

A MODEL DRIVEN ENGINEERING FRAMEWORK FOR SIMULATION

EXPERIMENT MANAGEMENT

by

Sritika Chakladar

A thesis submitted to the Graduate Faculty of

Auburn University

in partial fulfillment of the

requirements for the Degree of

Master of Science

Auburn, Alabama

August 6, 2016

Keywords: Model-Driven Engineering, Domain Specific Language, Design of

Experiments, Hypotheses, Model Discovery

Copyright 2016 by Sritika Chakladar

Approved by

Levent Yilmaz, Chair, Professor Computer Science and Software Engineering

James Cross, Professor Computer Science and Software Engineering

 Saad Biaz, Professor Computer Science and Software Engineering

ii

ABSTRACT

Simulation experiments are a convenient and useful means to gain insight into

the operation of scientific models. They are conducted to address specific goals

and evaluate specific questions about the model. These simulation models are

complex, with many possible factors and outcomes. Also, a model that

represents certain key characteristics or behaviors of the system can be

analyzed to show the eventual real effects of alternative conditions and courses

of action. The strength of simulation is that it enables precisely this “what if”

hypotheses analysis, under certain assumptions. Efficient experiment designs

are necessary for understanding the impact of these factors and their interactions

on the model outcomes that establish the dependencies among goals,

hypotheses and experiments with the factors of the model. In our study, we

propose a model discovery process by devising questions about the model,

designing experiments to validate these hypotheses, executing them, drawing

inferences and refining it in an iterative manner to support temporal evidences

about the model that have a degree of acceptability of its own. Using the

cognitive theory of coherence, we establish links between hypotheses and

temporal evidences. We use the principles of model driven engineering and

domain specific languages to streamline the discovery process through scientific

experimentation.

iii

ACKNOWLEDGEMENT

I sincerely thank my advisor Dr. Levent Yilmaz for all his support,

encouragement, patience, and guidance. I would also like to express my

gratitude to my advisory committee members Dr. Saad Biaz and Dr. James H.

Cross for their participation in my advisory committee and their guidance during

my graduate studies. I would like to thank my friend Kyle Doud for his support

and help. Finally, I would like to thank my entire family for supporting and

believing in me throughout my academic tenure at Auburn.

iv

TABLE OF CONTENTS

ABSTRACT ...ii

ACKNOWLEDGEMENT ... iii

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER 1 ... 1

INTRODUCTION .. 1

CHAPTER 2 ... 6

BACKGROUND .. 6

2.1 Domain Specific Language ... 6

2.2 Experiment Management Systems ... 8

2.3 Model Driven Engineering ... 10

2.4 Reproducibility .. 10

CHAPTER 3 ... 12

SOLUTION ... 12

3.1 Components of the Goal-Hypothesis-Experiment Framework 12

3.1.1 The Conceptual Level: Goals ... 13

3.1.2 The Operational Level: Hypotheses ... 14

3.1.3 The Tactical Level: Experiment .. 16

3.2 A Computational Strategy to support the GHE Framework 17

v

3.2.1 Domain ... 18

3.2.2 Metamodel .. 19

3.2.3 DSLs for Experiment and Hypothesis Modeling 19

3.2.4 Generative Domain Architecture .. 21

3.2.5 Reference Implementation ... 21

CHAPTER 4 ... 22

EVALUATION ... 22

4.1 Metamodel .. 23

4.2 BNF ... 23

4.3 DSL ... 24

4.4 Reference Implementation .. 26

CHAPTER 5 ... 29

CASE STUDY ... 29

5.1 A Domain-Specific Language for the GHE Framework 29

5.1.1 Model .. 30

5.1.2 Goal .. 31

5.1.3 Hypotheses .. 31

5.1.4 Experiment ... 34

5.1.5 Performance Measure .. 36

5.2 Code Generation ... 36

5.3 Application .. 37

CHAPTER 6 ... 43

CONCLUSION .. 43

vi

6.1 Summary ... 43

6.2 Further Topics ... 44

6.2.1 Coherence/Model Discovery .. 44

6.2.2 Mechanistic Hypotheses ... 44

6.2.3 Domain Specific Experiments ... 45

BIBLIOGRAPHY ... 46

APPENDIX ... 51

vii

LIST OF TABLES

Table 1 .. 13

Table 2 .. 15

viii

LIST OF FIGURES

Figure 1 ... 18

Figure 2 ... 23

Figure 3 ... 28

Figure 4 ... 38

Figure 5 ... 38

Figure 6 ... 39

Figure 7 ... 40

Figure 8 ... 40

Figure 9 ... 41

Figure 10 ... 41

Figure 11 ... 42

1

CHAPTER 1

INTRODUCTION

Computer simulation is a convenient and useful means to gain insight into the

operation of scientific models. These models are often very complex, with

thousands of factors and many sources of uncertainty. Efficient experiment

designs are necessary for understanding the impact of these factors and their

interactions on the model outcomes [Sanchez et al. 2014]. Usually, such

simulation models are created manually. Close observation helps to get a better

understanding of the real-world processes of interest. This is a time-consuming

activity, which is likely to be error-prone and lacks credibility, as it is based on

human perception of the process. The level of correctness of the simulators, that

execute the simulation models, is a significant aspect for evaluating the quality of

the simulation. This serves as a motivation to define models at an appropriate

abstraction level and accuracy, and to design experiments with substantial

information to drive the execution. In order to increase scientific credibility and

reproducibility of scientific experiments, it is important to have a complete record

of the experimental conditions [Joppa et al. 2013; Merali 2010].

The standards for providing accurate and sufficient record of simulation

experiment, keeps evolving [Köhn and Le Novère 2008; Rahmandad and

Sterman 2012]. The use of experiment specific languages to effectively address

the experiment specification and design, has been widely recognized. Focusing

2

on the concepts of a particular domain for the development of these modeling

languages increases efficiency. Domain specific languages (DSL) are easily read

and learned by experts in the field [Consel et al. 2005]. DSLs are useful to

domain experts who lack proficiency in programming. They also serve as an

efficient tool for reusability [Krueger 1992]. These can be used to record

experiment definition and reuse them for reproducibility. In this process, the

knowledge integrated in the language is also put to reuse.

Designing and managing experiments in an effective manner is critical to

increasing reliability of the simulations [Ewald and Uhrmacher 2014]. However,

the under-utilization of the Design of Experiments (DOE) methodology remains a

challenge in reducing this credibility gap in simulation studies [Teran-Somohano

et al. 2014]. To address these issues, simulation experiment description

languages [Ewald and Uhrmacher 2014] and model-driven engineering principles

[Teran-Somohano et al. 2015] have proven to be effective in managing

simulation experiments.

Scientific experiments are defined with a set of goals and have a purpose to

answer certain questions. Its strength lies in analyzing the real effects of

alternative conditions and courses of action using “what if” hypotheses (under

certain assumptions), on a model representing the fundamental behavior of the

system. The use of simulation models for scientific experiments and model

discovery has been well established [Teran-somohano et al. 2015; Klösgen

1994; Sliwoski et al. 2014]. In order to produce improved experimentation

3

practices, we need to establish an appropriate connection among experiments,

its objectives and questions related to the simulation model.

In this study, we characterize these dependencies among goals, hypotheses,

and experiments within the context of computational discovery. The principles of

Model-Driven Engineering (MDE) are used to aid the transformation process and

to facilitate the search within the operational level of hypotheses and the tactical

level of experiments. Our aim is to demonstrate that the use of MDE strategies

coupled with cognitive computing can extend the scope of human intellect and

partner with scientists on a broad range of tasks in scientific discovery. These

tasks include identifying scenarios, formulating questions, inferring mechanisms,

defining or generating experiments designed to answer questions, validating

them, drawing conclusions, and evaluating results within an incremental and

iterative discovery cycle [Bunge 1998]. This iterative process calls for

comprehensive models of hypotheses, experiments, and simulations, along with

traceability among them to support the computational discovery process [Sliwoski

et al. 2014; Džeroski et al. 2007; Darden 2001].

In our study, we establish a strategy that promotes flexibility in model

development while taking into consideration the characteristics of the scientific

discovery process using a MDE architecture. This iterative discovery process

requires evaluation and revision of numerous assumptions and constraints until

sufficient degree of similarity against empirical evidence or targeted behavior is

attained. This requires cognitive tools to support the co-evolution of both the

4

hypothesis and the experiment spaces as active-learning takes place through

experimentation.

Our goal is to develop an open-source MDE-enhanced application to design,

execute, and analyze simulation experiments. A DSL is introduced towards

designing simulation experiments. Additionally, the experiment model is used to

test and invalidate the evidences of the simulation model. In this process the user

can devise questions to test temporal evidences about the model. Temporal

properties that describe the results of the observation have a degree of

acceptability of its own. This is followed by the implementation of the experiment

specifications in the simulation run.

The advantage of this approach is that it can be used to remove redundancy in a

system by identifying and eliminating duplicate models. Experimentation

becomes a seamless part of simulation development, by explicit representation

of experiment models and hypotheses for the experiments. The approach also

facilitates synthesis and execution of experiments along with validation and

comparison of the experimentation models. The standardization of the entire

process improves reproducibility and reliability of simulation results.

The rest of the thesis is structured as follows. In chapter 2, we present an

overview of the existing work on specification of simulation experiments as well

as a foundational background for the work. Chapter 3 presents the conceptual

framework of the Goal-Hypothesis-Experiment system and sketch the elements

of a DSL to illustrate the computational strategy. The experimental results are

presented in chapter 4. We present the case study to illustrate the application in

5

chapter 5. Chapter 6 concludes the thesis and provides an outline for the

potential avenues of future research.

6

CHAPTER 2

BACKGROUND

The Goal-Hypothesis-Experiment framework is developed by employing MDE

principles and statistical design of experiments. A simulation model acts as an

experimental focus for validating a hypothesis and the replication of the results

marks its reliability. But replicability of a simulation model has been an important

challenge [Crooks et al. 2008] to support reproducible and replicable scientific

knowledge [Teran-Somohano et al. 2014]. In recent years, the efforts toward

supporting simulation reproducibility have inspired the use of domain specific

languages as the means to express experiment specifications [Schutzel et al.

2015]. Experiment Management Systems standardize simulation experiment

specification. MDE concepts centers on the specification of the experiment

modeling language as well as its transformation to implementation space.

2.1 Domain Specific Language

According to Van Deursen et al. [2000], the DSL “offers, through appropriate

notations and abstractions, expressive power focused on, and usually restricted

to, a particular problem domain”. The use of DSL for simulation model description

has increased over the years. DSLs allow specification of individual sub-tasks,

such as observation, configuration, analysis and evaluation of experimental

results. Furthermore, they can be used in a wider scope, to describe the

7

experiment’s goals. The development and research of DSL for experiment

specification identifies all of these possible applications.

Even though this idea is relatively new, modeling languages are well established

in the field of simulation. Recent work shows that this has been an active area for

study and development. However, it is worth mentioning that to a great degree,

few efforts in the development of these languages have aimed to cover these

goals comprehensively. Some interesting general approaches in standardization

of specifications for experiments are discussed below.

The Minimum Information About a Simulation Experiment (MIASE) standard

[Köhn and Le Novère 2008] states that in order to promote reproducibility, the

executions should contain: (1) the composition of simulation model and its

configuration parameters, (2) the conditions for simulation run, (3) the collection

method employed during the experiment run, and (4) the result of the run.

Rahmandad and Sterman [2012] established distinct simulation experiment

recording requirements. The Minimum Model Reporting Requirements (MMRR)

standards identify, the default values of the model with their units of

measurement and details of the computations in the model, as the minimum

requirements specification for simulation experiments. The Preferred Model

Reporting Requirements (PMRR) contains record of the data and its source for

the model’s equations and algorithmic rules, the definition of all model variables,

and source code for the model’s computational implementation. The Minimum

Simulation Reporting Requirements (MSRR) includes recording of the simulation

hardware and software platforms, the simulation algorithms used, pre-processing

8

used to generate input data for the experiment, all the levels applied to factors in

the simulation model, the number of iterations of the experiment, and all the post-

processing performed on the output data. The Preferred Simulation Reporting

Requirements (PSRR) includes information that facilitates the assessment of the

results beyond the minimum requirements like random number generation

algorithm, confidence levels for estimation etc. Although, these provide powerful

reporting standards for experiments, they fail to deal with the issue of complex

and abundant data. The use of specification language addresses this challenge

effectively.

