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Abstract 
 
 

A new methodology and corresponding dataset are recommended for a more accurate 

calculation of erosion index (EI) and erosivity (R) that was more consistent with 

observations from superior data sources. NOAA NCDC DSI-3260 (quarter-hour) station 

data from 1970 to 2010 was screened and a water balance was performed to compare 

measured precipitation with the expected values at each station having matching climate 

normal data. The results of the water balance were used to select the screening method that 

most accurately accounts for precipitation at a high spatial resolution (about 3 times more 

dense than the previous publication of EI values). It was found that most stations have a 

slight deficit (averaging 5.9%) with a comparable missing data percentage of 5.77%, which 

might be the reason for the deficit. Updated annual, seasonal, and monthly EI distributions 

were calculated along with an analysis of single storm EI for 1, 2, 5, 10, and 20-year 

recurrence intervals. Annual EI values were found to be higher than AH703 by an average 

of 18.6% for unadjusted data, and values should be increased at least another 4% for the 

type of recording station being used. Station observations were gridded by geostatistical 

interpolation for better spatial representation of the data. The effects of limiting the 

maximum 30-minute intensity and adjusting for known uncertainties was quantified for the 

preferred screening method within each analysis. Station data was compared to a reliable 

literature source to validate the new methodology. Results were further analyzed for 

climate variability influences from ENSO by the statistical method known as joint-rank fit 

(JRfit). Data was analyzed under various clusters, and ENSO was found to have a 

significant effect on multiple precipitation parameters. Changes in the distribution of EI 

throughout the year, based on ENSO phase, was used to highlight general implications for 

BMPs aimed at soil conservation and reductions of sediment yield. With known 

variabilities accounted for, observed changes in erosivity from the influence of climate 

change can be accurately assessed in the future. 
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1.1 Motivation 
The conservation of natural resources is an issue of the utmost importance for our society. 

At this time in history, there is more talk of the food-water-energy nexus than ever before, 

and yet the human population continues to increase rapidly. These resources are intricately 

related to each other and to their varying climate, which in many cases determines the 

immediate utility of those resources. Furthermore, climate change has increased the 

complexity, uncertainty, and the strain on these relationships. Science and engineering are 

already discovering that the direct impacts of agriculture, urbanization, pollution, etc. can 

be matched or exceeded by the indirect impacts of these practices via climate and climate 

change. The indirect nature of this interaction makes observation, analysis, and 

communication much more difficult for the science than those resulting from more direct 

impacts (e.g. water quality). Despite these challenges, modern data, increased computing 

power, and governmental collaboration has enabled the implementation of relatively 

consistent, science-based conservation policies and practices. Yet, current conservation 

efforts still lag behind the state of the science. This is particularly evident in soil loss 

conservation practices and erosion prediction technology. 

 Climate—whether it is changing or not—plays a major role in soil interactions. It 
is one of the four factors of soil formation, and it is one of two soil loss ‘driving’ factors 

(erosivity and erodibility) in the USLE family of soil loss equations (not considering 

‘modifying’ factors L, S, C, and P). In understanding how soils form and erode, it is 

important to understand climate, how it varies over different time scales, how it changes 

under external forcing, and most importantly that it is not in a steady state…ever. It has 

been well documented that our climate oscillates due to factors affecting intercepted solar 

radiation and more recently that anthropogenic contributions to greenhouse gas emissions 

are affecting measureable climate changes around the globe. It is not a single change; it is 

multiple changes, often not in the same direction for different locations. For example, some 

places will see higher amounts of precipitation and some will not. Precipitation is a good 

example to contrast with temperature because temperature is relatively well mixed, 

whereas precipitation is highly dependent on the moisture holding capacity of a column of 

air and how that column of moisture heats and cools as it moves. Despite these complex, 

dynamic relationships that drive soil loss, the climate aspect of erosion technologies is 
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usually approximated as a steady state factor. In USLE, RUSLE1, and RUSLE2 it is more 

obvious, since the R-factor only changes spatially. WEPP on the other hand, allows for 

new daily data to be incorporated in its CLIGEN weather generator for updated 

precipitation distributions. However, WEPP still relies on steady state determination of 

other parameters such as time-to-peak, which were derived from 15-minute NCDC 

stations. Therefore, these technologies will need to at least occasionally evaluate 

whether or not changes in precipitation characteristics have occurred for the study 
area and time period of interest. To be clear, the climate has changed—physics and 

thermodynamics proves this. What is left to determine was whether or not the change is 

significant and how our technologies can be updated to appropriately reflect these changes. 

 The goal of resource conservation is to sustain a net-zero or slightly net-positive flux 

of the resource being protected. In order to accomplish this, it is critical that our 

technologies are not outpaced by a dynamic climate. Otherwise, it is possible for 

conservation efforts to insufficiently predict, and therefore, insufficiently regulate and 

enforce conservation tolerances. Current regulations for soil conservation have not been 

too restrictive, and they have for the most part, conserved our soil resources. However, as 

some have begun to point out (Nearing et al., 2004), these current practices are at risk of 

becoming obsolete in the face of observed and projected climate change, and to a large 

degree have ignored climate variability. 

To keep up with our changing climate, I propose that policy-makers and 
researchers adopt a three-point approach for a more intelligent conservation which 
focuses on observed change, observed variability, and subsequently, projected 
change. This approach is becoming more common among climatologists and climate 

scientists for communicating the science to the public, and an example is shown in Figure 

1-1. Under this approach, one begins by identifying observed changes in the topic of 

interest. Once the total change has been identified, the impact of known climate cycles (e.g. 

ENSO, PMO, AMO, etc.) should be evaluated as they pertain to that topic. This will help 

to identify how much of the observed change is attributable to variability, and whether or 

not the relationship is significant. This may not ultimately yield better impact studies from 

climate projections since our understanding of climate variability is still maturing. 

However, it could prove to be useful in the near-term prediction of climate impacts due to 
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variability, and as models improve, climate projections can be informed through these 

studies. For instance, although the IPCC is highly confident that ENSO will continue to 

exist, it is not confident in the effect(s) climate change will have on ENSO and the future 

variability of ENSO (Cubasch et al., 2013). In short, ENSO and how it impacts a relatively 

steady state climate is understood, but climate change impacts on the drivers of ENSO are 

not understood. Most models predict that the climate will favor El Niño more in the future, 

but models do not agree on the variation of that warmer future. I suspect that until the 

scientific community can confidently identify the effects of climate change on climate 

variability, our projections for moderate to high resolution temporal and spatial scales will 

remain uncertain since they are highly dependent on these inter-annual variations. On 

global scales, the general implications of climate change can be predicted with relatively 

high confidence, but at regional scales, especially for variables such as precipitation, there 

may not be a clear pattern. Figure 1-2 shows precipitation patterns (driven by convection 

pathways in the atmosphere), which are the sources of this uncertainty. At our current level 

of understanding, these convection pathways are too difficult to predict with confidence. 

Figure 1-1 Separating Human and Natural Influences on Climate—an Approach for Assessing 

Climate and Climate Impacts. (Huber and Knutti 2012) 
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Therefore, the way to view this approach is from most confident to least confident: 
observed change, observed variability, and projected change. The projected change is 

the most uncertain because it relies on our understanding of a) climate change b) climate 

variability and c) how climate change will impact climate variability. Despite these 

uncertainties, there are some things which are certain, and it would be a mistake to simply 

ignore these due to ill-conceived notions of the science. The most obvious example of this 

was the well-documented fact that the temperature of the earth is increasing. This and other 

similar findings would be classified as observed change and as such are the most confident 

findings. Following this approach, the first objective of this study would be to determine 

what exactly these changes were as they pertain to erosivity in the Southeast United States. 

The second objective will attempt to quantify the effect of climate variability on the 

observed change, whether it was significant or not, and how to anticipate changes from 

variability in the future. Ultimately these two objectives set the stage for the ultimate goal 

of the research, which is the prediction of erosivity for the purpose of a more intelligent 

conservation of soil. For a more specific outline of objectives see Section 1.2.1. 

Figure 1-2 ENSO Driven Atmospheric Circulation Patterns Affecting Regional Convection and 

Precipitation (Credit: Fiona Martin, NOAA) 
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1.2 Research Outline and Purpose 
This thesis is a scientific document, but it is one that reads more like that of a narrative. 

The language becomes much more scientific as it progresses further into the body, but the 

goal is to arrive there in such a way that anyone could pick up this thesis, read it, and for 

the most part, understand what was done and how the results can be interpreted. Since this 

is a scientific document, the scientific method was the guiding principle for this study and 

the logic behind its implementation will be documented here. Relevant results are presented 

regularly throughout the body of the thesis as appropriate, but final conclusions are 

presented in Chapter 4 as they pertain to the hypothesis of each objective. Each chapter in 

the body of the thesis was organized similarly to that of a scientific journal article, which I 

plan to submit for publication after the completion of this thesis. 

1.2.1 Objectives 

The justification for the following objectives can be found in Section 1.1. In general, these 

objectives were formulated in order to give the best possible insight into the 
relationship of climate—through climate variability and climate change—to the 
erosive nature of precipitation in the Southeast. I want to eventually draw conclusions 

for the continental US at the same resolution as this study and potentially draw more 

general conclusions for erosivity globally in the context of changing climate. This first 

effort begins with a study area familiar to us and that will benefit significantly from the 

study, which is the southeastern region. I provide a detailed explanation for this decision 

in Chapter 2. The objectives for this study were as follows: 

 

1. Determine the change in erosion index and erosivity including: 
a. Change Resulting from an Updated Methodology (and Data), and 
b. Other Change, Especially that Resulting from Climate Change, Regarding: 

i. Average Annual EI (R-Factor), and 
ii. Single Storm EI (Frequency Analysis) 

 

2. Determine the impact of climate variability on erosivity including: 
a. Intra-Annual Variability and Changes (Monthly / Seasonal EI), and 
b. Inter-Annual Variability (ENSO), and 
c. Decadal Variability (PDO/PMO, AMO, NMO)* 
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3. Determine the potential future impact of climate change on erosivity based on 
climate projections (potentially) including:* 

a. Effect of Climate Model (GCM-RCM) Temporal Resolution, and 
b. Effect of Bias Correction, and 
c. Trend-Analysis of Historical Data, and 
d. Prediction Method (ANN, PCA, etc.) 

 
*Denotes that the objective was not evaluated in this thesis although some references may 
be made to the objective as these components remain the goal of the study. I plan to publish 
these results in journal articles following the approval of this thesis. 

1.2.2 Experimental Design 

In 1965, the first large-scale erosivity map was published in a document commonly referred 

to as Agriculture Handbook No. 282 (AH282). This document provided R values in the 

Southeast ranging from 125 to less than 700 hundreds of foot-tonf-inch per acre-hour-year. 

In 1978, AH537 was published using the same data and included a limit on intensity (3.0 

in/hr for raindrop size) and maximum 30-minute intensity (2.5 in/hr for ponding in the 

Southeast). The values in AH537 decreased in the deep-south due to many storms being 

impacted by these limits. Values ranging from 100 to less than 600 were published at that 

time and considered to be better for that region. In 1992, AH703 was published with a new 

method for considering ponding in the Southeast based on slope and the 10-year storm EI, 

but it still used the same data from the previous two handbooks. The values in AH703 range 

from 100 to more than 700 and were contoured with more modern methods (McGregor et 

al. 1995). Each of these Agriculture Handbooks were considered slightly better than the 

previous publications. Although the values appear inconsistent at first look, each sequential 

improvement provided a better calculation of erosivity for locally specific observations. 

This was good for the science and for steps towards a better and more accurate 
conservation, but it was challenging for climate science to see the role of climate 
change related to erosivity over this period. Therefore, the first challenge was to 
establish a ‘benchmark’ for future climate studies. 

Of the original Ag. Handbooks, AH703 was the best fit. Unfortunately, AH703 was not 

a suitable benchmark. It has been presented twice that AH537 (McGregor et al. 1980) and 

AH703 (McGregor et al. 1995) provide EI values that were consistently and significantly 

too low. All the Ag. Handbooks utilized 15-minute stations in their calculations of EI, 
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which was the same type of station used in this study. However, regression equations were 

developed that related EI to certain return period storm events for each location so that EI 

values could be drawn at a higher resolution for the eastern United States. In order to 

establish a benchmark for future experiments, I used the base methodology of AH537 with 

the exception that all storms were included in our analysis and the abandonment of 

regression equations for erosivity interpolations. EI values were reported with both a 

limited and an unlimited I30 component. Limited EI values reflect a general observation 

that the potential erosive power of storms cannot be realized due to negative feedbacks 

from high intensity storms. More specifically, highly erosive storms, which have high 

intensities will not infiltrate or runoff quickly enough to allow the incoming rainfall to 

impact the soil. Therefore, the energy of rainfall can be absorbed by ponded water after 

sufficient time is allowed for initial abstractions to take place. The limited EI values will 

provide better insight as to more realistic impacts on climate-driven soil loss, while the 

unlimited EI values allow a deeper understanding of changes in storms themselves and the 

potential erosive power of such storms. I made the decision to use the AH537 energy 

equation despite the fact that AH703 and McGregor recommend using the Brown-Foster 

(BF) or McGregor-Mutchler (MM) equation for superior energy determination in EI 

calculations. This allowed for better comparisons between AH537, AH703, McGregor’s 

study, and my study. I plan to expand the methodology in the future, pending publication 

of the new methodology, to the entire continental US. At that time I will evaluate the BF 

equation for comparisons with the methodology used in this study. 

1.2.3 Anticipated Outcomes 

This study utilizes modern datasets and provides an appropriate methodology for an 
accurate erosion index calculation. The results from this new methodology were 
evaluated to determine whether or not true EI values can be obtained for the 
Southeast United States since previous publications, namely that of the Agriculture 
Handbooks, have been shown to be unreliable. AH537 was primarily included as a point 

of reference for limited EI values and single storm EI, and AH703 was included for 

unlimited EI values and EI distribution throughout the year. This will demonstrate the 

differences in the methodology (mainly the incorporation of small storms less than 0.5 

inches of relatively light intensities, which has been omitted in all Ag. Handbooks) as well 
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as the effect of regression equations used in the Ag. Handbooks. If the methodological 

differences can be quantified, I will have a baseline for comparison at two different time 

periods (1930s-1950s and 1970-2010) for climate change analysis. If these differences 

cannot be determined, it is still possible to evaluate the new methodology for observed 

influences from climate variability in the form of ENSO (others may be considered for 

study later, especially as the observed record improves). Even if I cannot currently make 

conclusive statements about climate change impacts on erosivity, this study will a) 
provide a benchmark and direction for that specific purpose and b) result in 
recommendations for better conservation practices, which change according to the 
ENSO phase, and c) prepare for a study of projected climate impacts on erosivity. 

1.2.4 Broader Impacts 

Conservation regulations attempt to maintain equilibrium between the natural environment 

and designated uses of the land or water body.  Climate change and variability invoke a 

state of non-equilibrium, which suggests the need of a prediction technology for 

conservation regulation.  Prediction of climate change and climate variability outcomes 

for soil loss will allow agricultural, mining, ranching, construction, landfill, and 
military training operations to better maintain compliance with government 
regulation of soil loss tolerances in the future.  The primary benefactors of this project 

include EPA, NRCS, USDA, and other government agencies that have an interest in 

conservation of soil resources or that use erosion index (EI) for estimating soil loss.  

Additionally, RUSLE2 was capable of predicting climate change and climate variability 

outcomes for sediment yield based on soil loss and deposition calculations.  Updating this 

erosion prediction technology creates an opportunity for understanding climate-driven 

sediment yields in watershed and water quality management. 
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1.3 Soil Background 
Soil is a critical component of the terrestrial ecosystem. This natural resource provides the 

medium for biological growth and is responsible for a number of life sustaining services 

within the ecosystem. From a human perspective, soil is at the physical intersection of the 

food-water-energy nexus. Its landform and porosity (along with other properties) 

determine both the immediate and long-term availability of water and nutrients. Vegetation 

and fauna find habitat in the soil, and provide vital ecosystem services such as 

decomposition and runoff reduction by interception and infiltration. More specific to 

humans, soils used in agriculture require significant inputs of water and energy to yield 

food. Protecting this resource is of the utmost priority for sustaining the human population 

and the health of the ecosystem at large. In the event that relatively fertile agricultural soils 

were lost, more water and energy resources must be provided to the system to make up for 

decreased yields. Therefore, conservation that protects the soil health and fertility is 

critical. In order to understand the basis of conservation and a healthy flux of soil in a 

system, it is imperative to understand the natural process of how soils are generated through 

pedogenesis and how they are lost through erosion. 

1.3.1 Soil Forming Factors 

The basic unit of soils is the pedon, and perhaps even more than climate, this soil unit is 

thought of as a steady state, even though on large timescales, it is not. The pedon is the 

result of soil forming factors combined with unique processes that yield a unique individual 

much like DNA, mitosis, and meiosis yield a unique individual human. If the factor 

changes, you can expect that the individual will also change. Therefore, conservation is 

focused on reducing human-induced factor changes such as anthropogenic climate change 

as well as the direct modification of soils due to human disturbances. I would thusly argue 

that it is our responsibility not only to protect the soil from direct disturbances but also 

from those more indirect disturbances, such as climate change. More on this will be 

discussed in the climate background. Figure 1-3 is a diagram of how factors and processes 

interact to produce different pedons. I will add to this figure that some of the processes 

(although it is not obvious in the diagram) are also results of the climate and have large 

degrees of influence on the pedon over time. Figure 1-4 better shows the impact of the past 

and present climate on the future of the pedon. It is easy to see that significant changes in 
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climate can have significant changes on the soil, not only from the perspective of loss, but 

also from the perspective of formation. On a global scale, these changes are probably 

significant, but on a local scale it is highly dependent on local and regional climate patterns 

such as ENSO. If climate change favors El Niño, then what was once an oscillation could 

become a normal occurrence for the local regions impacted by ENSO the most. The 

oscillation will still exist, but it could be centered on the climate pattern of El Niño rather 

than the neutral phase of ENSO. 

 

 
Figure 1-3 Soil Pedogenesis—Factors, Processes, and the Pedon (Hutchinson 1965) 

 

 
Figure 1-4 Illustration of the Evolution of Soil (Bridges 1978) 
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1.3.2 Soil Loss Mechanisms and Modeling 

Soil loss models are driven by two primary functions including the climate and the soil. 

Since this thesis focuses primarily on the climate aspect of soil loss, only a brief 

background on the soil component is provided. In a nutshell, soil loss occurs when the 

energy of rainfall or runoff exceeds the critical shear force holding the soil together and it 

breaks off, or more correctly, it detaches. The climate component is essentially an energy 

calculation. Different models calculate this term in quite a dissimilar fashion, but it is 

ultimately about defining climate conditions that can overcome soil adhesiveness. In 

reality, this shear force is determined by the properties of the soil, hence the discussion of 

the pedon earlier, and fluctuating properties of the soil caused by climate. There is actually 

a debate in the soil community about whether these are properties of the soil or of the 

climate (e.g. soil moisture and temperature). Clearly these properties are driven by the 

recent precipitation and weather patterns, but different soils will react uniquely to the same 

climate pattern. It is easy to take a perspective on either side. For the purpose of this thesis, 

since the USLE incorporates these in the calculation of the K-factor, I will refer to them as 

temporary soil properties. Physically based models will actually calculate the shear force 

and the force of precipitation required to overcome it. Empirical models will use statistics 

to fit the best mathematical representation of the process to observations. What is important 

to gather from this was that both physically based and empirical models rely on these two 

‘driving’ factors to estimate soil loss. Despite their vastly different approaches, the findings 

from using one model will still have significant value for the other. 

