excess energy 0.85 eV [51]. However, the calculation within the SCA approach

[40] shows good agreement with experimental data in this case. The angular dependent

energy distributions of the 30.5 eV electrons in Xe 4d-ionization followed by the 1N5-O23O23

Auger decay were measured in coincidence with the Auger electrons [44, 45] and show good

agreement with the calculation within the EIA approach. The angular distribution of the

17 eV 4d-photo-electrons in Xe was measured in coincidence with the 30 eV N5-O23O23

Auger electrons [49] and shows good agreement with the calculations within the EIAEIE

approach. The angular distribution of the 13.5 eV 2s photo-electrons emitted due to the

resonance photoionization in Neon and followed by the Auger decay (Ne+∗(2s2p5(3P)3p(2S))

→ Ne2+(2s22p4(1D))+eA, where the Auger electron has similar energy to the photo-electron)

was calculated by the EIAEIE approach in Ref. [47], and the agreement between the calcu-

lations and measurements is quite reasonable.

Table 2.1 gives a brief summary of the applicability of different methods.

1This is a spectroscopic notation where principle quantum numbers are identified by letters. The symbols
for n=1 ,2, 3 ... are K, L, M .... In the notation, the first letter is the initial core hole location (initially
location of photo-electron), the second letter is the initial location of relaxing electron and the third letter is
the location of second hole (initial location of Auger electron). So the notation N5-O23O23 represents that
a photon creates a hole at 4d, an electron at 5p fills in this hole and transfer its extra energy to another
electron in 5p which will be ejected.
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2.4 Comparison between TDSE and SSE approaches

In this section, we compare the photo-electron energy and angular distributions of sev-

eral cases calculated by the two different quantum mechanical approaches: TDSE and SSE.

This comparison will highlight agreement and disagreement of results obtained by the various

methods.

Note that some approximations are made in the TDSE approaches. For example, we

use −Z/r as the potential in the Hamiltonian. This approximation is accurate when the

photo-electron travels far from the nucleus before it interacts with the Auger electron. For

very low photo-electron energy (E1 ≈ 0), the approximation will not be as accurate. We use

a different potential in the calculation:

−(Z + (10− Z) exp(−r/ra))/r (2.13)

where ra is atomic radius, and it is 0.71 for Neon. And we find that the results of this

potential are the same as those of the potential −Z/r except for the situation when the initial

photo-electron energy is very close to 0. Another approximation is that the expressions for

Dφg in Eq. (1) and F2(r2) in Eq. (2) are replaced by two simple short-range functions.

As with the simple approximation to the Hamiltonian, this approximation breaks down for

zero initial photo-electron energy or large Γ. We also assume that both ejected electrons

start with 0 angular momentum. This approximation is not essential, but it simplifies the

calculation dramatically and allows us to use the available computer capacities and carry out

the calculation with in a reasonable time. This restriction means that cases with non-zero

total angular momentum L are not treated in the current TDSE calculations. However, we

expect the general trends for other total angular momenta to be similar to those in this

paper because the electrons are at large distance when the interaction occurs. We plan

to perform calculations with different total angular momentum in future work by using

more refined numerical methods. The main limitation of the TDSE approach is computer
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capacity. If an electron’s energy is large, a greater number of points for the radial grid is

needed to get a converged result; if two electrons have comparable velocities, more angular

momenta are required in the calculation. So the current version of the TDSE code becomes

computationally intensive when both the ejected electrons have very large velocities or have

large and comparable velocities.

The SSE approach contains three different approximations to calculate the energy dis-

tribution. The first is the EIA approximation which works for cases when the two ionized

electrons have large and different velocities and the relative angle between them is not too

small. When the two ionized electrons have large and comparable velocities or the Auger

electron is launched near the direction of the photo-electron, the second approximation,

EIAEIE, should be applied. The condition in Eq. (2.11) can be used to test if the EIA or

the EIAEIE approximation is accurate. The third approximation is the SCA approximation

which is accurate for low excess photo-electron energy. The condition in Eq. (2.12) has to be

satisfied for this semi-classical approximation. In this paper, only the EIAEIE approximation

is applied to calculate the angular distribution. The EIA approximation fails in the calcula-

tion of the angular distribution because the interaction between the two ejected electrons is

the main reason for the distortion in the angular distribution [24]; the EIA approximation is

used when three particles are far apart and their trajectories are straight-lines, so the angular

distribution calculated by EIA approximation has little PCI distortion. The reason for not

calculating the angular distribution using the SCA approximation is similar, because the

interaction between the two ejected electrons is not fully considered in this approximation

either. The PCI distortion factor for the angular distribution given by the EIA approach was

shown to be 1 (see [24]), and we have a similar conclusion for the SCA approximation, which

has been checked by direct numerical calculation. Thus we can compare with the EIAEIE

results because it should be the most accurate for the
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Case name Photo-electron Auger electron Auger width
energy (E1) energy (E2) (Γ)

Cases for Energy distribution
Case 1A 0.0735 2.0 0.01
Case 2A 0.1 29.4 0.01
Case 3A 0.5 29.4 0.01
Case 4A 0.3 1.0 0.02

Cases for angular distirbution
Case 1B 0.0735 2.0 0.01
Case 2B 0.0735 29.4 0.01
Case 3B 0.05 29.4 0.01
Case 4B 0.3 29.4 0.01
Case 5B 0.4 29.4 0.01
Case 6B 0.5 29.4 0.01

Case for experiment comparison
Experiment case 0.05 29.4 0.01

Case for diferent range of integration
for the angular distribution

Different range intergrartion case 0.5 2.0 0.02

Table 2.2: All the cases studied in this chapter

For the system studied here, a close comparison between theoretical methods, and with

experiment, is critical in developing a full picture of the dynamics. In the following sub-

sections we compare a range of theoretical calculations. At the end of each section we also

compare with the available experimental data. Table 2.2 provides a list of all the cases

studied in this chapter.

2.4.1 Comparison of the photo-electron energy distribution

First we examine the photo-electron energy distribution. Four typical cases are selected

to discuss the similarity and distinction of results obtained by the various approaches. We

will also investigate the differences between the results, relating them to the restrictions of

these approaches.

The first two cases are Case 1A (E1 = 0.0735, E2 = 2.0,Γ = 0.01) and Case 2A (E1 =

0.1, E2 = 29.4,Γ = 0.01). For Case 1A and 2A, the right hand side of the condition in Eq.

(2.11) is 0.012/3(1/2)1/3 ≈ 0.0368. E1 = 0.0735 in Case 1A and 0.1 in Case 2A. Neither of
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Case 2A
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Figure 2.2: The photo-electron energy distribution comparison of different approaches for
two cases. The left curves are for Case 1A (E1 = 0.0735, E2 = 2.0,Γ = 0.01), and the right
curves are for Case 2A (E1 = 0.1, E2 = 29.4,Γ = 0.01). For both cases the dotted line is the
calculation of the EIA approximation of the SSE approach, the dashed line is of the EIAEIE
approximation, the dot-dashed line is of the SCA approximation and the solid line is the
result of the TDSE approach.
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the two values is much larger than 0.0368. So the EIA and EIAEIE approximations

should not work well. However, the value of v1/|v2−v1| in the condition in Eq. (2.12) is

approximately 0.161− 0.237 for Case 1A and 0.055− 0.062 for Case 2A. The two ranges

are both between 0 and 1, and the SCA approximation should give accurate

results. As shown in Fig. 2.2, the PCI distortion in the EIA and EIAEIE approximations

is much larger than that in the TDSE approach or the SCA approximation: the shift of the

distribution maximum is larger and the left wing of the distribution broadens strongly. This

fact is connected with the violation of the condition in Eq. (2.11) in the near threshold region

and with underestimation of the potential energy. It leads to a stronger influence of the ionic

field variation on the photo-electron propagation, and consequently on the PCI distortion.

As the photo-electron energy decreases, the discrepancy between the calculations increases.

The disagreement between the results within the EIA and SCA approximations was first

noted in Ref. [25]. For both cases, the results of the SCA approximation agrees much better

with that of the TDSE approach. The agreement in Case 2A is better than that in Case

1A, and the discrepancy lies in the left wing of the distribution in both cases. These small

disagreements can be connected with the approximations which were used in the evaluation

of the SCA approximation [25]. The results of the EIA and EIAEIE approximations almost

coincide in these two cases. Because the two electrons’ velocities are not very close to each

other, considering the interaction between the two emitted electrons exactly (or not) makes

little difference to the results.

The other two cases selected to discuss the photo-electron energy distribution are Case

3A (E1 = 0.5, E2 = 29.4,Γ = 0.01) and Case 4A (E1 = 0.3, E2 = 1.0,Γ = 0.02). The

condition in Eq. (2.11) is satisfied for both cases: 0.5� 0.0368 for Case 3A and 0.3� 0.0585

for Case 4A. The value of v1/|v2 − v1| is approximately 0.115 − 0.150 for Case 3A and

0.354 − 1.211 for Case 4A. Case 3A fully satisfies the condition in Eq. (2.12) but Case 4A

fails for some angles (0.913 < cos θ12 < 1) . In Case 3A (the right part of Fig. 2.3), the

three different SSE approximations give the same photo-electron energy distribution because
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Figure 2.3: The photo-electron energy distribution comparison of different approaches for
two cases. The left curves are for Case 4A (E1 = 0.3, E2 = 1.0,Γ = 0.02), and the right
curves are for Case 3A (E1 = 0.5, E2 = 29.4,Γ = 0.01). For both cases the dotted line is the
calculation of the EIA approximation of the SSE approach, the dashed line is of the EIAEIE
approximation, the dot-dashed line is of the SCA approximation and the solid line is the
result of the TDSE approach.
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both the conditions in Eqs. (2.11) and (2.12) are satisfied, and they agree quite well with the

TDSE approach. In Case 4A (the left part of Fig. 2.3), the four results are also close although

none of the SSE approximations agree perfectly with the TDSE result. The result of the

TDSE approach agrees best with that of the EIAEIE approximation because the condition

in Eq. (2.12) is not satisfied for some angles and the two electrons have comparable large

velocities. The small difference between the TDSE approach and the EIAEIE approximation

also happens in left wing of the distribution because the condition in Eq. (2.11) is not satisfied

in the low energy range.

Our theoretical findings can be verified by the available measurements [4]. Fig. 2.4

presents the theoretical and experimental energy distribution comparison for the case E1 =

0.05, E2 = 29.4,Γ = 0.01. The results calculated within the EIA approximations (the thin

solid-line) and EIAEIE approach (the dashed-line) coincide with each other, but significantly

deviate from the experimental data [4] (symbolized by dots in Fig. 2.4). This is what we

expected because this case violates the condition in Eq. (2.11) (E1 is comparable with the

value 0.012/3(1/2)1/3 ≈ 0.0368). However, the condition of Eq. (2.12) is satisfied (the value

of v1/|v2 − v1| is 0.0396 − 0.043), and the result calculated by the SCA approximation

should be more accurate. The results from the TDSE method (the thick solid-line) and SCA

approximation (the dot-dashed-line) agree with each other. They also fit well with the exper-

imental data, and the agreement in the low energy region is better than that in the higher

energy region. The difference between the experimental data and the SCA or the TDSE

curve may be caused by a yield of occasional electrons (via the capture and re-emission of

slow photo-electrons) which are recorded experimentally but not included in the calculations

here. Another possible reason for this small disagreement may be associated with the pho-

ton energy resolution which is also not included in the calculation. For the resolution of the

electron spectrometer, we simulate this function via a Gaussian with permanent FWHM =

170 meV [4] for all energies of the calculated range. However, the real experimental function
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Figure 2.4: The photo-electron energy distribution comparison of theoretical calculations and
experimental data for the case of 1s-photoionization of Ne (E1 = 0.05, E2 = 29.4,Γ = 0.01).
The dotted line is for the experimental measurement extracted from Ref. [4], the thin solid
line for the calculation of the EIA approximation of the SSE approach, the dashed line is of
the EIAEIE approximation, the dot-dashed line is of the SCA approximation and the thick
solid line is the result of the TDSE approach.
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may differ from the function we used and have a more complicated form. That is also a

possible reason for the disagreement.

2.4.2 Comparison of the angular distribution

To investigate the angular distribution, we selected cases designed to compare the TDSE

approach and the EIAEIE approximation. Any difference between the two approaches should

be related to the photo-electron energy E1 and the Auger width Γ because of the condition

in Eq. (2.11). However, we found that the TDSE and EIAEIE approaches gave closer results

for larger Auger electron energy which suggests an approximation beyond that captured by

the condition in Eq. (2.11).

Cases with low excess photo-electron energy can not satisfy the condition in Eq. (2.11),

so the angular distribution calculated by the EIAEIE and TDSE approaches should be

expected to have a notable difference. With the increase of the photo-electron energy,

the agreement between the two approaches becomes better. For cases with low photo-

electron energy, if the Auger electron energy is also small, the agreement between the

two methods is worse, compared to cases with larger Auger electron energy. Fig. 2.5

shows the comparison of the angular distribution for the three cases. The solid-lines are

the results of the TDSE approach and the dotted-lines are the results of the SSE ap-

proach. Case 2B (E1 = 0.0735, E2 = 29.4,Γ = 0.01) has the same Γ and E2 as Case

3B (E1 = 0.05, E2 = 29.4,Γ = 0.01), but a different E1. For these two cases, the test for

the condition in Eq. (2.11) is 0.0735 � 0.0368 for Case 2B and 0.05 � 0.0368 for Case

3B. Neither of them satisfies the condition, and as a result, the SSE approach does not

agree very well with the TDSE approach. Case 2B has the same Γ and E1 as Case 1B

(E1 = 0.0735, E2 = 2,Γ = 0.01), but quite different E2. The condition in Eq. (2.11) fails

in both cases. However, the uncertainty of EIAEIE in Case 1B is much larger than that in

Case 2B because the Auger energy is much smaller.
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Figure 2.5: The angular distribution comparison of the two approaches for three cases. The
solid lines of the three cases are the calculations of the TDSE approach, and the dotted
lines are of the SSE approach. Case 1B is (E1 = 0.0735, E2 = 2.0,Γ = 0.01), Case 2B
(shifted up by 0.25) is (E1 = 0.0735, E2 = 29.4,Γ = 0.01) and Case 3B (shifted up by 0.5) is
(E1 = 0.05, E2 = 29.4,Γ = 0.01).
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One reason for this phenomenon may be because the distortion in the angular distribu-

tion is mainly caused by the electron-electron interaction which has been considered exactly

in the EIAEIE approximation. The interaction between the ion and photo-electron or Auger

electron also plays some role in the angular distribution. When the Auger electron has very

high energy, the eikonal approximation for the ion-Auger electron interaction used in the

EIAEIE approximation is valid, and causes little error. This is the other possible reason

for this phenomenon. Thus, we can conclude that, unlike the energy distribution case, the

angular distribution calculated by the EIAEIE approximation can be more accurate or close

to the TDSE result in a case with low photo-electron energy (i.e. the condition in Eq. (2.11)

is not satisfied) but very high Auger electron energy.

For cases with high photo-electron energy, the agreement between the TDSE approach

and the SSE approach is better. This is what we expect, because the condition in Eq. (2.11)

is satisfied here, and the EIAEIE approximation works well. We divide this energy region

into two scenarios. When the two electrons have quite different energies, the disagreement

between the two methods lies in the small angle region which can be shortened if we increase

the photo-electron energy. Fig. 2.6 shows the angular distribution comparison for three cases.

They are Case 4B (E1 = 0.3, E2 = 29.4,Γ = 0.01), Case 5B (E1 = 0.4, E2 = 29.4,Γ = 0.01)

and Case 6B (E1 = 0.5, E2 = 29.4,Γ = 0.01). These three cases have the same E2 and Γ but

different E1. The E2 in all the three cases is much larger than E1. The right hand side of

the condition in Eq. (2.11) is approximately 0.0368 for all the three cases which means the

condition in Eq. (2.11) is fully satisfied. Thus the two approaches agree better in the three

cases. The difference between the two approaches starts from cos θ12 = 0.74 in Case 4B, 0.80

in Case 5B and 0.85 in Case 6B. Case 6B has the smallest discrepancy angle range due to

its highest E1. It is unclear where the difference comes from and which method works better

for this situation; it may be connected either to the limitation of L = 0 in our version of the

TDSE approach or with inaccuracies of the EIAEIE method in this region.
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Figure 2.6: The angular distribution comparison of the two approaches for another three
cases. The solid lines of the three cases are the calculations of the TDSE approach, and
the dotted-lines are of the SSE approach. Two approaches agree well. Case 4B is (E1 =
0.3, E2 = 29.4,Γ = 0.01), Case 5B (shifted up by 0.1) is (E1 = 0.4, E2 = 29.4,Γ = 0.01) and
Case 6B (shifted up by 0.2) is (E1 = 0.5, E2 = 29.4,Γ = 0.01).
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Figure 2.7: The angular distribution comparison of the two approaches for the case (E1 =
0.5, E2 = 2.0,Γ = 0.02) with different photo-electron energy integration range. The solid
lines of the ranges are the calculations of the TDSE approach, and the dotted lines are of
the SSE approach. The curves marked with ”Narrow range” and ”Full range” correspond to
the photo-electron energy integration range 10 eV-15 eV and 6.2 eV-18 eV, respectively.
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As for the second situation, when the two electrons have comparable energies, the differ-

ence between the two approaches lies in the position where the angular distribution starts to

decrease. The difference for this situation is mainly caused by the inaccuracy of the EIAEIE

approximation for small photo-electron energy and by the range of the photo-electron en-

ergies included in consideration. We get such a conclusion because the difference is smaller

when we recalculate the angular distribution with narrower photo-electron energy integration

range (smaller photo-electron energy is excluded in this range). Fig. 2.7 shows the angular

distribution comparison for the case (E1 = 0.5, E2 = 2.0,Γ = 0.02) with two different photo-

electron energy integration ranges. Substituting values into the condition in Eq. (2.11) gives

0.5 � 0.0585 which indicates the EIAEIE approximation should work well. Agreement be-

tween the two methods is better when the photo-electron energy integration range is narrow,

10 eV-15 eV, and the difference becomes larger when we integrate the photo-electron energy

from 6.2 to 18 eV because some low photo-electron energies (after the Auger decay) do not

satisfy the condition in Eq. (2.11).

In the conclusion of the angular distributions investigation, we select two cases (2B

(E1 = 0.0735, E2 = 29.4,Γ = 0.01) and 3B (E1 = 0.05, E2 = 29.4,Γ = 0.01) ) to compare

the angular distribution calculated by theories and that measured experimentally. The

comparison for Case 2B shown in Fig. 2.8 meets our expectation. The TDSE calculation

(the solid line) agrees well with the experimental measurement (the dotted line) [21]. Though

the condition in Eq. (2.11) is not satisfied in this case, the EIAEIE curve (the dashed line)

fits the experimental data nicely. One possible reason is that the inaccuracy of the angular

distribution calculated by the EIAEIE approximation is small if the initial Auger electron

energy is very high, which has been discussed above. The other reason may be because the

integration range of the photo-electron energy for Case 2B is 0.5 eV-2.5 eV, very low photo-

electron energies are not included in calculations which reduces the error of the EIAEIE

approximation.
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Figure 2.8: The angular distribution comparison of the theoretical calculations and ex-
perimental data for the 1s-photoionization of Ne. The dotted lines are the experimental
measurement [21] (Case 2B) and [4] (Case 3B), the solid line is the calculation of the TDSE
approach, and the dashed line are of the SSE approach. The error bars for statistical inac-
curacy are shown for few points in the case 3B. Case 3B is (E1 = 0.05, E2 = 29.4,Γ = 0.01),
Case 2B (shifted up by 0.3) is (E1 = 0.0735, E2 = 29.4,Γ = 0.01).
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Generally, the theoretical calculations also agree with the experimental data in the

comparison of Case 3B displayed in Fig. 2.8. Note that the integration range for photo-

electron energy is 0.1 eV - 2.0 eV for the calculated curves, and the theoretical curves were

convoluted with Gaussian with FWHM = 2.2◦ [4]. One surprising result is that the TDSE

method’s deviation from the experimental data (the dotted line) [4] is larger than that of

the EIAEIE calculation, although both the TDSE and EIAEIE curves agree reasonably well

with the measured dependence. This unexpected phenomenon can be explained by two

reasons. Firstly, the interaction between the photo-electron and Auger electron, which is

taken into account exactly in EIAEIE calculations, is the main factor in determining the

shape of the angular distribution. Our calculation within the EIAEIE approach neglects

the capture of slow photo-electrons, which is important at very low photo-electron energies,

and could influence the angular distribution under certain experimental conditions (see, e.g.

