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Abstract

In the 1950s, G. G Lorentz introduced the spaces Λ(α) and M(α), for 0 < α < 1

and showed that the dual of Λ(α) is equivalent to M(α) in his paper titled ’Some New

Functional Spaces’ (see [10]). Indeed, Lorentz mentioned that for the excluded value

α = 1, the space Λ(1) is L1 and M(1) is L∞. In 2010, De Souza [4] motivated by a

theorem by Guido Weiss and Elias Stein on operators acting on Λ(α), showed that there

is a simple characterization for the space Λ(α) for 0 < α < 1. The theorem by Stein

and Weiss is an immediate consequence of the new characterization by De Souza. In this

work, we seek to investigate the decomposition of L1 which is the case α = 1, and also

extend the result to the well-known Lorentz-Bochner space LX(p, 1) for p ≥ 1, and X is

a Banach space, that is, the Lorentz space of vector-valued functions. As a by product,

we will use these new characterizations to study some operators defined on these spaces

into some well-known Banach spaces.
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Chapter 1

Introduction

1.1 Background

The Lorentz spaces, denoted Lp,q, were introduced by G. G Lorentz in the 1950s and

they are generalizations of the traditional Lebesgue Lp spaces. These Lorentz spaces

has been studied and generalized in many aspects by some authors. Examples of such

generalizations include the (weighted) Lorentz-Orlicz Spaces (see [18, 19, 20]), Lorentz-

Bochner Spaces (see [23]), Lorentz-Karamata Spaces (see [25]) and Lorentz Spaces with

variable exponents (see [26]). For the purpose of this work, we will restrict ourselves to

a special case of the Lorentz and Lorentz-Bochner Spaces.

We recall a few basic definitions, properties and notations. Throughout this work,

(T,M, µ) denotes a finite, complete, nonatomic measure space.

Definition 1.1. Let f be a real-valued measurable function defined on T . The distribution

function of f is the function µf : [0,∞)→ [0,∞) defined by

µf (α) = µ({x ∈ T : |f(x)| > α}), for α ∈ [0,∞).

Example 1.1. For any given measurable set A ∈M, the distribution function of f = χA

is given by µf (α) = µ(A)χ[0,1)(α). Indeed, we can easily verify that if f is nonnegative

simple function, that is,

f(x) =
n∑
j=1

ajχAj(x)
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where the sets Aj are pairwise disjoint and a1 > a2 > · · · > an > 0 then we have that

µf (α) =
n∑
j=0

bjχ[aj+1,aj)(α)

where bj =

j∑
k=1

µ(Ak), for j = 1, · · · , n, b0 = 0 and a0 =∞.

For more information about the distribution function, we refer the reader to [9].

Definition 1.2. Let f be a real-valued measurable function defined on T . The decreasing

rearrangement of f is the function f ∗ defined on [0,∞) by;

f ∗(t) = inf{α ≥ 0 : µf (α) ≤ t}

Remark 1.1. f ∗ is a decreasing function supported in [0, µ(T )].

Example 1.2. The decreasing rearrangement of f = χA is f ∗(t) = χ[0,µ(A))(t)

The following are some useful properties of the decreasing rearrangement for which the

details and other properties can be found in [9].

Proposition 1.1. For any measurable function f , we have

(1) f ∗(µf (α)) ≤ α whenever α > 0.

(2) µf (f
∗(t)) ≤ t, for all t ≥ 0.

(3) f ∗ is right continuous on [0,∞). That is, lim
t→a+

f ∗(t) = f ∗(a), for any a ∈ [0,∞).

(4) t ≤ µ({x ∈ T : |f(x)| ≥ f ∗(t)}), since µ(T ) <∞.

(5) ‖f‖L∞ = f ∗(0).
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Proposition 1.2. For any A ∈M and any measurable function f , we have

(fχA)∗(t) ≤ f ∗(t)χ[0,µ(A))(t), for all t ∈ [0,∞).

Proof. Given λ > 0, we have that µf (λ) = µ({x ∈ T : |f(x)| > λ}). Thus, for A ∈M,

µfχA(λ) = µ({x ∈ T : |(fχA)(x)| > λ})

= µ({x ∈ A : |f(x)| > λ})

≤ µ({x ∈ T : |f(x)| > λ}) = µf (λ)

That is, µfχA(λ) ≤ µf (λ). Hence, for t ≥ 0 we have that

C := {λ > 0 : µf (λ) ≤ t} ⊆ {λ > 0 : µfχA(λ) ≤ t} =: D.

So, (fχA)∗(t) = inf D ≤ inf C = f ∗(t). That is, (fχA)∗(t) ≤ f ∗(t), for t ≥ 0. Now for

t ≥ µ(A), we have that given λ > 0, µfχA(λ) ≤ µ(A) ≤ t. That is, µfχA(λ) ≤ t, for all

λ > 0. Hence, (fχA)∗(t) = 0, for t ≥ µ(A) and thus,

(fχA)∗(t) ≤ f ∗(t)χ[0,µ(A))(t), for all t ∈ [0,∞).

Proposition 1.3. For any a ∈ (0,∞), and measurable function f , there exist a measur-

able set Ã ∈M such that µ(Ã) = a and

(fχÃ)∗(t) = f ∗(t)χ[0,a)(t), for all t ∈ [0,∞).
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Proof. Let A1 = {x ∈ T : |f(x)| > f ∗(a)} and A2 = {x ∈ T : |f(x)| ≥ f ∗(a)}. We have,

A1 ⊆ A2 and by (2) and (4) of Proposition 1.1, it follows that

µ(A1) = µf (f
∗(a)) ≤ a ≤ µ(A2).

That is, µ(A1) ≤ a ≤ µ(A2). By the property of nonatomic measures, choose Ã ∈ M

such that A1 ⊆ Ã ⊆ A2 and µ(Ã) = a. We claim that (fχÃ)∗(t) = f ∗(t)χ[0,a), for t ≥ 0.

To see this, first we observe that (fχÃ)∗(t) ≤ f ∗(t)χ[0,a) by Proposition 1.2. To get the

reverse inequality, let t < a and note that f ∗(a) ≤ f ∗(t). Thus, if f ∗(t) ≤ λ then

f ∗(a) ≤ λ. Moreover, for λ > 0 with f ∗(a) ≤ λ, we have

µf (λ) = µ({x ∈ T : |f(x)| > λ})

= µ({x ∈ Ã : |f(x)| > λ}) + µ({x ∈ Ãc : |f(x)| > λ})

= µ({x ∈ Ã : |f(x)| > λ}), since Ãc ⊆ Ac1

= µfχÃ(λ)

That is, µf (λ) = µfχÃ(λ), for λ > 0 with f ∗(a) ≤ λ. Now, since f ∗(a) < |fχA1| ≤ |fχÃ|,

we have that f ∗(a) ≤ (fχÃ)∗(t). Take λ = (fχÃ)∗(t). By the above, we have that

µf ((fχÃ)∗(t)) = µfχÃ((fχÃ)∗(t)) ≤ t, by (2) of Proposition 1.1. That is, µf ((fχÃ)∗(t)) ≤

t and so f ∗(t) ≤ f ∗(µf ((fχÃ)∗(t))) ≤ (fχÃ)∗(t), by (4) of Proposition 1.1. Thus, f ∗(t) ≤

(fχÃ)∗(t), for t < a. Hence,

(fχÃ)∗(t) = f ∗(t)χ[0,a)(t), for all t ∈ [0,∞).
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The following is the definition of the Lorentz spaces.

Definition 1.3. Given a measurable function f defined on T and 0 < p, q ≤ ∞, define

‖f‖L(p,q) =


(
q

p

∫ ∞
0

(
f ∗(t)t

1
p

)q
dt

t

)1/q

q ∈ (0,∞)

sup
t≥0

t1/pf ∗(t) q =∞

The Lorentz space with indices p and q, denoted by L(p, q) or Lp,q, is the set of all

measurable functions f for which ‖f‖L(p,q) <∞.

Remark 1.2. For 0 < p, q ≤ ∞, the Lorentz space L(p, q) is a quasi-Banach space. The

special case with p = q, L(p, p) = Lp, the Lebesgue space. The case q = ∞, the Lorentz

space L(p,∞) is the same as the weak Lp spaces.