2.2 Experiment Management Systems

The need for a flexible and powerful Experiment Management System is

accelerated by exponential increase in the volume of data, combined with a

proliferation of heterogeneous data formats and autonomous systems

[Jakobovits et al. 2000]. Experiment management systems specify standards for

conducting and managing simulation experiments.

Simulation Experiment Description Markup Language (SED-ML) is an XML-

based format which uses MIASE standards for encoding, exchanging and

documenting simulation experiments [Waltemath, Adams, Bergmann et al. 2011].

It is used for exchanging experiment descriptions, aiding validation and reuse of

simulation experiments. It enables reproducibility of experimentation results with

models in the domain of biomedical sciences.

Simulation Experiment Specification via a Scala Layer (SESSL) is a general

purpose language defined as an internally defined DSL [Ewald and Uhrmacher

9

2014]. SESSL allows model specification, definition of replications, the stop

condition for simulation run, the objective, and range and optimization method. It

is mostly used for specifying and generating rather than describing experiments

The SESSL definition is more compact and easier to understand. However, the

user should be acquainted with the syntax and semantics of Scala to specify an

experiment in SESSL.

Simulation Automation Framework for Experiments (SAFE) [Perrone et al. 2012]

standardizes experiment specification to record experiment scenarios and enable

reproducibility. Nimrod integrated experiment design tools for efficient execution

of the models [Peachey et al. 2008]. The ns-3 Experiment Description Language

(NEDL) is an externally defined DSL [Hallagan et al. 2010] and developed to

meet the demand for a language capable of explicitly capturing experiment

scenarios. The NEDL file specifies a design of experiment space in terms of

factors, levels, and constraints that aim to exclude design points that are beyond

the interest of the user. It is based on XML and consists of a collection of

“elements,” which may be either compulsory or optional in the experiment

description. But, it requires special-purpose tools for parsing and document

validation which hampers its practical applications. SAFE Language for

Experiment Description (SLED) is another externally defined DSL, which

overcomes the shortcomings of NEDL. It is based on JavaScript Object Notation

(JSON) format which makes it much easier to parse.

10

2.3 Model Driven Engineering

The MDE principles center on the development of the experiment specification

language as well as the transformation rules to map them to implementation

space. It addresses the issue of platform dependencies and allows definition of

domain concepts effectively. The MDE approach suggests development of a

metamodel of the system under study and its transformation into an executable

model. Metamodels are abstraction of the model properties. These are used as

abstract syntax for the experiment modeling languages. The MDE methodology

[Gaševic et al. 2009] provides a framework and strategy to move from the

platform-independent experiment domain space to the technical space involving

platform-specific executable simulation experiment scripts.

2.4 Reproducibility

Reproducibility refers to the closeness between the results of independent

simulations performed with the same methods on identical models but with a

different experimental setup [Waltemath, Adams, Beard, et al. 2011]. It is

important to keep record of all the experimental conditions in order to reproduce

the results of the simulation. This increases the reliability of the simulation

experiment. But due to large volume of data and its complexity, it becomes

difficult to set reporting standards for reproducibility.

All these approaches fail to explore the relationship between experimental

factors, and creating syntax for experiment space search. Existing experiment

specification languages do not allow flexibility and language extensibility to

address the changing needs of applications. Furthermore, there has not been

11

sufficient work to explore MDE principles in relation to improving the experiment

management system.

12

CHAPTER 3

SOLUTION

For our study, we place simulation experiments in the context of the scientific

discovery process. First, we introduce the Goal-Hypothesis-Experiment (GHE)

framework, which helps in structuring the process in terms of conceptual,

operational, and tactical levels. This is followed by drawing an outline of a

conceptual model-driven engineering architecture to support the framework.

3.1 Components of the Goal-Hypothesis-Experiment Framework

The process starts with the background domain knowledge and involves the

following general steps to address a specific goal: (1) Formulate well-structured

specific questions. (2) Specify hypotheses from the questions that are developed

from the domain ontology to answer the questions. (3) Generate the logical

consequences of assumptions in the form of expected behavior. (4) Design

computer simulations to test the underlying assumptions (e.g., mechanistic

hypotheses) about the phenomena. (5) Validate the simulation for relevance and

reliability. (6) Design experiments, execute them, and interpret results. (7)

Evaluate the correctness of assumptions, and if necessary revise the model,

experiments, or the expected behavior. These steps suggest three major

activities, taking place at different levels of abstraction.

13

3.1.1 The Conceptual Level: Goals

The scientific activity begins with carefully considering the goal of the experiment.

The goal specifies the targets to be achieved or phenomenon to be discovered

through experimentation. It is specified in relation to a particular context and

sheds light on the model under study, the focus of the experiment and the frame

of reference or viewpoint. In computational discovery one can aim to

characterize, understand, evaluate, predict, or improve the object of the study.

The enumeration of the goals in terms of these aspects aids the experimentation

and evaluation process.

Aspects Example

Object of study Immune system influence on hepatic

cytochrome P450 regulation

Purpose Explain or characterize

Focus the reason for changes in downstream

drug metabolism and hepatotoxicity

Viewpoint based on the response of hepatic

cytochrome P450- regulating

mechanisms

Context when health and/or therapeutic

interventions change

Table 1: Goal specification in terms of different aspects

14

3.1.2 The Operational Level: Hypotheses

After specifying the problem, the solution space is searched to address it. A set

of questions are formulated in order to determine the completion of the goal of

the study. Hypotheses are generated based on these questions and defined in

terms of models of the phenomena or system of interest. The solution consists of

assumptions on the model based on earlier observation, experiments or

experiences. A hypothesis is a suggested explanation for a phenomenon that

can be tested and is based on the experimenter’s knowledge and belief of the

experiment which are upgraded into laws, resulting in a system of laws, called

theories.

With respect to model-driven generation and simulation-based knowledge, we

identified the following types of hypotheses:

 Phenomenological hypotheses generally represent a resultant behavior or

output of the system triggered by the change in input conditions of the

model. It addresses the impact of input factors (independent variables or

control variables) on the output (dependent variables) of the model, under

a set of constraints. Such hypotheses allow comparing system

configurations, performing sensitivity analysis, and conducting Analysis of

Variance (ANOVA) to study system performance.

 Mechanistic hypotheses define the mechanisms that generate specific

behaviors in the model. Experiments are designed to provide evidence to

either support or refute the explanation of the behavioral mechanism

defined in the hypothesis.

15

Type Hypothesis

Phenomenological In response to lipopolysaccharide,

Kupffer cells down regulate hepatic

P450 levels via inflamatory cytokines,

thus leading to a reduction in metabolic

capacity.

Mechanistic Inflammatory induced P450 down-

regulation is mediated by

proinflammatory

cytokines that specifically regulate

different yet overlapping subsets of

P450s in both humans and rats [Aitken

and Morgan 2007]. Many of these

cytokines are derived from Kupffer

cells. While some cytokines down-

regulate P450 in primary hepatocytes

cultures, others are dependent upon

the presence of Kupffer cells [Sunman

et al. 2004]. Kupffer cells can be

activated by bacterial endotoxin

(lipopolysachharide, LPS). An LPS

stimulus causes Kupffer cells to release

proinflammatory cytokines, triggering

16

P450 down-regulation and the

subsequent decrease in drug

clearance.

Table 2: Types of hypothesis

3.1.3 The Tactical Level: Experiment

This level drives the design, execution, and adaptation of an experiment to

answer the questions and verify, validate, or refute the assumptions and

hypotheses. Outcomes of experiments feedback into the process to facilitate

revision of goals, models, questions, and experiments. An experiment may have

a set of responses, factors, and a range of its values called factor levels. These

are specified by the experimenter and are updated, if needed, to enable

adaptation.

The GHE framework serves as a tool for specifying and interpreting operational

questions and tactical experiments for conceptual research goals. It allows the

definition of the goal of study. A set of hypotheses (formulated in the form of

questions and assumptions) are devised to address the goal of the experiment,

which refine the issue underlying the problem into its major components. These

questions are translated to experiment designs to validate or invalidate them.

Experiments are designed and executed in a way to discriminate between rival

hypotheses. Within the current state of the art, simulation tools and techniques

are not structured to support seamless navigation and traceability between these

levels. To mitigate this issue, we propose a computational strategy that supports

17

the GHE framework by leveraging principles and practices of model-driven

engineering and domain-specific languages.

3.2 A Computational Strategy to support the GHE Framework

MDE has emerged as a practical and unified methodology to alleviate the

complexity of platforms and express domain concepts effectively [Schmidt 2006].

The use of platform independent domain models along with explicit

transformation models facilitates deployment of simulations across a variety of

platforms. While the utility of MDE principles in simulation development is now

well recognized, its benefits for experimentation have not yet received sufficient

attention.

A conceptual framework that integrates MDE, agent models, and product-line

engineering to manage the overall lifecycle of a simulation experiment is

presented in Figure 1. In the component architecture, the experiment and

simulation model spaces are tightly coupled to orchestrate the co-evolution of

simulation and experiment spaces as learning takes place. Next, we review these

components to open a discussion about their potential contributions to the

process of computational discovery.

18

Figure 1: Experiment Management Framework

3.2.1 Domain

Domain refers to a bounded field of interest or knowledge. [Völter et al. 2013]

The domain for our study is experiment management. It is useful to develop an

ontology by identifying all the relevant concepts of the domain of interest. The

ontology represents knowledge about the elements that form an experiment. It

encompasses the structural elements of an experiment, including the

experiment’s goals through all the iterations and questions about the model. It

also consists of the inputs to the experiment model and the desired outputs.

19

3.2.2 Metamodel

Metamodel is an abstract representation of a system’s structure, function or

behavior. In the context of Model Driven Software Development (MDSD), it is

necessary to be clear about the structure of a domain (i.e., its ontology), so that

formalization of this structure or its relevant part is possible. [Völter et al. 2013]

The metamodel is a basic UML representation of all the relevant concepts of the

domain. It comprises of the abstract syntax and the static semantics of a

language.

3.2.3 DSLs for Experiment and Hypothesis Modeling

For generating experiment specifications from research questions and

hypotheses, the DOE methodology in simulation experiment design [Kleijnen et

al. 2005; Sanchez et al. 2014]could provide a structured basis for automation.

The ontology defines the vocabulary and grammar. i.e., the abstract syntax for

building the experiment domain model. To support the instantiation of the

experiment specifications conforming to the DOE metamodel, a suitable DSL is

needed.

DSLs are widely used in simulation studies as tools to describe the model. In

recent years, the efforts toward supporting simulation reproducibility have

inspired the use of DSLs as the means to express model specifications [Darden

2001]. Even though this idea is relatively new, modeling languages are well

established in the field of simulation. Recent work shows that this has been an

active area for study and development.

20

The research and development of DSL for the GHE framework, identifies many

possible applications. DSLs help to state mechanisms and define parameters

along with their properties, in the model. It also helps in identifying sub-tasks in

the experimentation procedure, such as observation, configuration, analysis and

evaluation of experimental results. Furthermore, they can be used in a wider

scope, to describe formally the hypotheses about the model and list evidences

derived from the real life experiments.

The experiment model defined by the DSL needs to be configured with the

aspects specified in an experiment feature model. An experiment design can

have various mandatory and optional features. Features are prominent attributes

that facilitate modeling variants of experiments to support different objectives. For

instance, the type of the experiment design (e.g., factorial, fractional factorial)

and the analysis method (e.g., ANOVA vs. MANOVA) are potential features that

collectively define plausible configurations of an experiment.

Advantages of using a DSL:

 To increase accessibility to perform complex computation in the

background.

 To increase conciseness and expressiveness in the experiment

specification and design generation.

 To increase flexibility and language extensibility in order to

accommodate the required changes in the application.

21

3.2.4 Generative Domain Architecture

An experiment design agent evaluates questions of interest to generate an

experiment design that is effective in discriminating rival hypotheses and efficient

in covering the parameter space of the system. A trade-off analysis between the

number of design points and the number of replicates per design point are

carried out in relation to the type of experiment being conducted.

