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ABSTRACT 

 

 

Simulation experiments are a convenient and useful means to gain insight into 

the operation of scientific models. They are conducted to address specific goals 

and evaluate specific questions about the model. These simulation models are 

complex, with many possible factors and outcomes. Also, a model that 

represents certain key characteristics or behaviors of the system can be 

analyzed to show the eventual real effects of alternative conditions and courses 

of action. The strength of simulation is that it enables precisely this “what if” 

hypotheses analysis, under certain assumptions. Efficient experiment designs 

are necessary for understanding the impact of these factors and their interactions 

on the model outcomes that establish the dependencies among goals, 

hypotheses and experiments with the factors of the model. In our study, we 

propose a model discovery process by devising questions about the model, 

designing experiments to validate these hypotheses, executing them, drawing 

inferences and refining it in an iterative manner to support temporal evidences 

about the model that have a degree of acceptability of its own. Using the 

cognitive theory of coherence, we establish links between hypotheses and 

temporal evidences. We use the principles of model driven engineering and 

domain specific languages to streamline the discovery process through scientific 

experimentation.
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CHAPTER 1 

INTRODUCTION 

 

Computer simulation is a convenient and useful means to gain insight into the 

operation of scientific models. These models are often very complex, with 

thousands of factors and many sources of uncertainty. Efficient experiment 

designs are necessary for understanding the impact of these factors and their 

interactions on the model outcomes [Sanchez et al. 2014]. Usually, such 

simulation models are created manually. Close observation helps to get a better 

understanding of the real-world processes of interest. This is a time-consuming 

activity, which is likely to be error-prone and lacks credibility, as it is based on 

human perception of the process. The level of correctness of the simulators, that 

execute the simulation models, is a significant aspect for evaluating the quality of 

the simulation. This serves as a motivation to define models at an appropriate 

abstraction level and accuracy, and to design experiments with substantial 

information to drive the execution. In order to increase scientific credibility and 

reproducibility of scientific experiments, it is important to have a complete record 

of the experimental conditions [Joppa et al. 2013; Merali 2010]. 

The standards for providing accurate and sufficient record of simulation 

experiment, keeps evolving [Köhn and Le Novère 2008; Rahmandad and 

Sterman 2012]. The use of experiment specific languages to effectively address 

the experiment specification and design, has been widely recognized. Focusing 
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on the concepts of a particular domain for the development of these modeling 

languages increases efficiency. Domain specific languages (DSL) are easily read 

and learned by experts in the field [Consel et al. 2005]. DSLs are useful to 

domain experts who lack proficiency in programming. They also serve as an 

efficient tool for reusability [Krueger 1992]. These can be used to record 

experiment definition and reuse them for reproducibility. In this process, the 

knowledge integrated in the language is also put to reuse. 

Designing and managing experiments in an effective manner is critical to 

increasing reliability of the simulations [Ewald and Uhrmacher 2014]. However, 

the under-utilization of the Design of Experiments (DOE) methodology remains a 

challenge in reducing this credibility gap in simulation studies [Teran-Somohano 

et al. 2014]. To address these issues, simulation experiment description 

languages [Ewald and Uhrmacher 2014] and model-driven engineering principles 

[Teran-Somohano et al. 2015] have proven to be effective in managing 

simulation experiments. 

Scientific experiments are defined with a set of goals and have a purpose to 

answer certain questions. Its strength lies in analyzing the real effects of 

alternative conditions and courses of action using “what if” hypotheses (under 

certain assumptions), on a model representing the fundamental behavior of the 

system. The use of simulation models for scientific experiments and model 

discovery has been well established [Teran-somohano et al. 2015; Klösgen 

1994; Sliwoski et al. 2014]. In order to produce improved experimentation 
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practices, we need to establish an appropriate connection among experiments, 

its objectives and questions related to the simulation model.  

In this study, we characterize these dependencies among goals, hypotheses, 

and experiments within the context of computational discovery. The principles of 

Model-Driven Engineering (MDE) are used to aid the transformation process and 

to facilitate the search within the operational level of hypotheses and the tactical 

level of experiments. Our aim is to demonstrate that the use of MDE strategies 

coupled with cognitive computing can extend the scope of human intellect and 

partner with scientists on a broad range of tasks in scientific discovery. These 

tasks include identifying scenarios, formulating questions, inferring mechanisms, 

defining or generating experiments designed to answer questions, validating 

them, drawing conclusions, and evaluating results within an incremental and 

iterative discovery cycle [Bunge 1998]. This iterative process calls for 

comprehensive models of hypotheses, experiments, and simulations, along with 

traceability among them to support the computational discovery process [Sliwoski 

et al. 2014; Džeroski et al. 2007; Darden 2001]. 

In our study, we establish a strategy that promotes flexibility in model 

development while taking into consideration the characteristics of the scientific 

discovery process using a MDE architecture. This iterative discovery process 

requires evaluation and revision of numerous assumptions and constraints until 

sufficient degree of similarity against empirical evidence or targeted behavior is 

attained. This requires cognitive tools to support the co-evolution of both the 
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hypothesis and the experiment spaces as active-learning takes place through 

experimentation. 

Our goal is to develop an open-source MDE-enhanced application to design, 

execute, and analyze simulation experiments. A DSL is introduced towards 

designing simulation experiments. Additionally, the experiment model is used to 

test and invalidate the evidences of the simulation model. In this process the user 

can devise questions to test temporal evidences about the model. Temporal 

properties that describe the results of the observation have a degree of 

acceptability of its own.  This is followed by the implementation of the experiment 

specifications in the simulation run.  

The advantage of this approach is that it can be used to remove redundancy in a 

system by identifying and eliminating duplicate models. Experimentation 

becomes a seamless part of simulation development, by explicit representation 

of experiment models and hypotheses for the experiments. The approach also 

facilitates synthesis and execution of experiments along with validation and 

comparison of the experimentation models. The standardization of the entire 

process improves reproducibility and reliability of simulation results. 

The rest of the thesis is structured as follows. In chapter 2, we present an 

overview of the existing work on specification of simulation experiments as well 

as a foundational background for the work. Chapter 3 presents the conceptual 

framework of the Goal-Hypothesis-Experiment system and sketch the elements 

of a DSL to illustrate the computational strategy. The experimental results are 

presented in chapter 4. We present the case study to illustrate the application in 
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chapter 5. Chapter 6 concludes the thesis and provides an outline for the 

potential avenues of future research. 
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CHAPTER 2  

BACKGROUND 

 

The Goal-Hypothesis-Experiment framework is developed by employing MDE 

principles and statistical design of experiments. A simulation model acts as an 

experimental focus for validating a hypothesis and the replication of the results 

marks its reliability. But replicability of a simulation model has been an important 

challenge [Crooks et al. 2008] to support reproducible and replicable scientific 

knowledge [Teran-Somohano et al. 2014]. In recent years, the efforts toward 

supporting simulation reproducibility have inspired the use of domain specific 

languages as the means to express experiment specifications [Schutzel et al. 

2015]. Experiment Management Systems standardize simulation experiment 

specification. MDE concepts centers on the specification of the experiment 

modeling language as well as its transformation to implementation space. 

2.1 Domain Specific Language 

According to Van Deursen et al. [2000], the DSL “offers, through appropriate 

notations and abstractions, expressive power focused on, and usually restricted 

to, a particular problem domain”. The use of DSL for simulation model description 

has increased over the years. DSLs allow specification of individual sub-tasks, 

such as observation, configuration, analysis and evaluation of experimental 

results. Furthermore, they can be used in a wider scope, to describe the 
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experiment’s goals. The development and research of DSL for experiment 

specification identifies all of these possible applications. 

Even though this idea is relatively new, modeling languages are well established 

in the field of simulation. Recent work shows that this has been an active area for 

study and development. However, it is worth mentioning that to a great degree, 

few efforts in the development of these languages have aimed to cover these 

goals comprehensively. Some interesting general approaches in standardization 

of specifications for experiments are discussed below. 

The Minimum Information About a Simulation Experiment (MIASE) standard 

[Köhn and Le Novère 2008] states that in order to promote reproducibility, the 

executions should contain: (1) the composition of simulation model and its 

configuration parameters, (2) the conditions for simulation run, (3) the collection 

method employed during the experiment run, and (4) the result of the run. 

Rahmandad and Sterman [2012] established distinct simulation experiment 

recording requirements. The Minimum Model Reporting Requirements (MMRR) 

standards identify, the default values of the model with their units of 

measurement and details of the computations in the model, as the minimum 

requirements specification for simulation experiments. The Preferred Model 

Reporting Requirements (PMRR) contains record of the data and its source for 

the model’s equations and algorithmic rules, the definition of all model variables, 

and source code for the model’s computational implementation. The Minimum 

Simulation Reporting Requirements (MSRR) includes recording of the simulation 

hardware and software platforms, the simulation algorithms used, pre-processing 
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used to generate input data for the experiment, all the levels applied to factors in 

the simulation model, the number of iterations of the experiment, and all the post-

processing performed on the output data. The Preferred Simulation Reporting 

Requirements (PSRR) includes information that facilitates the assessment of the 

results beyond the minimum requirements like random number generation 

algorithm, confidence levels for estimation etc. Although, these provide powerful 

reporting standards for experiments, they fail to deal with the issue of complex 

and abundant data. The use of specification language addresses this challenge 

effectively. 

2.2 Experiment Management Systems 

The need for a flexible and powerful Experiment Management System is 

accelerated by exponential increase in the volume of data, combined with a 

proliferation of heterogeneous data formats and autonomous systems 

[Jakobovits et al. 2000]. Experiment management systems specify standards for 

conducting and managing simulation experiments.  

Simulation Experiment Description Markup Language (SED-ML) is an XML-

based format which uses MIASE standards for encoding, exchanging and 

documenting simulation experiments [Waltemath, Adams, Bergmann et al. 2011]. 

It is used for exchanging experiment descriptions, aiding validation and reuse of 

simulation experiments. It enables reproducibility of experimentation results with 

models in the domain of biomedical sciences.  

Simulation Experiment Specification via a Scala Layer (SESSL) is a general 

purpose language defined as an internally defined DSL [Ewald and Uhrmacher 



9 

 

2014]. SESSL allows model specification, definition of replications, the stop 

condition for simulation run, the objective, and range and optimization method. It 

is mostly used for specifying and generating rather than describing experiments 

The SESSL definition is more compact and easier to understand. However, the 

user should be acquainted with the syntax and semantics of Scala to specify an 

experiment in SESSL. 

Simulation Automation Framework for Experiments (SAFE) [Perrone et al. 2012] 

standardizes experiment specification to record experiment scenarios and enable 

reproducibility. Nimrod integrated experiment design tools for efficient execution 

of the models [Peachey et al. 2008]. The ns-3 Experiment Description Language 

(NEDL) is an externally defined DSL [Hallagan et al. 2010] and developed to 

meet the demand for a language capable of explicitly capturing experiment 

scenarios. The NEDL file specifies a design of experiment space in terms of 

factors, levels, and constraints that aim to exclude design points that are beyond 

the interest of the user. It is based on XML and consists of a collection of 

“elements,” which may be either compulsory or optional in the experiment 

description. But, it requires special-purpose tools for parsing and document 

validation which hampers its practical applications. SAFE Language for 

Experiment Description (SLED) is another externally defined DSL, which 

overcomes the shortcomings of NEDL. It is based on JavaScript Object Notation 

(JSON) format which makes it much easier to parse. 
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2.3 Model Driven Engineering 

The MDE principles center on the development of the experiment specification 

language as well as the transformation rules to map them to implementation 

space. It addresses the issue of platform dependencies and allows definition of 

domain concepts effectively. The MDE approach suggests development of a 

metamodel of the system under study and its transformation into an executable 

model. Metamodels are abstraction of the model properties. These are used as 

abstract syntax for the experiment modeling languages. The MDE methodology 

[Gaševic et al. 2009] provides a framework and strategy to move from the 

platform-independent experiment domain space to the technical space involving 

platform-specific executable simulation experiment scripts.  

