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Abstract

High Performance Computing (HPC) often employs a set of networked and/or dis-

tributed computers working together to solve extremely large problems. Since the early

1990’s, HPC has made use of technologies such as the Message Passing Interface (MPI)

middleware and InfiniBand networking in order to provide developers with standard means

to create solutions that leverage the power of a cluster of computers. However, MPI, In-

finiBand, and other HPC-related technologies have gradually been losing their monopoly

for applications in HPC as modern cloud computing frameworks, such as Apache Spark,

are rising in popularity and are beginning to be used in fields traditionally dominated by

HPC. Higher speed and Data-Center Ethernet has also challenged the choice of InfiniBand

for certain scalable applications where InfiniBand was once the usual choice.

One of the primary factors advancing the popularity of these new cloud computing

frameworks is that they are much more user friendly and do not immediately require an

expertise in parallel and/or distributed computing to develop powerful programs. However,

when every bit of performance matters, technologies such as MPI and InfiniBand still have an

edge because they provide many powerful features that modern cloud computing frameworks,

such as Apache Spark, do not offer at present.

I propose to augment Apache Spark with features currently only available in traditional

HPC technologies, while maintaining Spark’s ease of use that makes it so attractive to its

current user base. There has already been some related work in this area, namely adding

support for high speed network interconnects (e.g., [24]). In this thesis, I present an exten-

sion to Spark that provides easy task-parallel processing through the addition of the novel

Multiply Distributed Resilient Distributed Dataset (MDRDD). The existing Spark imple-

mentation allows easy data-parallel processing via Resilient Distributed Datasets (RDDs). I
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also propose several future enhancements to close the gap further between the performance

of HPC and the ease-of-use of Apache Spark.

The outcome of this study is that Spark is enhanced to perform user-friendly task-

parallel operations in addition to the data-parallel operations it already offers. Several

examples are presented to demonstrate how this functionality works and several benchmarks

are run to demonstrate that the task-parallel functionality is efficient and can be used for

real-world problems. The extension to Spark implemented in this study already provides

enough functionality for developers to begin taking advantage of simple task-parallelism via

map commands. Once more RDD operations, such as reduce are implemented in a similar

fashion, it would be worthwhile to submit the changes to Apache and try to get them added

to a future version of Spark.
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Chapter 1

Introduction

Over the past several decades, the volume of data produced by sources such as sensors,

machines, appliances, organizations, and individuals has skyrocketed. As the quantity of

this data has increased, so has the need for tools and frameworks enabling robust parallel

and distributed processing of this data so as to make sense of the noise and provide organiza-

tions and individuals with meaningful answers to complex questions in realistic time-frames.

One of the first industries that experienced this growth was scientific endeavors such as me-

teorological and seismological prediction, simulation of natural phenomena, and studies of

the human genome, among others. Based on earlier ad hoc message passing approaches of

the 1980’s, the Message Passing Interface (MPI) [1] gained traction in the 1990’s because it

provided scientists and engineers working in niche fields such as these the ability to develop

complex parallel and distributed algorithms to make sense of their collected data (with both

acceptable performance and portability). Over the years, MPI has been refined into a ro-

bust technology that is typically used in the context of High Performance Computing (HPC)

supercomputers and clusters that well established laboratories and corporations provide to

their users.

With the rise of the Internet, ground-breaking improvements in network capabilities, and

global adoption of services such as social networking, media streaming, and online commerce,

the rate and volume of data being collected is increasing at an exponential rate. Valuable

applications that require and also can utilize massive distributed and parallel computation,

I/O and datasets are no longer limited chiefly to scientific, niche applications. However, not

all organizations and users that seek to harness such data can afford HPC clusters. Nor do

they necessarily have scientists and engineers skilled in MPI, which has become notorious for
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being a complicated programming model that requires a specialized skill set. For instance,

one recent blogger noted that “HPC is wedded to a nearly 25-year old technology stack

which doesn’t meet the needs of those communities” [5]. For these reasons, cloud computing

tools such as Hadoop [10] and Spark [9] (the latter powered by the Akka toolkit[8]) have

emerged as alternatives to the high-powered, niche world of MPI and HPC; they strike a

stark contrast by building in high-reliability, allowing these models to run on commodity

hardware. They also are highly abstracted and have a much lower learning curve, allowing

developers who are not specialized in parallel and distributed processing concepts to quickly

develop algorithms that can execute in parallel against large data sets. For those application

types they support well, they provide effective solutions, and are gaining broad adoption.

While modern cloud computing frameworks, such as Apache Spark, are steadily gaining

ground in many industries, traditional HPC technologies still have their place. Specifi-

cally, while these modern tools are much more user-friendly and provide a higher level of

abstraction that is easier to master, HPC technologies often can provide a higher level of

performance, if mastered. While MPI has a relatively steep learning curve and requires a

deeper understanding of parallel and distributed computing concepts, if used correctly it

allows developers the power to utilize the resources available efficiently. Also, MPI allows

for both data, and task level parallelism to be expressed. InfiniBand [6] provides clusters

with high network throughput with low latency via Remote Direct Memory Access (RDMA)

[43], and MPI empowers developers to leverage InfiniBand without needing to first master

InfiniBand verbs. This is a major plus for MPI, as Infiniband verbs do not translate well to

application-layer abstractions and developers are required to write complex middleware to

be able to access the power of Infiniband verbs.

There is an emerging opportunity here to shift away from legacy HPC technologies

completely toward modern, highly abstracted frameworks, such as Apache Spark, if some of

the features of these legacy technologies are properly added to these newer frameworks. In

this study, I extended Spark with a new Multiply Distributed Resilient Distributed Dataset
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(MDRDD) that allows developers the ability to leverage task-parallel processing simply and

straightforwardly on top of the existing data-parallel processing offered by Spark. I have

prototyped this extension and present several examples of using this prototype and I present

benchmarks showing that the prototype provides gains for specific use cases. I also propose

several future additions to Spark that can further close the gap between the proven HPC

technologies of yesterday with the popular cloud computing frameworks of today.

