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Abstract 
 

 
 Childhood obesity has been a rising problem among rural and low income populations. 

Childhood obesity increases the risk of various diseases later in life. Government has tried 

several price interventions such as lowering tax and giving subsidies to encourage parents to 

shop more healthy food for their family. The efficacy of such fiscal policies is currently being 

debated. In this thesis, functional magnetic resonance imaging (fMRI) is employed as a tool to 

understand the mechanistic underpinnings of neural processes while parents from lower 

socioeconomic status choose between healthy foods with lower than normal taxes or subsidy, 

compared with unhealthy foods without price interventions. First, we show that healthy food 

items elicit least reward response in the brain and unhealthy food items elicit maximal reward 

response. Further, by offering lower tax or subsidy on healthy food items, the reward response in 

the brain for such items were significantly enhanced. Second, we demonstrate that subsidy is 

more effective than lower tax in encouraging consumers to purchase healthy food items, driven 

in part, by higher reward-related response in the brain for subsidy in comparison to lower tax. 

Finally, we propose that it is possible to titrate the amount of subsidy or tax reductions on 

healthy food items so that they consistently become more preferable than unhealthy foods. This 

could then inform fiscal policy employed by Governments in this regard. 
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Chapter 1: Introduction 

 

 

With the developing and updating technologies in science and medical field, people revealed 

many secrets of our body and can explain lots of things that are related. However, human brain 

has always been a mysterious organ because of its complex structure and components. Various 

ways had been attempted in history to analyze our brain since there are so many brain-related 

topics such as emotion, cognition, etc. People are always showing great interest in how the brain 

handles such these complicated tasks that even today we still couldn’t model. Thanks to various 

non-invasive imaging modalities such as MRI (Magnetic Resonance Imaging) and fMRI 

(Functional Magnetic Resonance Imaging), we can decipher some things about our brain today. 

 

 

1.1 MRI 

Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging technique. It has been 

widely used clinically to study body organs. MRI employed magnetic field and radio wave 

pulses to generate pictures of organs and structures inside our body. Hydrogen nuclei are the 

most common components in our body tissues since water makes up most of our body. And 

these abundant hydrogen nuclei in our body are continuously spinning around an arbitrary axis 

according to the physical rules. As a result, the movement of these hydrogen nuclei produces a 

magnetic field around themselves. Because their motion is randomly under no outside field 

influence, the net strength of the magnetic field produced by them is zero. However, when 

applying an outside magnetic field, these hydrogen nuclei will begin align themselves to the 

direction of the outside magnetic field, which in return will generate a non-zero net magnetic 
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field of themselves. MRI makes use of nuclear magnetic resonance (NMR): If we give a pulse to 

the hydrogen whose frequency equals the resonance frequency of the hydrogen nuclei, the proton 

will absorb the energy from the pulse and jump from lower energy level to higher energy level, 

which results in the change of its previous motion and generate an addition new magnetic field; 

Then if we turn off the pulse, the proton will release the energy and go back to its original track 

(energy level). The energy released by the hydrogen proton is the signal we can detect and 

record. The signal frequency contains the spatial information. By applying inverse Fourier 

transformation, the spatial information can be recovered so that the image can be constructed as 

well [1]. Usually the MRI scanner has a set of electromagnetic coils, gradient coils and radio 

frequency coils. Electromagnetic coils are used to provide static magnetic field. Gradient coils 

make each point of space has a different magnetic strength, so the spinning speed of the 

hydrogen nuclei at that point is different, which gives us the spatial information. The RF coils 

will generate RF pulse that has ha specific resonance frequency (also known as Larmour 

frequency). Unlike other radial ways, MRI can provide us with high 3D spatial image with no 

harm. Hence, the safety and extraordinary performance of MRI has made it one of most 

promising diagnostic imaging techniques nowadays. 

 

Figure 1.1 MRI scanner 
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1.2 Functional MRI 

Functional magnetic resonance imaging is a neuroimaging technique using MRI scanner to 

investigate the neuronal changes in brain function over time [2]. Our brain serves as the 

information-processing center, which process all the signals and make decisions. Mapping the 

brain network has been a heated topic in neuroimaging ever since the emergence of MRI 

technology. Brain can be seen as made up of different regions. Generally, people assume that 

different brain regions perform different brain functions. A neuronal activity is usually 

conducted by several regions of the brain, i.e. by a brain network consist of several regions. 