This generative architecture is also used to derive templates for generating the

transition of mechanisms from the hypothesis space to the implementation

space. A text-model transformation takes place that generate code templates to

replicate the phenomenon represented by the hypotheses.

3.2.5 Reference Implementation

Reference implementation represents the concrete realization of the architectural

aspects. It contains all implementation details of the semantics of the

architecture-centric UML profile constructs on the source code level [Völter et al.

2013]. The templates for the generative architecture are derived from this

implementation. In our study, the reference implementation consists of the

realization of the concepts of the experiment ontology as well as use-cases that

demonstrated the application and the transition from model to implementation

space.

22

CHAPTER 4

EVALUATION

The principles of model-driven software development are used throughout the

development process. We started by developing a metamodel for the language

in the form of a UML class model in order to facilitate understanding of the

domain. We used this metamodel as a roadmap to develop a context-free

grammar in Back-Naur Form (BNF). Next, we transformed this BNF grammar

into an Xtext grammar and evaluated its readability in a reference model. The

grammatical constructs defined in the Xtext grammar were used to identify

classes and structures for a reference implementation, where a use-case for the

application was developed and tested. Through development of the reference

implementation, we were able to identify sections of code that were candidates

for text-to-model transformation. These transformations bridge the gap between

reference model, reference implementation, and platform.

The process was an effective tool for streamlining the development of a DSL-

driven application. By focusing on the way the language will be used before the

implementation, we were able to create a highly expressive language while

providing support for platform versatility.

23

4.1 Metamodel

The metamodel encompasses all the major components of the GHE framework.

It includes the goal of the experiment, model definition, hypothesis and an

experiment. The metamodel for our study is shown below.

Figure 2: Metamodel representing major components of the GHE framework

4.2 BNF

The first step to define this new language was to describe the syntax in an easily

readable/writable format. The BNF notation is used to define the syntactic

grammar. In standard BNF, a grammar is defined by a set of terminal and non-

terminal symbols. We defined the grammar in the standard form, without use of

24

extended BNF symbols like *, +, -, etc., because those aspects, while making

development easier, make the grammar harder to read. Since the purpose of the

BNF development was to discover how the language should look, the most easily

interpreted form seemed like the best choice.

The BNF grammar definition during the early stages of development is listed

below:

<Model> ::= ExperimentOntology

<ExperimentOntology> ::= ModelSection | Goals | Hypothesis |

Experiment

<ModelSection> ::= model <id> {<Mechanism> <EventDescriptor>

<Factor>}

<Mechanism> ::= mechanism <id> = <Reaction> <GuardCondition> ->

<Reaction>

The full definition of the BNF grammar can be found in the Appendix.

The next step in development was to implement the BNF grammar using a

language engineering framework. We proceed by implementing the grammar in

Xtext.

4.3 DSL

The DSL for simulation experiment model development is developed using the

Xtext DSL development environment on Eclipse Kepler, by translating the

experiment ontology metamodel. The DSL is also used to define a set of

25

hypotheses for experiment model validation and verification. The simulation

experiment specifications are then used for the description of a simulation

experiment. After the generation of the experiment model design with all the

elements imposed by the experiment ontology, it is transformed and stored in a

properties file. This file is then used to run the MASON model and collect the

results of the simulation run.

The strategy is to develop a grammar to help the user specify experimentation

parameters and to verify the conditions to trigger them and determine a desired

plan of action. The result of the action is then translated to the user after

performing a set of validation and verification.

The transition from BNF to an Xtext implementation is straightforward. Each

non-terminal in BNF is treated as a grammar rule, and terminals are either IDs or

new keywords. As a simple example, the following grammar rules in Xtext

correspond to the BNF’s transition shown in the previous section:

ExperimentOntology :

 ModelSection |Goals | Hypothesis | Experiment

;

ModelSection:

 'model' (modName = ID)

 '{'

 (mechanisms += Mechanism)*

 ((events += EventDescriptor)?)*

 (parameters += Factor)*

26

 '}'

;

Mechanism:

 'mechanism' (mechanismName = ID) ' = ' (LHS = Reaction)

(condition = GuardCondition)? ' -> ' (RHS = Reaction)

;

The full listing of the Xtext grammar definition can be found in the Appendix.

4.4 Reference Implementation

The reference implementation for this model is a java program that serves as an

implementation of the rules from the grammar as java classes. As we developed

the program, we discovered that some aspects of the metamodel that were used

in the grammar were simply textual devices for readability and served no purpose

for computation. These aspects were subsumed as identifiers in text recognition

algorithms for the relevant classes. Some of the use-cases are described below.

 Usecase1.java

This class initializes the pieces of an experiment specification and executes the

experiment with the specified parameters.

 ToDeliveryProperties.java

In this class we construct the delivery.properties file from the factors and their

values specified by the user. This file is later used for the MASON simulation run.

 ToISHCProperties.java

In this class we construct the ishc.properties file from the factors and their values

specified by the user. This file is later used for the MASON simulation run.

27

 Query.java

In the Query class, a string that represents a temporal property is passed to the

constructor and is set as a global variable. The constructor calls a method,

detectEvents(), which in turn calls detectPattern() and detectPostfix(). The

objective of these functions is to discover which Linear Temporal Logic (LTL)

formula matches the sentence from the grammar and to find the conditions that

will be inserted into the formula. This class subsumed most of the temporal

specification keywords as well as Conditions.

 ConvertToLTL.java

The purpose of this class is to take the events identified from the Query class

and replace them in a matching LTL formula that can be found in a patterns.xml

file. An LTL formula in the XML file would be in a form like: [](Q & !R -> (!P W

R)), where each of the letters (aside from W, which represents “weak until” in

temporal logic), represents a placeholder for a condition from the DSL. The

difficulty in textually substituting these letters for their condition identifiers was

due to the fact that the conditions could have the same capital letters in them as

the placeholders in the formula, causing unexpected results.

 ExperimentExecuter.java

This class runs the model and gives the output.

The class diagram generated from the reference implementation, shown in figure

2, resembles the metamodel generated in the first step of our development

process.

28

Figure 3: Class diagram generated from the reference implementation

29

CHAPTER 5

CASE STUDY

5.1 A Domain-Specific Language for the GHE Framework

Our Model-Driven approach for experiment management is driven by explicit

specification of goals, hypotheses, and experiments. We studied and modeled

different types of hypotheses which allow the user to ask questions about the

model or the system under study. In the context of DOE, hypotheses can be

defined as mechanistic hypotheses, relational hypotheses, and constraints. For

illustration purposes, the evolving DSL is used to define experiments for an

agent-based In Silico Hepatocyte Culture (ISHC) model [Petersen et al. 2014],

which we replicated to illustrate the proposed concepts in this study.

In order to test the validity of our framework and the practical utility of the

approach, we used our project to demonstrate the ISHC model. The DSL we

developed is abstract and free of any technical terms. The DSL covers all

relevant concepts of the domain with language elements. All schematically-

implementable code fragments of the reference implementation are covered by

constructs of the DSL. The reference ISHC model is an instance of the DSL. The

DSL for simulation experiment model is developed by mapping the experiment

ontology metamodel.

30

5.1.1 Model

Model consists of a specification about the model’s name, the mechanisms, the

events and the factor parameters. Mechanisms consist of the processes which is

assumed to take place in the simulation system. Events define the path for

tracing the functions that evaluate the events that form a part of the evidences.

Parameters are the inputs to the model and their properties, which have an

impact in determining the response/output of the simulation run.

model ISHC{

mechanism M1 = inflammatoryAgent + Kupffercells

[inflammatoryAgent > inflammatorythreshold] -> Cytokines

mechanism M2 = inflammatoryAgent + Kupffercells [noOfCytokine

> cytokineThreshold] -> Cytokines

event inflammation = 'void

ishc.model.KupfferCell.handleInflammation()'

parameter LPS = Solute with properties {tag: LPS, bindable: true,

bolusRatio:1.0 , pExitMedia: 0.1 , pExitCell: 1.0 , bindProb : 0.25 ,

bindCycles : 1 , numProps : 8 , membraneCrossing: true, bileRatio :

0.5 , core2Rim : 0.50 , metProbStart : 0.3 , metProbFinish : 0.3 ,

metabolites: 'LPS-Metabolite_A', inflammatory : true , pDegrade :

0.0}

parameter forwardBias = DISCRETE with values {0.5}

}

31

5.1.2 Goal

Goals define what the purpose of the experiment is. It also gives an idea about

the specific field of concern and the context under which the study is performed.

goal

{

object of study : 'Immune system influence on hepatic cytochrome

P450 regulation'

 purpose : 'Explain / characterize'

 focus : 'the reason for changes in downstream drug metabolism

and hepatotoxicity'

view point : 'based on the response of hepatic cytochrome P450-

regulating mechanisms'

 context : 'when health and/or therapeutic interventions change.'

}

5.1.3 Hypotheses

Hypotheses consists of relational hypotheses, mechanistic hypotheses and

expected regularities. Mechanistic hypotheses deal with the effect of changes in

the mechanism of the model. Relational hypotheses deal with the impact of

changes in inputs or outputs. In order to represent behavioral changes in the

model, we focus on mechanistic hypotheses for the study. Expected regularities

are the temporal properties that are to be verified in the experimental run. It is

stated in terms of factors and their properties.

32

The coherence model describes the explanatory coherence relation [Thagard

1989] between the hypothesis and the evidence. The evidence can have an

activation weight which indicates its reliability. This is used to establish the

weightage of the link between the evidence and hypothesis in the coherence

network. We identified the explanatory coherence concept that would be relevant

in our framework and would help in discovering the model mechanisms. To

summarize how we will be implementing explanatory coherence theory we listed

the key terms from the principles, which was used in the experiment definition.

 EXPLAIN

We use this if a coherence exists which explains or supports evidence(s) and

hypothesis(es). In this case excitatory links are established between the

evidences and hypotheses and an activation weight is assigned to each link. As

the number of such links between the hypotheses and evidences increase, the

weight on the links in the network decreases.

 ANALOGOUS

We use this if hypothesis and evidence are analogous to each other. Analogy,

produces excitatory links between the similar evidences and hypotheses and an

activation weight is assigned to each link.

 DATA PRIORITY

The principle of data priority is used to set up explanation-independent excitatory

links to each data unit from a special evidence unit that always has an activation

of 1. The data units can have activation level specified depending upon its

33

reliability index. When the network runs, activation spreads from the special

evidence unit to data units and then to the units representing explanatory

hypotheses.

 CONTRADICT

We use this if there is incoherence between the evidence(s) and hypothesis(es).

In this case inhibitory links are established between the evidences and

hypotheses and a negative weight is assigned to each link. As the number of

such links between the hypotheses and evidences increase, the weight on the

links in the network changes.

The conditions are grouped under these categories which are used in designing

a query based DSL to allow the user to define the hypothesis which can be used

to develop a simulation model.

hypotheses

{

 mechanistic hypotheses

 {

 H1 : M1 occurs before M2

 }

 evidence

 {

E1: inflammation occurs after inflammatoryAgent >

34

inflammatoryAgentThreshold

 activation weight : 0.5

 E2: inflammation is absent after cytokine <

cytokineThreshold

 activation weight : 0.5

 }

 coherence model

 {

 EXPLAIN (H1)(E1)

 DATA (Experiment1)(E1 E2)

 }

}

5.1.4 Experiment

The ontology for the experiment section encompasses the structural

elements of an experiment which includes the experiment’s design and

performance measure. Based on the model’s parameters and their levels,

the hypotheses and goal of the experiment, a design is created that is used

in subsequent steps of the experiment life-cycle.

The experimental design is defined by the dependent variables, the control

variables, the independent variables and their levels, constraints and values

which in turn are mappings of the variables provided by the user. Based on

this design, one can define what is known as a design matrix, which

35

specifies the actual experimental runs, that is, the combination of factor

levels.

experiment Experiment1

{

 design

 {

 designType FULLFACTORIAL

 variables

 {

 independent variables

 {

LPS are at levels : LOW where LOW is in the

range 1.0 to 1.0

TOL are at levels : LOW where LOW is in the

range 1.0 to 1.0

DZ are at levels : LOW where LOW is in the

range 1.0 to 1.0

}

 dependent variables

 {

 cytokines : type SIMPLE

 }

 }

36

 }

 }

5.1.5 Performance Measure

An experiment consists of performance measure parameters which defines the

criteria for successful experimental run. Basing on this measure we can decide

whether additional iterations are required for satisfying the experiment’s

objective. It is defined in terms of the expected value of the response or output of

the experiment and its standard deviation.

performance measure is

 {

 cytokines= 500 +-10

 }

In the above example, the expected value of the cytokines after successful

experiment execution is 500 with a standard deviation of 10.