Of particular importance for this work is the case q = 1 and 1 ≤ p <∞. That is;

L(p, 1) =

{
f : T → R : ‖f‖L(p,1) =

1

p

∫ ∞
0

f ∗(t)t
1
p
−1dt <∞

}
for 1 ≤ p <∞

Remark 1.3. The space L(p, 1) is the space introduced in [10] by G. G Lorentz and

denoted Λ(α) with α replaced by 1/p. The case α = 1 gives the space of integrable

functions. That is, L(1, 1) = L1. G. G Lorentz also showed in his paper that the dual

space (i.e, the space of all bounded linear functionals) of L(p, 1) is equivalent to the space

M(1/p) defined as follows;

M(1/p) =

{
g : T → R : ‖g‖M(1/p) = sup

µ(A)6=0

1

µ(A)1/p

∫
A

|g(t)|dµ(t) <∞

}

for 1 < p < ∞. It can also be easily verified that the space M(1/p) is equivalent to the

Lorentz space L(p′,∞) where
1

p
+

1

p′
= 1, that is, p′ =

p

p− 1
.
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The following is a recall of the definition of bounded (continuous) linear operators.

Definition 1.4. Given two normed linear spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ), the map

T : X → Y is said to be a bounded linear operator if and only if

(1) T (αx+ βy) = αT (x) + βT (y), for all x, y ∈ X and α, β ∈ R, and

(2) ‖T (x)‖Y ≤M‖x‖X , for all x ∈ X and some M ≥ 0.

We define the space L(X, Y ) by L(X, Y ) = {T : X → Y : T is a bounded linear operator}

and endow it with the norm ‖T‖ = sup{‖T (x)‖Y : ‖x‖X ≤ 1}. If Y is Banach space

then L(X, Y ) is a Banach space. The particular case where Y = R, the space L(X,R) is

called the dual space of X and denoted by X?.

Definition 1.5. Two normed linear spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are said to be

equivalent if and only if α ‖x‖Y ≤ ‖x‖X ≤ β ‖x‖Y , for all x ∈ X and some absolute

positive constants α and β. We write X ∼= Y to mean that X is equivalent to Y .

1.2 Preliminary Results and Motivation

Definition 1.6. The special atom space B(µ, 1/p) for 1 ≤ p <∞ is defined as;

B(µ, 1/p) =

{
f : T → R : f(t) =

∑
n≥1

cn
1

µ(An)1/p
χAn(t) and

∑
n≥1

|cn| <∞

}
,

where the cn’s are real numbers, and An ∈ M for each n ≥ 1. We endow B(µ, 1/p)

with the “norm” ‖f‖B(µ,1/p) = inf
∑
n≥1

|cn|, where the infimum is taken over all possible

representations of f .

Theorem 1.1. The space B(µ, 1/p) is a Banach space with respect to the norm ‖·‖B(µ,1/p)

for 1 ≤ p <∞.
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The proof of Theorem 1.1 for the case p = 1 is provided in the next chapter and very

similar to the general case. The following is the result obtained by De Souza in 2010

which gives the atomic characterization of L(p, 1) for p > 1.

Theorem 1.2 (De Souza,[4]). For 1 < p < ∞, the special atom space B(µ, 1/p) is

equivalent to the Lorentz space L(p, 1). That is, there exist absolute postive constants α

and β such that α ‖f‖B(µ,1/p) ≤ ‖f‖L(p,1) ≤ β ‖f‖B(µ,1/p).

This characterization obtained by De Souza provides a simple proof of the theorem

by Guido Weiss and Elias Stein concerning linear operators acting on the Lorentz space

L(p, 1) which is stated below;

Theorem 1.3 (Stein and Weiss,[11]). If T is a linear operator on the space of measurable

functions and ‖TχA‖Y ≤ Mµ(A)1/p, 1 < p < ∞, A ∈ M where Y is a Banach space,

then T can be extended to all L(p, 1); that is T : L(p, 1)→ Y and ‖Tf‖Y ≤M ‖f‖L(p,1).

Motivated by the result obtained by De Souza and Theorem 1.3, we seek to investigate

the situation for the case p = 1, and obtain similar results for the Lorentz-Bochner space,

that is, the case of vector-valued functions.

1.3 Outline of the Dissertation

In chapter 2, we will discuss the atomic characterization of L1. This will be done in

two parts. We will consider the case when µis the Lebesgue measure and when µ is any

arbitrary measure. Chapter 3 extends the result by De Souza for the Lorent-Bochner

space. In chapter 4 we study some applications of these characterizations. Particularly,

we study the boundedness of some well-known operators acting on L1 and the Lorentz-

Bochner space.

7



Chapter 2

The L1 Space

Many authors have studied the atomic decomposition of Banach spaces of functions.

That is, they seek to determine if every element in the Banach space is of the form
∞∑
n=1

λnan, where the λn’s are scalars with
∞∑
n=1

|λn| <∞ and the an (called atoms) satisfy

some simple properties and belong to some given subset of the Banach space under con-

sideration. This decomposition provides a better and easy understanding of the classical

results of these spaces, such as the dual representation, interpolation and some funda-

mental inequalities in harmonic analysis like boundedness of operators. For instance, R.

R. Coifman and many other authors have studied the atomic decomposition of the Hardy

Hp spaces and its variants [27, 28, 29, 30, 31]. On the other hand, Coifman, Weiss and

Rochberg [32, 33] obtained decomposition theorems for the Bergman spaces. Recently,

De Souza [4] obtained a decomposition for the Lorentz-space L(p, 1) for p > 1.

In this chapter, we study an atomic characterization of the Lebesgue L1 space. This

would be done in two parts; namely, the particular case with respect to the Lebesgue

measure and the more general case for any arbitrary finite measure space.

2.1 The Lebesgue measure case

For simplicity, we take T = [0, 2π]; our results will hold for any finite interval [0, a] as

well. The first observation towards the atomic characterization of L1 is the relationship

between between the derivatives of Lipschitz functions and L∞. Indeed, as we will show

later, a function belongs to L∞ if and only it is the derivative of a Lipschitz function. It

8



became necessary to consider the derivatives of Lipschitz functions since they appear nat-

ural as the dual of a special atom space as we will see later. We give a little introduction

and properties of Lipschitz functions in the following;

A Brief Note on Lipschitz Functions

The Lipschitz space often denoted by Lip1 is the space of real-valued functions f defined

on the interval [0, 2π], for which |f(x+ h)− f(x)| ≤ Mh for some positive constant

M . This space has been studied and generalized in several different ways. The first

generalization is to replace h with hα where 0 < α ≤ 1 to obtain the so called Lipschitz

spaces Lipα of order α. Another generalization obtained by replacing h with a positive

function ρ(h) playing the role of a weight (See [3],[5]). Recently, De Souza in [4] gave a

generalization related to the space Lipα for general measures on subsets of the interval

[0, 2π] for 0 < α < 1. In this note, we are concerned with a similar extension we

denote by Lip(µ, 1) related to the case α = 1, where µ is a general measure on [0, 2π]

with certain properties. In particular, we will show that Lip(µ, 1) is L∞. However, its

representation give us an easy way to obtain the dual space of the generalized special

atom space B(µ, 1) of the special atom space B to general measures µ on [0, 2π]. This

representation of L∞ provides a clear connection between the derivatives of Lipschitz

functions and L∞ functions as we will show later. We start with the definition of the

Lipschitz condition for some functions, which the reader can find in any undergraduate

or graduate text in Analysis, including [6].

Definition 2.1. A function f : D ⊂ R2 → R is said to satisfy the Lipschitz condition

with respect to x if there exists K > 0 such that

|f(t, x1)− f(t, x2)| ≤ K|x1 − x2|, ∀(t, x1), (t, x2) ∈ D. (2.1)

9



In ordinary differential equations, the Lipschitz condition is used in the existence and

uniqueness theorem: that is, if f : D ⊆ R2 → R satisfies the Lipschitz condition in D

with respect to x, then the initial value problem


dx
dt

= f(t, x) for (t, x) ∈ D

x(t0) = x0

has a unique solution in D. In analysis, any function that satisfies the Lipschitz condition

is said to be Lipschitz continuous or simply Lipschitz. It is known that functions with

bounded derivative are Lipschitz functions. Lipschitz functions are absolutely continuous.