2.4 Reproducibility 

Reproducibility refers to the closeness between the results of independent 

simulations performed with the same methods on identical models but with a 

different experimental setup [Waltemath, Adams, Beard, et al. 2011]. It is 

important to keep record of all the experimental conditions in order to reproduce 

the results of the simulation. This increases the reliability of the simulation 

experiment. But due to large volume of data and its complexity, it becomes 

difficult to set reporting standards for reproducibility. 

All these approaches fail to explore the relationship between experimental 

factors, and creating syntax for experiment space search. Existing experiment 

specification languages do not allow flexibility and language extensibility to 

address the changing needs of applications. Furthermore, there has not been 
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sufficient work to explore MDE principles in relation to improving the experiment 

management system. 
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CHAPTER 3 

SOLUTION 

 

For our study, we place simulation experiments in the context of the scientific 

discovery process. First, we introduce the Goal-Hypothesis-Experiment (GHE) 

framework, which helps in structuring the process in terms of conceptual, 

operational, and tactical levels. This is followed by drawing an outline of a 

conceptual model-driven engineering architecture to support the framework. 

3.1 Components of the Goal-Hypothesis-Experiment Framework 

The process starts with the background domain knowledge and involves the 

following general steps to address a specific goal: (1) Formulate well-structured 

specific questions. (2) Specify hypotheses from the questions that are developed 

from the domain ontology to answer the questions. (3) Generate the logical 

consequences of assumptions in the form of expected behavior. (4) Design 

computer simulations to test the underlying assumptions (e.g., mechanistic 

hypotheses) about the phenomena. (5) Validate the simulation for relevance and 

reliability. (6) Design experiments, execute them, and interpret results. (7) 

Evaluate the correctness of assumptions, and if necessary revise the model, 

experiments, or the expected behavior. These steps suggest three major 

activities, taking place at different levels of abstraction. 
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3.1.1 The Conceptual Level: Goals 

The scientific activity begins with carefully considering the goal of the experiment. 

The goal specifies the targets to be achieved or phenomenon to be discovered 

through experimentation. It is specified in relation to a particular context and 

sheds light on the model under study, the focus of the experiment and the frame 

of reference or viewpoint. In computational discovery one can aim to 

characterize, understand, evaluate, predict, or improve the object of the study. 

The enumeration of the goals in terms of these aspects aids the experimentation 

and evaluation process. 

Aspects Example 

Object of study Immune system influence on hepatic 

cytochrome P450 regulation 

Purpose Explain or characterize 

Focus the reason for changes in downstream 

drug metabolism and hepatotoxicity 

Viewpoint based on the response of hepatic 

cytochrome P450- regulating 

mechanisms 

Context when health and/or therapeutic 

interventions change 

 

Table 1:  Goal specification in terms of different aspects 
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3.1.2 The Operational Level: Hypotheses 

After specifying the problem, the solution space is searched to address it. A set 

of questions are formulated in order to determine the completion of the goal of 

the study. Hypotheses are generated based on these questions and defined in 

terms of models of the phenomena or system of interest. The solution consists of 

assumptions on the model based on earlier observation, experiments or 

experiences. A hypothesis is a suggested explanation for a phenomenon that 

can be tested and is based on the experimenter’s knowledge and belief of the 

experiment which are upgraded into laws, resulting in a system of laws, called 

theories.  

With respect to model-driven generation and simulation-based knowledge, we 

identified the following types of hypotheses: 

 Phenomenological hypotheses generally represent a resultant behavior or 

output of the system triggered by the change in input conditions of the 

model. It addresses the impact of input factors (independent variables or 

control variables) on the output (dependent variables) of the model, under 

a set of constraints. Such hypotheses allow comparing system 

configurations, performing sensitivity analysis, and conducting Analysis of 

Variance (ANOVA) to study system performance. 

 Mechanistic hypotheses define the mechanisms that generate specific 

behaviors in the model. Experiments are designed to provide evidence to 

either support or refute the explanation of the behavioral mechanism 

defined in the hypothesis.  
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Type  Hypothesis 

Phenomenological In response to lipopolysaccharide, 

Kupffer cells down regulate hepatic 

P450 levels via inflamatory cytokines, 

thus leading to a reduction in metabolic 

capacity. 

Mechanistic Inflammatory induced P450 down-

regulation is mediated by 

proinflammatory 

cytokines that specifically regulate 

different yet overlapping subsets of 

P450s in both humans and rats [Aitken 

and Morgan 2007]. Many of these 

cytokines are derived from Kupffer 

cells. While some cytokines down-

regulate P450 in primary hepatocytes 

cultures, others are dependent upon 

the presence of Kupffer cells [Sunman 

et al. 2004]. Kupffer cells can be 

activated by bacterial endotoxin 

(lipopolysachharide, LPS). An LPS 

stimulus causes Kupffer cells to release 

proinflammatory cytokines, triggering 
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P450 down-regulation and the 

subsequent decrease in drug 

clearance. 

 

Table 2: Types of hypothesis 

3.1.3 The Tactical Level: Experiment 

This level drives the design, execution, and adaptation of an experiment to 

answer the questions and verify, validate, or refute the assumptions and 

hypotheses. Outcomes of experiments feedback into the process to facilitate 

revision of goals, models, questions, and experiments. An experiment may have 

a set of responses, factors, and a range of its values called factor levels. These 

are specified by the experimenter and are updated, if needed, to enable 

adaptation. 

The GHE framework serves as a tool for specifying and interpreting operational 

questions and tactical experiments for conceptual research goals. It allows the 

definition of the goal of study. A set of hypotheses (formulated in the form of 

questions and assumptions) are devised to address the goal of the experiment, 

which refine the issue underlying the problem into its major components. These 

questions are translated to experiment designs to validate or invalidate them. 

Experiments are designed and executed in a way to discriminate between rival 

hypotheses. Within the current state of the art, simulation tools and techniques 

are not structured to support seamless navigation and traceability between these 

levels. To mitigate this issue, we propose a computational strategy that supports 
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the GHE framework by leveraging principles and practices of model-driven 

engineering and domain-specific languages. 

3.2 A Computational Strategy to support the GHE Framework 

MDE has emerged as a practical and unified methodology to alleviate the 

complexity of platforms and express domain concepts effectively [Schmidt 2006]. 

The use of platform independent domain models along with explicit 

transformation models facilitates deployment of simulations across a variety of 

platforms. While the utility of MDE principles in simulation development is now 

well recognized, its benefits for experimentation have not yet received sufficient 

attention. 

A conceptual framework that integrates MDE, agent models, and product-line 

engineering to manage the overall lifecycle of a simulation experiment is 

presented in Figure 1. In the component architecture, the experiment and 

simulation model spaces are tightly coupled to orchestrate the co-evolution of 

simulation and experiment spaces as learning takes place. Next, we review these 

components to open a discussion about their potential contributions to the 

process of computational discovery. 
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Figure 1: Experiment Management Framework 

3.2.1 Domain 

Domain refers to a bounded field of interest or knowledge. [Völter et al. 2013] 

The domain for our study is experiment management. It is useful to develop an 

ontology by identifying all the relevant concepts of the domain of interest. The 

ontology represents knowledge about the elements that form an experiment. It 

encompasses the structural elements of an experiment, including the 

experiment’s goals through all the iterations and questions about the model. It 

also consists of the inputs to the experiment model and the desired outputs.  
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3.2.2 Metamodel 

Metamodel is an abstract representation of a system’s structure, function or 

behavior. In the context of Model Driven Software Development (MDSD), it is 

necessary to be clear about the structure of a domain (i.e., its ontology), so that 

formalization of this structure or its relevant part is possible. [Völter et al. 2013] 

The metamodel is a basic UML representation of all the relevant concepts of the 

domain. It comprises of the abstract syntax and the static semantics of a 

language. 

3.2.3 DSLs for Experiment and Hypothesis Modeling 

For generating experiment specifications from research questions and 

hypotheses, the DOE methodology in simulation experiment design [Kleijnen et 

al. 2005; Sanchez et al. 2014]could provide a structured basis for automation. 

The ontology defines the vocabulary and grammar. i.e., the abstract syntax for 

building the experiment domain model. To support the instantiation of the 

experiment specifications conforming to the DOE metamodel, a suitable DSL is 

needed.  

DSLs are widely used in simulation studies as tools to describe the model. In 

recent years, the efforts toward supporting simulation reproducibility have 

inspired the use of DSLs as the means to express model specifications [Darden 

2001]. Even though this idea is relatively new, modeling languages are well 

established in the field of simulation. Recent work shows that this has been an 

active area for study and development.   
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The research and development of DSL for the GHE framework, identifies many 

possible applications. DSLs help to state mechanisms and define parameters 

along with their properties, in the model. It also helps in identifying sub-tasks in 

the experimentation procedure, such as observation, configuration, analysis and 

evaluation of experimental results. Furthermore, they can be used in a wider 

scope, to describe formally the hypotheses about the model and list evidences 

derived from the real life experiments.  

The experiment model defined by the DSL needs to be configured with the 

aspects specified in an experiment feature model. An experiment design can 

have various mandatory and optional features. Features are prominent attributes 

that facilitate modeling variants of experiments to support different objectives. For 

instance, the type of the experiment design (e.g., factorial, fractional factorial) 

and the analysis method (e.g., ANOVA vs. MANOVA) are potential features that 

collectively define plausible configurations of an experiment. 

Advantages of using a DSL: 

 To increase accessibility to perform complex computation in the 

background. 

 To increase conciseness and expressiveness in the experiment 

specification and design generation. 

 To increase flexibility and language extensibility in order to 

accommodate the required changes in the application. 
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3.2.4 Generative Domain Architecture 

An experiment design agent evaluates questions of interest to generate an 

experiment design that is effective in discriminating rival hypotheses and efficient 

in covering the parameter space of the system. A trade-off analysis between the 

number of design points and the number of replicates per design point are 

carried out in relation to the type of experiment being conducted.  

This generative architecture is also used to derive templates for generating the 

transition of mechanisms from the hypothesis space to the implementation 

space. A text-model transformation takes place that generate code templates to 

replicate the phenomenon represented by the hypotheses. 

3.2.5 Reference Implementation 

Reference implementation represents the concrete realization of the architectural 

aspects. It contains all implementation details of the semantics of the 

architecture-centric UML profile constructs on the source code level [Völter et al. 

2013]. The templates for the generative architecture are derived from this 

implementation. In our study, the reference implementation consists of the 

realization of the concepts of the experiment ontology as well as use-cases that 

demonstrated the application and the transition from model to implementation 

space. 
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CHAPTER 4 

EVALUATION 

 

The principles of model-driven software development are used throughout the 

development process.  We started by developing a metamodel for the language 

in the form of a UML class model in order to facilitate understanding of the 

domain.  We used this metamodel as a roadmap to develop a context-free 

grammar in Back-Naur Form (BNF).  Next, we transformed this BNF grammar 

into an Xtext grammar and evaluated its readability in a reference model.  The 

grammatical constructs defined in the Xtext grammar were used to identify 

classes and structures for a reference implementation, where a use-case for the 

application was developed and tested.  Through development of the reference 

implementation, we were able to identify sections of code that were candidates 

for text-to-model transformation.  These transformations bridge the gap between 

reference model, reference implementation, and platform.  