5.2 Code Generation

We used the Xtend code generation process for mapping the DSL to platform. A

set of templates were derived from the reference implementation and used for

the transformation step.

class DOEGenerator implements IGenerator {

 override void doGenerate(Resource resource, IFileSystemAccess

fsa) {

37

fsa.generateFile('ishc.properties',

toISHCProperties(resource.allContents

 .filter(typeof(ModelSection)).head))

fsa.generateFile('delivery.properties',

toDeliveryProperties(resource.allContents

.filter(typeof(ModelSection)).head ,

resource.allContents.filter(typeof(Experiment)).head))

fsa.generateFile("KupfferCell.java",

toKupfferCell(resource.allContents

 .filter(typeof(ModelSection)).head))

fsa.generateFile("Hepatocyte.java",

toHepatocyte(resource.allContents

 .filter(typeof(ModelSection)).head)) }

5.3 Application

We developed an application to demonstrate our framework and its

functionalities. The experiment specification defined using the DSL and the

generated artifacts were used to run the ISHC simulation model in MASON to get

the results. The figures below illustrate various functions supported by the

application.

38

Figure 4: The File menu and its submenus

Figure 5: The file explorer opens on clicking the Open menu

39

Figure 6: Upon selecting the Xtext file from the specified location, the file opens

up and appears in the text area

We can also edit the file with the required changes and save it in a desired

location.

40

Figure 7: Run the MASON model using the specification of the Xtext file

Figure 8: Data Menu displays the result of the run

41

Figure 9: Result of the run is displayed

Figure 10: Graph menu shows various graphs that show the relationship between

the factors of the simulation model

42

 Figure 11: Graph showing the relationship between the cytokines and LPS levels

43

CHAPTER 6

CONCLUSION

6.1 Summary

The GHE framework has the ability to streamline execution of simulation models

and verify their correctness properties through temporal attributes. By

conforming to Model-Driven development practices, specifically the relation of

metamodel to grammar to implementation, the project was developed in a way

that makes it extensible for future work. Since the realm of experimentation and

discovery is one which is constantly evolving, extensibility is a valuable attribute.

By giving simulationists access to a diverse set of tools, such as experiment

design strategy, factors of interest, acceptable output ranges, and temporal

properties, the process of experimentation can be simplified, while hiding the

details of the simulation implementation. To the user of this system, the rewards

of investing in this framework are apparent in development time, convenience,

and efficiency. The system does have its limitations, however. For example,

since LTL can only evaluate a linear chain of events, the term “verification” of a

model is somewhat misleading. For a model to be formally verified, all the states

of a system should be checked for inconsistent behavior. This framework only

provides support for behaviors that have been observed in models, but not those

behaviors which may exist but have not been observed.

44

6.2 Further Topics

6.2.1 Coherence/Model Discovery

There is a great synergy to be taken advantage of between mechanistic

hypotheses and temporal properties. We can take observations made from in

vitro or in vivo labs as evidences to our simulation model in the form of temporal

specifications. We can use these evidences in a coherence model with

mechanism changes in the program, specified by a mechanistic hypothesis to

see if an evidence is invalidated with the mechanism change or supports one or

more evidence. One use of this coherence model is to develop an intelligent

agent that can take knowledge gleaned from the model and develop new

mechanism changes that support the most evidences, in an effort to develop

autonomous computing. Alternatively, or in the short term, this coherence model

will be useful for model discovery for a simulationist. If, for example, a

simulationist introduces a new evidence to the system which is not supported by

the current mechanisms, connections in the coherence model can help direct the

user to a needed mechanism update that would not otherwise be known.

6.2.2 Mechanistic Hypotheses

Our future efforts will be directed towards generalizing this rule based definition

of the hypotheses to capture various behavior of the model. Also our efforts will

be directed towards identifying reaction scenarios for mechanistic hypotheses

and associating the rules to a particular transformation process to facilitate

computation. Transformation of these mechanism into computational code for

45

simulation is a task in progress. Generalizing the transformation process to

accommodate various scenarios is also a future goal.

The challenge lies in identifying different scenarios of mechanistic hypotheses

and generalizing the DSL to allow their definition. The transformation of these

hypotheses to mechanisms or expected behavior in the simulation model for the

purpose of computation, is a challenge. These transformations might require

additional information or assumptions on the model that must be provided by the

user.

6.2.3 Domain Specific Experiments

Also our efforts will be directed towards the developing domain specific

experiments to verify the hypotheses. The challenge lies in mapping of the

hypotheses to experimental designs. It is difficult to predict a general method to

generate the designs from a hypothesis. There can be many different designs

that can be used. Generation and selection of the design requires additional

information that must be provided by the user and that is not necessarily related

to experimental design.

46

BIBLIOGRAPHY

1. Alison E. Aitken and Edward T. Morgan. 2007. Gene-specific effects of

inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA

levels in human hepatocytes.

2. Mario Bunge. 1998. Philosophy of science: from problem to theory,

Transaction Publishers.

3. Charles Consel, Fabien Latry, Laurent Réveillere, and Pierre Cointe.

2005. A generative programming approach to developing DSL compilers.

In International Conference on Generative Programming and Component

Engineering. 29–46.

4. Andrew Crooks, Christian Castle, and Michael Batty. 2008. Key

challenges in agent-based modelling for geo-spatial simulation,

5. Lindley Darden. 2001. Discovering mechanisms: A computational

philosophy of science perspective. In International Conference on

Discovery Science. 3–15.

6. Arie Van Deursen, Paul Klint, and Joost Visser. 2000. Domain-Specific

Languages: An Annotated Bibliography. Sigplan Not. 35, 6 (2000), 26–36.

7. Sašo Džeroski, Pat Langley, and Ljupčo Todorovski. 2007. Computational

discovery of scientific knowledge,

8. Roland Ewald and Adelinde M. Uhrmacher. 2014. SESSL: A domain-

47

specific language for simulation experiments. ACM Trans. Model. Comput.

Simul. 24, 2 (2014), 11.

9. Dragan Gaševic, Dragan Djuric, and Vladan Devedžic. 2009. Model driven

engineering. In Model driven engineering and ontology development.

Springer, 125–155.

10. a Hallagan, B. Ward, and L.F. Perrone. 2010. An experiment automation

framework for ns-3. Proc. 3rd Int. ICST Conf. Simul. Tools Tech. 3 (2010),

38. DOI:http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8821

11. R. Jakobovits, S.G. Soderland, R.K. Taira, and J.F. Brinkley. 2000.

Requirements of a Web-based experiment management system. Proc.

AMIA Symp. (2000), 374–8.

12. Lucas N. Joppa et al. 2013. Troubling trends in scientific software use.

Science (80-.). 340, 6134 (2013), 814–815.

13. Jack P.C. Kleijnen, Susan M. Sanchez, Thomas W. Lucas, and Thomas

M. Cioppa. 2005. State-of-the-Art Review: A User?s Guide to the Brave

New World of Designing Simulation Experiments. INFORMS J. Comput.

17, 3 (2005), 263–289. DOI:http://dx.doi.org/10.1287/ijoc.1050.0136

14. Willi Klösgen. 1994. Exploration of Simulation Experiments by Discovery.

AAAI Tech. Report, WS-04-03 (1994).

15. Dagmar Köhn and Nicolas Le Novère. 2008. SED-ML - An XML format for

the implementation of the MIASE guidelines. Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)

5307 LNBI (2008), 176–190. DOI:http://dx.doi.org/10.1007/978-3-540-

48

88562-7_15

16. Charles W. Krueger. 1992. Software reuse. ACM Comput. Surv. 24, 2

(1992), 131–183.

17. Zeeya Merali. 2010. Error: Why scientific programming does not compute.

Nature 467, 7317 (2010), 775–777. DOI:http://dx.doi.org/10.1038/467775a

18. T.C. Peachey, N.T. Diamond, D.A. Abramson, W. Sudholt, A. Michailova,

and S. Amirriazi. 2008. Fractional factorial design for parameter sweep

experiments using Nimrod / E. 16 (2008), 217–230.

DOI:http://dx.doi.org/10.3233/SPR-2008-0250

19. L. Felipe Perrone, Christopher S. Main, and Bryan C. Ward. 2012. Safe:

simulation automation framework for experiments. In Proceedings of the

Winter Simulation Conference. 249.

20. Brenden K. Petersen, Glen E.P. Ropella, and C. Anthony Hunt. 2014.

Toward modular biological models: defining analog modules based on

referent physiological mechanisms. BMC Syst. Biol. 8 (2014), 95.

DOI:http://dx.doi.org/10.1186/s12918-014-0095-1

21. Hazhir Rahmandad and John D. Sterman. 2012. Reporting guidelines for

simulation-based research in social sciences. Syst. Dyn. Rev. 28, 4

(2012), 396–411.

22. Susan M. Sanchez, Paul J. Sánchez, and Hong Wan. 2014. Simulation

experiments: better insights by design. Proc. 2014 Summer Simul.

Multiconference (2014), 53.

23. Douglas C. Schmidt. 2006. Model-Driven Engineering. IEEE Comput. 39,

49

2 (2006), 25–31. DOI:http://dx.doi.org/10.1109/MC.2006.58

24. Johannes Schutzel, Danhua Peng, Adelinde M. Uhrmacher, and L. Felipe

Perrone. 2015. Perspectives on languages for specifying simulation

experiments. In Proceedings - Winter Simulation Conference.

DOI:http://dx.doi.org/10.1109/WSC.2014.7020125

25. Gregory Sliwoski, Sandeepkumar Kothiwale, Jens Meiler, and Edward W.

Lowe. 2014. Computational methods in drug discovery. Pharmacol. Rev.

66, 1 (2014), 334–95. DOI:http://dx.doi.org/10.1124/pr.112.007336

26. Jeffrey A. Sunman, Roy L. Hawke, Edward L. LeCluyse, and Angela D.M.

Kashuba. 2004. Kupffer cell-mediated IL-2 suppression of CYP3A activity

in human hepatocytes. Drug Metab. Dispos. 32, 3 (2004), 359–363.

27. Alejandro Teran-Somohano, Orçun Dayıbaş, Levent Yilmaz, and Alice

Smith. 2014. Toward a model-driven engineering framework for

reproducible simulation experiment lifecycle management. In Proceedings

of the 2014 Winter Simulation Conference. 2726–2737.

28. Alejandro Teran-Somohano, Alice E. Smith, Joseph Ledet, Levent Yilmaz,

and Halit O˘guzt¨uz¨un. 2015. A model-driven engineering approach to

simulation experiment design and execution. In Proceedings of the 2015

Winter Simulation Conference. 2632–2643.

29. Paul Thagard. 1989. Explanatory coherence. Behav. Brain Sci. 12, 03

(1989), 435–467.

30. Markus Völter, Thomas Stahl, Jorn Bettin, Arno Haase, and Simon

Helsen. 2013. Model-driven software development: technology,

50

engineering, management, John Wiley & Sons.

31. Dagmar Waltemath, Richard Adams, Daniel A. Beard, et al. 2011.

Minimum information about a simulation experiment (MIASE). PLoS

Comput. Biol. 7, 4 (2011), 5–8.