A function f defined on the interval [a, b] is said to be absolutely continuous if and only

if there exist a Lebesgue integrable function g on [a, b] such that

f(x) = f(a) +

∫ x

a

g(t) dt for all x ∈ [a, b]

and where g = f ′ almost everywhere. Thus, Lipschitz functions are almost everywhere

differentiable (e.g. f(x) = |x|, f(x) = sinx and so on). The next definition is a

generalization of Lipschitz functions, see [12], [6].

Definition 2.2. A function f : [0, 2π]→ R is said to be a Lipschitz function of order α

if ∀x ∈ [0, 2π], and h > 0,

|f(x+ h)− f(x)|
hα

≤M, for some M ≥ 0 and 0 < α ≤ 1.

10



Definition 2.3. We denote by Lipα, 0 < α ≤ 1 the space of all Lipschitz functions of

order α and endow it with the norm

‖f‖Lipα = sup
x∈[0,2π]
h>0

|f(x+ h)− f(x)|
hα

.

Here the constants are identified as the zero vector.

Remark 2.1. It is worth noting that if α ≥ 1 then Lipα = {constant functions}

In this work, we are concerned with the case where α = 1. That is, the space of

Lipschitz functions of order 1. The next definition is the space of derivatives of Lipschitz

functions of order 1.

Definition 2.4. We define the space (Lip1)′ as follows;

(Lip1)′ =

{
g′ : S ⊆ [0, 2π]→ R : g ∈ Lip1

}

where the prime denotes the derivative. We endow (Lip1)′ with the “norm”

‖g′‖(Lip1)′ := ‖g‖Lip1 ,where g ∈ Lip1.

Theorem 2.1. ((Lip1)′, ‖ · ‖(Lip1)′) is a Banach space.

Proof. The proof follows directly from the fact that Lip1 is a Banach space.

Proposition 2.1. (Lip1)′ ∼= L∞ with ‖f‖∞ = ‖f‖(Lip1)′ for every f ∈ L∞.

Proof. Let g′ ∈ (Lip1)′. We have that g ∈ Lip1 with ‖g‖Lip1 ≤ C <∞. Thus, we have

|g(t+ h)− g(t)|
h

≤ C, for all t ∈ [0, 2π] and h > 0.

11



Hence, |g′(t)| ≤ C, for almost all t ∈ [0, 2π]. Thus, g′ ∈ L∞(X) and ‖g′‖∞ ≤ ‖g′‖(Lip1)′ .

To see the converse, let g ∈ L∞ ⊆ L1, i.e g ∈ L1 and define G : [0, 2π] → R by

G(t) =

∫ t

0

g(s)ds, for t ∈ [0, 2π]. G is well-defined and Lipschitz with G′(t) = g(t) a.e.

Thus, g ∈ (Lip1)′ and ‖g‖(Lip1)′ ≤ ‖g‖∞.

Remark 2.2. Though we have seen in Proposition 2.1 that (Lip1)′ is the same as L∞, it

became necessary to consider the derivatives of Lipschitz functions as they appear natural

as the dual of the special atom space B (defined below) as we have shown in the following

results.

The next definition is the definition of the special atom space which is a slight modifi-

cation of the space introduced by De Souza in [4].

Definition 2.5. The special atom space is the space B of functions defined by

B =

{
f : [0, 2π]→ R : f(t) =

∑
n≥1

cn
1

|In|
χIn(t), and

∑
n≥1

|cn| <∞
}

where the cn’s are real numbers, χIn is the characteristic function of the interval In in

[0, 2π] and |In| denotes the length of the interval.

We endow B with the “norm” ‖f‖B = inf
∞∑
n=1

|cn| where the infimum is taken over all

the representations of f .

Theorem 2.2. (B, ‖ · ‖B) is Banach space.

Note that Theorem 2.2 is a particular case of Theorem 2.8 in Section 2.2 and the proof

is similar up to minor modifications. The next results are special cases of much general
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results obtained in Section 2.2, showing that the (Lip1)′ is the dual space of the special

atom space B. First, we give a Hölder’s type inequality between the space of derivatives

of Lipschitz functions and the special atom space B.

Theorem 2.3 (Hölder’s type inequality).

If f ∈ B and g′ ∈ (Lip1)′, then

∣∣∣∣∫ 2π

0

f(t)g′(t)dt

∣∣∣∣ ≤ ‖f‖B‖g′‖(Lip1
)′ .

Proof. Let g ∈ Lip1, we observe that
|g(t+ h)− g(t)|

h
≤ ‖g‖Lip1 , for all t ∈ [0, 2π] and

h > 0. Thus |g′(t)| ≤ ‖g‖Lip1 , for almost all t ∈ [0, 2π]. Now let f ∈ B with

f(t) =
∑
n≥1

cn
1

|In|
χIn(t), and

∑
n≥1

|cn| <∞,

we have that ∫ 2π

0

f(t)g′(t)dt =

∫ 2π

0

∑
n≥1

(
cn

1

|In|
g′(t)χIn(t)

)
dt.

Thus

∣∣∣∣∫ 2π

0

f(t)g′(t)dt

∣∣∣∣ ≤ ∑
n≥1

|cn|
1

|In|

∫
In

|g′(t)| dt

≤
∑
n≥1

|cn|
1

|In|
|In|‖g‖Lip1 , since |g′(t)| ≤ ‖g‖Lip1

≤

(∑
n≥1

|cn|

)
‖g‖Lip1 .

13



Taking the infimum on the R.H.S. of the latter over all representations of f , we have

∣∣∣∣∫ 2π

0

f(t)g′(t)dt

∣∣∣∣ ≤ ‖f‖B‖g′‖(Lip1
)′ .

Remark 2.3. Theorem 2.3 implies that, given any g′ ∈ (Lip1)′ the map φ : B → R

defined by

φ(f) =

∫ 2π

0

f(t)g′(t)dt, for all f ∈ B,

is a bounded linear functional. That is, φ ∈ B?.

The next result gives a characterization of all bounded linear functionals defined on B.

Theorem 2.4 (Duality).

The dual space B? of B, is equivalent to (Lip1)′. That is, φ ∈ B? if and only if there

exists g′ ∈ (Lip1)′ so that φ(f) =

∫ 2π

0

f(t)g′(t)dt, ∀f ∈ B and ‖φ‖B? = ‖g′‖(
Lip1

)′.

Proof. ⇐=. Fix g′ ∈ (Lip1)′ and define φg(f) =

∫ 2π

0

f(t)g′(t)dt for all f ∈ B. φg is a

linear map on B, and |φg(f)| ≤ ‖f‖B‖g′‖(Lip1
)′
, by Theorem 2.3. Hence φg ∈ B?

=⇒. Consider the map ψ : (Lip1)′ → B? defined by ψ(g′) = φg, φg defined as above.

We want to show that ψ is onto, i.e. given φ ∈ B?, there exists g′ ∈ (Lip1)′ such that

φ = φg. Let φ ∈ B?, and define g(t) = φ
(
χ(0,t]

)
, t ∈ [0, 2π].

Claim: g ∈ Lip1 and hence g′ ∈ (Lip1)′.

In fact, observe that

g(t+ h)− g(t) = φ(χ(0,t+h] − χ(0,t]) = φ(χ[t,t+h]).
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Thus

|g(t+ h)− g(t)| = |φ(χ[t,t+h])| ≤ ‖φ‖B?‖χ[t,t+h]‖B ≤ ‖φ‖B?h.

It follows that

|g(t+ h)− g(t)|
h

≤ ‖φ‖B? <∞, ∀h > 0.

Hence the claim is proved. Thus, we have that g′(t) exists almost everywhere.

This implies that

φ
(
χ(0,t]

)
= g(t) =

∫ t

0

g′(s)ds =

∫ 2π

0

g′(s)χ[0,t](s)ds.