In order to truly evaluate the total impact of climate change and climate 
variability on soil loss, both driving factors should be evaluated simultaneously as 
well as the indirect changes that will impact factors such as vegetation and human 
practices. These effects would be called either positive or negative feedback loops based 

upon whether they reinforce the direction of change or act against it. This would be an 

enormous undertaking, so I decided to focus my efforts on just the direct impacts of climate 

on soil loss. In addition to this, I had to select the way in which I would communicate 

changes in this soil loss mechanism. Since, I am familiar with modeling, I thought it would 

be best to present findings that would be relevant to at least one erosion prediction 

technology. It is important at this point to note that I am not using any soil loss model 
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to predict soil loss based on climate change and climate variability. Rather I am 
assessing the impact of climate change and climate variability upon one of the two soil 
loss ‘driving’ factors. I used the format of a soil loss model for communicating 
observations and analysis results so that practical applications may come from my 
work. Although there are many soil loss models from which to choose, there are only two 

popular choices, both of which have historically received the most support in US erosion 

prediction: RUSLE2 and WEPP. 

1.3.3 Physical vs. Empirical Models 

A more process-based model like WEPP could offer better insight on how climate 
change may interact with soil loss mechanisms, but most government agencies use the 
more empirically derived model due to better performance of empirical models over 
uncalibrated physical models. Physically based models have the potential to perform 

better, but they require more demanding inputs unique to the study area along with model 

calibration for the best results and they often fall short of their potential (Tiwari et al., 

2000). The USLE family of equations have proven strength without any calibration or 

significant user input. Therefore, updating the R-factor from these soil loss models has a 

greater impact potential for erosion prediction technology. Additionally, even though 

WEPP is a more physically based model, it does not consider variations in the kinetic 

energy per unit quantity of rainfall. WEPP only varies the intensity of rainfall in its 

calculations, which if ignored in this study could result in only part of climate impacts 

being detected. I feel these important considerations outweigh any potential gains from 

using a more physically based model. 

There are still several criticisms to using either USLE or RUSLE that should be 

addressed. WEPP offers a superior temporal and spatial resolution to either of these models 

in determining soil loss. Specifically, WEPP is able to predict soil loss on a non-annual 

basis unlike USLE and RUSLE. So not only were the calculations superior, but the soil 

loss reporting scheme is better as well. This is where RUSLE2 solidified my decision to 

stick with the empirical calculation of EI. RUSLE2 has the potential to outperform both 

USLE and RUSLE models owing to its integrative mathematical structure, which allows it 

to better model temporally small scale events that can comprise the majority of soil loss 

for the entire year. This is especially true in highly erosive summer precipitation events of 
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the southeastern region. RUSLE2 calculates the long-term average daily soil loss for each 

day along with 5 of 6 soil loss factors of the original USLE equation (slope steepness is 

assumed constant). Thus, RUSLE2 benefits from high temporal and spatial resolutions 

as WEPP does, but RUSLE2 operates from the proven strength of the empirical 
nature of USLE. This is particularly exciting for a study of erosivity, which varies daily 

and even between storms. Over long time periods, the distribution of erosivity throughout 

the year can be known and conservation practices effectively implemented and evaluated 

to meet soil loss tolerances. 

1.3.4 The State of Erosion Prediction Technology 

This is a brief section included to summarize a) the developments in and b) the most current 

state of erosion prediction technology as well as c) where I see the technology could and 

should be developed further. In AH282 (1965), the first isoerodent maps of the eastern US 

were developed based on the statistical relationship of energy and intensity to soil loss 

when all other factors were held constant for 22 years of precipitation data (1936-1957). 

These maps showed average annual erosion index (formally called erosivity) based on a 

mixture of data from 2000 locations evenly distributed across the 37 states analyzed. Actual 

EI values were calculated at 181 locations across 37 eastern states from stations similar to 

the DSI-3260 ‘quarter-hour’ stations used in our study. An equation relating the 2-year 

precipitation depths of varying durations to average annual erosivity values was developed 

for the 181 stations used for EI calculations. This equation was used to estimate EI at about 

2,000 locations, and these results were presented in all the Agricultural Handbooks (USDA, 

2008). Thirteen years later, AH537 updated these values in the eastern US to include 

energy and intensity limits that better reflect the actual EI values across the region. At this 

point there was mention of ‘cyclical rainfall patterns’ that require longer station periods in 

order to calculate true EI values. Two years earlier an estimating procedure was used to 

extend the isoerodent map to the west coast, which was included in AH537. In 1980—two 

years later—McGregor publishes a troubling paper using far superior data claiming that 

the EI values recommended by AH537 should be much higher than reported. The same 

was observed in 1995 for erosivity values utilized by RUSLE. Some of this was from 

methodological changes made by McGregor, some from using a superior dataset (29 

breakpoint gauging stations), and some undoubtedly from actual variations and changes in 
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the climate. Two years later, AH703 was published along with updates to the computer-

based RUSLE program and databases. This update came with an updated isoerodent map, 

which used new methods for calculating maximum intensity limitations and modern 

contouring methods. Even with these updates, the area of McGregor’s study (northern 

Mississippi) was largely unaffected by AH703 updates, and therefore, the values at that 

location were still too low. In 2008, RUSLE2 abandoned the ‘standard approach’ to 

erosivity calculation, and used an erosivity density function for its soil loss calculations. 

Today, 21 years since the most recent update to ‘standard approach’ erosivity studies, 
I am recommending one of the largest overhauls of standard erosivity calculations in 
the history of erosion prediction technology (recommendations detailed below). 

Most of the methodology used in this study was previously recommended by McGregor 

and AH703 to provide the most accurate EI calculation possible. The best data available is 

breakpoint data. Unfortunately, it is not commonly available at significant spatial scales, 

but it would serve a great purpose as a validation dataset for EI calculations where it is 

available. The only viable alternative to breakpoint data is high-resolution temporal data. 

Therefore, the most obvious recommendation is to use the most widespread data of this 

kind—NOAA NCDC 15-minute data (DSI-3260). Second, the ideal methodology would 

include all storms in its calculation regardless of the size or intensity. These were 

historically omitted for ease of calculation, which is a non-issue with today’s computing 

resources. Third, the BF energy equation should be used for better energy calculations 

(discussed earlier). Fourth, maximum intensity calculations should not be limited since the 

limitation is based on terrain not precipitation characteristics. Fifth, regression-based 

relationships of erosivity to rainfall should be abandoned since these relationships may 

change with climate variability and change. Sixth, EI calculations should be kept in context 

of climate anomalies including: natural variabilities of the observed period (phases of 

ENSO, AMO, PDO, etc.), exceptional storms of large recurrence intervals (intervals larger 

than the observation period), and exceptional droughts of recurrence intervals larger than 

the observation period. This last point is not evaluated in this study but is nonetheless an 

important consideration for EI studies. These recommendations will require an update 

of the annual EI, storm probability of exceedance, and temporal distribution of EI 
throughout the year to benchmark the effects of the new methodology on EI values.  
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1.4 Climate Background 
Earth’s climate could be expressed as the sum total of how solar radiation is intercepted, 

absorbed, transformed, transported, reflected, and emitted throughout the globe. In even 

simpler terms, it is how energy moves through the matter of Earth. Earth itself has an 

energy source at its core, but the relative impact this has on the surface and atmosphere is 

negligible compared to that of solar radiation from the sun. Basic heat and mass transfer 

through the atmosphere and oceans is responsible for climate and the oscillations or 
patterns that exist in the climate system. Figure 1-5 is an updated quantification of these 

energy fluxes that drive our climate. Obviously, internal or external forcings that change 

these fluxes will change the climate as a whole. It is critical to understand that a change 

in the energy flux not only has the potential to change the magnitude of energy in the 
system, but it also has the potential to change energy distribution mechanisms. In the 

context of Earth, these mechanisms may include the wind patterns and ocean currents that 

facilitate principles such as diffusion, convection, etc. Hopefully it is obvious that even 

relatively small changes in these energy patterns can have far-reaching effects on the 

climate system as a whole—and the impacts of those changes on such a complex system 

are not obvious. This is the reason that climate models have been developed as tools for 

understanding the climate system. These tools are central to the science and are constantly 

improving with greater understanding of the physical sciences as well as observation 

Figure 1-5 Updated Energy Balance of the Earth (Stephens et al. 2012) 
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strategies and technologies (e.g. weather stations, weather balloons, buoys, satellite-based 

remote sensing, etc.). The remainder of this section will attempt to present with a broad-

stroke, a basic understanding of and some of the most recent advances in climatology, 

climate variability, and climate change. 

1.4.1 Climate Modeling 

As mentioned before, climate modeling is the backbone of modern climate science. It is 

not my role (the role of an agricultural engineer) to directly change these models. However, 

it is important to understand these models, how they were developed, how they work, their 

applications, their strengths and weaknesses, and how to evaluate them. Climate scientists 

produce and refine these models and engineers interpret the outputs for society in important 

areas such as hydrology, agriculture, infrastructure, etc. When these models are producing 

results comparable to observed data, they are performing relatively well. When they 

perform poorly, our work informs future modeling efforts, and the models get better after 

many iterations. Models are still making significant gains with each IPCC assessment, but 

the field is relatively young given a) the number of reporting cycles from which it has 

received feedback (entering the 6th cycle) and b) the level of model complexity. In general, 

the field has been limited not by understanding of different earth system components but 

rather their interactions with each other as a single continuous system. This understanding 

was once more restricted due to the computing limitations from the previous model 

generations. As computing resources have evolved and become more widespread, the 

understanding of models (and the climate system) has grown proportionally. 
Despite the relative immaturity of the science to what it will be in the next decade, I 

believe that now is an appropriate time to begin integrating climate variability and climate 

projections into erosivity prediction. As the climate science (and related models) mature 

further, predictions will become more accurate. It is my opinion that the science is 

sufficiently matured and the observed data required to support these predictions is now 

available (partially resulting from an improved methodology to utilize these observations). 

As for accuracy, the first few cycles may have larger residuals than hoped for, but the 

prediction of erosivity for the year will be better with an accounting of climate variability 

than without it. The primary limitation is the limited observed data for analysis, but the 

length of observations is continuously growing (yielding more accurate EI calculations). 
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1.4.2 Climate Change 

This is a sensitive topic at the time of this writing. Most of the scientific body is in 

agreement regarding the topic of climate change, but a minority of scientists and a large 

portion of the general population largely reject the claims of climate change. I would like 

to address some confusion that I think is partially responsible for the rejection of climate 

change findings. First, climate change is a terminology that has been poorly 
understood. Climate changes regularly, but these changes are not what has been called 

‘climate change’ today.  Rather climatology calls this ‘climate variability’ because over a 

long period of time there has been little to no net change in the climate. When there is 

significant change over a long period of time it is called ‘climate change’. Within that term 

‘climate change’ there is still room for confusion because not all change is the same. There 

are some documented ‘natural changes’ that do not have regular predictable fluctuations. 

The other change is called ‘anthropogenic climate change’, which is change resulting 

directly from human influence. Generally, people actually reject this small part of climate 

science’s findings, but they will often grow skeptical of other findings too. 

Second, climate change reporting is not standardized. Most of the science is actually 

in agreement with findings from the community, but the problem is that similar results are 

communicated differently. A common example may involve a GCM (operating at coarse 

spatial scales) may predict a slight increase in precipitation for a local region while an RCM 

(operating at finer scales) running on the same or another GCM may find a significant 

decrease in the same region. If you averaged the changes of that region with those 

neighboring regions, you would obtain the same results of the GCM or slightly different, 

but all that is considered in these studies are the outcomes and not the methodology. To 

complicate matters, there are multiple scenarios, time periods, models, techniques, etc. that 

make consistent reporting difficult. More recently, government bodies have begun 

producing consistent reports aimed at improving public understanding of climate change. 

The National Climate Assessment was a good example of this. 

Third, there is a general misunderstanding of how GHG emissions are responsible 
for so many changes in the general climate, especially given what seems to be a steady 

increase in CO2. The answer lies in the energy balance of the earth—something the general 

population is probably not willing to try and understand. Figure 1-5 shows the large 
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amounts of solar energy intercepted by Earth. Even a fractional change in the atmospheric 

composition will change the amount of energy stored in the atmosphere. Now combine this 

with the fact that Earth’s orbit, spin, angle, wobble, etc. causes uneven heating of the 

atmosphere. There is essentially more energy retained in a revolving, spinning, wobbling 

system trying to reach equilibrium. I would expect the well-mixed aspects of climate (e.g. 

temperature) to experience marginal increases related to the increase in energy. Other 

variables that are not well-mixed will experience more varied and uncertain impacts. This 

uneven energy distribution is a major driver of climate variability. Scientists make these 

connections better than the general public, so their receptiveness was expected to be higher 

than that of the public. 

Lastly, climate change is not simple to observe, and it is even less simple to predict. 
Figure 1-6 is an example of some observed changes in the climate. What is difficult to 

ascertain from this figure (and the data it represents) is how much can be attributed to 

variability. In this figure it appears that the Atlantic side of the country is experiencing far 

more change than the Pacific side, and it was true from the perspective that it was changing. 

 

 
Figure 1-6 Observed Changes in Very Heavy Precipitation (Top 1% of Precipitation Events) by 

Region (Karl et al. 2009) 
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What must be evaluated now is how much of this change was resulting from climate 

variability—perhaps from the Atlantic Multi-decadal Oscillation (AMO). If a positive 

AMO causes an increase in observed heavy precipitation, then at least the negative phase 

should also be reported for a better picture of the trend. It is even better if the previous 

positive phase could be included to see if there has been any change under the same phase. 

As more phases are included, the trend becomes clearer, and the total change is more easily 

identified. Preferably, the discussion of climate variability should be placed after climate 

change but before this figure to better understand the coinciding effects in this figure. For 

an AMO background, please read Section 1.4.4 for more information. 

 It is understandable why there was confusion regarding this topic, even without 

considering political agendas, energy industry power brokering, lifestyle preferences, and 

other human factors. The objectives for this study were formed in consideration of 
these issues. For this reason, I proceed first by presenting only the highest quality analysis 

of observed EI in the Southeast. Only after having established reliable data and methods of 

erosivity calculation can I move on to analyzing climate change and variability. Once these 

are sufficiently understood, reliable projections can be presented for the future of erosivity. 

It is our goal to begin analyzing these projections using our current understanding, and to 

responsibly update these projections as our understanding matures. As mentioned earlier, 

this maturation comes as our observed data record increases so that there is a sufficient 

understanding of climate variability and its role in the observed change. This should ideally 

precede attempts to quantify climate change for a better understanding and confidence. 

1.4.3 Climate Variability 

Climate variability refers to the cyclical patterns of our climate that influence elements 

such as precipitation, temperature, humidity, etc. Generally, this refers to climate 

oscillations on larger time scales (greater than one year), but the terminology can be applied 

to any oscillation cycle. Examples of climate variability include ENSO, PMO, PDO, AMO, 

NMO, and more. These cycles have been effectively linked particularly to precipitation 

patterns although other patterns do exist. Figure 1-7 demonstrates how strongly variability 

can influence regional climate. The influence can range from a strongly positive force or a 

strongly negative (inhibiting) force. Generally, a few oscillations should be observed in 

order to determine the relationship. 



 21  

 
Figure 1-7 Correlation of Precipitation Anomalies, PDO, and ENSO During November-March from 

1901-2014 (Credit: Matt Newman, NCEI) 

From the figure above, it is clear that ENSO has a strong effect on the Southeast, whereas 

PDO is definitely less important than ENSO and arguably a weak influence on this region. 

A question then arises as to which variability cycles should be analyzed for their effect on 

the Southeast. The short answer is that all of these cycles affect the region, and therefore, 

eventually all of the cycles should be considered. However, this would take considerable 

amounts of time, which is ultimately why not all of these cycles are analyzed in smaller 

studies. Even in larger studies like the IPCC reports, some cycles tend to get far more 

attention than others. Since I cannot analyze all of these cycles I must ultimately ‘guess’ 

which will have the most impact (the highest impact will not truly be known until after the 

study). Fortunately, others have published analyses that help in these decisions. A perfect 

example of this was the Atlantic Multi-decadal Oscillation (AMO). 

1.4.4 AMO Variability 

This is a longer term climate cycle than PDO or ENSO, occurring only about every 25 

years. Figure 1-8 summarizes the known effect of AMO on climate patterns in the Atlantic 

Ocean. Although AMO has been observed for over 120 years, there are probably no more 

than 2 complete observations of the AMO cycle at a spatial resolution significant enough 

to draw conclusions for large regions. A positive phase AMO causes more than double the 
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number of hurricanes to develop along with strong fluctuations in coastal rain for the 

Southeast (NOAA, AMOL). It is highly likely that AMO impacts erosivity in the 

Southeast, but there is currently not sufficient data (of the type used in this study) to 

perform a reliable analysis. Most of the 15-minute data used in this study occurs in the 

negative phase of AMO (about 25 years) with a smaller sample of the positive phase (about 

15 years). More recent data of these stations are available (about 6 years of positive phase 

data), but it still may not be enough for a robust analysis, which would require more like 

30 to 50 years of each phase. Supplemental data of another source may be required to 

determine the effects of AMO on the Southeast. 

 
Figure 1-8 Climate Patterns Associated with the Warm Phase of the Atlantic Multi-decadal 

Oscillation (Credit: Gerry Bell, NOAA) 

The most interesting aspect of AMO for this study is how it favors the development of 

large, high-intensity storms. Large storms encompass the majority of erosivity, and if 

enough hurricanes are developed in a positive AMO phase, the EI calculations could 
be primarily driven by this one climate cycle. It has also been observed that AMO tends 

to determine the pathway of hurricanes. Positive AMO favors the gulf, and negative AMO 

favors the Atlantic Coast. Therefore, both the magnitude and spatial distribution of EI can 

be significantly influenced by this particular oscillation. The fact that AMO can affect 

the development of storms and their landfall locations means that it could be at least 
partially responsible for fluctuations in calculated erosivity values for the Southeast. 
Depending on the strength of the AMO phase, the compounding effect of other climate 

cycles, and the data observation period, the calculated EI could be significantly different. 
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It is very likely that AMO (and other climate cycles) have played some role in 
differences in isoerodent maps published in the Ag. Handbooks and modern 
observations. There are methodological differences driving some variation in these maps 

but certainly not all of those differences. This is exactly the reason for this study, and 

although AMO would be a likely candidate for variation in the Southeast, I will focus my 

efforts on ENSO instead. 

1.4.5 ENSO Variability 

The El Niño Southern Oscillation is pictured in Figure 1-9. Along with the other climate 

oscillations, it is based on warming and cooling trends in specific parts of the various 

oceans. These variations in temperature cause changes in atmospheric winds, which can 

influence where precipitation tends to fall, how much, and how quickly. 

 
Figure 1-9 Maps of Sea Surface Temperature (SST) Anomaly in the Pacific Ocean During a Strong 

La Niña and El Niño (Credit: NOAA) 
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ENSO has been shown to have significant influence in parts of the Southeast 
regarding precipitation. Figure 1-10 portrays the differences in the two phases of ENSO 

as it pertains to precipitation (dominated by wind currents). Unlike most of the other 

climate cycles, ENSO occurs in shorter cycles (usually one or two years). Although it tends 

to oscillate from positive to negative and vice versa, ENSO can return to either a positive 

or negative phase regardless of the preceding phase. The prediction technology for ENSO 

is more developed (partially due to more frequent cycling), which makes it possible 
to predict ENSO impacts for the near-term future erosivity. Prediction capability along 

with short cycle duration (for multiple cycles to be analyzed) make ENSO an ideal choice 

for our variability analysis. 

 

 
Figure 1-10 January-March Conditions for La Niña and El Niño (Credit: NOAA) 



 

Chapter 2:  Benchmarking Reliable Erosion Indices for Climate Studies in the 
Southeastern United States from Quarter-Hour Station Data 
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2.1 Abstract 
Precipitation is one of many aspects of our changing climate that is under intense 

investigation by the scientific community. Although climate scientists generally predict 

that the amount of precipitation has and will continue to increase for the United States, the 

characteristics of that changing precipitation are not well understood. Some have reported 

significant observed and projected changes in precipitation characteristics, but existing 

studies have not adequately addressed this issue. One precipitation characteristic 

particularly vulnerable to climate change is the erosivity of rainfall. Unfortunately, there 

are published discrepancies in observed erosivity. Hence, the goal of this study is to update 

the erosion index (EI), specifically those in the southeastern US for two reasons. First, it is 

a region highly likely to be influenced by climate change and climate variability, and 

second, it is the setting of published discrepancies mentioned earlier. Observed quarter-

hour precipitation data from 616 NOAA NCDC land-based stations (DSI-3260) for eleven 

states in the Southeast were used to calculate erosion index (EI) values for each station. 