DOI:http://dx.doi.org/10.1371/journal.pcbi.1001122

32. Dagmar Waltemath, Richard Adams, Frank T. Bergmann, et al. 2011.

Reproducible computational biology experiments with SED-ML--the

Simulation Experiment Description Markup Language. BMC Syst. Biol. 5,

1 (2011), 198. DOI:http://dx.doi.org/10.1186/1752-0509-5-198

51

APPENDIX

1. Metamodel

2. BNF grammar

<Model> ::= ExperimentOntology

<ExperimentOntology> ::= ModelSection | Goals | Hypothesis |

Experiment

<ModelSection> ::= model <id> {<Mechanism> <EventDescriptor>

<Factor>}

52

<Mechanism> ::= mechanism <id> = <Reaction> <GuardCondition> ->

<Reaction>

<Reaction> ::= <id> + <id>

<GuardCondition> ::= [<id> <LinkOperator> <id>]

<EventDescriptor> ::= event <id> = <STRING>

<Factor> ::= parameter <id> = <VariableType> <id> with values

{<Values>} properties {<properties>}

<Goals> ::= goal { object of study : <STRING> purpose : <STRING> focus

: <STRING> view point : <STRING> context : <STRING>}

<VariableType> ::= QUALITATIVE | QUANTITATIVE | CONTINUOUS |

DISCRETE | BINARY | NONBINARY

<Values> ::= <id> <XExpression> <rangeValue> <factorLevelValue>

<properties> ::= <id> : <Values>

<rangeValue> ::= INT <dot> <OptionalInt>

<factorLevelValue> ::= <rangeValue> | , <rangeValue>

<dot> ::= "." | ""

<OptionalInt> ::= INT | ""

<Hypotheses> ::= hypotheses { mechanistic

hypotheses{<MechHypotheses>} evidence{<Evidence>} coherence

model{<CoherenceLink>} relational hypotheses {<RelationalQuery>}}

<CoherenceLink> ::= <Coherence> (<id>)(<id>)

<MechHypotheses> ::= <id> : <TemporalPattern> <id>

53

<Evidence> ::= <id> : <TemporalPattern> activation weight :

<rangeValue>

<TemporalPattern> ::= <Sample> <Links> <Expression> <Operator>

<Links>

<Sample> ::= <Condition> | <Event>

<Condition> ::= <ComplexID> <LinkOperators> <Expression>

<rangeValue> <Condition>

<Event> ::= <Dispersed> | <Simultaneous>

<Dispersed> ::= <id> <Logical> <id> | <id>

<Operator> ::= <Temporal> | <Logical>

<Simultaneous> ::= [<id> <Logical> <id>] | [<id>]

<LinkOperators> ::= '+'|'-'|'*'|'/'|'%'|' = '|' == '|'&&'|'||'|'<'|'<='|'>'|'>='|'!'|'!='

<Expression> ::= true | false

<Links> ::= is | occurs | to | in

<Temporal> ::= precedes | between | eventually | always | before | after |

until | never | leads | absent | exists

<Logical> ::= and | or | not

<Coherence> ::= EXPLAIN | ANALOGOUS | DATA | CONTRADICT

<RelationalQuery> ::= <Query1> | <Query2> | <Query3> | <Query4> |

<Query5>

<Query1> ::= if <id> <id> is <rangeValue> <Action> then <id> is

<Response>

54

<Action> ::= added | removed | in the range <rangeValue> to

<rangeValue>

<Response> ::= <rangeValue> | in the range <rangeValue> to

<rangeValue>

<Query2> ::= compare <Operand> and <Operand>

<Operand> ::= <Function> | <id>

<Function> ::= MIN | MAX | EXP | INVERSE | SIN | COS | TAN |

FACTORIAL | LOG

<Query3> ::= if <QueryCondition> then <QueryResponse> where

<Levels> for <id> <id> <id> is in the range <rangeValue> to <rangeValue>

<QueryCondition ::= <id> <id> is <Level>

<Level> ::= at level <Levels> <rangeValue> <OptionalAnd> <Level> | ""

<QueryResponse> ::= <id> is <Level>

<Changes> ::= CHANGED | INCREASED | DECREASED | CONSTANT

<Levels> ::= HIGH | MEDIUM | LOW

<Experiment> ::= experiment <id> { design <Design> performance

measure is <PerformanceMeasure}

<Design> ::= {designType <DesignType> constraints <XExpression>

<Iteration> variables <Variables>}

<DesignType> ::= FULLFACTORIAL | FRACTIONALFACTORIAL |

OTHERS | ""

<Variables> ::= {<IndependentVariables> <ControlVariables>

<DependentVariables>}

55

<IndependentVariables> ::= independent variables {<FactorLevels>}

<ControlVariables> ::= control variables {<id> : type <VariableType> with

values {<Values>}}

<DependentVariables> ::= dependent variables {<Response>}

<FactorLevels> ::= <id> are at levesl : <rangeValue> <Levels> where

<Levels> is in the range <rangeValue> to <rangeValue>

<Response> ::= <id> : type <ResponseType>

<ResponseType ::= SIMPLE | COMPOSITE

<Iteration> ::= number of iterations : INT

<PerformanceMeasure> ::= {<id> = <rangeValue> +- <rangeValue>}

<OptionalAnd> ::= and | ""

<OptionalTo> ::= to | ""

<STRING> ::= "..."

3. Xtext Grammar

grammar org.xtext.Ontology.DOE with org.eclipse.xtext.xbase.Xbase

generate dOE "http://www.xtext.org/Ontology/DOE"

Model:

 (elements+=ExperimentOntology)*;

ExperimentOntology :

 ModelSection |Goals | Hypothesis | Experiment

;

56

ModelSection:

 'model' (modName = ID)

 '{'

 (mechanisms += Mechanism)*

 ((events += EventDescriptor)?)*

 (parameters += Factor)*

 '}'

;

Mechanism:

 'mechanism' (mechanismName = ID) ' = ' (LHS = Reaction) (condition =

GuardCondition)? ' -> ' (RHS = Reaction)

;

Reaction:

 (agent1 = ID) (' + ')? (agent = ID)?

;

GuardCondition:

 gd = '[' (condition1= ID)? (link = LinkOperators)? (condition2 = ID)? ']'

;

LinkOperators:

 '+'|'-'|'*'|'/'|'%'|' = '|' == '|'&&'|'||'|'<'|'<='|'>'|'>='|'!'|'!='

;

EventDescriptor:

 'event' (eventName = ID) ' = ' (event = STRING)

57

;

Factor:

'parameter' (factorName = ID) ' = ' (factorType = VariableType)?

(factorType1 = ID)?

 'with' ('values' '{'(factorValue = Values)'}')?

 ('properties' '{'((factorProperties += properties)*)'}')?

;

enum VariableType :

QUALITATIVE | QUANTITATIVE | CONTINOUS | DISCRETE | BINARY |

NONBINARY

;

properties:

 pName= ID ':' pVal = Values ','?

;

Values:

 (fVal = ID)?

 (function = STRING)?

 (value = rangeValue)?

 (fvalue = factorLevelValue)?

;

terminal rangeValue : INT ('.')? (INT)? ;

terminal factorLevelValue : rangeValue (',' rangeValue)* ;

Goals:

58

 'goal' '{'

 'object' 'of' 'study' ':' (objOfStudy = STRING)

 'purpose' ':' (purpose = STRING)

 'focus' ':' (focus = STRING)

 'view point' ':' (viewPoint = STRING)

 'context' ':' (context = STRING)

 '}'

;

Hypothesis :

 'hypotheses'

 '{'

 ('mechanistic' 'hypotheses' '{'

 (mechHypothesis += MechHypothesis)*

 '}')?

 ('evidence' '{'

 (evidences += Evidence)*

 '}')?

 ('coherence' 'model' '{'

 (coherenceLinks += CoherenceLink)*

 '}')?

 ('relational' 'hypotheses' '{'

 (relHypothesis += RelationalQuery)*

 '}')?

59

 '}'

;

CoherenceLink:

 (coherence = Coherence) '('(hyp += ID)* ')' '('((evi += ID))*')'

;

MechHypothesis:

(mName = ID) ':'(assoMech += TemporalPattern)*

(mechanisticHypothesis = ID)?

;

Evidence:

 (eName = ID) ':' (query += TemporalPattern)*

 'activation' 'weight' ':' (objOfStudy = rangeValue)

;

TemporalPattern:

Condition ((l2 += Links)?)* ((exp += Expression)?)* ((op1 += Temporal |

op2 += Logical)?)* (l3 = Links)?

;

Condition:

condition = Event (lo= LinkOperators)? (e=Event)? (exp1=Expression)?

(v=rangeValue)?

;

Event:

 Dispersed | Simultaneous

60

;

Simultaneous:

 '['

 sim1 = Re (log += Logical sim2 += Re)*

 ']'

;

Dispersed:

 (disp += Re)+

;

Re:

 ID ('(' (ID ID)? ')')?

;

enum Expression:

 TRUE | FALSE

;

enum Links:

 is | occurs | to | in

;

enum Temporal:

precedes | between | eventually | always | before | after | until | never |

leads | absent | exists

;

61

enum Logical:

 and | or | not

;

enum Coherence:

 EXPLAIN | ANALOGOUS | DATA | CONTRADICT

;

RelationalQuery:

 Query1 | Query2 | Query3

;

Query1:

 'if' (factor= ID)? (control=ID)? 'is' (x=rangeValue)?

('added')? ('removed')? ('in the range' start1=rangeValue 'to'

end1=rangeValue)?

'then' (response= ID) 'is' (y=rangeValue)? ('in the range'

start2=rangeValue 'to' end2=rangeValue)?

 ;

Query2:

 'compare' (function1=Function)? (response1=ID)? (factor1=ID)? 'and'

 (function2=Function)? (response2=ID)? (factor2=ID)?

;

enum Function:

 MIN | MAX | EXP | INVERSE | SIN | COS | TAN | FACTORIAL | LOG

62

;

Query3:

'if' ((factor1=ID)? (control1=ID)? 'is' ('at' 'level' (Level2=Levels))?

(x2=rangeValue)? ('and')?)*

'then' ((response1=ID) 'is' ('at' 'level' (Level4=Levels))? (x4=rangeValue)?

('and')?)*

'where' ((level=Levels) 'for' (factor=ID)? (control=ID)? (response=ID)?

'is' 'in the range' (start1=rangeValue) 'to' (end1=rangeValue))*

;

enum Changes:

 CHANGED | INCREASED | DECREASED | CONSTANT

;

enum Levels:

 HIGH | MEDIUM | LOW

;

Experiment :

 'experiment' (expName = ID)'{'

 'design' (expDesign = Design)

 'performance measure' 'is' (perfMeasure = PerformanceMeasure)

 '}'

;

63

Design :

 '{'

 ('designType' designType = DesignType)?

 (('constraints' constraint = ID)?)*

 (iteration = Iteration)?

 ('variables' variables = Variables)

 '}'

;

enum DesignType:

 FULLFACTORIAL | FRACTIONALFACTORIAL | OTHERS

;

 Variables:

 '{'

 (independentVariables = IndependentVariables)

 (controlVariables = ControlVariables)?

 (dependentVariables = DependentVariables)

 '}'

;

IndependentVariables :

 'independent' 'variables' '{'

 (variables += FactorLevels)*

 '}'

;

64

ControlVariables:

'control' 'variables' '{' ((controlName = ID) ':' 'type' (controlType =

VariableType) 'with' 'values' '{'(controlValue = Values))* '}'

;

DependentVariables:

 'dependent' 'variables' '{'

 (responseName = Response)*

 ;

FactorLevels:

 ((facName = ID) 'are' 'at' 'levels' ':' (l= factorLevelValue)? ((l1 = Levels)

 'where' (l2 = Levels)

 'is' 'in the range' (start1=rangeValue) 'to' (end1=rangeValue))?)

;

Response:

 (responseName = ID) ':' 'type' (responseType = ResponseType)

 '}'

;

enum ResponseType :

 SIMPLE | COMPOSITE

;

Iteration:

 ('number' 'of' 'iterations' ':' iterations = INT)

;

65

PerformanceMeasure :

 '{'

(expectedResponse = ID) '=' (er= rangeValue)(' +-')(std=

rangeValue)

 '}'

;

4. Xtend Generator

/*

 * generated by Xtext

 */

package org.xtext.Ontology.generator

import org.eclipse.emf.ecore.resource.Resource

import org.eclipse.xtext.generator.IGenerator

import org.eclipse.xtext.generator.IFileSystemAccess

import org.xtext.Ontology.dOE.Experiment

import org.xtext.Ontology.dOE.Factor

import org.xtext.Ontology.dOE.Model

import org.xtext.Ontology.dOE.ModelSection

import org.xtext.Ontology.dOE.properties

import org.xtext.Ontology.dOE.Evidence

import org.xtext.Ontology.dOE.Mechanism

66

/**

 * Generates code from your model files on save.