Now since

χ[a,b](t) = χ[0,b](t)− χ[0,a](t) for a < b,

we have that

φ(χ[a,b]) = φ(χ[0,b])− φ(χ[0,a]) since φ is linear

=

∫ 2π

0

g′(t)χ[0,b](t)dt−
∫ 2π

0

g′(t)χ[0,a](t)dt

=

∫ 2π

0

g′(t)
(
χ[0,b](t)− χ[0,a](t)

)
dt

=

∫ 2π

0

g′(t)χ[a,b](t)dt.

Therefore

φ

(
1

b− a
χ[a,b]

)
=

∫ 2π

0

1

b− a
g′(t)χ[a,b](t)dt.
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For f(t) =
∑
n≥1

cn
1

|In|
χIn(t) with

∑
n≥1

|cn| <∞, we have

f(t) = lim
k→∞

fk(t) where fk(t) =
k∑

n=1

cn
1

|In|
χIn(t), k ∈ N.

For each k ∈ N,

φ(fk) = φ

(
k∑

n=1

cn
1

|In|
χIn

)

=
k∑

n=1

cn
1

|In|
φ (χIn)

=
k∑

n=1

cn
1

|In|

∫ 2π

0

χIn(t)g′(t)dt

=

∫ 2π

0

(
k∑

n=1

cn
1

|In|
χIn(t)

)
g′(t)dt

=

∫ 2π

0

fk(t)g
′(t)dt.

That is,

φ(fk) =

∫ 2π

0

fk(t)g
′(t)dt.

Now since φ ∈ B?, it follows that

lim
k→∞

φ(fk) = φ(f).

On the other hand, we have that

∫ 2π

0

fk(t)g
′(t)dt→

∫ 2π

0

f(t)g′(t)dt.
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To see this, let hk(t) = fk(t)g
′(t) and pk(t) =

k∑
n=1

|cn|
1

|In|
|g′(t)|χIn(t). We observe that

|hk(t)| ≤ pk(t) for all k ∈ N and t ∈ [0, 2π].

In addition,

0 ≤ pk(t) ≤ pk+1(t), for t ∈ [0, 2π] and pk(t)→ p(t) :=
∑
n≥1

|cn|
1

|In|
|g′(t)|χIn(t).

So by the Monotone convergence theorem (see [8], page 83), we have that

∫ 2π

0

pk(t)dt→
∫ 2π

0

p(t)dt =
∑
n≥1

|cn|
1

|In|

∫
In

|g′(t)|dt ≤ ‖g‖Lip1
∑
n≥1

|cn| <∞.

That is ∫ 2π

0

pk(t)dt→
∫ 2π

0

p(t)dt <∞.

Hence by the Dominated convergence theorem (see [8], page 89), we have that

lim
k→∞

∫ 2π

0

hk(t)dt =

∫ 2π

0

lim
k→∞

hk(t)dt.

Thus ∫ 2π

0

fk(t)g
′(t)dt→

∫ 2π

0

f(t)g′(t)dt.

Hence

φ(f) =

∫ 2π

0

f(t)g′(t)dt.
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That is, φ = φg. Therefore, ψ is onto. In addition we have,

‖φ‖B? = sup
‖f‖B≤1

|φ(f)| ≤ ‖g′‖(Lip1)′ by the Hölder’s inequality.

That is

‖φ‖B? ≤ ‖g′‖(Lip1)′ .

On the other hand, for fh(t) =
1

h
χ[x,x+h](t), h > 0, we have fh ∈ B with

‖fh‖B ≤ 1 and φ(fh) =
1

h

∫ 2π

0

χ[x,x+h](t)g
′(t)dt =

1

h

∫ x+h

x

g′(t)dt =
g(x+ h)− g(x)

h
.

This implies that

|φ(fh)| =
|g(x+ h)− g(x)|

h
≤ ‖φ‖B? .

Taking the supremum over x ∈ [0, 2π] and h > 0, we obtain ‖g‖Lip1 ≤ ‖φ‖B? . So that

‖φ‖B? = ‖g′‖(Lip1)′

Remark 2.4. By Proposition 2.1 and Theorem 2.4, we deduce that B? ∼= L∞.

Theorem 2.5. The special atom space B is continuously contained in L1 and

‖f‖1 ≤ C ‖f‖B , for f ∈ B

.
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Proof. Let f ∈ B with f(t) =
∑
n≥1

cn
1

|In|
χIn(t) and

∑
n≥1

|cn| <∞ and consider

∫ 2π

0

|f(t)|dt ≤
∑
n≥1

|cn|
1

|In|

∫
In

1 dt =
∑
n≥1

|cn| <∞.

So f ∈ L1 and ‖f‖1 ≤ ‖f‖B , for f ∈ B.

The following theorem is a classical result in Functional Analysis, which can be found

in [7] (see page 160).

Theorem 2.6. Let X and Y be two normed linear spaces, and let T ∈ L(X, Y ). Let T ?

be the adjoint operator of T defined by T ?f = f ◦ T for all f ∈ Y ?. Then

(1) T ? ∈ L(Y ?, X?) and ‖T ?‖ = ‖T‖

(2) T ? is injective if and only if the range of T is dense in Y . In addition, if X and Y

are Banach spaces then T ? is invertible if and only if T is invertible.

Now, we have the following situations;

(1) B ⊆ L1 with ‖f‖1 ≤ ‖f‖B , for f ∈ B by Theorem 2.5.

(2) B? ∼= L?1 by Remark 2.4.

(3) B is dense in L1. This can be verified with standard techniques and a corollary of

the Hahn-Banach Theorem.

As a consequence of these facts and Theorem 2.6, the embedding operator I : B → L1

defined by I(f) = f is a Banach space isomorphism. So, we have the following result;
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Theorem 2.7. B ∼= L1 with equivalent norms, i.e, there exist f ∈ B ⇐⇒ f ∈ L1 and

α ‖f‖B ≤ ‖f‖1 ≤ β ‖f‖B form some absolute positive constants α and β.

In the following section, we extend this result for arbitrary measures which is the case

p = 1 in the result obtained by De Souza [4].

2.2 Extension to Arbitrary measures

Here we consider a general nonatomic, finite measure space (T,M, µ) where T ⊂ R.

The next definition is a natural extension of the special atom space B to general measures

which was first proposed by De Souza in [4].

Definition 2.6. We define the space B(µ, 1) as

B(µ, 1) =

{
f : T → R : f(t) =

∑
n≥1

cn
1

µ(An)
χAn(t) and

∑
n≥1

|cn| <∞

}
,

where the cn’s are real numbers, and An ∈ M for each n ≥ 1. We endow B(µ, 1)

with the “norm” ‖f‖B(µ,1) = inf
∑
n≥1

|cn|, where the infimum is taken over all possible

representations of f .

Remark 2.5. The space B(µ, 1) is the case p = 1 in the space B(µ, 1/p) by De Souza.

Theorem 2.8.

(a) ‖ · ‖B(µ,1) is a norm of B(µ, 1).

(b)
(
B(µ, 1), ‖ · ‖B(µ,1)

)
is a Banach space.

The proof of Theorem 2.8 is similar to the one obtained by De Souza but we produce

it here for completion.
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Proof. (a) To show that ‖ ·‖B(µ,1) is a norm, observe that ‖f‖B(µ,1) ≥ 0,∀f ∈ B(µ, 1) and

f = 0 implies that ‖f‖B(µ,1) = 0. On the other hand, suppose ‖f‖B(µ,1) = 0. We want

to show that f = 0, µ a.e. Let (cnk)n,k∈N be a sequence of real numbers and (Ank)n,k∈N

be a sequence of measurable subsets of X such that f(t) =
∑
n≥1

cnk
1

µ(Ank)
χAnk(t) with∑

n≥1

|cnk| < ∞ for each k ∈ N and
∑
n≥1

|cnk| → 0 as k → ∞. So we have for each n ∈ N,

|cnk| → 0 as k →∞. Thus, the coefficients of the representations of f converges to zero

and hence f = 0, µ a.e.