The data was screened before calculation, resulting in 172 gauge locations to represent the 

11 states in this study. A water balance was performed to validate the observed dataset and 

to select the best of 7 station screening methods. Annual and single storm EI statistics were 

calculated for stations passing the preferred screening method. EI values for the Southeast 

were found to be significantly larger than AH537 (1978) and AH703 (1997) confirming 

the findings of McGregor et al. (1995) while significantly increasing the spatial resolution 

of EI observations in the Southeast. The regional increase on average was 18.6% over the 

previous EI values (AH703) with a range of -19.5% to +57.5%. The unadjusted EI was 

based on 15-minute station data, which usually underestimates I30. An adjusted EI was 

provided which accounts for this phenomenon and missing and deleted data for each 

station. The adjusted data, which represents the highest possible EI estimation from this 

methodology, reported an average increase of 39.0% with a range of -1.5% to +86.1%. 

These values were reasonable given the sensitivity of low erosivity regions in Kentucky 

and Virginia to relatively small changes in EI. There was no significant change in the 10-

year storm EI with a regional average decrease of 2.3% for unadjusted data. This study 

prepares the way for impact studies of climate variability and climate change related 
to erosivity for conservation efforts in the Southeast. 
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2.2 Introduction 
Precipitation is one of many aspects of our changing climate that is under investigation by 

the scientific community. Studies published in climate related reports like the National 

Climate Assessment (NCA) show trends of increasing precipitation amounts, increasing 

frequency of heavy precipitation events, and an increasing appearance of consecutive dry 

days (Melillo et al., 2014). It is apparent from these reports that the quantity of rainfall is 

indeed changing as well as the seasonal distribution of that rainfall. What is not well-

understood, or is at least not well-published, are the characteristics of the precipitation, 

whether they are changing, and by how much. Yet, it is the characteristics of rainfall 

that determine the utility of that rainfall and its interaction with the land surface. 
 The Intergovernmental Panel on Climate Change (IPCC) published a rough magnitude 

change for total precipitation of about 1% to 2% K-1, but the moisture-holding capacity of 

the atmosphere changes at a rate closer to 7% K-1 (Trenberth et al., 2003). These rates of 

change have become more certain as supercomputers have enabled higher resolution 

modeling. The increased absolute amount of precipitation coupled with the increased 

moisture-holding capacity make it possible for higher intensity precipitation events. 

Trenberth mentions other factors that must be considered in order for larger intensities to 

become a reality, but it is possible nonetheless. Beyond this, the article also argues that 

changes in localized intensities can even exceed changes in moisture-holding capacity due 

to latent heat feedbacks further stimulating storm energy. The potential for significant 

change in rainfall characteristics combined with observed and projected changes in 
related precipitation variables suggests the need for studies in this area. 

The motivation for this study was that precipitation characteristics can eclipse the 

importance of mere quantities of rainfall for a host of applications. Soil conservation efforts 

and infrastructure development practices in particular stand to gain the most insight from 

studies of precipitation characteristics. Some work has already been done to quantify 

potential changes. Mirhosseini and Srivastava (2012) reported double-digit intensity 

decreases in projected intensity-duration-frequency (IDF) curves for shorter duration 

storms (less than 2 hours) and mixed results for longer durations. Nearing et al., (2004) 

reported projected magnitude changes in erosivity ranging from 17% to 58% across the 

continental United States over different time periods and model combinations. Despite total 
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precipitation only increasing 1% to 2% K-1 (Trenberth et al., 2003), the storm 

characteristics of precipitation are changing at a much higher rate. These changes are 

significant, especially since some regions will experience even larger magnitude changes 

than the specific publications mentioned, which only report spatial averages. These studies 

contribute to our understanding of projected changing precipitation characteristics, but 

there is an increasing need for an observed high-resolution, large-scale study of 
erosive rainfall in sensitive regions. Meeting this need has become the intended purpose 

for this erosivity study of the southeastern United States. 

There have been three major publications to date using the ‘standard approach’ for EI 

calculation—not including the RUSLE2 study, which does not provide EI values but rather 

moved to a new approach using erosivity density. These three studies were Agriculture 

Handbooks published by USDA-ARS known as AH282 (Wischmeier and Smith, 1965), 

AH537 (Wischmeier and Smith, 1978), and AH703 (Renard et al., 1997). In AH282 

(1965), the first isoerodent maps of the eastern US were developed based on the statistical 

relationship of energy and intensity to soil loss for 22 years of observed precipitation data 

(1936-1957). These maps showed the average annual erosion index (erosivity) based on a 

mixture of data from 2000 locations distributed across the 37 states analyzed. Actual EI 

values were calculated at 181 locations across 37 eastern states from stations similar to the 

DSI-3260 ‘quarter-hour’ stations used in our study. An equation relating the 2-year 

precipitation depths of varying durations to average annual erosivity values was developed 

for the 181 stations used for EI calculations. These equations were used to estimate EI at 

about 2,000 locations, and these results form the basis of erosivity values presented in each 

of the Agricultural Handbooks (USDA, 2008). Thirteen years later, AH537 updated these 

values in the eastern US to include energy and intensity limits that better reflect the actual 

EI values across the region. In 1980—two years later—McGregor et al. (1995) used 

superior data which claimed EI values from AH537 (Figure 2-1) should be 30% higher 

than the published values. The same was observed in 1995 for erosivity values utilized by 

RUSLE. In 1997, AH703 was published with updates to previous isoerodent maps (Figure 

2-2), which used new methods for calculating maximum intensity limitations and modern 

contouring methods. Even with these changes, EI values in northern Mississippi were 

largely unaffected by AH703 updates, and therefore, the values at that location were still 
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too low. Some of the differences in the Ag. Handbooks and McGregor’s observations result 

from methodological differences (primarily the omission of small, low-intensity storms), 

some from McGregor’s superior data (29 breakpoint stations), and some undoubtedly from 

climate variability and change. Erosivity values with this much error—and uncertainty 

in the sources of error—call into question the reliability of those values and prevent 
their use in climate studies, which suggests the need for a benchmark erosivity 
calculation. In 2008, these persistent issues led to an abandonment of the ‘standard 

approach’ to erosivity calculation in RUSLE2, and it used an erosivity density function and 

precipitation data to derive erosivity values. RUSLE2 moved to the erosivity density 

approach as a result of the perceived inconsistency of EI values from Ag. Handbooks and 

the strength of that approach with short observation periods (USDA, 2008). 

 
Figure 2-1 Erosivity for the Southeast US as from AH537 

In order to establish a benchmark for future climate studies, I use an updated 

methodology of AH537 that only uses direct station calculations of EI and includes all 

storms in the analysis regardless of size or intensity. All other methodologies, including 

the energy equation, were identical. EI values will also be reported with I30 limited and 

unlimited (described later). Limited EI values reflect a general observation that the 
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potential erosive power of storms cannot be realized due to negative feedbacks from high 

intensity storms. More specifically, highly erosive storms, which have high intensities will 

not infiltrate or runoff quickly enough to allow the incoming rainfall to impact the soil. 

Therefore, the energy of rainfall can be absorbed by ponded water after sufficient time is 

allowed for initial abstractions to take place. The limited EI values will provide better 

insight as to more realistic impacts on climate-driven soil loss, while the unlimited EI 

values allow a deeper understanding of changes in storms themselves and the potential 

erosive power of such storms. I made the decision to use the AH537 energy equation 

despite the fact that AH703 and McGregor recommend using the Brown Foster (BF) or 

McGregor-Mutchler (MM) energy equation so comparisons may be made with AH537 and 

AH703. Pending the results from this study, I would expand this analysis to include the 

these energy equations and all parts of the continental United States. 

 
Figure 2-2 Erosivity for the Southeast US as from AH703 

2.2.1 Erosion Index and Erosivity 

The erosion index is a function of two precipitation components: storm kinetic energy (E) 

and maximum 30-minute intensity of the storm (I30). The product of these values is the 

erosion index of a storm, which can be summed to obtain the erosion index for a given 
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location and time period. The most commonly reported value is the annual EI value, but it 

is also of interest to report the distribution of EI values for probable storm occurrences at 

a given location. EI values are summed annually and averaged over a long period of time—

20 years or more—to find the average annual erosivity factor (R), which is in turn used 

with other soil parameters to find soil loss. The USLE family of empirical soil loss 

equations rely almost entirely on the R-factor to represent climate impacts on soil loss. 

 The EI value should not be considered merely a soil loss measure, as it is primarily a 

calculation of direct measurements of climate. Moreover, it is a measure of all storms at a 

specific location, their depths, kinetic energies, maximum intensities, and durations are all 

present when calculating this measure. This is both the advantage and disadvantage of 

using EI. On a positive note, there is more than one way to observe and communicate 

precipitation change due to its ‘data intensive’ nature. The disadvantage is that it is difficult 

to obtain a significant quantity of long-term, spatially distributed data while still preserving 

its quality. This disadvantage is the specific reason that the standard approach was 

abandoned for ongoing erosion prediction efforts through RUSLE2. I think that the new 

erosivity density approach offers an unexpected and exciting gain for erosion prediction 

technology, especially in western states where 15-minute station record length is perhaps 

insufficient for accurate EI calculation. However, the standard approach may serve as 

a less obscure measure for climate variability and climate change analysis. 

2.2.2 Study Area Selection 

When selecting an appropriate study area, it is most important to consider the area of 

greatest potential impact. That area for rainfall characteristics is found in the southeastern 

United States. Figure 2-3 shows the areas of highest erosivity across the continental United 

States, with annual R values ranging from 2,000 to greater than 10,000 MJ-mm ha-1 h-1 y-1 

or the English equivalent of 125 to more than 600 hundreds of foot-tonf-inch ac-1 h-1 y-1. 

Note that the Southeast experiences far more erosivity than other areas of the country. 
These are averaged annual values and single year values and even some single storm values 

(if no intensity limits are imposed) can exceed this range. In addition, one of the factors 

leading to potentially higher intensities in lower latitudes results from disproportionate 

rates of moisture convergence near the tropics, which means that the Southeast could be 
more susceptible to impacts of climate change than other regions. These two facts 
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alone make for an exceptionally high risk for impact along the coastal Gulf of Mexico 
and its surrounding areas. Texas also experiences high erosivity, but it was not included 

in the study primarily in order to be consistent with the regional groupings according to the 

NCA. Other reasons include changes in the calculation of EI values as the study approaches 

the western United States (changes in intensity limits), increasing complexity 

communicating the differences and their respective uncertainties, and the computational 

demand of a larger study area.  

 
Figure 2-3 Erosivity for the Continental US (AH537). Note the Much Higher Erosivity in the 

Southeast (125-600) than the Northeast (50-125) and the West (10-100). 
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2.3 Methodology 
Observed quarter-hour precipitation data from more than 600 NOAA NCDC land-based 

stations (DSI-3260) were obtained for eleven states in the southeastern region including 

Alabama, Arkansas, Georgia, Florida, Kentucky, Louisiana, Mississippi, North Carolina, 

South Carolina, Tennessee, and Virginia. These data included 15-minute rainfall 

observations for every day that there was measureable precipitation at a given station. 

Measureable precipitation was defined as 0.1 inches of rain for HT stations and 0.01 inches 

of rain for HI stations (HT and HI indicate the smallest unit of rainfall recorded by the 

station). Data prior to 1996 was exclusively QPCP stations and more recent data was a 

mixture of QPCP and QGAG stations (QPCP and QGAG indicate measurement method 

for each type of station). QPCP is a direct volume measurement of precipitation while 

QGAG is a volume calculation based on weight. QGAG reports the gauge value and the 

daily total. QPCP reports the incremental value and daily total. Only QPCP data was used 

in this study due to the greater complexity and computational demand of processing the 

QGAG data in tandem with QPCP data although it would be beneficial to do this as it 

would provide validation for the accuracy of the QPCP data. There were two notable 

transitions for the data that occurred in the years 1984 and 1996. These years mark the 

beginning of automated recording stations and a new automated data handling procedure, 

respectively (resulting in less manual handling of the data). 

In addition to quantitative data, there were quality flags recorded with each data. 

NOAA maintains the necessary documentation for these flags. The data used in this study 

contained few to no cases of evaporation, frozen-precipitation, and extreme value failures. 

The flags that commonly appeared for the data signified single value errors and an 

occasional flag indicating that the record time was ‘suspect’. The somewhat frequent 

accumulation periods (described below) were noted by flags. Finally, there was also a 

significant portion of the data that was flagged either ‘missing’ or ‘deleted’ for most 

stations. The procedure for handling the data and its flags is discussed below. 

2.3.1 Accumulations 

Should there be only a small amount of precipitation (less than the smallest unit of 

measurement for the type of station—HT or HI), the depth was either a) retained in the 

gauge and reported when the next appreciable precipitation occurred or b) began an 
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accumulation. The difference between these two was that the accumulation noted when the 

first event began accumulating. The sole factor in determining whether the event was 

recorded as ‘a’ or ‘b’ was in knowing the beginning of the event. Our observation was that 

‘a’ does not occur frequently and/or has minimal impact on the data (in regard to both depth 

and intensity). It should also be noted that this was not the only case in which an 

accumulation will be recorded. An accumulation by definition occurs anytime the exact 

beginning, ending, and depth were known, and there was no distribution data available. 

Therefore, accumulations can represent somewhat significant portions of precipitation 

amounts, which if ignored, can proportionately affect the resulting precipitation study. 

However, these tend to be low intensity events, and they may not account for a significant 

portion of EI. In an effort to quantify the effect of accumulations on the study, the analysis 

was completed with and without accumulations. 

2.3.2 Storm Events 

The definition of a storm was similar to AH537, which defined a break between storms as 

a period of 6 hours or longer with less than 0.05 inches of precipitation (Wischmeier and 

Smith, 1978). However, this study does not omit storm events less than 0.05 inches as 

AH537 does with storms that have a maximum intensity less than 0.95 inches per hour. 

This practice was from an age before the widespread adoption of computers, and as such 

was not a necessary practice. McGregor (et al., 1995) showed that omitting storms less than 

0.05 inches (~13 mm) affected erosivity values up to 3.5%, and even when considering the 

intensity threshold of 0.95 inches per hour that number shrank by less than one percentage 

point. This study follows McGregor’s recommendations to include all storm events since 

that is more representative of the actual erosivity, and uses the same threshold for storm 

separation as AH537 for comparison. 

Although the NOAA NCDC data is of a relatively high temporal resolution compared 

to other datasets, a majority of the data has a maximum depth resolution of 0.1 inches. This 

can have a small but noticeable impact on the kinetic energy of a storm for small storms, 

but not enough to significantly impact erosivity. Most storms were small storms, but 

erosivity was primarily a result of few large storms and a number of moderate storms—

with small storms contributing the least. It was also noteworthy that the threshold of 0.05 

inches used for storm separation was less than the smallest unit of measure for most of the 
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NCDC data (0.1 inches). However, McGregor et al. (1995) offers that small changes in this 

threshold value do not significantly change the resulting EI calculations. This too was 

negligible as it will only impact storms that have had between 0.05 and 0.1 inches of rain 

in 6 hours. These storms would still be included in calculations but will be accounted as a 

separate storm system. Newer data—mostly occurring after 1994—was of a much higher 

resolution of 0.01 inches. Many of the stations in this study have the higher resolution data, 

and I have found no significant difference in our calculations. The resulting storms and 

associated energy, I30, and EI values were screened for improved representation of actual 

precipitation and erosivity at each station. 

 All accumulations were separated from other events without prejudice. They were 

separated because there was no definitive way of knowing whether an accumulation was a 

single event or a collection of events. Single storm events (accumulations 24 hours or less 

in duration) that were characterized by larger depths and shorter durations were fit to a 

storm distribution according to location and duration. Given that the study area was mostly 

represented by the SCS Type-II curve and that Type-II and Type-III SCS distributions were 

almost identical, all accumulations 24 hours or less were fit to the SCS Type-II curve and 

used to calculate EI values for those events. The use of SCS distributions could be argued 

since they are static distributions used to represent a changing precipitation regime. 

However, the knowledge gained from approximating EI of these otherwise unaccounted 

storm events outweighs the uncertainty inherited from a fitted distribution, especially since 

results were reported with and without accumulations. When the accumulation was longer 

than 24 hours, the depth was multiplied by a monthly EI rate (EI inch-1) for each station. 

2.3.3 Station Screening 

On the whole, the DSI-3260 data suffers significantly from ‘gaps’ in the record. Gaps can 

be categorized as either a missing period or a deleted period. A number of possibilities 

could lead to the creation of one of these periods including regular maintenance, an 

unplanned interruption of service, correction of known errors, etc. These ‘gaps’ can be 

relatively extensive, occurring in multiple years, many times in a year, and sometimes for 

months at a time. This begs the question regarding the quality of the dataset as a whole. 

Although it was true that the issue was widespread among the dataset, there were still many 

stations that record sufficient quantities of good quality data. In order to obtain stations 



 36  

meeting minimum quality and quantities a station screening method was implemented, 

which consisted of both a quantitative and a qualitative component. 

The qualitative screening served primarily as a check for improbable or impossible 

precipitation values in the record whereas the quantitative screening limits ‘gaps’ in the 

data. NCDC does not provide edited or corrected data prior to 1996, and data prior to 1984 

was processed using only a ‘gross value check’. After the qualitative screening was 

complete, the handful of erroneous values were removed. The impact that this had on the 

data was insignificant by all measures, and the qualitative screening has been removed for 

concise documentation of our methods. The quantitative screening consisted of two 

screening parameters that limit temporal gaps in the data and the brevity of the station 

record. The first parameter required a minimum number of months to be ‘present’ in order 

for a station-year to pass screening. A month must have at least one measured event to 

count as present. The second parameter requires a minimum number of years to be present 

for the station to pass screening. Different combinations of the screening parameters were 

run concurrently with a water balance analysis in order to determine the best screening 

method. Screened values still have holes in the data, but there were much fewer compared 

to unscreened data. 

2.3.4 Water Balance 

In order to validate the screening method and the NCDC data, a water balance was 

conducted for every station. The water balance was used to test different screening methods 

that would result in a more accurate calculation of EI values. Stations in the original dataset 

and 7 screening methods were compared with climate normals for the same time period 

and locations. Monthly precipitation normals (CLIM81) published through NOAA NCDC 

for the period 1971 – 2000 were compared to observed monthly precipitation (DSI-3260) 

data means for the period 1970 – 2010. Months that were missing from the observed data 

(either from screening or a gap in the data) were filled with the climate normal value for 

that month. Monthly averages were summed for observed precipitation and climate 

normals to obtain annual amounts. Both annual and monthly performance was evaluated 

for the screening methods, but only the annual was reported here. 

The water balance was computed for stations with and without accumulation depths. 

The depth for each time period and station (without accumulations) was expected to be up 
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to 15% lower than the corresponding climate normal. This difference resulted from the 

cumulative effect of accumulation events, missing periods, and deleted periods in the 

record. Missing and deleted percentages were calculated for each station by summing the 

total duration of missing and deleted periods and dividing by the total time of operation of 

the station respectively. Some of these differences were reduced by including accumulation 

events, which was reported for comparison. 