[57]). However, the measurements [4] do not satisfy these conditions and the EIAEIE results

agree quite well with the experimental data. Secondly, our calculations in this paper within

the TDSE approach take into account only the angular momentum L = 0 of the pair of the

emitted electrons. However, for the Ne 1s case the other momenta L = 1, 2, 3 can contribute

to the electron’s emission and change the angular distribution slightly.

2.5 Conclusions

In this paper, we performed calculations of different cases within two groups of quantum

mechanical approaches. After comparing the calculated and measured photo-electron energy

and angular distributions, we can make the following generalizations.

For cases with low photo-electron energy, the TDSE approach describes well both the

photo-electron energy and angular distributions. The SCA approximation of the SSE ap-

proach gives a similar photo-electron energy distribution as the TDSE approach if the con-

dition of its applicability is satisfied. The other two approximations of the SSE approach,

EIA and EIAEIE, are not accurate for the energy distribution because the condition of their
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applicability usually can not be satisfied in this energy region. The EIAEIE approach has

less inaccuracy in its angular distribution than its energy distribution if the Auger electron

has very high energy.

For cases with medium-high photo-electron energy, the EIAEIE approximation of the

SSE approach describes well both the photo-electron energy and angular distributions. All

the three models of SSE approach give similar energy distributions as long as the conditions of

their applicability are satisfied. The TDSE approach is suitable in calculating both the photo-

electron energy and angular distributions in this energy region. The agreement between

the two approaches is excellent in the photo-electron energy distribution. For the angular

distributions, there are only small differences between the two methods. The TDSE approach

may break down if both electrons have high and comparable energies. In this case a larger

number of angular momenta and radial mesh points are required to get the converged results,

requiring large computational resources.

For cases where both electrons have very high energies, the SSE approach can be applied

for both the energy and angular distributions, and the TDSE approach breaks down because

of the requirement for a huge number of points in the calculation.

By considering an energy region where both methods are applicable, it has been shown

that together the TDSE and SSE approaches cover almost all of the energy range for which

people might be interested in studying PCI effects. Our theoretical methods are confirmed

by the agreement with measurements of the energy and angular distributions of the emitted

1s photo-electrons from Ne. More precise agreement of the TDSE approach and measured

angular distributions can be reached both by including higher total angular momenta in the

calculation and carrying out measurements with less statistical inaccuracy.

40



Chapter 3

THE STUDY OF INNER SHELL PHOTOIONIZATION FOLLOWED BY AUGER

DECAY IN THE LOW PHOTOENERGY REGIME

In this chapter we consider a particular interesting part of the parameter space for

Auger and photo-electron dynamics. We focus on very low energy photo-electrons and the

impact of the photo- and Auger electrons interaction on the energy and angular distribution

in this regime the photo-electron ca be recaptured by the ion, or has its energy or direction

significantly altered.

3.1 Background

The physical process of photo-absorption followed by sequential double ionization has

been studied extensively in the past decades [4, 21, 68–82]. The first electron emitted from

the nucleus is called the photo-electron because its ionization is due to photo-absorption. If

the photo-electron originates from an inner shell, a second electron may undergo an Auger

decay and be emitted (referred to as the Auger electron). How quickly the photo- and

Auger electrons escape from the atom, and the period between the two ionizations, are

two important factors in determining the subsequent dynamics. The initial energy of the

Auger electron (E2) and the Auger width (Γ) (proportional to the inverse of the time interval

between the two ionizations) only depend upon the chosen atomic system. The initial photo-

electron energy (E1) is a function of the incident photon energy and the ionization potential.

In summary, the atomic species and the incident photon energy co-determine the whole

physical process.

During the past decades, this problem has been investigated within different atomic

systems, namely, 4d3/2,5/2 photo-ionization following N − OO Auger decay in Xe [68–74],
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Ar 3d photo-ionization followed by Auger decay [78, 79], 1s or 2s photo-ionization with

subsequent Auger decay in Ne [4, 21, 75–77], and 3d5/2,3/2 photo-ionization followed by

Auger decay in Kr [81, 82]. These papers covered a wide energy range. Xe is one of the most

frequently used atom species in studying this problem. The 4d5/2 photo-ionization in Xenon

with subsequent N5−O2,3O2,3 Auger decay was selected to study the energy and/or angular

distributions in References [68–74]. For this system, the initial energy of the Auger electron

(E2) was ∼ 30 eV, and the Auger width (Γ) was ∼ 0.12 eV. The initial photo-electron energy

(E1) was Ep-67.548 eV with a variable Ep (Ep is the incident photon energy and 67.548 eV

is the binding energy of 4d5/2 [83]). E1 was 27 eV in [68, 69] where the influences of the

Post-Collision Interaction (PCI) on the energy and angular distributions for a particular

ejection angular range were studied. E1 was 30.0 eV in the work of Viefhaus et al. [70],

they showed that the triple differential cross section can fully vanish because of destructive

interference. Scherer et al. [71] considered the energy distribution measurement of two

coincident electrons with nearly the same energy and direction, and three different initial

photo-electron energies, 28.97 eV, 29.97 eV and 30.97 eV, were studied. The first coincident

angular distribution was measured in Ref. [73] where E1 was 29.9 eV. Sheinerman et al.

experimentally and theoretically investigated the PCI phenomena with the same atomic

system in Ref. [74], and the initial photo-electron energy was as low as 2.67 eV. In the

same reference, other Xe systems, such as 4d3/2 photo-ionization with subsequent decays

N4 − O2,3O2,3 and N4 − O1O2,3, were also included in their investigations, where E2 was ∼

32 eV and 16 eV, respectively, the energy for 4d3/2 was -69.537 eV, and Γ was ∼ 0.104 eV

for the intermediate state.

Inner-shell photo-ionization followed by Auger decay is a three-body problem, and can

not be solved exactly in an analytical way. However, some approximations can be made

to convert it to a two-body problem if neither of the two electrons have low energies. If

the energy of one of the two electrons is low, for example E1 is very low and the Auger

electron is ejected with a high velocity, the interaction between the ion and photo-electron
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has to be fully considered during the whole process. In this situation, this problem can also be

solved analytically by approximately treating the e-e interaction and the interaction between

the Auger electron and ion. Different cases with low initial photo-electron energy have been

investigated in Refs. [75, 78, 79, 81, 82]. Because the e-e interaction was not fully considered,

only the energy distribution was calculated and the angular distribution was rarely involved.

The main purpose of this paper is to investigate how the angular distribution behaves when

the photo-electron is emitted with extremely low energy.

To achieve this goal, we perform calculations with a numerical method [1, 20, 21] and

refer to this as the Time-Dependent Schrödinger Equation (TDSE) method in which all

Coulomb interactions between each pair of particles are fully taken into account. To confirm

the validity of the results, we also redo the calculations with a Classical Trajectory Monte

Carlo (CTMC) method. The chosen system in this paper is Kr 3d5/2 photo-ionization with

subsequent M −NN Auger decay, and the photo-electron energy is between 0.0 eV-1.0 eV.

We select this system because it has small Γ (∼ 0.088 eV) and lower E2 (∼ 2 a.u.), which

are within the limitations of the TDSE method, see the discussion in Section 3.2.

The chapter is organized as follows: in Section 3.2, we briefly review the two theoretical

methods used in this paper, TDSE and CTMC; Sec. 3.3 shows the energy and angular

distributions for the system Kr 4d5/2 photo-ionization following M −NN Auger decay; the

last section presents the conclusion.

Atomic units are used throughout unless stated otherwise.

3.2 Theoretical methods

3.2.1 Approximations for the TDSE method

Here, we discuss the approximations used in the TDSE method. Our results are insen-

sitive to different expressions for the short range functions Dφg and F2. The short range

potetial in the Hamiltonia is −Z/r. The correlation with other electrons can not be neglected

when the photo- or Auger electron travels close to the nucleus. We redid our calculations
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with an expression −(Z + (Zt − Z) exp(−r/ra))/r for the potential instead (ra and Zt are

the atomic radius and number, respectively, ra = 1.66 a.u. and Zt = 36 for Kr). Compared

with the previous results, there are only small changes in the angular distributions for cases

E1=0.0 eV and 0.1 eV, and almost no changes for other cases in this paper. We also assume

that both the emitted electrons start with zero angular momentum. During the subsequent

electron dynamics, the two electrons have the same angular momentum magnitude because

the total angular momentum (which is zero) is conserved. Due to the expected complexity,

we did not perform calculations for other total angular momentum values. This approxi-

mation is expected to work well in the chosen system. The small Auger width means that

the photo-electron has a longer time to travel away from the nucleus before the Auger de-

cay. Meanwhile, the initial Auger electron energy is not high which postpones the strongest

interaction between the photo and Auger electrons. The validity of the zero total angular

momentum approximation will be increased if the two electrons meet far away from the

nucleus. Moreover, we focus on those electrons that remain escaping from the ion, which

makes this approximation more accurate.

3.2.2 Classical Trajectory Monte Carlo method

The TDSE method described above has been proven to be valid in studying inner shell

photo-ionization followed with Auger decay problems [1, 21]. However, it is the first time

that this method is applied to the extremely low photo-electron energy region, which is of

particular interest for the scenarios studied here, where the calculated angular distributions

have unusual shapes. Thus, it is desirable to check the results with a completely different

theoretical method. We simulate the process with a CTMC approach [20].

In our classical simulation, the photo-electron is emitted from the nucleus at t = 0,

with a random energy selected from a normal distribution exp(−(E − E1)2/2σ2), where E1

is the initial photo-electron energy used in the quantum mechanical method and σ equals

Γ/2
√

2 ln 2, with a random direction chosen from flat cos θ and flat φ; the Auger electron is
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launched at t = t2, where t2 is chosen from an exponential distribution Γ exp(−Γt), with a

random energy selected from a normal distribution exp(−(E − E2)2/2σ2) where E2 is the

initial Auger electron energy used in the TDSE method, with a fixed direction θ = π/2 and

φ = 0. Note that we make the two electrons propagate from a small finite radius (0.001 au) to

avoid the infinite Coulomb potential and velocity at the starting point, and the two electrons’

positions are updated using Newton’s Second Law until the relative angle distribution will

not change. The relative angle between the two electrons θ12 is calculated via cos θ12 = ~v1· ~v2

v1v2
.

3.3 Results and discussion

The system chosen in this paper is Kr 3d5/2 photo-ionization followed with M − NN

Auger decay where Γ is ∼ 0.088 eV and E2 is ∼ 2 a.u.. We will study the photo-electron

energy and angular distributions in this system by changing the photon energy. The cases

included in this paper are E1= 1.0 eV, 0.5 eV, 0.25 eV, 0.125 eV, 0.1 eV and 0.0 eV. We

first investigate in Subsection 3.3.1 the changes to the photo-electron energy distributions,

and then in Subsection 3.3.2 consider the changes to the relative angular distributions.

3.3.1 The photo-electron energy distribution

Figure 3.1 displays the photo-electron energy distribution after the Auger decay for

different initial photo-electron energies. Fig. 3.1 (a) is for cases E1=1.0 eV (dot-dashed

line), 0.5 eV (dotted line), 0.25 eV (dashed line), 0.125 eV (thin-solid line) and 0.1 eV

(thick-solid line); Fig. 3.1 (b) is for the case E1=0.0 eV which needs a greater energy range

to show the complete distribution. For each case, the energy of the photo-electron might

be expected to be symmetrically centered on the initial photo-electron energy E1 before the

Auger decay [4]. After the Auger decay, the maximum of the distribution is shifted to smaller

energy, and the distribution becomes asymmetric. As shown in Fig. 3.1 (a), the shift of the

distribution peak is δE=1.0-0.88=0.12 eV for the case E1=1.0 eV, δE=0.5-0.33=0.17 eV for

the case E1=0.5 eV, and δE=0.25-0.05=0.2 eV for the case E1=0.25 eV. The peaks for the
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other three cases are shifted to the negative energy region, their shifts can not be calculated

here.

This phenomenon is mainly caused by the abrupt change in the ion’s charge when the

Auger decay happens. The increase in the ion charge reduces the ion potential by 1/r0,

where r0 is the distance the photo-electron travels away from the nucleus before the Auger

electron is launched. Cases with larger initial photo-electron energy have smaller shifts of

the distribution peak because the life-time of the intermediate state is approximately the

same for each case and the larger initial photo-electron energy causes larger r0. Within the

same case, the shift in energy of 1/r0 is smaller if the photo-electron has larger energy, which

can explain why the energy distribution is broader and asymmetric, and why the tail of the

left side of the distribution lasts longer than that of the right side.

The interaction between the photo- and Auger electrons also has some influence on

the shift of the energy distribution. The Auger electron will transfer part of its energy

to the photo-electron when it passes by. The stronger the interaction is, the more energy

the photo-electron will obtain. We have performed calculations for some cases with the

same initial photo-electron energy and Auger width but different initial Auger energies. The

shifts of the distribution peak δE are not the same, though the energy shifts caused by the

change of the ion charge would be expected to be the same. The reason is that their e-e

interaction strengths are different. Lower initial Auger energy means that the Auger electron

can interact with the photo-electron for a longer time, more energy will be transferred to

the photo-electron energy which makes the shift δE smaller.

Figures 3.1 (a) and (b) also show that a small portion of photo-electrons are captured to

bound states after the Auger decay if the photo-electron has a relatively high initial energy

E1; however, when E1 becomes smaller, more and more photo-electrons will stay at bound

states. We expect that the angular distribution profiles of cases E1=1.0 eV and 0.5 eV will

be determined by the strength of the interaction between the photo- and Auger electrons and
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Figure 3.1: The photo-electron energy distributions (normalized by dividing by the maximum
probability in positive energy range) for cases E1=1.0 eV (a, Dot-dashed line), 0.5 eV (a,
Dotted line), 0.25 eV (a, Dashed line), 0.125 eV (a, thin solid line), 0.1 eV (a, thick solid line)
and 0.0 eV (b, thick solid line). The arrows point to the energy with maximum probability
which are 0.88 eV for the case E1=1.0 eV, 0.33 eV for the case E1=0.5 eV and 0.05 eV for
the case E1=0.25 eV.
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have a normal profile, while the captured photo-electrons will seriously distort the angular

distributions of the other 4 cases.

3.3.2 The angular distribution discussion

The electron-electron interaction is usually considered as the main factor in determining

the shape of the relative angular distribution. When the two ejected electrons travel in the

same direction, the fast Auger electron will push the slow photo-electron away by a small

relative angle and pass by it. Thus in the angular distribution, the probability at cos θ12=1

is much lower than that of the other relative angular positions and the probability at a small

non-zero relative angle is higher. If the two ejected electrons travel with a larger relative

angle, they do not interact significantly with each other making the distribution flat at

those angular positions. As shown in Fig. 3.2, the curves for cases E1=1.0 eV (Dot-dashed

line) and 0.5 eV (Dotted line) have the overall features stated above. The strength of the

interaction will change the depth of the hole at cosθ12=1 and the height of the convexity

nearby. This is not the focus of this paper. Instead we investigate the effects from those

captured photo-electrons, which affects the shape of the angular distribution when E1 is

extremely low.

Next, we investigate how the capture of the photo-electrons reshapes the angular dis-

tribution. We refer to this factor as the capture factor below. As shown in Fig. 3.1, more

and more photo-electrons are captured by the ion as one decreases the initial photo-electron

energy. Correspondingly, the angular distributions (shown in Fig. 3.2) are distorted by the

capture factor to varying degrees. The influence of this factor on the angular distribution

appears as a sharpening of the curve at the angular position with the highest probability or in

the creation of a nearby peak. This phenomenon happens because the angular distributions

shown in Fig. 3.2 only count the photo-electrons with positive energy, but exclude those

captured by the nucleus which are distributed unevenly over the relative angular position.

The photo-electrons at the angular position with the highest distribution probability are
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Figure 3.2: The angular probability distributions calculated by the TDSE method (normal-
ized by dividing by the maximum probability) for cases E1=1.0 eV (Dot-dashed line, shifted
up by 5.0), 0.5 eV (Dotted line, shifted up by 4.0), 0.25 eV (Dashed line, shifted up by 3.0),
0.125 eV (thin solid line, shifted up by 2.0), 0.1 eV (thicker solid line, shifted up by 1.0) and
0.0 eV (the thickest solid line). The arrows point to the angular positions of peak(s) which
are cos θ12=0.74 for the case E1=0.25 eV, cos θ12=0.34 and 0.77 for the case E1=0.125 eV,
cos θ12=0.36 and 0.791 for the case E1=0.1 eV and cos θ12=0.3 for the case E1=0.0 eV .
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usually more energetic because they have strongly interacted with the Auger electron and

gained more energy. They are unlikely to be captured to the nucleus and the possibility for

photo-electrons at other angular positions being captured is high, which results in one or

two sharper peaks at the angular distribution.

We analyze the angular distributions displayed in Fig. 3.2 in more detail. For the case

E1=1.0 eV (Dot-dashed line), almost no photo-electrons are captured by the nucleus. Its

angular distribution is with the expected shape. A small part of the photo-electrons are

captured for the case E1=0.5 eV (Dotted line). The capture factor exerts little influence

on the angular distribution, and the shape is close to a standard one. When the initial

photo-electron energy decreases to E1=0.25 eV (Dashed line), the angular distribution has a

sharp peak in the angular position near 0 relative angle. The capture factor starts to play an

important role in the angular distribution shape. For cases E1=0.125 eV (thin Solid line), 0.1

eV (thicker Solid line) and 0.0 eV (the thickest Solid line), most photo-electrons do not have

enough energy to escape. Their angular distributions show that the probability of a large

range of angular position is low, because only a small portion of the photo-electrons escape

the capture of the nucleus and are largely centered around the peak of the distribution.

For cases E1=0.125 eV and 0.1 eV, the successfully ejected photo-electrons come from two

sources: part of them (Component 1) are those with positive energy at the momentum when

the Auger decay happens, and the other part (Comp. 2) are those with negative energy when

the Auger decay happens but that gain enough energy for ionization from the Auger electron

while being passed. These two components of the ejected photo-electrons correspond to the

two peaks in their angular distributions. The left peak in the angular distribution is for

Comp. 2 and the right one is for Comp. 1. The reason for this conclusion is as follows.

Those photo-electrons with negative energy at first will interact with the Auger electron at

a small radius and they can be pushed to a larger relative angular position. However, for

the photo-electrons with positive energy at first, the strongest e-e interaction happens at a

larger radius and the interaction will disappear when the photo-electrons are pushed to a
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small relative angle because the distance between the two electrons is large. We believe the

two sources also exist in cases E1=0.25 eV and 0.0 eV, but only one peak appears in their

angular distributions because the numbers of ejected photo-electrons from the two sources

are not comparable. Comp. 1 dominates among the ejected photo-electrons for the case

E1=0.25 eV, and most ejected photo-electrons come from Comp. 2 for the case E2=0.0 eV.

Two physical quantities may be helpful in demonstrating the explanations above. One

is the PED which displays the distribution of the photo-electron energy and relative angle,

and the other is the angular momentum distribution for those ejected photo-electrons P`.