Under the concept of functional MRI, ROIs (Regions of Interest) are defined as nodes within the 

network. The connections of these nodes are estimated using various approaches. The most 

common adopted method is to get the correlation of these node pairs. The correlation is used to 

estimate how close a pair of nodes is related to each other. Functional connectivity and effective 

connectivity are the two main categories used to estimating the intervention between brain 

regions [3]. Functional connectivity is defined as “temporal correlations between spatially 

remote neurophysiology events” while people define effective connectivity as “the influence one 

neuronal system exerts over another” [4].  Of course just estimating whether a connection 

between node pairs exist or not is relatively simple, but as the effective connectivity can provide 

much more information underlying the neuronal process, it also gains lots of interest. fMRI is 

based on the Cerebral Blood Flow (CBF) principle [5]. Whenever a neuronal activity occurs in a 

certain parts of the brain, the metabolic demand will lead to an increase in blood flow to that 

region according the knowledge of biology. This rapid blood delivery to the neuronal region is 

named as Hemodynamic Response (HDR) [6]. The metabolic process caused by neuronal 

activity within the brain will consume oxygen, and the oxygen is transferred in the blood by 
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hemoglobin. Hemoglobin has a physical property that it will become diamagnetic if carrying 

oxygen (oxygenated hemoglobin) and it will become paramagnetic if without oxygen 

(deoxygenated hemoglobin). As a result, the blood flooding towards active neuronal region is 

more diamagnetic than the other parts, which can be detected by MRI. By employing this 

property of hemoglobin, we can get an indirect measurement of the neuronal activity within our 

brain, and it is general named as blood oxygenation level dependent (BOLD) fMRI [7]. The 

advantage of fMRI is the high spatial resolution as well as safety inherited from MRI technology. 

However, since fMRI is an indirect method, there is always a latency (usually 1 to 2 seconds) 

between actual triggering and the hemodynamic response, so fMRI has a poor temporal 

resolution. Despite this drawback, fMRI has been largely used and become a dominant and 

essential tool in research and clinical applications. 

 

Figure 1.2 Protons randomly aligned in the absence of external magnetic field thus not 

producing any magnetic field [8] 

 

 

1.3 fMRI data preprocessing  

The data got directly from the scanner is raw and needs several preprocessing steps before we 

use to analyze. According to the data acquisition process and property of MRI scanner, the MRI 
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image slices of a single voxel at different time points will be together. However, this does not 

match our analysis habit. Of greater interest are the MRI image slices of different voxels at the 

same time point to do the contrast. Hence the first conventional step is the slice timing, i.e., 

divide the slices of one voxel separately, and put slices of same time point together. In this 

process we are under the assumption that the voxel’s intensity value is smooth and derivable, so 

the whole plot of the value intensity can be restored as a continuous curve by calculating 

methods.  

 

The second preprocessing step is head motion correction. This is because of the influence of 

subject’s head movement on the signal. As discussed above, a continuous time curve is 

represented to describe a voxel’s intensity. Hence the time course of a time point may represent 

that of some other voxel due to the head motion during scan. To address this effect, a rigid-body 

transform is applied to the volume by shifting and rotating the whole volume data to account for 

motion influence [9]. Similar to the principle of Least squares, we compare the transformed 

volume to the volume at the first time point statistically. A cost function (such as correlation) is 

employed to measure how these two match, and eventually the transformation that has the least 

cost is chosen [10]. One fact that needs attention is that the transformation is not necessarily the 

globally optimal solution in practice. Due to variety of head movement, it is neither practical nor 

worthy to compare all possible transformations.  

 

The third step is distortion correction. This is because of the field non-uniformities of the scanner. 

Tow mainly methods are adopted to make corrections. One way is to use shimming coils, which 

is a direct way and can make up the difference from the origin [11]. The other method is to 
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acquire two images with different echo times and recreate the field map of interest. Several 

statistical algorithms are taken to correct the distortion (such as Markov random fields and 

expectation maximization algorithms [12]). Generally, functional images with fMRI and a 

structural image with MRI are both acquired, and the structural is of higher resolution compared 

to the fMRI images. Whenever marking the focused regions in fMRI images, we can align it with 

the structure image. 

 

Next step is temporal filtering, aiming at removing the uninterested frequencies from the signal. 

A voxel’s time course is a sum of the various frequency signals. With the help of Fourier 

transformation, we can get the power spectrum of the signal, which is a plot with periods of the 

signals on the x-axis and amplitudes on the y-axis. Filters of all kinds (High-pass, band-pass, 

low-pass) can be applied to the spectrum based on our particular choice. Then the filtered time 

course for the voxel can be restored by inverse Fourier transformation. 

 

The last step is smoothing. It is to average the intensities of the nearby voxels to produce a 

smooth spatial intensity map across the ROIs [13]. This process is usually done by conducting 

convolution with Gaussian filter. The weights assigned to the neighboring voxels are measured 

by the distance to the voxel. If the true spatial extent of activation matches the width of the 

Gaussian filter, the SNR can be improved. Otherwise the SNR can be enlarged and thus the 

signal will be reduced. 
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1.4 Motivations and Organization 

Functional MRI as non-invasive technique has very powerful use in helping us understand 

human behaviors, especially sometimes human may have difficulty explaining their own 

behaviors. Hence, with the help of fMRI technology, we have to chance to see what is really 

happening during the neuro activity, so that we can better understand the human behaviors. So 

far, there has been a lot studies in economic field on how the government can take price 

interventions to help to eliminate childhood obesity, and lots of useful conclusions have been 

proposed by researchers. However, there are no direct and objective scientific evidence to 

support these conclusions. 