For α ∈ R and f ∈ B(µ, 1) with f(t) =
∑
n≥1

cn
1

µ(An)
χAn(t) and

∑
n≥1

|cn| <∞, we have

(αf)(t) =
∑
n≥1

αcn
1

µ(An)
χAn(t) and this implies that

‖αf‖B(µ,1) = inf
∑
n≥1

|αcn|

= |α| inf
∑
n≥1

|cn|

= |α| ‖f‖B(µ,1).

Finally, for f, g ∈ B(µ, 1), to show that ‖f + g‖B(µ,1) ≤ ‖f‖B(µ,1) + ‖g‖B(µ,1), let

ε > 0 be given, and let (cn)n∈N and (bn)nN be sequences of real numbers such that

f(t) =
∑
n≥1

cn
1

µ(An)
χAn(t) and g(t) =

∑
n≥1

bn
1

µ(Bn)
χBn(t), for some sequence (An)n∈N

and (Bn)n∈N in M, and such that
∑
n≥1

|cn| < ‖f‖B(µ,1) + ε/2,
∑
n≥1

|bn| < ‖g‖B(µ,1) + ε/2.

Note that we can write

(f + g)(t) =
∑
n≥1

dn
1

µ(Dn)
χDn(t),
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with
∑
n≥1

|dn| =
∑
n≥1

|cn|+ |bn| where

dn =

 cn
2

if n is even

bn+1
2

if n is odd

and

Dn =

 An
2

if n is even

Bn+1
2

if n is odd

It follows that

‖f + g‖B(µ,1) ≤
∑
n≥1

|dn|

=
∑
n≥1

|cn|+
∑
n≥1

|bn|

< ‖f‖B(µ,1) + ‖g‖B(µ,1) + ε

Thus since ε is arbitrary, we have

‖f + g‖B(µ,1) ≤ ‖f‖B(µ,1) + ‖g‖B(µ,1).

(b) To prove completeness, it suffices to show that for any sequence (fm)m≥1 ⊆ B(µ, 1),

we have

‖
∑
m≥1

fm‖B(µ,1) ≤
∑
m≥1

‖fm‖B(µ,1).

Note that given ε > 0 and for each m ≥ 1, there are sequence real numbers (cmn)

and sequence of sets Amn ∈ M such that fm(t) =
∑
n≥1

cmn
µ(Amn)

χAmn (t) with
∑
n≥1

|cmn| <
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‖fm‖B(µ,1) +
ε

2m
. It follows that

∑
m≥1

∑
n≥1

|cmn| <
∑
m≥1

‖fm‖B(µ,1) + ε
∑
m≥1

1

2m
=
∑
m≥1

‖fm‖B(µ,1) + ε.

Since ε is arbitrary, it follows that

‖
∑
m≥1

fm‖B(µ,1) ≤
∑
m≥1

‖fm‖B(µ,1).

The next definition, is the candidate for the dual space of B(µ, 1).

Definition 2.7. Define the space Lip(µ, 1) as

Lip(µ, 1) =

{
g : [0, 2π]→ R :

1

µ(A)

∣∣∣∣∫
A

g(t)dµ(t)

∣∣∣∣ ≤ C <∞, ∀A ∈M, µ(A) 6= 0

}
.

Endow Lip(µ, 1) with the “norm”

‖g‖Lip(µ,1)
= sup

µ(A)6=0

1

µ(A)

∣∣∣∣∫
A

g(t)dµ(t)

∣∣∣∣ .
Remark 2.6. This space Lip(µ, 1) as we shall show later is L∞. However, the representa-

tion of the norm provides an easy way to see the connection between the derivatives of Lip-

schitz functions and L∞ functions. Indeed, we observe that if we take µ =Lebesgue mea-

sure and the measurable sets to be intervals then we have a more general representation

of the norm on (Lip1)′. That is if g ∈ Lip1 and A = [x, x+h] then
1

µ(A)

∣∣∣∣∫
A

g′(t)dµ(t)

∣∣∣∣ =

|g(x+ h)− g(x)|
h

.

23



Lemma 2.1. If g ∈ Lip(µ, 1) and A ∈M then

∫
A

|g(t)|dµ(t) ≤ µ(A)‖g‖Lip(µ,1)
.

Proof. Let g ∈ Lip(µ, 1) and A ∈ M. Now let A+ = {t ∈ A : g(t) ≥ 0} and A− = {t ∈

A : g(t) < 0}. We have that A−, A+ ∈ M, A = A+ ∪ A− and A+ ∩ A− = ∅. Now

consider

∫
A

|g(t)|dµ(t) =

∫
A+

g(t)dµ(t)−
∫
A−

g(t)dµ(t)

≤
∣∣∣∣∫
A+

g(t)dµ(t)

∣∣∣∣+

∣∣∣∣∫
A−

g(t)dµ(t)

∣∣∣∣
≤ µ(A+)‖g‖Lip(µ,1)

+ µ(A−)‖g‖Lip(µ,1)

= µ(A)‖g‖Lip(µ,1)

That is, ∫
A

|g(t)|dµ(t) ≤ µ(A)‖g‖Lip(µ,1)
.

Hence the Lemma is proved.

Theorem 2.9.

(a) ‖ · ‖Lip(µ,1) is a norm on Lip(µ, 1).

(b)
(
Lip(µ, 1), ‖ · ‖Lip(µ,1)

)
is Banach space.

Proof.

(a) To show that ‖ · ‖Lip(µ,1) is a norm, first observe that ‖g‖Lip(µ,1) ≥ 0, ∀g ∈ Lip(µ, 1).

Now suppose ‖g‖Lip(µ,1) = 0. Then

∣∣∣∣∫
A

g(t)dµ(t)

∣∣∣∣ = 0, ∀A ∈ M with µ(A) 6= 0. Thus∫
A

g(t)dµ(t) = 0, ∀A ∈M with µ(A) 6= 0. This implies that g = 0, µ− a.e.
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For α ∈ R and g ∈ Lip(µ, 1), we have

‖αg‖Lip(µ,1) = sup
µ(A)6=0

1

µ(A)

∣∣∣∣∫
A

αg(t)dµ(t)

∣∣∣∣
= sup

µ(A)6=0

|α| 1

µ(A)

∣∣∣∣∫
A

g(t)dµ(t)

∣∣∣∣
= |α| sup

µ(A)6=0

1

µ(A)

∣∣∣∣∫
A

g(t)dµ(t)

∣∣∣∣
= |α| ‖g‖Lip(µ,1).

Finally, for f, g ∈ Lip(µ, 1) and A ∈M with µ(A) 6= 0, we have

1

µ(A)

∣∣∣∣∫
A

(f(t) + g(t)) dµ(t)

∣∣∣∣ ≤ 1

µ(A)

∣∣∣∣∫
A

f(t)dµ(t)

∣∣∣∣+
1

µ(A)

∣∣∣∣∫
A

g(t)dµ(t)

∣∣∣∣
≤ ‖f‖Lip(µ,1) + ‖g‖Lip(µ,1)

Taking the supremum on the L.H.S of the above inequality, we get

‖f + g‖Lip(µ,1) ≤ ‖f‖Lip(µ,1) + ‖g‖Lip(µ,1).

Thus ‖ · ‖Lip(µ,1) is a norm on Lip(µ, 1). To complete the proof, we need to proved that

Lip(µ, 1) is complete. In order to do so, it is sufficient to prove that for any sequence

(gn)n∈N ⊆ Lip(µ, 1) such that
∑
n≥1

‖gn‖Lip(µ,1) ≤ C <∞ , we have

∑
n≥1

gn ∈ Lip(µ, 1) and ‖
∑
n≥1

gn‖Lip(µ,1) ≤
∑
n≥1

‖gn‖Lip(µ,1).
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Let A ∈M with µ(A) 6= 0. We have that

∣∣∣∣∣
∫
A

∑
n≥1

gn(t)dµ(t)

∣∣∣∣∣ ≤
∫
A

∣∣∣∣∣∑
n≥1

gn(t)

∣∣∣∣∣ dµ(t)

≤
∫
A

∑
n≥1

|gn(t)| dµ(t)

=
∑
n≥1

∫
A

|gn(t)|dµ(t)

≤
∑
n≥1

µ(A)‖gn‖Lip(µ,1) by Lemma 2.1

That is,
1

µ(A)

∣∣∣∣∣
∫
A

∑
n≥1

gndµ

∣∣∣∣∣ ≤ ∑
n≥1

‖gn‖Lip(µ,1) ≤ C < ∞. Hence
∑
n≥1

gn ∈ Lip(µ, 1).