We show PED for two cases in Fig. 3.3, the upper figure is for the case E1=0.125 eV and the

lower figure is for the case E1=0.0 eV. The color indicates the size of the probability. There

are two bright spots in the plot for the case E1=0.125 eV and one bright spot for the case

E1=0.0 eV which correspond to two peaks or one peak in their angular distributions shown

in Fig. 3.2. The main purpose for this plot is to demonstrate that the photo-electrons with

higher energy are centered on the peak area for which the capture factor plays an important

role in reshaping the angular distribution.

Figure 3.4 shows the angular momentum distributions for the ejected photo-electrons of

different cases which include E1=1.0 eV (red Dot-dashed line), 0.5 eV (green Dotted line),

0.25 eV (blue Dashed line), 0.125 eV (thin solid line), 0.1 eV (thicker solid line) and 0.0

eV (the thickest solid line). For all of the cases, the maximum probability in each angular

momentum distribution is at ` = 0. This behavior is reasonable because we assume that

the photo-electron starts with 0 angular momentum and its angular momentum remains the

same during the following time propagation, except for interacting with the Auger electron

when both particles are emitted in a similar direction. Fig. 3.4 also shows that the proportion

of the ejected photo-electrons with high angular momentum is larger in the low E1 cases,

which demonstrates our explanation for the unusual shape in the angular distribution. For

the cases with very low E1, a large part of those photo-electrons that successfully escape

from the nucleus are due to the strong interaction with the Auger electron which lead to the
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Figure 3.3: The physical quantity PED for cases E1=0.125 eV (the upper figure) and 0.0
eV (the lower figure).
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phenomena that more ionized electrons are distributed at higher angular momenta. In the

angular momentum distribution, there is a second peak for cases E1 =0.0 eV, 0.1 eV and

0.125 eV. The peak position is at `=4 for the case E1=0.0 eV, `=7 for the case E1=0.1 eV

and E1=6 for the case E1=0.125 eV. There is no regularity for the position of the second

peak, but we can conclude that cases with lower E1 have a sharper second peak.

We simulate the whole process with a completely different theory - the Classical Trajec-

tory Monte Carlo method. Fig. 3.5 displays the angular distributions for cases E1=1.0 eV

(Dot-dashed line), 0.5 eV (Dotted line), 0.25 eV (Dashed line), 0.125 eV (thin solid line), 0.1

eV (thicker solid line) and 0.0 eV (the thickest solid line). The main differences between Fig.

3.5 and Fig. 3.2 lie in two points. One is that the probability at cos θ12=1 is not exactly 0 in

Fig. 3.2 for cases with non-zero initial photo-electron energy, however, it is very close to 0 in

Fig. 3.5. This difference comes from the different descriptions of particles in quantum and

classical mechanics. In quantum mechanics, electrons are also waves which make it possible

for the two ejected electrons to move in the same direction, while in classical mechanics the

photo-electron has to be pushed aside and then the Auger electron can pass by. The other

point is that the angular positions of the peaks are slightly different and the relative heights

of the two peaks for the case E1=0.125 eV are different. A possible explanation is that

the captured photo-electrons move in an elliptical orbit in quantum mechanics, while in our

classical theory they oscillate along the radius.

There are two points that are worthy of note. One is that the situation with two peaks

in the angular distribution does not always happen. We did not find cases with two peaks

in the angular distribution if they have a large Γ. A possible reason is that the ejected

photo-electrons from the two sources are not separated far enough for the short traveling

time before the Auger decay, and Comp. 1 and 2 of the ejected photo-electrons mix together.

The other point is that the calculations performed in this paper do not consider re-emission

of those non-ejected photo-electrons which may happen during the experiment because the

ion may be left at an excited state and can transfer energy to the captured photo-electrons
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Figure 3.4: The angular momentum distributions for the ejected photo-electrons (normalized
by dividing by the maximum probability) of cases E1=1.0 eV (red Dot-dashed line), 0.5 eV
(green Dotted line), 0.25 eV (blue Dashed line), 0.125 eV (thin solid line), 0.1 eV (thicker
solid line) and 0.0 eV (the thickest solid line). The arrows point to the angular momentum
positions of the second peak which are `=6 for the case E1=0.125 eV, `=7 for the case
E1=0.1 eV and `=4 for the case E1=0.0 eV .
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Figure 3.5: The angular probability distributions calculated by the CTMC method (nor-
malized by dividing by the maximum probability) for cases E1=1.0 eV (Dot-dashed line,
shifted up by 5.0), 0.5 eV (Dotted line, shifted up by 4.0), 0.25 eV (Dashed line, shifted up
by 3.0), 0.125 eV (thin solid line, shifted up by 2.0), 0.1 eV (thicker solid line, shifted up by
1.0) and 0.0 eV (the thickest solid line). The arrows point to the angular positions of the
peak(s) which are cos θ12=0.84 for the case E1=0.25 eV, cos θ12=0.298 and 0.88 for the case
E1=0.125 eV, cos θ12=0.3 and 0.89 for the case E1=0.1 eV and cos θ12=0.279 for the case
E1=0.0 eV .
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to make them ionize. In order to obtain the angular distribution with similar features shown

in Fig. 3.2, those re-emitted photo-electrons have to be excluded.

3.4 Conclusions

We investigated the scenario of photo-ionization followed by Auger decay in the ex-

tremely low photo-electron energy region. The system chosen was Kr 3d5/2 photo-ionization

followed with M − NN Auger decay in which Γ is ∼ 0.088 eV and E2 is ∼ 2 a.u.. We

have performed calculations of the energy and angular distributions for cases E1=1.0 eV, 0.5

eV, 0.25 eV, 0.125 eV, 0.1 eV and 0.0 eV. The energy distribution shifts to smaller energies

because of the abrupt decrease in the ion potential. The shift becomes larger when the initial

photo-electron energy is decreased. For the angular distribution, the capture factor plays an

increasingly important role in the shape of the distribution with the decrease of the initial

photo-electron energy, with a peaked profile being predicted for very low energy cases.
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Chapter 4

A SEARCH FOR EVIDENCE FOR BELOW THRESHOLD DIELECTRONIC

RECOMBINATION USING USING SATELLITE LINES

4.1 Background

As mentioned in chapter 1 certian low temperature DR rate coefficients are hyper sen-

sitive to the presence of near threshold resonances. A resolution to this problem has been

proposed by Robicheaux et al. [12]. They pointed out that traditional dielectronic capture

rates occur through a mixing of doubly excited states above the ionization potential (e.g.

1s22s2pnl) with continuum states (e.g. 1s22s2kl - where kl represents a continuum electron).

An analogous process seems likely, with doubly excited states just below the ionization po-

tential mixing with high lying Rydberg states (e.g. 1s22s2nl), allowing dielectronic capture

into those doubly excited states. That is, there would be an analytic continuity of the Auger

rate for states above the ionization potential

Aaabove ∝ | 〈Ψ1s22s2pnl|1/r12|Ψ1s22s2kl〉 |2 (4.1)

through to states just below the ionization potential

Aabelow ∝ | 〈Ψ1s22s2pnl|1/r12|Ψ1s22s2nl〉 |2 (4.2)

The dielectronic capture rate coefficient into a single resonance (j) using detailed balance

from the Auger rate for the above threshold resonances is

αabovej (Te) =

(
4πa2

oIH
kBTe

)3/2
ωj
2ωi

e−Ec/(kBTe)Aaj,Ec
, (4.3)
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where the exponential term is due to the Maxwellian distribution of the free electrons. The

equivalent below threshold dielectronic capture rate coefficient into level i is

αbelowi (Te) =

(
4πa2

oIH
kBTe

)3/2
ωj
2ωi

e−Ec/(kBTe)f(Ec)A
a
j,Ec

, (4.4)

where Ec is the energy below threshold, so is a negative number and f(Ec) is the Saha-

Boltzman deviation factor, which gives the deviation of the negative energy electron distri-

bution function from its expected thermodynamic value. Note that

The conditions for this below threshold recombination process to be possible are

1. The doubly excited state must mix with the Rydberg states. The high-n Rydberg

states will have overlapping energies due to their Heisenberg uncertainty, forming a

pseudo-continuum. Thus, the doubly excited state must be embedded in this Rydberg

continuum.

2. The population distribution of the Rydberg states is the equivalent of the free-electron

distribution function. Thus, the ‘negative energy’ electron distribution function must

have significant population.

For this first condition, we use an ADAS code called ADAS204 which calculates excited

populations up to high principal quantum number (typically n=500). It uses semi-classical

and semi-empirical rate coefficient data, along with higher quality dielectronic recombina-

tion rate coefficient data from the DR project [8]. The code uses collisional-radiative theory

to solve for the excited populations, see [15] for more details. This code was modified to

calculate the lifetime (τ = collisional+radiative lifetime) for each of the excited states. An

energy uncertainty was then calculated for each n-shell based upon the Heisenberg uncer-

tainty relationship

∆E∆τ ≥ h̄/2. (4.5)
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Figure 4.1: Plot for Mg7+ of the critical n-shell at which the Rydberg continuum is expected
to start, as a function of the plasma electron temperature and density.

From this a critical n-shell can be determined above which the Rydberg states will form a

pseudo-continuum. That is, where the energy spacing between adjacent n-shells is smaller

than their Heisenberg energy uncertainty. This critical n-shell will be a function of both

electron temperature and density. Fig 4.1 shows a plot of the critical n-shell for Mg7+.

For the second condition, we require the population distribution of these ‘negative en-

ergy’ Rydberg states to be significant at the energy of the doubly excited state. ADAS204

also evaluates the Rydberg populations, and is used to generate the distribution function

used in our below threshold DR rate coefficient calculations. Fig 4.2 shows an example of

such negative energy distribution functions. Note that the distribution function is calcu-

lated as a function of the principal quantum number, it is then transformed into an energy

distribution function via
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E = −Z
2
1IH
ν2

(4.6)

where IH is the Rydberg constant and ν is the effective principal quantum number. ν

includes a correction for the quantum defect (µ). That is, ν = n− µ.

Chapter 5 will contain a survey of Li-like and Be-like ions to identify ions that meet

the above conditions and require re-evaluation of their rate coefficients. In this chapter we

focus on identifying ions that have near threshold resonance and which may produce

strong satellite line emission from the below threshold doubly excited states. As

part of this chapter we determine the closest Rydberg n-shell to the doubly excited state. If

this number is above the value set by condition (1) above, and the Rydberg population is

significant (condition (2) above), then the ion in question is investigated further. However,

we have four additional conditions which have to be met for these satellite lines to be used

as evidence of below threshold recombination.

3. The Type I radiation (i.e. core radiative decay) for the doubly excited state must be

an electric dipole core radiative decay, otherwise the satellite line would be too weak

to be observed.

4. Cascades from higher n-shells should not be a significant populating mechanism of the

below threshold doubly excited state. Otherwise it would not be certain that the level

was being populated by below threshold recombination. That is, it could be populated

via an above threshold dielectronic caputer which then cascades down to the below

threshold state.

5. There must be NIST energies for the doubly excited below threshold state. This gives

us confidence that the line is genuinely just below the ionization potential and allows

accurate wavelengths to be calculated.

6. The satellite line must be resolvable from the non-satellite line of the parent ion.
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If all of these conditions are met, then we list this ion as a promising candidate for a

spectroscopic study. Note that we do not use the energy levels from DR calculations in this

chapter because the uncertainty in theory is too large to allow spectroscopic accuracy in the

wavelength calculations. With many of the lines emitting in the UV and visible, we require

accuracies of a 0.1% or better in the energies to be able to identify the spectral lines from

their wavelengths. Thus, we rely on NIST energies for the work described in this chapter.

The rest of this chapter is organized as follows. We introduce our methodology for

searching for promising below threshold satellite line candidates and give some tables of

results in in Sec. 4.2. Sec. 4.3 outlines the theory for the modeling of satellite line intensities.

In Sec. 4.4, we compare modeled satellite line with existing spectra. The last section is a

summary and outlook for the future work.

4.2 Search for likely elements and ion stages to verify the exist of the below

threshold

We have investigated several sequences, but only display the Li-like and Be-like se-

quences in Tables 4.1 and 4.2. In these tables the ion stage, the below threshold doubly

excited configuration and its below threshold energy are given. We also show the n-shell

for the closest (in energy) Rydberg configuration, to help determine if the doubly excited

state is embedded in the Rydberg continuum (condition 1 above). Note that this quantum

number n is determined from (n=
√

13.6× Z2
1/Eres). We also note in the table whether it

is a promising candidate for satellite/valence line observation and the main satellite/valence

wavelengths are included (conditions 3 – 6 above).

After analysis, we conclude that C3+, F6+, C2+ and N3+ satisfy all the conditions and

can serve as candidates for the observation of satellite/valence lines. We select C3+ as the

strongest candidate and as a useful illustration on how other systems could be investigated.

For C3+, the main resonance line comes from transitions 1s22p (2P1/2)→1s22s (2S1/2) and

1s22p (2P3/2)→1s22s (2S1/2), with wavelengths of 1550.77 Åand 1548 Å, respectively. The
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below threshold states of C3+ within the Rydberg continuum are 1s22p(2P)4d(3F) at 0.051

eV below threshold, 1s22p(2P)4d(1D) at 0.053 eV below threshold and 1s22p(2P)4p(1D) at

0.0748 eV below threshold. Such close proximity to the ionization potential was the primary

reason C3+ was chosen for further study. These states seem likely to be within the Rydberg

continuum. The below threshold satellite lines formed by transition from these states are

listed in Table 4.3. Satellite lines of above threshold resonance are should also be observed

and their wavelengths are listed in Table 4.4. The above threshold terms are 1s22p4d(3D)

1s22p4f(3G), 1s22p4f(3F), 1s22p4d(3P), 1s22p4d(1F), 1s22p4f(3D) and 1s22p5p(1P). Note that

NIST may be missing near threshold doubly excited states for some of the ions that we are

investigating. Thus, the following list should not be treated as comprehensive, but a list of

ions that can be investigated with some confidence that they have below threshold resonances.
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Figure 4.2: C3+ deviation of population distribution for different densities and temperatures.
The black, red, blue and green solid lines in (a) are corresponding to densities 2.19×104,
2.19×105,2.19×106 cm−3 and 2.19×107 with the same temperature 4500 K (0.39 eV), re-
spectively. And in (b) these lines are for temperatures 4500K (0.39 eV), 6300 K (0.54 eV),
9000K (0.78 eV) and 13500 K (1.16 eV) with the same density 21900 cm−3 respectively.
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Ion stage Resonances Energy be- Rydberg Promising Reason Wavelength Wavelength Wavelength
low (eV) n ? of Main of Satellit of Valence

line (A) line (A) line (A)
B2+-B+ 2p3d(3P) 0.2697 14.2 No Not in Ryd-cont
C3+-C2+ 2p4d(3F) 0.051 49 Yes 1550.77,1548.19 1552.8,1623.0

2p4d(1D) 0.053 48 Yes 1553.0,1623.25
2p4p(1D) 0.0748 40.5 Yes 1474.0,1581.4
2p4p(3P) 0.233 22.9 No Not in Rydberg
2p4p(3D) 0.529 15.2 No continuum

N4+-N3+ 2p4d(1P) 3.264 8.2 No Not in Ryd-cont
O5+-O4+ 2p5d(1F) 1.52 12 No Not in Ryd-cont
F6+-F5+ 2p6p(3P) 0.036 117 Yes 890.79,883.11 885.795

2p6p(3D) 0.15 57 Yes
Ne7+-Ne6+ 2p6p(3S) 2.82 15.3 No Not in Ryd-cont
Na8+-Na7+ 2p6d(1F) 5.9 12.1 No Not in Ryd-cont
Mg9+-Mg8+ 2p7d(1F) 2.14 22.7 ?
Al10+, Si11+ >40 No Not in Ryd-cont
P12+, S13+

Table 4.1: Table of Li-like ions showing the presence of below threshold doubly excited states with the energies provided by the
NIST database [14].
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Ion stage Resonances Energy be- Rydberg Promising Reason Wavelength Wavelength Wavelength
NONE CLOSE low (eV) n ? of Main of Satellite of Valence

line (A) line (A) line (A)
B+-B No Not in Ryd-cont

C2+-C+ 2s2p(3P)3d(4D) 0.0144 61.5 Yes-V 190.87 196 64.1-65.1
986.3-989.2

0.11 22.2 Yes-V
N3+-N2+ 2s2p(3P)4p(2D) 0.1563 28 Yes-V
O4+-O3+ 2p2(3P)3d(4S) 0.93 15.3 No Not in Ryd-cont 75.87-76.2 67.48,70.2

72.49,75.3
2p2(3P)3d(4D) 1.11 14.1 No Not in Ryd-cont

F5+-F4+ 2s2p(3P)5d(4P) 1.94 13.2 No Not in Ryd-cont

Ne6+-Ne5+ 2s2p(3P)5d(2F) 5.834 9.2 No Not in Ryd-cont

Na7+-Na6+ 2p2(3P)4d(4P) 1.656 20.1 No Not in Ryd-cont 49.23-49.978 48.42
+perhaps 48.43

hard to resolve from 48.56
main line 48.57

49.00,49.15
Mg8+-Mg7+ 2s2p(1P)5d(2D) 1.538 23.8 No 36.8076 36.3822

Not in Ryd-cont+perhaps
hard to resolve from

main line
Al9+, Si10+, >30 No Too far below
P11+, S12+ threshold

Table 4.2: Table of Be-like ions showing the presence of below threshold doubly excited states with the energies provided by
the NIST database [14].
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4.3 Modeling of the satellite line intensity

The satellite lines we are interested in are from the transition C2+ 1s22p4l-1s22s4l, where

l are p, d or f . The satellite line intensity is related to that of main line. The main line is

from the transition C3+ 1s22p(2P3/2,1/2)-1s22s(2S1/2). Considering first the intensity of the

main (resonance) line:

IC
3+

2p−2s = NC3+

2s

(
NC3+

2p

NC3+

2s

)
AC

3+

2p−2s (4.7)

where NC3+

2s is the ground state population of C3+, (NC3+

2p /NC3+

2s ) gives the fraction of the

C3+ ions in the excited 2p state and AC
3+

2p−2s is the Einstein A coefficient for the 2p→ 2s

transition. If the plasma is in a low density environment, then coronal conditions hold

for the excited populations. Thus, the only excitation mechanism of the excited states is

collisional excitation from the ground (described by a collisional excitation rate coefficient

qC
3+

2s−nl, and the only depopulating mechanism is spontaneous emission from the excited states.

In these circumstances, the line intensity simpifies to

IC
3+

2p−2s ≈ NC3+

2s

Neq
C3+

2s−2p(Te)

AC
3+

2p−2s

AC
3+

2p−2s (4.8)

= NeN
C3+

2s qC
3+

2s−2p (4.9)

Considering next the satellite line intensity, the focus is on systems where the doubly

excited state can only be populated from dielectronic capture (αi) from the NC3+

2s ground

state and it is only depopulated via Auger breakup (Aa) back to this state and radiative

decay (Ar) to a lower level of C2+. This is analogous to the Coronal expression for excited

states, but based upon a different driving populating mechanism. It is also likely to be valid

up to higher electron densities than the coronal approximation due to the large Auger rates

that determine the timescales.
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If level i is the doubly excited state then the rate of change of population in the doubly

excited state is given by

dNC2+

i

dt
= NC3+

2s Neαi −Ni(A
a +

∑
j<i

Ari→j) (4.10)

The doubly excited state will reach a steady state value very quickly because the Auger rates

are very large. So we can set (dNC2+

i )/(dt) = 0 in the previous equation and solve for the

doubly excited population density Ni.