2.3.5 EI Calculation 

A modified procedure based on AH537 was used for EI calculation. Maximum intensity 

values in energy computation were limited to 3.0 inches per hour and the maximum 30-

minute intensity was limited to 2.5 inches per hour. These limits reflect that the raindrop 

size, and therefore energy, does not continue to increase above intensities of 2.5 to 3.0 

inches per hour and that ponding in the Southeast absorbs some energy for the occasionally 

high I30 intensity, respectively. The method further diverges from AH537 in the aspect that 

small storms (defined earlier) were not removed from annual EI values. The EI values were 

calculated with and without maximum intensity limitations for the region as a whole. In 

the past, this was practiced only in the gulf region of the Southeast, but both are included 

since more of the Southeast was impacted significantly by this limit. Years that passed 

screening with missing months were filled with the average EI value for that month if there 

were also no accumulations in that month. These filled gaps account for a percentage of 

the data according to the number of missing months allowed. The preferred method was 

the 11-month screening, so theoretically around 8.3% of the data could be filled. At the 

completion of our analysis, I found this to be 2.25% and 2.26% of the erosivity data for I30 

unlimited and limited, respectively. Filled data was insignificant relative to calculated data, 

but should be included in the analysis. Accumulations and their associated EI values were 

merged with the data before filling such that after being filled the EI calculation was 

complete. The calculation of EI values for accumulations was processed separately from 

measured data. Accumulations less than or equal to 24 hours in duration were fitted to an 

SCS-Type II curve to determine intensity for each 15-minute period and used to calculate 

EI for that storm. Longer accumulations used the product of a monthly EI Rate (EI divided 

by monthly depth) averaged over the observation period and the depth of the accumulation 

to determine EI. EI values for accumulation events were not included in the single event 
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analysis; thus, only measured events were used in the storm EI frequency analysis. The 

return period of the storm EI was determined by performing a log-transformed cumulative 

frequency analysis of ranked annual maximum storm EI given by the general form: 𝑃𝑐 =
𝑀/(𝑁 + 1). The 1, 2, 5, 10, and 20-year return period storm EI values were determined by 

linear interpolation of resulting probabilities of exceedance. The calculation method for 

individual storms (n = 1) or a period of n storms (same method) was included below: 

 

𝑓𝑜𝑟   {  𝑖      ≤     3.0 𝑖𝑛𝑐ℎ𝑒𝑠 ℎ−1

  𝐼30   ≤     2.5 𝑖𝑛𝑐ℎ𝑒𝑠 ℎ−1  
 

𝑒𝑡,𝑡+1 = 916 + 331 𝑙𝑜𝑔10 𝑖𝑡,𝑡+1 
 

𝐸𝑠 = ∑ 𝑒0,𝑡𝑑0,𝑡 + 𝑒𝑡,𝑡+1𝑑𝑡,𝑡+1 + ⋯ +𝑚
𝑡=1 𝑒𝑚−1,𝑚𝑑𝑚−1,𝑚

100  
 

𝐸𝐼 =  ∑(𝐸𝑠1 ∙ 𝐼30𝑠1)
𝑛

𝑠1

+ (𝐸𝑠2 ∙ 𝐼30𝑠2) + ⋯ + (𝐸𝑠𝑛 ∙ 𝐼30𝑠𝑛) 

Where: 
𝑒 was kinetic energy of a period of rain in foot-tonf ac-1 inch-1 
𝑖 was average rainfall intensity of a period of rain in inches h-1 
𝑡 was a single time interval (15-minute intervals for this study) 
𝑑 was the depth of precipitation for a period in inches 
𝑠 was a single storm, previously defined 
𝑚 was the number time periods within a storm 
𝑛 was the number of storms within a given time period 
𝐸 was the storm kinetic energy in hundreds of foot-tonf ac-1 
𝐼30 was the maximum 30-minute storm intensity in inches h-1 
𝐸𝐼 was the erosion index of a period of time or of 𝑛 events in hundreds of foot-tonf-inch ac-1 hour-1 
 

Although the methods for EI calculation were almost totally identical in every aspect, the 

data used in the calculation was not. In its purest form, EI should be calculated using storm 

intervals of equal intensities (breakpoint data). This was the reason for using 15-minute 

data, which was the highest resolution observed precipitation data available at a significant 

spatial and temporal scale. This means that the true EI could actually be higher than the 

values reported in this study, and it would be at least 3-4% higher on average as reported 

by Hollinger et al. (2002) since I30 values calculated from 15-minute data are slightly lower 

than those from breakpoint data. EI values were reported showing the effect of I30 

limitation, I30 adjustment (to mimic breakpoint observations), and filled data (explained 

in detail later). 
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2.3.6 Data Justification 

Others that have calculated EI and related EI products from non-breakpoint data have used 

hourly, daily, and monthly precipitation data (Istok et al., 1986; Richardson et al., 1983; 

Nuno de Santos Loureiro, 2001; Angulo-Martínez, 2009). These studies were valuable 

where long term densified measurement of precipitation data were unavailable, but there 

was a common limitation to each method. None of these methods can capture the effect of 

intensity on the storm kinetic energy or the 30-minute maximum intensity, which were 

both needed to accurately determine EI. Furthermore, it was the intensity characteristic of 

precipitation which was expected to have changed and to continue to change with changing 

climate. This makes a strong case for the need of fixed-intensity data as opposed to fixed-

interval data. However, if fixed-intensity data are unavailable, high-resolution, fixed-

interval data can sufficiently capture intensity variation within storm events. It was for this 

reason I selected the DSI-3260 data for the study. 
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2.4 Results 
EI values were calculated for every storm in the processed NOAA NCDC data (about 1.1 

million storms in total). Unadjusted data was screened, filled, and limited (or unlimited)—

see Section 2.3.5 for more information. These EI values were summed over different time 

periods to derive annual EI (also called erosivity or R-factor). In an effort to quantify some 

uncertainty in the data, adjusted EI calculations were provided. First, EI calculations were 

increased by 4.0% to account for quarter-hour stations not being able to capture the true 

I30. Additionally, the EI calculations may or may not need to be increased by missing and 

deleted percentages. EI calculations and annual estimations were compared for a station in 

northern Mississippi to McGregor’s 29 breakpoint stations. A comparison of two means is 

provided for both the years in common for these two studies and each data as a whole. The 

results of this comparison validate our methodology and dataset for EI calculation in the 

Southeast and hopefully for an imminent update of EI values in the continental US. Finally, 

a frequency analysis of single storm EI was performed for 1, 2, 5, 10, and 20-year return 

periods. This analysis was completed for unlimited and limited I30 values. Station data was 

processed into gridded data by using the geostatistical interpolation method—empirical 

Bayesian kriging. This method accounts for error in the kriging semivariogram by 

resampling the data. These grid values were used for gridded comparisons to digitized data 

from AH537 and AH703. Only the comparison to McGregor’s data uses direct station data. 

2.4.1 Water Balance and Screening 

The mean, median, and standard deviation of percent differences at each station are shown 

both with and without accumulations (+/-) in Table 2-1. The ‘Screening Method ID’ is in 

the format YY.MM indicating the required number of years and months per year for each 

screening method. In general, the trade-off is primarily between spatial resolution (the 

number of stations passing screening) and temporal coverage of each station (the extent of 

‘gaps’ in its record) which impacts percent difference statistics. The ‘number of stations’ 

is a count of stations passing the various screening method. Matching stations used to 

compute the difference could be less than this number (usually about two-thirds of the 

stations passing screening had matching climate data for the analysis). 
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Table 2-1 Percent Differences in Total Precipitation for All Screened Stations in the Southeast by 

Screening Method, with and without Accumulations (+/-), by Statistical Measure 

 
Note: Negative or positive results for mean and median measures indicate a deficit or surplus respectively. 

 

 Requiring longer periods of observations—25 to 30 years as opposed to the 20 year 

minimum—resulted in better performance. However, most screenings with 25 or 30 year 

requirements resulted in spatial distributions and resolutions that were not conducive for 

accurate EI analysis. This was mostly due to station distribution along the eastern coast 

where there were not enough years on record that meet other screening requirements. More 

months per year (11 or 12) always yielded better results and reduced uncertainty compared 

to 10-month results—since stations with more months of data in a year inherently have less 

missing and deleted data. For these reasons, the 20.11 screening was chosen over the 25.10 

and 20.10 screenings. The 20.10 and 20.11 screenings were evaluated visually in order to 

spot any potential differences in the data resolution (280 stations vs. 172 stations). No 

significant trends could be noticed, although the 20.11 screening outperforms the 20.10 

screening as expected. A potential benefit of the longer period screening, 25.10, was that 

it could present a better opportunity to analyze EI variability, which varies quite 

significantly from year to year. This will primarily benefit any climate variability study 

that uses this dataset and methodology, but it may provide a better annual and monthly EI. 

 Although the mean and median percent difference for every screening method was 

negative, there were a number of stations reporting higher than expected rainfall, but these 

were in the minority. This could be a result of stations having 2% - 16% missing data and 

4% - 10% deleted periods. The states of Kentucky, North Carolina, South Carolina and 

Virginia tend to have slightly more ‘missing periods’ and noticeably more ‘deleted 

- + - + - +
20.10 -8.03 -6.15 -8.19 -6.09 3.96 4.15 280

20.11 -7.21 -5.43 -7.59 -5.86 4.11 4.15 172

25.10 -7.55 -5.56 -7.96 -5.44 3.46 3.54 167

25.11 -6.78 -5.11 -6.25 -4.84 3.48 3.49 78

30.10 -6.62 -4.81 -6.57 -4.67 3.06 3.07 68

20.12 -5.64 -4.60 -5.63 -3.81 3.65 3.80 31

30.11 -6.50 -4.93 -6.74 -4.70 2.91 3.00 22

Relative Difference in Avg. Annual Precip. and Normal Annual Precip.
SCREENING 
METHOD ID

NUMBER OF 
STATIONS

MEAN % MEDIAN % STANDARD DEV. %
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periods’. NOAA does not provide a reason for this occurrence. There were two stations in 

southern Louisiana that report significantly higher ‘missing periods’ than surrounding 

areas. This could be from hurricane related damage, which would have caused the stations 

to be down for some time. During the study it was observed that some of these missing and 

deleted percentages may be too high since our method for calculating this used the 

beginning and ending dates of recording for each station and did not reduce the values for 

years that were screened out. For example, the stations in Louisiana were probably downed 

due to hurricane damage, but once they were repaired, observations continued. Our 

screening method removed the calendar years that were missing measured data, but the 

missing period still included the time that the station was downed. This was probably also 

true for deleted data. An updated methodology should remove these values for a better 

prediction of adjusted EI values that will yield reduced uncertainty for each screening 

method. Higher missing or deleted percentages do not necessarily correlate with missing 

rainfall (as shown by water accounting later for that area) because missing or deleted 

periods can occur in the dry season. Across all stations for the 20.11 screening, the 

arithmetic mean of missing and deleted percentages were 5.77% and 7.08%, respectively. 

Figures 2-4 and 2-5 show the spatial distribution of missing and deleted percentages for 

this screening method. 

In summary, the water balance revealed that on an annual basis the observed rainfall 

falls slightly short of expected values—about 5.9% for the preferred screening method 

(20.11). Missing and deleted periods (as percent of each station’s total operation history) 

are compared to the percent precipitation deficit in Table 2-2. Since missing and deleted 

percentages were greater than the total water deficit, it was possible that stations have 

observed more rainfall than what has actually occurred, which could theoretically register 

higher intensities than were real. Still, this is unlikely given the overestimation of missing 

and deleted percentages mentioned earlier and that some of these can occur in the dry 

season. It was still more likely true that intensities would be slightly underestimated from 

these type gauges as noted by Hollinger et al. (2002). 
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Figure 2-4 Spatial Distribution of Missing Percentages for 20.11 Screened Stations  

 
Figure 2-5 Spatial Distribution of Deleted Percentages for 20.11 Screened Stations  
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Table 2-2 Comparison of Water Deficit (as Percent Below Expected Precipitation) to Missing Data, 

Deleted Data, and Total Absent Data (Missing Plus Deleted Data) 

 
Note: Values determined by adding missing, deleted, or both to the mean water deficit for each screening 

with and without accumulations (+/-). Negative or positive results indicate a deficit or surplus respectively. 
 

Using the 20.11 screening method, of the 172 screened stations 117 had matching 

climate normal data for the water balance. The absolute differences of the normal 

precipitation depth versus the observed depth were shown in Figures 2-6 and 2-7 with and 

without accumulations. The largest deficit occurs along the Atlantic coastline. In this area 

there were stations that reported about 5 inches below the expected precipitation depth for 

the same period. It was more apparent that these areas underestimated rainfall in relative 

terms. Figures 2-8 and 2-9 show the relative precipitation deficit as a percentage below 

expected depth with and without accumulations. Despite the lower-than-expected values 

reported for the Atlantic coast, no gridded value reported more than 11.9% below the 

expected precipitation depth, even if accumulations were not included. With accumulations 

the worst value was 10.2% below expected and the best was 2.0% below expected. These 

figures provide some spatial significance to uncertainty in the observed data. Thus, the 

Atlantic coast was the area which was most uncertain and reported the largest deficit in 

observed precipitation depths to expected climate normals. When reporting the EI for these 

areas, adjusted values may become more useful at least in communicating the uncertainty 

of the erosivity in these areas. 

- + - + - +
20.10 -1.76 0.12 -0.02 1.86 6.25 8.13 280

20.11 -1.85 -0.07 -0.28 1.50 5.08 6.86 172

25.10 -2.15 -0.16 -0.74 1.26 4.66 6.66 167

25.11 -2.80 -1.13 -1.77 -0.10 2.21 3.88 78

30.10 -2.69 -0.87 -1.66 0.16 2.27 4.09 68

20.12 -2.60 -1.57 -1.50 -0.47 1.53 2.57 31

30.11 -3.51 -1.93 -2.24 -0.67 0.75 2.33 22

Comparison of Water Deficits to Missing, Deleted, and Total Absent Data
MEAN MISSING MEAN DELETED MEAN TOTALSCREENING 

METHOD ID
NUMBER OF 

STATIONS
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Figure 2-6 Absolute Difference from Normal Precipitation without Accumulations 

 
Figure 2-7 Absolute Difference from Normal Precipitation with Accumulations 
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Figure 2-8 Relative Differences from Normal Precipitation without Accumulations 

 
Figure 2-9 Relative Differences from Normal Precipitation with Accumulations 
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2.4.2 Annual EI 

The annual EI (also called erosivity or R-factor) was calculated for unscreened data, 20.10 

screened data, and 20.11 screened data for a) I30 limited and unlimited EI and b) filled and 

unfilled EI data. Only the filled 20.11 screened data calculations were systematically used 

to produce gridded isoerodent maps and analysis. A few gridded maps were produced as 

an exception to this rule in order to highlight potential differences of interest in the new 

methodology. Gridded data was provided for all calculations because of the large size of 

the data. The 20.11 screened gridded data is reported with and without adjustments to the 

data, and all gridded data for this method is provided in the appendix. A comparison of 

AH703 to AH537 is included in Figures 2-10 and 2-11 for reference. No significant 

difference was detected with or without accumulations or filled data. Accumulations have 

little effect because they were generally small storms with small depths. Filled data would 

be more important for less strict screening that has many more gaps to fill. 

 
Figure 2-10 Absolute Difference in AH537 (Baseline) and AH703—Due to Unlimited I30 and Modern 

Contouring Methods in AH703 
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Figure 2-11 Relative Difference in AH537 (Baseline) and AH703—Due to Unlimited I30 and Modern 

Contouring Methods in AH703 

 Figures 2-12 and 2-13 show the annual EI with and without the effect of maximum 30-

minute intensity limited to 2.5 inches per hour. Limiting the maximum intensity parameter 

has a strong effect on the EI calculation in Gulf States and was at least noticeable along the 

Atlantic Coast. The absolute effect in the Gulf was much higher, but due to the lower 

erosivity along the East Coast, the relative impact was apparent in both regions. Limiting 

this parameter may be even more important for the East Coast than these results indicate 

due to the lack of stations along the immediate coastline. The 20.10 screening cannot add 

much insight to this since it only adds one station to this critical region, but the unscreened 

data does have several stations in this area. Larger EI values exist on the Atlantic Coast 

from unscreened data, and these values were lower than expected due to larger missing 

percentages of data for unscreened stations. The unadjusted, unlimited, filled 20.10 

screened and unscreened gridded EI values were depicted in Figures 2-14 and 2-15. 

Comparisons of Figure 2-12 to AH537 are shown in Figures 2-16 and 2-17. The average 

change over the entire region was +23.0% or a rounded increase of 73 EI units. Again, the 

Atlantic Coast did not see significant change in annual EI. Adjustments were highly 
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recommended for this area, since it saw the largest deficit of precipitation, which could 

mean lower-than-expected erosivity values in this area.  

 
Figure 2-12 Gridded Annual EI (R-Factor) with Limited I30 

 
Figure 2-13 Gridded Annual EI (R-Factor) with Unlimited I30  
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Figure 2-14 Gridded Annual EI for Unadjusted, Filled, Unlimited I30 Values for 20.10 Screened 

Stations (Right)—Shown for Visual Only (Actual EI Values Differ) 

 
Figure 2-15 Gridded Annual EI for Unadjusted, Filled, Unlimited I30 Values for Unscreened Stations 

(Right)—Shown for Visual Only (Actual EI Values Differ) 
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Figure 2-16 Absolute Differences in AH537 (Baseline) and Unadjusted, Filled, Limited, Gridded 

Annual EI for the 20.11 Screened Data 

 
Figure 2-17 Relative Differences in AH537 (Baseline) and Unadjusted, Filled, Limited, Gridded 

Annual EI for the 20.11 Screened Data 
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In Figures 2-18, 2-19, and 2-20 gridded annual EI values were adjusted to better reflect a) 

adjusted I30 and b) ‘a’ plus gridded missing percentages from station metadata, and c) ‘b’ 

plus gridded deleted percentages from station metadata. In regards to the Atlantic Coast, 

adjusting for missing and deleted data did increase the absolute and relative difference from 

AH537, but it did little to remedy the unexpected decrease along the coast. This left only 

two options. The decrease in EI values on the coast was either a product of the station 

distribution (not having enough data entries close to the shoreline) or a result of climate 

variability influence (which I suspect is driven by AMO). This was a possibility that will 

be explored in the second objective along with other influences from climate variability, 

namely ENSO. 

 
Figure 2-18 Gridded Annual EI with I30 Adjusted +4% 
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Figure 2-19 Gridded Annual EI with I30 and Missing Data Adjustments 

 
Figure 2-20 Gridded Annual EI with I30, Missing, and Deleted Data Adjustments 
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2.4.3 Single Storm EI 

It is conceivable that the single storm EI could actually be a more important ‘benchmark’ 

for future climate studies than erosivity. This is because a storm is the ‘building block’ of 

erosivity much like an atom is to matter. Single storm EI is generally reported as a single 

value for a given return period storm. The 10-year storm erosivity is the most commonly 

reported value, and as such is the basis of comparison for this benchmarking analysis. Other 

return periods were included in the appendix. Figures 2-21 and 2-22 present the 10-year 

single storm EI value as reported by AH537 as well as the calculated value from 20.11 

screened data, respectively. The AH537 single storm analysis was only computed at 181 

stations for 37 states, while our analysis was of a higher quality, more recent, and a longer 

period for 172 stations in 11 states. These different return period storm events were highly 

varied across the Southeast for all return periods. Even smaller return periods show large 

amounts of spatial variability with areas in Kentucky and Virginia having a 1-year storm 

of only 9 EI units while the Gulf States consistently see storms of 60 EI units every year. 

 
Figure 2-21 10-Year Single Storm EI from AH537 
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Figure 2-22 10-Year Single Storm EI for 20.11 Screened Stations with I30 Limited 

Figures 2-23 and 2-24 compare AH537 to our analysis. There were significant 

decreases along the East Coast and some increases along the Gulf Coast as well as further 

inland. Much of the difference, especially in inland areas, was highly sensitive to small 

changes in EI. This creates an opportunity for storms of large return periods to have 

unrealistic impacts on the 10-year storm EI, especially for stations with short records. This 

may be a reason for such high relative changes seen in northern Mississippi, Tennessee, 

and Kentucky. A potential remedy for this may filter significantly larger return periods 

than the analysis return period or use a method more resilient to outliers (Hollinger et al. 