 *

 * See

https://www.eclipse.org/Xtext/documentation/303_runtime_concepts.html#

code-generation

 */

class DOEGenerator implements IGenerator {

 override void doGenerate(Resource resource, IFileSystemAccess

fsa) {

fsa.generateFile('ishc.properties',

toISHCProperties(resource.allContents

 .filter(typeof(ModelSection)).head))

 fsa.generateFile('delivery.properties',

toDeliveryProperties(resource.allContents

.filter(typeof(ModelSection)).head ,

resource.allContents.filter(typeof(Experiment)).head))

fsa.generateFile("KupfferCell.java",

toKupfferCell(resource.allContents

 .filter(typeof(ModelSection)).head))

 fsa.generateFile("Hepatocyte.java",

67

toHepatocyte(resource.allContents

 .filter(typeof(ModelSection)).head))

 }

 def toISHCProperties(ModelSection m) '''

 # model parameters

 stepsPerCycle = 1

 # component parameters

 «FOR factor : m.parameters »

 «IF(factor != null)»

 «IF(factor.factorValue != null)»

 «IF(factor.factorValue.function != null)»

 «factor.factorName» =

«factor.factorValue.function»

«ELSEIF(factor.factorValue.FVal

!=null)»

«factor.factorName» =

«factor.factorValue.FVal»

«ELSEIF(factor.factorValue.fvalue !=

null)»

«factor.factorName» =

«factor.factorValue.fvalue»

«ELSEIF(factor.factorValue.value !=

null)»

68

«factor.factorName» =

«factor.factorValue.value»

 «ENDIF»

 «ENDIF»

 «ENDIF»

«ENDFOR»

 '''

 def toDeliveryProperties(ModelSection m, Experiment e)

 '''

 deliveryType = bolus

 useContinualDoseFunction = false

 repeatDose = true

 infusionStopTime = 120.0

 numDoses = 1

 time.0 = 1.0

 time.1 = 10.0

 dose.0.alpha = 2000

 dose.0.beta = -1

 dose.0.gamma = -2

 dose.0.numEntries = 7

 «var count1 = -1»

69

 «FOR factor : m.parameters »

 «IF(factor != null)»

 #«count1++»

 «IF(factor.factorProperties != null)»

 «var count2 = 0»

 «FOR p : factor.factorProperties»

 «IF(!(p.PName.equals("membraneCrossing")

|| p.PName.equals("bileRatio") ||

p.PName.equals("core2Rim") ||

p.PName.equals("metProbStart") ||

p.PName.equals("metProbFinish") ||

p.PName.equals("metabolites") ||

p.PName.equals("inflammatory") ||

p.PName.equals("pDegrade") ||

p.PName.equals("transportOut")))»

 «IF(p.PVal.FVal != null)»

dose.0.solute.«count1».«p.PName» =

«p.PVal.FVal»

«ELSEIF(p.PVal.function !=

null)»

dose.0.solute.«count1».«p.PName» =

«p.PVal.function»

70

 «ELSEIF(p.PVal.value != null)»

dose.0.solute.«count1».«p.PName» =

«p.PVal.value»

 «ELSEIF(p.PVal.fvalue != null)»

dose.0.solute.«count1».«p.PName» =

«p.PVal.fvalue»

 «ENDIF»

«ELSEIF(p.PName.equals("bileRatio") ||

p.PName.equals("core2Rim") ||

p.PName.equals("metProbStart") ||

p.PName.equals("metProbFinish") ||

p.PName.equals("inflammatory") ||

p.PName.equals("pDegrade"))»

dose.0.solute.«count1».property.«count

2».key = «p.PName»

 dose.0.solute.«count1».property.«count

2».type = real

 «IF(p.PVal.FVal != null)»

 dose.0.solute.«count1».property.«count

2++».val = «p.PVal.FVal»

«ELSEIF(p.PVal.function !=

null)»

71

dose.0.solute.«count1».property.«count

2++».val = «p.PVal.function»

 «ELSEIF(p.PVal.value != null)»

 dose.0.solute.«count1».property.«count

2++».val = «p.PVal.value»

 «ELSEIF(p.PVal.fvalue != null)»

 dose.0.solute.«count1».property.«count

2++».val = «p.PVal.fvalue»

 «ENDIF»

«ELSEIF(p.PName.equals("membraneCrossing") ||

p.PName.equals("transportOut"))»

dose.0.solute.«count1».property.«count2».key =

«p.PName»

dose.0.solute.«count1».property.«count2».type =

boolean

 «IF(p.PVal.FVal != null)»

dose.0.solute.«count1».property.«count2++».val =

«p.PVal.FVal»

 «ELSEIF(p.PVal.function != null)»

dose.0.solute.«count1».property.«count2++».val =

«p.PVal.function»

 «ELSEIF(p.PVal.value != null)»

72

dose.0.solute.«count1».property.«count2++».val =

«p.PVal.value»

 «ELSEIF(p.PVal.fvalue != null)»

dose.0.solute.«count1».property.«count2++».val =

«p.PVal.fvalue»

 «ENDIF»

 «ELSEIF(p.PName.equals("metabolites"))»

 «IF(e.expDesign.variables.independentVariables.

variables != null)»

 «FOR factorLevels :

e.expDesign.variables.independentVariables.v

ariables»

 «IF(factorLevels.facName.equals

((p.PVal.function.split('-').get(0))))»

 «IF(factorLevels.l != null)»

dose.0.solute.«count1».property.«count2».key

= metabolites

dose.0.solute.«count1».property.«count2».type

= map

73

dose.0.solute.«count1».property.«count2++».v

al = «p.PVal.function.split('-').get(1)» =>

<«factorLevels.l»>

«ELSEIF(factorLevels.start1 != null &&

factorLevels.end1 != null)»

dose.0.solute.«count1».property.«count2».key

= metabolites

dose.0.solute.«count1».property.«count2».type

= map

dose.0.solute.«count1».property.«count2++».val

= «p.PVal.function.split('-').get(1)» =>

<«factorLevels.start1»,«factorLevels.end1»>

 «ENDIF»

 «ENDIF»

 «ENDFOR»

 «ENDIF»

 «ENDIF»

 «ENDFOR»

 «ENDIF»

 «ENDIF»

«ENDFOR»

 '''

74

 def toKupfferCell(ModelSection m)'''

 package ishc.model;

 import java.lang.Math;

 import sim.field.grid.*;

 import sim.util.Bag;

 public class KupfferCell extends Cell {

private static final org.slf4j.Logger log =

org.slf4j.LoggerFactory.getLogger(ISHC.class);

public KupfferCell(Culture p, ec.util.MersenneTwisterFast

random, int x, int y) {

 super(p,random);

 setLoc(x,y);

 actionShuffler.clear();

 actionShuffler.add(new Runnable() { public void run() {

 handleInflammation(); } });

 actionShuffler.add(new Runnable() { public void run() {

 handleDegradation();}});

 }

 BolusEntry cytokineBolusEntry = null;

 public void handleInflammation()

 {

 int numInflammatoryStimuli = 0;

 int numCytokines = 0;

75

 for(Object o : solutes)

 {

 Solute s = (Solute) o;

 if(s.hasProperty("inflammatory") &&

((Boolean)s.getProperty("inflammatory")))

 {

 numInflammatoryStimuli++;

 }

 if(s.type.equals("Cytokine"))

 {

 numCytokines++;

 }

«FOR mech : m.mechanisms»

«IF(mech.LHS.agent != null &&

mech.LHS.agent1 != null)»

 «IF(mech.LHS.agent.equalsIgnoreCase(

"Kupffercells") ||

mech.LHS.agent.equalsIgnoreCase("Ku

pffercell"))»

 if(s.type.equals("«mech.LHS.agent1»"){

 «IF(mech.condition != null)»

 if("«mech.condition.condition1»"

76

«mech.condition.link»

"«mech.condition.condition2»")

 «ENDIF»

 «IF(mech.RHS.agent1 != null)»

«IF(mech.RHS.agent1.equalsIgnoreCase("Cyt

okines") ||

mech.RHS.agent1.equalsIgnoreCase("Cytokin

e"))»

numCytokines++;

«ELSEIF(mech.RHS.agent1.equalsIgnoreCase

("Inflammation") ||

mech.RHS.agent1.equalsIgnoreCase("Inflamm

atoryAgent"))»

 numInflammatoryStimuli++;

«ELSEIF(mech.RHS.agent1.equalsIgnoreCase

("No Inflammation")||

mech.RHS.agent1.equalsIgnoreCase("NoInfla

mmation"))»

 numInflammatoryStimuli--;

 «ENDIF»

 «ENDIF»

 «IF(mech.RHS.agent != null)»

77

«IF(mech.RHS.agent.equals("Cytokines") ||

mech.RHS.agent.equals("Cytokine"))»

 numCytokines++;

«ELSEIF(mech.RHS.agent.equalsIgnoreCase(

"Inflammation") ||

mech.RHS.agent.equalsIgnoreCase("Inflamma

toryAgent"))»

numInflammatoryStimuli++;

«ELSEIF(mech.RHS.agent.equalsIgnoreCase(

"No Inflammation")||

mech.RHS.agent.equalsIgnoreCase("NoInflam

mation"))»

numInflammatoryStimuli--;

 «ENDIF»

 «ENDIF»

 «ENDIF»

 «ENDIF»

 «ENDFOR»

 }

 }

 }

78

 if(numCytokines >= parent.cytokineThreshold)

 {

 return;

 }

 if(numInflammatoryStimuli >=

 parent.inflammatoryStimulusThreshold)

 {

 double probability = 1.0 - Math.exp(-

1*(numInflammatoryStimuli -

parent.inflammatoryStimulusThreshold) /

parent.exponentialFactor);

 double draw = rng.nextDouble();

 if(draw <= probability)

 addCytokine();

 }

 }

 public Solute addCytokine()

 {

 if(cytokineBolusEntry == null)

 {

 sim.util.Bag bolusEntries = ((BolusDose)

parent.model.delivery.doses.objs[0]).solution;

 for (int i = 0; i < bolusEntries.numObjs; i++) {

79

 BolusEntry be = (BolusEntry) bolusEntries.objs[i];

 if (be.tag.equals("Cytokine")) {

 cytokineBolusEntry = be;

 break;

 }

 }

 }

 //Create the Cytokine

 Solute cytokine = new Solute(cytokineBolusEntry);

 cytokine.setProperties(cytokineBolusEntry.props);

 //Add the Cytokine

 parent.solutes.add(cytokine);

 parent.cellSpace.setObjectLocation(cytokine,

myX, myY);

 solutes.add(cytokine);

 return cytokine;

 }

 }

 '''

 def toHepatocyte(ModelSection m) '''

 package ishc.model;

80

 import java.util.HashMap;

 import java.util.LinkedHashMap;

 import sim.util.Bag;

 import sim.util.Double2D;

 public class Hepatocyte extends Cell implements CellInfo,

EIInfo, ELInfo, MetabolismInfo {

 private static final org.slf4j.Logger log =

org.slf4j.LoggerFactory.getLogger(ISHC.class);

 HashMap<String, Double> metProbMap = new

LinkedHashMap<String,Double>();

 HashMap<String, HashMap<String,Double>>

productionMap = new

LinkedHashMap<String,HashMap<String,Double>>();

 int numEnzymesAtInit = -Integer.MAX_VALUE;

 public Hepatocyte(Culture p, ec.util.MersenneTwisterFast

random, int x, int y) {

 super(p, random);

 setLoc(x,y);

 if (parent.ei_rate > 0.0) {

 actionShuffler.add(new EIHandler((CellInfo) this,

(BindingInfo) this, (EIInfo) this, log));

 }

 if (parent.el_rate > 0.0) {

81

 actionShuffler.add(new ELHandler((CellInfo) this,

(BindingInfo) this, (ELInfo) this, log));

 }

 if (parent.useDDI) {

 actionShuffler.add(new DDIHandler((BindingInfo)

this, rng, log, parent.pReplace));

 }

 if (parent.drRate > 0) {

 actionShuffler.add(new Runnable() { public void run()

{ handleDownRegulation(); } });