Ni =
NeN

C3+

2s αi
Aai→2s +

∑
j<iA

r
i→j

(4.11)

This can be used to generate a satellite line intensity via

ISatellite2p4l→2s4l =
NeN

C3+

2s αi
Aai→2s +

∑
j<iA

r
i→j

Ar2p4l→2s4l. (4.12)

It is useful to consider the ratio of the satellite line to the resonance line:

ISatellite2p4`→2s4`

IMain
2p→2s

=

NeNC3+

2s αi

Aa
i→2s+

∑
j<i A

r
i→j
Ar2p4l→2s4l

NC3+

2s (
NC3+

2p

NC3+
2s

)AC
3+

2p−2s

(4.13)

Which can be evaluated using a collisional-radiative calculation for the C3+ excited

populations and a set of Auger and radiative rates. The plasmas of interest in this work are

mostly low density (e.g. planetary nebulae). So the coronal approximation is expected to

be valid. In this case the line ratio of the satellite line to the main line becomes:

ISatellite2p4l→2s4l

IMain
2p→2s

=

Neαi

Aa
i→2s+

∑
j<i A

r
i→j

qC
3+

2s−2p

Ar2p4l→2s4l (4.14)
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The work of Pindzola et al. [122] contains below threshold recombination rate coeffi-

cients for C3+ recombining into C2+. Thus, we use those Auger and radiative rates, along

with C3+ electron-impact excitation rates in a code that was written to evaluate the satellite

line intensities relative to the resonance line intensities.

Note that the driving population mechanism for both the satellite line and the resonance

line intensity is the ground state of C3+. Thus, the line ratio just depends upon the 2s-2p

collisional excitation rate in C3+, the Auger and radiative rates for C2+, and the negative

energy distribution function. It should thus be possible to make a direct comparison of

the satellite line intensity and the nearby resonance line. Note that if the densities are

higher than coronal conditions allow, but not high enough for collisional-redistribution of

the populations in the doubly excited state, then the more general equation (4.13) should

be used, with a collisional-radiative calculation giving the C3+ excited populations.

This more general approach was also included in the spectral modeling code, and repro-

duced the coronal line intensity ratios at low electron densities. Results from this code will

be shown in section 4.4. Figure 4.3 shows the satellite line intensities compared with the

C3+ resonance line intensities for a range of electron temperatures. Note that below about

0.8 eV the satellite lines would become stronger than the resonance lines.
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Figure 4.3: Figure showing the relative intensities of the below threshold satellite lines in
comparison with the C3+ resonance line intensities. The thick solid lines show the intensities
of the two resonance lines. The thin solid lines show the intensities of the below threshold
satellite lines and the dotted lines show the intensities of the above threshold satellite lines.
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Ion stage Resonances Comments
Below threshold satellite line
1s22p(2P)4d(3F)-1s22s4d(3D) 1553.38 (4-3), 1553.38 (2-3),

1552.81 (2-2), 1552.44 (2-1),
1553.38 (3-3), 1552.81 (3-2)

1 May be in the same
observing range as the
main lines. 2 Promis-
ing line for observatio

1s22p(2P)4d(3F)-1s22s4d(1D) 1623.02A (4-2, 2-2, 3-2) Weak because spin
changes

1s22p(2P)4d(1D)-1s22s4d(3D) 1553.6 (2-3), 1553.0 (2-2),
1552.7 (2-1)

1 May be in the same
observing range as the
main lines. 2 Weak
because spin changes.

1s22p(2P)4d(1D)-1s22s4d(1D) 1623.25 Promising line for ob-
servation

1s22p(2P)4p(1D)-1s22s4p(3P) 1471.1 (2-2), 1474.0 (2-1) Weak because spin
changes

1s22p(2P)4p(1D)-1s22s4p(1P) 1581.43 Can not be resolved
from above threshold
satellite line

Table 4.3: Below threshold satellite lines for C2+

4.4 Comparison with existing observations

As noted above, C3+ was selected as a good candidate for a search for below threshold

satellite lines. This ion has doubly excited states above and below threshold that could

produce satellite lines. All of these are 1s22p nl doubly excited states with strong core

radiative decay rates via a 2p-2s core decay. Thus, the branching ratio to populate the

below threshold states via cascades from the higher levels is extremely small. The densities

are also too low for collisional redistribution to populate these states from nearby levels. That

is, the only mechanism to populate the below threshold states is below threshold dielectronic

recombination. Thus, an observation of a satellite line from one of these below threshold

states should be strong evidence of the below threshold recombination mechanism. Table

4.3 gives a detailed list of the spectral lines that could be emitted from the below threshold

doubly excited states and Table 4.4 gives a list of the spectral lines from the above threshold

doubly excited states.

70



Ion stage Resonances Comments
Above threshold satellite line
1s22p4d(3D)-1s22s4d(3D) 1508.62 (1-1), 1508.97 (1-

2), 1508.976 (3-2), 1509.50
(3-3),1508.62 (2-1), 1508.62
(2-1), 1508.62 (2-1), 1508.97
(2-2),1509.50 (2-3)

1s22p4d(3D)-1s22s4d(1D) 1575.19
1s22p4f(3G)-1s22s4f(3F) 1512.51 (4-3), 1512.70 (4-4),

1512.37 (3-2), 1512.51 (3-
3),1512.70 (3-4), 1512.70 (5-
4)

1s22p4f(3G)-1s22s4f(1F) 1528.5
1s22p4f(3F)-1s22s4f(3F) 1511.30 (2-2), 1511.43 (2-3),

1511.02 (3-2), 1511.16 (3-
3),1511.35 (3-4), 1510.46 (4-
3), 1510.66 (4-4)

1s22p4f(3F)-1s22s4f(1F) 1527.14
1s22p4d(3P)-1s22s4d(3D) 1490.72 (0-1), 1490.72 (2-1),

1491.06 (2-2), 1491.58 (2-
3),1490.7 (1-1), 1491.06 (1-
2)

1s22p4d(3P)-1s22s4d(1D) 1555.56
1s22p4d(1F)-1s22s4d(3D) 1484.86
1s22p4d(1F)-1s22s4d(1D) 1548.9
1s22p4f(3D)-1s22s4f(3F) 1477.88 (3-2), 1478.01 (3-3),

1478.19 (3-4), 1476.72 (2-
2),1476.84 (2-3), 1476.4 (1-
2)

1s22p4f(3D)-1s22s4f(1F) 1492.10
1s22p5p(1P)-1s22s5p(3P) 1582.41 Blended with below

threshold satellite line
1581.43

1s22p5p(1P)-1s22s5p(1P) 1558.3

Table 4.4: Above threshold satellite lines for C2+
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Figure 4.4: Solar atmosphere temperature and density profile, taken from Vernazza and
Averett [127].

One of the challenges with observing the lines shown in these tables is that they emit in

the Extreme Ultraviolet. Thus, ground based observations are unlikely to detect them. We

also require high wavelength resolution due to the proximity of the satellite lines from the

main C3+ resonance line. Thus, we look at two case studies. The first is a solar atmosphere

observation using the SUMER instrument on the SOHO telescope. This is a collisionally

ionized plasma with a sharp temperature gradient. Figure 4.4 shows the temperature and

density profile from the Vernazza et al. [127] of the solar atmosphere.

The second example is of a low density photoionized plasma in planetary nebula Abell 30,

with observations from the IUE instrument [121]. The wavelength resolution is much lower

in these observations, but the plasma conditions are much more suitable for the observation

of these below threshold satellite lines.
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4.4.1 First case study: emission from the solar atmosphere

High resolution EUV observations were taken of the solar atmosphere and a comrehen-

sive line identification taken by Curdt et al. [128]. Figure 4.5 shows the spectrum in the

wavelength region of interest. The two strong C3+ resonance lines are strong and resolvable.

There are numerous weak spectral lines at nearby wavelengths. Fig. 4.6 shows a synthetic

(stick plot) spectrum plotted on the observed spectral lines. These results are shown for an

electron temperature of 0.8 eV. Note that there are spectral features that line up with the

predicted below threshold satellite lines. Curdt et al [128] identify these as either being Fe

II lines or high-n shell transitions of Si I. The latter identification seems unlikely due to the

very high n-shells involved.

A more serious problem with the above comparison is that the C3+ ions would not exist

at 0.8 eV in the solar atmosphere. In a collisionally ionized plasma one would expect C3+ to

exist closer to 8 eV. Thus, we constructed a line of sight model that includes the temperature

and density profile of the solar atmosphere, using the model of Vernazza et al. [127]. That

is, we use the equation

Ii→j =

∫ 3000km

0

Ne(r)

(
NC3+

2p

NC3+
2s

)(
NC3+

NTOT
C

)
NTOT
C . (4.15)

In this case the satellite line intensities become a lot smaller than the C3+ resonance

lines, see Figs. 4.5 and 4.6. This is due to the C3+ fractional abundance peaking at the part

of the atmosphere where the electron temperature is about 8 eV, at which temperatures

the satellite lines are very weak. It seems unlikely that below threshold satellite lines would

be strong in any collisionally ionized plasmas. An interesting caveat to this is discussed in

chapter 5, where we show a rise in the negative energy distribution function for high electron

temperatures.

Note that the resonance lines peak in intensity at the upper part of the atmosphere,

where the temperature is large enough for C3+ to form. The satellite line in this model would
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C IV 2p−2s lines
C III below threshold satellite lines

C3+ fractional abundance/1.e6

Figure 4.5: Plot of the emissivity of the C3+ resonance lines and the C2+ satellite lines
through the solar atmosphere.
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Figure 4.6: Line intensity of the C3+ spectral lines, normalized to the observed SUMER
spectrum. Also shown on the plot are the satellite line intensities. All calculated intensities
have the line of sight temperature and density profile included.

be much too small to be observed. Figure 4.6 shows the intensity of the satellite lines once

the line of sight temperature distribution has been accounted for.

This seems likely to be the case for all collisionally ionized plasmas for C3+. Thus, one

would either need an ion which exists at a lower temperature (i.e. at a temperature closer

to that where the satellite line intensities would be strong), or a plasma that has a different

mechanism for generating the higher charge states of C. Astrophysical photo-ionized plasmas

such as planetary nebulae are good candidates for this latter option. The light from the star

can photoionize the ions in the surrounding gas cloud to higher charge states, while the gas

cloud has a low electron temperature. Thus, we will consider such an example next for our

search.
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Figure 4.7: Hubble Space Telescope image of Abell 30, with the knot of plasma that is of
interest marked. Also shown is the UV spectrum taken from Harrington and Feibelman
[121].

4.4.2 Second case study: emission from a plama knot in Abell 30

There are a set of planetary nebulae referred to as ‘born again planetary nebulae’.

They provide an excellent environment to search for below threshold satellite lines. Figure

4.7 shows some images of these born again nebulae. They have hydrogen-deficient knots

of plasma which were ejected by a late thermal pulse and are embedded in a fast stellar

wind [119]. Thus, there is a large H-rich outer nebula which surrounds irregularly shaped

H-deficient structures closer to the star. These inner knots will have increased abundances

of carbon and there is already observational evidence of the C3+ resonance lines [121].

The temperature in these knots is subject to some debate, see Harrington and Feibelman

[121]. Harrington and Feibelman [121] showed that the electron temperature derived from

C IV λ 1549 / C III λ 4650 lines in knot 3 was 10,600K, Similarly the Te derived from the

C III λ 1909 / C II λ 4267 lines was 7,800 K. However, these were in marked contrast from

the temperatures derived from Ne IV lines (which gave Te=18,300 K), or from O III lines

(which gave Te = 16,400 K). They speculate that one solution to this discrepancy would be

“to postulate the existence of some as yet undiscovered process which augments the carbon

recombination lines”. Harrington and Feibelman also point out that the line intensity of

CII λ 1909 is uncommonly weak compared with the C IV λ 1549 Å line. They look for a
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mechanism to reduce the intensity of the λ 1909 Å line, but cannot find a good candidate.

A different possibility is that the 1549 Å line is enhanced through the presence of satellite

lines that could not be resolved in the IUE spectrum used by Harrington and Feibelman

[121]. Thus, it may be that unresolved spectral lines could explain some of the discrepancies

in existing studies of the knots in Abell 30.

Note that we require spectra of just the knot(s). If light from the star is included,

the spectra would be dominated by the strong stellar spectral lines and the weak satellite

lines would not be detectable. This limits the spectra available for such a study. After

a search through the NASA databases, one such UV observation was obtained. The IUE

spectromter was used to observe knot number 3 in Abell 30 and reported by Harrington

and Feibelman [121]. The raw data was downloaded and processed in the same manner as

reported by Harrington and Feibelman [121]. This required removing signals at the bottom

of the detector that had let in some stray stellar light. The remaining spectra was estimated

to contain a 3.6% contamination of stellar light. Thus, separate IUE observation of just the

star was used to subtract this background stellar light. The resulting spectrum can be see

in in Fig. 4.8. In the synthetic spectrum, we used the model described above, with the

Auger and radiative rates of Pindzola et al. [122]. For the comparison with the measured

spectrum we have convolved the synthetic spectrum with the intrument resolution of IUE.

Note that while the satellite line intensity is predicted to be significant, the resolution of the

IUE observations is too low to be able to separate the lines. The observed line profile does

have an asymmetry to it at the correct position, but the uncertainties are too large to draw

any definite conclusions.

Thus, we believe that this is a promising object for future high resolution UV mea-

surements. Figure 4.9 shows a synthetic spectrum for a higher resolution instrument. We

have used to resolution of the STIS instrument on the Hubble Space Telescope. The below

threshold satellite lines would be easily resolvable.
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Figure 4.8: Synthetic spectrum compared with the Abell 30 IUE spectral measurements of
Harrington and Feibelman [121]. The red line is the below threshold satellite line contribu-
tion, the green shows the resonance lines and the blue shows the total line intensity.
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Figure 4.9: Synthetic spectrum of the knot in Abell 30, with the spectral resolution of STIS,
assuming an electron temperature of 9,200K.
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As a result of this work a proposal was submitted requesting observing time on the

Hubble Space Telescope, see Appendix C. It was not selected, but it is our intention to

refine the proposal and submit it again.

4.5 Conclusions

In summary, the use of below threshold satellite lines as a means to prove the existence of

below threshold satellite lines is a promising avenue of research. We have identified a number

of systems that would be interesting to pursue further. Of these, C3+ is the most promising

though falls in a challenging wavelength range. For C3+ it appears to be unlikely that such

lines would be observed in collisionally ionized plasmas, but photoionized plasmas have the

right plasma conditions. We have completed an initial study of a knot of plasma in Abell 30.

While the lines are predicted to be strong, the best available spectroscopic observations are

not of high enough resolution to identify the lines. Higher resolution observations of Abell

30, or similar planetary nebulae would be a promising area of future study.
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Chapter 5

THE CONTRIBUTION OF NEAR THRESHOLD RESONANCES TO DIELETRONIC

RECOMBINATION RATE COEFFICIENT

5.1 Background

In this chapter the focus is on first identifying ions that may be missing contributions

to their DR rate coefficients due to near threshold resonances. Once a subset of ions are

identified two cases are taken to demonstrate how revised rate coefficients can be evaluated

with the inclusion of below threshold recombination. Of particular interest is the finding of

Robicheaux et al. [12] for Mg8+ that the inclusion of below thresold recombination has the

potential to remove the sensitivity of low temperature DR rate coefficients to small changes

in the energy positions of the near threshold doubly excited states.

That is, the purpose of this chapter is not to develop a more accurate theoretical method

that can calculate near threshold energy level positions, but to investigate the contribution of

below threshold resonances to the DR rate and determine if it removes the hyper dependence

on resonance position. The process of below threshold recombination has been described in

chapter 4. We mention here the two main items that need to be calculated for below threshold

DR rate coefficients to be generated: Below threshold Auger rate coefficients and negative

energy distribution functions. As mentioned previously, the second of these requirements

can be generated by ADAS204. Negtive energy Auger rates are produced by modifying the

AUTOSTRUCTURE code [16], so that the appropriate matrix element is evaluated.

We note that there are three possible scenarios in the currently existing data. An ion

may have no near threshold resonances (either above or below), in this case the existing DR

rate coefficients are expected to be accurate. Note that an useful outcome of this work is

the identification of this list of ions. Modelers can then use the DR data for these ions with
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confidence. The second scenario is that there are some resonances just below the ionization

potential that have been ommitted from current calculations. In this case the DR rates have

been underestimated. Lastly, it is possible that there are resonances that are very close to

threshold and small changes in the structure can move them either above or below threshold.

In this case one would expect existing calculations of such DR rate coefficients to have a

large scatter. The inclusion of below threshold recombination should remove much of this

sensitivity, while also producing more accurate rate coefficients.

Thus, our first step will be to search for problematic cases, namely ions with near

threshold resonances. If an ion has near threshold resonance or resonance within the Rydberg

continuum, we consider it as a case of which the DR rate needs to be corrected. In this paper,

we will use a combination of the NIST energies [14] and the resonance positions as produced

by the AUTOSTRUCTURE code [16] to identify which are the problematic cases in the Li-

like and Be-like sequences. After that, we select two examples from these problematic cases,

C3+ and Mg8+, to investigate. The tools used to calculate the DR rate from below threshold

resonances are ADAS 204 and the modified AUTOSTRUCTURE codes. The ADAS 204 code

provides us the population distribution function for the negative energy electrons, with which

the modified AUTOSTRUCTURE code and post-processor can produce DR rate coefficients

for below threshold resonances.

The rest of this chapter is organized as follows. In Sec. 5.2, we introduce the method for

identifying the problematic cases, and list those ions for the Be-like and Li-like iso-electronic

sequences. Two cases, C3+ and Mg8+ are selected for re-evaluation of their DR rates with the

inclusion of below-threshold resonances in Sec. 5.3. We also propose a possible verification

of our corrected rates using experiments in Sec. 5.4. The last section contains a summary

and outlook for the future work.
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5.2 Identifying ions in Li-like and Be-like sequences with near threshold reso-

nances

We suspect an ion to be a problematic case when it has a near threshold resonance

(ie slightly positive energies) or a resonance within the Rydberg continuum (ie. slightly

negative energy). A direct way to identify the problem ions is to check if they have either

of the two features. The best tool should be the NIST levels, because the NIST values

for levels are the most accurate to our knowledge. However, the levels listed on NIST are

incomplete. Not all the levels are included, and some important ones are missing. This

disadvantage can be remedied by using the resonance distribution produced by the modified

the AUTOSTRUCTURE code. The modified AUTOSTRUCTURE code can predict the

positions of all possible below and above threshold resonances. However, the values are not

as accurate as those from NIST. So we combine both the NIST energy levels and resonance

distributions from the modified AUTOSTRUCTURE code for the purpose of identifying ions

that require further investigation . If the corresponding NIST energy value can be found,

we use the value of NIST. If energy levels are missing in NIST, we use AUTOSTRUCTURE

energies instead.