Currently, cloud computing frameworks, such as Hadoop and Spark, excel at non-

communicative, data-parallel processing, especially for associative and commutative prob-

lems (under some reduction operation on the data taken as a set of operands). In other

words, these frameworks are great at solving large problems that can be solved by parti-

tioning a large set of data into many smaller sets of data, performing identical operations

on these partitions of data in parallel, and piecing the results together upon completion.

Hadoop solves these problems using the MapReduce paradigm, with many intermediate

disk writes required, while Spark uses Resilient Distributed Datasets (RDDs) to perform

this data-parallel processing mostly in memory. Frameworks such as Hadoop and Spark

are excellent choices for problems that fit this paradigm [15], which is colloquially referred

to as embarrassingly parallel. Embarrassingly parallel problems are problems that are eas-

ily divided into parallel sub-problems, communication is not required between the parallel

workers, and the order of the results does not matter. Obvious examples include counting

instances of words and summing various values.

While MPI can also solve embarrassingly parallel problems, it provides developers with

the tools necessary to solve less-obviously parallel problems, where communication between

parallel workers is required, the order of the data being processed matters, the order of

results matters, or where task-parallel processing should occur. However, all of this power

comes at a price. Hadoop and Spark allow developers to think in high-level terms. They can

implement solutions involving logical data-structures, with little need to think in terms of

how the data is structured in memory. MPI requires developers to decompose logical data
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Figure 1.1: Comparison of Hadoop/Spark and MPI

structures into contiguous blocks of memory and design and code at a much lower level than

comes naturally to many. See Figure 1.1 for a high-level comparison of the features and

classes of problems that can be solved by MPI and Hadoop/Spark.

1.1 Thesis Organization

This thesis is organized as follows: First, an overview of HPC and HPC-related tech-

nologies is presented. Next, an overview of cloud computing frameworks is presented. After

that, my proposed extension to Spark is presented and several examples using a new API

(that I devised) are shown. In the subsequent chapter, I present my experiments on my

modified version of Spark to evaluate my extension empirically. Then, I present and ana-

lyze the results of those experiments. Finally, I discuss related efforts and suggest further

additions to this study that could be undertaken to further this blending of HPC and cloud

computing technologies.
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Chapter 2

High Performance Computing

High Performance Computing (HPC) is a term that refers to a large collection of com-

puting resources working in collectively to solve some large problem or set of problems. This

typically takes place in one of two architectures: a group of disjoint computers connected

over a commodity network (distributed computing enabled with parallel middleware) or a

group of processors sharing resources and connected by a fast, dedicated interconnect (clus-

ters and supercomputers using similar middleware designed to utilize specialized resources)

[4]. This thesis is primarily concerned with the former.

There are many challenges facing both architects and users of a distributed HPC cluster:

coordination, resource bottlenecks (memory, disk, CPU, or network), reliability, properly

implemented parallel algorithms, and cluster network and memory topologies, only to name

a few. Many groundbreaking technologies and processes have been introduced to satisfy

these challenging demands. Two of these are MPI [2] and InfiniBand [6].

2.1 MPI

Proposed in 1993 by The MPI Forum (a de facto standards body of universities, com-

panies, and government participants), the MPI is a standard message passing interface for

multi-instruction multi-data (MIMD) distributed memory concurrent computers [2]. One of

the greatest challenges facing parallel and distributed computing developers is that of coor-

dination. When there are many computers working collectively across the network, properly

coordinating state and data between all of the nodes can be extremely difficult depending

on the specific application. To address such concerns, The MPI Forum established MPI as
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a standard message passing interface to aid developers in meeting this demand in a stan-

dardized, portable way. Performance was a co-equal goal. However, this approach did not

address fault tolerance at all.

MPI provides low-level building blocks that developers can rely on to design and code

complex distributed, parallel algorithms. At its most basic level, it provides functions to

send (MPI Send) and receive (MPI Recv) messages between processes. It also provides the

ability to block (MPI Barrier) until all processes in a collective group have caught up to a

specified point. Many distributed algorithms can be developed using just these basic tools1.

However, MPI provides a rich library of many more functions that allow developers to im-

plement common distributed messaging strategies efficiently. In addition to basic sending,

receiving, and blocking, MPI provides functions that aid with data distribution, data col-

lection, and process grouping, among other helpful functions[3]. It also supports moving

data asynchronously from the user’s thread, with non-blocking send and receive operations

(MPI-1), and non-blocking collective operations (MPI-3) [39].

MPI is a message passing standard for APIs (syntax and semantics, but not wire proto-

cols) and is not a tool in and of itself. There are many implementations of the MPI standard

in several different languages, and there are several versions of the standard that provide dif-

ferent functionality. Two of the most popular MPI implementations are MPICH and Open

MPI. There are three primary version of the MPI standard: MPI-1, MPI-2, and MPI-3.

MPI-1 is message-oriented and provides the ability to pass messages on a point-by-point

basis. MPI-2 adds parallel I/O operations and remote memory management. MPI-3 adds

more collective operations and allows for non-blocking one-sided operations [39].

To aid with data distribution and data-parallel programming MPI provides collec-

tive communication (communication over process groups). In particular, MPI provides the

MPI Bcast and MPI Scatter functions. The MPI Bcast function distributes the same data to

1As described below, MPI Allreduce also is a great primitive for doing parallel reductions and provides
a weak concept of barrier too. In minimal MPI programs, this often carries both the semantics of a barrier
and the sharing of a globalized value.

6



all processes in a communicating group. The MPI Scatter function breaks up a large block

of data into segments and distributes these segments to the processes in a group. To aid with

data collection, MPI provides the MPI Gather and MPI Reduce functions. The MPI Gather

function is essentially the opposite of MPI Scatter; it gathers segments of data from all pro-

cesses in a group and reassembles them into a gathered block of data on a master process.