 }

 }

 float ENZYME_INIT_FACTOR = 3.0f;

 public void init() {

 int min = StrictMath.round(parent.bindmin);

 int max = StrictMath.round(parent.bindmax);

 try {

 numEnzymesAtInit = rng.nextInt(max-min) + min;

 } catch (IllegalArgumentException e) {

 numEnzymesAtInit = min;

 }

 for (int bNdx=0 ; bNdx<numEnzymesAtInit; bNdx++)

 binders.add(new Enzyme());

82

 for (Object o :

((BolusDose)parent.model.delivery.doses.objs[0]).sol

ution) {

 BolusEntry be = (BolusEntry) o;

 if (be.bindable) {

 double mps = (Double)be.props.get("metProbStart");

 double mpf = (Double)be.props.get("metProbFinish");

 double mp = mps + (mpf-mps)*0.5;

 metProbMap.put(be.tag, mp);

HashMap<String,Double2D> mprodmap =

(HashMap<String,Double2D>)

be.props.get("metabolites");

HashMap<String,Double> metsMap = new

LinkedHashMap<>();

for (java.util.Map.Entry<String,Double2D> me :

mprodmap.entrySet()) {

 Double2D d2d = me.getValue();

 double prmin = d2d.x;

 double prmax = d2d.y;

 double prodRate = prmin + (prmax-prmin)*0.5;

 metsMap.put(me.getKey(), prodRate);

 }

83

 productionMap.put(be.tag,metsMap);

 }

 }

 if (!metProbMap.isEmpty()) {

 actionShuffler.add(new

MetabolismHandler((BindingInfo) this,

(MetabolismInfo) this, rng, log));

 }

 }

 public java.util.ArrayList<ishc.util.MyInt> elimQueue = null;

 int rate_increment = parent.drRate;

 public void handleDownRegulation()

 {

 boolean thereIsACytokine = false;

«FOR mech : m.mechanisms»

«IF(mech.LHS.agent != null && mech.LHS.agent1 !=

null)»

«IF(mech.LHS.agent1.equalsIgnoreCase("Hepatocyte

") ||

mech.LHS.agent.equalsIgnoreCase("Hepatocyte"))»

 «IF(mech.RHS.agent1 != null) &&

84

(mech.RHS.agent1.equalsIgnoreCase("Cytokines") ||

mech.RHS.agent1.equalsIgnoreCase("Cytokine"))»

 «IF(mech.condition != null)»

if("«mech.condition.condition1»"

«mech.condition.link»

"«mech.condition.condition2»"){

 thereIsACytokine = true;

 }

 «ENDIF»

 «ELSE»

 for(Solute s : solutes)

 {

 if(s.type.equalsIgnoreCase("Cytokine"))

 {

 thereIsACytokine = true;

 break;

 }

 }

 «ENDIF»

 « IF(mech.RHS.agent1 != null) &&

 (mech.RHS.agent1.equalsIgnoreCase("Enzymes") ||

mech.RHS.agent1.equalsIgnoreCase("Enzyme"))»

85

 «IF(mech.condition != null)»

if("«mech.condition.condition1»"

«mech.condition.link»

"«mech.condition.condition2»"){

 binders.add(new Enzyme());

 return;

 }

 «ENDIF»

 «ELSE»

 if(binders.size() < numEnzymesAtInit && elimQueue !=

null && elimQueue.size() == 0 && !thereIsACytokine)

 {

 if(rng.nextDouble() < parent.drReplenish)

 binders.add(new Enzyme());

 return;

 }

 «ENDIF»

 if(elimQueue != null && elimQueue.size() > 0)

 {

 int num_to_elim = (int) elimQueue.remove(0).val;

 java.util.ArrayList<Binder> to_be_removed = new

java.util.ArrayList<Binder>();

 for(Binder b : binders)

86

 {

 if(num_to_elim <= 0)

 break;

 if(!bound.containsKey(b)) //if unbound

 to_be_removed.add(b);

 if(to_be_removed.size() >= num_to_elim)

 break;

 «IF(mech.RHS.agent1.contains("Removed"))»

if(!bound.containsKey("«mech.RHS.agent1.sub

string(mech.RHS.agent1.indexOf("Removed"))

»")) //if unbound

 to_be_removed.add(b);

 «ENDIF»

 «IF(mech.RHS.agent1.contains("Added"))»

if(!bound.containsKey("«mech.RHS.agent1.sub

string(mech.RHS.agent1.indexOf("Added"))»)")

//if unbound

 to_be_removed.remove(b);

 «ENDIF»

 «ENDIF»

 «ENDIF»

 «ENDFOR»

87

 }

 for(Binder b : to_be_removed)

 binders.remove(b);

 }

 Binder firstUnbound = null;

 for(Binder b : binders)

 {

 if(!bound.containsKey(b))

 {

 firstUnbound = b;

 break;

 }

 }

 if(firstUnbound == null)

 return;

 for(Solute s : solutes)

 {

 if(s.type.equalsIgnoreCase("Cytokine"))

 {

 if(rng.nextDouble() < parent.drRemove)

 {

 //Add to the queue to be removed, then return

 if(elimQueue == null)

88

 elimQueue = new

java.util.ArrayList<ishc.util.MyInt>();

 for(int i = 0; i < rate_increment - 1; i++)

 {

 elimQueue.add(new ishc.util.MyInt(0));

 }

 elimQueue.add(new ishc.util.MyInt(1));

 return;

 }

 }

 }

 }

 //Implementations for CellInfo

 public double getResources() {

 return parent.resources;

 }

 public int getBindmax() {return parent.bindmax;}

 public int getNumEnzymesAtInit() {return

numEnzymesAtInit; }

 //Implementations for EIInfo

 public int getEIThresh() {return parent.ei_thresh;}

 public double getEIRate() {return parent.ei_rate;}

 public double getEIResponse() {return

89

parent.ei_response_factor;}

 //Implementations for ELInfo

 public int getELThresh() {return parent.el_thresh;}

 public double getELRate() {return parent.el_rate;}

 public double getELResponse() {return

parent.el_response_factor;}

 //Implementations for MetabolismInfo

 public HashMap<String, Double> getMetProbMap()

{return metProbMap;}

 public HashMap<String, HashMap<String,Double>>

getProductionMap() {return productionMap; }

 public Bag getBolusEntries() {return ((BolusDose)

parent.model.delivery.doses.objs[0]).solution; }

 public void removeSolute(Solute s) {

 solutes.remove(s);

 parent.solutes.remove(s);

 parent.cellSpace.remove(s);

 }

 public void addSolute(Solute s) {

 parent.solutes.add(s);

 parent.cellSpace.setObjectLocation(s, myX, myY);

 solutes.add(s);

 }

90

 }

 '''

}

5. Reference Model

model ISHC{

mechanism M1 = inflammatoryAgent + Kupffercells [inflammatoryAgent >

inflammatorythreshold] -> Cytokines

mechanism M2 = inflammatoryAgent + Kupffercells [noOfCytokine >

cytokineThreshold] -> Cytokines

 event inflammation = 'void ishc.model.KupfferCell.handleInflammation()'

 parameter LPS = Solute with properties {tag: LPS, bindable: true ,

bolusRatio:1.0 , pExitMedia: 0.1 ,

 pExitCell: 1.0 , bindProb : 0.25 , bindCycles : 1 , numProps : 8 ,

 membraneCrossing: true, bileRatio : 0.5 , core2Rim : 0.50 ,

metProbStart : 0.3 ,

 metProbFinish : 0.3 , metabolites: 'LPS-Metabolite_A',

 inflammatory : true , pDegrade : 0.0

 }

 parameter TOL = Solute with properties {tag: TOL, bindable:true,

bolusRatio:0.0 , pExitMedia: 0.001 ,

 pExitCell: 1.0 , bindProb : 0.2 , bindCycles : 2 , numProps : 6 ,

91

 membraneCrossing: true, bileRatio : 0.5 , core2Rim : 0.50 ,

metProbStart : 0.2 ,

 metProbFinish : 0.2 , metabolites: 'TOL-Metabolite_B'

 }

 parameter DZ = Solute with properties {tag: DZ, bindable:true,

bolusRatio:0.0 , pExitMedia: 0.05 ,

 pExitCell: 1.0 , bindProb : 0.5 , bindCycles : 2 , numProps : 6 ,

 membraneCrossing: true, bileRatio : 0.5 , core2Rim : 0.50 ,

metProbStart : 0.5 ,

 metProbFinish : 0.5 , metabolites: 'TOL-Metabolite_N'

 }

 parameter Cytokine = Solute with properties {tag: Cytokine,

bindable:false, bolusRatio:0.0 , pExitMedia: 0.02 ,

 pExitCell: 0.0 , bindProb : 0.0 , bindCycles : 1 , numProps : 2 ,

 membraneCrossing: true, pDegrade : 0.1

 }

 parameter Metabolite_A = Solute with properties {tag: Metabolite_A,

bindable:false, bolusRatio:0.0 , pExitMedia: 0.0 ,

 pExitCell: 0.0 , bindProb : 0.0 , bindCycles : 2 , numProps : 4 ,

 membraneCrossing: false, bileRatio : 0.5 , core2Rim : 0.50 ,

transportOut : true

 }

92

 parameter Metabolite_B = Solute with properties {tag: Metabolite_B,

bindable:false, bolusRatio:0.0 , pExitMedia: 0.0 ,

 pExitCell: 0.0 , bindProb : 0.0 , bindCycles : 2 , numProps : 4 ,

 membraneCrossing: false, bileRatio : 0.5 , core2Rim : 0.50 ,

transportOut : true

 }

 parameter Metabolite_N = Solute with properties {tag:

Metabolite_N, bindable:false, bolusRatio:0.0 , pExitMedia: 0.0 ,

 pExitCell: 0.0 , bindProb : 0.0 , bindCycles : 2 , numProps : 4 ,

 membraneCrossing: false, bileRatio : 0.0 , core2Rim : 0.50 ,

transportOut : true

 }

 parameter Metabolite2 = Solute with values {0.9}

 parameter forwardBias = DISCRETE with values {0.5}

 parameter lateralBias = DISCRETE with values {0.5}

 parameter mediaScale = DISCRETE with values {1000}

 parameter hepDensity = DISCRETE with values {0.0}

 parameter KCDensity = DISCRETE with values {0.9}

 parameter bindersPerCellMin = DISCRETE with values {4}

 parameter bindersPerCellMax = DISCRETE with values {8}

 parameter eiThresh = DISCRETE with values {1}

 parameter eiRate = DISCRETE with values {0.05}

93

 parameter eiResponse = DISCRETE with values {0.25}

 parameter elThresh = DISCRETE with values {1}

 parameter elRate = DISCRETE with values {0.05}

 parameter elResponse = DISCRETE with values {0.25}

 parameter scale = DISCRETE with values {1000000}

 parameter inflammatoryStimulusThreshold = DISCRETE with values {0}

 parameter cytokineThreshold = DISCRETE with values {3}

 parameter exponentialFactor = DISCRETE with values {2}

 parameter drReplenish = DISCRETE with values {0.005}

 parameter drRemove = DISCRETE with values {0.015}

 parameter drRate = DISCRETE with values {30}

}

goal

{

 object of study : 'Immune system influence on hepatic cytochrome P450

regulation'

 purpose : 'Explain / characterize'

 focus : 'the reason for changes in downstream drug metabolism and

hepatotoxicity'

 view point : 'based on the response of hepatic cytochrome P450-

regulating mechanisms'

 context : 'when health and/or therapeutic interventions change.'