 

The goal of this thesis is to apply fMRI technology to infer brain function and analyze people’s 

brain activities during making shopping decision under different price promotions. By doing this, 

we can picture the reason of their shopping preference. In chapter 2, the background of our 

project will be introduced first as well as the corresponding related previous researches. Then the 

experiment task design and data acquisition process are explained in detail. Finally, the result 

and discussion part of the project is presented. Chapter 3 presents a conclusion of the whole 

work in the thesis.  
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Chapter 2: Efficacy of Price Interventions for Mitigating Childhood Obesity by Promoting 
Healthy Food Choices: An fMRI Study in Parents with Low Socioeconomic Status 

 

 

2.1 Introduction 

Obesity is currently a growing problem in both developing and developed nations all over the 

world. According to the data provided by U.S. Department of Health and Human Service, 

approximately 3000 deaths are caused by obesity in United States alone. Obesity increases the 

risk of heart disease, high blood pressure, diabetes, cancer, sleep apnea, arthritis, pregnancy 

complications and many other disorders [14]. Also, the fact that a higher body-mass index (BMI) 

in developmental years increases the risk for all the above diseases when compared with obesity 

developed in adulthood only makes the situation even worse for children [15][16]. Childhood 

obesity is of particular concern nowadays, and especially a rising one among rural and low-

income populations. People from lower income and socioeconomic status usually have limited 

access to knowledge and education, thus the potential harmful effects of unhealthy food are 

probably not clear to them. Also, since children rely on their parents for food, parents’ choices of 

the food supply for the whole family directly affect childhood obesity level.  

 

Taking Alabama as an example, it is currently facing an obesity epidemic. The rural population 

within this state is particularly vulnerable because of poverty and lack of access to healthy food. 

According to the Centers for Disease Control and Prevention’s survey “Alabama Behavior Risk 

Factor Surveillance System (BRFSS)”[17], 14 of Alabama’s counties have over 40% adult 

obesity rates. Also, in the year of 2013, Alabama Youth Risk Behavior Survey depicted that 

children in Alabama are at particular risk[18]. It is reported that 17% of children in Alabama are 
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obese whereas the national average is only 13.1%. Geographical study of obesity using BRFSS 

data shows that the Black Belt of Alabama, including 16 counties, have highest burden of obesity 

(as shown in Fig 2.1). These counties are also economically backward. The population of these 

areas has less access to education and healthy food. 

 

 

Figure 2.1 Estimated number of people at risk for obesity in Alabama [19] 
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Several fiscal policies have been employed by the government to encourage people to purchase 

more healthy food over unhealthy food [20][21][22][23][24]. Among various such fiscal policies, 

lowering the tax and giving subsidy on the healthy food are most frequently adopted ones 

[25][26][27][28]. These actions are anticipated to influence parents’ choices on the family food 

supply and encourage them to shop more healthy food in order to alleviate childhood obesity. 

Many behavioral economists have investigated whether these governmental price interventions 

related to healthy food offerings are effective or not. Maniadaskis et al studied the influence of 

higher taxes on unhealthy foods, however, the results are not straight forward due to complex 

consumer behavior and underlying substitution effects [29]. For example, when higher taxes are 

levied on unhealthy food items such as candy and soda, people purchase less of these items but 

substitute their purchase with other higher calorie food. This results in the same amount of 

calories as before or even more for their total purchases. Also, several previous behavioral 

studies showed that unless the tax on unhealthy food items is abnormally and unrealistically high, 

their effect on mitigating obesity was small [25][30][31][32][33][34]. Higher taxes on unhealthy 

food items has also attracted some moral concerns because it will result in low-income and 

vulnerable populations spending more money on a basic necessity such as food. Therefore, 

lowering taxes on healthy food items has been proposed as an alternative. 

 

Previous researchers found that when tax is lowered on healthy food items, parents were more 

likely to purchase more healthy food for their family in order to save money [35]. But if they 

were required to spend the saved money in the store, they would use this money to buy unhealthy 

food items as well [36]. As a result, if consumers cannot have full control of this saved money 

and can only use it under certain circumstances, the desired effect of promoting healthy food 
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purchase at the expense of unhealthy food items might not be obtained. As depicted in the 

literature, consumers will be more price sensitive as their income goes down [37][38][39]. We 

can expect that individuals with lower socioeconomic status will be more receptive to fiscal 

incentives than individuals with higher socioeconomic status since median incomes in the former 

case are generally lower than in the latter case.  