2002). In general, our observations were consistent with Hollinger’s, even perhaps some 

of the contouring issue Hollinger mentioned (dark red in Kentucky and Tennessee). 
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Figure 2-23 Absolute Differences in 10-Year Single Storm EI Values for AH537 and I30 Limited, Log-

Transformed 20.11 Screened Data 

 
Figure 2-24 Relative Differences in 10-Year Single Storm EI Values for AH537 and I30 Limited, Log-

Transformed 20.11 Screened Data 
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2.4.4 Comparison to Erosivity in Literature 

It was important to address a concern raised by McGregor first in 1980 and again in 1995 

regarding the underestimation of erosivity values in northern Mississippi—and probably 

elsewhere. This section is included to alleviate those concerns by providing a direct 

comparison of McGregor’s 29 breakpoint stations to this study for EI calculations on an 

annual basis, annual EI estimation from station data, and gridded EI isoerodent mapping. 

Tables 2-3 and 2-4 display erosivity calculations for the same area in northern Mississippi 

for this study and McGregor’s study, respectively. A new term called ‘EI rate’—defined 

as the EI per unit depth (in this case EI Rate was in SI units)—was used to gain a deeper 

understanding of EI similar to erosivity density used in RUSLE2. The EI rate is found by 

dividing by precipitation measured at the quarter-hour station used to calculate EI. The EI 

rate was of the same unit as erosivity density, but a distinction was made since the EI rate 

was based on EI values and depths of each storm as opposed to averaging over any given 

period of time. The EI rate will show effects of precipitation depth differences on the 

calculated EI value similarly to erosivity density. Four calculations were compared directly 

for each year in Table 2-5 including: events, depth, EI, and EI rate. Standard statistics were 

provided appropriately. Keep in mind that this was a comparison of 29 breakpoint stations 

in a single watershed (of the same county) as our one quarter-hour station. Our station was 

located about 20 kilometers north of McGregor’s study area, so the EI values would be 

expected to be slightly lower on average—a few percentage points at the most.  
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Table 2-3 EI Calculations for DSI-3260 Station No. 781500 in Northern Mississippi 

 
 

Table 2-4 EI Calculations from 29 Breakpoint Stations in Northern Mississippi* 

 
* Values were presented by McGregor et al. (1995) 

Depth Energy EI Depth EI Depth Energy I30 EI
ft-tonf 100-ft-tonf-in MJ-mm MJ ft-tonf in 100-ft-tonf-in

ac ac-h ha-h ha-h ac hr ac-h

1984* 142 52.7 317 430 1338 7323 5.47 0.07 0.19 0.04 0.03

1986 83 52.0 455 505 1321 8599 6.51 0.20 1.57 0.20 0.63

1987 78 46.0 368 331 1168 5636 4.82 0.30 2.35 0.20 0.63

1988 85 48.5 415 376 1232 6398 5.19 0.40 2.83 0.40 0.94

1989 111 65.7 562 537 1669 9146 5.48 0.20 1.77 0.20 0.63

1990 97 61.2 513 444 1554 7554 4.86 0.30 2.55 0.20 0.63

1991 98 80.7 679 709 2050 12067 5.89 0.40 3.24 0.40 1.29

1992 90 45.8 388 312 1163 5307 4.56 0.30 2.55 0.20 0.78

1993 99 50.0 422 362 1270 6160 4.85 0.30 2.35 0.20 0.63

1994 89 59.7 483 449 1516 7642 5.04 0.40 3.14 0.40 1.10

1995 83 54.6 456 417 1387 7098 5.12 0.40 3.14 0.40 1.25

1996 89 53.3 457 490 1354 8344 6.16 0.30 2.83 0.40 1.25

1997 111 65.4 557 544 1661 9260 5.57 0.40 3.14 0.40 0.94

1998 99 51.4 432 338 1306 5761 4.41 0.30 2.35 0.20 0.71

1999 75 52.0 440 451 1321 7678 5.81 0.30 2.83 0.40 1.57

2001 76 70.9 600 604 1801 10283 5.71 0.50 4.02 0.40 0.98

2002 88 63.4 529 465 1610 7917 4.92 0.30 2.35 0.20 0.63

2003 85 57.6 497 598 1463 10181 6.96 0.40 3.14 0.20 1.02

2005 71 36.9 318 357 937 6071 6.48 0.30 2.35 0.20 0.63

2006 100 47.3 399 349 1201 5938 4.94 0.20 1.57 0.20 0.31

2007 97 41.3 359 407 1049 6929 6.60 0.20 1.57 0.20 0.47

2010 90 39.3 334 297 998 5048 5.06 0.10 0.78 0.20 0.16

2011 84 43.9 383 487 1115 8284 7.43 0.20 1.67 0.20 0.47

Avg. 92 53.9 451 446 1369 7592 5.56 0.29 2.36 0.26 0.77
S.D. 15 10.6 93 104 269 1777 0.81 0.10 0.87 0.11 0.38

C.O.V. 0.16 0.20 0.21 0.23 0.20 0.23 0.15 0.36 0.37 0.41 0.49

in mm mm

Median of All EventsSI ConversionSummation of All Events
EI Rate

Year Events

EI EI Rate
MJ-mm MJ

ha-h ha-h

1982 89 1699 63 1568 1688 1811 243 10756 6.33

1983 74 1669 58 1523 1676 1775 252 10451 6.26

1984 77 1448 40 1361 1446 1512 151 9532 6.58

1985 76 1210 46 1160 1196 1319 159 7199 5.95

1986 63 1234 38 1133 1235 1314 181 7710 6.25

1987 70 1153 47 1059 1155 1237 178 5225 4.53

1988 70 1055 30 997 1056 1131 134 4816 4.56

1989 87 1792 47 1725 1789 1912 187 10177 5.68

1990 86 1497 52 1422 1494 1662 240 6909 4.62

1991 85 1999 60 1884 1998 2137 253 14161 7.08

1992 76 1123 34 1055 1120 1188 133 5786 5.15

Avg. 78 1444 47 1353 1441 1545 192 8429 5.73
S.D. 8 314 11 298 314 335 47 2851 0.89

C.O.V. 0.11 0.22 0.23 0.22 0.22 0.22 0.25 0.34 0.16

Year Events
Avg. S.D. Min Median Max Range

Measured Precipitation Depth (mm)



 59  

 
Table 2-5 Direct Comparison of Common Years for McGregor’s 29 Stations (Averaged) as the 

Baseline for Comparison and Station No. 781500 in Northern Mississippi 

 
 The direct comparison of annual erosivity calculations (Table 2-5) was provided with 

relative differences for each year and the means of the two samples. Positive values 

correspond to overestimation while negative values convey the opposite. This was a small 

sample size, so conclusions are somewhat limited for this analysis. The quarter-hour 

stations observed more storm events, or more appropriately, observed them in a way that 

storm separation methods—identical for breakpoint data—resulted in more storms. This 

was expected since breakpoint data can detect very small intervals of precipitation, while 

quarter-hour stations have rigid intervals. This can have a significant impact on calculations 

since the portion of the storm that was separated by fixed-interval stations will usually have 

different maximum intensities multiplied by almost equal kinetic energies resulting in some 

calculation differences. This observation may partially explain EI differences for each year. 

Second, precipitation depth seems to be consistently well captured, although there will be 

some differences as these studies were located approximately 20 kilometers apart. Third, 

EI predictions vary quite widely within each year, which to a degree was acceptable due to 

location differences and how storms change as they move across the landscape. It would 

be expected, however, that the long-term average would be close to McGregor’s findings. 

Lastly, the EI rate was much more consistent (coefficient of variation much lower than EI) 

with -16.9% being the largest difference in any given year. That particular year happened 

to be the maximum for this sample as well as all other data from both studies. In general, 

our calculations overestimate years with lower erosivity and underestimate years with 

Events Depth EI Depth EI EI Rate Events Depth EI EI Rate Events Depth EI EI Rate
100-ft-tonf-in MJ-mm MJ MJ-mm MJ

ac-h ha-h ha-h ha-h ha-h

1986 83 52.0 505.2 1321 8599 6.51 63 1234 7710 6.25 31.7% 7.0% 11.5% 4.2%

1987 78 46.0 331.2 1168 5636 4.82 70 1153 5225 4.53 11.4% 1.3% 7.9% 6.4%

1988 85 48.5 375.9 1232 6398 5.19 70 1055 4816 4.56 21.4% 16.8% 32.8% 13.8%

1989 111 65.7 537.4 1669 9146 5.48 87 1792 10177 5.68 27.6% -6.9% -10.1% -3.5%

1990 97 61.2 443.8 1554 7554 4.86 86 1497 6909 4.62 12.8% 3.8% 9.3% 5.3%

1991 98 80.7 709.0 2050 12067 5.89 85 1999 14161 7.08 15.3% 2.5% -14.8% -16.9%

1992 90 45.8 311.8 1163 5307 4.56 76 1123 5786 5.15 18.4% 3.6% -8.3% -11.5%

Avg. 92 57.1 459.2 1451 7815 5.33 77 1408 7826 5.41 19.6% 3.1% -0.1% -1.5%
S.D. 11 12.9 139.0 328 2366 0.68 9 366 3329 0.98

Min 78 45.8 311.8 1163 5307 4.56 63 1055 4816 4.53

Max 111 80.7 709.0 2050 12067 6.51 87 1999 14161 7.08

Original Data SI Unit Conversion McGregor Data Relative Difference

Year
mmmmin ## % % % %
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higher erosivity. Large values are underestimated because quarter-hour stations are not able 

to capture maximum intensities as well as breakpoint data and storms with low intensity 

tails are wrongly separated into smaller storms (resulting in lower maximum intensity 

multiplier for that portion of the storm). Small values are overestimated due to interval and 

measurement resolutions, which artificially increase intensities during small storms. 

Energy calculations are highly sensitive to small values, which is most likely responsible 

for the difference. Values averaged over a single 15-minute interval will always be 

underestimated, but values occurring over several intervals could register several zero-

energy blocks before having one relatively large value (when the measurement threshold 

is finally reached). Table 2-6 summarizes the differences between all years on record for 

each study and provides basic statistical information regarding each. The total sample size 

for each study was 23 and 11, respectively. A two-tailed test of the two independent 

erosivity means found that differences in the means were not statistically significant with 

a p-value of 0.3008. 

 
Table 2-6 Direct Comparison of All Years for McGregor’s 29 Stations (Averaged) as the Baseline for 

Comparison and Station No. 781500 in Northern Mississippi 

 
 After comparing the direct differences in EI calculation differences in gridded 

isoerodent maps and the expected erosivity provided by McGregor were evaluated. Table 

2-7 shows this comparison across the different Ag. Handbooks and this analysis with 

adjusted and unadjusted data. Since these were gridded values being compared with station 

data, the minimum, geometric mean, and maximum values for Panola County, Mississippi 

were provided according to each isoerodent method. These values were compared with the 

expected value to determine relative differences. All of the Ag. Handbooks significantly 

underestimated the erosivity regardless of their varying methodologies as pointed out by 

McGregor et al., (1995). The Goodwin Creek Watershed was located in the southern 

Events Depth EI Depth EI EI Rate Events Depth EI EI Rate Events Depth EI EI Rate
100-ft-tonf-in MJ-mm MJ MJ-mm MJ

ac-h ha-h ha-h ha-h ha-h

Avg. 92 53.9 446.1 1369 7592 5.56 78 1444 8429 5.73 18.9% -5.2% -9.9% -2.9%
S.D. 15 10.6 104.4 269 1777 0.81 8 314 2851 0.89

Min 71 36.9 296.6 937 5048 4.41 63 1055 4816 4.53

Med 89 52.0 443.8 1321 7554 5.47 76 1448 7710 5.95

Max 142 80.7 709.0 2050 12067 7.43 89 1999 14161 7.08

# in mm # mm % % % %

Original Data SI Unit Conversion McGregor Data Relative Difference

Stat.
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portion of Panola County (where the maximum values for the county were found). Station 

No. 781500 was located nearer to the minimum values for reference. The mean value for 

the two studies should result in a minimum gridded value slightly lower than 7,592 (from 

this study) and a maximum gridded value slightly higher than 8,429 (from McGregor’s 

study). None of the gridded methods match this perfectly, and it was not significant that 

they do not. The interpolation method considers not only a single station but many stations 

within a certain distance of the cell being calculated to construct a semivariogram, which 

was used to determine spatial correlations among the dataset as a whole. Basically, even 

among the 29 stations there were strong variations in erosivity, and the gridded value takes 

that into consideration. It should be close to each target value, especially the Goodwin 

Creek study, but it can slightly differ from these. As expected, the most important 

adjustments were that of increasing I30 by 4% and accounting for missing data. If these two 

adjustments were made to gridded EI values—calculated from the DSI-3260 data—the 

resulting EI calculations were almost identical to McGregor’s (discussed above). 

 
Table 2-7 Comparison of Gridded Isoerodent Maps to Expected Values for Northern Mississippi 

 
*Mean was the geometric mean of the county of comparison. Units in MJ-mm ha-1 h-1 yr-1. 

Min. *Mean Max. Min. Mean Max.
AH282 8374 5503 5584 5678 -34.3% -33.3% -32.2%

AH537 8196 5503 5584 5678 -32.9% -31.9% -30.7%

AH703 8196 5414 5589 5763 -33.9% -31.8% -29.7%

Unlimited I30 8677 7523 7737 7933 -13.3% -10.8% -8.6%

Limited I30 8429 7188 7405 7588 -14.7% -12.1% -10.0%

Adjusted I30 8429 7475 7702 7892 -11.3% -8.6% -6.4%

I30 & Missing 8429 7751 7989 8205 -8.0% -5.2% -2.7%

I30 & Deleted 8429 8059 8294 8486 -4.4% -1.6% 0.7%

All Adjustments 8429 8335 8581 8801 -1.1% 1.8% 4.4%

Relative DifferencesIsoerodent 
Method

Expected 
Value

Gridded Comparison Values
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2.5 Discussion 

2.5.1 Data Quality and Screening 

DSI-3260 (quarter-hour) station data was beset by significant amounts of gaps, errors, and 

flags that make data management and interpretation complex. The percent of missing and 

deleted data ranges widely from station to station, but it was manageable with screening. 

Strict screening methods were able to reduce the average missing percentage of unscreened 

data from 14.9% to 5.3% without taking into account missing percentages dropped within 

the record. Deleted percentages for screened and unscreened data hovered around 7.2% to 

7.8% and would also be slightly better after accounting for removed gaps. Accumulations 

were processed differently than missing and deleted percentages, so the amount of 

accumulations was accurate.  Accumulations as a percent of total measured depth also 

reduced from 6.2% to 3.6% with screening. Only 172 of 616 stations (27.9%) passed the 

stricter screening (20.11) while 280 passed the 20.10 screening. This was a much higher 

passing rate at 45.5%, but the trade-off was that a larger percentage of the data was filled 

data. This was probably more permissible for precipitation data, but erosivity was even 

more varied than precipitation. The coefficient of variation for erosivity in some locations 

can be more than double that of the precipitation depth. Therefore, I leaned towards a more 

strict station screening method, even though it results in fewer observations. The spatial 

density of actual erosivity station data for the 20.11 screening was still 3 to 4 times that of 

AH282, AH537, and AH703, which only used 181 locations across 37 states for direct EI 

calculations (the other roughly 2,000 locations were based on regression equations and not 

directly calculated values). 

All flags must be considered in order to account for all precipitation. The issue noted 

by Hollinger et al., (2002) of stations inaccurately reporting as operational was true, but it 

can be mostly worked around with a more flexible screening method. The screening 

method used in this study permitted the ‘g’ flag to essentially be ignored, although I do still 

process it as a redundant measure. This screening method more effectively handles gaps in 

the data and results in a simpler implementation than that of Hollinger et al., (2002). There 

were still two considerations that must be made for this data, primarily in the form of 

potential bias towards stations experiencing drought and/or larger percentages of 

accumulations. Drought years sometimes do see no precipitation in a month, but it was rare 
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for more than one month to see no rainfall in the Southeast. It was especially rare for many 

stations in a larger area to experience drought and not see precipitation for multiple months. 

This will have an insignificant effect, if any, on individual stations and even less on 

regional outcomes regarding EI. Bias toward mid-latitude states such as Kentucky and 

Virginia is a larger concern. These areas have larger percentages of accumulations and 

precipitation characteristics likely to trigger event recording as an accumulation as opposed 

to a measured event. I compared the passing rate of stations by state and did not find any 

such bias. Station density, distribution, and quality seem to be state specific issues, and 

were not associated with the methodology of this study. 

In short, the methodology outlined in this study yielded the best documented 
quality of the NOAA NCDC 15-minute gauging stations. Specifically, the missing 

percentage of data and the percent accumulation depth were significantly lower than values 

presented in Hollinger et al., (2002) and USDA (2008), and this is probably true of deleted 

percentages as well, although there was no mention of this parameter for comparison. Our 

values can be slightly improved with an updated processing of station metadata (post 

screening) and can be applied to other stations in the eastern US. Applications outside the 

Southeast may need to modify screening methods in stations with high accumulation 

percentages. Western states which can see several months with no precipitation will need 

to utilize ‘g’ flag processing for more accurate screening. 

2.5.2 Water Balance and Uncertainty 

Results of the water balance indicate that the 20.11 screening method was the best for 
the purposes of this study. In studies where longer record period was more critical, the 

25.10 screened data can be used to increase the average station period from 25 years to 

nearly 30. Through screening, the issue of missing, deleted, and accumulated data can be 

mitigated to bring observed precipitation amounts to that of the expected climate normal 

of the period. Upon implementing recommended changes to the metadata handling, 

missing data can be compared to the total water deficit for further validation of these 

procedures. Currently the deficit was about 5.9% with 5.77% missing data (interestingly, 

station data in northern Mississippi was 5.2% below observations from breakpoint data). 

 The water balance also provided a statement on uncertainty within the data. Areas with 

larger water deficits from observed climate normals were missing precipitation data. These 
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results can be used specifically to inform erosivity calculations of areas where 
calculations could be different and by how much. This will not provide a reliable 

‘adjustment’ to EI values, but could indicate where true EI values will be higher and where 

they were sufficiently captured by the data. Northern Mississippi, for example, has little 

missing or deleted data, so those adjustments do not have significant impacts on that area. 

This was particularly useful for the Atlantic Coast, which has evidence of a water deficit, 

large percentages of missing and deleted data (near 15% together), notable accumulation 

percentages, and potentially significant impacts of climate variability through AMO. 

2.5.3 Annual EI and Climate Change 

Our study confirms the analysis of several others regarding the underestimation of 
erosivity values by the procedure used in AH282, AH537, and AH703 (McGregor et 

al., 1995; Hollinger et al., 2002; USDA, 2008). Erosivity values should be increased on 

average by 23% for the unadjusted data, and I would argue that it was slightly larger than 

that. I suggest that at a minimum these values should be adjusted by +4% for the inability 

of quarter-hour stations to capture the true maximum values as breakpoint stations can. In 

addition to this, I believe that missing data should be incorporated at least to communicate 

uncertainties in the EI calculation and to demonstrate potential changes in the regional 

estimates of erosivity. 

 Climate change has undoubtedly impacted erosivity (most likely as an increase), but it 

was unclear exactly how much change has resulted from climate versus methodology or 

climate variability. This will almost certainly be an increase due to increasing temperatures 

of the Atlantic Ocean, which have been proven to invigorate high energy storms before 

they make landfall in the Southeast. In order to make a statement on climate change, 

supplementary, hourly or daily data may be required to capture at least a few oscillations 

of AMO. It was likely that both AMO and ENSO were drivers behind erosivity in the 

Southeast and determining their impact will help identify climate change trends. 