The MPI Reduce function is special in that it performs an associative function on data as it

is collected to a designated root or master process, resulting in less work needing to be done

on the master process; the MPI Allreduce variant symmetrically shares that result across

all the participants.

To assist with process grouping, MPI provides many collective operations to organize

processes into logical groups. For example, the MPI Cart family of functions helps group

processes into a logical Cartesian coordinate system and the MPI Graph family of functions

helps group processes into a logical graph. A key abstraction of MPI is the ability to work

on different subgroups of the entire group of cooperating processes in a parallel program.

2.1.1 Pros

MPI has remained popular to this day primarily in scientific research laboratories with

large HPC clusters solving large complex problems. MPI is powerful because it provides

low-level functions that allow developers to implement nearly any parallel, distributed al-

gorithm they can think of. It is typically implemented in C and/or C++, which allows for

fast, minimal programs that do not waste needless space typically required by higher-level

languages. Since MPI is so flexible, both task and data parallel algorithms can be imple-

mented, which can be used to solve a wide-variety of problems. MPI has also been around

for a relatively long period of time, so it has reached a high level of maturity and a wide

set of users. Its feature set and API have undergone many iterations of improvements over

the years, resulting in a feature-rich API that enables developers to create powerful parallel

programs. In addition, MPI allows for simple access to high-bandwidth network interfaces
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such as RDMA over InfiniBand without requiring developers to understand the underlying

InfiniBand verbs.

2.1.2 Cons

There are several downsides to using MPI. The first is that “programming at the trans-

port layer, where every exchange of data has to be implemented with lovingly hand-crafted

sends and receives or gets and puts, is an incredibly awkward fit for numerical application

developers, who want to think in terms of distributed arrays, data frames, trees, or hash

tables”[5]. MPI forces developers to think in such low-level terms that complex algorithms

prove to be difficult to implement. Programming styles and paradigms have seen many

changes over the past 20 years, and MPI has not evolved to keep up. For this reason, many

new distributed and parallel stacks have come into existence to cater to users who do not

want to deal with the steep learning curve of developing complex solutions using MPI.

MPI in and of itself is not terribly difficult to learn. Creating parallel solutions for toy

problems can be done in a relatively short amount of time by beginners. What is difficult

is developing large scale solutions for extremely large data sets, properly sharing resources

among a large number of users, handling I/O in a safe manner, and handling tricky ordering

of large numbers of parallel tasks. Many of the complexities of MPI are frequently hidden

from developers behind middleware that provides some service to a user or application. For

example, HDF5 [40] is a library written on top of MPI that allows for parallel storing and

management of data. For this reason, many developers do not realize how complicated MPI

is under the hood of these simplified toolkits.

2.2 InfiniBand

One of the difficulties of designing a parallel algorithm is properly handling available

resources and avoiding possible bottlenecks. With work being distributed across a set of

nodes in a network, network bandwidth is often in short supply and causes these programs
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to be bandwidth-bound [12]. In other cases, latency may be too high. For this reason, HPC

solutions call for network interconnects that provide both low latency and high bandwidth.

At present, low latency refers to latencies less than 10 µs and high bandwidth refers to

bandwidths of the order of several Gbps [12].

InfiniBand [6] has emerged as one of the de facto standards for low latency, high band-

width network interconnects in HPC clusters [12][7]. InfiniBand provides a rich feature

set, high performance, and scalability, which makes it an attractive interconnect solution for

HPC. It provides both basic send and receive operations in addition to remote direct memory

access (RDMA) operations through its InfiniBand verbs layer, and has a mode called reliable

transmission, typically used by applications and MPI implementations. InfiniBand achieves

low latency by bypassing the traditional operating system network stack and uses its own

host channel adapters (HCAs). By using InfiniBand instead of the traditional networking

interconnects (such as TCP/IP over Ethernet), HPC applications can often times eliminate

the network as a potential resource bottleneck. There is already an ongoing effort to bring

RDMA InfiniBand support to Apache Spark [24] because of these performance advantages.
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Chapter 3

Cloud Computing

Throughout this thesis, the term cloud computing framework is used to refer to stacks

of technologies that accomplish the same, or similar, goals of HPC, but using commodity

hardware and higher levels of abstraction to do so. Three popular examples of this are

Apache Hadoop [10], Apache Spark [9], and Akka [8].

As mentioned previously, programming styles and paradigms have shifted several times

over the past 20 years, resulting in a more object-oriented, highly abstracted programming

style over previous, imperative, function-oriented programming. This allows developers to

think more in terms of logical data structures and patterns they need to implement a solution,

rather than the low-level details of how the operating system is managing said structures and

patterns. This strikes a stark contrast to the programming style of MPI, which has not kept

up with these changes and requires developers to decompose complex data structures and

logical patterns into blocks of data that can be sent and received by processes. One of the

major reasons MPI has not shifted paradigms and styles over the years is to remain upward

compatible with new versions. With MPI always sticking to such a low level of abstraction,

it is able to continuously add new features and improve various bugs over many years and

many users.

In addition, standard implementations of MPI do not provide any application level

reliability guarantees and expect all nodes in a cluster to maintain a certain level of health

to allow continual processing. There have been many recent efforts to add reliability to MPI

as a bolt-on or augmented capability, but it was not a centerpiece of its original conception,

and so is difficult to support fully [13] [14]. On the other hand, modern cloud computing

frameworks are designed to be run on clusters of commodity hardware, providing high levels
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of reliability and fault-tolerance for the inevitable case of hardware failure mid-job. For

small- to medium-scale applications, this is not a major concern as jobs may only take a

number of minutes or hours to rerun and synchronous checkpoint restart [?] is effective

where needed. However, this is a major concern for large-scale, massive number-crunching

applications that may require days or even weeks to completely process all inputs and for

which checkpoint restart is prohibitively expensive. MPI’s lack of built-in reliability can

be a major hurdle for users that require this kind of scale. For medium-scale applications,

users can implement their own means of handling reliability (primarily through checkpoints),

but MPI does not currently assist users in coming up with these checkpoint mechanisms.