We list levels within an energy range around the threshold for different ions in Tables

5.1 and 5.2 (for the Li-like and Be-like sequences, respectively). The corresponding principal

quantum numbers for below threshold levels are also given in the tables, which show us if

levels are within the Rydberg continuum. We consider n ≥ 20 for the Rydberg state as

an approximate indication of this criteria. We list the configurations as indicated by the

AUTOSTRUCTURE calculation. Only those configurations closest to the threshold are

listed. The energy range of the Rydberg continuum will be different for different ions. For

the two sequences, the energy range is -0.1 Ryd.– 0.1 Ryd. for ions Be+ – F6+ and B+ –

Ne6+; -0.3 Ryd. – 0.3 Ryd. for ions Ne7+ – Al10+ and Na7+ – Si10+. There are also some

columns marked with a ’-’ in the tables. This is used to mark missing levels in NIST.
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Ion Configuration Autostructure NIST energies Conclusion
energies (n-shell) (& n-shell)

Be+-Be No
B2+-B+ 2p3p -0.029 (n=12) 0.00221 Yes

0.045 0.0538
2p3d -0.0015 (n=52) -0.0197 (n=14)

0.019 0.0202
C3+−C2+ 2p4s -0.071 (n=11) -0.0896 (n=10) Yes

2p4p -0.012 (n=27) -0.01672 (n=23)
0.0071 -0.00549 (n=40)

2p4d 0.00016 -0.003862 (n=48)
0.003937 -0.003782 (n=49)

2p4f 0.020 0.01717
N4+− N3+ 2p5s 0.0164 0.0136 Yes

2p5p 0.0473 0.0454
2p5d 0.0768 0.0847
2p5f 0.0894 -
2p5g 0.0922 -

O5+−O4+ No
F6+− F5+ 2p6s -0.0326 (n=33) - Yes

2p6p -0.0068 (n=73) -0.0112 (n=57)
0.0040 -0.002597 (n=118)

0.008657
2p6d 0.0053 0.01928
2p6f 0.0214 -
2p6g 0.0233 -

Ne7+− Ne6+ No
Na8+− Na7+ 2p7s -0.02528 (n=50) - Yes

2p7p -0.002385 (n=164) -
0.003339 -

2p7d -0.00883 (n=85) -
-0.00305 (n=145) -

0.004013 -
2p7f 0.005939 -
2p7g 0.007865 -
2p7h 0.007865 -
2p7i 0.007865 -

Mg9+− Mg8+ 2p7s -0.2244 (n=19) - Yes
2p7p -0.1691 (n=22) -1.6825∗ (n=7)
2p7d -0.1547 (n=23) -0.1569 (n=23)
2p7f -0.156 (n=23) -
2p7g -0.1586 (n=23) -
2p7h -0.1586 (n=23) -
2p7i -0.1586 (n=23) -

Al10+− Al9+ 2p8s -0.004414 (n=151) - Yes
0.04759 -

2p8p 0.01742 -
2p8d 0.03347 -
2p8f 0.04631 -
2p8g 0.04759 -
2p8h 0.04695 -
2p8i 0.04759 -
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Table 5.1: Identification for problematic ions in the Li-like iso-
electronic sequence

Ion Configuration Autostructure NIST energies Conclusion
energies (& n-shell) (& n-shell)

B+− B No
C2+−C+ 2s2p3d -0.023 (n=13) -0.00084 (n=69) Yes

2s2p4s 0.024 0.117
2s2p4p 0.073 0.162

N3+− N2+ 2s2p3p -0.008 (n=34) -0.046 (n=14) Yes
0.0191 -0.0847 (n=10)

2s2p4s -0.08614 (n=10) -0.1274 (n=8)
2s2p4p -0.012 (n=27) -0.03 (n=17)

0.1339 -0.011 (n=29)
2s2p4d 0.019 0.0122
2s2p4f 0.046 0.039

O4+− O3+ 2p23p -0.044 (n=19) -0.068 (n=15) Yes
0.22 0.0045

2p23d 0.051 0.052
2s2p5s -0.0087 (n=43) -

0.013 -
2s2p5p 0.040 0.0379
2s2p5d 0.081 0.089

F5+− F4+ 2s2p 4p -0.014 (n=42) Yes
0.0066 ?

2s2p4d 0.095 ?
2p23p -0.054 (n=22) -0.705∗ (n=6)

Ne6+− Ne5+ 2s2p6s -0.066 (n=23) - Yes
2s2p6p -0.010 (n=60) -
2s2p6d -0.0024 (n=122) -
2s2p6f 0.0149 -
2s2p6g 0.0181 -
2s2p6h 0.0188 -
2p24s 0.026 -

Na7+− Na6+ 2p2 4p 0.0129 -0.32414 (n=5) Yes
-0.0138 (n=60)

2p24d -0.027 (n=43) -0.116∗ (n=21)
0.148 -

2p24d -0.0425 (n=34) -
0.21 -

2s2p5s 0.0434 -
2s2p5p 0.133 -0.89∗ (n=7)
2s2p5d 0.213 -0.799∗ (n=8)
2s2p5f 0.255 -
2s2p5g 0.256 -
2s2p6s -0.012 (n=64)

0.0129
2s2p6p -0.237 (n=14)
2s2p6d -0.199 (n=16) -0.22 (n=15)
2s2p6f -0.193 (n=16) -
2s2p6g -0.193 (n=16) -
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2s2p6h -0.2065 (n=15) -
2s2p7s 0.072 -
2s2p7p 0.1025 -
2s2p7f 0.1388 -
2s2p7g 0.145 -
2s2p7h 0.152 -
2s2p7i 0.154 -

Mg8+− Mg7+ 2s2p5p -0.207 (n=15) - Yes
2s2p5d -0.11 (n=21) -0.113 (n=21)
2s2p5f -0.086 (n=24) -
2s2p5g -0.0806 (n=25) -
2s2p7s -0.0711 (n=26) -
2s2p7p -0.031 (n=40) -
2s2p7d -0.012 (n=64) -

0.0033 -
2s2p7f -0.016 (n=55) -

0.0072 -
2s2p7g -0.016 (n=55) -

0.0091 -
2s2p7h -0.016 (n=55) -
2s2p7i -0.016 (n=55) -
2s2p8s 0.22 -
2s2p8p 0.245 -
2s2p8d 0.268 -
2s2p8f 0.278 -
2s2p8g 0.278 -
2s2p8h 0.289 -
2s2p8i 0.288 -

Al9+− Al8+ 2s2p 7s -0.284 (n=15) - Yes
2s2p7p -0.24 (n=16) -
2s2p7d -0.195 (n=18) -
2s2p7f -0.191 (n=18) -
2s2p7g -0.191 (n=18) -
2s2p7h -0.224 (n=17) -
2s2p7i -0.224 (n=17) -
2s2p8s 0.094 -
2s2p8p 0.11 -
2s2p8d 0.135 -
2s2p8f 0.15 -
2s2p8g 0.15 -
2s2p8h 0.166 -
2s2p8i 0.166 -
2p24d -0.11 (n=24) -
2p24f -0.021 (n=55) -

Si10+− Si9+ 2s2p6s 0.04 - Yes
2s2p6p 0.122 -
2s2p6d 0.19 -
2s2p6f 0.23 -
2s2p6g 0.23 -
2s2p6h 0.23 -
2s2p8s -0.015 (n=73) -
2s2p8p -0.033 (n=50) -

0.0161 -
2s2p8d -0.0027 (n=173) -
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0.035 -
2s2p8f -0.016 (n=71) -

0.0024 -
2s2p8g -0.015 (n=73) -

0.0041 -
2s2p8h 0.0041 -
2s2p8i 0.0041 -
2s2p8k 0.0024 -
2p25s -0.225 (n=19) -

0.204 -
2p25p -0.02 (n=64) -
2p25d -0.04 (n=45) -

0.004 -
2p25f 0.035 -
2p25g 0.11 -

Table 5.2: Identification for problematic ions in the Be-like iso-
electronic sequence

Table 5.1 shows that Be+, O5+ and Ne7+ have neither a near threshold resonance nor a

below threshold resonance. The other ions in the Li-like sequence require further attention.

From Table 5.2, B+ is the only non-problematic case. So the current DR rates for ions Be+,

O5+, Ne7+ and B+ are reliable, but the DR rates for other ions need to be recalculated by

including below threshold resonances to eliminate their sensitivity to energy position and

add the contribution to DR rate from negative resonances. It may turn out that for some

of these ions the effect is very small, but we identify them as cases that require a closer

investigation.

Besides listing the energy levels in the two tables, we also select several cases to plot

their AUTOSTRUCTURE resonance positions to demonstrate our method of checking for

near threshold resonances. C3+ and Mg9+ are two ions chosen from Li-like sequence, and

O4+ and Mg8+ are other two ions selected from Be-like sequence. Later in this chapter we

will evaluate new rate coefficients for C3+ and Mg8+.

The resonance distributions for the four examples are shown in Figures 5.1 and 5.2 :

Fig. 5.1 (a) for C3+, Fig. 5.1 (b) for Mg9+, Fig. 2(a) for O4+, and Fig. 2(b) for Mg8+.

The line (black line) at the very top of each ion’s plot is the resonance distribution for all

configurations. The resonance distribution for all configurations is shifted up by 3.5 eV in
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Fig. 5.1 (a), 30 eV in Fig. 5.1 (b), 2.5 eV in Fig. 5.2 (a) and 22 eV in Fig. 5.2 (b). This

brings any below threshold resonances into view. The color curves with lower baseline of

each plot are used for configuration analysis of those resonances, different colors at the same

baseline represent different configurations. Two vertical lines are added to every plot to mark

the position of the threshold (E=0) and the critical n-shell position for the high Rydberg

states (n=20).

In Fig. 5.1 (a), red, blue, green and yellow curves with 0 baseline are for configurations

1s22p4s, 1s22p4p, 1s22p4d and 1s22p4f respectively. The configuration 1s22p4s (red line) has

two resonances below the threshold, the energy of the resonance closer to the threshold in

Table 1. The resonance are not likely to be embedded in the Rydberg continuum, so the

1s22p4s levels will not contribute to the DR rate. The configuration 1s22p4p (blue line) has

four resonances, three are below threshold and one is above threshold. The resonance above

threshold and the first one below threshold (closest to the threshold) are listed in Table

5.1. We consider the above threshold resonance to be near threshold and the first below

threshold resonance is within the Rydberg continuum. The configuration 1s22p4d (green

line) has six resonances, and all of them are above threshold. We list the first resonance

(closest to the threshold) in Table 5.1, and we consider it to be a near threshold resonance.

The configuration 1s22p4f (yellow line) has four resonances above threshold, similarly the

first resonance energy position is listed in Table 5.1. In summary, there are near (above)

threshold resonances (that can cause the DR rate to be sensitive to the small changes in the

energies of the resonances) and resonances in the Rydberg continuum (that can contribute

to the DR rate) in the recombination C3+ →C2+, so this is a problematic case and its DR

rate needs to be recalculated.

Figure 5.2 (a) and (b) show the resonance distributions for O4+ and Mg8+, respectively.

In Fig.5.2 (a), configurations 1s22p23p, 1s22s2p5s, 1s22s2p5p, 1s22s2p5d are represented by

red, green, yellow and black lines with 0 baseline. The blue line shifted up by 1 is for the

configuration 1s22p23d which is too weak to see if blended with other configurations. Red,
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Figure 5.1: The resonance distribution for C3+ (a) and Mg9+ (b). In (a), red, blue, green and
yellow curves with 0 baseline are for configurations 1s22p4s, 1s22p4p, 1s22p4d and 1s22p4f
respectively. The configuration 1s22p4s (red line) has two resonances below the threshold.
In (b), red, blue, green lines with 15 baseline represent configurations 1s22s2p7s, 1s22s2p7p
and 1s22s2p7d respectively. Configurations 1s22s2p7f, 1s22s2p7g, 1s22s2p7h and 1s22s2p7i
are for yellow, black, red, blue lines with 0 baseline.
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Figure 5.2: The resonance distributions for O4+ and Mg8+ respectively. In (a), configurations
1s22p23p, 1s22s2p5s, 1s22s2p5p, 1s22s2p5d are represented by red, green, yellow and black
lines with 0 baseline. The blue line shifted up by 1 is for the configuration 1s22p23d which is
too weak to see if blended with other configurations. Red, blue, green and yellow and black
lines with 13 baseline in (b) are for configurations 1s22s2p7s, 1s22s2p7p, 1s22s2p7d, 1s22s2p7f,
1s22s2p7g. Red and blue lines with 7 baseline in the same figure are for configurations
1s22s2p7h, 1s22s2p7i. Green, yellow, black and red lines with 0 baseline are for configurations
1s22s2p5p, 1s22s2p5d, 1s22s2p5f, 1s22s2p5g.
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blue, green and yellow and black lines (moved up by 13) in Fig. 2(b) are for configurations

1s22s2p7s, 1s22s2p7p, 1s22s2p7d, 1s22s2p7f, 1s22s2p7g. Red and blue lines (moved up by 7

for clarity) in the same figure are for configurations 1s22s2p7h, 1s22s2p7i. Green, yellow,

black and red lines with are for configurations 1s22s2p5p, 1s22s2p5d, 1s22s2p5f, 1s22s2p5g.

The two cases shown in Fig. 5.2 both have above and below threshold resonances, so they

are cases deserving further investigation into their rate coefficients.

Figure 5.1 (b) displays the resonance distribution for the recombination Mg9+ →Mg8+.

Red, blue, green lines (moves up by 15) represent configurations 1s22s2p7s, 1s22s2p7p and

1s22s2p7d respectively. Configurations 1s22s2p7f, 1s22s2p7g, 1s22s2p7h and 1s22s2p7i are

for yellow, black, red, blue lines. This case is not likely to be a problematic case because

the resonance distribution is blank around the threshold area. We still group it to be a

problematic case because of its high atomic number. High atomic number enables it to have

wide high Rydberg state range which includes resonances that may contribute to the DR

rate coefficient.

There are three points needing explanation before ending this section. The first one is

that the NIST energy values can be quite different from that of the AUTOSTRUCTURE

resonance positions for several levels, see the numbers marked with (*). The reason could

be that the two values may not correspond to the same level, due to difficulty in deciding

upon the label to give the level. The second point to note is that the resonance heights for

the levels are not the correct values due to the energy shift applied. We shift the resonances

to higher energies just to determine their energy positions and identify the problem cases,

with the understanding that the heights will no longer be accurate. When we evaluate

the rate coefficients we use the calculated energy positions which will have the appropriate

heights. The last point is, for the cases identified to be problematic, we are not sure if their

recalculated DR rate by including below threshold resonance effects would change much from

their current values. For example, if one case identified to be problematic only has above

near threshold resonance but no below threshold resonance (like N4+), the recalculated new
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DR rate should be the same as that in the current data base. However, calculating the DR

rate by including the negative resonance can eliminate the sensitivity to the energy position

of the DR rate. For another example, if one case identified to be problematic only has below

threshold resonance but no near threshold resonance (like Mg9+), the recalculated new DR

rate could be a little larger than the current value because the population at the below

threshold resonance should be low. However, we should explore these cases further by the

inclusion of the below threshold resonances.

5.3 New DR rate coefficients for C3+ and Mg8+

5.3.1 Theoretical method to calculate DR with below-threshold resonances

The total DR rate coefficient between two ion stages is defined as:

DR = (
4πa2

0IH
kBTe

)
3
2

∑
j

ωj
2ων

e−Ec/kBTe
∑
l

Aaj,Ec

Arj→l∑
hA

r
j→h +

∑
mA

a
j→m

, (5.1)

where a0 is the Bohr radius, IH is Rydberg constant, kB is Boltzmann constant, Te is the

electron temperature, ωj and ων are the statistical weight of capturing resonance state (j )

and the initial state (ν ) of the recombining ion, Ec is the the energy of the resonance state j,

Ar and Aa are radiative and Auger rates. The first summation is over the possible resonance

states (j) (doubly-excited states), the second one is over all possible bound states that the

captured electron can stabilize to (l). The summations over h and m are other Auger and

radiative channels. Eq. (5.1) is the traditional definition for DR rate coefficient.

To calculate the DR rate coefficient for below-threshold resonances, the definition will

be slightly different. The difference is the population distribution. Instead of using Maxwell

distribution e−Ec/kBTe , the distribution for below-threshold resonance is e−Ec/kBTefTe,D(Ec)

where fTe,D(Ec) is called the deviation of the below threshold distribution from the Saha-

Boltzman bound state distribution. Fig. 4.2 shows examples of the deviation of the popula-

tion distribution for C2+.
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5.3.2 Results for C3+ and Mg8+

In this subsection, we investigate the effect of the below near threshold resonances on

the DR rate coefficient calculation. The dielectronic recombinations of C3+→ C2+ and Mg8+

→ Mg7+ are two selected interesting examples to discuss here. For convenience, we refer the

DR rate coefficient including both the above threshold and below near threshold resonances

in the calculation as the total DR as opposed to the ‘above threshold DR calculation’. One

significance of including below near threshold resonances in the DR calculation is that it can

eliminate the sensitivity of DR to energy positions. So different calculations performed for

this subsection include above threshold DR with/without threshold shift or elimination of

above near threshold resonances, total DR with/without threshold shift. A comparison of

the different calculations allows us to look for this sensitivity.

The recombinations of C3+→C2+ and Mg8+→Mg7+ are two typical interesting cases,

because both of them have near threshold resonances, while at the same time they have

different significant differences. The former one has a short range of near threshold energies

and the resonance is below near threshold. For the latter one, the range of near threshold

energies is large and has a lot of resonances just below the ionization potential. So including

the below threshold resonances would make a large difference for the total DR rate coefficient.

The outer plots in Figs. 5.4 and 5.5 shows the resonance distributions for C3+ and Mg8+,

respectively. The black and red solid lines overlap except the first four (in the former figure)

and first (in the latter figure) resonances because they are eliminated in the calculation of the

red line. The black dotted line is the calculation with shifting the threshold to 0.024 (in the

former figure ) and 0.02 Ryd. (in the latter one) to move the first four and first resonances

just below threshold. The inner plot of Figs. of 5.3 and 5.5 are the corresponding above DR

rate coefficients for the three different calculations. Both plots show that three above DR

rate coefficients merge together at high temperatures, and split at low temperatures. As the

temperature becomes lower, the split is larger. In the inner plot of Fig. 5.3, the red solid

line deviates from the other two lines at about 5.7 eV. In the inner plot of Fig. 5.5, the
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Figure 5.3: Resonance distribution (outer figure )and DR rate coefficient (inner figure) of
C3+. The DR rate coefficients shown in this figure are the calculation without below threshold
resonance contribution. Black solid line is for the calculation without shift, red solid line
is for the calculation eliminating the first four resonances above threshold and black dotted
line is for the calculation of shifting the energy position 0.024 Ryd. to threshold.
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Figure 5.4: DR rate coefficients of different densities for C3+. Black lines are for calculations
only including the contribution of above threshold resonance, blue lines are for calculations
including both above and below threshold resonances. Solid lines are for calculations without
any shift and dotted lines are for calculations of shifting the position 0.024 Ryd. to threshold.

split point of red and black solid lines is at 17.5 eV and 9.2 eV of the red solid and black

dotted lines. The differences between the black and red lines in two plots are due to the

contribution of the first four and first resonances to above DR. The percentage differences

errors are up to 57% and 84% in the two plots respectively. The resonance positions cause

the difference between the red solid and black dotted lines in both plots and the percentage

differences are up to 67% and 196% respectively. Thus we have two expected conclusions.

The above DR is sensitive to energy position as the temperature becomes lower. The near

threshold resonances are important at low temperatures. This big percent error between

the red solid and black dotted lines is larger than expected. We expect to see a sensitivity

to the energy position from the missing near threshold resonances in the DR calculation.

However, these two calculations have the same number of resonances in their calculations

but different resonances positions. This case is interesting because resonances can move from

above to below threshold but other resonances can move out of the sensitive regime. So a

third conclusion can be drawn that the effect on above threshold DR from resonance energy

95



1 2 5 10 20 50 100
1µ 10-11
2µ 10-11

5µ 10-11
1µ 10-10
2µ 10-10

5µ 10-10
1µ 10-9

Temperature HeVL

D
R

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

Energy HRyd.L

R
es

o
n
an

ce

Figure 5.5: Resonance distribution (outer figure )and DR rate coefficient (inner figure) of
Mg8+. The DR rate coefficients shown in this figure are the calculation without below
threshold resonance contribution. Black solid line is for the calculation without shift, red
solid line is for the calculation of eliminating the first resonance above threshold and black
dotted line is for the calculation of shifting the energy position 0.02 Ryd. to threshold.
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Figure 5.6: DR rate coefficients of different densities for Mg8+. Black line is for the calculation
only including the contribution of above threshold resonance, blue line is for the calculation
including both above and below threshold resonance. Solid line is for the calculation without
any shift and dotted line is for the calculation of shifting the position 0.02 Ryd. to threshold.

position changes can be larger than missing a near threshold resonance. Thus, the size of

the sensitivity to missing resonances and resonance positions will depend on the specific case

being studied.