The process was an effective tool for streamlining the development of a DSL-

driven application.  By focusing on the way the language will be used before the 

implementation, we were able to create a highly expressive language while 

providing support for platform versatility. 
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4.1 Metamodel 

The metamodel encompasses all the major components of the GHE framework. 

It includes the goal of the experiment, model definition, hypothesis and an 

experiment. The metamodel for our study is shown below. 

 

Figure 2: Metamodel representing major components of the GHE framework 

4.2 BNF 

The first step to define this new language was to describe the syntax in an easily 

readable/writable format. The BNF notation is used to define the syntactic 

grammar.  In standard BNF, a grammar is defined by a set of terminal and non-

terminal symbols.  We defined the grammar in the standard form, without use of 
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extended BNF symbols like *, +, -, etc., because those aspects, while making 

development easier, make the grammar harder to read.  Since the purpose of the 

BNF development was to discover how the language should look, the most easily 

interpreted form seemed like the best choice. 

The BNF grammar definition during the early stages of development is listed 

below: 

 

<Model> ::= ExperimentOntology 

<ExperimentOntology> ::= ModelSection | Goals | Hypothesis | 

Experiment 

<ModelSection> ::=  model <id> {<Mechanism> <EventDescriptor> 

<Factor>} 

<Mechanism> ::= mechanism <id> = <Reaction> <GuardCondition> -> 

<Reaction> 

 

The full definition of the BNF grammar can be found in the Appendix. 

The next step in development was to implement the BNF grammar using a 

language engineering framework. We proceed by implementing the grammar in 

Xtext. 

4.3 DSL 

The DSL for simulation experiment model development is developed using the 

Xtext DSL development environment on Eclipse Kepler, by translating the 

experiment ontology metamodel. The DSL is also used to define a set of 
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hypotheses for experiment model validation and verification. The simulation 

experiment specifications are then used for the description of a simulation 

experiment. After the generation of the experiment model design with all the 

elements imposed by the experiment ontology, it is transformed and stored in a 

properties file. This file is then used to run the MASON model and collect the 

results of the simulation run.  

The strategy is to develop a grammar to help the user specify experimentation 

parameters and to verify the conditions to trigger them and determine a desired 

plan of action. The result of the action is then translated to the user after 

performing a set of validation and verification. 

The transition from BNF to an Xtext implementation is straightforward.  Each 

non-terminal in BNF is treated as a grammar rule, and terminals are either IDs or 

new keywords.  As a simple example, the following grammar rules in Xtext 

correspond to the BNF’s transition shown in the previous section: 

ExperimentOntology : 

 ModelSection |Goals | Hypothesis | Experiment 

; 

ModelSection: 

 'model' (modName = ID)  

 '{' 

 (mechanisms += Mechanism)* 

 ((events += EventDescriptor)?)* 

 (parameters += Factor)* 
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 '}' 

;  

Mechanism: 

 'mechanism' (mechanismName = ID) ' = ' (LHS = Reaction) 

(condition = GuardCondition)? ' -> ' (RHS = Reaction) 

; 

The full listing of the Xtext grammar definition can be found in the Appendix. 

4.4 Reference Implementation 

The reference implementation for this model is a java program that serves as an 

implementation of the rules from the grammar as java classes.  As we developed 

the program, we discovered that some aspects of the metamodel that were used 

in the grammar were simply textual devices for readability and served no purpose 

for computation.  These aspects were subsumed as identifiers in text recognition 

algorithms for the relevant classes.  Some of the use-cases are described below.    

 Usecase1.java 

This class initializes the pieces of an experiment specification and executes the 

experiment with the specified parameters. 

 ToDeliveryProperties.java 

In this class we construct the delivery.properties file from the factors and their 

values specified by the user. This file is later used for the MASON simulation run. 

 ToISHCProperties.java 

In this class we construct the ishc.properties file from the factors and their values 

specified by the user. This file is later used for the MASON simulation run. 
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 Query.java 

In the Query class, a string that represents a temporal property is passed to the 

constructor and is set as a global variable.  The constructor calls a method, 

detectEvents(), which in turn calls detectPattern() and detectPostfix().  The 

objective of these functions is to discover which Linear Temporal Logic (LTL) 

formula matches the sentence from the grammar and to find the conditions that 

will be inserted into the formula.  This class subsumed most of the temporal 

specification keywords as well as Conditions. 

 ConvertToLTL.java 

The purpose of this class is to take the events identified from the Query class 

and replace them in a matching LTL formula that can be found in a patterns.xml 

file.  An LTL formula in the XML file would be in a form like: [](Q & !R -> (!P W 

R)), where each of the letters (aside from W, which represents “weak until” in 

temporal logic), represents a placeholder for a condition from the DSL.  The 

difficulty in textually substituting these letters for their condition identifiers was 

due to the fact that the conditions could have the same capital letters in them as 

the placeholders in the formula, causing unexpected results. 

 ExperimentExecuter.java 

This class runs the model and gives the output. 

The class diagram generated from the reference implementation, shown in figure 

2, resembles the metamodel generated in the first step of our development 

process. 
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Figure 3: Class diagram generated from the reference implementation 
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CHAPTER 5 

CASE STUDY 

5.1 A Domain-Specific Language for the GHE Framework 

Our Model-Driven approach for experiment management is driven by explicit 

specification of goals, hypotheses, and experiments. We studied and modeled 

different types of hypotheses which allow the user to ask questions about the 

model or the system under study. In the context of DOE, hypotheses can be 

defined as mechanistic hypotheses, relational hypotheses, and constraints. For 

illustration purposes, the evolving DSL is used to define experiments for an 

agent-based In Silico Hepatocyte Culture (ISHC) model [Petersen et al. 2014], 

which we replicated to illustrate the proposed concepts in this study. 

In order to test the validity of our framework and the practical utility of the 

approach, we used our project to demonstrate the ISHC model. The DSL we 

developed is abstract and free of any technical terms. The DSL covers all 

relevant concepts of the domain with language elements. All schematically-

implementable code fragments of the reference implementation are covered by 

constructs of the DSL. The reference ISHC model is an instance of the DSL. The 

DSL for simulation experiment model is developed by mapping the experiment 

ontology metamodel.  
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5.1.1 Model 

Model consists of a specification about the model’s name, the mechanisms, the 

events and the factor parameters.  Mechanisms consist of the processes which is 

assumed to take place in the simulation system. Events define the path for 

tracing the functions that evaluate the events that form a part of the evidences. 

Parameters are the inputs to the model and their properties, which have an 

impact in determining the response/output of the simulation run. 

model ISHC{ 

mechanism M1 = inflammatoryAgent + Kupffercells 

[inflammatoryAgent > inflammatorythreshold] -> Cytokines     

mechanism M2 = inflammatoryAgent + Kupffercells [noOfCytokine 

> cytokineThreshold] -> Cytokines 

event inflammation = 'void 

ishc.model.KupfferCell.handleInflammation()' 

parameter LPS = Solute with properties {tag: LPS, bindable: true, 

bolusRatio:1.0 , pExitMedia: 0.1 , pExitCell: 1.0 , bindProb : 0.25 , 

bindCycles : 1 , numProps : 8 , membraneCrossing: true, bileRatio : 

0.5 , core2Rim : 0.50 , metProbStart : 0.3 , metProbFinish : 0.3 , 

metabolites: 'LPS-Metabolite_A', inflammatory : true , pDegrade : 

0.0} 

parameter forwardBias = DISCRETE with values {0.5} 

} 
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5.1.2 Goal 

Goals define what the purpose of the experiment is. It also gives an idea about 

the specific field of concern and the context under which the study is performed. 

goal 

{ 

object of study : 'Immune system influence on hepatic cytochrome 

P450 regulation' 

 purpose : 'Explain / characterize' 

 focus : 'the reason for changes in downstream drug metabolism 

and hepatotoxicity' 

view point : 'based on the response of hepatic cytochrome P450- 

regulating mechanisms' 

 context : 'when health and/or therapeutic interventions change.' 

} 

5.1.3 Hypotheses 

Hypotheses consists of relational hypotheses, mechanistic hypotheses and 

expected regularities. Mechanistic hypotheses deal with the effect of changes in 

the mechanism of the model. Relational hypotheses deal with the impact of 

changes in inputs or outputs. In order to represent behavioral changes in the 

model, we focus on mechanistic hypotheses for the study. Expected regularities 

are the temporal properties that are to be verified in the experimental run. It is 

stated in terms of factors and their properties.  
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The coherence model describes the explanatory coherence relation [Thagard 

1989] between the hypothesis and the evidence. The evidence can have an 

activation weight which indicates its reliability. This is used to establish the 

weightage of the link between the evidence and hypothesis in the coherence 

network. We identified the explanatory coherence concept that would be relevant 

in our framework and would help in discovering the model mechanisms. To 

summarize how we will be implementing explanatory coherence theory we listed 

the key terms from the principles, which was used in the experiment definition. 

 EXPLAIN 

We use this if a coherence exists which explains or supports evidence(s) and 

hypothesis(es). In this case excitatory links are established between the 

evidences and hypotheses and an activation weight is assigned to each link. As 

the number of such links between the hypotheses and evidences increase, the 

weight on the links in the network decreases.  

 ANALOGOUS 

We use this if hypothesis and evidence are analogous to each other. Analogy, 

produces excitatory links between the similar evidences and hypotheses and an 

activation weight is assigned to each link.  

 DATA PRIORITY 

The principle of data priority is used to set up explanation-independent excitatory 

links to each data unit from a special evidence unit that always has an activation 

of 1. The data units can have activation level specified depending upon its 
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reliability index. When the network runs, activation spreads from the special 

evidence unit to data units and then to the units representing explanatory 

hypotheses. 

 CONTRADICT 

We use this if there is incoherence between the evidence(s) and hypothesis(es). 

In this case inhibitory links are established between the evidences and 

hypotheses and a negative weight is assigned to each link. As the number of 

such links between the hypotheses and evidences increase, the weight on the 

links in the network changes.  

The conditions are grouped under these categories which are used in designing 

a query based DSL to allow the user to define the hypothesis which can be used 

to develop a simulation model.   

hypotheses 

{ 

 mechanistic hypotheses  

 { 

  H1 : M1 occurs before M2 

 } 

  

 evidence 

 { 

E1: inflammation occurs after inflammatoryAgent >  
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inflammatoryAgentThreshold  

  activation weight : 0.5 

  E2: inflammation is absent after cytokine < 

cytokineThreshold 

  activation weight : 0.5 

 } 

  

 coherence model  

 { 

  EXPLAIN (H1)(E1) 

  DATA (Experiment1)(E1 E2) 

 } 

} 

5.1.4 Experiment  

The ontology for the experiment section encompasses the structural 

elements of an experiment which includes the experiment’s design and 

performance measure. Based on the model’s parameters and their levels, 

the hypotheses and goal of the experiment, a design is created that is used 

in subsequent steps of the experiment life-cycle.  

The experimental design is defined by the dependent variables, the control 

variables, the independent variables and their levels, constraints and values 

which in turn are mappings of the variables provided by the user. Based on 

this design, one can define what is known as a design matrix, which 
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specifies the actual experimental runs, that is, the combination of factor 

levels. 

experiment Experiment1 

{ 

 design  

 { 

  designType FULLFACTORIAL 

  variables  

  { 

   independent variables  

   { 

LPS are at levels : LOW where LOW is in the 

range 1.0 to 1.0 

TOL are at levels : LOW where LOW is in the 

range 1.0 to 1.0 

DZ are at levels : LOW where LOW is in the 

range 1.0 to 1.0      

} 

    dependent variables  

    { 

     cytokines : type SIMPLE 

    } 

   } 
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  } 

 } 

5.1.5 Performance Measure 

An experiment consists of performance measure parameters which defines the 

criteria for successful experimental run. Basing on this measure we can decide 

whether additional iterations are required for satisfying the experiment’s 

objective. It is defined in terms of the expected value of the response or output of 

the experiment and its standard deviation. 

performance measure is  

 { 

  cytokines= 500 +-10 

 } 

In the above example, the expected value of the cytokines after successful 

experiment execution is 500 with a standard deviation of 10. 