2.5.4 Single Storm EI 

The 10-year storm EI for the Atlantic Coast decreased significantly. This decrease was 

observed to be as high as -52.9% but was closer to -30% for most areas along the immediate 

coast. This resulted from two factors including sparse station distribution along the 
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coastline (which would explain differences in EI values along the coast) and the reflection 

of mostly negative phase AMO influences in our observation period. AH537 data was 

recorded during a strong positive AMO phase and the DSI-3260 data contained negative 

and positive phase AMO data, inversion occurred in 1995. This means that our data 

contains up to 25 years of negative phase data and 15 years of positive phase data, while 

AH537 contains up to 22 years of only positive phase AMO data. It is known that AMO 

affects the magnitude and track of high energy storms, and it was possible that many 

differences can be accounted for by AMO, especially on the Atlantic Coast. Whether this 

was the case or not, the single storm EI for the East Coast was significantly lower according 

to our analysis. This area also happened to be the area of the highest observed precipitation 

deficit (about -9% on average), but this was not likely to have a strong impact of the 10-

year EI, especially given that the minimum station period was 20 years. Analysis of single 

storm EI and annual EI values can be better understood in the context of climate 
variability, which this study does not directly investigate. 
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2.6 Conclusion 
Screened quarter-hour station data for 172 locations across 11 southeastern states were 

used to calculate erosivity (R) values and single storm EI return periods. A water balance 

was included to validate the precipitation observations against expected climate normals 

and to provide insight into uncertainties in the resulting EI calculations. Station and gridded 

data for northern Mississippi were compared to high-quality observations (McGregor et 

al., 1995) and were found to be satisfactory for this area. Previously published studies 

Hollinger et al. (2002) and USDA (2008) and the results of this study, indicate that EI data 

from NOAA NCDC should be screened, filled, and adjusted appropriately to derive 

accurate EI estimates. Methodology impacts on EI calculation from largest to smallest 

would be: screening, I30 limitation, I30 adjustment, missing data adjustment, and lastly, 

filling gaps. It is not recommended to adjust for deleted data; although it may be helpful to 

report the percent deleted data for each station. Using the recommended methodology for 

EI calculation, informed from McGregor’s study, a benchmark was provided for future 

climate change and climate variability studies as well as updated erosivity values in the 

Southeast. Conservation efforts using the standard approach (USLE and RUSLE) or 

the erosivity density approach (RUSLE2) can easily utilize or compare with more 
accurate erosion indices from densified observation of high-quality modern data 
under a simplified and robust data processing and EI calculation methodology. 
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Chapter 3:  Intra-Annual Variability and ENSO Driven Impacts on Erosion Index 
(EI) in the Southeastern United States for Climate Resilient BMP Strategies 
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3.1 Abstract 
Building on a previous benchmarking study of erosivity in the Southeast, this study 

analyzed climate variability influences of ENSO on erosion index for the southeastern 

United States. EI values consistent with observations from others (McGregor et al., 1995; 

Hollinger et al., 2002; USDA, 2008) were calculated using the methodology and dataset 

outlined in that study (Chapter 2). Five variability components of EI based on monthly and 

half-monthly EI values are studied. The first two studied ‘intra-annual’ variation and 

essentially benchmarked the magnitude and timing of ‘normal’ EI variations. The other 

three considered ENSO effects on variability and attempted to quantify ‘inter-annual’ 

variability. These included ENSO effects on EI magnitude (or the general strength of the 

change), EI distribution (the timing of EI throughout the year), and the characteristics of 

precipitation (mechanisms behind erosivity). Our analysis utilized a new and powerful 

statistical method known as joint-rank fit (JRFit) developed by Kloke et al. (2009). JRFit 

enables a more powerful statistical analysis of non-parametric data that is cluster correlated 

with heavy tails—data with outliers—such as erosivity data. ENSO was found to have a 

significant effect on both the magnitude and timing of erosivity throughout the year. 

Multiple precipitation parameters including number of events, precipitation depth, kinetic 

energy, EI, etc. were tested for significant influence of ENSO, which helped determine 

how erosivity was influenced by variability and which mechanisms were being impacted 

the most. The strongest influence of ENSO was that of the amount and timing of 

precipitation depth and kinetic energy, which was strongly correlated with depth. Monthly 

and biweekly EI distributions were benchmarked for future studies using the 25.10 

screening method, which consisted of more recent, higher temporal and spatial resolution, 

more certain, and longer observation periods than either AH703 or RUSLE2 studies. 

Change in the magnitude and distribution of EI throughout the year—based on the ENSO 

phase—was used to highlight general implications for BMPs aimed at soil conservation 

and reductions of sediment yield. Having accounted for short-term variability, the time was 

ripe for a mid-term variability study of AMO and potentially PDO/PMO. This would likely 

result in a fuller picture of how mid-term oscillations influence erosivity. A mid-term 

variability study would also highlight clear patterns for a statement on observed climate 

change impacts regarding erosivity. 
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3.2 Introduction 
Soil conservation efforts understand that climate is both a driving factor of erosion and that 

it is not a static parameter. Early attempts to define this relationship followed what has 

been called a ‘standard approach’ to calculating erosivity, but more recently has progressed 

to a newer method known as the ‘erosivity density’ approach. Both of these approaches 

quantify the changing characteristics of precipitation throughout the year using a time 

varying, long-term averaged distribution of either EI or erosivity density. However, in an 

attempt to simplify this relationship, neither of these approaches consider the impacts of 

climate change or climate variability on erosivity. These impacts are essential for the 

understanding and prediction of erosivity, especially those resulting from climate 

variability in the near to mid-term and those of climate change for the mid to long-term 

predictions. It would be a mistake to assume that erosivity changes proportionately with 

precipitation since it is the characteristics of that precipitation which stand to change 
more than the quantity under a changing climate regime (Trenberth et al., 2003). 

The erosivity density approach does offer the ability to see variations in erosivity with 

respect to varying precipitation amounts, and this could potentially yield important results. 

However, the RUSLE2 erosivity density was derived for each station by calculating the EI 

(standard approach) of all storm events larger than 0.5 inches and less than 50 year return 

periods in a given month then subsequently dividing by the total precipitation depth for 

that month. There were two problems with this for evaluating climate impacts on erosivity 

including a) small storms were not included in calculation of EI but were included in the 

depth denominator and b) erosivity density values (calculated for each of the 12 months) 

were not allowed to vary each year. Although McGregor et al. (1995) found that small 

storms only account for up to 3.5% of EI in northern Mississippi for 29 breakpoint stations, 

quarter-hour station data do not support this finding. Using 20.11 screened data, events less 

than 0.5 inches accounted for 70.3% of events, 26.5% of total precipitation depth, and 8.7% 

of EI across all 172 stations. Therefore, the erosivity density approach would need to 

incorporate small events for a more accurate estimation. Furthermore, I defined a new term, 

EI rate, which allows us the opportunity to evaluate EI with respect to depth that includes 

EI from small storms and changes for every month and every year. EI rate was defined as 

the unaveraged, unique monthly EI divided by the depth for that unique month. Results for 
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the EI rate will reflect some variations in EI per unit depth that would be missed by 

conventional erosivity density. The inclusion of this term allows us to effectively analyze 

both the standard approach to EI as well as erosivity that changes with respect to 

precipitation depth while avoiding potential weaknesses of the erosivity density approach. 

Unfortunately, observed discrepancies in erosion index values in northern Mississippi 

and those published in Agricultural Handbooks (Wischmeier and Smith, 1965; Wischmeier 

and Smith, 1978; Renard et al., 1997) raised concerns about the standard approach as it has 

been applied to different datasets (McGregor et al., 1980; McGregor et al., 1995). 

McGregor’s results (from 29 breakpoint stations in Panola County, Mississippi) are 

superior to other datasets and are to be trusted over other studies including this one (Chapter 

2), but McGregor’s studies are confined to a small area. These results effectively nullify 

EI values from each of the Ag. Handbooks and diminish the ability to discern climate 

impacts on erosivity, especially long-term impacts. Therefore, it was necessary to create a 

benchmark that could be used for climate impact studies on erosion index including an 

appropriate methodology and dataset. Chapter 2 began to benchmark EI values on an 

annual and single storm basis, which can be used for climate change analysis in the future 

using the same methodology and dataset from that study. This study used the annual EI 

benchmark and expanded the benchmarking to monthly magnitudes and half-
monthly distributions using a more appropriate methodology for climate variability 
analysis. These magnitude and distribution benchmarks can be used for variability 

analyses (estimating positive and negative phases against normal conditions) and change 

analysis (estimating differences of different time periods). As time progresses it will be 

possible to evaluate the impacts of observed climate change on erosivity in the region most 

sensitive to water erosion—the southeastern United States. 

3.2.1 Study Objectives 

In order to achieve an understanding of climate change impacts (observed and predicted), 

first, the effects of variability should be investigated. Climate variability occurs at multiple 

timescales (intra-annual, inter-annual, decadal, etc.) and involves different cycles (ENSO, 

PDO, AMO, etc.). Mid to long-term variability such as AMO is not well understood in 

comparison to shorter variability cycles. Unlike most of the other climate cycles, ENSO 

occurs in shorter cycles (usually one or two years). Although it tends to oscillate from 
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positive to negative and vice versa, ENSO can return to either a positive or negative phase 

regardless of the preceding phase. The prediction technology for ENSO is more developed 

(partially due to more frequent cycling), which makes it possible to predict ENSO impacts 

for the near-term future erosivity. Prediction capability along with short cycle duration (for 

multiple cycles to be analyzed) make ENSO an ideal choice for our variability analysis. 

ENSO has also been shown to have significant influence in parts of the Southeast regarding 

precipitation. Therefore, the objective of this study is to evaluate the impact of ENSO 

on EI magnitude and distribution and to identify mechanisms of EI which are 
strongly impacted. This study begins to identify variability impacts on erosivity. As other 

variability cycles are analyzed in future studies, it will be possible to determine observed 

effects of climate change on EI in the Southeast. 

3.2.2 Broader Impacts 

The findings of this study are key in predicting the magnitude of short to mid-term 
climate variability impacts, and eventually, mid to long-term climate change impacts. 
These predictions could be used to update or recommend new BMPs related to erosion and 

sedimentation, especially those that are dynamic in nature such as operational BMPs. There 

are at least two considerations that must be given to BMPs including maximum allowable 

conditions and the timing of practices. For example, maximum allowable conditions may 

include maintaining erosion and sedimentation TMDLs for water quality. TMDLs are 

maximum loads resulting from extreme events that could impair water bodies. In these 

cases, it is better to establish BMPs based on more vigorous climate cycles for each region 

(+AMO or El Niño for the Southeast), which have more frequent and intense events in a 

smaller amount of time compared to normal conditions. Most BMPs protecting against 

water erosion today are only concerned with long-term average sediment delivery, and 

predicting magnitude changes may prove to be—in most cases—unimportant. However, 

in regards to soil conservation, the biggest concern is agriculture practices, especially the 

timing of fallow soil, tilling, and crop rotation. In this case, timing should be the focus of 

these practices because EI varies over time. This is where ENSO is particularly interesting 

since it has been linked to seasonal changes in precipitation patterns as well as annual 

patterns. As all variability is incorporated in EI predictions, BMPs related to erosion and 

sedimentation will yield potentially much better conservation efficiency. 
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3.3 Methodology 
After the data was formatted and processed, flags recorded and processed, and separated 

into storms (using the definition of a storm according to AH537 without omitting any 

storms), EI was calculated for each individual storm. EI values for 1.1 million storms 

during the period 1970 – 2010 across 616 stations were screened for a minimum of 10 

months per year and 25 years for a station to pass screening. The 25.10 screening method 

(Chapter 2) was selected for this study due to superior results from a water balance analysis 

and longer station periods. Monthly and half-month EI values were calculated for each 

station. Monthly EI values calculated from station data were used to determine the effects 

of ENSO on erosivity using a novel approach to testing and estimating differences in 

cluster-correlated data (discussed in Section 3.3.3). The methodology for this study follows 

closely with that of Chapter 2. For more information regarding a detailed methodology, 

reference Section 2.3. 

The 10-month screening was also selected since this analysis relies on monthly EI as 

opposed to annual EI calculations. Therefore, months that do not pass screening in years 

that do, will not need to be filled, and the analysis can tolerate more gaps in the data. This 

added the flexibility to increase the minimum number of years, since that was more 

important for variability studies. Similarly to Chapter 2, one measured event must be 

present for a month to pass screening. A concern then arises that this method could 

artificially increase the monthly EI since months with zero measured events would not be 

included in monthly EI probabilities. However, this was not prevalent since the study did 

not omit small storms (less than 0.5 inches) and there were many storms in this category 

(about 70% of all storm events). Months with no measured events would not be included 

in the monthly EI probability, but months with infinitesimally small EI values were 

included (down to 0.01 inches in a 15-minute period—the smallest possible with this 

dataset). For the Southeast, it was not common for a month to see no rainfall, and certainly 

not enough to significantly impact the median monthly EI (if at all). Also, not all months 

with no recorded precipitation were dry months. For many of these months it was possible 

that there was precipitation, but it was not recorded due to missing data periods. It was 

noted by Hollinger et al. (2002) that the ‘g’ flag—intended to note when stations were 

operational—was not a reliable indication of good station data. Our observation was that 
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our method was an effective filter of months that were assigned a ‘g’ flag but that do not 

have associated measured data. In short, the incorporation of small storms combined 

with screening produce significant improvements in the calculation and probability 
analysis of monthly EI values.  

The coefficient of variation for erosivity is actually much higher than that of 

precipitation depth (Hastings et al., 2005), and in our own observations it can approach 

double or even triple that of depth. Since erosivity experiences much more variation than 

precipitation, it follows that the period of observation should be longer in order to obtain 

more reliable results. This is particularly true for variability studies which often will 

partition the dataset when analyzing positive and negative phases of climate oscillations. 

Utilizing the screening methods from Section 2.4.1, the 25.10 screening method was the 

preferred screening method since it increases the minimum number of years on record 

while maintaining a spatial resolution still about 3 times denser than observations reported 

in the Ag. Handbooks. Using this screening method results in water balance results superior 

to both 20.10 and 20.11 screenings while increasing the average station period from 24.8 

years to 29.3 years and reducing standard deviations and coefficients of variation for the 

data. Filled data was not necessary for variability analysis which was based on monthly EI 

values alone, and since this was not needed, the 25.10 screening was by far the best choice. 

Monthly and half-month EI were calculated identically to annual EI using the smaller 

observation periods of months and half-months. Although benchmarking of annual EI 

values was provided for both limited and unlimited I30 calculations, this study will only 

analyze the unlimited I30 in all calculations. This is primarily so that the true potential 

erosivity of storms can be studied as opposed to the correlated values for soil loss 

observations. Additionally, RUSLE1 and RUSLE2 have moved away from I30 limited 

calculations and include slope calculations instead to better represent true soil loss 

mechanisms. In reality, it is the slope in combination with intensity that determines 

ponding, rather than intensity alone. 

Adjustments were not included in this study although the findings of Chapter 2 suggest 

that missing data and maximum intensity adjustments should be included. The missing 

adjustment was particularly small for this analysis, since the majority of missing data 

occurs outside months passing screening. Therefore, this adjustment is not included 
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because of its relatively small impact on the results. The maximum intensity was not 

adjusted in order to preserve actual EI signals from the station data, but the true values 

should be higher than quarter-hour data observations (Hollinger et al., 2002). Since only 

unlimited maximum intensity data is used, comparisons to AH703 were included where 

appropriate. Accumulations were processed identically to the annual EI analysis and 

merged with the measured data for a better estimation of the true monthly EI. 

Since this study analyzed variability, which decreases the effective sample size of the 

dataset, it was therefore much more important to use a more powerful statistical method 

for the analysis. A more powerful statistical method is one that has a higher probability of 

correctly rejecting or failing to reject the null hypothesis when appropriate. Given certain 

data characteristics—heavy tails (data with outliers), smaller sample sizes, or strong 

correlation (Singh, 2016)—it is possible for statistical tests to not detect significant 

differences when there actually are differences. In effect, these differences are not easy to 

detect (due to the data or sample characteristics). More powerful methods can detect these 

differences despite the obscured sample and provide the correct test result. In addition to 

this, not all tests can provide estimations of the actual values for the different samples; 

some only provide the significance or p-value of the difference. One such test that is both 

powerful and provides the estimated median value for the two data partitions is called 

JRFit, which was developed by Kloke et al. (2009). JRFit is a Joint Rank Fit for non-

parametric data such as erosivity. It has been evaluated for its performance among other 

common statistical methods, particularly among cluster-correlated data, and has 

outperformed them (Singh, 2016). An R implementation has been provided by Kloke et al. 

(2014), which was used in this study to perform the variability analysis for multiple 

precipitation parameters under several clustering ‘blocks’ and data partitions. 
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3.4 Results 
EI values from station data were sometimes presented as gridded data—for better 

visualization—by means of empirical Bayesian kriging, which resamples locally derived 

semivariograms to map statistically significant spatial results. Although this analysis was 

based on monthly and half-month EI calculations, annual and seasonal EI was calculated 

to observe longer term impacts from inter-annual variability, namely that resulting from 

ENSO. Half-month EI values were graphed, since mapping becomes inefficient at finer 

temporal scales. Since half-month EI values were graphed and there were many stations, 

stations were classified according to climate divisions outlined in AH703 for comparison. 

The monthly EI and half-month EI values served as the benchmark for all present and 

future analyses. It was expected that significant increases in magnitude will be reported, 

which was consistent with findings from Chapter 2 in conjunction with McGregor et al. 

(1995). Any notable changes in the distribution of EI was reported and analyzed for 

variability impacts. The variability analysis focused on two potential impacts including 

changes in the magnitude of EI values and in the distribution (timing) of those values. 
 

3.4.1 Monthly EI Benchmarks 

Monthly EI for the 25.10 screening method (167) stations was computed for each month 

in each year during the period 1970 – 2010. The average station period was just under 30 

years. Figures 3-1 and 3-2 compared annual EI values (calculated from summed monthly 

data as opposed to mean annual data in the previous study) from the two prevalent 

screening methods (20.11 and 25.10), which were discussed extensively in the prior 

section. The 25.10 screening was favored in the monthly analysis due to its longer record 

period and foregoing the need of a fuller record. Figure 3-3 showed unlimited, filled annual 

means (calculated from annual data) for comparison. It was clear that the 25.10 screening 

better represents the annual EI better than the 20.11 method, and it will provide 
better monthly EI values (from longer station observation periods), which was critical 
for this variability study. 
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Figure 3-1 Unadjusted Annual EI from Monthly Mean EI for 20.11 Screened Data 

 
Figure 3-2 Unadjusted Annual EI from Monthly Mean EI for 25.10 Screened Data 
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Figure 3-3 Annual EI from I30 Unlimited, Filled Annual Mean EI for 20.11 Screened Data—

Preferred Method 

 Monthly EI values were also summed to determine the seasonal EI distribution. Figures 

3-4, 3-5, 3-6, and 3-7 showed the seasonal distribution computed from mean monthly EI 

for 25.10 screened station data. This figure provided insight for spatial and temporal 

variations in EI, which were usually only presented as temporal variation for seasonal and 

monthly EI values. It was clear that both the Atlantic and Gulf Coasts received a majority 

of their erosivity in the summer season. A small exception was the Boca Raton, FL station, 

which observed many hurricanes in that particular location in the fall season. Significant 

understanding can be gained of the type of rain events driving EI from this figure. For 

example, convective rainfall along both the Gulf Coast and the Atlantic Coast was a 

significant factor in the annual EI values for those locations. These rains did not penetrate 

very far inland like other seasonal distributions, which was perhaps why unexpected 

decreases were observed in benchmarked EI values along the Atlantic Coast (due to 

stations not observing higher intensity rains along the immediate coastline). There were 

quarter-hour stations in these areas, but the current observation period of those stations was 

small. Therefore, they did not pass screening under any of the evaluated conditions. Over 
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time these stations will have stronger recording lengths, and they will capture coastal 

summer precipitation better. Monthly mean EI values were reported in the appendix. 