Figure 5.6 shows the above DR (black lines) and total DR (blue lines) for different

electron densities for Mg8+. The solid lines are for the calculation without any shift and

the dotted lines are for the calculation by shifting the threshold by 0.02 Ryd.. The above

threshold DR is a function of temperature, but the total DR is also a function of density

because the below threshold population distribution is also density dependent. Comparing

both total DR lines for each density, the difference is smaller than that between both above

threshold DR rate coefficients. This behavior partially supports our previous expectation
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that including below threshold resonance contributions in the DR rate coefficient calculation

can eliminate the sensitivity to the energy position (ie. the differences between the black

solid and dotted lines is much larger that the blue solid and dotted lines). More concisely,

the conclusion should be that including below threshold resonances contribution in the DR

rate coefficient calculation can reduce the sensitivity of the rate coefficient to the resonance

energy positions.

5.4 Proposed experimental verification

There is as yet no experimental evidence that verifies the contribution of the below

threshold resonances to DR, due to the difficulty in measuring this in beam experiments.

We propose an indirect method to prove this effect. After the new DR rate coefficients

are calculated, we can use the new data in modeling fractional abundances.These can thus

be compared with the results from relative fractional abundances in a plasma environment.

Oxygen is a good candidate for this test, because only O4+ →O3+ has near threshold res-

onances and the effect could be isolated. An experiment with plasma conditions such that

below threshold DR was significant could be used to test the predicted abundances of O4+

and O3+, to see if the modified rate coefficients can be verified.

5.5 Conclusions

In this paper, we identified ions of Li-like and Be-like iso-electronic sequences with

near-threshold resonances using the AUTOSTRUCTURE code and NIST energies. The

identification results are presented in Table 5.1 and 5.2. We selected two problematic cases:

C3+ →C2+, and Mg8+ → Mg7+ as examples to recalculated their DR rate coefficients in-

cluding below-threshold resonances using a modified AUTOSTRUCTURE code. Other ions

should also have their DR rate coefficients updated and the effects on plasma modeling

investigated.
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Chapter 6

FINE-STRUCTURE ELECTRON-IMPACT EXCITATION FOR NE+ AND NE2+ FOR

LOW TEMPERATURE ASTROPHYSICAL PLASMAS

6.1 Background

Electron-impact fine-structure excitation of low charged ions is an important cooling

mechanism in most interstellar environments, especially in regions with significant ionization

fraction where electron-impact excitation is a strong populating mechanism for the excited

states. The lines from these fine-structure transitions can be observed from the infrared (IR)

to the submillimeter (submm) by a range of telescopes (e.g., the Spitzer Space Telescope, the

Stratospheric Observatory for Infrared Astronomy (SOFIA), the Herschel Space Observatory,

the Atacama Large Millimeter Array (ALMA), etc.). Further, fine-structure excitation due

to electron-impact is an important diagnostic tool for the density, pressure, temperature,

and/or ambient radiation field, if sufficiently accurate rate coefficients can be obtained.

Electron impact fine-structure excitation has been studied fairly extensively for many ions

over the past few decades [91–105]. However, almost all of these studies have primarily

focused on high energies/high temperatures relevant to collisionally-ionized plasmas and

some of the existing fine-structure excitation rate coefficients in current astrophysical codes

are still based on a simple model developed by Bahcall & Wolf [106], which may lead to

inaccurate results.

For the plasmas of importance in this paper, we require rate coefficients down to approx-

imately 10 K, appreciating that achieving the accuracy in the underlying cross section at this

temperature is difficult. Therefore it is important for astrophysical models that collisional

calculations are performed down to lower energies and that the associated rate coefficients

are updated.
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The fine-structure line emissions, Ne II and Ne III, due to electron impact excitation

of Ne+ and Ne2+, respectively, are observed in the IR and known to be very important for

probing H II regions. Previous work [18, 107] has proposed that Ne II and Ne III fine-

structure lines are appropriate to serve as diagnostics of the source of an evaporative flow, as

well as of signatures of X-ray irradiation, so-called X-ray dominated regions (XDRs). This

is because hard X-rays have sufficient energy to generate multiple ionization states of neon

which can then be collisionally excited. The rate coefficients used in most applications are

based on the approximations of Bahcall & Wolf [106]. However, R-matrix methods have been

available for these and neighbouring ion stages of Ne. Specifically, collision strengths for the

1s22s22p5 (2P0
3/2) - (2P0

1/2) transition of Ne+ have been calculated using a R-matrix method

via the jj omega (JAJOM) approach [93, 94]. The collision strengths of the transitions among

levels of the lowest configurations for Ne2+ were evaluated by Pradhan [91] and Butler &

Mendoza [92], also with an R-matrix method. McLaughlin et al. [108, 109] extended this

approach to a large configuration-interaction representation of the target, supplemented by

a few extra pseudo-orbitals to improve the target description further. Here, we have re-

investigated these two Ne ions for several reasons.

Previous work has focused primarily on higher electron-impact energies than considered

here with only a few of their Maxwellian averaged effective collision strengths going below

800 K. This leads naturally to the second focus of the paper, which is the exploration of

uncertainty in the rate coefficients at very low temperatures. To this end, three different

theoretical level-resolved R-matrix approaches have been applied: the Intermediate Coupling

Frame Transformation (ICFT) approach [110], the Breit-Pauli (BP) approximation [111],

and the fully relativistic Dirac method [112, 113]. Obstensively, if the underlying electronic

structure adopted in each approach was exactly the same there would be little expectation

of differences in the collision strengths. However, with the use of different atomic structure

codes and the choices made in their use, this invariably leads to small differences in A-values

and subsequently, dynamical quantities such as collision strengths.
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Figure 6.1: Energy diagram for Ne2+. Three transitions are shown: 2s22p4 (3P1) - ( 3P2),
2s22p4 (3P0) - (3P1), and 2s22p4 (3P0) - (3P2).

Thus, we are interested in the sensitivity of the effective collision strengths to the thresh-

old energy position, the target wave-functions, resonance positions, and anything that can

affect the background cross section. We appreciate that the height and position of a sin-

gle resonance can dramatically affect the results at these temperatures. We shall explore

the variation in results to threshold energy and resonance positions by calculating collision

strengths where the target energies have been shifted (or not) to NIST energies [14]. Further-

more, we explore the sensitivity of the target wave-function via different target expansions

within the BP R-matrix, ICFT R-matrix, and DARC R-matrix methods. After investigating

the differences between all calculated effective collision strengths for the same transition, we

recommend one based upon our findings.

We focus on excitation at low temperatures in this paper. So for Ne+, only rates for

the transition between the two lowest levels 1s22s22p5 (2P0
3/2) - (2P0

1/2) are presented. Also,
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the transitions between the three lowest fine-structure levels of Ne2+ (see energy diagram in

Figure 6.1) are investigated here.

The rest of this chapter is organized as follows. In Sec. 6.2, we describe the three

theoretical methods used in this paper. The calculated results, target energies, Einstein A

coefficients, collision strengths, effective collision strengths and excitation rate coefficients

for Ne+ and Ne2+ will be discussed in Sec.6.3. Sec.6.4 provides a summary of the results.

6.2 Theory

Level-resolved electron-impact excitation calculations using R-matrix theory, employs a

similar formalism whether semi-relativistic or relativistic implementations are used. Ne+ and

Ne2+ are not highly charged, therefore both semi-relativistic and fully relativistic methods

are equally applicable. The main differences arise from the choices made in the determination

of the target orbitals. The atomic structure code AUTOSTRUCTURE [16, 17] generates

non-relativistic orbitals whereas the General Relativistic Atomic Structure Package [112,

113] formulates and diagonalises a Dirac-Coulomb Hamiltonian to produce the relativistic

orbitals. The former is used in the BP/ICFT [111] collisional calculations and the latter in

the Dirac Atomic R-matrix Code (DARC) [112, 114] calculations.

The BP R-matrix method is a set of parallel codes developed from modified serial

versions of the RMATRX I codes [111]. Both the BP and ICFT models recouple underlying

LS coupling calculations, the former transforms several LS-resolved Hamiltonians into a jK-

coupled Hamiltonian, pre-diagonalisation, as opposed to the ICFT approach that transforms

unphysical LS-resolved K-matrices into level-resolved collision strengths. In general there

has been very good agreement between the ICFT and BP R-matrix methods [99, 110].

The implementations of various flavours of R-matrix theory are used in this study.

The review book of Burke [19] provides an excellent overview of non-relativistic (LS cou-

pling), semi-relativistic (BP/ICFT) and relativistic (DARC) electron-impact excitation. The

comparison of BP and ICFT results benefits from the use of a completely consistent atomic
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Ne+ DARC/BP n = 2 Ne+ DARC/BP n = 3 Ne2+ DARC/BP n = 2 Ne2+ DARC/BP n = 3

1s22s22p5 1s22s22p5 1s22s22p4 1s22s22p4

1s22s2p6 1s22s2p6 1s22p6 1s22p6

1s22s2p53l 1s22s2p5 1s22s2p5

1s22s22p43l 1s22s2p43l
1s22s22p33l

1s22p53l

Table 6.1: Target expansions for Ne+ and Ne2+.

structure as opposed to multiconfiguration Dirac-Fock (MCDF) results from GRASP, though

in all cases every effort has been made to optimize the orbitals on the fine-structure levels

of the ground term. The DARC calculation employs relativistic orbitals from the initial

atomic structure calculations throughout the remainder of the computation. It should be

restated that low temperature astrophysical constraints on both our Ne systems means we

are pursuing only transitions between the fine-structure levels of the ground term, and that

any excited states are included for the main purpose of improving the energy levels of those

low-lying states through configuration interaction. Given that the energy separation between

the ground state n = 2 and the excited n = 3 levels for either Ne+ or Ne2+ exceeds 2 Ryd., it

is unlikely that Rydberg states attached to the n = 3 levels would perturb our n = 2 results.

6.3 Calculation details

6.3.1 Target state calculation

Given the low temperature focus of this paper, only small scale calculations are re-

quired for the fine-structure transitions within the ground term. Furthermore, we would like

to explore the variation of our results in relation to various configuration-interaction (CI)

expansions. Thus, we consider both a small and larger CI expansion for Ne+ and Ne2+, with

the configurations described in Table 6.1. The models are referred to as BP n = 2, DARC

n = 2, BP n = 3, and DARC n = 3.
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For the ICFT R-matrix method, we only perform calculations for one target expansion,

and the included configurations are the same as BP/DARC n = 3. This will be used to

explore the difference between the BP and ICFT methods.

We also performed optimized BP and ICFT calculations, using orbital scaling param-

eters to improve the target structure. We use the Thomas-Fermi-Dirac-Amaldi potential,

with appropriate scaling parameters. The orbital scaling parameters are λ1s=1.0, λ2s=1.3,

λ2p=1.09, λ3s=1.13, λ3p=1.15, λ3d=1.11 for Ne2+, taken from McLaughlin et al. [102]. We

refer to these calculations as BP(op) n = 2/n = 3 and ICFT(op) n = 3 in the following

sections.

6.3.2 Scattering calculation

Here we only present details specific to the current R-matrix calculations. The radius

of the R-matrix sphere used for Ne+ is 5.40 a.u. for DARC n = 2, 19.83 a.u. for DARC

n = 3, 5.87 a.u. for BP n = 2, and 21.60 a.u. for BP n = 3. For the ion Ne2+, the

radius of the R-matrix sphere is 4.89 a.u. for DARC n = 2, 13.28 a.u. for DARC n = 3,

5.24 a.u. for BP n = 2, 14.35 a.u. for BP n = 3, 4.91 a.u. for BP(op) n = 2, 14.22 a.u.

for BP (op) n = 3, and 14.22 a.u. for ICFT(op) n = 3. 20 continuum basis orbitals for

each angular momentum are chosen for BP/BP(op)/DARC n = 2 for both Ne+ and Ne2+,

which is more than sufficient to converge the results for the low temperature calculations.

All of our models include partial waves from J = 0 to 10, which is more than sufficient to

converge the cross sections for the energy region for our calculations. An energy mesh of

2.5×10−6 Rydbergs for Ne+ and 3.125×10−6 Rydbergs for Ne2+ ensured resonances were

resolved, particularly for the lowest temperatures of subsequent effective collision strengths.

We calculate collision strengths up to 0.107 Ryd. for Ne+ and 0.1658 Ryd. for Ne2+, and

effective collision strengths from 10-2000 K for both ions. All these parameters are listed in

Table 6.2
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Ne+ n = 2 Ne+ n = 3 Ne2+ n = 2 Ne2+ n = 3
DARC, BP DARC, BP DARC, BP DARC, BP

Radius of R-matrix sphere (a.u.) 5.40, 5.87 19.83, 21.60 4.89,5.24 13.28, 14.35

Continuum basis orbitals for 20 20 20 20
each angular momentum

Partial waves J 0 – 20 0 – 20 0 – 20 0 – 20

Energy mesh (Ryd.) 2.5×10−6 2.5×10−6 3.125×10−6 3.125×10−6

Energy range (Ryd.) 0.007 – 0.107 0.007 – 0.107 0.0058 – 0.1658 0.0058 – 0.1658

Temperature range (K) 10 – 2000 10 – 2000 10 – 2000 10 – 2000

Table 6.2: Scattering calculation parameters for different target expansions.

6.3.3 Effective collision strength calculation

The effective collision strength [115, 116] can be calculated from the collision strengths

via:

Υij =

∫ ∞
0

Ωij exp

(
−εj
kTe

)
d

(
εj
kTe

)
, (6.1)

where Ωij is the collision strength for the transition from level i to j, εj is the energy of the

scattered electron, Te the electron temperature, and k Boltzmann’s constant.

The Maxwellian excitation rate coefficient qij is the coefficient used widely in astro-

physics. The relationship between qij and Υij is

qij = 2
√
παca2

0

(
IH

kTe

)1/2
1

ωi
e−

∆Eij
kTe Υij, (6.2)

where α is the fine-structure constant, c the speed of light, a0 the Bohr radius, IH the

hydrogen ionization potential, ∆Eij the energy difference in the fine-structure levels, and ωi

the degeneracy in the lower level. Compared with qij(Te), Υij(Te) is a smoother function

and can be more accurately interpolated.

6.4 Results and discussion

Astrophysical plasma modellers who study IR/submm observations of low temperature

plasmas, such as the interstellar medium, require atomic rate coefficients down to temper-

atures as low as 10 K. This will place very stringent tests on the accuracy of the atomic
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structure and collisional calculations. The excitation rate coefficients will be very sensitive

to small changes in the atomic structure. As a result, the structure will impact the rate

coefficients through changes in the threshold energy, resonance strengths and positions, and

changes in the background cross section. For this reason, we have performed a range of

calculations using different methods (BP n = 2, DARC n = 2, BP n = 3, DARC n = 3,

BP(op) n = 3). These will be used to explore the variation of the effective collision strengths,

particularly at low temperatures. The purpose of including the n = 3 configurations is to

improve the energies and transition probabilities for the levels within the ground term.

6.4.1 Bound-state energies and radiative rates for Ne+ and Ne2+

Our recommended dataset shall be the model that minimizes the difference between that

calculation and the NIST A-values and level energies (Kramida et al. 2015). The results are

shown in Tables 6.3 and 6.4. The percent error (δ%) shown is calculated by x−xNIST

xNIST
×100%

with the NIST data providing the accepted values.

The BP/DARC n = 2 and n = 3 target expansions give rise to 3 and 108 levels for

Ne+, and 10 and 226 levels for Ne2+. The energies for the levels within the ground term

are presented in Table 6.3 and the associated A-values in Table 6.4. In general, the percent

errors show that the agreement between theoretical and NIST values is reasonable. The

n = 3 target expansion results in marginally better energies for both ions and different R-

matrix methods compared to the n = 2 expansion. For Ne+, the average percentage error

for the BP n = 2, BP n = 3, DARC n = 2, and DARC n = 3 target expansions are 1.41%,

0.96%, 3.6% and 0.42%, respectively. While for Ne2+, the corresponding average percent

errors for target energies are 8.13%, 6.95%, 3.72% and 3.33%.

Optimized BP calculations are also performed for Ne2+, giving average percentage errors

of 3.34% for BP(op) n = 2 and 3.20% for BP(op) n = 3. The DARC R-matrix method

produces better energies than the BP R-matrix method for Ne2+ for both n = 2 and n = 3.

The optimized BP calculation for Ne2+ dramatically increases the accuracy of the energies.
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Config. Term NIST BP δ% BP δ% DARC δ% DARC δ%
(2s+1LJ) n = 2 n = 3 n = 2 n = 3

2s22p5 2P0
3/2 0.0000 0.0000 0 0.0000 0 0.0000 0 0.0000 0

2P0
1/2 0.0071 0.0069 2.82 0.0070 1.91 0.0076 7.2 0.0071 0.84

Avg. δ% 1.41 0.96 3.6 0.42

2s22p4 3P2 0.0000 0.0000 0 0.0000 0 0.0000 0 0.0000 0
3P1 0.0059 0.0049 15.75 0.0051 13.01 0.0060 1.59 0.0057 3.11
3P0 0.0084 0.0073 13.29 0.0075 10.47 0.0088 4.33 0.0084 0.32
1D2 0.2355 0.2348 0.27 0.2454 4.23 0.2521 7.05 0.2664 13.15
1S0 0.5081 0.4504 11.36 0.4722 7.06 0.4795 5.62 0.5083 0.05

Avg. δ% 8.13 6.95 3.72 3.33

BP(op) BP(op)
n = 2 n = 3

2s22p4 3P2 0.0000 0.0000 0.00 0.0000 0.00
3P1 0.0059 0.0058 1.47 0.0057 2.64
3P0 0.0084 0.0085 1.22 0.0084 0.05
1D2 0.2355 0.2532 7.52 0.2573 9.25
1S0 0.5081 0.4751 6.48 0.4874 4.07

Avg. δ% 3.34 3.20

Table 6.3: Energy comparison of Ne+ and Ne2+ (in Ryd). The configurations and terms
listed in the first two columns label different levels. The third column gives the correspond-
ing energies from NIST [14]. The percent error after each theoretical energy indicates the
deviation of the theoretical value from the NIST one. The last line of each table is the
average error of each theoretical calculation.

Ion Transition NIST BP δ% BP δ% DARC δ% DARC δ%
n = 2 n = 3 n = 2 n = 3

Ne+ 2p5 (2P3/2) - (2P1/2) 8.59e-3 7.84e-3 8.68 8.07e-3 6.1 8.16e-3 5.01 6.22e-3 27.64
Ne2+ 2p4 (3P2) - (3P1) 5.84e-3 3.57e-3 38.85 3.93e-3 32.7 5.86e-3 0.42 5.11e-3 12.56

2p4 (3P1) - (3P0) 1.10e-3 9.10e-4 17.2 1.00e-3 8.8 1.15e-3 4.95 9.75-4 11.37
BP(op) δ% BP(op) δ%)
n = 2 δ% n = 3 δ%)

Ne2+ 2p4 (3P2) - (3P1) 5.84e-3 5.71e-03 2.19 5.51e-03 5.63
2p4 (3P1) - (3P0) 1.10e-3 1.43e-03 30.2 1.39e-03 25.99

Table 6.4: Einstein A coefficient (in s−1) comparison for Ne+ and Ne2+ with NIST data [14].
Columns as in Table II.
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Table 6.4 presents the comparison of Einstein A coefficients for both the Ne+ and Ne2+

transitions. In both cases, the DARC n = 2 calculations produce the closest agreement with

NIST values. The remainder of the dataset shall be used to gauge the variation between

the different calculations. The accuracy of the Einstein A coefficient is not only related to

the precision of the target energies, but also depends on the reliability of the target wave-

functions. The optimized BP n = 3 calculation does give better target energies and A-values

compared with the BP(op) n = 2, showing an improvement with CI expansion. This trend is

not reflected in the DARC results, see Tables 6.3 and 6.4. We conclude that our recommended

dataset is the DARC n = 2 calculation which has the most accurate target energies and A-

values, and will provide the most accurate collision strengths, effective collision strengths

and excitation rate coefficients. We also investigated the differences between an ICFT(op)

and the BP(op) calculation for Ne2+ using the same structure, noticing no differences in the

effective collision strengths.