5.2 Code Generation 

We used the Xtend code generation process for mapping the DSL to platform. A 

set of templates were derived from the reference implementation and used for 

the transformation step. 

class DOEGenerator implements IGenerator { 

 override void doGenerate(Resource resource, IFileSystemAccess 

fsa) { 
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fsa.generateFile('ishc.properties', 

toISHCProperties(resource.allContents 

    .filter(typeof(ModelSection)).head)) 

fsa.generateFile('delivery.properties', 

toDeliveryProperties(resource.allContents 

.filter(typeof(ModelSection)).head , 

resource.allContents.filter(typeof(Experiment)).head)) 

fsa.generateFile("KupfferCell.java", 

toKupfferCell(resource.allContents 

    .filter(typeof(ModelSection)).head)) 

fsa.generateFile("Hepatocyte.java", 

toHepatocyte(resource.allContents 

    .filter(typeof(ModelSection)).head)) } 

5.3 Application 

We developed an application to demonstrate our framework and its 

functionalities. The experiment specification defined using the DSL and the 

generated artifacts were used to run the ISHC simulation model in MASON to get 

the results. The figures below illustrate various functions supported by the 

application. 
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Figure 4: The File menu and its submenus 

 

Figure 5: The file explorer opens on clicking the Open menu 
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Figure 6: Upon selecting the Xtext file from the specified location, the file opens 

up and appears in the text area 

 

We can also edit the file with the required changes and save it in a desired  

location. 
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Figure 7: Run the MASON model using the specification of the Xtext file 

 

Figure 8: Data Menu displays the result of the run 
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Figure 9: Result of the run is displayed  

 

Figure 10: Graph menu shows various graphs that show the relationship between 

the factors of the simulation model 
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 Figure 11: Graph showing the relationship between the cytokines and LPS levels 
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CHAPTER 6  

CONCLUSION 

 

6.1 Summary 

The GHE framework has the ability to streamline execution of simulation models 

and verify their correctness properties through temporal attributes.  By 

conforming to Model-Driven development practices, specifically the relation of 

metamodel to grammar to implementation, the project was developed in a way 

that makes it extensible for future work.  Since the realm of experimentation and 

discovery is one which is constantly evolving, extensibility is a valuable attribute.  

By giving simulationists access to a diverse set of tools, such as experiment 

design strategy, factors of interest, acceptable output ranges, and temporal 

properties, the process of experimentation can be simplified, while hiding the 

details of the simulation implementation.  To the user of this system, the rewards 

of investing in this framework are apparent in development time, convenience, 

and efficiency.  The system does have its limitations, however.  For example, 

since LTL can only evaluate a linear chain of events, the term “verification” of a 

model is somewhat misleading.  For a model to be formally verified, all the states 

of a system should be checked for inconsistent behavior.  This framework only 

provides support for behaviors that have been observed in models, but not those 

behaviors which may exist but have not been observed.  
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6.2 Further Topics 

6.2.1 Coherence/Model Discovery 

There is a great synergy to be taken advantage of between mechanistic 

hypotheses and temporal properties.  We can take observations made from in 

vitro or in vivo labs as evidences to our simulation model in the form of temporal 

specifications.  We can use these evidences in a coherence model with 

mechanism changes in the program, specified by a mechanistic hypothesis to 

see if an evidence is invalidated with the mechanism change or supports one or 

more evidence.  One use of this coherence model is to develop an intelligent 

agent that can take knowledge gleaned from the model and develop new 

mechanism changes that support the most evidences, in an effort to develop 

autonomous computing.  Alternatively, or in the short term, this coherence model 

will be useful for model discovery for a simulationist.  If, for example, a 

simulationist introduces a new evidence to the system which is not supported by 

the current mechanisms, connections in the coherence model can help direct the 

user to a needed mechanism update that would not otherwise be known. 

6.2.2 Mechanistic Hypotheses 

 

Our future efforts will be directed towards generalizing this rule based definition 

of the hypotheses to capture various behavior of the model. Also our efforts will 

be directed towards identifying reaction scenarios for mechanistic hypotheses 

and associating the rules to a particular transformation process to facilitate 

computation. Transformation of these mechanism into computational code for 
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simulation is a task in progress. Generalizing the transformation process to 

accommodate various scenarios is also a future goal. 

The challenge lies in identifying different scenarios of mechanistic hypotheses 

and generalizing the DSL to allow their definition. The transformation of these 

hypotheses to mechanisms or expected behavior in the simulation model for the 

purpose of computation, is a challenge. These transformations might require 

additional information or assumptions on the model that must be provided by the 

user. 

6.2.3 Domain Specific Experiments 

Also our efforts will be directed towards the developing domain specific 

experiments to verify the hypotheses. The challenge lies in mapping of the 

hypotheses to experimental designs. It is difficult to predict a general method to 

generate the designs from a hypothesis. There can be many different designs 

that can be used. Generation and selection of the design requires additional 

information that must be provided by the user and that is not necessarily related 

to experimental design. 
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APPENDIX 

1. Metamodel 

 
 

2. BNF grammar 

<Model> ::= ExperimentOntology 

<ExperimentOntology> ::= ModelSection | Goals | Hypothesis | 

Experiment 

<ModelSection> ::=  model <id> {<Mechanism> <EventDescriptor> 

<Factor>} 
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<Mechanism> ::= mechanism <id> = <Reaction> <GuardCondition> -> 

<Reaction> 

<Reaction> ::= <id> + <id> 

<GuardCondition> ::= [ <id> <LinkOperator> <id> ] 

<EventDescriptor> ::= event <id> = <STRING> 

<Factor> ::= parameter <id> = <VariableType> <id> with values 

{<Values>} properties {<properties>} 

<Goals> ::= goal { object of study : <STRING> purpose : <STRING> focus 

: <STRING> view point : <STRING> context : <STRING>} 

<VariableType> ::= QUALITATIVE | QUANTITATIVE | CONTINUOUS | 

DISCRETE | BINARY | NONBINARY 

<Values> ::= <id> <XExpression> <rangeValue> <factorLevelValue> 

<properties> ::= <id> : <Values>  

<rangeValue> ::= INT <dot> <OptionalInt> 

<factorLevelValue> ::= <rangeValue> | , <rangeValue> 

<dot> ::= "." | "" 

<OptionalInt> ::= INT | "" 

<Hypotheses> ::= hypotheses { mechanistic 

hypotheses{<MechHypotheses>} evidence{<Evidence>} coherence 

model{<CoherenceLink>} relational hypotheses {<RelationalQuery>}} 

<CoherenceLink> ::= <Coherence> (<id>)(<id>) 

<MechHypotheses> ::= <id> : <TemporalPattern> <id> 
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<Evidence> ::= <id> : <TemporalPattern> activation weight : 

<rangeValue> 

<TemporalPattern> ::= <Sample> <Links> <Expression> <Operator> 

<Links> 

<Sample> ::= <Condition> | <Event> 

<Condition> ::= <ComplexID> <LinkOperators> <Expression> 

<rangeValue> <Condition> 

<Event> ::= <Dispersed> | <Simultaneous> 

<Dispersed> ::= <id> <Logical> <id> | <id> 

<Operator> ::= <Temporal> | <Logical> 

<Simultaneous> ::= [<id> <Logical> <id>] | [<id>] 

<LinkOperators> ::= '+'|'-'|'*'|'/'|'%'|' = '|' == '|'&&'|'||'|'<'|'<='|'>'|'>='|'!'|'!=' 

<Expression> ::= true | false 

<Links> ::= is | occurs | to | in 

<Temporal> ::= precedes | between | eventually | always | before | after | 

until | never | leads | absent | exists 

<Logical> ::= and | or | not 

<Coherence> ::= EXPLAIN | ANALOGOUS | DATA | CONTRADICT 

<RelationalQuery> ::= <Query1> | <Query2> | <Query3> | <Query4> | 

<Query5> 

<Query1> ::= if <id> <id> is <rangeValue> <Action> then <id> is 

<Response> 
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<Action> ::= added | removed | in the range <rangeValue> to 

<rangeValue> 

<Response> ::= <rangeValue> | in the range <rangeValue> to 

<rangeValue> 

<Query2> ::= compare <Operand> and <Operand> 

<Operand> ::= <Function> | <id> 

<Function> ::= MIN | MAX | EXP | INVERSE | SIN | COS | TAN | 

FACTORIAL | LOG  

<Query3> ::= if <QueryCondition> then <QueryResponse> where 

<Levels> for <id> <id> <id> is in the range <rangeValue> to <rangeValue> 

<QueryCondition ::= <id> <id> is <Level> 

<Level> ::= at level <Levels> <rangeValue> <OptionalAnd> <Level> | "" 

<QueryResponse> ::= <id> is <Level> 

<Changes> ::= CHANGED | INCREASED | DECREASED | CONSTANT 

<Levels> ::= HIGH | MEDIUM | LOW 

<Experiment> ::= experiment <id> { design <Design> performance 

measure is <PerformanceMeasure} 

<Design> ::= {designType <DesignType> constraints <XExpression> 

<Iteration> variables <Variables>} 

<DesignType> ::= FULLFACTORIAL | FRACTIONALFACTORIAL | 

OTHERS | "" 

<Variables> ::= {<IndependentVariables> <ControlVariables> 

<DependentVariables>} 
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<IndependentVariables> ::= independent variables {<FactorLevels>} 

<ControlVariables> ::= control variables {<id> : type <VariableType> with 

values {<Values>}} 

<DependentVariables> ::= dependent variables {<Response>} 

<FactorLevels> ::= <id> are at levesl : <rangeValue> <Levels> where 

<Levels> is in the range <rangeValue> to <rangeValue> 

<Response> ::= <id> : type <ResponseType> 

<ResponseType ::= SIMPLE | COMPOSITE 

<Iteration> ::= number of iterations : INT 

<PerformanceMeasure> ::= {<id> = <rangeValue> +- <rangeValue>} 

<OptionalAnd> ::= and | "" 

<OptionalTo> ::= to | "" 

<STRING> ::= "..." 

 

3. Xtext Grammar 

 

grammar org.xtext.Ontology.DOE with org.eclipse.xtext.xbase.Xbase 

generate dOE "http://www.xtext.org/Ontology/DOE" 

Model: 

 (elements+=ExperimentOntology)*; 

ExperimentOntology : 

 ModelSection |Goals | Hypothesis | Experiment 

; 
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ModelSection: 

 'model' (modName = ID)  

 '{' 

 (mechanisms += Mechanism)* 

 ((events += EventDescriptor)?)* 

 (parameters += Factor)* 

 '}' 

;  

Mechanism: 

 'mechanism' (mechanismName = ID) ' = ' (LHS = Reaction) (condition = 

GuardCondition)? ' -> ' (RHS = Reaction) 

; 

Reaction: 

 (agent1 = ID) (' + ' )? (agent = ID)? 