Taking the supremum on the L.H.S of the latter over all A ∈M with µ(A) 6= 0 , we have

‖
∑
n≥1

gn‖Lip(µ,1) ≤
∑
n≥1

‖gn‖Lip(µ,1).

Theorem 2.10. Lip(µ, 1) ∼= L∞ with ‖g‖L(µ,1) = ‖g‖∞.

Proof. To see this, we first observe that if g ∈ L∞ then, we have for any A ∈ M with

µ(A) 6= 0,

1

µ(A)

∣∣∣∣∫
A

g(t)dµ(t)

∣∣∣∣ ≤ 1

µ(A)

∫
A

|g(t)|dµ(t) ≤ ‖g‖∞
1

µ(A)

∫
A

1dµ(t) ≤ ‖g‖∞.

So, g ∈ Lip(µ, 1) and ‖g‖Lip(µ,1) ≤ ‖g‖∞. On the other hand, given g ∈ Lip(µ, 1) and

A ∈M with µ(A) 6= 0, we obtain from Lemma 2.1 that

∫
A

|g(t)|dµ(t) ≤ µ(A)‖g‖Lip(µ,1)
.
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By Proposition 1.3, there exist a measurable subset Ã of T with µ(Ã) = µ(A) such that∫ µ(A)

0

g∗(t)dt =

∫
Ã

|g(t)|dµ(t), where g∗ denotes the decreasing rearrangement of |g|.

Thus,

∫ µ(A)

0

g∗(t)dt ≤ µ(A)‖g‖Lip(µ,1)
by Lemma 2.1. Since g∗ is a decreasing function

on [0,∞), we have that g∗(µ(A)) ≤ g∗(t) for all t ∈ [0, µ(A)]. Hence, g∗(µ(A))µ(A) ≤∫ µ(A)

0

g∗(t)dt ≤ µ(A)‖g‖Lip(µ,1)
. So, g∗(µ(A)) ≤ ‖g‖Lip(µ,1)

. Let µ(A) → 0 to obtain

g∗(0) ≤ ‖g‖Lip(µ,1)
. But ‖g‖∞ = g∗(0). Thus, g ∈ L∞, and hence ‖g‖∞ = ‖g‖Lip(µ,1)

.

In the following results, we show that the dual space of B(µ, 1) is equivalent to Lip(µ, 1).

To do this, we recall the following result in Analysis which can be found in [7], page 55.

Theorem 2.11. Suppose that {fn} is a sequence in L1(µ) such that
∑
n≥1

∫
T

|fn|dµ <∞.

Then
∑
n≥1

fn converges a.e to a function in L1(µ), and

∫
T

∑
n≥1

fndµ =
∑
n≥1

∫
T

fndµ.

As a consequence of Theorem 2.11, we have the following result.

Lemma 2.2. Let (cn)n∈N be a sequence of real numbers such
∑
n≥1

|cn| < ∞, (An)n∈N

be a sequence of measurable subsets of T and g ∈ Lip(µ, 1). For each n ∈ N, define

hn : T → R by hn(t) := cn
1

µ(An)
χAn(t)g(t). Then

∑
n≥1

hn converges a.e to a function in

L1(µ), and

∫
T

∑
n≥1

hn(t)dµ(t) =
∑
n≥1

∫
T

hn(t)dµ(t).

Proof. Let n ∈ N and consider

∫
T

|hn(t)|dµ(t) =

∫
T

|cn|
1

µ(An)
χAn(t)|g(t)|µ(t)

= |cn|
1

µ(An)

∫
An

|g(t)|dµ(t)

≤ |cn|‖g‖Lip(µ,1)
<∞, by Lemma 2.1
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Thus, hn ∈ L1(µ) and

∑
n≥1

∫
T

|hn(t)|dµ(t) ≤ ‖gn‖Lip(µ,1)

(∑
n≥1

|cn|

)
<∞.

The conclusion follows from Theorem 2.11

Similar to the case of the Lebesgue measure, we have the following Hölder’s Type

Inequality for the special atom space B(µ, 1) and Lip(µ, 1).

Theorem 2.12 (Hölder’s Type Inequality).

If f ∈ B(µ, 1) and g ∈ Lip(µ, 1), then

∣∣∣∣∫
T

f(t)g(t)dµ(t)

∣∣∣∣ ≤ ‖f‖B(µ,1)‖g‖Lip(µ,1).

Proof. Let g ∈ Lip(µ, 1) and f ∈ B(µ, 1) with f(t) =
∑
n≥1

cn
1

µ(An)
χAn(t) and

∑
n≥1

|cn| <

∞, we have ∫
T

f(t)g(t)dµ(t) =

∫
T

∑
n≥1

(
cn

1

µ(An)
χAn(t)g(t)

)
dµ(t).

It follows that

∣∣∣∣∫
T

f(t)g(t)dµ(t)

∣∣∣∣ ≤ ∑
n≥1

|cn|
1

µ(An)

∫
T

|g(t)| dµ(t)

≤
∑
n≥1

|cn|
1

µ(An)
µ(An)‖g‖Lip(µ,1)

, by Lemma 2.1

= ‖g‖Lip(µ,1)

(∑
n≥1

|cn|

)
.
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Taking the infimum over all possible representations of f , we have

∣∣∣∣∫
T

f(t)g(t)dµ(t)

∣∣∣∣ ≤ ‖f‖B(µ,1)‖g‖Lip(µ,1).

Theorem 2.13 (Duality).

B?(µ, 1) ∼= Lip(µ, 1) with equivalent norms, that is, ϕ ∈ B?(µ, 1) if and only if there

exists g ∈ Lip(µ, 1) such that ϕ(f) =

∫
T

f(t)g(t)dµ(t), ∀f ∈ B(µ, 1). Moreover,

‖ϕ‖ = ‖g‖Lip(µ,1).

Proof.

“⇐=:” Fix g ∈ Lip(µ, 1) and define ϕg : B(µ, 1)→ R by

ϕg(f) =

∫
T

f(t)g(t)dµ(t), ∀f ∈ B(µ, 1). (2.2)

Then clearly ϕg is a linear map and by Theorem 2.12, we have

|ϕg(f)| ≤ ‖f‖B(µ,1)‖g‖Lip(µ,1). Thus ϕg ∈ B?(µ, 1).

“=⇒:” Consider the map ψ : Lip(µ, 1)→ B?(µ, 1) define by ψ(g) = ϕg where ϕg is defined

as in (2.2). We want to show that ψ is onto. Let ϕ ∈ B?(µ, 1). Define λ : M → R by

λ(A) = ϕ(χA), ∀A ∈M. We observe that

|λ(A)| = |ϕ(χA)| ≤ ‖ϕ‖‖χA‖B(µ,1) ≤ ‖ϕ‖µ(A).
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Thus, if µ(A) = 0 then λ(A) = 0 and thus λ << µ. Hence by the Radon-Nikodym

Theorem, we have that λ(A) =

∫
A

gdµ for some g ∈ L1(µ). In particular, g ∈ Lip(µ, 1)

since

∫
A

gdµ = ϕ(χA) implies

∣∣∣∣∫
A

gdµ

∣∣∣∣ ≤ ‖ϕ‖µ(A). Thus

1

µ(A)

∣∣∣∣∫
A

gdµ

∣∣∣∣ ≤ ‖ϕ‖ <∞, ∀A ∈M with µ(A) 6= 0.

So we have

ϕ(χA) =

∫
A

gdµ =

∫
T

gχAdµ.

That is,

ϕ(χA) =

∫
T

χA(t)g(t)dµ(t).