 

An alternative fiscal tool to lower taxes is subsidy. In the former case, the rate of taxation will be 

lower for healthy food items compared to unhealthy food items. Whereas in a subsidy a certain 

amount of money is refunded to consumers only for the healthy food items they buy. While the 

amount of money the government spends on lower tax or subsidy may be the same, it is 

noteworthy that these two price interventions are framed differently. While lower taxes are 

framed as a discount on healthy food purchases, subsidy is framed as “cash back” on healthy 

food choices. Consequently, even though the net amount of money saved may be the same, the 

framing affects choice behavior. There are also studies showing that subsidies are not as helpful 

as expected in encouraging the purchase of healthy food. Though people would purchase more 

healthy food when subsidized, they spent the saved money on buying additional less healthy 

alternatives [20]. However, behavioral studies often do not provide mechanistic insight and 

hence we need to look at underlying biology for understanding which fiscal tools work and why 

they work.   

 

Functional magnetic resonance imaging (fMRI) is a non-invasive way of quantitatively 

measuring brain activity in awake humans. It provides vastly superior spatial resolution as 

compared to previous modalities such as electroencephalography (EEG), which coupled with its 
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high sensitivity, has enabled researchers to probe human brain function and develop mechanistic 

models of behavior [40]. Previous studies employed fMRI technology to identify brain regions 

which activate in response to food-related stimuli. These studies are useful as they showed how 

obese people might process food-related information differently [41][42][43][44]. However, no 

studies have investigated the effects of subsidies and lower taxes on parents’ neural response 

together with their choice of food purchase. Hence, neural mechanisms underlying the efficacy 

of public policy interventions using fiscal tools (taxes and subsidies) remains completely 

unexplored. Therefore, the aim of this work is to compare the effectiveness of lowered taxes and 

higher subsidies on healthy foods in promoting healthy food consumption among lower income 

populations.  

 

Specifically, we test the following hypotheses in this work. First, we hypothesize that healthy 

food items will elicit least reward response and unhealthy food items will lead to highest reward 

response. Further, by offering lower tax or subsidy on healthy food items, the reward response in 

the brain for such items will be significantly enhanced. Second, we hypothesize that subsidy will 

be more effective than lower tax in encouraging consumers to purchase healthy food items, 

driven in part, by higher reward-related response in the brain for subsidy in comparison to lower 

tax.  

 

2.2 Methods 

2.2.1 Participants 

We were primarily interested in the effect of price interventions on purchase choices made by 

parents with low-income and socioeconomic status. Therefore, we recruited subjects from low-



 13 

income families within the so-called black belt of Alabama (Macon County and Lee County). 

Potential subjects were first pre-screened via phone to check whether they qualified for the study 

or not. The pre-screening criteria were as follows. The subjects who would take part in this study 

were required to be responsible for one or more 2-18 year-old children in the family, and their 

whole family household income was required to be under the limit that we set. Also, we screened 

subjects for MR-compatibility which included an exhaustive questionnaire documenting among 

other things whether the subject (i) had any medical condition that prevented him/her from 

finishing an MRI scan before, (ii) had been injured by a metabolic object or a foreign body 

before, (iii) had been implanted by a medical device within their body before, (iv) had any tattoo 

/permanent makeup that contains metal or body-piercing jewelry that cannot be removed. 

Subjects who self-reported to be claustrophobic were excluded. In total 19 subjects (13 females 

and 6 males, ages 37.7 ± 10.5) participated in the study. All experimental methods and 

procedures were approved by the Auburn University Institutional Review Board (IRB) and the 

experiments were performed in conformance with expected international ethical standards. After 

the fMRI scan the subjects were financially compensated for their participation.  

 

 

2.2.2 Stimuli 

Since we were interested in investigating the effect of two different price interventions, three 

types of fMRI stimuli were designed (subsidy, low tax, control). For control condition, subject 

were required to pay regular tax (10%) on purchased food items and received no subsidy. For the 

subsidy condition, subjects had to pay regular tax (10%) on purchased healthy food items, but 

received 9% cashback. For the low tax condition, subjects payed reduced tax (1%) on purchased 
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healthy food items and received no subsidy. Each fMRI stimulus image was made up of the 

picture of a food item along with its price tag. The brand of the food was covered to avoid 

possible influence of brand preference on subjects’ shopping decisions. Three different colors 

representing two different price interventions (subsidy and low tax) as well as the control 

condition were assigned to the price tags. Blue represented the subsidy condition, green 

represented low tax condition (example in Fig. 2.2) and yellow represented control condition, i.e. 

no subsidy and regular tax. Subjects were given detailed instructions regarding the color codes 

before their experiment. They also performed a practice run outside the scanner just to make sure 

that they understood all aspects of the price tag. 

 

 

(a)                                                (b)                                                (c) 

Figure 2.2 (a). An example of price tag under control condition. (b). An example of price tag 

under subsidy condition. (c). An example of price tag under low tax condition. These price tags 

include the unit price of the food item and its corresponding fiscal intervention. 