; 

GuardCondition: 

 gd = '[' (condition1= ID)? (link = LinkOperators)? (condition2 = ID)? ']' 

; 

LinkOperators: 

 '+'|'-'|'*'|'/'|'%'|' = '|' == '|'&&'|'||'|'<'|'<='|'>'|'>='|'!'|'!='  

; 

EventDescriptor: 

 'event' (eventName = ID) ' = ' (event = STRING) 
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; 

Factor: 

'parameter' (factorName = ID) ' = ' (factorType = VariableType)? 

(factorType1 = ID)? 

 'with' ('values' '{'(factorValue = Values)'}')? 

 ('properties' '{'((factorProperties += properties)*)'}')? 

; 

enum VariableType : 

QUALITATIVE | QUANTITATIVE | CONTINOUS | DISCRETE  | BINARY | 

NONBINARY 

; 

properties: 

 pName= ID ':' pVal = Values ','? 

; 

Values: 

 (fVal = ID)? 

 ( function = STRING)? 

 ( value = rangeValue)? 

 ( fvalue = factorLevelValue)? 

; 

terminal rangeValue : INT ('.')? (INT)? ;   

terminal factorLevelValue : rangeValue (',' rangeValue)* ; 

Goals: 
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 'goal' '{' 

 'object' 'of' 'study' ':' (objOfStudy = STRING) 

 'purpose' ':' (purpose = STRING) 

 'focus' ':' (focus = STRING) 

 'view point' ':' (viewPoint = STRING) 

 'context' ':' (context = STRING) 

 '}' 

; 

Hypothesis : 

 'hypotheses' 

 '{' 

 ('mechanistic' 'hypotheses'  '{' 

 (mechHypothesis += MechHypothesis)* 

 '}')? 

 ('evidence' '{' 

 (evidences += Evidence)* 

 '}')? 

 ('coherence' 'model' '{' 

 (coherenceLinks += CoherenceLink)* 

 '}')? 

 ('relational' 'hypotheses' '{' 

 (relHypothesis += RelationalQuery)* 

 '}')? 
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 '}' 

; 

CoherenceLink: 

 (coherence = Coherence) '('(hyp += ID)* ')' '('((evi += ID))*')' 

; 

MechHypothesis: 

(mName = ID) ':'(assoMech += TemporalPattern)*  

(mechanisticHypothesis = ID)? 

; 

Evidence: 

 (eName = ID) ':' (query += TemporalPattern)*   

 'activation' 'weight' ':' (objOfStudy = rangeValue) 

;  

TemporalPattern: 

Condition ((l2 += Links)?)* ((exp += Expression)?)* ((op1 += Temporal | 

op2 += Logical)?)* (l3 = Links)? 

;  

Condition: 

condition = Event (lo= LinkOperators)? (e=Event)? (exp1=Expression)? 

(v=rangeValue)? 

; 

Event: 

 Dispersed | Simultaneous 
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; 

Simultaneous: 

 '['  

  sim1 = Re (log += Logical sim2 += Re)* 

 ']' 

; 

Dispersed: 

 (disp += Re)+ 

; 

Re: 

 ID ('(' (ID ID)? ')')? 

; 

enum Expression: 

 TRUE | FALSE 

; 

 

enum Links: 

 is | occurs | to | in 

; 

enum Temporal: 

precedes | between | eventually | always | before | after | until | never | 

leads | absent | exists 

; 
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enum Logical: 

 and | or | not 

; 

enum Coherence: 

 EXPLAIN | ANALOGOUS | DATA | CONTRADICT 

; 

RelationalQuery: 

    Query1 | Query2 | Query3  

; 

Query1: 

     'if' (factor= ID)? (control=ID)? 'is' (x=rangeValue)?  

('added')? ('removed')? ('in the range' start1=rangeValue 'to' 

end1=rangeValue)? 

'then' (response= ID) 'is' (y=rangeValue)? ('in the range' 

start2=rangeValue 'to' end2=rangeValue)? 

  ;  

 

Query2: 

 'compare' (function1=Function)? (response1=ID)? (factor1=ID)? 'and'  

 (function2=Function)? (response2=ID)? (factor2=ID)?  

; 

enum Function: 

 MIN | MAX | EXP | INVERSE | SIN | COS | TAN | FACTORIAL | LOG  



62 

 

; 

Query3: 

'if' ((factor1=ID)? (control1=ID)? 'is' ('at' 'level' (Level2=Levels))? 

(x2=rangeValue)? ('and')?)* 

'then' ((response1=ID) 'is' ('at' 'level' (Level4=Levels))? (x4=rangeValue)? 

('and')?)*  

'where' ((level=Levels) 'for' (factor=ID)? (control=ID)? (response=ID)?  

'is' 'in the range' (start1=rangeValue) 'to' (end1=rangeValue))* 

; 

enum Changes: 

 CHANGED | INCREASED | DECREASED | CONSTANT 

;    

enum Levels: 

 HIGH | MEDIUM | LOW 

; 

 

Experiment : 

 'experiment' (expName = ID)'{' 

 'design' (expDesign = Design) 

 'performance measure' 'is' (perfMeasure = PerformanceMeasure) 

 '}' 

; 
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Design :    

 '{' 

 ('designType' designType = DesignType)? 

 (('constraints' constraint = ID)?)* 

 ( iteration = Iteration)? 

 ('variables' variables = Variables) 

 '}' 

;  

enum DesignType: 

 FULLFACTORIAL | FRACTIONALFACTORIAL | OTHERS  

;  

 Variables: 

  '{' 

  ( independentVariables = IndependentVariables) 

 ( controlVariables = ControlVariables)? 

 ( dependentVariables = DependentVariables) 

  '}' 

; 

IndependentVariables : 

 'independent' 'variables' '{'  

 ( variables +=  FactorLevels)* 

 '}' 

; 
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ControlVariables: 

'control' 'variables' '{' ((controlName = ID) ':' 'type' (controlType = 

VariableType) 'with' 'values' '{'(controlValue = Values) )* '}' 

; 

DependentVariables: 

  'dependent' 'variables' '{' 

  ( responseName = Response)* 

  ; 

FactorLevels: 

 ((facName = ID) 'are' 'at' 'levels' ':'  (l= factorLevelValue)? ((l1 = Levels) 

  'where' (l2 = Levels) 

  'is' 'in the range' (start1=rangeValue) 'to' (end1=rangeValue))?) 

; 

Response: 

  (responseName = ID) ':' 'type' (responseType = ResponseType)  

  '}' 

;  

enum ResponseType : 

 SIMPLE | COMPOSITE 

; 

Iteration: 

 ('number' 'of' 'iterations' ':' iterations = INT) 

;  
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PerformanceMeasure : 

 '{' 

(expectedResponse = ID) '=' (er= rangeValue)(' +-')(std= 

rangeValue) 

 '}' 

;   

 

4. Xtend Generator 

 

/* 

 * generated by Xtext 

 */ 

package org.xtext.Ontology.generator 

import org.eclipse.emf.ecore.resource.Resource 

import org.eclipse.xtext.generator.IGenerator 

import org.eclipse.xtext.generator.IFileSystemAccess 

import org.xtext.Ontology.dOE.Experiment 

import org.xtext.Ontology.dOE.Factor 

import org.xtext.Ontology.dOE.Model 

import org.xtext.Ontology.dOE.ModelSection 

import org.xtext.Ontology.dOE.properties 

import org.xtext.Ontology.dOE.Evidence 

import org.xtext.Ontology.dOE.Mechanism 
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/** 

 * Generates code from your model files on save. 

 *  

 * See 

https://www.eclipse.org/Xtext/documentation/303_runtime_concepts.html#

code-generation 

 */ 

class DOEGenerator implements IGenerator { 

 

 override void doGenerate(Resource resource, IFileSystemAccess 

fsa) { 

fsa.generateFile('ishc.properties', 

toISHCProperties(resource.allContents 

  .filter(typeof(ModelSection)).head)) 

  fsa.generateFile('delivery.properties',  

toDeliveryProperties(resource.allContents 

.filter(typeof(ModelSection)).head , 

resource.allContents.filter(typeof(Experiment)).head)) 

fsa.generateFile("KupfferCell.java", 

toKupfferCell(resource.allContents 

  .filter(typeof(ModelSection)).head)) 

  fsa.generateFile("Hepatocyte.java",  
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toHepatocyte(resource.allContents 

  .filter(typeof(ModelSection)).head)) 

 } 

  def toISHCProperties(ModelSection m) ''' 

  # model parameters 

  stepsPerCycle = 1 

  # component parameters 

  «FOR factor : m.parameters »  

   «IF(factor != null)» 

    «IF(factor.factorValue != null)» 

     «IF(factor.factorValue.function != null)» 

     «factor.factorName» =  

«factor.factorValue.function» 

«ELSEIF(factor.factorValue.FVal 

!=null)» 

«factor.factorName» = 

«factor.factorValue.FVal» 

«ELSEIF(factor.factorValue.fvalue != 

null)» 

«factor.factorName» = 

«factor.factorValue.fvalue» 

«ELSEIF(factor.factorValue.value != 

null)» 
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«factor.factorName» = 

«factor.factorValue.value» 

       «ENDIF» 

   «ENDIF» 

  «ENDIF» 

«ENDFOR» 

   

 ''' 

 def toDeliveryProperties(ModelSection m, Experiment e) 

 ''' 

 deliveryType = bolus 

 useContinualDoseFunction = false 

 repeatDose = true 

 infusionStopTime = 120.0 

 numDoses = 1 

 time.0 = 1.0 

 time.1 = 10.0 

 dose.0.alpha = 2000 

 dose.0.beta = -1 

 dose.0.gamma = -2 

 dose.0.numEntries = 7 

 «var count1 = -1» 
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 «FOR factor : m.parameters »  

  «IF(factor != null )» 

   #«count1++» 

   «IF(factor.factorProperties != null)» 

    «var count2 = 0» 

    «FOR p : factor.factorProperties» 

       «IF(!(p.PName.equals("membraneCrossing")  

|| p.PName.equals("bileRatio") || 

p.PName.equals("core2Rim") || 

p.PName.equals("metProbStart") || 

p.PName.equals("metProbFinish") || 

p.PName.equals("metabolites") || 

p.PName.equals("inflammatory") || 

p.PName.equals("pDegrade") || 

p.PName.equals("transportOut")))» 

       

      «IF(p.PVal.FVal != null)» 

dose.0.solute.«count1».«p.PName» = 

«p.PVal.FVal» 

«ELSEIF(p.PVal.function != 

null)» 

dose.0.solute.«count1».«p.PName» = 

«p.PVal.function» 
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      «ELSEIF(p.PVal.value != null)» 

dose.0.solute.«count1».«p.PName» = 

«p.PVal.value» 

      «ELSEIF(p.PVal.fvalue != null)» 

dose.0.solute.«count1».«p.PName» = 

«p.PVal.fvalue» 

      «ENDIF» 

«ELSEIF(p.PName.equals("bileRatio") || 

p.PName.equals("core2Rim") ||  

p.PName.equals("metProbStart") || 

p.PName.equals("metProbFinish") || 

p.PName.equals("inflammatory") || 

p.PName.equals("pDegrade"))» 

         

dose.0.solute.«count1».property.«count

2».key = «p.PName» 

     dose.0.solute.«count1».property.«count 

2».type = real 

      «IF(p.PVal.FVal != null)» 

     dose.0.solute.«count1».property.«count 

2++».val =  «p.PVal.FVal» 

«ELSEIF(p.PVal.function != 

null)» 
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dose.0.solute.«count1».property.«count 

2++».val =  «p.PVal.function» 

      «ELSEIF(p.PVal.value != null)» 

     dose.0.solute.«count1».property.«count 

2++».val =  «p.PVal.value» 