Now, given f ∈ B(µ, 1) with f(t) =
∑
n≥1

cn
1

µ(An)
χAn(t) and

∑
n≥1

|cn| < ∞, we have that

ϕ(f) = ϕ

(∑
n≥1

cn
1

µ(An)
χAn

)
=
∑
n≥1

cn
1

µ(An)
ϕ(χAn), since ϕ ∈ B?(µ, 1). So we get,

ϕ(f) =
∑
n≥1

cn
1

µ(An)

∫
T

χAn(t)g(t)dµ(t) =
∑
n≥1

∫
T

(
cn

1

µ(An)
χAn(t)g(t)

)
dµ(t)
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That is,

ϕ(f) =
∑
n≥1

∫
T

(
cn

1

µ(An)
χAn(t)g(t)

)
dµ(t)

=

∫
T

∑
n≥1

(
cn

1

µ(An)
χAn(t)g(t)

)
dµ(t), by Lemma 2.2

=

∫
T

(∑
n≥1

cn
1

µ(An)
χAn(t)

)
g(t)dµ(t)

=

∫
T

f(t)g(t)dµ(t).

Thus

ϕ(f) =

∫
T

f(t)g(t)dµ(t).

This shows that ϕg(f) = ϕ(f), ∀f ∈ B(µ, 1) and for some g ∈ Lip(µ, 1). That

is, ψ(g) = ϕg = ϕ . It follows that the inclusion map i : Lip(µ, 1) → B?(µ, 1)

is a bijection. Thus, B?(µ, 1) ∼= Lip(µ, 1). Moreover, it follows from the inequality

|ϕ(f)| ≤ ‖f‖B(µ,1)‖g‖Lip(µ,1) that

‖ϕ‖ = sup
‖f‖B(µ,1)≤1

|ϕ(f)| ≤ ‖g‖Lip(µ,1).

Let A ∈M with µ(A) 6= 0, and let f =
1

µ(A)
χA. We have that f ∈ B(µ, 1) with

‖f‖B(µ,1) ≤ 1 and ϕ(f) =
1

µ(A)

∫
T

χA(t)g(t)dµ(t) =
1

µ(A)

∫
A

g(t)dµ(t).

Thus

|ϕ(f)| = 1

µ(A)

∣∣∣∣∫
A

g(t)dµ(t)

∣∣∣∣ ≤ ‖ϕ‖.
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Taking the supremum on the L.H.S over all A ∈M with µ(A) 6= 0, we have

‖g‖Lip(µ,1) ≤ ‖ϕ‖, and hence ‖ϕ‖ = ‖g‖Lip(µ,1).

Remark 2.7. Theorem 2.10 and Theorem 2.13 implies that B?(µ, 1) ∼= L∞.

With similar arguments as the Lebesgue case, we have the following result;

Theorem 2.14. B(µ, 1) ∼= L1(µ) with m ‖f‖B(µ,1) ≤ ‖f‖1 ≤ M ‖f‖B(µ,1) for some

absolute positive constants m and M .

An application of this characterization of L1(µ) is considered in Chapter 4
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Chapter 3

Lorentz-Bochner Space

3.1 Background, Preliminary Definitions and Notations

The Bochner spaces, denoted by Lp(X), (where (X, ‖·‖X) is a Banach space ) are a

generalization of the classical Lp spaces to functions whose values are in X. That is,

Lp(X) consist of all functions f with values in X and whose norm ‖f‖X belongs to

the classical Lp space. It is this generalization that led to a similar extension for the

Lorentz spaces known as the Lorentz-Bochner spaces which we will denote in this note

by LX(p, q).

We let (T,M, µ) denote a complete, finite and nonatomic measure space, (X, ‖ ‖X) a

Banach space and X? the (real) dual space of X with the dual norm ‖ ‖? given by

‖ψ‖? = sup{|ψ(x)| : ‖x‖X ≤ 1} = sup{ψ(x) : ‖x‖X ≤ 1}, for every ψ ∈ X?. In the

following, we recall some basic definitions.

Definition 3.1. The canonical duality paring 〈·, ·〉 : X? × X → R is given by 〈ψ, x〉 =

ψ(x) for all ψ ∈ X? and all x ∈ X. We have the following Cauchy-Schwartz type

inequality; |〈ψ, x〉| ≤ ‖ψ‖?‖x‖X for ψ ∈ X? and x ∈ X.

Definition 3.2. We say that a function φ : T → X? is w?−measurable if the real-valued

function t 7→ 〈φ(t), x〉 is µ−measurable for all x ∈ X.
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Definition 3.3. Let m : M → X? be a vector measure (an X?-valued measure). The

total variation of m, denoted by ‖m‖, is define as

‖m‖(A) = sup
n∑
i=1

‖m(Ai)‖?,

where the supremum is taken over all the partitions A = ∪ni=1Ai of A into a finite number

of disjoints measurable sets, for all A ∈M.

We now recall the formal definition of the Lorentz-Bochner spaces.

Definition 3.4. For 1 ≤ p, q ≤ ∞, we define

‖f‖LX(p,q) =


(
q

p

∫ ∞
0

(
‖f‖∗X (t)t

1
p

)q
dt

t

)1/q

1 ≤ p, q <∞

sup
t>0

t1/p ‖f‖∗X (t) 1 ≤ p ≤ ∞, q =∞

where the function ‖f‖X : T → R is defined by ‖f‖X(w) = ‖f(w)‖X and g∗ denotes

the decreasing rearrangement of |g|. The Lorentz-Bochner space with indices p and q,

denoted LX(p, q), consist of all X-valued functions f such that ‖f‖LX(p,q) <∞.

The Lorentz-Bochner space, like the Bochner spaces, has most of the properties of the

classical Lorentz spaces. For example, they are Banach spaces and the (real) dual of

LX(p, q) is the Lorentz-Bochner space LX
?
(p′, q′) with 1

p
+ 1

p′
= 1 and 1

q
+ 1

q′
= 1. Of

particular interest to this work is the case with 1 ≤ p <∞ and q = 1. That is the space

LX(p, 1) =

{
f : T → X : ‖f‖LX(p,1) =

1

p

∫ ∞
0

‖f‖∗X(t)t
1
p
−1dt <∞

}
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whose dual is given by the space

LX
?

(p′,∞) :=

{
φ : T → X? : ‖φ‖LX? (p′,∞) = sup

t>0
t1/p

′‖φ‖∗?(t) <∞
}
,

where the φ’s are w?−measurable. In the next section, we discuss the atomic character-

ization of the space LX(p, 1) for 1 ≤ p <∞.

3.2 The Atomic Characterization of the Lorentz-Bochner Space LX(p, 1)

To begin with, we give the definition of the special atom space for vector valued func-

tions.

Definition 3.5. For p ≥ 1, we define the space AX(p, µ) as follows;

AX(p, µ) :=

{
f : T → X : f(t) =

∑
n≥1

xnχAn(t) and
∑
n≥1

‖xn‖Xµ(An)1/p <∞

}
,

where the xn’s are in X, and An ∈ M for each n ≥ 1. We endow AX(p, µ) with the

“norm” ‖f‖AX(p,µ) = inf
∑
n≥1

‖xn‖Xµ(An)1/p, where the infimum is taken over all possible

representations of f .

Remark 3.1. This space is an extension of the space B(µ, 1/p) introduced in [4] by De

Souza for vector-valued functions.

Theorem 3.1.
(
AX(p, µ), ‖ · ‖AX(p,µ)

)
is a Banach space.

The proof of this theorem is similar to the real-valued case studied in [4] by De Souza

up to slight modification and therefore omitted. The next definition is the candidate for

the dual space of AX(p, µ).
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Definition 3.6. We define the space M(p,X?) as follows;

M(p,X?) =

{
φ : T → X?; sup

µ(A)6=0

1

µ(A)1/p

∫
A

‖φ(t)‖?dµ(t) <∞

}
,

where the φ’s are w?−measurable and we endow it with the ”norm”

‖φ‖M(p,X?) = sup
µ(A)6=0

1

µ(A)1/p

∫
A

‖φ(t)‖?dµ(t)

Remark 3.2. The space M(p,X?) is an extension of the space M(α) with α = 1/p

introduced in [10] by Lorentz for vector valued functions.

Theorem 3.2. (M(p,X?), ‖ · ‖M(p,X?)) is a Banach space.