 

 

The fMRI stimuli involved images of 36 different food items (18 healthy food and 18 unhealthy 

food). Foods items were classified as healthy or unhealthy based on the following criteria: (1) 

Standards required by Alabama schools for cafeteria foods with regards to fat content, sodium, 
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calories, etc. [45], (2) The healthy snack calculator ( https://foodplanner.healthiergeneration.org), 

and (3) The USDA guideline for healthy food [46]. These were selected to represent commonly 

found healthy and unhealthy food items in a typical grocery store. For each healthy food item, 

three different images were used to create stimuli corresponding to subsidy, low tax and control 

conditions (example in Fig 2.3).  However, unhealthy food items were not associated with 

subsidy or low tax. Therefore, for unhealthy food items, three different images were used 

separately to produce three fMRI stimulus images whose price tags remained the same under the 

control condition. In total there were 108 fMRI stimuli (54 belonged to unhealthy category and 

54 belonged to healthy category).  

 

 

(a) 
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(b) 

 

(c) 
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Figure 2.3 (a). An example of fMRI stimulus image under control condition. (b). An example of 

fMRI stimulus image under subsidy condition. (c). An example of fMRI stimulus image under 

low tax condition. These three fMRI stimulus images refer to the healthy food banana. 

 

2.2.3 Task Design 

The fMRI experimental session consisted of presentation of the 108 stimulus images (in random 

order) for 10s duration, followed by a variable inter-trial interval (ITI; range 7s-13s; mean 10s), 

which was a dark blank image containing a small white fixation cross at the center. The purpose 

of inserting the variable ITI was to jitter the onset of stimuli and conditions so that it improves 

the estimation of the hemodynamic response function (HRF) [47]. During the 10 s that the 

stimulus images were available to view, subjects indicated their decision to either buy or not buy 

the product using two different buttons on a standard, 4-button, MR-compatible button box 

(Current Design, Philadelphia, PA). When deciding to buy the presented food, subject pressed 

“1”, otherwise they pressed “2” for deciding not to buy the item.  

 

In each experimental session, the total of 108 stimuli were randomly divided evenly into three 

runs for each subject using E-prime software. Each run consisted of 36 images. “Optseq” 

software was employed to determine the ideal sequence of variable ITIs and trials in this 

experiment design [48][49]. The sequence generated by Optseq maximized the variance of the 

predicted fMRI response and minimized the overlap of HRFs. 
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2.2.4 Experimental Procedure 

Upon their arrival and before the scan, the participants were again screened for MR-

compatibility in-person and were requested to provide informed consent if they agreed to 

participate in the study. They were also informed that participation in the study was completely 

voluntary and they were free to quit the experiment at any point during the experiment without 

giving a reason. Additionally, they were notified that their personal information would be kept 

confidential in accordance with HIPPA (Health Insurance Portability and Accountability Act of 

1996) regulations. The subjects were then given a more detailed introduction about the 

experiment and procedures by a research assistant. To ensure comprehension of the task 

requirements, all subjects completed a practice run prior to scanning using a laptop outside the 

scan room. The practice run was identical to a real run implemented during scanning but had 

only five stimuli which were not used during data acquisition. Following the practice run, the 

subjects were asked to insert their head inside a 32-channel head coil (from Nova Medical) and 

made comfortable. A mirror was placed atop the coil so that the subjects could view visual 

stimuli being projected onto a screen at the other end of the bore using an MR-compatible 

projection system (from Avotec). Soft sponge was placed inside the coil in order to secure the 

head so as to minimize head motion. They were also given a squeeze ball which could be 

squeezed to stop the scan anytime if they wanted to exit. They were then asked to test the MR-

compatible button box to make sure it functioned well. The subject was also given time to adjust 

himself/herself to the projector screen, as well as the scanning environment before the actual 

scan. The stimulus display via the projector was controlled using E-prime software on a PC 

connected to the scanner console so that stimulus presentation and data acquisition could be 

triggered and temporally synchronized.  
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2.2.5 Data Acquisition 

MRI Data was acquired on a 3 Tesla MAGNETOM scanner (Siemens Healthcare, Erlangen, 

Germany) using 32-channel Nova Medical head coil at Auburn University MRI Research Center 

in Auburn, AL, USA. Functional brain imaging data were acquired using an echo-planner 

imaging sequence (EPI) [50] with repetition time (TR) = 1000ms, echo time (TE) = 30ms, field 

of view (FOV) = 24cm, in-plane resolution = 3x3 mm2, slice thickness = 5mm with whole brain 

coverage. Also, a high-resolution 3D MPRAGE (magnetization-prepared rapid gradient echo) 

sequence was used to collect T1-weighted structural data for anatomical localization [51].  