      «ELSEIF(p.PVal.fvalue != null)» 

     dose.0.solute.«count1».property.«count 

2++».val =  «p.PVal.fvalue» 

      «ENDIF» 

«ELSEIF(p.PName.equals("membraneCrossing") || 

p.PName.equals("transportOut"))» 

dose.0.solute.«count1».property.«count2».key = 

«p.PName» 

dose.0.solute.«count1».property.«count2».type = 

boolean 

    «IF(p.PVal.FVal != null)» 

dose.0.solute.«count1».property.«count2++».val =  

«p.PVal.FVal» 

    «ELSEIF(p.PVal.function != null)» 

dose.0.solute.«count1».property.«count2++».val =  

«p.PVal.function» 

    «ELSEIF(p.PVal.value != null)» 
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dose.0.solute.«count1».property.«count2++».val =  

«p.PVal.value» 

    «ELSEIF(p.PVal.fvalue != null)» 

dose.0.solute.«count1».property.«count2++».val =  

«p.PVal.fvalue» 

    «ENDIF» 

   «ELSEIF(p.PName.equals("metabolites"))» 

   «IF(e.expDesign.variables.independentVariables. 

variables != null)» 

    «FOR factorLevels :  

e.expDesign.variables.independentVariables.v

ariables» 

    «IF(factorLevels.facName.equals 

((p.PVal.function.split('-').get(0))))» 

     «IF(factorLevels.l != null)» 

dose.0.solute.«count1».property.«count2».key 

= metabolites 

dose.0.solute.«count1».property.«count2».type 

= map 
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dose.0.solute.«count1».property.«count2++».v

al =  «p.PVal.function.split('-').get(1)» => 

<«factorLevels.l»> 

«ELSEIF(factorLevels.start1 != null && 

factorLevels.end1 != null)» 

dose.0.solute.«count1».property.«count2».key 

= metabolites 

dose.0.solute.«count1».property.«count2».type 

= map 

dose.0.solute.«count1».property.«count2++».val 

=  «p.PVal.function.split('-').get(1)» => 

<«factorLevels.start1»,«factorLevels.end1»> 

       «ENDIF» 

      «ENDIF» 

     «ENDFOR» 

    «ENDIF» 

   «ENDIF» 

  «ENDFOR» 

 «ENDIF» 

 «ENDIF» 

«ENDFOR» 

     ''' 
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     def toKupfferCell(ModelSection m)''' 

  package ishc.model; 

  import java.lang.Math; 

  import sim.field.grid.*; 

  import sim.util.Bag; 

  public class KupfferCell extends Cell { 

private static final org.slf4j.Logger log = 

org.slf4j.LoggerFactory.getLogger( ISHC.class ); 

public KupfferCell(Culture p, ec.util.MersenneTwisterFast 

random, int x, int y) { 

          super(p,random); 

          setLoc(x,y); 

          actionShuffler.clear();          

          actionShuffler.add(new Runnable() { public void run() {  

        handleInflammation(); } }); 

          actionShuffler.add(new Runnable() { public void run() {  

        handleDegradation();}} ); 

      } 

      BolusEntry cytokineBolusEntry = null; 

      public void handleInflammation() 

      { 

          int numInflammatoryStimuli = 0; 

          int numCytokines = 0; 
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          for(Object o : solutes) 

          { 

              Solute s = (Solute) o; 

              if(s.hasProperty("inflammatory") &&  

((Boolean)s.getProperty("inflammatory"))) 

              { 

                  numInflammatoryStimuli++; 

              } 

              if(s.type.equals("Cytokine")) 

              { 

                  numCytokines++; 

              }  

«FOR mech : m.mechanisms» 

«IF(mech.LHS.agent != null && 

mech.LHS.agent1 != null)»

 «IF(mech.LHS.agent.equalsIgnoreCase( 

"Kupffercells") || 

mech.LHS.agent.equalsIgnoreCase("Ku

pffercell"))» 

              if(s.type.equals("«mech.LHS.agent1»"){ 

                          «IF(mech.condition != null)» 

                if("«mech.condition.condition1»"  
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«mech.condition.link» 

"«mech.condition.condition2»") 

               «ENDIF» 

               «IF(mech.RHS.agent1 != null)» 

«IF(mech.RHS.agent1.equalsIgnoreCase("Cyt

okines") || 

mech.RHS.agent1.equalsIgnoreCase("Cytokin

e"))» 

numCytokines++;   

«ELSEIF(mech.RHS.agent1.equalsIgnoreCase

("Inflammation") || 

mech.RHS.agent1.equalsIgnoreCase("Inflamm

atoryAgent"))» 

                 numInflammatoryStimuli++; 

«ELSEIF(mech.RHS.agent1.equalsIgnoreCase

("No Inflammation")|| 

mech.RHS.agent1.equalsIgnoreCase("NoInfla

mmation"))» 

                 numInflammatoryStimuli--; 

               «ENDIF» 

               «ENDIF» 

              «IF(mech.RHS.agent != null)» 
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«IF(mech.RHS.agent.equals("Cytokines") || 

mech.RHS.agent.equals("Cytokine"))» 

                     numCytokines++;    

«ELSEIF(mech.RHS.agent.equalsIgnoreCase(

"Inflammation") || 

mech.RHS.agent.equalsIgnoreCase("Inflamma

toryAgent"))» 

numInflammatoryStimuli++; 

«ELSEIF(mech.RHS.agent.equalsIgnoreCase(

"No Inflammation")|| 

mech.RHS.agent.equalsIgnoreCase("NoInflam

mation"))» 

numInflammatoryStimuli--; 

                «ENDIF» 

                 «ENDIF»  

   «ENDIF» 

  «ENDIF» 

 «ENDFOR»  

                 } 

              } 

          } 
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          if(numCytokines >= parent.cytokineThreshold) 

          { 

              return; 

          } 

          if(numInflammatoryStimuli >=  

        parent.inflammatoryStimulusThreshold) 

          {                

              double probability = 1.0 - Math.exp(- 

1*(numInflammatoryStimuli - 

parent.inflammatoryStimulusThreshold) / 

parent.exponentialFactor); 

              double draw = rng.nextDouble(); 

              if(draw <= probability) 

                  addCytokine(); 

          } 

      } 

      public Solute addCytokine() 

      { 

   if(cytokineBolusEntry == null) 

          { 

              sim.util.Bag bolusEntries = ((BolusDose)  

parent.model.delivery.doses.objs[0]).solution; 

              for (int i = 0; i < bolusEntries.numObjs; i++) { 
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                  BolusEntry be = (BolusEntry) bolusEntries.objs[i]; 

                  if (be.tag.equals("Cytokine")) { 

                      cytokineBolusEntry = be; 

                      break; 

                  } 

              } 

          } 

           

          //Create the Cytokine 

          Solute cytokine = new Solute(cytokineBolusEntry); 

          cytokine.setProperties(cytokineBolusEntry.props); 

          //Add the Cytokine 

          parent.solutes.add(cytokine); 

          parent.cellSpace.setObjectLocation(cytokine,  

myX, myY); 

          solutes.add(cytokine); 

          return cytokine; 

      } 

  } 

 ''' 

 def toHepatocyte(ModelSection m) ''' 

  package ishc.model; 
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  import java.util.HashMap; 

  import java.util.LinkedHashMap; 

  import sim.util.Bag; 

  import sim.util.Double2D; 

  public class Hepatocyte extends Cell implements CellInfo,  

EIInfo, ELInfo, MetabolismInfo { 

   private static final org.slf4j.Logger log =  

org.slf4j.LoggerFactory.getLogger( ISHC.class ); 

      HashMap<String, Double> metProbMap = new  

LinkedHashMap<String,Double>(); 

      HashMap<String, HashMap<String,Double>>  

productionMap = new 

LinkedHashMap<String,HashMap<String,Double>>(); 

   int numEnzymesAtInit = -Integer.MAX_VALUE; 

   public Hepatocyte(Culture p, ec.util.MersenneTwisterFast  

random, int x, int y) { 

        super(p, random); 

        setLoc(x,y); 

        if (parent.ei_rate > 0.0) { 

              actionShuffler.add(new EIHandler((CellInfo) this,  

(BindingInfo) this, (EIInfo) this, log)); 

          } 

          if (parent.el_rate > 0.0) { 
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              actionShuffler.add(new ELHandler((CellInfo) this,  

(BindingInfo) this, (ELInfo) this, log)); 

          } 

          if (parent.useDDI) { 

              actionShuffler.add(new DDIHandler((BindingInfo)  

this, rng, log, parent.pReplace)); 

          }        

          if (parent.drRate > 0) { 

              actionShuffler.add(new Runnable() { public void run()  

{ handleDownRegulation(); } }); 

          } 

      } 

  float ENZYME_INIT_FACTOR = 3.0f; 

      public void init() {     

        int min = StrictMath.round(parent.bindmin); 

        int max = StrictMath.round(parent.bindmax); 

        try { 

          numEnzymesAtInit = rng.nextInt(max-min) + min; 

        } catch (IllegalArgumentException e) { 

            numEnzymesAtInit = min; 

        }     

  for (int bNdx=0 ; bNdx<numEnzymesAtInit; bNdx++)  

          binders.add(new Enzyme()); 
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        for (Object o :  

((BolusDose)parent.model.delivery.doses.objs[0]).sol

ution) { 

          BolusEntry be = (BolusEntry) o; 

          if (be.bindable) { 

            double mps = (Double)be.props.get("metProbStart"); 

            double mpf = (Double)be.props.get("metProbFinish");           

            double mp = mps + (mpf-mps)*0.5; 

            metProbMap.put(be.tag, mp); 

HashMap<String,Double2D> mprodmap =  

(HashMap<String,Double2D>) 

be.props.get("metabolites"); 

HashMap<String,Double> metsMap = new  

LinkedHashMap<>(); 

for (java.util.Map.Entry<String,Double2D> me : 

mprodmap.entrySet()) { 

              Double2D d2d = me.getValue(); 

              double prmin = d2d.x; 

              double prmax = d2d.y; 

              double prodRate = prmin + (prmax-prmin)*0.5; 

              metsMap.put(me.getKey(), prodRate); 

            } 



83 

 

            productionMap.put(be.tag,metsMap); 

          } 

        } 

        if (!metProbMap.isEmpty()) { 

              actionShuffler.add(new  

MetabolismHandler((BindingInfo) this, 

(MetabolismInfo) this, rng, log)); 

          } 

      } 

      public java.util.ArrayList<ishc.util.MyInt> elimQueue = null; 

      int rate_increment = parent.drRate; 

      public void handleDownRegulation() 

      {       

   

          boolean thereIsACytokine = false; 

«FOR mech : m.mechanisms» 

«IF(mech.LHS.agent != null && mech.LHS.agent1 != 

null)» 

«IF(mech.LHS.agent1.equalsIgnoreCase("Hepatocyte

") || 

mech.LHS.agent.equalsIgnoreCase("Hepatocyte"))» 

          «IF(mech.RHS.agent1 != null) && 
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(mech.RHS.agent1.equalsIgnoreCase("Cytokines") || 

mech.RHS.agent1.equalsIgnoreCase("Cytokine"))» 

               «IF(mech.condition != null)» 

if("«mech.condition.condition1»" 

«mech.condition.link» 

"«mech.condition.condition2»"){ 

       thereIsACytokine = true; 

     } 

               «ENDIF»                    

          «ELSE» 

          for(Solute s : solutes) 

          { 

              if(s.type.equalsIgnoreCase("Cytokine")) 

              { 

                  thereIsACytokine = true; 

                  break; 

              } 

          } 

          «ENDIF» 