Fortunately, third parties have done so. Even so, MPI’s inability to detect failures means

that fail stop behavior is not guaranteed even when faults could be detected, and programs

supporting checkpoint restart can still hang and have to be restarted manually.

3.1 Apache Hadoop

In 2004, Google released the MapReduce whitepaper [15]. In this paper, the authors

laid out the groundwork for many of today’s modern cloud computing frameworks while

borrowing from concepts that have existed in traditional HPC environments for years. At a

high level, MapReduce is a processing flow where distributed Map tasks take series of key-

value pairs and perform some user-defined, order-independent processing. The Map tasks’

output is then shuffled and sorted by key to pass to Reduce tasks. The Reduce tasks perform

more processing on this pseudo-sorted data to produce a final output. As mentioned earlier,

MPI already provides Reduce functionality and MapReduce can be easily implemented in

MPI. However, what makes MapReduce stand out is Apache’s implementation of MapReduce

in Hadoop [10].

In 2006, Hadoop was created at Yahoo!. Hadoop combines an implementation of MapRe-

duce with a distributed file system known as the Hadoop Distributed File System (HDFS) to
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provide both a reliable data store with an efficient parallel and distributed processing frame-

work that operates nicely on top of HDFS. Hadoop’s MapReduce implementation leverages

data locality awareness using HDFS, and HDFS provides a high level of reliability for both

the intermediate and final output of MapReduce programs.

As opposed to MPI, Hadoop’s implementation of MapReduce is written in Java and ex-

poses an intuitive and high-level API. This provides developers with a shallow learning curve

to learning Hadoop’s ins and outs, allowing them to develop distributed, parallel algorithms

in a short time without requiring knowledge of Hadoop’s inner workings. In addition, Java

is highly-portable, enabling Hadoop to be used on nearly every type of platform in existence

today.

Over the years 2006 to 2013, industry adoption of Hadoop was quick and widespread. In

2013, more than 50% of Fortune 50 companies reported using Cloudera’s popular distribution

of Hadoop for some form of their business processing [18]. Since 2013, organizations have

been shifting away from Hadoop for several reasons. The key reason for this shift is that

Hadoop is disk-intensive and unnecessarily writes all of its intermediate output to disk.

This results in a massive, unnecessary slow-down when much, or sometimes all, of this

intermediate output could be kept in memory. Another reason is that MapReduce isn’t

as capable as MPI when it comes to certain classes of data parallel problems. Hadoop is

mostly useful for embarrassingly parallel problems, where the data to be processed is not

dependent on ordering, the parallel workers do not need to communicate with one another,

and where the order of the results do not matter. MPI provides many low-level tools to

developers which allow them to come up with relatively more complex parallel algorithms,

such as communicative parallelism and task parallelism, which Hadoop has no notion of.

3.2 Akka

Inspired by the Erlang [19] programming language, which is known for its concurrent,

event-driven approach, the Akka toolkit [8] was developed in 2009 with its initial version
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released in 2010. Akka uses an actor-based, concurrent model to provide developers the

tools to develop parallel, distributed applications using Scala [20], a functional programming

language.

Unlike Hadoop, Akka is a toolkit, not a framework, and provides developers with tools to

develop concurrent applications, but does not impose a narrow processing flow like MapRe-

duce. This makes Akka flexible like MPI, but at a slightly higher level of abstraction, thus

allowing developers to use higher-level, logical data structures in their programs. Akka’s

flexibility is a step in the right direction, but it does does not provide a simple, straight-

forward API, like Hadoop, that newcomers to parallel and distributed computing can latch

onto easily.

3.3 Apache Spark

In 2010, Spark [9] was developed at UC Berkeley, and in 2014 it became a top-level

Apache Software Foundation project [21]. Apache Spark is the next logical step in cloud

computing frameworks, picking up where Hadoop left off. It is a distributed processing

framework built on top of Akka [8] that aims to keep as much data in memory as possible

during processing. The key component of Spark that makes this possible is the Resilient

Distributed Dataset (RDD). An RDD is a fault-tolerant collection of elements that can be

operated on in parallel [9]. Essentially, when an existing data collection is parallelized into an

RDD, it is segmented into partitions that can then be assigned to nodes (servers) throughout

the cluster. A number of configurable replicas are also assigned to other nodes in the cluster,

so that if a node crashes during processing another node can pick up any missing work. If the

data being processed already exists in a distributed store such as HDFS, the replicas are only

replicated on disk, unless there is a failure, in which case the partition is loaded into memory,

at which point it is processed by the replacement node. If the data being processed only

exists in memory, the data is replicated across the network to all three nodes, but only one

node processes the data unless there is a failure. This doesn’t prevent all possible failures,
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val numbersRDD = sc.parallelize(numbersArray)

val mappedRDD = numbersRDD.map(x => 3*x)

Figure 3.1: Spark Data-parallel Example

but it does prevent many common issues, such as hardware failure on a single node in a

cluster. If an RDD is created for an existing collection in the driver program, Spark must

actually distribute the partitions to the nodes. If an RDD is created for an existing collection

on a distributed file system (like HDFS [16] or HBase [17]), the data is not re-distributed.

Instead, Spark intelligently assigns partitions to nodes that are local to existing partitions

of data throughout the cluster. Spark provides many data-parallel operations that can be

performed on RDDs. Users can define arbitrary functions to run in parallel, and Spark takes

care of scheduling this work across the cluster on partitions of an RDD. The example in

Figure 3.1 demonstrates how easy it is to multiply all values in an array by 3 in parallel

across an RDD using Spark.