 
Figure 3-4 Average EI Values from Mean Monthly EI for Winter 

 
Figure 3-5 Average EI Values from Mean Monthly EI for Spring 
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Figure 3-6 Average EI Values from Mean Monthly EI for Summer 

 
Figure 3-7 Average EI Values from Mean Monthly EI for Fall 
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3.4.2 Half-Month EI Distributions 

Another necessary benchmark for the variability study evaluates even higher temporal 

resolutions using a convention outlined in AH703. Each 15 day period during a calendar 

year was lumped together and EI was summed for each period each year over the entire 

span of observations. The distribution statistics of these periods were calculated for each 

station and subsequently grouped by climate division. This convention was followed for 

comparison purposes, but there is no need to continue reporting EI according to climate 

division in the future. These data were important for communicating the actual range of EI 

values as opposed to averages. Figure 3-8 shows these climate divisions.  

 
Figure 3-8 Climate Divisions Outlined by AH703 

 Figures 3-9, 3-10, 3-11, and 3-12 summarize the half-month distributions provided by 

AH703 for each climate division. Both the cumulative and fractional distribution of EI was 

presented. Figures 3-9 and 3-10 show these for the 120 climate divisions of the continental 

United States (CONUS) with an arithmetic mean of all climate divisions drawn in blue. 

Figures 3-11 and 3-12 do this for the Southeast and include the arithmetic national mean 

as well as the area-weighted mean for the Southeast alone (black). The impacts of the new 

methodology with small storms included, regression fitting of storm events and erosivity 

abandoned, etc. was pictured in Figures 3-13 and 3-14 with an area-weighted mean (red). 
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Figure 3-9 Half-Month Cumulative EI by Climate Division for CONUS (AH703) with National Avg. 

(Blue) 

  
Figure 3-10 Half-Month EI Distribution by Climate Division for CONUS (AH703) with National 

Avg. (Blue) 
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Figure 3-11 Half-Month Cumulative EI for the Southeast by Climate Division with Area-Weighted 

Avg. AH703 (Black) and National Avg. (Blue) 

  
Figure 3-12 Half-Month EI Distribution for the Southeast by Climate Division with Area-Weighted 

Avg. AH703 (Black) and National Avg. (Blue) 



 85  

 
Figure 3-13 Half-Month Cumulative EI for the Southeast by Climate Division with an Area-

Weighted Avg. for AH703 (Black) and for 25.10 Screened Stations (Red) 

  
Figure 3-14 Half-Month EI Distribution for the Southeast by Climate Division with an Area-

Weighted Avg. for AH703 (Black) and for 25.10 Screened Stations (Red) 
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It was expected that the variation of individual stations should decrease as pictured in 

Figures 3-11 and 3-12 due to more consistent EI patterns of the Southeast as compared to 

the rest of the nation. For the same area, probably a result of screening, the analysis was a 

much tighter fit along the weighted average than the analysis from AH703. A few things 

contributed to this including weaker data in AH703, densified spatial observations (more 

points of observation in a climate division for more consistent results), and lastly, the 

inclusion of small storms in the calculation of EI. The effect of small storms was most 

pronounced in Figure 3-14. The red line represented the general trend of new data as 

compared to AH703 in black. The most obvious change was the reduction of the peak in 

summer and the increase of EI values in the other three seasons. This was a graph of the 

fractional distribution of EI. If absolute values were presented (they were not since the 

focus of this section was on the actual distribution and timing of EI rather than the 

magnitude) one would notice that the inclusion of small storms—and the new methodology 

in general—increased EI estimations for all seasons. This was the primary reason for the 

monthly EI analysis, which does not need high temporal resolution, and was actually 

stronger for generalizing longer periods to better capture magnitude changes. However, 

this section seeks to understand the distribution of EI more than its magnitude. 

 From this analysis, it was still clear under the new methodology that summer and fall 

were the highest absolute periods of EI, but their relative difference was much reduced 

when a more accurate calculation of EI was utilized. It was likely that this dataset over-

exaggerated the effect of small storms since quarter-hour station data wrongly separates 

precipitation into too many storm events. Those smaller events (with roughly the same 

energy content) were multiplied by different maximum intensities (Chapter 2) which 

produced different EI values than would actually be expected for each storm. Chapter 2 

indicates this could shift 4-5% of EI values in those affected seasons by the measured 

difference in maximum intensity. This should be more than the observed difference in 

maximum intensity measurements reported by Hollinger et al. (2002), since these wrongly 

separated events (about 20% over a long period of time) were very small and maximum 

intensities could be quite different from the larger storm system from which they were 

separated. 
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3.4.3 ENSO and EI Magnitude 

The most anticipated result from this study was the ability to forecast EI values based on 

the phase of ENSO variation. Therefore this analysis attempted to quantify the impact of 

ENSO on median monthly EI values and identify any particular spatial patterns. Median 

monthly EI values were computed for all months—irrespective of which month—in order 

to obtain the median for all climate variability observations from this dataset. The process 

was repeated for each phase of ENSO (El Niño and La Niña) while ignoring the neutral 

phase (weak SST variations). The results of this were shown in Figures 3-15, 3-16, and 3-

17. All median values were determined using the longer station screening method (25.10). 

Relative differences for the respective ENSO phases were included in Figures 3-18 and 3-

19. It was clear that ENSO impacted the median monthly EI, and a more thorough analysis 

was included in Section 3.4.5 to determine the mechanisms behind it.  

 
Figure 3-15 Median Monthly EI for 25.10 Screened Data 
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Figure 3-16 El Niño Median Monthly EI for 25.10 Screened Data 

 
Figure 3-17 La Niña Median Monthly EI for 25.10 Screened Data 
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Figure 3-18 Relative Differences of El Niño from Normal Median Monthly EI 

 
Figure 3-19 Relative Differences of La Niña from Normal Median Monthly EI 
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In general, ENSO had the strongest effect on the Gulf and Atlantic Coasts. El Niño tended 

to increase EI, and La Niña tended to decrease EI. Slight opposite trends were observed in 

both El Niño and La Niña as distance from the coast increased. This may be influenced by 

few observations in Kentucky (3) and Virginia (5). What was important to note about these 

observations was the number of stations in the areas of interest. It was likely that there were 

decreases related to El Niño because scores of stations were located in the light green areas. 

La Niña only has 3 stations in areas of observed increase, and two were located in a 

particularly sparse distribution of observations. In summary, on the basis of median 

monthly EI, El Niño seems to polarize the EI values of the Southeast with higher EI 
associated with coastal rain and wind patterns of El Niño. La Niña, on the other hand 
cause a more even decrease of EI in all parts of the Southeast, still with areas along 
the coast affected the most. 

3.4.4 ENSO and EI Distribution 

The second analysis looked at the effect of ENSO on distribution. With an understanding 

of general impacts of ENSO on EI magnitude, it may be possible to determine if those 

magnitudes were simple increases and decreases or if they were accompanied by shifts in 

the timing of erosivity. To do this, the analysis in Section 3.4.3 was performed, but the 

month of the year was considered. This was done for every month of the year, but mapping 

this would be cumbersome, so mapped data was not provided for monthly results and 

seasonal results were presented in gridded format for better visualization. Also, to reduce 

the number of figures, only relative differences were included, while the absolute median 

monthly EI values for each season was included in the appendix. Figures 3-20, 3-21, 3-22, 

and 3-23 showed the relative difference of median monthly EI for each season for El Niño. 

Figures 3-24, 3-25, 3-26, and 3-27 corresponded to La Niña. 
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Figure 3-20 Relative Differences of Median Monthly EI from El Niño for Winter 

 
Figure 3-21 Relative Differences of Median Monthly EI from El Niño for Spring 
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Figure 3-22 Relative Differences of Median Monthly EI from El Niño for Summer 

 
Figure 3-23 Relative Differences of Median Monthly EI from El Niño for Fall 
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Figure 3-24 Relative Differences of Median Monthly EI from La Niña for Winter 

 
Figure 3-25 Relative Differences of Median Monthly EI from La Niña for Spring 
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Figure 3-26 Relative Differences of Median Monthly EI from La Niña for Summer 

 
Figure 3-27 Relative Differences of Median Monthly EI from La Niña for Fall 
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From all of the above figures, it was clear that distribution changes were varied, and 

although the cumulative effects will support the general observations from Section 3.4.3, 

the timing of EI throughout the year was changing. El Niño was causing tremendous 

increases in both winter and spring for Florida. The Atlantic Coast appears to have strong 

influences in winter and fall, but there were few stations in these areas of increase to 

support gridded findings. A particularly interesting finding was that strong decreases in 

spring EI was detected in most central areas of the Southeast even approaching the coast. 

A significant portion of spring rain for the Southeast was frontal in nature, and it was 

possible that El Niño driven wind patterns were changing where these fronts meet or at 

least changing the temperament of that physical interaction. La Niña, consistently 

suppressed EI values for most of Georgia and South Carolina, as well as for most seasons 

in North Carolina and lower portions of Louisiana. A very strong decrease was detected 

for the Atlantic Coast in fall, which could be related to hurricane related EI values. All 

coastal areas experienced significant decreases in winter and spring while inland areas 

experienced stronger erosivity. 

Differences within the seasonal EI distribution due to ENSO were evaluated for 

significance. This was presented as a lumped analysis in Section 3.4.3, but the variation 

within each season was considered for this analysis. The data was partitioned by season, 

then the JRFit analysis was performed using months as clusters. Clustered months meant 

that monthly EI values were used by this method to estimate median monthly EI under 

each phase of ENSO for each data partition and to determine the significance of the 

difference. To reduce the amount of data presented, only the p-values were reported for 

each individual station and the gridded p-values, which were used to determine spatially 

significant patterns as opposed to significance of ENSO for each station. Figures 3-28, 3-

29, 3-30, and 3-31 showed the p-values for each station and gridded areas that were 

significantly impacted. These figures indicated that only winter was approximated well by 

the lumped approach. Areas of red indicated no significant differences. Therefore, the 

means by which ENSO impacts spring, summer, and fall seasons were not consistent (for 

most stations) among its component months and may require additional analysis of each 

month to determine influences of ENSO on EI distribution for these period. Ultimately, 

this does not contradict the earlier findings of ENSO impacts on seasonal EI, but it does 
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mean that within that time period these results were highly varied. All seasons had some 

stations that experienced consistent, significant differences. 

 
Figure 3-28 JRFit Test Results for Winter (Clustered Months) 

 
Figure 3-29 JRFit Test Results for Spring (Clustered Months) 
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Figure 3-30 JRFit Test Results for Summer (Clustered Months) 

 
Figure 3-31 JRFit Test Results for Fall (Clustered Months) 
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3.4.5 ENSO and Precipitation Characteristics 

The final analysis evaluated the effect of ENSO on precipitation characteristics—the 

mechanisms that drive EI calculation. Identifying those mechanisms sensitive to ENSO 
which are driving EI fluctuations was the reason for this analysis. The characteristics 

tested include: number of events, precipitation depth, kinetic energy, EI, EI rate, mean 

depth, mean kinetic energy, mean EI, and median I30. Figures 3-32, 3-34, and 3-36 were 

provided for the most significant influences of ENSO for all precipitation characteristics. 

Figures 3-33, 3-35, and 3-37 demonstrate the impact of clustering seasons as opposed to 

months. Clustering seasons always produced higher p-values (less significant differences) 

since they sampled longer periods of time, which included a larger range of values for the 

tested parameter. This caused more overlapping values, and therefore, less confidence in 

the difference. This was the main reason for evaluating both the monthly and seasonal 

cluster effect on the analysis. 

 Figures 3-38, 3-39, 3-40, 3-41, 3-42, and 3-43 looked at a wider scope of potentially 

affected characteristics. One aspect of particular interest was not necessarily the sum total 

of depth, energy, or EI but rather the smaller increments in which these measures were 

observed—the storms themselves. It was evident that ENSO impacted the number of 

storms over which depth, energy, EI, etc. were observed. A few storm averaged parameters 

were analyzed—depth, energy, and EI—for changes with respect to the number of events 

observed. Perhaps more interesting than all the other results was the issue of energy and 

maximum intensity and their relationship to EI. ENSO had a strong influence on depth and 

energy, and this was confirmed mathematically since energy calculations, especially those 

based on the AH537 energy equation, were almost exclusively driven by the absolute depth 

of precipitation rather than intensity. This happened because the maximum impact of the 

intensity on energy was reached very quickly and raindrop size did not continue to increase 

beyond 3 inches hr-1. About 80% of this impact was reached before 1.2 inches hr-1 using 

the AH537 equation, and similar results would be obtained using any energy equation 

(McGregor et al., 1995). Small storm energies vary due to the observed lognormal rate of 

increase in energy with linearly increasing intensities. Therefore, depth—not intensity—

was a controlling factor of energy for moderate and large storms and ENSO effects 
on energy closely followed those on depth. 
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Figure 3-32 JRFit Test Results for ENSO Influence on Depth (Clustered Months) 

 
Figure 3-33 JRFit Test Results for ENSO Influence on Depth (Clustered Seasons) 
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Figure 3-34 JRFit Test Results for ENSO Influence on Energy (Clustered Months) 

 
Figure 3-35 JRFit Test Results for ENSO Influence on Energy (Clustered Seasons) 
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Figure 3-36 JRFit Test Results for ENSO Influence on EI (Clustered Months) 

 
Figure 3-37 JRFit Test Results for ENSO Influence on EI (Clustered Seasons) 
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Figure 3-38 JRFit Test Results for ENSO Influence on Number of Events 

 
Figure 3-39 JRFit Test Results for ENSO Influence on EI Rate 
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Figure 3-40 JRFit Test Results for ENSO Influence on Mean Depth 

 
Figure 3-41 JRFit Test Results for ENSO Influence on Mean Energy 
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Figure 3-42 JRFit Test Results for ENSO Influence on Median I30 for Storms Greater than 1.0 Inch 

 
Figure 3-43 JRFit Test Results for ENSO Influence on Mean EI 
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3.5 Conclusions 
Two key measures for climate variability studies were benchmarked including monthly EI 

magnitudes and their distribution. I reiterate the significance of unadjusted monthly EI 

values capable of producing erosivity values comparable if not superior to reliable 

observations (Chapter 2; McGregor et al., 1980 and 1995). Benchmarked EI distribution 

included omitted small storms that contributed significantly to EI for this methodology and 

dataset. Although these storms may not contribute more than a few percentage points to 

annual EI observed by breakpoint stations (McGregor et al., 1995), quarter-hour stations 

wrongly produced too many of these storms—accounting for about 8.7% of all erosivity, 

which was more than McGregor’s observation of about 3.5%. Even if the percentage were 

lower than this, these storms would still need to be included, since they were not evenly 

distributed throughout the year, and most storms occurred in seasons of relatively low 

erosivity. Therefore, the relative impact of these small storms is significant for variability 

studies such as this one. The completion of these benchmarking exercises provided 

trustworthy results for variability studies and analyses, especially since some have 
raised concerns regarding quarter-hour station data and its quality. 
 Five variability components of EI were studied including two intra-annual components 

with results presented in Sections 3.4.1 and 3.4.2 and three inter-annual variability analyses 

related to ENSO. The latter included ENSO effects on EI magnitude (strength of change), 

EI distribution (timing of EI throughout the year), and the characteristics of precipitation 

(mechanisms behind erosivity). In general, intra-annual EI was very consistent, and even 

amidst a highly varying climate, these patterns were easily recognized. Summer, continued 

to be the period of the highest EI values across all southeastern states, and winter continued 

to be the lowest. This was true regardless of how strong ENSO has been and whether or 

not it was an El Niño or La Niña phase. However, especially after the inclusion of small 

events, the margins between these two can be highly affected by ENSO for specific regions, 

namely coastal areas. El Niño winters and springs can see anywhere from 20% to 80% 

increases in Florida, and La Niña seasons anywhere along the coast can expect significant 

decreases -20% to -60% for median monthly EI values in those periods. These findings 

supported the conclusion that ENSO had a noticeable effect on both the magnitude 
and distribution of EI throughout the year. 
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 Observed differences from ENSO variability was then tested using the powerful 

statistical test, JRFit, to determine the most significant influences of ENSO on erosivity 

mechanisms. ENSO-driven precipitation qualities were felt most strongly along the Gulf 

and Atlantic Coast and as far inland as parts of Kentucky and Virginia. Characteristics 

which were most highly impacted included depth, energy, and EI. Only a few stations were 

found to have significant differences in I30 and EI rate (normalized for depth), which 

indicates that ENSO may not be totally responsible for variations in EI. This creates the 

need for a study of a mid-term variability study such as AMO and PDO/PMO.  
The most practical outcome of this study is the implication of climate variability on 

BMPs related to soil conservation. The critical considerations to give regarding these 

implications include a) changes in average erosivity over a period of time b) changes in 

extreme erosivity over a short time or single event and c) changes in timing of erosivity. 

Both ‘a’ and ‘b’ should be considered particularly regarding sedimentation in water bodies. 

El Niño increased the median monthly EI for most locations across the Southeast and 

impacted different areas differently in each season of the year (La Niña generally had the 

reverse effect). Therefore BMPs aiming to meet specific targets within any given year 

should consider the ENSO phase in order to meet that target over a long period of time. 

ENSO was determined to have a strong effect on mean storm EI primarily in some stations 

across Florida, Georgia, South Carolina, and Kentucky. Therefore, BMPs related to 

maximum event tolerances should incorporate ENSO differences for those cases. This may 

be most important for easily eroded soils in these areas in which larger storms could cause 

mass wasting events. In order to determine this, more research should be directed at 

determining EI thresholds above which this occurs. Lastly, the type ‘c’ impact on BMPs is 

of the greatest concern and has the potential to impact soil conservation most. Since ENSO 

was shown to have a strong impact on the timing of EI throughout the year, agricultural 

operations (tilling, planting, harvest, residue cover, crop type, rotation, etc.) should 

incorporate ENSO prediction components for maximum effect. The results of this 

variability study indicate that significant improvements in soil conservation may be 
achieved with the incorporation of ENSO-driven prediction of erosivity in the 
Southeast (and eventually prediction of other variability cycles and climate change) 
and the implementation of corresponding BMPs. 
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4.1 Objective Summary 
A brief summary of each objective outlined in Section 1.2.1 is included below. For more 

information regarding each of the first two objectives, reference the conclusion sections of 

Chapters 2 and 3. 

 

First Objective: 
The first objective sought to determine the change in EI or erosivity with respect to a) 

methodology and b) climate change. I successfully determined the total change in EI from 

previously published values, but I was not able to separate (with confidence) how much of 

this can be attributed to either ‘a’ or ‘b’. Significant progress was made toward this goal, 

which requires reliable erosion indices for future studies to determine these impacts. The 

EI values provided by the new methodology and dataset are consistent with McGregor et 

al. (1995), which provided reliable erosion indices for northern Mississippi. 

 

Significant Findings: 

x Screening drastically improved: water balance, metadata, and EI calculation (data 

quality assurance) for quarter-hour station data 

x Annual EI was significantly higher than Ag. Handbook isoerodent maps 

x Storm EI did not change significantly on a regional scale 

x The Atlantic Coast experienced significant changes across both measures 

 

Potential Leads: 

x Storm EI may be driven by variability (location, timing, and magnitude) 

x Storm EI may need to consider anomalies for accurate assessment 

x Changes in the Atlantic Coast may be a direct reflection of AMO phase changes 

 

Second Objective: 
The second objective sought to determine changes in EI related to intra-annual and inter-

annual variability, namely that resulting from ENSO. This objective also prepares for mid 

to long-term variability studies, but they are not evaluated in this thesis. I successfully 

determined that ENSO had a strong effect on nearly all aspects of EI (some more strong 
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than others) and quantified how much of an impact for various measures. I subsequently 

investigated the mechanisms by which this may have occurred, in order to gain a deeper 

understanding of ENSO impacts. 