           « IF(mech.RHS.agent1 != null) && 

           (mech.RHS.agent1.equalsIgnoreCase("Enzymes") ||  

mech.RHS.agent1.equalsIgnoreCase("Enzyme"))» 
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               «IF(mech.condition != null)» 

if("«mech.condition.condition1»" 

«mech.condition.link» 

"«mech.condition.condition2»"){ 

              binders.add(new Enzyme()); 

                return; 

               } 

               «ENDIF» 

           «ELSE» 

           if(binders.size() < numEnzymesAtInit && elimQueue !=  

null && elimQueue.size() == 0 && !thereIsACytokine) 

          {             

              if(rng.nextDouble() < parent.drReplenish) 

                  binders.add(new Enzyme()); 

              return; 

          } 

          «ENDIF» 

          if(elimQueue != null && elimQueue.size() > 0) 

          { 

              int num_to_elim = (int) elimQueue.remove(0).val; 

              java.util.ArrayList<Binder> to_be_removed = new  

java.util.ArrayList<Binder>(); 

              for(Binder b : binders) 
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              { 

                  if(num_to_elim <= 0) 

                      break; 

                  if(!bound.containsKey(b)) //if unbound 

                      to_be_removed.add(b); 

                  if(to_be_removed.size() >= num_to_elim) 

                      break; 

                  «IF(mech.RHS.agent1.contains("Removed"))» 

if(!bound.containsKey("«mech.RHS.agent1.sub

string(mech.RHS.agent1.indexOf("Removed"))

»")) //if unbound 

                      to_be_removed.add(b); 

                   «ENDIF» 

                  «IF(mech.RHS.agent1.contains("Added"))» 

if(!bound.containsKey("«mech.RHS.agent1.sub

string(mech.RHS.agent1.indexOf("Added"))»)") 

//if unbound 

                      to_be_removed.remove(b); 

                      «ENDIF» 

   «ENDIF» 

  «ENDIF» 

 «ENDFOR» 
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              } 

    for(Binder b : to_be_removed) 

                  binders.remove(b); 

          } 

          Binder firstUnbound = null; 

          for(Binder b : binders) 

          { 

              if(!bound.containsKey(b)) 

              { 

                  firstUnbound = b; 

                  break; 

              } 

          } 

          if(firstUnbound == null) 

              return;                 

   for(Solute s : solutes) 

          { 

              if(s.type.equalsIgnoreCase("Cytokine")) 

              { 

                  if(rng.nextDouble() < parent.drRemove) 

                  { 

                      //Add to the queue to be removed, then return 

                      if(elimQueue == null) 



88 

 

                          elimQueue = new  

java.util.ArrayList<ishc.util.MyInt>(); 

                        for(int i = 0; i < rate_increment - 1; i++) 

                      { 

                          elimQueue.add(new ishc.util.MyInt(0)); 

                      } 

                      elimQueue.add(new ishc.util.MyInt(1)); 

                      return; 

                  } 

              } 

          } 

      } 

     //Implementations for CellInfo 

      public double getResources() { 

          return parent.resources; 

      } 

      public int getBindmax() {return parent.bindmax;} 

      public int getNumEnzymesAtInit() {return  

numEnzymesAtInit; } 

          //Implementations for EIInfo 

      public int getEIThresh() {return parent.ei_thresh;} 

      public double getEIRate() {return parent.ei_rate;} 

      public double getEIResponse() {return  
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parent.ei_response_factor;} 

      //Implementations for ELInfo 

      public int getELThresh() {return parent.el_thresh;} 

      public double getELRate() {return parent.el_rate;} 

      public double getELResponse() {return  

parent.el_response_factor;} 

      //Implementations for MetabolismInfo 

      public HashMap<String, Double> getMetProbMap()  

{return metProbMap;} 

      public HashMap<String, HashMap<String,Double>>  

getProductionMap() {return productionMap; } 

      public Bag getBolusEntries() {return ((BolusDose)  

parent.model.delivery.doses.objs[0]).solution; } 

      public void removeSolute(Solute s) { 

          solutes.remove(s); 

          parent.solutes.remove(s); 

          parent.cellSpace.remove(s); 

      } 

      public void addSolute(Solute s) { 

          parent.solutes.add(s); 

          parent.cellSpace.setObjectLocation(s, myX, myY); 

          solutes.add(s); 

      } 
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  } 

  

 ''' 

} 

 

5. Reference Model 

model ISHC{ 

mechanism M1 = inflammatoryAgent + Kupffercells [inflammatoryAgent > 

inflammatorythreshold] -> Cytokines     

mechanism M2 = inflammatoryAgent + Kupffercells [noOfCytokine > 

cytokineThreshold] -> Cytokines 

 event inflammation = 'void ishc.model.KupfferCell.handleInflammation()' 

 parameter LPS = Solute with properties {tag: LPS, bindable: true ,  

bolusRatio:1.0 , pExitMedia: 0.1 , 

  pExitCell: 1.0 , bindProb : 0.25 , bindCycles : 1 , numProps : 8 , 

  membraneCrossing: true, bileRatio : 0.5 , core2Rim : 0.50 ,  

metProbStart : 0.3 ,  

  metProbFinish : 0.3 , metabolites: 'LPS-Metabolite_A', 

  inflammatory : true , pDegrade : 0.0 

 }  

 parameter TOL = Solute with properties {tag: TOL, bindable:true,  

bolusRatio:0.0 , pExitMedia: 0.001 , 

  pExitCell: 1.0 , bindProb : 0.2 , bindCycles : 2 , numProps : 6 , 
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  membraneCrossing: true, bileRatio : 0.5 , core2Rim : 0.50 ,  

metProbStart : 0.2 ,  

  metProbFinish : 0.2 , metabolites: 'TOL-Metabolite_B' 

 } 

 parameter DZ = Solute with properties {tag: DZ, bindable:true,  

bolusRatio:0.0 , pExitMedia: 0.05 , 

  pExitCell: 1.0 , bindProb : 0.5 , bindCycles : 2 , numProps : 6 , 

  membraneCrossing: true, bileRatio : 0.5 , core2Rim : 0.50 ,  

metProbStart : 0.5 ,  

  metProbFinish : 0.5 , metabolites: 'TOL-Metabolite_N' 

 } 

 parameter Cytokine = Solute with properties {tag: Cytokine,  

bindable:false, bolusRatio:0.0 , pExitMedia: 0.02 , 

  pExitCell: 0.0 , bindProb : 0.0 , bindCycles : 1 , numProps : 2 , 

  membraneCrossing: true, pDegrade : 0.1 

   

 } 

 parameter Metabolite_A = Solute with properties {tag: Metabolite_A,  

bindable:false, bolusRatio:0.0 , pExitMedia: 0.0 , 

  pExitCell: 0.0 , bindProb : 0.0 , bindCycles : 2 , numProps : 4 , 

  membraneCrossing: false, bileRatio : 0.5 , core2Rim : 0.50 ,  

transportOut : true  

 } 
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 parameter Metabolite_B = Solute with properties {tag: Metabolite_B,  

bindable:false, bolusRatio:0.0 , pExitMedia: 0.0 , 

  pExitCell: 0.0 , bindProb : 0.0 , bindCycles : 2 , numProps : 4 , 

  membraneCrossing: false, bileRatio : 0.5 , core2Rim : 0.50 ,  

transportOut : true  

 } 

 parameter Metabolite_N = Solute with properties {tag:  

Metabolite_N, bindable:false, bolusRatio:0.0 , pExitMedia: 0.0 , 

  pExitCell: 0.0 , bindProb : 0.0 , bindCycles : 2 , numProps : 4 , 

  membraneCrossing: false, bileRatio : 0.0 , core2Rim : 0.50 ,  

transportOut : true  

 } 

 parameter Metabolite2 = Solute with values {0.9} 

 parameter forwardBias = DISCRETE with values {0.5} 

 parameter lateralBias = DISCRETE with values {0.5} 

 parameter mediaScale = DISCRETE with values {1000} 

 parameter hepDensity = DISCRETE with values {0.0} 

 parameter KCDensity = DISCRETE with values {0.9} 

 parameter bindersPerCellMin = DISCRETE with values {4} 

 parameter bindersPerCellMax = DISCRETE with values {8} 

 parameter eiThresh = DISCRETE with values {1} 

 parameter eiRate = DISCRETE with values {0.05} 
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 parameter eiResponse = DISCRETE with values {0.25} 

 parameter elThresh = DISCRETE with values {1} 

 parameter elRate = DISCRETE with values {0.05} 

 parameter elResponse = DISCRETE with values {0.25} 

 parameter scale = DISCRETE with values {1000000} 

 parameter inflammatoryStimulusThreshold = DISCRETE with values {0} 

 parameter cytokineThreshold = DISCRETE with values {3} 

 parameter exponentialFactor = DISCRETE with values {2} 

 parameter drReplenish = DISCRETE with values {0.005} 

 parameter drRemove = DISCRETE with values {0.015} 

 parameter drRate = DISCRETE with values {30} 

} 

goal 

{ 

 object of study : 'Immune system influence on hepatic cytochrome P450  

regulation' 

 purpose : 'Explain / characterize' 

 focus : 'the reason for changes in downstream drug metabolism and  

hepatotoxicity' 

 view point : 'based on the response of hepatic cytochrome P450-  

regulating mechanisms' 

 context : 'when health and/or therapeutic interventions change.' 

} 
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hypotheses 

{ 

 mechanistic hypotheses  

 { 

  H1 : M1 occurs before M2 

 } 

  

 evidence 

 { 

  E1: inflammation occurs after inflammatoryAgent >  

inflammatoryAgentThreshold  

  activation weight : 0.5 

  E2: inflammation is absent after cytokine < cytokineThreshold 

  activation weight : 0.5 

 } 

  

 coherence model  

 { 

  EXPLAIN (H1)(E1) 

  DATA (Experiment1)(E1 E2) 

 } 

} 
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experiment Exp1{ 

 design { 

  variables{ 

   independent variables  

   { 

     