In addition, Spark provides many useful libraries for data-parallel tasks such as ma-

chine learning, streaming, and graphing [22]. Moreover, it can perform these data-parallel

computations much faster than its predecessor Hadoop for several reasons. For one, Hadoop

must write out all of its intermediate and final results to disk. This is obviously inefficient,

especially when results are small enough that they could fit into memory. Spark on the other

hand keeps all data in memory unless it absolutely must spill to disk. A second reason Spark

is faster than Hadoop is that it is able to cache data in memory so later jobs can access

it quickly. With Hadoop, if a later job wishes to access data that was available during a

previous job, it must reload this data from disk. Finally, a third reason is that all Spark

processes (JVMs) are constantly running the cluster’s nodes, so when a job is submitted it

is just a matter of issuing some RPC calls to get the job started. With Hadoop, each job

and task requires the overhead of starting up new JVMs to host the parallel processes. For

this reason, Spark is able to start jobs nearly immediately with little overhead [23] [41].
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Chapter 4

Spark Extension

First we discuss the key outcome of this work, a Spark extension called the Multiply

Distributed Resilient Distributed Dataset. Then I explain the design and implementation

work that I undertook to validate the concept and demonstrate its utility.

4.1 Multiply Distributed Resilient Distributed Dataset

Spark currently provides Single Program Multiple Data (SPMD) parallelism. What this

means is that if a single program (a set of instructions to run) and a large collection of data

are provided, Spark will automatically break down the large dataset into many relatively

smaller partitions and run the provided single program on each of the different partitions of

data in parallel. This is the only type of parallelism natively provided by Spark. This means

that users are not able to provide a set of programs to run in parallel, on a piece of data,

which would be Multiple Program Multiple Data (MPMD) parallelism. There are certain

classes of problems that, while possible to solve using existing Spark processes, can only be

solved in an inefficient manner. I present an example of one of these classes of problems in

a later section and show how inefficient existing Spark processes are at solving them.

I have created a novel extension to Apache Spark that allows users to achieve MPMD

parallelism using an API that closely matches how they already are achieving SPMD paral-

lelism. Figure 4.1 demonstrates a simple example of using this API. The user simply needs

to create an array of functions and pass this array to the map function on the MDRDD. The

following is a brief explanation of each line of the example presented in Figure 4.1:
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• An MDRDD is created from the existing numbersArray array. The 2 used when con-

structing the MDRDD specifies that 2 functions will be executed in parallel on this

MDRDD.

• A function is defined to multiply each element in the MDRDD by 3.

• A function is defined to multiply each element in the MDRDD by 4.

• An array is created with all of the functions to execute.

• The function array is provided to the map function of the MDRDD and Spark takes

care of executing the provided tasks in parallel.

What follow is an explanation of how Spark handles this new MDRDD extension. When

an MDRDD is created, two parameters are provided: the collection of data to parallelize

and the order of parallelism that must be supported (the number of functions to execute in

parallel). For example, if two functions will be executed on the data in parallel, the order

of parallelism is two. When when Spark distributes the work to the slave nodes, it does

so according to the diagram in Figure 4.2. In this example, there are six slave nodes and

two functions to execute in parallel. When Spark divides the work to the slave nodes, it

divides the MDRDD into three partitions, and gives each set of three partitions a function

to execute. In other words, there are n copies of each partition of the MDRDD where n

represents the order of parallelism that is to be achieved (the number of functions to execute

in parallel). Not illustrated in the diagram is the fact that each partition is still replicated to

other nodes in case one of the nodes crashes and another node needs to pick up the dropped

work.

Figure 4.3 is an example of multiplying a collection of numbers by two, three, four, and

five using traditional Spark. In this example, the RDD containing the numbers is multiplied

by each of these numbers one after the other. Figure 4.4 is an example of multiplying the

same collection by the same numbers, only this time the multiplications are done in parallel

using my extension of MDRDDs to Spark.
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val numbersMDRDD = sc.parallelizeMDRDD(numbersArray, 2)

val f1: (Int) => Int = 3 * _

val f2: (Int) => Int = 4 * _

val functions = Array(f1, f2)

val mappedMDRDD = numbersMDRDD.map(functions)

Figure 4.1: Spark MPMD Example

Figure 4.2: MDRDD Concept

val listRdd = sc.textFile("hdfs://spark/numbers.txt")

val mapped1 = listRdd.map(x => x * 2)

val mapped2 = listRdd.map(x => x * 3)

val mapped3 = listRdd.map(x => x * 4)

val mapped4 = listRdd.map(x => x * 5)

mapped1.take(size)

mapped2.take(size)

mapped3.take(size)

mapped4.take(size)

Figure 4.3: Example Serial (SPMD) Program
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val listMdrdd = sc.textFileMDRDD("hdfs://randomNumbers.txt")

val f1: (String) => Int = _ * 2

val f2: (String) => Int = _ * 3

val f3: (String) => Int = _ * 4

val f4: (String) => Int = _ * 5

val functions = Array(f1, f2)

val mapped = listMdrdd.map(functions)

mapped.takeParallel(size)

Figure 4.4: Example Parallel (MPMD) Program

4.2 Design and Implementation Choices

This section details the design and implementation choices I made to add task-parallelism

support to Apache Spark via Multiply Distributed Resilient Distributed Datasets, To begin

with, I cloned the latest, stable version of Apache Spark from GitHub. When I began this

project, that version was 1.5.2.

After cloning 1.5.2, I explored the source code to determine the best method of adding

task-parallelism to Spark. Spark is primarily written in Scala, although it makes use of

several Java utilities, and uses Akka and Netty to handle various communication and mes-

saging concerns. I was presented with two obvious choices at this juncture: I could add

task-parallel functionality completely from scratch, essentially re-engineering major building

blocks of Spark, or I could identify if there were a way to wrap already implemented pieces

of Spark in a new way and expose this to users. After investigating how difficult the first

option would be and how feasible it would be to accomplish this addition in a reasonable

time-frame, I decided instead to move forward with the second option. As can be seen in

the next section, this option not only worked out in terms of implementation effort, it also

performs well at least for relatively average loads and so far has proven to be a good solution.