 

2.3 Data Analysis 

2.3.1 Preprocessing 

Brain imaging data were analyzed using statistical parametric mapping (SPM) software 

(http://www.fil.ion.ucl.ac.uk/spm/) in MATLAB environment. Several standard image 

processing steps were performed as follows: motion correction was done to detect and correct for 

head movements, normalization was preformed to transform MRI images from native subject 

space into Montreal Neurological Institute (MNI) standard brain template space using nonlinear 

warping; spatial smoothing was conducted to improve image quality; and finally temporal 

bandpass filtering was performed to remove low frequency drift and high frequency noise. 

 

 

2.3.2 Statistical Analysis 

http://www.fil.ion.ucl.ac.uk/spm/
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A general linear model (GLM) was applied to the pre-processed BOLD fMRI data in order to 

find brain regions activated by conditions of interest. A GLM can be described as the equation 

below, 

𝑌𝑌 = 𝑋𝑋𝑋𝑋 +  U, 

Where Y is the observed fMRI time series, X is a design matrix consisting of explanatory 

variables, B is a matrix containing parameters that are to be estimated and U is a matrix 

containing the model error. X consisted of time courses expected due to each condition as well as 

time and dispersion derivative function allowing for variations in subject-subject and voxel-

voxel response[52]. The expected time courses were modeled with a boxcar function convolved 

with the canonical hemodynamic response function (HRF). The boxcar function assumed a value 

of 1 at times when the subjects saw images corresponding to the condition of interest and a value 

of zero during other times. Specifically, the conditions of interest were: bought unhealthy food 

(BUH), bought healthy food control (BHC), bought healthy food low tax (BHT), bought healthy 

food subsidy (BHS), not bought unhealthy food (NUH), not bought healthy food control (NHC), 

not bought healthy food low tax (NHT), not bought food subsidy (NHS). The coefficients of the 

linear model B were then computed as beta-values. Linear contrasts were defined on the columns 

of the design matrixes, in order to statistically compare the fMRI response to different conditions 

in every voxel across the brain using t-tests. The voxels which were significantly different 

between the conditions being compared were displayed as functional activation maps overlaid on 

the MNI T1-wrighted brain template. 

 

For each individual subject, BHS, BHC and BUH were first compared to find regions 

significantly different between the conditions. Next, BHT, BHC and BUH were compared to find 
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regions significantly different between the conditions. Finally, BHS and BHT were directly 

compared. Once t-maps were obtained for these three different contrasts from individual subjects, 

a second GLM model was fit in order to obtain group level maps for these contrasts. 

 

2.4 Results 

2.4.1 In-scanner Behavior Data 

The percentage of products bought under each category is shown in Fig 2.4. We found that the 

percentage of products were significantly (p<0.05) higher when these products were associated 

with price interventions. 

 

Figure 2.4 The percentage of products bought under each category across subjects. Since the 

number of products on offer under each category was different, the percentage was calculated by 
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comparing the number of products belong to a particular category that were bought compared to 

the number of products on offer in that category. The percentage of products bought were 

significantly higher (p<0.05, as indicated) when they were associated with lower tax or subsidy 

(BHT and BHS) compared to control conditions (BUH and BHC).  

 

2.4.2 fMRI Activations 

We found that reward-related regions such as ventral striatum, substantia nigra and orbitofrontal 

cortex (Fig 2.5 for subsidy and Fig 2.6 for low tax) as well as executive control regions such as 

the dorsolateral prefrontal cortex (Fig. 2.10 for subsidy and Fig. 2.11 for low tax) showed 

significant differences between price incentives (subsidy or low tax) and control conditions. 

Specifically, the regions of the reward network showed a pattern of increasing response from 

BHC to BHS/BHT to BUC conditions as shown in Figs 2.7, 2.8 and 2.9. On the other hand, the 

activated executive control region of dorsolateral prefrontal cortex (DLPFC) or Brodmann area 9 

showed the opposite pattern of decreasing response from BHC to BHS/HT to BUC conditions as 

shown in Fig 2.12. Also, a direct comparison of the responses under BHS and BHT conditions 

showed that the ventral striatum (Fig. 2.13) showed greater reward-related activity for subsidy 

compared to lower tax on healthy items (Fig. 2.14).  
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Figure 2.5  Three brain regions (Substantia nigra, Ventral striatum, Orbitofrontal) which showed 

significant (p<0.05) differences between BHC, BHS and BUC conditions, with highest response 

to BUC and lowest to BHC. 
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Figure 2.6  Three brain regions (Substantia nigra, Ventral striatum, Orbitofrontal) which showed 

significant (p<0.05) differences between BHC, BHT and BUC conditions, with highest response 

to BUC and lowest to BHC. 
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Figure 2.7 The mean t-values extracted from activated voxels in the orbitofrontal region shown 

in Figs 2.5 and 2.6. Bar plots on the left correspond to activated voxels in Fig 2.5 while those on 