}

94

hypotheses

{

 mechanistic hypotheses

 {

 H1 : M1 occurs before M2

 }

 evidence

 {

 E1: inflammation occurs after inflammatoryAgent >

inflammatoryAgentThreshold

 activation weight : 0.5

 E2: inflammation is absent after cytokine < cytokineThreshold

 activation weight : 0.5

 }

 coherence model

 {

 EXPLAIN (H1)(E1)

 DATA (Experiment1)(E1 E2)

 }

}

95

experiment Exp1{

 design {

 variables{

 independent variables

 {

 LPS are at levels : LOW where LOW is in the range 1.0 to

1.0

 TOL are at levels : LOW where LOW is in the range 1.0 to

1.0

DZ are at levels : LOW where LOW is in the range 1.0 to

1.0

 }

 dependent variables

 {

 cytokines : type SIMPLE

 }

 }

 }

 performance measure is

 {

96

 cytokines= 500 +-10

 }

}

6. Generated Artifacts

i. ishc.properties

model parameters

stepsPerCycle = 1

component parameters

Metabolite2 = 0.9

forwardBias = 0.5

lateralBias = 0.5

mediaScale = 1000

hepDensity = 0.0

KCDensity = 0.9

bindersPerCellMin = 4

bindersPerCellMax = 8

eiThresh = 1

eiRate = 0.05

eiResponse = 0.25

elThresh = 1

elRate = 0.05

elResponse = 0.25

scale = 1000000

97

inflammatoryStimulusThreshold = 0

cytokineThreshold = 3

exponentialFactor = 2

drReplenish = 0.005

drRemove = 0.015

drRate = 30

ii. delivery.properties

deliveryType = bolus

useContinualDoseFunction = false

repeatDose = true

infusionStopTime = 120.0

numDoses = 1

time.0 = 1.0

time.1 = 10.0

dose.0.alpha = 2000

dose.0.beta = -1

dose.0.gamma = -2

dose.0.numEntries = 7

 #-1

 dose.0.solute.0.tag = LPS

 dose.0.solute.0.bindable = true

 dose.0.solute.0.bolusRatio = 1.0

 dose.0.solute.0.pExitMedia = 0.1

98

 dose.0.solute.0.pExitCell = 1.0

 dose.0.solute.0.bindProb = 0.25

 dose.0.solute.0.bindCycles = 1

 dose.0.solute.0.numProps = 8

 dose.0.solute.0.property.0.key = membraneCrossing

 dose.0.solute.0.property.0.type = boolean

 dose.0.solute.0.property.0.val = true

 dose.0.solute.0.property.1.key = bileRatio

 dose.0.solute.0.property.1.type = real

 dose.0.solute.0.property.1.val = 0.5

 dose.0.solute.0.property.2.key = core2Rim

 dose.0.solute.0.property.2.type = real

 dose.0.solute.0.property.2.val = 0.50

 dose.0.solute.0.property.3.key = metProbStart

 dose.0.solute.0.property.3.type = real

 dose.0.solute.0.property.3.val = 0.3

 dose.0.solute.0.property.4.key = metProbFinish

 dose.0.solute.0.property.4.type = real

 dose.0.solute.0.property.4.val = 0.3

 dose.0.solute.0.property.5.key = metabolites

 dose.0.solute.0.property.5.type = map

 dose.0.solute.0.property.5.val = Metabolite_A => <1.0,1.0>

 dose.0.solute.0.property.6.key = inflammatory

99

 dose.0.solute.0.property.6.type = real

 dose.0.solute.0.property.6.val = true

 dose.0.solute.0.property.7.key = pDegrade

 dose.0.solute.0.property.7.type = real

 dose.0.solute.0.property.7.val = 0.0

 #0

 dose.0.solute.1.tag = TOL

 dose.0.solute.1.bindable = true

 dose.0.solute.1.bolusRatio = 0.0

 dose.0.solute.1.pExitMedia = 0.001

 dose.0.solute.1.pExitCell = 1.0

 dose.0.solute.1.bindProb = 0.2

 dose.0.solute.1.bindCycles = 2

dose.0.solute.1.numProps = 6

 dose.0.solute.1.property.0.key = membraneCrossing

 dose.0.solute.1.property.0.type = boolean

 dose.0.solute.1.property.0.val = true

 dose.0.solute.1.property.1.key = bileRatio

 dose.0.solute.1.property.1.type = real

 dose.0.solute.1.property.1.val = 0.5

 dose.0.solute.1.property.2.key = core2Rim

 dose.0.solute.1.property.2.type = real

 dose.0.solute.1.property.2.val = 0.50

100

 dose.0.solute.1.property.3.key = metProbStart

 dose.0.solute.1.property.3.type = real

 dose.0.solute.1.property.3.val = 0.2

 dose.0.solute.1.property.4.key = metProbFinish

 dose.0.solute.1.property.4.type = real

 dose.0.solute.1.property.4.val = 0.2

 dose.0.solute.1.property.5.key = metabolites

 dose.0.solute.1.property.5.type = map

 dose.0.solute.1.property.5.val = Metabolite_B => <1.0,1.0>

 #1

 dose.0.solute.2.tag = DZ

 dose.0.solute.2.bindable = true

 dose.0.solute.2.bolusRatio = 0.0

 dose.0.solute.2.pExitMedia = 0.05

 dose.0.solute.2.pExitCell = 1.0

 dose.0.solute.2.bindProb = 0.5

 dose.0.solute.2.bindCycles = 2

 dose.0.solute.2.numProps = 6

 dose.0.solute.2.property.0.key = membraneCrossing

 dose.0.solute.2.property.0.type = boolean

 dose.0.solute.2.property.0.val = true

 dose.0.solute.2.property.1.key = bileRatio

 dose.0.solute.2.property.1.type = real

101

 dose.0.solute.2.property.1.val = 0.5

 dose.0.solute.2.property.2.key = core2Rim

 dose.0.solute.2.property.2.type = real

 dose.0.solute.2.property.2.val = 0.50

 dose.0.solute.2.property.3.key = metProbStart

 dose.0.solute.2.property.3.type = real

 dose.0.solute.2.property.3.val = 0.5

 dose.0.solute.2.property.4.key = metProbFinish

 dose.0.solute.2.property.4.type = real

 dose.0.solute.2.property.4.val = 0.5

 dose.0.solute.2.property.5.key = metabolites

 dose.0.solute.2.property.5.type = map

 dose.0.solute.2.property.5.val = Metabolite_N => <1.0,1.0>

 #2

dose.0.solute.3.tag = Cytokine

 dose.0.solute.3.bindable = false

 dose.0.solute.3.bolusRatio = 0.0

 dose.0.solute.3.pExitMedia = 0.02

 dose.0.solute.3.pExitCell = 0.0

 dose.0.solute.3.bindProb = 0.0

 dose.0.solute.3.bindCycles = 1

 dose.0.solute.3.numProps = 2

 dose.0.solute.3.property.0.key = membraneCrossing

102

 dose.0.solute.3.property.0.type = boolean

 dose.0.solute.3.property.0.val = true

 dose.0.solute.3.property.1.key = pDegrade

 dose.0.solute.3.property.1.type = real

 dose.0.solute.3.property.1.val = 0.1

 #3

dose.0.solute.4.tag = Metabolite_A

 dose.0.solute.4.bindable = false

 dose.0.solute.4.bolusRatio = 0.0

 dose.0.solute.4.pExitMedia = 0.0

 dose.0.solute.4.pExitCell = 0.0

 dose.0.solute.4.bindProb = 0.0

 dose.0.solute.4.bindCycles = 2

 dose.0.solute.4.numProps = 4

 dose.0.solute.4.property.0.key = membraneCrossing

 dose.0.solute.4.property.0.type = boolean

 dose.0.solute.4.property.0.val = false

 dose.0.solute.4.property.1.key = bileRatio

 dose.0.solute.4.property.1.type = real

 dose.0.solute.4.property.1.val = 0.5

 dose.0.solute.4.property.2.key = core2Rim

 dose.0.solute.4.property.2.type = real

 dose.0.solute.4.property.2.val = 0.50

103

 dose.0.solute.4.property.3.key = transportOut

 dose.0.solute.4.property.3.type = boolean

 dose.0.solute.4.property.3.val = true

#4

dose.0.solute.5.tag = Metabolite_B

 dose.0.solute.5.bindable = false

 dose.0.solute.5.bolusRatio = 0.0

 dose.0.solute.5.pExitMedia = 0.0

 dose.0.solute.5.pExitCell = 0.0

 dose.0.solute.5.bindProb = 0.0

 dose.0.solute.5.bindCycles = 2

 dose.0.solute.5.numProps = 4

 dose.0.solute.5.property.0.key = membraneCrossing

 dose.0.solute.5.property.0.type = boolean

 dose.0.solute.5.property.0.val = false

 dose.0.solute.5.property.1.key = bileRatio

 dose.0.solute.5.property.1.type = real

 dose.0.solute.5.property.1.val = 0.5

 dose.0.solute.5.property.2.key = core2Rim

 dose.0.solute.5.property.2.type = real

 dose.0.solute.5.property.2.val = 0.50

 dose.0.solute.5.property.3.key = transportOut

 dose.0.solute.5.property.3.type = boolean

104

 dose.0.solute.5.property.3.val = true

#5

dose.0.solute.6.tag = Metabolite_N

 dose.0.solute.6.bindable = false

 dose.0.solute.6.bolusRatio = 0.0

 dose.0.solute.6.pExitMedia = 0.0

 dose.0.solute.6.pExitCell = 0.0

 dose.0.solute.6.bindProb = 0.0

 dose.0.solute.6.bindCycles = 2

 dose.0.solute.6.numProps = 4

 dose.0.solute.6.property.0.key = membraneCrossing

 dose.0.solute.6.property.0.type = boolean

 dose.0.solute.6.property.0.val = false

 dose.0.solute.6.property.1.key = bileRatio

 dose.0.solute.6.property.1.type = real

 dose.0.solute.6.property.1.val = 0.0

 dose.0.solute.6.property.2.key = core2Rim

 dose.0.solute.6.property.2.type = real

 dose.0.solute.6.property.2.val = 0.50

 dose.0.solute.6.property.3.key = transportOut

 dose.0.solute.6.property.3.type = boolean

 dose.0.solute.6.property.3.val = false

105

iii. KupfferCell.java

package ishc.model;

import java.lang.Math;

import sim.field.grid.*;

import sim.util.Bag;

public class KupfferCell extends Cell {

 private static final org.slf4j.Logger log =

org.slf4j.LoggerFactory.getLogger(ISHC.class);

 public KupfferCell(Culture p, ec.util.MersenneTwisterFast

random, int x, int y) {

 super(p,random);

 setLoc(x,y);

 actionShuffler.clear();

 actionShuffler.add(new Runnable() { public void run() {

handleInflammation(); } });

 actionShuffler.add(new Runnable() { public void run() {

handleDegradation();}});

 }

 BolusEntry cytokineBolusEntry = null;

 public void handleInflammation()

 {

 int numInflammatoryStimuli = 0;

 int numCytokines = 0;

106

 for(Object o : solutes)

 {

 Solute s = (Solute) o;

 if(s.hasProperty("inflammatory") &&

((Boolean)s.getProperty("inflammatory")))

 {

 numInflammatoryStimuli++;

 }

 if(s.type.equals("Cytokine"))

 {

 numCytokines++;

 }

 if(s.type.equals("inflammatoryAgent"){

 if("inflammatoryAgent" > "inflammatorythreshold")

 numCytokines++;

 }

if(s.type.equals("inflammatoryAgent"){

if("noOfCytokine" > "cytokineThreshold")

numCytokines++;

}

 }

 }

107

 if(numCytokines >= parent.cytokineThreshold)

 {

 return;

 }

 if(numInflammatoryStimuli >=

parent.inflammatoryStimulusThreshold)

 {

 double probability = 1.0 - Math.exp(-

1*(numInflammatoryStimuli –

parent.inflammatoryStimulusThreshold) /

parent.exponentialFactor);

 double draw = rng.nextDouble();

 if(draw <= probability)

 addCytokine();

 }

 }

 public Solute addCytokine()

 {

if(cytokineBolusEntry == null)

 {

 sim.util.Bag bolusEntries = ((BolusDose)

parent.model.delivery.doses.objs[0]).solution;

108

 for (int i = 0; i < bolusEntries.numObjs; i++) {

 BolusEntry be = (BolusEntry) bolusEntries.objs[i];

 if (be.tag.equals("Cytokine")) {

 cytokineBolusEntry = be;

 break;

 }

 }

 }

 //Create the Cytokine

 Solute cytokine = new Solute(cytokineBolusEntry);

 cytokine.setProperties(cytokineBolusEntry.props);

//Add the Cytokine

 parent.solutes.add(cytokine);

 parent.cellSpace.setObjectLocation(cytokine, myX, myY);

 solutes.add(cytokine);

 return cytokine;

 }

}

7. Reference Implementation

https://github.com/szc0098/Reference-ImplementationI-SHC-model

https://github.com/szc0098/Reference-ImplementationI-SHC-model