Thus, I see no reason this solution cannot scale to a much larger space, but it would be a

worthwhile effort for future students with access to a much larger cluster to try this.

After determining that I would go about wrapping existing Spark classes with new

classes of my own, I began looking at the best strategy to accomplish this. Two of the most
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critical classes to Spark’s infrastructure are the SparkContext and RDD classes. When a

Spark application or shell is instantiated, a SparkContext object is provided to the user.

This object provides all necessary Spark API calls and is provided as the sc object. For

example, to parallelize a collection that already exists in memory, the user would issue a

sc.parallelize(collection) call. This call returns an RDD object that the user can operate on.

There are two types of operations that can be performed on RDDs: transformations and

actions. A transformation is an operation that results in another RDD being created. An

action is an operation that returns a concrete result from an RDD. Transformations are lazy

and are not actually executed until an action requires a transformation to take place. For

example, a call such as rdd.map(x =¿ 3*x) is a transformation and results in a new RDD

being created that represents every element in the first RDD being multiplied by 3. On the

other hand, a call such as rdd.take(3) is an action that requires all transformations to take

place and returns the first 3 results in the final array of results.

I decided to implement an MDRDD as a wrapped collection of RDDs. I added a par-

allelizeMDRDD method to the SparkContext class. While the parallelize method returns

an RDD on which to perform data-parallel operations, the parallelizeMDRDD method re-

turns an MDRDD upon which to perform task-parallel operations. The parallelizeMDRDD

method takes two required parameters and one optional parameter. The first parameter is

the collection that is to be parallelized, the second parameter is the number of parallel tasks

that will be performed on this MDRDD, the third (optional) parameter is the number of

partitions to split the MDRDD into. The third parameter is for optimization purposes and

is application-specific. Users can explore with this parameter to find the optimal number of

partitions for their datasets. When the parallelizeMDRDD method is invoked on a collection,

the following occurs:

• The number of partitions per RDD is calculated. This is the number of partitions that

were specified (or the default) divided by the number of tasks that are to be performed

in parallel.
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• An array of RDDs of size number of tasks is created, where each element of the array

is a copy of the same RDD, with the number of partitions for each RDD determined

from the previous step.

• An MDRDD object is constructed using the array of RDDs created from the previous

step and is returned to the caller.

I implemented the MDRDD class as follows. An MDRDD is essentially a wrapper around

an array of identical RDDs. As mentioned earlier, the array of RDDs and the partition

size of the RDDs are determined primarily from the nubmer of tasks that are going to be

executed in parallel. For basic testing purposes, the only functionality I implemented on

MDRDDs are map and take. As opposed to the RDD version of map, the MDRDD map

method takes an array of functions. Each of these functions is applied to an RDD wrapped

by the MDRDD. When an action is performed on the MDRDD, such as take, the action is

applied to each RDD in parallel using Scala Futures. A Scala Future is an object that runs

a provided function asynchronously. The creator of the Future can choose to wait (block)

for the Future to complete, or continue processing and be notified via an event when the

Future has completed processing. I made a choice while creating the MDRDD just to block

until all parallel RDD actions are completed. This seemed the logical choice because Spark

actions on an RDD block already, so it makes sense that parallel actions on an MDRDD

would also block until completed. I feel that blocking until all parallel processes is right

choice for the future of this extension and matches choices made throughout the rest of the

Spark framework. When an action, like take, is performed on an MDRDD, the same action

is performed on all wrapped RDDs. If there are n RDDs wrapped by an MDRDD, n Scala

Futures will be spun up that perform the action via the SparkContext object. The MDRDD

will block until all RDD actions have completed, and then return the results to the caller.

The results are returned in an array to the client, where each index of the results corresponds

to the index of the function that was mapped in the previous step.
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MDRDD’s take advantage of the already existing Spark scheduler to run the actions in

parallel. I began exploring creating a custom scheduler, designed from the ground up for

parallel operations on MDRDDs, but after experimenting with the existing Spark scheduler,

I determined that the scheduler can already perform parallel operations adequately. When

each Scala Future is created with a Spark action, each Future asynchronously submits its

action to the Spark scheduler via the Spark Context. The reason the scheduler is able to

perform the actions in parallel is the partitioning choice made when creating the MDRDD.

Recall that when an MDRDD is created, the number of functions that will be performed in

parallel is provided as a parameter. The reason this is necessary is to divide the number of

partitions that the RDD would normally be divided into by the number of functions that

will run in parallel. This ensures that all of the underlying RDDs can be scheduled at the

same time on the cluster because all n functions can fit on the cluster at the same time.

Following is a concrete example that will make this even more clear:

• An MDRDD is created on an existing dataset. Four functions will be run on this

MDRDD in parallel, so the value 4 is passed in the constructor.

• Inside of the MDRDD, four RDDs are created on the existing dataset. If the cluster

layout would normally default to dividing this RDD into 20 partitions, instead each

RDD is now divided into 5 partitions.

• A map transformation is run on the MDRDD. This map transformation consists of

four functions that are each run on the RDDs contained within the MDRDD.

• A take action is run on the MDRDD. A scala Future is created for each of the under-

lying RDDs, where each Future issues a take command to the Spark scheduler via the

SparkContext.

• The Spark scheduler is able to execute all of these actions in parallel because of the

way the RDDs have been partitioned.
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• The MDRDD blocks until all RDD actions have returned.

• An array of results is returned to the caller, containing each RDDs results in the same

order as the functions of the map operations.

I believe that I made the correct design and implementation decisions while adding

MDRDDs to Spark to support user-friendly task-parallel processing. In the next section, I

show empirical evidence that my choices were correct and that the performance of MDRDDs

exceed that of RDDs when processing tasks in parallel on a large collection of data.
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Chapter 5

Experimental Results

In order to measure the performance of the new MDRDD extension to Spark empirically,

I created several benchmarks designed to measure two straightforward use cases: processing

data distributed from the driver/master process and processing data located on HDFS.