the right correspond to activated voxels in Fig 2.6. The “x” in the figure indicates that the t-value 

of two conditions were significantly different with p-value less than 0.05. p-values for the 

comparisons shown on the left: BHC-BHS p-value=0.0487, BHC-BUH p-value=0.005. p-values 

for the comparisons shown on the right: BHT-BUH p-value=0.02, BHC-BUH p-value=0.002  .   
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Figure 2.8 The mean t-values extracted from activated voxels in the substantia nigra region 

shown in Figs 2.5 and 2.6. Bar plots on the left correspond to activated voxels in Fig 2.5 while 

those on the right correspond to activated voxels in Fig 2.6. The “x” in the figure indicates that 

the t-value of two conditions were significantly different with p-value less than 0.05. p-values for 

the comparisons shown on the left: BHC-BHS p-value=0.05, BHC-BUH p-value=0.003. p-

values for the comparisons shown on the right: BHT-BUH p-value=0.023, BHC-BUH p-

value=0.003. 
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Figure 2.9 The mean t-values extracted from activated voxels in the ventral striatum region 

shown in Figs 2.5 and 2.6. Bar plots on the left correspond to activated voxels in Fig 2.5 while 

those on the right correspond to activated voxels in Fig 2.6. The “x” in the figure indicates that 

the t-value of two conditions were significantly different with p-value less than 0.05. p-values for 

the comparisons shown on the left: BHC-BHS p-value=0.0148, BHC-BUH p-value=0.0186. p-

values for the comparisons shown on the left:: BHT-BUH p-value=0.032, BHC-BUH p-

value=0.029. 
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Figure 2.10  The brain region (dorsolateral prefrontal cortex or Brodmann area 9) which showed 

significant (p<0.05) differences between BHC, BHS and BUC conditions, with highest response 

to BHC and lowest to BUC. 
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Figure 2.11  The brain region (dorsolateral prefrontal cortex or Brodmann area 9) which showed 

significant (p<0.05) differences between BHC, BHT and BUC conditions, with highest response 

to BHC and lowest to BUC. 
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Figure 2.12 The mean t-values extracted from activated voxels in dorsolateral prefrontal cortex 

(DLPFC) or Brodmann area 9 shown in Figs 2.10 and 2.11. Bar plots on the left correspond to 

activated voxels in Fig 2.10 while those on the right correspond to activated voxels in Fig 2.11. 

The “x” in the figure indicates that the t-value of two conditions were significantly different with 

p-value less than 0.05.  (left: BHC-BUH p-value=0.042, right: BHC-BUH p-value=0.0158). 
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Figure 2.13.  The Ventral striatum showed significant (p<0.05) differences between BHS and 

BHT condition. 
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Figure 2.14 The mean t-values extracted from activated voxels in Ventral striatum shown in Fig 

2.13. The “x” in the figure indicates that the t-value of two conditions were significantly 

different with p-value less than 0.05 (p-value=0.0002). 
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2.5 Discussion 

Our results demonstrate that the Orbitofrontal, Ventral striatum and Substantia nigra regions 

were found to have maximal response to BUC condition, followed by BHS (and BHT) and 

minimal response to BHC condition. In previous reports, all these three regions had been studied 

and usually defined as regions part of the “reward” network in the brain [53]. Specifically, in 

food and obesity related research, these regions are thought to encode the calorific reward value 

in the brain. For example, a study on neural correlates of restrained eaters’ high susceptibility to 

food cues showed that the Orbitofrontal region was activated by high-energy food cues [54].  

Also Orbitofrontal region was found to have a greater response to high-calorie food versus low-

calorie food in a study on emotional eating [55]. Another study investigating the alterations in 

brain response to food stimuli in overweight and obese individuals, reported that obesity is 

associated with greater food-evoked responsivity in the ventral striatum [56]. As for the 

substantia nigra region, previous studies have shown it to be activated with the choice of high 

energy-density foods [57]. All these previous studies shed light on how these regions encode 

“reward value” in the brain and corroborates our findings.  

 

Unhealthy food usually contain higher calories per dollar spent and is usually perceived to taste 

better than healthy food. Hence, people tend to choose unhealthy food over healthy food. This is 

consistent with our results showing that brain regions which encode calorific reward value also 

showed highest response to unhealthy foods compared to healthy foods in the absence of price 

interventions. This is reasonable because all creatures have a preference for food that contains 

more energy for survival and hence is a preference that is naturally selected during the 

evolutionary process. In this context, the role of price interventions (subsidy or lower tax) is to 
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offset the low reward signal for healthy foods due to their lower calorific value, by enhancing 

perceived reward value for healthy products by associating it with a monetary reward. Many 

previous studies have shown that the three regions – ventral striatum, substantia nigra and 

orbitofrontal cortex – which were activated in our task also encode monetary reward value. For 

example, ventral striatum was showed to be modulated by the magnitude of monetary reward 