 

Significant Findings: 

x Unadjusted mean monthly EI of longer observation periods (from 25.10 screened 

data) accurately approximated annual EI without filling gaps 

x ENSO impacted the magnitude of monthly EI, the distribution of EI throughout the 

year, and the mechanisms behind EI (mainly depth and energy) 

x ENSO most significantly impacted the Gulf and Atlantic Coasts 

x Depth not intensity controlled energy of moderate and large storms 

 

Potential Leads: 

x Variability may need to consider combined effects (e.g. ENSO and AMO) 

x AMO may impact maximum intensity more than ENSO 

x Supplemental data may be required for mid to long-term variability analysis 

 

Third Objective: 
The last objective seeks to identify observed and predicted climate change impacts on 

erosivity and could not be completed for this thesis. This objective is included because it 

is the primary motivation for all other objectives and analyses. The groundwork has been 

laid for a successful result regarding this objective. Still there are a few pieces that must be 

studied first including the remaining variability oscillations, which could confuse climate 

change analysis. Once variability impacts have been assessed, the observed differences can 

be used to deconstruct oscillations for a better picture of climate change impacts on 

erosivity. Prediction methods can then be trained with the observed climate change signal 

and modeled historical data to predict erosivity from modeled future data. 

4.1.1 Methodological Changes and Impacts 

I managed to make significant improvements on quarter-hour station data quality assurance 

largely due to the implementation of station screening in conjunction with a water balance 
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analysis. This was the foundation for any advances in erosivity calculations. In bulleted 

form, these were the improvements that enabled better EI values or a deeper understanding 

of EI values resulting from quarter-hour station data: 

 

x Reduced missing data from 21.6% to 5.3% (arithmetic mean of station metadata) 

x Informed screening method selection with water balance (observed vs. normal) 

x Quantified water deficit for roughly 2/3 of stations averaging -5.9% (gridded) 

x Densified spatial resolution of stations used to calculate erosivity (3x AH703) 

x Abandoned regression analysis of EI used by Ag. Handbooks 

x Included all storms regardless of depth or intensity (more important for this data) 

x Provided EI values from both limited and unlimited maximum intensities 

 

These changes resulted in drastic improvements to EI values in the Southeast. These 

improvements will likely follow for the eastern United States and potentially even in 

western states given improvements in the observed data record. EI values were consistent 

with observations made by McGregor with superior data from 29 breakpoint stations. 

Calculations followed closely on a year-by-year and average annual basis for all statistics. 

Almost all calculations were within standard deviations for the 29 stations, despite the fact 

that our station was not located within the same local watershed. 

These methodological changes were further applied to benchmarking for the purpose 

of climate variability studies. The most critical component of these studies was the 

‘monthly EI’ construct, which was used to determine median values over long periods of 

time for shorter observation periods. Relatively small errors in these values could have 

widespread impact on all aspects of the overall goal of intelligent conservation (guided by 

climate studies that depend on testing those values throughout the study area), so much 

care must be given to the correct preparation and calculation of the median monthly EI. 

One must take into account the shorter observations of positive and negative variability 

states of the climate, so I use a longer minimum observation period as well as more 

powerful statistical tests to arrive at correct interpretations. I suggest that others follow this 

methodology to obtain better EI calculations for climate studies, which may enable erosion 

prediction technology to change from ‘reactive’ to ‘proactive’ soil conservation. 
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4.1.2 Concluding Statement 

Since 1880, Earth has experienced a globally averaged increase in temperature of 0.8 K 

with two-thirds of this occurring since 1975 (NASA, Earth Observatory). Climate change 

projections range from a 1.1 to 5.4 K increase in globally averaged temperature by the year 

2100, and these projections were highly influenced by the concentration of GHGs in the 

atmosphere resulting from human decisions (NOAA, Climate.gov). Using these values for 

the present day in conjunction with theoretical average values of 7% change in intensity 

and 2% change in precipitation depth K-1. If these rates of change were reliable, then the 

globally averaged potential for climate change would look something like Table 4-1 for 

potential changes since 1880 and Table 4-2 for potential changes relative to today. 

Regional changes can fall below or exceed these theoretical global average changes. 

 

Assumptions: 

x Results are globally averaged (regional and local values will vary significantly) 

x Depth controls kinetic energy (true for moderate to large storms) 

x Latent heat feedbacks are not considered (does occur in reality) 

 
Table 4-1 Theoretical Climate Change Impacts on Erosivity Since 1880 

 
 

Table 4-2 Theoretical Climate Change Impacts on Erosivity Relative to Today 

 

Year
Temperature 

(K)
Precipitation 

(%)
Intensity       

(%)
Erosivity        

(%)
1880 0.00 0.0% 0.0% 0.0%

1975 0.27 0.5% 1.9% 2.4%

2016 0.80 1.6% 5.6% 7.3%

2100 1.90 3.8% 13.3% 17.6%

2100 6.20 12.4% 43.4% 61.2%

POTENTIAL CHANGE SINCE 1880

Note: Values are globally averaged.

Year
Temperature 

(K)
Precipitation 

(%)
Intensity       

(%)
Erosivity        

(%)
1880 -0.80 -1.6% -5.6% -7.1%

1975 -0.53 -1.1% -3.7% -4.8%

2016 0.00 0.0% 0.0% 0.0%

2100 1.10 2.2% 7.7% 10.1%

2100 5.40 10.8% 37.8% 52.7%

POTENTIAL CHANGE IN TODAY'S TERMS

Note: Values are globally averaged.
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These theoretical changes range widely based on forcing scenarios meaning that much of 

the change is still preventable, but these values also outline (based on current literature) 

what potential change may accompany varying temperature increases. For reference, the 

recent agreement in Paris has pledged to hold temperature changes below 2 °C, which 

corresponds to the lower bound of the year 2100 value. Many climate scientists predict that 

this is the path that the global society is currently following. If this is indeed the case, and 

if these theoretical values are correct, it seems that climate change will be responsible for 

about 17-18% of the change in globally averaged erosivity since 1880. Since regional 

values can exceed this average value, it follows that there should be some investigation 

into where precipitation bands could cause significant changes in erosivity. Ultimately, the 

research I am conducting aims to specify these areas for the United States, from which 

conclusions may can be applied to estimate these areas in other parts of the world. Although 

in the long-term climate change will outweigh climate variability impacts on erosivity, the 

short-term changes are highly dominated by variability. It is also important to note that 

there is uncertainty regarding whether the amplitude of these oscillations will continue to 

increase with climate change or not. It is essential for the future of soil conservation that 

research efforts, such as those documented in this thesis, aim to transform erosion 
prediction technology into tools for intelligent (climate-informed) conservation in 
order to anticipate our dynamic climate. 
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4.2 Future Work 
As I progressed through the study, there were multiple changes I would have liked to 

incorporate into the final analysis. However, for practicality and the timeliness of 

completion, these changes were only mentioned here for future studies that intend to 

improve upon these analyses. Therefore, this section documents how I would have changed 

the study knowing what I know now and includes my short to mid-term research plans in 

regards to the study topic. 

4.2.1 Immediate Updates 

These are changes that will be incorporated immediately following the publication of this 

thesis and will render these chapters ready for publication in academic journals. 

x Calculate accumulation EI considering all SCS type storms—accumulation EI 

values were calculated using only the SCS type II storm since most of the study 

area is of that type storm. This will be a necessary change going forward with EI 

estimation for the continental United States, where storm type would play a much 

more significant role in these calculations. 

x Reduce missing and deleted periods for intermediate years that did not pass 
screening—missing and deleted periods were calculated as a percent of total station 

operation period, but they do not account for years between the start and end dates 

that would be removed by screening. A simple edit will slightly improve these 

values to reflect the actual percent missing and deleted. 

x Calculate EI using the superior Brown-Foster (BF) or McGregor-Mutchler 
(MM) energy equation—both AH703 and McGregor recommend using the BF 

energy equation since it is a better fit for US rainfall data. The primary impact this 

will have on calculations is that the energy component of storms could vary for 

small and large storm intensities. 

x Calculate cumulative and fractional EI distributions for phases of ENSO—

ENSO was found to significantly impact the timing of EI throughout the year. 

Including this small improvement would communicate shifts in EI according to 

ENSO much more effectively than maps, which are strong for spatial variation and 

not necessarily temporal variation. 
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x Perform PCA analysis for other clusters in variability analysis—ENSO was not 

evaluated for effects on different types of storms (long vs. short duration, high vs. 

low intensity, large vs. small depths, etc.). These types of analyses would help to 

communicated changes in average and extreme precipitation. This could potentially 

decrease the sample size of observations for particular storm types, and may require 

some sort of climate division analysis, where data for an entire area is analyzed as 

opposed to a single station. 

x Update methodology for sufficient performance in western states—the current 

methodology works well for the Southeast, but screening and accumulation 

methods may not perform as well in areas outside the Southeast, especially in low 

precipitation states in the western United States. Incorporating this would prepare 

for an eventual expansion of the analysis to western states. 

4.2.2 Near-Term Work 

The data used for this study included observations that were split almost evenly between a 

strong negative and a strong positive AMO (almost a full cycle with inversion occurring in 

1995). This formulates a strong argument for studying the AMO variability cycle and 

potentially others too. Using this new found knowledge observed oscillations could be 

deconstructed to make a statement about climate change as it pertains to erosivity. Finally, 

with all observed changes identified, future climate projections could be used to predict the 

future climate change impacts on erosivity. These next steps outline the research plan 

necessary to successfully complete the third objective of predicting EI under a changing 

climate regime. 

x Perform other variability analyses—currently the study only evaluated ENSO 

for impacts on erosivity. Expanding the analysis to other variability cycles (and 

looking at combined effects) will significantly improve our understanding of the 

role of climate variability in erosivity 

x Deconstruct variability oscillations—variability oscillations make interpretation 

of climate change difficult. For example, quarter-hour station data was observed 

beginning with –AMO and ending with +AMO. If a trend analysis were performed 

on this data without processing, it is likely that the trend (for the Southeast) would 
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overestimate the change due to the coincidence of observations. Since the 

observation period is short relative to the number of cycles in the data, the 

oscillations will need to be accounted for in the data before trend analysis can 

accurately capture the observed change. 

x Evaluate observed climate change impacts on erosivity—once oscillations have 

been deconstructed, the observed impact of climate change on erosivity should be 

communicated for further analysis. 

x Prepare climate change-erosivity signal—in order to move from observed 

change to predicted change it is critical to establish a strong signal for the prediction 

method to detect. This will take a significant effort to ensure that training targets 

and input data are as true to the relationship as possible. 

x Predict erosivity using an artificial neural network—using the training targets 

and change signal from observed climate change impacts on erosivity and modeled 

historical and projected data, an artificial neural network will be trained for 

predicting EI. These predictions will be computed for many models, potentially 

including downscaling, bias correction, and uncertainty analysis. 
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Figure 3 Distribution of Missing Percentages for the 20.10 Screening Method 

 
Figure 4 Distribution of Missing Percentages for the 20.11 Screening Method 
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Figure 5 Distribution of Deleted Percentages for the 20.10 Screening Method 

 
Figure 6 Distribution of Deleted Percentages for the 20.11 Screening Method 
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Figure 7 Total Missing and Deleted Percentage for the 20.10 Screening Method 

 
Figure 8 Total Missing and Deleted Percentage for the 20.11 Screening Method 
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Figure 9 Absolute Difference from Normal Precip. for the 20.10 Screening Method 
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Figure 11 Relative Difference from Normal Precip. for the 20.10 Screening Method 

 
Figure 12 Relative Difference from Normal Precip. for the 20.11 Screening Method 
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Figure 13 Absolute Difference for the 20.10 Screening Method with Accumulations 

 
Figure 14 Absolute Difference for the 20.11 Screening Method with Accumulations 
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Figure 15 Relative Difference for the 20.10 Screening Method with Accumulations 
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Table 1 Generalized Water Balance Statistics for All Station Screening Methods 

 
 

Table 2 Comparison of Deficits to Station Metadata for All Screening Methods 

 

- + - + - +

20.10 -8.03 -6.15 -8.19 -6.09 3.96 4.15 280
20.11 -7.21 -5.43 -7.59 -5.86 4.11 4.15 172
25.10 -7.55 -5.56 -7.96 -5.44 3.46 3.54 167
25.11 -6.78 -5.11 -6.25 -4.84 3.48 3.49 78
30.10 -6.62 -4.81 -6.57 -4.67 3.06 3.07 68
20.12 -5.64 -4.60 -5.63 -3.81 3.65 3.80 31
30.11 -6.50 -4.93 -6.74 -4.70 2.91 3.00 22

Notes: (+/-) Headers Denote with and without Accumulations. Statistics are Calculated for All Stations in 
the Water Balance (Screened Stations that have Matching Climate Data for the Same Period). Negative 
Results Indicate a Deficit for the Period, and Positive Results Indicate a Surplus.

SCREENING 

METHOD ID

NUMBER OF 

STATIONS

MEAN % MEDIAN % STANDARD DEV. %

Relative Difference in Avg. Annual Precip. and Normal Annual Precip.

- + - + - +

20.10 -1.76 0.12 -0.02 1.86 6.25 8.13 280
20.11 -1.85 -0.07 -0.28 1.50 5.08 6.86 172
25.10 -2.15 -0.16 -0.74 1.26 4.66 6.66 167
25.11 -2.80 -1.13 -1.77 -0.10 2.21 3.88 78
30.10 -2.69 -0.87 -1.66 0.16 2.27 4.09 68
20.12 -2.60 -1.57 -1.50 -0.47 1.53 2.57 31
30.11 -3.51 -1.93 -2.24 -0.67 0.75 2.33 22

Notes: (+/-) Headers Denote with and without Accumulations. Statistics are Calculated for All Stations in 
the Water Balance (Screened Stations that have Matching Climate Data for the Same Period). Negative 
Results Indicate a Deficit for the Period, and Positive Results Indicate a Surplus.

MEAN DELETED MEAN TOTALSCREENING 

METHOD ID

NUMBER OF 

STATIONS

Comparison of Water Deficits to Missing, Deleted, and Total Absent Data
MEAN MISSING
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Figure 3 Absolute Difference of AH537 (Baseline) and AH703 
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Figure 5 R-Factor Calculated from Unscreened Stations (I30 Not Limited) 
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Figure 7 R-Factor Calculated from 20.11 Screened Stations (I30 Not Limited) 

 
Figure 8 R-Factor Calculated from Screened Stations (I30 Limited—Prefered Method) 



 C-5 

 
Figure 9 Absolute Difference from AH537 Using Prefered Method 

 
Figure 10 Relative Difference from AH537 Using Prefered Method 
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Figure 11 R-Factor Calculated with I30 Adjusted +4% to Mimic Breakpoint Data 
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Figure 13 R-Factor Calculated with I30 and Deleted Percentage Adjustment 
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Figure 15 Absolute Difference from AH537 Using Adjusted Data (All) 
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Figure 3 Single Storm EI (2YR RP) Calculated from Screened Stations (I30 Unlimited) 

 
Figure 4 Single Storm EI (2YR RP) Calculated from Screened Stations (I30 Limited) 



 D-3 

 
Figure 5 Single Storm EI (5YR RP) Calculated from Screened Stations (I30 Unlimited) 
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Figure 7 Single Storm EI (10YR RP) Calculated from Screened Stations (I30 Unlimited) 
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Figure 9 Single Storm EI (20YR RP) Calculated from Screened Stations (I30 Unlimited) 

 
Figure 10 Single Storm EI (20YR RP) Calculated from Screened Stations (I30 Limited) 
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Figure 11 Single Storm EI (10YR RP) without Log-Transformation 

 
Figure 12 Single Storm EI (10YR RP) from AH537 and AH703 
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Figure 13 Absolute Difference from AH703 (10YR RP) for I30 Limited Data 
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Figure 15 Absolute Difference from AH703 (10YR RP) for I30 Unlimited Data 

 
Figure 16 Relative Difference from AH703 (10YR RP) for I30 Unlimited Data 



 E-0 

Appendix E 
 
 

Figure 1 Mean EI for January ............................................................................................. 1 

Figure 2 Mean EI for February ........................................................................................... 1 

Figure 3 Mean EI for March ............................................................................................... 2 

Figure 4 Mean EI for April ................................................................................................. 2 

Figure 5 Mean EI for May .................................................................................................. 3 

Figure 6 Mean EI for June .................................................................................................. 3 

Figure 7 Mean EI for July ................................................................................................... 4 

Figure 8 Mean EI for August .............................................................................................. 4 

Figure 9 Mean EI for September ........................................................................................ 5 

Figure 10 Mean EI for October ........................................................................................... 5 

Figure 11 Mean EI for November ....................................................................................... 6 

Figure 12 Mean EI for December ....................................................................................... 6 

Figure 13 Mean EI for Winter ............................................................................................ 7 

Figure 14 Mean EI for Spring ............................................................................................. 7 

Figure 15 Mean EI for Summer .......................................................................................... 8 

Figure 16 Mean EI for Fall ................................................................................................. 8 

 

 

 

 



 E-1 

 
Figure 1 Mean EI for January  

 
Figure 2 Mean EI for February 



 E-2 

 
Figure 3 Mean EI for March 

 
Figure 4 Mean EI for April 



 E-3 

 
Figure 5 Mean EI for May 
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Figure 7 Mean EI for July 
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Figure 9 Mean EI for September 
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Figure 11 Mean EI for November  
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Figure 13 Mean EI for Winter  
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Figure 15 Mean EI for Summer  
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Figure 1 Median Monthly EI 
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Figure 2 El Nino Median Monthly EI 

 
Figure 3 La Nina Median Monthly EI 
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Figure 4 Relative Difference of Normal and El Nino 

 
Figure 5 Relative Difference of Normal and La Nina 
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Figure 6 Winter Median Monthly EI 

 
Figure 7 Spring Median Monthly EI 
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Figure 8 Summer Median Monthly EI 

 
Figure 9 Fall Median Monthly EI 
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Figure 10 El Nino Winter Median Monthly EI 

 
Figure 11 El Nino Spring Median Monthly EI 
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Figure 12 El Nino Summer Median Monthly EI 

 
Figure 13 El Nino Fall Median Monthly EI 
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Figure 14 Relative Difference in Normal and El Nino Winter Median Monthly EI 

 
Figure 15 Relative Difference in Normal and El Nino Spring Median Monthly EI 
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Figure 16 Relative Difference in Normal and El Nino Summer Median Monthly EI 

 
Figure 17 Relative Difference in Normal and El Nino Fall Median Monthly EI 
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Figure 18 La Nina Winter Median Monthly EI 

 
Figure 19 La Nina Spring Median Monthly EI 
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Figure 20 La Nina Summer Median Monthly EI 

 
Figure 21 La Nina Fall Median Monthly EI 
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Figure 22 Relative Difference in Normal and La Nina Winter Median Monthly EI 

 
Figure 23 Relative Difference in Normal and La Nina Spring Median Monthly EI 
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Figure 24 Relative Difference in Normal and La Nina Summer Median Monthly EI 

 
Figure 25 Relative Difference in Normal and La Nina Fall Median Monthly EI 
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Figure 26 JRFit Test for Significance of ENSO in Winter (Clustered Months) 

 
Figure 27 JRFit Test for Significance of ENSO in Spring (Clustered Months) 
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Figure 28 JRFit Test for Significance of ENSO in Summer (Clustered Months) 

 
Figure 29 JRFit Test for Significance of ENSO in Fall (Clustered Months) 
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Figure 30 JRFit Test for Significance of ENSO on Number of Events 

 
Figure 31 JRFit Test for Significance of ENSO on Depth 
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Figure 32 JRFit Test for Significance of ENSO on Kinetic Energy 

 
Figure 33 JRFit Test for Significance of ENSO on Erosion Index  
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Figure 34 JRFit Test for Significance of ENSO on Mean Depth 

 
Figure 35 JRFit Test for Significance of ENSO on Mean Kinetic Energy 
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Figure 36 JRFit Test for Significance of ENSO on Mean Erosion Index 

 
Figure 37 JRFit Test for Significance of ENSO on EI Rate 
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Figure 38 JRFit Test for Significance of ENSO on Median I30 (All Storms) 

 
Figure 39 JRFit Test for Significance of ENSO on Median I30 (Greater than 0.5 Inches) 
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Figure 40 JRFit Test for Significance of ENSO on Median I30 (Greater than 1.0 Inch) 