In addition, these same benchmarks were compared to traditional Spark with serially run

tasks. If the parallel tasks run in a smaller amount of time than the tasks take to run

serially in traditional Spark with RDDs, then my extension can be considered a success.

This section presents the results of my experiments to demonstrate that my extension to

Spark is successful in achieving this end.

5.1 Cluster Details

All experiments were run on a cluster comprised of 6 nodes with CentOS version 7

installed. Each of the nodes have 40 Intel Xeon E5-2650 V3 2.30GHz CPUs and 132 GB

of RAM. Each node has 240 GB of disk space available for storage. My modified version

of Spark (based on version 1.5.2) was installed on each of the nodes. One of the nodes

was chosen as a master node and the rest ran as workers. The Spark processes were each

allocated 32 GB of heap space for storing RDD information before off-loading to disk.

5.2 Benchmarks

The results shown in Figure 5.1 are from the driver-distributed benchmark run on

traditional Spark and Spark with my MDRDD extension. In this benchmark, a collection of

one million random integers is created and an RDD or MDRDD is created from this set. In

each run of the benchmark, a number of tasks are run on each element of the set of random

23



Figure 5.1: Driver-Distributed Benchmark Results

integers. Specifically, each element is multiplied by another integer. This benchmark is

repeated fifty times, and the total time to run all fifty instances of the benchmark is recorded.

Finally, this entire process is run three times, and the average of all three runs is recorded.

This final average is what is displayed in Figure 5.1.

With reference to Figure 5.1, the performance gain by using MDRDDs is evident. As

the number of tasks increase, the total time taken by traditional Spark, utilizing RDDs,

appears to increase at a steep linear rate. Meanwhile, Spark with my MDRDD extension

increases at a much lower rate. Traditional Spark with RDDs took 102 seconds to run all

eight tasks serially 50 times and Spark with MDRDDs took 46 seconds to run all eight tasks

in parallel 50 times. This is an improvement of 54%. To be clear, this is not an increase in

overall Spark performance. This is an improvement for specific cases where multiple tasks

need to be run on the same set of data at the same time. Another thing that should be

noted is that this is a relatively small example where the work being performed is trivial
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Figure 5.2: Parallel Work Timeline

(multiplying by single numbers) and that if the work being done was larger, the performance

gains would be even more pronounced.

The reason for this improvement is that the parallel work being performed for each

function need not wait for the master to piece together the results of the previous operation

before getting started. Figure 5.2 illustrates why parallel computing with MDRDDs is faster

than serial work with traditional RDDs. While the actual work being performed for each

task actually takes slightly longer because the partitions need to be larger for MDRDDs, the

throughput of jobs over time is significantly higher because the work is done in parallel and

the setup for a job does not need to wait for the completion of the previous task.

The results shown in Figure 5.3 are from the benchmark run on data located in HDFS,

a configuration in which many Spark applications are designed to be run. This benchmark

is essentially the same as the other one, but all fifty sets of one million random integers were

pre-generated and placed on HDFS, which was co-located with the Spark worker nodes.

The results in Figure 5.3 closely match the results of the driver-distributed benchmark

that was just discussed. Again, the total time taken to run the benchmark increases at a
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Figure 5.3: HDFS Benchmark Results

steep linear rate as more tasks are executed. The version of Spark with MDRDD increases

at a much lower rate. Traditional Spark with RDDs took 110 seconds to run all eight tasks

serially 50 times and Spark with MDRDDs took 43 seconds to run all eight tasks in parallel

50 times. This is an improvement of about 60%. Again, this is not an increase in overall

Spark performance. This is an improvement for specific cases where multiple tasks need to

be run on the same set of data located in HDFS at the same time.

In conclusion, my extension to Spark is successful in providing efficient, user-friendly

task-parallel processing. In a relatively small number of lines of code, a developer is able to

direct Spark to execute multiple tasks in parallel on a large collection of data in a distributed

fashion. Not only is it simple to implement, but my experiments have shown that it provides

a large speed up over serially running these same tasks using traditional Spark RDDs.
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Chapter 6

Related Work

In this chapter, we consider related work to this thesis. There have been several similar

studies to blend HPC technologies with cloud computing frameworks. If many of the tech-

nologies coming out of these studies are put together into a single framework or common set

of tools, users who are locked in to MPI and traditional HPC technologies may see enough

reason to begin using these tools instead.

6.1 RDMA Shuffle

The most directly applicable work similar to the one conducted here is The Ohio State

University’s Network Based Computing Lab’s [26] high-performance big data [27] group of

studies. In these studies, they bring technologies typically used in HPC to cloud computing

frameworks such as Hadoop and Spark. Two efforts worth noting are their addition of RDMA

shuffle to Spark via InfiniBand [24] and their addition of RDMA shuffle to Hadoop [28]. As

mentioned earlier, technologies such as InfiniBand allow HPC solutions to enjoy low latency,

high bandwidth network interconnects, which typically result in the network not being the

primary resource bottleneck. In these studies, the benefits of RDMA via InfiniBand have

been successfully added to Spark and Hadoop, giving considerable speedups for many use

cases.

6.2 MPI Reliability

There have been a number of studies aiming to accomplish the opposite of this study:

bring cloud computing features to HPC technologies. While MPI will always remain a low-

level, API-based transport layer library that is relatively difficult to master. It is missing
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some key features that frameworks like Spark and Hadoop have gotten right from the be-

ginning. The most notable feature is high-reliability. MPI does not handle scenarios where

hardware (or other resources) fail mid-job. If this occurs, jobs must be restarted from the

beginning, which can be a major concern for large-scale, complex jobs. on the other hand,

Hadoop and Spark are built on the underlying premise that they will be run on commodity

hardware that will fail quite often. They are able to detect hardware failures quickly mid-job

and reassign portions of work to other workers quickly. There are several ongoing efforts to

bring some level of reliability like this to MPI [30] [31] [32] [29] [42].
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Chapter 7

Possible Extensions

The main contribution of this thesis is the addition of an API to Spark to allow simple

task-parallel (MPMD) processing capabilities. If this version of Spark is further extended,

it can begin to be used in place of traditional HPC frameworks and tools for both academic

and industry applications. In this section I propose several follow-up studies that could bring

Spark closer to this goal.