   LPS are at levels : LOW where LOW is in the range 1.0 to  

1.0 

   TOL are at levels : LOW where LOW is in the range 1.0 to  

1.0 

DZ are at levels : LOW where LOW is in the range 1.0 to  

1.0 

   } 

   dependent variables  

   { 

    cytokines : type SIMPLE 

   } 

  } 

 } 

 performance measure is  

 { 
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  cytokines= 500 +-10 

 } 

} 

6. Generated Artifacts 

i. ishc.properties 

# model parameters 

stepsPerCycle = 1 

# component parameters 

Metabolite2 = 0.9 

forwardBias = 0.5 

lateralBias = 0.5 

mediaScale = 1000 

hepDensity = 0.0 

KCDensity = 0.9 

bindersPerCellMin = 4 

bindersPerCellMax = 8 

eiThresh = 1 

eiRate = 0.05 

eiResponse = 0.25 

elThresh = 1 

elRate = 0.05 

elResponse = 0.25 

scale = 1000000 
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inflammatoryStimulusThreshold = 0 

cytokineThreshold = 3 

exponentialFactor = 2 

drReplenish = 0.005 

drRemove = 0.015 

drRate = 30 

ii. delivery.properties 

deliveryType = bolus 

useContinualDoseFunction = false 

repeatDose = true 

infusionStopTime = 120.0 

numDoses = 1 

time.0 = 1.0 

time.1 = 10.0 

dose.0.alpha = 2000 

dose.0.beta = -1 

dose.0.gamma = -2 

dose.0.numEntries = 7 

 #-1 

 dose.0.solute.0.tag = LPS 

 dose.0.solute.0.bindable = true 

 dose.0.solute.0.bolusRatio = 1.0 

 dose.0.solute.0.pExitMedia = 0.1 
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 dose.0.solute.0.pExitCell = 1.0 

 dose.0.solute.0.bindProb = 0.25 

 dose.0.solute.0.bindCycles = 1 

 dose.0.solute.0.numProps = 8 

 dose.0.solute.0.property.0.key = membraneCrossing 

 dose.0.solute.0.property.0.type = boolean 

 dose.0.solute.0.property.0.val =  true 

 dose.0.solute.0.property.1.key = bileRatio 

 dose.0.solute.0.property.1.type = real 

 dose.0.solute.0.property.1.val =  0.5 

 dose.0.solute.0.property.2.key = core2Rim 

 dose.0.solute.0.property.2.type = real 

 dose.0.solute.0.property.2.val =  0.50 

 dose.0.solute.0.property.3.key = metProbStart 

 dose.0.solute.0.property.3.type = real 

 dose.0.solute.0.property.3.val =  0.3 

 dose.0.solute.0.property.4.key = metProbFinish 

 dose.0.solute.0.property.4.type = real 

 dose.0.solute.0.property.4.val =  0.3 

 dose.0.solute.0.property.5.key = metabolites 

 dose.0.solute.0.property.5.type = map 

 dose.0.solute.0.property.5.val =  Metabolite_A => <1.0,1.0> 

 dose.0.solute.0.property.6.key = inflammatory 
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 dose.0.solute.0.property.6.type = real 

 dose.0.solute.0.property.6.val =  true 

 dose.0.solute.0.property.7.key = pDegrade 

 dose.0.solute.0.property.7.type = real 

 dose.0.solute.0.property.7.val =  0.0 

 #0 

 dose.0.solute.1.tag = TOL 

 dose.0.solute.1.bindable = true 

 dose.0.solute.1.bolusRatio = 0.0 

 dose.0.solute.1.pExitMedia = 0.001 

 dose.0.solute.1.pExitCell = 1.0 

 dose.0.solute.1.bindProb = 0.2 

 dose.0.solute.1.bindCycles = 2 

dose.0.solute.1.numProps = 6 

 dose.0.solute.1.property.0.key = membraneCrossing 

 dose.0.solute.1.property.0.type = boolean 

 dose.0.solute.1.property.0.val =  true 

 dose.0.solute.1.property.1.key = bileRatio 

 dose.0.solute.1.property.1.type = real 

 dose.0.solute.1.property.1.val =  0.5 

 dose.0.solute.1.property.2.key = core2Rim 

 dose.0.solute.1.property.2.type = real 

 dose.0.solute.1.property.2.val =  0.50 
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 dose.0.solute.1.property.3.key = metProbStart 

 dose.0.solute.1.property.3.type = real 

 dose.0.solute.1.property.3.val =  0.2 

 dose.0.solute.1.property.4.key = metProbFinish 

 dose.0.solute.1.property.4.type = real 

 dose.0.solute.1.property.4.val =  0.2 

 dose.0.solute.1.property.5.key = metabolites 

 dose.0.solute.1.property.5.type = map 

 dose.0.solute.1.property.5.val =  Metabolite_B => <1.0,1.0> 

 #1 

 dose.0.solute.2.tag = DZ 

 dose.0.solute.2.bindable = true 

 dose.0.solute.2.bolusRatio = 0.0 

 dose.0.solute.2.pExitMedia = 0.05 

 dose.0.solute.2.pExitCell = 1.0 

 dose.0.solute.2.bindProb = 0.5 

 dose.0.solute.2.bindCycles = 2 

 dose.0.solute.2.numProps = 6 

 dose.0.solute.2.property.0.key = membraneCrossing 

 dose.0.solute.2.property.0.type = boolean 

 dose.0.solute.2.property.0.val =  true 

 dose.0.solute.2.property.1.key = bileRatio 

 dose.0.solute.2.property.1.type = real 
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 dose.0.solute.2.property.1.val =  0.5 

 dose.0.solute.2.property.2.key = core2Rim 

 dose.0.solute.2.property.2.type = real 

 dose.0.solute.2.property.2.val =  0.50 

 dose.0.solute.2.property.3.key = metProbStart 

 dose.0.solute.2.property.3.type = real 

 dose.0.solute.2.property.3.val =  0.5 

 dose.0.solute.2.property.4.key = metProbFinish 

 dose.0.solute.2.property.4.type = real 

 dose.0.solute.2.property.4.val =  0.5 

 dose.0.solute.2.property.5.key = metabolites 

 dose.0.solute.2.property.5.type = map 

 dose.0.solute.2.property.5.val =  Metabolite_N => <1.0,1.0> 

 #2 

dose.0.solute.3.tag = Cytokine 

 dose.0.solute.3.bindable = false 

 dose.0.solute.3.bolusRatio = 0.0 

 dose.0.solute.3.pExitMedia = 0.02 

 dose.0.solute.3.pExitCell = 0.0 

 dose.0.solute.3.bindProb = 0.0 

 dose.0.solute.3.bindCycles = 1 

 dose.0.solute.3.numProps = 2 

 dose.0.solute.3.property.0.key = membraneCrossing 
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 dose.0.solute.3.property.0.type = boolean 

 dose.0.solute.3.property.0.val =  true 

 dose.0.solute.3.property.1.key = pDegrade 

 dose.0.solute.3.property.1.type = real 

 dose.0.solute.3.property.1.val =  0.1 

 #3 

dose.0.solute.4.tag = Metabolite_A 

 dose.0.solute.4.bindable = false 

 dose.0.solute.4.bolusRatio = 0.0 

 dose.0.solute.4.pExitMedia = 0.0 

 dose.0.solute.4.pExitCell = 0.0 

 dose.0.solute.4.bindProb = 0.0 

 dose.0.solute.4.bindCycles = 2 

 dose.0.solute.4.numProps = 4 

 dose.0.solute.4.property.0.key = membraneCrossing 

 dose.0.solute.4.property.0.type = boolean 

 dose.0.solute.4.property.0.val =  false 

 dose.0.solute.4.property.1.key = bileRatio 

 dose.0.solute.4.property.1.type = real 

 dose.0.solute.4.property.1.val =  0.5 

 dose.0.solute.4.property.2.key = core2Rim 

 dose.0.solute.4.property.2.type = real 

 dose.0.solute.4.property.2.val =  0.50 
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 dose.0.solute.4.property.3.key = transportOut 

 dose.0.solute.4.property.3.type = boolean 

 dose.0.solute.4.property.3.val =  true 

#4 

dose.0.solute.5.tag = Metabolite_B 

 dose.0.solute.5.bindable = false 

 dose.0.solute.5.bolusRatio = 0.0 

 dose.0.solute.5.pExitMedia = 0.0 

 dose.0.solute.5.pExitCell = 0.0 

 dose.0.solute.5.bindProb = 0.0 

 dose.0.solute.5.bindCycles = 2 

 dose.0.solute.5.numProps = 4 

 dose.0.solute.5.property.0.key = membraneCrossing 

 dose.0.solute.5.property.0.type = boolean 

 dose.0.solute.5.property.0.val =  false 

 dose.0.solute.5.property.1.key = bileRatio 

 dose.0.solute.5.property.1.type = real 

 dose.0.solute.5.property.1.val =  0.5 

 dose.0.solute.5.property.2.key = core2Rim 

 dose.0.solute.5.property.2.type = real 

 dose.0.solute.5.property.2.val =  0.50 

 dose.0.solute.5.property.3.key = transportOut 

 dose.0.solute.5.property.3.type = boolean 
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 dose.0.solute.5.property.3.val =  true 

#5 

dose.0.solute.6.tag = Metabolite_N 

 dose.0.solute.6.bindable = false 

 dose.0.solute.6.bolusRatio = 0.0 

 dose.0.solute.6.pExitMedia = 0.0 

 dose.0.solute.6.pExitCell = 0.0 

 dose.0.solute.6.bindProb = 0.0 

 dose.0.solute.6.bindCycles = 2 

 dose.0.solute.6.numProps = 4 

 dose.0.solute.6.property.0.key = membraneCrossing 

 dose.0.solute.6.property.0.type = boolean 

 dose.0.solute.6.property.0.val =  false 

 dose.0.solute.6.property.1.key = bileRatio 

 dose.0.solute.6.property.1.type = real 

 dose.0.solute.6.property.1.val =  0.0 

 dose.0.solute.6.property.2.key = core2Rim 

 dose.0.solute.6.property.2.type = real 

 dose.0.solute.6.property.2.val =  0.50 

 dose.0.solute.6.property.3.key = transportOut 

 dose.0.solute.6.property.3.type = boolean 

 dose.0.solute.6.property.3.val =  false 
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iii. KupfferCell.java 

package ishc.model; 

import java.lang.Math; 

import sim.field.grid.*; 

import sim.util.Bag; 

public class KupfferCell extends Cell { 

    private static final org.slf4j.Logger log =  

org.slf4j.LoggerFactory.getLogger( ISHC.class ); 

    public KupfferCell(Culture p, ec.util.MersenneTwisterFast  

random, int x, int y) { 

        super(p,random); 

        setLoc(x,y); 

        actionShuffler.clear();          

        actionShuffler.add(new Runnable() { public void run() {  

handleInflammation(); } }); 

        actionShuffler.add(new Runnable() { public void run() {  

handleDegradation();}} ); 

    } 

    BolusEntry cytokineBolusEntry = null; 

    public void handleInflammation() 

    { 

        int numInflammatoryStimuli = 0; 

        int numCytokines = 0; 
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        for(Object o : solutes) 

        { 

            Solute s = (Solute) o; 

            if(s.hasProperty("inflammatory") &&  

((Boolean)s.getProperty("inflammatory"))) 

            { 

                numInflammatoryStimuli++; 

            } 

            if(s.type.equals("Cytokine")) 

            { 

                numCytokines++; 

            }  

            if(s.type.equals("inflammatoryAgent"){ 

             if("inflammatoryAgent" > "inflammatorythreshold") 

             numCytokines++;    

               } 

if(s.type.equals("inflammatoryAgent"){ 

if("noOfCytokine" > "cytokineThreshold") 

numCytokines++;  

}   

            } 

        } 
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        if(numCytokines >= parent.cytokineThreshold) 

        { 

            return; 

        } 

        if(numInflammatoryStimuli >=  

parent.inflammatoryStimulusThreshold) 

        {                

            double probability = 1.0 - Math.exp(- 

1*(numInflammatoryStimuli –  

parent.inflammatoryStimulusThreshold) /  

parent.exponentialFactor); 

            double draw = rng.nextDouble(); 

            if(draw <= probability) 

                addCytokine(); 

        } 

    } 

    public Solute addCytokine() 

    { 

if(cytokineBolusEntry == null) 

        { 

            sim.util.Bag bolusEntries = ((BolusDose)  

parent.model.delivery.doses.objs[0]).solution; 
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            for (int i = 0; i < bolusEntries.numObjs; i++) { 

                BolusEntry be = (BolusEntry) bolusEntries.objs[i]; 

                if (be.tag.equals("Cytokine")) { 

                    cytokineBolusEntry = be; 

                    break; 

                } 

            } 

        } 

        //Create the Cytokine 

        Solute cytokine = new Solute(cytokineBolusEntry); 

        cytokine.setProperties(cytokineBolusEntry.props); 

//Add the Cytokine 

        parent.solutes.add(cytokine); 

        parent.cellSpace.setObjectLocation(cytokine, myX, myY); 

        solutes.add(cytokine); 

        return cytokine; 

    } 

} 

7. Reference Implementation 

https://github.com/szc0098/Reference-ImplementationI-SHC-model 
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