6.4.2 Collision strengths and effective collision strengths for Ne+ and Ne2+

To our knowledge, there are no experimental results for the collision strengths for tran-

sitions within the ground complex for either of these ion stages. Our goal is to determine the

variation in effective collision strengths between our best models as we progress to the very

low temperatures required by the astrophysical applications. We have adopted two different

approaches to calculating meaningful representative percent differences in our work.

In the first approach we calculate a percentage uncertainty on the effective collision

strengths simply using the standard deviation of our three most accurate models as deter-

mined from the accuracy of the energy levels and the associated A-values, given by

%∆ =
σ(x̄best)

xi
× 100% (6.3)
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where σ(x̄best) is the standard deviation. Secondly, we obtain a percent difference comparing

results from our semi-relativistic and fully-relativistic R-matrix methods employing exactly

the same set of non-relativistic target configurations. In this case, the percentage difference

is calculated by the formula x1−x2

(x1+x2)/2
×100%.

Figures 6.2 – 6.5 illustrate the collision strengths and effective collision strengths for

the fine-structure transitions of both Ne+ and Ne2+, using the different R-matrix methods.

Figures 6.6 – 6.8 explore the effects of shifting the target threshold energies to NIST values.

Sampling a range of calculations allows us to more objectively explore the variation of

collision strength in regards to the size of the different CI expansions. As stated earlier,

the sizeable energy separation between the n = 2 and n = 3 levels precludes the possibility

of interloping resonances attached to the n = 3 levels perturbing the cross sections from

transitions amongst the n = 2 levels. The influence of resonance contributions to effective

collision strengths is only expected for the case of Ne2+ due the 2p4 subshell supporting 3

levels within the ground state complex, whereas the resonances attached to the upper J = 1
2

levels of Ne+(2p5) lie in the elastic cross section of the Ne+ ground state.

Figure 6.2 shows collision strengths (top) and effective collision strengths (bottom) for

the Ne+ 2s22p5(2P0
3/2) - (2P0

1/2) transition. The largest collision strengths come from the

BP n = 2 calculation, the next lower ones are from the DARC n = 2 calculation, then

from BP n = 3 and DARC n = 3. The DARC n = 2 calculation is our recommended data

set based upon A-value comparisons with the NIST database values. Furthermore, in the

absence of experiment, the MCDF approach would be our recommended theoretical model.

Subsequent effective collision strengths were generated from the respective collision strengths

of each calculation. We note that beyond the current work, a previous large-scale BP R-

matrix calculation for Ne+ has been carried out by Griffin et al. [95]. However, the focus of

that work was to provide a large comprehensive data set across a wide range of temperatures,

but not at the very low temperatures required by our study. At 1000 and 2000 K, the DARC

n = 2 effective collision strengths were in best agreement with this previous work. Our
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Figure 6.2: Comparison of Ne+ collision strengths (a) and effective collision strengths (b)
for the 2s22p5 (2P0

3/2) - (2P0
1/2) transition between different target expansions: DARC n = 2

(black solid line), DARC n = 3 (red dotted line), BP n = 2 (green dashed line), and BP
n = 3 (blue dot-dashed line). Uncertainty estimates are given for our recommended DARC
n = 2 results with comparison to the previous R-matrix calculation (purple circles) of Griffin
et al. (2001).
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effective collision strengths are 0.302 at 1000 K and 0.304 at 2000 K, compared with 0.266

and 0.286 from Griffin et al. [95], as shown in Fig. 6.2, giving differences of 12.7% and 6.1%,

respectively. Thus, this supports our independent conclusion that our DARC n = 2 effective

collision strengths should be the recommended dataset at even lower temperatures, and are

tabulated in Table B.1.

Employing the average percentage uncertainty given by Equation (6.3), the x̄best values

used to calculate the uncertainty are the BP n = 2, BP n = 3, and the DARC n = 2 results,

providing an uncertainty from 19.1-19.6% for our recommended DARC n = 2 effective

collision strengths, as shown in Figure 6.2.

It is also of interest to consider the differences between the DARC and BP calculations,

for the cases when they both have the same configurations. The differences of the effective

collision strengths between the DARC n = 2 and BP n = 2 are 11.3 – 12.1%, while the

DARC n = 3 and BP n = 3 differ by 23.7 – 24.7%, which is consistent with the differences

between the A-values from these calculations. We note that, perhaps counterintuitively, the

DARC n = 3 results drift from the recommended values, however the explanation lies in the

fact that the DARC code will endeavour to optimise all orbitals on an equal footing, when

in fact we should focus only on the n = 2 optimisation at the expense of the n = 3 levels.

Figures 6.3 – 6.5 present the collision strengths (top) and effective collision strengths

(bottom) for three different transitions of Ne2+, namely, the (3P2) - (3P1) (Fig. 6.3), (3P1)

- (3P0) (Fig. 6.4), and (3P2) - (3P0 (Fig. 6.5) transitions. For the collision strengths of

the three transitions, the unoptimised BP n = 2 result has the largest background, however

an optimised structure aligns better with the DARC n = 2 result. On the other hand, the

previous calculation by McLaughlin et al. (2011), which extended down to 2000 K appears

to be consistent with the DARC n = 3 result. The difference between our DARC n=2 and

McLaughlin et al. (2011) are attributed to the fact that that our DARC n=2 calculation

was focused on generating accurate data only for fine structure transitions within the ground

term, while McLaughlin et al. [102] results were focused on higher temperatures and higher
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Figure 6.3: Comparison of Ne2+ collision strengths (a) and effective collision strengths (b)
for the 2s22p4 (3P2) - (3P1) transition between different target expansions: DARC n = 2
(black solid line), DARC n = 3 (red dotted line), BP n = 2 (green dashed line), BP n = 3
(blue dot-dashed line), BP(op) n = 2 (green solid line), BP(op) n = 3 (blue solid line), and
ICFT(op) n = 3 (thick black solid). Uncertainty estimates are given for our recommended
DARC n = 2 results with comparison to the previous R-matrix calculation (purple circle) of
McLaughlin et al. [102].
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Figure 6.4: Comparison of Ne2+ collision strengths (a) and effective collision strengths (b)
for the 2s22p4 (3P1) - (3P0) transition between different target expansions: DARC n = 2
(black solid line), DARC n = 3 (red dotted line), BP n = 2 (green dashed line), BP n = 3
(blue dot-dashed line), BP(op) n = 2 (green solid line), BP(op) n = 3 (blue solid line), and
ICFT(op) n = 3 (thick black solid). Uncertainty estimates are given for our recommended
DARC n = 2 results.
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Figure 6.5: Comparison of Ne2+ collision strengths (a) and effective collision strengths (b)
for the 2s22p4 (3P2) - (3P0) transition between different target expansions: DARC n = 2
(black solid line), DARC n = 3 (red dotted line), BP n = 2 (green dashed line), BP n = 3
(blue dot-dashed line), BP(op) n = 2 (green solid line), and BP(op) n = 3 (blue solid line).
Uncertainty estimates are given for our recommended DARC n = 2 results.
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n shells in addition to the levels within the ground term. Overall, our recommended collision

strength is that produced by the DARC n = 2 calculation, based upon energy level and

A-value comparisons with NIST data as discussed above.

The uncertainty in the DARC n = 2 results are again provided in a similar fashion using

Eq. 6.3 and the standard deviation of the other BP and DARC models. Values for x̄best for

Ne2+ are taken from the DARC n = 2, BP(op) n = 2, and BP(op) n = 3 calculations. It

is interesting to note that the collision strengths from the optimised BP n = 2 calculation

deviate significantly from the unoptimised BP n = 2 values.

Considering the effective collision strengths involving the higher excited state transitions

(Figs. 6.4 and 6.5), the DARC n = 2 model remains our recommended dataset, with uncer-

tainties given by the previously applied method. The uncertainty of the effective collision

strengths from the DARC n = 2 calculations are 4.7 – 12.2% (Fig. 6.3), 3.2 – 19.8% (Fig.

6.4), and 5.5 – 16.2% (Fig. 6.5).

As we present rate coefficients at very low temperatures (see table in Appendix B.2),

we also investigated the sensitivity of the effective collision strengths to changes in the

target threshold energy positions. It is expected that due to the Rydberg states having high

principal quantum numbers there should be a very strong correlation between the energy

shift of the target level and the corresponding energy shift of the resonance attached to it.

This study was performed by comparing a BP calculation with shifts to NIST energies

and a BP calculation with no shifts, in each case for Ne2+. See Figs. 6.6 – 6.8 for the

results. The difference between the two BP calculations (with/without energy shift) is up

to 89.0% for the (3P2) - (3P1) transition, up to 38.7% for the (3P1) - (3P0), and up to 31.8%

for the (3P2) -(3P0). The large difference in the first transition is due to the presence of

near threshold resonances. Thus, to generate accurate low temperature rate coefficients it

is important to shift to accurate, experimental energies, and the cases with near threshold

resonances are particularly sensitive.
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Figure 6.6: Comparison of Ne2+ collision strengths (top) and effective collision strengths
(bottom) for the 2s22p4 (3P2) - (3P1) transition: BP(op) n = 3 with (black solid line) and
without (red dotted line) the energy shift.
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Figure 6.7: Comparison of Ne2+ collision strengths (top) and effective collision strengths
(bottom) for the 2s22p4 (3P1) - (3P0) transition: BP(op) n = 3 with (black solid line) and
without (red dotted line) the energy shift.
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Figure 6.8: Comparison of Ne2+ collision strengths (top) and effective collision strengths
(bottom) for the 2s22p4 (3P2) - (3P0) transition: BP(op) n = 3 with (black solid line) and
without (red dotted line) the energy shift.
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6.5 Conclusions

We calculated the collision strengths and effective collision strengths for Ne+ and Ne2+

with BP, ICFT and DARC R-matrix methods. We are interested in the rates at low temper-

ature (10 – 2000 K), so we focus on small energies (0.007 – 0.107 Ryd. for Ne+ and 0.0058

– 0.1658 Ryd. for Ne2+) and perform small scale R-matrix calculations. After compar-

ing the energies, the Einstein A coefficients (Aij), collision strengths (Ωij), effective collision

strengths (Υij) and the Maxwellian excitation rate coefficient qij, we conclude that the DARC

n = 2 model gives rise to the most reliable collision strengths and effective collision strengths

with the Einstein A coefficients generated by this method being closest to the recommended

values (i.e., NIST). Further, effective collision strengths computed with the DARC n = 2

approach result in rates which agree best with the existing data calculated by large-scale

R-matrix methods.
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Chapter 7

FUTURE WORK

Three topics are included in this dissertation: inner-shell photo-ionization followed by

Auger decay, below threshold resonance contribution to Dielectronic Recombination and

electron-impact fine-structure excitation. Each of these topics have future work that would

be intersting to pursue.

For the inner shell photo-ionization followed by Auger decay topic, we would like to

investigate negative ions. This system can be interesting because of the weaker coulomb

potential and emergence of a new short range potential.

For the below threshold DR, we would like to continue with the search for satellite lines

evidence of below threshold recombination Abell 30. While the UV spectrum from the IUE

instrument did not have enough wavelength resolution to test for the presence of the lines,

the STIS instrument on the Hubble Space Telescope would have sufficient resolution and

sensitivity. As part of this work a proposal was submitted to request observing time on the

Hubble Space Telescope. The idea was to observe the satellite lines of C3+ at 1550 A in

a knot of Abell 30. While the temperature of this knot is a matter of some debate, it has

been measured to be less than 1 eV when carbon lines are used. Appendix D contains the

proposal that was submitted, where the reader can find details on the likely photon fluxes

detected by the STIS instrument. It is our intention to submit future proposals for time

on the STIS instrument. We will also perform additional searches of existing UV spectra of

planetary nebulae, to determine if evidence already exists in archived data.

On the same topic, another possible method to verify the existence of below threshold

DR contribution is to model the fractional abundances with the new calculated DR rate

coefficients and compare with the observed ion stage abundances in low temperature plasmas.
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O is an ideal candidate to perform this test because only O4+ has near threshold resonance

and the DR rate coefficients of other ions of this element have accurate values in the current

database. This will be investigated as part of future work. It would also be very beneficial to

go through other iso-electronic squences and identify cases with near threshold resonances,

correcting their rate coefficients as in chapter 5.

One other interesting thing to explore is the increase in the negative energy distribution

function at higher temperatures, see Fig. 4.2. This is caused because dielectronic recombi-

nation is a very efficient means of populating the Rydberg states at the higher temperatures,

while the loss rates are small. This causes an increase in the DR rate coefficient at higher

temperatures. It would be interesting to verify this over population of the Rydberg states.

For the electron-impact fine-structure excitation topic, we would like to calculate the

excitation coefficient for other ions, such as Ar+, Ar2+, and the low charge states of iron.

In each case the R-matrix method would be used, and uncertainties assigned to the final

excitation rate coefficients. The new fine-structure excitation data (including the work of

this dissertation) should be combined with ion-impact excitation data being calculated at

the University of Georgia and used in spectral models of ultra low temperature astrophysical

plasmas.
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Y.-H., Blair, W. P., Gruendl, R. A., Hamann, W.-R., Oskinova, L. M., and Todt, H.

(2014). Expansion of Hydrogen-poor Knots in the Born-again Planetary Nebulae A30

and A78. Astrophys. J., 797:100.

129



[120] Fogle, M., Badnell, N. R., Glans, P., Loch, S. D., Madzunkov, S., Abdel-Naby, S. A.,

Pindzola, M. S., and Schuch, R. (2005). Electron-ion recombination of Be-like C, N,

and O. Astronomy and Astrophysics, 442:757–766.

[121] Harrington, J. P. and Feibelman, W. A. (1984). The remarkable ultraviolet spectrum

of the planetary nebula Abell 30. Astrophys. J., 277:716–724.

[122] Pindzola, M. S., Loch, S. D., and Robicheaux, F. (2011). Dielectronic recombination

in C3+ above and below the ionization threshold. Physical Review A, 83(4):042705.

[123] Robicheaux, F., Loch, S. D., Pindzola, M. S., and Ballance, C. P. (2010). Contribu-

tion of Near Threshold States to Recombination in Plasmas. Physical Review Letters,

105(23):233201.

[124] Schippers, S., Schnell, M., Brandau, C., Kieslich, S., Müller, A., and Wolf, A. (2004).

Experimental Mg IX photorecombination rate coefficient. Astronomy and Astrophysics,

421:1185–1191.
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Appendix A

NUMERICAL PROCESS FOR THE TDSE METHOD

A.1 The non-uniform radial mesh for radius

We use non-uniform mesh for the radial grid to improve the efficiency of numerical
calculation. We use equal steps for phase, so the transformation can be:

s =
√
r
√
rc + r. (A.1)

The grid in s is equal, δs =
sf−si
N

where si =
√
ri
√
rc + ri and sf =

√
rf
√
rc + rf . Then

sj = δs ∗ j. (A.2)

Eq.s (A.1) and (A.2) will give

rj =

√
r2
c

4
+ s2

j −
rc
2
. (A.3)

The mesh in r is small close to the nucleus, and smoothly becomes equal far away. rc is
selected as 20 a.u. for e1 and 5 a.u. for e2.

A.2 Numerical method to solve Eq. (1.1)

In Eq. (1.1),

H1F1 = (−1

2

∂2

∂r1
2

+ V1)F1. (A.4)

Non-uniform mesh yields

(H1F1)j = −(
F1j+1

δ1jλ1j

+
F1j−1

δ1j−1λ1j

− F1j

δ1jδ1j−1

) + V1jF1j, (A.5)

where δ1j = r1j+1 − r1j and λ1j = r1j+1 − r1j−1

Substitute (A.5) to Eq. (1.1), we can get:

DjF1j+1 +MjF1j + LjF1j−1 = −Sj, (A.6)

where Dj = − 1
δ1jλ1j

, Mj = 1
δ1jδ1j−1

+ V1j − (E1 + iΓc

2
), Lj = − 1

δ1j−1λ1j
and S= Dφg = r1e

−r2
1 .

132




D1F12 +M1F11 = −S1

D2F13 +M2F12 + L2F11 = −S2

D3F14 +M3F13 + L3F12 = −S3

...
DnF1n+1 +MnF1n + LnF1n−1 = −Sn

(A.7)

F11 = (−S1 − D1F12)/M1 can be obtained from the first equation of A.7. Plug this
expression to the second equation of A.7,

D2F13 +M2F12 + L2/M1(−S1 −D1F12) = −S2
⇒ D2F13 + (M2 − L2D2

M1
)F12 = −(S2 − L2S1

M1
)

⇒ D2F13 +M ′
2F12 = S ′2

(A.8)

.
And similar expression can be obtained from A.8: F12 = (−S ′2 − D1F12)/M ′

1. Plug it
into the third equation of A.7,

D3F14 +M3F13 + L3/M
′
2(−S ′2 −D2F13) = −S3

⇒ D3F14 + (M3 − L3D2

M ′2
)F13 = −(S3 − L3S′2

M ′2
)

⇒ D3F14 +M ′
3F13 = S ′3

(A.9)

.
Thus, Eqs. A.7 can be rewritten as:


D1F12 +M ′

1F11 = −S ′1
D2F13 +M ′

2F12 = −S ′2
D3F14 +M ′

3F13 = −S ′3
...
DnF1n+1 +M ′

nF1n = −S ′n

(A.10)

where M ′
1 = M1, S ′1 = S1, M ′

j = Mj − LjDj

M ′j−1
and S ′j = Sj −

LjS
′
j−1

M ′j−1
. j=2 to n. F1n = 0,

the wave-function at the point before it can be obtained by F1n−1 =
−S′n−1−Dn−1F1n

M ′n−1
. The

wave-function at other points is solved in similar way.
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Appendix B

Basic knowledge for R-matrix and Rate coefficients for Ne+ and Ne2+

B.1 R-matrix theory

A short summary of R-matrix theory is presented here and is used in chapter 6 of the

dissertation. The R-matrix method is a non-perturbative approach to solving atomic physics

collision cross sections. In this approach the configuration space is separated into 2 regions.

In the first region (inside the R-matrix ‘box’) where electron exchange and correlation ef-

fects between the scattered electron and the target electrons are important, a configuration

interaction basis expansion of the total wave function is adopted. In chapter 6 the atomic

structure package AUTOSTRUCTURE [16] was used to generate the spectroscopic radial

orbitals subsequently employed in the scattering calculation.

The wavefunction representing the close-coupling expansion in the inner region is given

by:

ΨN+1
k = A

∑
i,j

aijkψ
N+1
i

uij(rN+1)

rN+1

+
∑
i

bikχ
N+1
i , (B.1)

where A is an antisymmetrization operator, ψN+1
i are channel functions obtained by cou-

pling N-electron target states with the angular and spin functions of the scattered electron,

uij(r) are radial continuum basis functions, and χN+1
i are bound functions which ensure

completeness of the total wavefunction. The χN+1
i terms are correlations terms, and are

constructed only from target orbitals, and therefore will also have a negligible value on the

the R-matrix boundary. The coefficients aijk and bik are determined by diagonalization of

the total (N+1)-electron symmetric Hamiltonian.

The resulting eigenvalues and eigenvectors are subsequently used in the formation of

the R-matrix, which acts as the interface between the inner and outer region is given by:
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Rij(E) =
1

2a0

∑
k

wikwjk
E − Ek

(B.2)

where Ek are the aforementioned eigenvalues of the N + 1 electron Hamiltonian and wik

are referred to as surface amplitudes. The wik are given by the following expression, where

cijk correspond to the eigenvectors of the aforementioned Hamiltonian.

wik =
∑
j

uijcijk at r = a0 (B.3)

The R-matrix relates the reduced radial wave function Fi(r), describing the radial mo-

tion of the scattered electron in the ith channel, to its derivative on the boundary r = a0.