[58]. Another study showed that both substantial nigra and orbitofrontal cortex had a stronger 

activation when provided with monetary reward than verbal reward [59]. Our results indicate that 

the subsidy or lower tax on healthy products does exactly that, by enhancing the reward value 

encoded by these regions for healthy food items. We provided a low tax promotion of 1% tax 

(compared to 10% tax on unhealthy foods) on selected healthy food and subsidy of 9% cashback 

on selected healthy items (compared to no cash back or subsidy on unhealthy foods). Therefore, 

one could envision a scenario where in the amount of tax break or subsidy can be titrated to 

determine the level at which the perceived reward value of healthy food items on low tax or 

subsidy equals or exceeds that of unhealthy food items. This could potentially provide policy 

prescriptions for the government which are based on sound scientific evidence. 

 

It is noteworthy that the above discussion centers around BOLD responses to healthy and 

unhealthy food items, all of which were purchased by the subjects. In our analysis, we did not 

consider or compare responses during viewing items which were not purchased. Therefore, 

naturally the question arises as to why healthy food items with and without price interventions 

were bought in spite of lower reward value compared to unhealthy food items. The answer to this 

question lies in the pattern of responses we found in the dorsolateral prefrontal cortex (DLPFC), 

specifically in Brodmann area (BA) 9. The responses to BHC, BHS/BHT and BUC in BA 9 
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followed a pattern exactly opposite to that observed in reward related regions, i.e. it showed 

maximal response to BHC, followed by BHS/BHT and least response to BUC. BA 9 is an 

executive control region which exercises top-down cognitive control on decision making 

[60][61]. Of specific interest is the role of this region in overriding automatic responses 

generated by bottom-up processes [62]. In our context, this would be to override the bottom-up 

input from reward-related regions on the calorific reward value of unhealthy foods, and instead 

opt for healthy foods with lower tax or subsidy. Therefore, our results indicate that in order to 

buy healthy food items without price interventions, BA 9 had to exert maximum cognitive 

control due to its lowest calorific reward value. In contrast, unhealthy food items already had 

high calorific reward value and hence needed little cognitive control in order to make a purchase 

decision. The enhancement of reward value of healthy food items after price interventions 

reduced the amount of cognitive control required by subjects to buy them. This is critical in 

populations with low socioeconomic status because it has been shown that poverty impacts the 

brain [63] and its development [64] and potentially top-down cognitive control mechanisms [65]. 

Therefore, reducing the amount of cognitive control needed by individuals in such populations 

for making healthy food choices for themselves and their children is an objective that can be met 

by titrating the magnitude of price intervention needed. 

 

One important question is which of the two price interventions – subsidy or lower tax – is better 

at achieving those objectives. In our experimental design, for buying same amount of a particular 

healthy food, subjects paid the same net amount money under two price intervention conditions. 

However, people reacted differently to these two promotions even if there were no difference in 

the amount of money saved. As discussed in the introduction earlier, many studies in the field of 
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behavioral economics have investigated this aspect [20][35][36] since subsidy and tax breaks are 

framed differently and that might influence choice behavior. Based on this prior literature, we 

hypothesized that subsidy might be more effective than lower taxes in urging consumers to buy 

healthy food products. Our in-scanner behavioral results indicate that, in terms of the percentage 

of items bought, these two interventions did not differ significantly (with p-value = 0.648). 

However, the fMRI responses were significantly greater in the ventral striatum for the subsidy 

condition compared to the lower tax condition. This provides support for our hypothesis. 

 

Some limitations of this study are noteworthy. First, we did not offer different levels of lowered 

taxes or subsidy in order to investigate neural correlates which parametrically modulate with the 

amount of these price interventions. However, we did suggest earlier that these levels could be 

titrated in order to arrive at optimal values in order to inform public policy. Second, we did not 

put a control group of subjects not from low-income populations. By doing this, we could further 

certify the conclusions of this study. Third, the sample size of the experiment was not that large 

given the exploratory nature of the study. Future studies with larger samples may be required to 

confirm the conclusions drawn from this study. 
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Chapter 3: Conclusion 

 

 

In this thesis, fMRI technology was employed to study the efficacy of tow price interventions 

(low tax and subsidy) in mitigating childhood obesity. We found brain regions within “reward” 

network (Orbitofrontal, Ventral striatum and Substantia nigra regions) showed difference in 

activation to different kinds of food category, with the highest response to unhealthy food and 

least to healthy food. By adding the price intervention of healthy food, the reward response 

became higher in these three regions. More specific, subsidy triggered a stronger reward 

response than low tax. Also, we found that brain region in charge of cognitive decision 

Brodmann 9 showed difference in activation to different kinds of food category, which provided 

us more information on how the two price interventions work. All these results could give 

insights to government to make future price interventions to help alleviate the situation of 

childhood obesity, especially for the rural and low-income populations. 
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