7.1 Parallel Map Reduce

In this study, the only task-parallel extension I added to Spark was the ability to execute

functions in parallel via the map function. While this is the first, most obvious, extension,

it would be worthwhile also to extend Spark to allow parallel map-reduce functionality.

Users can already perform map-reduce operations, similar to Hadoop, in Spark by utilizing

the pluggable shuffle mechanism. If multiple map-reduce operations could be performed in

parallel, similarly to how I extended Spark to perform several maps in parallel, this would

comprise an even more powerful tool.

7.2 Extend MLLib

One popular use case for Spark is machine learning. The MLLib library provided with

releases of Spark provides users with an easy-to-use API to execute popular machine learning

algorithms on their datasets. It would be a worthwhile study to speed up these MLLib

algorithms with the task-parallel functionality provided by my extension to Spark.
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7.3 InfiniBand Shuffling

The group at Ohio State’s High-Performance Big Data Laboratory [27] have already

extended Spark to include an RDMA (over InfiniBand) version of the shuffler [24]. This

shuffler allows all shuffling that takes place between the map and reduce phases of map-

reduce Spark programs to occur over high-speed RDMA communication via InfiniBand. It

would be a worthwhile study to add and revalidate this study alongside the task-parallel

processing added via MDRDDs.

7.4 Topology-Aware Communication

One the key-features of MPI is the ability to distribute data and collect results in a

topologically aware manner. This means that the actual work of distributing data among

processes and the actual work of collecting results (for example in a reduce operation) can

be distributed among processes, drastically reducing the amount of work the master node

needs to do in common use cases. Spark, on the other hand, distributes and collects data in

a naive way. If data needs to be distributed, the designated master processes does so in a

simple loop. If data needs to be collected and/or reduced, this is done solely at the master.

It would be an interesting study to extend Spark further in order to provide a smarter, more

distributed distribution/collection mechanism that is topologically aware.
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Chapter 8

Conclusion

Traditional HPC technologies provide the tools needed to perform high-performance,

parallel computations on a distributed set of resources. However, these tools are outdated and

often difficult to master. MPI specifically forces developers to think in low-level terms and not

at a higher level of abstraction. In recent years, modern cloud computing frameworks, such

as Apache Spark, have begun to overtake these legacy HPC technologies in both academic

and commercial settings. While these modern frameworks are much more user-friendly and

allow developers to think and operate at a much higher level of abstraction, they don’t

presently provide all of the same functionality as some of the older HPC tools and many

times cannot achieve the same level of performance. MPI provides developers with the tools

to execute both data-parallel and task-parallel processing. It also provides relatively easy

integration with high speed network interconnects such as InfiniBand, without requiring

developers to be experts at InfiniBand verbs. Modern cloud computing frameworks such

as Apache Hadoop and Apache Spark are great tools for specific use cases, namely non-

communicative, embarrassingly parallel problems, but they are lacking when it comes to

other classes of problems that call for more flexibility and power. If a problem requires

communicative parallelism or calls for task-parallelism in order to be efficient, Hadoop and

Spark are poor choices. This is a shame because these tools allow developers to work in

much higher levels of abstraction and typically require less code and less expertise in parallel

computing.

The eventual goal of this study is to extend Apache Spark to be a complete, or nearly

complete, replacement for MPI in HPC settings. In order to achieve this outcome, there are

many deficiencies of Spark that need to be improved upon so that all classes of problems
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that MPI can solve efficiently are also efficiently solved in Apache Spark. In this thesis, I

took on one of thse deficiencies: I extended Spark to be capable of task-parallel processing

via a simple API that matches the existing API that allows for straightforward data-parallel

processing. I wrapped existing structures within Spark to introduce the novel Multiply

Distributed Resilient Distributed Dataset (MDRDD). With MDRDDs, developers can clearly

and efficiently prepare data for task-parallel processing and execute said processing in a very

small amount of code that is clear, highly-abstracted from primitive data structures, and

easy to maintain. I demonstrated that my extension to Spark is efficient at processing data

in parallel. When compared with running the same operations serially, my extension saw a

speed up of about 60%.

While this thesis was a success inasmuch as it brought a popular cloud computing frame-

work (Apache Spark) closer to the power of MPI for HPC scenarios, there is still productive

work to do. I only extended Spark to execute functions non-communicatively in parallel.

It would be an interesting study to further extend Spark to be capable of reducing (aggre-

gating) in parallel, so that MapReduce-type operations can be done in parallel. A group at

Ohio State has extended Spark to be capable of MapReduce shuffling over InfiniBand [24].

It would be a worthwhile effort to add this extension alongside the extensions of this thesis

to learn what gains it may produce. The MLLib [22] Spark library provides easy-to-use dis-

tributed machine learning algorithms that are powered by Spark. It would be a worthwhile

project to boost this library with the task-parallelism introduced in this thesis.

Once a few of these follow-on projects are completed, Spark will become an ideal frame-

work for HPC users. It already offers data and task parallel processing with my extension. It

can offer RDMA Infiniband shuffling with the extension developed at Ohio State [24]. It can

be further extended to support parallel reductions, and further still to offer boosted machine

learning capabilities. At that point, it would be great to partner with an HPC user who is

willing to move away from MPI and see if it can prove itself in the industry, empowering
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them with easy-to-use, modern tools that will make their jobs easier, for quicker turn around

on complex problems.
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