F (r) =
∑
j

Rij(a0
dFj
dr
− bFj) at r = a0 (B.4)

The n× n R-matrix on the boundary can be related to the asymptotic form n× n K or

S matrix from which cross sections may be derived, taking into account whether the system

is a neutral or an ionic target. The final cross section in LS coupling for a transition from

one state αiLiSi to another αjLjSj is given by

σi→j =
π

k2
i

∑
li,lj

(2L+ 1)(2S + 1)

(2Li + 1)(2Si + 1)
|Sij − δij|2 (B.5)

We use the R-matrix method to calculate electron-impact excitation cross sections in

chapter 6.

B.2 Rate coefficients for Ne+ and Ne2+

Temperature Ne+ 2s22p5(2P0
3/2) -

(2P0
1/2)

Ne2+ 2s22p4(3P2) -
(3P1)

Ne2+ 2s22p4(3P1) -
(3P0)

Ne2+ 2s22p4(3P2) -
(3P0)

(K) Υ12, %∆, q12 (cm−3) Υ12, %∆, q12 (cm−3) Υ23, %∆, q23 (cm−3) Υ13, %∆, q13 (cm−3)
1.00×101 0.30, 4.77, 4.42×10−56 0.63, 12.2, 1.25×10−47 0.19, 19.8, 1.24×10−24 0.16, 16.2, 2.27×10−65

2.00×101 0.30, 4.79, 6.72×10−32 0.64, 8.51, 1.47×10−27 0.19, 17.7, 3.22×10−16 0.15, 13.0, 9.67×10−37

3.00×101 0.30, 4.82, 7.09×10−24 0.64, 7.74, 6.62×10−21 0.19, 17.0, 1.89×10−13 0.15, 11.9, 3.10×10−27

4.00×101 0.30, 4.78, 6.97×10−20 0.64, 7.73, 1.34×10−17 0.18, 16.7, 4.35×10−12 0.15, 11.2, 1.67×10−22
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5.00×101 0.30, 4.78, 1.69×10−17 0.64, 7.99, 1.26×10−15 0.18, 16.4, 2.80×10−11 0.15, 10.8, 1.13×10−19

6.00×101 0.30, 4.78, 6.47×10−16 0.64, 8.18, 2.57×10−14 0.18, 16.3, 9.47×10−11 0.15, 10.5, 8.58×10−18

7.00×101 0.30, 4.81, 8.63×10−15 0.64, 8.49, 2.19×10−13 0.18, 16.3, 2.24×10−10 0.15, 10.4, 1.85×10−16

8.00×101 0.30, 4.81, 5.97×10−14 0.64, 8.80, 1.08×10−12 0.18, 16.1, 4.24×10−10 0.15, 10.0, 1.85×10−15

9.00×101 0.30, 4.81, 2.67×10−13 0.64, 9.04, 3.73×10−12 0.18, 16.0, 6.88×10−10 0.15, 10.0, 1.10×10−14

1.00×102 0.30, 4.81, 8.80×10−13 0.64, 9.29, 9.96×10−12 0.18, 16.0, 1.01×10−09 0.15, 10.0, 4.55×10−14

1.10×102 0.30, 4.80, 2.33×10−12 0.64, 9.53, 2.22×10−11 0.18, 16.0, 1.38×10−09 0.15, 10.0, 1.45×10−13

1.20×102 0.30, 4.80, 5.22×10−12 0.64, 9.76, 4.31×10−11 0.18, 15.8, 1.77×10−09 0.15, 10.0, 3.79×10−13

1.50×102 0.30, 4.80, 3.02×10−11 0.64, 10.3, 1.83×10−10 0.18, 16.0, 3.06×10−09 0.15, 9.62, 3.07×10−12

2.00×102 0.30, 4.76, 1.69×10−10 0.65, 11.0, 7.48×10−10 0.18, 16.0, 5.06×10−09 0.15, 9.62, 2.42×10−11

2.50×102 0.30, 4.76, 4.64×10−10 0.64, 11.4, 1.69×10−09 0.18, 16.1, 6.68×10−09 0.15, 9.49, 8.15×10−11

3.00×102 0.30, 4.76, 8.95×10−10 0.64, 11.7, 2.86×10−09 0.18, 16.2, 7.89×10−09 0.15, 9.49, 1.80×10−10

3.50×102 0.30, 4.76, 1.41×10−09 0.64, 11.9, 4.10×10−09 0.18, 16.3, 8.76×10−09 0.15, 9.05, 3.11×10−10

4.00×102 0.30, 4.79, 1.97×10−09 0.63, 11.9, 5.32×10−09 0.18, 16.2, 9.38×10−09 0.15, 8.88, 4.67×10−10

4.50×102 0.30, 4.79, 2.54×10−09 0.63, 11.9, 6.44×10−09 0.17, 16.3, 9.82×10−09 0.15, 8.56, 6.37×10−10

5.00×102 0.30, 4.79, 3.09×10−09 0.62, 11.7, 7.47×10−09 0.17, 15.9, 1.01×10−08 0.15, 8.07, 8.11×10−10

5.50×102 0.30, 4.75, 3.61×10−09 0.62, 11.6, 8.38×10−09 0.17, 15.8, 1.03×10−08 0.15, 7.59, 9.84×10−10

6.00×102 0.30, 4.75, 4.09×10−09 0.62, 11.2, 9.18×10−09 0.17, 15.5, 1.05×10−08 0.15, 7.21, 1.14×10−09

6.50×102 0.30, 4.75, 4.54×10−09 0.61, 10.8, 9.87×10−09 0.17, 14.9, 1.05×10−08 0.15, 6.67, 1.30×10−09

7.00×102 0.30, 4.75, 4.95×10−09 0.61, 10.4, 1.05×10−08 0.17, 14.3, 1.05×10−08 0.15, 6.20, 1.45×10−09

7.50×102 0.30, 4.75, 5.34×10−09 0.60, 9.92, 1.10×10−08 0.17, 13.6, 1.05×10−08 0.15, 5.79, 1.59×10−09

8.00×102 0.30, 4.75, 5.67×10−09 0.60, 9.43, 1.15×10−08 0.17, 12.9, 1.04×10−08 0.15, 5.49, 1.73×10−09

8.50×102 0.30, 4.75, 5.98×10−09 0.60, 8.90, 1.19×10−08 0.17, 12.2, 1.04×10−08 0.15, 5.62, 1.85×10−09

9.00×102 0.30, 4.71, 6.25×10−09 0.60, 8.36, 1.22×10−08 0.17, 11.3, 1.03×10−08 0.15, 5.72, 1.96×10−09

9.50×102 0.30, 4.71, 6.50×10−09 0.60, 7.75, 1.25×10−08 0.17, 10.8, 1.03×10−08 0.15, 6.18, 2.07×10−09

1.00×103 0.30, 4.74, 6.72×10−09 0.59, 7.24, 1.28×10−08 0.17, 9.85, 1.02×10−08 0.15, 6.49, 2.17×10−09

1.05×103 0.30, 4.74, 6.91×10−09 0.59, 6.75, 1.30×10−08 0.17, 9.11, 1.01×10−08 0.15, 7.10, 2.26×10−09

1.10×103 0.30, 4.74, 7.09×10−09 0.59, 6.30, 1.32×10−08 0.17, 8.37, 1.01×10−08 0.15, 7.50, 2.35×10−09

1.15×103 0.30, 4.74, 7.25×10−09 0.59, 5.95, 1.34×10−08 0.17, 7.43, 9.93×10−09 0.15, 7.62, 2.44×10−09

1.20×103 0.30, 4.74, 7.39×10−09 0.59, 5.59, 1.35×10−08 0.17, 6.69, 9.86×10−09 0.15, 8.36, 2.51×10−09

1.25×103 0.30, 4.70, 7.52×10−09 0.59, 5.28, 1.37×10−08 0.17, 6.19, 9.85×10−09 0.15, 8.82, 2.59×10−09

1.30×103 0.30, 4.70, 7.63×10−09 0.59, 5.10, 1.38×10−08 0.17, 5.48, 9.77×10−09 0.15, 9.29, 2.66×10−09

1.35×103 0.30, 4.70, 7.73×10−09 0.59, 4.91, 1.39×10−08 0.17, 4.84, 9.70×10−09 0.16, 9.48, 2.73×10−09

1.40×103 0.30, 4.70, 7.84×10−09 0.59, 4.84, 1.41×10−08 0.17, 4.46, 9.62×10−09 0.16, 9.94, 2.79×10−09

1.45×103 0.30, 4.70, 7.92×10−09 0.59, 4.81, 1.42×10−08 0.17, 3.98, 9.61×10−09 0.16, 10.1, 2.85×10−09

1.50×103 0.30, 4.70, 7.99×10−09 0.60, 4.75, 1.43×10−08 0.17, 3.82, 9.53×10−09 0.16, 10.3, 2.91×10−09

1.55×103 0.30, 4.70, 8.06×10−09 0.60, 4.86, 1.43×10−08 0.17, 3.33, 9.46×10−09 0.16, 10.8, 2.96×10−09

1.60×103 0.30, 4.70, 8.11×10−09 0.60, 4.99, 1.44×10−08 0.17, 3.24, 9.44×10−09 0.16, 10.7, 3.03×10−09

1.65×103 0.30, 4.66, 8.16×10−09 0.60, 5.01, 1.45×10−08 0.17, 3.39, 9.42×10−09 0.16, 10.8, 3.08×10−09

1.70×103 0.30, 4.69, 8.20×10−09 0.60, 5.15, 1.46×10−08 0.17, 3.39, 9.35×10−09 0.16, 11.0, 3.13×10−09

1.75×103 0.30, 4.69, 8.23×10−09 0.61, 5.25, 1.47×10−08 0.17, 3.20, 9.33×10−09 0.16, 11.2, 3.17×10−09

1.80×103 0.30, 4.69, 8.27×10−09 0.61, 5.41, 1.47×10−08 0.17, 3.44, 9.31×10−09 0.17, 11.4, 3.21×10−09

1.85×103 0.30, 4.69, 8.29×10−09 0.61, 5.49, 1.48×10−08 0.17, 3.62, 9.24×10−09 0.17, 11.3, 3.25×10−09

1.90×103 0.30, 4.69, 8.31×10−09 0.61, 5.66, 1.48×10−08 0.17, 3.71, 9.22×10−09 0.17, 11.2, 3.31×10−09

1.95×103 0.30, 4.69, 8.33×10−09 0.62, 5.75, 1.49×10−08 0.17, 3.81, 9.20×10−09 0.17, 11.4, 3.35×10−09

2.00×103 0.30, 4.68, 8.37×10−09 0.62, 5.85, 1.49×10−08 0.17, 3.94, 9.19×10−09 0.17, 11.3, 3.38×10−09

Table B.1: Effective collision strengths Υ12, uncertainty %∆ and
excitation rate coefficients qij for Ne+ and Ne2+ calculated by the
DARC approach with n = 2 target expansion.
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Appendix C

Hubble Space Telescope proposal for Abell 30

C.1 Justification

Background, goals and significance of this proposal

Low temperature photoionized plasmas have a number of currently unexplained mysteries,

such as the discrepancies between electron temperatures as derived from Optical Recom-

bination Lines (ORL) and those from Collisionally Excited Lines (CEL) [118, 126]. The

Born Again planetary nebulae (Abell 30, Abell 58, Abell 78, and V4334 Sgr) are particu-

larly important objects for study. In this proposal we are requesting STIS/MAMA spectral

observations at 1550 Å of one of the knots of plasma in Abell 30, with the aim of confirming

a new low temperature recombination mechanism that has been recently proposed [123].

If confirmed, this would be the first observational evidence of this new mechanism. This

would have a large potential impact on the modeling and understanding of low temperature

photo-ionized plasmas.

Born Again planetary nebulae (and Abell 30 in particular) are also of interest in their

own regard and would benefit from high resolution UV spectral measurements. They have

hydrogen-deficient knots of plasma which were ejected by a late thermal pulse and are em-

bedded in a fast stellar wind [119]. Thus, there is a large H-rich outer nebula which surrounds

irregularly shaped H-deficient structures closer to the star. The behavior of the H-deficient

knots of plasma are key indicators of the dynamic processes in the nebula. They are sensitive

to both the stellar wind and the background nebula, leading to complex velocity structures

[125]. C IV resonance lines are used for many spectral diagnostics of Abell 30. However, if

the proposed below threshold spectral lines exist, they would be blended with the resonance

lines in lower resolution spectra, leading to an underestimation of the flux in the resonance
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Figure C.1: Images of Abell 30, figure taken from Guerrero et al. [13]. The left hand figure
shows an Hα image and center figure shows an O III image. Both of these were taken from
ground based observations. The right hand image shows an O III image with taken using
HST WFPC2 and the F502N filter.

lines. The extra recombination would also not be reflected in line ratio diagnostics for carbon

ionic abundance. Thus, the proposed observations can also aid in the understanding of these

low density Planetary Nebulae. Recently X-ray observations have also been used to study

Abell 30 [13]. Figure 1 shows images of Abell 30; the knot of plasma that we wish to observe

with STIS is circled in the right hand side figure.

Low temperature recombination of electrons in plasmas can proceed via radiative (RR)

or dielectronic recombination (DR). The process of DR proceeds via capture of a free elec-

tron into a doubly excited state and results in spectral features known as satellite lines, due

to their proximity to nearby resonance lines. Robicheaux et al. (2010) showed that in very

low temperature conditions, it should be possible for the electrons to recombine via ‘below

threshold resonances’. This has the effect of enhancing the recombination at low tempera-

tures and could be the resolution to long standing problems in current low temperature DR

databases [120, 124]. It is important to stress that this mechanism is currently ignored in

all modeling of low temperature photo-ionized plasmas. One of the reasons for this is that
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Figure C.2: Synthetic spectrum of the knot in Abell 30, with the spectral resolution of STIS,
assuming an electron temperature of 9,200K.

there is as yet no experimental evidence of this new recombination mechanism. However,

this mechanism should produce satellite lines which could be observed.

After a search through possible candidates, we have identified C IV as one of the best

cases for observing such satellite line features. Fig. C.2 shows the predicted emission from

knot #3 of Abell 30 for Te=9,200 K . Note that the satellite lines are at 1553 Å, while the

two resonance lines are at 1548 Å and 1550 Å, so should be easily resolvable with STIS

using the G140M grating. The plasma conditions required for the below threshold satellite

lines of C IV to be strong are an electron temperature less than 11,400 K and a significant

C3+ abundance. The knots in Abell 30 show evidence of both of these conditions [121]. We

have evaluated the expected wavelength positions of these satellite lines based upon NIST

energies, and have evaluated a synthetic spectrum based upon recently calculated below
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threshold dielectronic capture rate coefficients [122], see Fig. C.2. Thus, Abell 30 is the

ideal candidate to provide evidence of this new recombination mechanism, but requires high

resolution UV measurements close to 1550 Å.

A number of discrepancies reported by Harrington and Feibelman [121] could be ex-

plained by the presence of this new recombination mechanism. They showed that the electron

temperature derived from C IV λ 1549 / C III λ 4650 lines in knot 3 was 10,600K, Similarly

the Te derived from the C III λ 1909 / C II λ 4267 lines was 7,800 K. However, these were in

marked contrast from the temperatures derived from Ne IV lines (which gave Te=18,300 K),

or from O III lines (which gave Te = 16,400 K). They speculate that “one approach would

be to postulate the existence of some as yet undiscovered process which augments the carbon

recombination lines”

They also point out that the line intensity of CII λ 1909 is uncommonly weak compared

with the C IV λ 1549 Å line. They look for a mechanism to reduce the intensity of the

λ 1909 Å line, but cannot find a good candidate. A different possibility is that the 1549

Å line is enhanced through the presence of satellite lines that could not be resolved in the

IUE spectrum used by Harrington and Feibelman [121].

The effect of this new recombination mechanism would be strongest on C IV, and would

result in extra radiative cooling in the carbon rich parts of the nebula. This has the potential

to explain the temperature discrepancies between the C, N and O diagnostics.

Thus, this proposal will address two main objectives:

• Search for spectroscopic evidence for a new recombination mechanism that could affect

many low temperature plasmas, and as a result have a large impact on our understand-

ing and modeling of these plasmas.

• Assist in a better understanding of the features in Abell 30, resolving some existing

discrepancies.

140



C.2 Description of the Observation

We are requesting an observation of a region of the planetary nebula Abell 30, coor-

dinates RA 08:46:53.29 DEC +17:52:53.5. The feature in question (referred to as knot #3

in Harrington and Feibelman [121]) is approximately 3 arsec × 3 arcsec. The feature is

approximately 6.6 arsec from the central star, see Fig. 1. In our positioning of the detector,

we have allowed for the proper motion of the knot since the WFPC2 observation was made,

with this motion being quantified recently [119].

We are requesting a STIS FUV-MAMA observation of the object, using the G140M

grating (1550 Å) and the 52
′′ × 0.2

′′
slit. The spectral feature that we are interested in is

expected to be at 1553 Å, resolvable from the C IV resonance lines at 1548 and 1550 Å. We

are requesting 5 orbits to gather the spectral data.

We estimate the flux and S/N ratio for the observation using the measured C IV flux in

knot 3 reported by Harrington and Feibelman [121]. They gave a C IV flux of 1.2 × 10−12

ergs/cm2/s, and the WFPC2 observations of Abell 30 in O III [Prop.ID 5404] showed that

the knot is 3
′′ × 3

′′
, giving an expected flux of 1.33 × 10−13erg/cm2/s/arcsec2. Our spectral

feature is at 1553 Å, thus we convert from ergs to photon counts to get a count rate of 0.0103

ph/cm2/s/arcsec2.

Applying this to the HST mirror (57000 cm2), gives a photon count on mirror of 591

counts/s. One HST orbit is 3200 s, so we expect the count rate to be 1.89 × 106 counts/orbit.

Throughput of the STIS instrument is 0.5%, resulting in 9.45 × 103 photons/orbit detected

in the C IV resonance lines. The detector has ( 3
0.025

) × ( 0.2
0.025

)=960 pixels that would view

the knot, thus we expect about 10 counts/pixel on each orbit from the main resonance lines.

The below threshold satellite lines that we are looking for are about a factor of 5 times

smaller than the resonance lines, so would produce about 2 counts/pixel on each orbit (total

counts of 1890 counts/orbit).

The Dark count for STIS would be (1 × 10−14 couts/s/pixel) × 3200 s × 960 pix-

els=307.2 counts/orbit. The spectrum also has a possible recombination continuum at this
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wavelenth. However, Harrington et al. (1984) attribute almost all of their continuum emis-

sion to starlight on their detector. If this is true, then we would have negligible continuum

contribution in the STIS observations, as the star would not be in the slit. This would lead

to a S/N ratio for the below threshold lines of 6. If we assume that all of the continuum

radiation observed by Harrington et al. would contribute to our signal, we get a S/N ratio

of 2 (ETC ID: STIS.sp.801988).

C.3 Special Requests

To ensure that the observation includes the knot of interest, we are requesting an Orient

of 90 degrees. The motion of the knots has been measured by Feng et al (2011), and was

found to be 0.1” in twenty years for the inner knots and 1” in twenty years for the outer

knots. This Orient value results in about 60 days/year where the observations could be

scheduled.

We do not expect the nearby star in Abell 30 to be producing a dangerous flux on the

detector as it does appear in the viewing apperture. The closest distance from the slit to

the star would be 1.4 arcsecs. The flux from the star also falls below the safety threshold

for STIS. An ETC calculations (ID:STIS.sp.802129) show that the counts per second on

the detector if the star were visible would be 723 counts/s on the entire detector for each

complete orbit. For the ETC calculation we used the esimated stellar flux from Harrington

and Feibelman [121].
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