Proof. Let (φn)n∈N be a sequence in M(p,X?) such that
∞∑
n=1

‖φn‖M(p,X?) < ∞. It

suffices to show that
∞∑
n=1

φn converges in M(p,X?). To do this, first we observe that∫
T

∞∑
n=1

‖φn(t)‖?dµ(t) =
∞∑
n=1

∫
T

‖φn(t)‖?dµ(t) ≤
∞∑
n=1

‖φn‖M(p,X?)µ(T )1/p < ∞. Thus, we

have that
∞∑
n=1

‖φn(t)‖? <∞ µ−a.e t ∈ T and since X? is a Banach space it follows that

∑∞
n=1 φn(t) converges in X? and ‖

∞∑
n=1

φn(t)‖? ≤
∞∑
n=1

‖φn(t)‖? µ−a.e t ∈ T . Now, let

A ∈M with µ(A) 6= 0 and consider

∫
A

‖
∞∑
n=1

φn(t)‖?dµ(t) ≤
∞∑
n=1

∫
A

‖φn(t)‖? ≤
∞∑
n=1

‖φn‖M(p,X?)µ(A)1/p

Thus

1

µ(A)1/p

∫
A

‖
∞∑
n=1

φn(t)‖?dµ(t) ≤
∞∑
n=1

‖φn‖M(p,X?) ≤ C <∞.
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Hence
∞∑
n=1

φn converges in M(p,X?) and ‖
∞∑
n=1

φ‖M(p,X?) ≤
∞∑
n=1

‖φ‖M(p,X?).

Remark 3.3. Indeed, we observe that for any Banach space X, the space M(p,X), p ∈

[1,∞) defined by

M(p,X) =

{
f : T → X; sup

µ(A)6=0

1

µ(A)1/p

∫
A

‖f(t)‖Xdµ(t) <∞

}
,

endowed with the norm

‖f‖M(p,X) = sup
µ(A)6=0

1

µ(A)1/p

∫
A

‖f(t)‖Xdµ(t)

is a Banach space. Similar to the real-valued case, we also have that

M(p,X) ∼= LX(p′,∞)

with equivalent norms where
1

p
+

1

p′
= 1.

The following result is a Hölder’s Type inequality involving the spaces AX(p, µ) and

M(p,X?).

Theorem 3.3 (Hölder’s Type Inequality). If φ ∈M(p,X?) and f ∈ AX(p, µ), then

∣∣∣∣∫
T

〈φ(t), f(t)〉dµ(t)

∣∣∣∣ ≤ ‖φ‖M(p,X?)‖f‖AX(p,µ).

Proof. Let φ ∈M(p,X?) and f ∈ AX(p, µ) with f(t) =
∑
n≥1

xnχAn(t), and
∑
n≥1

‖xn‖Xµ(A)1/p <

∞. So

∫
T

〈φ(t), f(t)〉dµ(t) =

∫
T

∞∑
n=1

〈φ(t), xn〉χAn(t)dµ(t). It follows that
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∣∣∣∣∫
T

〈φ(t), f(t)〉dµ(t)

∣∣∣∣ ≤ ∫
T

∞∑
n=1

|〈φ(t), xn〉|χAn(t)dµ(t)

≤
∞∑
n=1

‖xn‖X
∫
An

‖φ(t)‖?dµ(t)

≤

(
∞∑
n=1

‖xn‖Xµ(An)1/p

)
‖φ‖M(p,X?).

Taking the infimum on the R.H.S over all possible representations of f , we have

∣∣∣∣∫
T

〈φ(t), f(t)〉dµ(t)

∣∣∣∣ ≤ ‖φ‖M(p,X?)‖f‖AX(p,µ).

The above result implies that for any given φ ∈ M(p,X?) the map Γ : AX(p, µ) → R

with Γ(f) =

∫
T

〈φ(t), f(t)〉dµ(t) is a well-defined bounded linear functional. To charac-

terize all bounded linear functionals defined on AX(p, µ), consider the following theorems;

Theorem 3.4 (Radon-Nikodým type II). If m : M → X? is a vector measure and m

is absolutely continuous with respect to µ, then there exists φ : T → X?, w?-measurable

satisfying the following three conditions;

(1) The function t 7→ ‖φ(t)‖? is µ−measurable and belongs to L1(µ)

(2) For all x ∈ X and all A ∈M

m(A)(x) =

∫
A

〈φ(t), x〉dµ(t)

(3) For all A ∈M, ‖m‖ (A) =

∫
A

‖φ(t)‖? dµ(t)
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The proof of Theorem 3.4 is outside the scope of this work and can be found in [13],

page 22.

Lemma 3.1. Let (xn)n∈N be a sequence in X, (An)n∈N be a sequence inM with
∑
n≥1

‖xn‖X µ(An)1/p <

∞ and φ ∈ M(p,X?). For each n ∈ N, define hn : T → R by hn(t) := 〈φ(t), xn〉χAn(t).

Then hn ∈ L1(µ), n ∈ N and
∑
n≥1

‖hn‖1 <∞.

Proof. Let n ∈ N. Observe that hn is µ−measurable ( since φ is w?−measurable ) and

consider |hn(t)| = |〈φ(t), xn〉|χAn(t) ≤ ‖xn‖X ‖φ(t)‖? χAn(t), t ∈ T . Thus∫
T

|hn(t)| dµ(t) ≤ ‖xn‖X
∫
An

‖φ(t)‖? dµ(t) ≤ ‖xn‖X µ(An)1/p ‖φ‖M(p,X?) <∞. That is,

hn ∈ L1(µ) and
∑
n≥1

‖hn‖1 ≤

(∑
n≥1

‖xn‖X µ(An)1/p

)
‖φ‖M(p,X?) <∞.

As a consequence of Theorem 3.1 and Theorem 2.11 we have that

∫
T

∑
n≥1

hn(t)dµ(t) =
∑
n≥1

∫
T

hn(t)dµ(t).

Theorem 3.5 (Duality). (AX(p, µ))? ∼= M(p,X?); that is, Γ ∈ (AX(p, µ))? if and only

if there exists a unique φ ∈M(p,X?) such that

Γ(f) =

∫
T

〈φ(t), f(t)〉dµ(t),

for all f ∈ AX(p, µ). In addition, ‖Γ‖? = ‖φ‖M(p,X?).

Proof.

“⇐=”: Follows from Theorem 3.3.

“=⇒”: Let Γ ∈ (AX(p, µ)) and consider the vector measure m : M → X? associated

with Γ defined by m(A)(x) = Γ(xχA), for all A ∈ M and all x ∈ X. We observed that
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Γ(xχA) ≤ |Γ(xχA)| ≤ ‖Γ‖? ‖xχA‖AX(p,µ). But ‖xχA‖AX(p,µ) ≤ ‖x‖X µ(A)1/p. So we get

that Γ(xχA) ≤ ‖x‖X µ(A)1/p ‖Γ‖?, for A ∈ M and x ∈ X. In particular, we have that

for each A ∈M, the set {Γ(xχA) : ‖x‖X ≤ 1} is bounded above by µ(A)1/p ‖Γ‖?.

Claim: Given A ∈M, we have that ‖m‖ (A) ≤ µ(A)1/p ‖Γ‖?.

Justification: It suffices to show that
n∑
i=1

‖m(Ai)‖? ≤ µ(A)1/p ‖Γ‖?, for any partition

A = ∪ni=1Ai, Ai ∈M and Ai ∩ Aj = ∅, i 6= j. To see this, consider

n∑
i=1

‖m(Ai)‖? =
n∑
i=1

sup {|m(Ai)(x)| : ‖x‖X ≤ 1}

=
n∑
i=1

sup {|Γ(xχAi)| : ‖x‖X ≤ 1}

=
n∑
i=1

sup {Γ(xχAi) : ‖x‖X ≤ 1} , since Γ ∈ (AX(p, µ))?

= sup

{
n∑
i=1

Γ(xχAi) : ‖x‖X ≤ 1

}
= sup {Γ(xχA) : ‖x‖X ≤ 1}

≤ µ(A)1/p ‖Γ‖? .

Thus,
n∑
i=1

‖m(Ai)‖? ≤ µ(A)1/p ‖Γ‖? and hence ‖m‖ (A) ≤ µ(A)1/p ‖Γ‖?. Therefore, m

is absolutely continuous with respect to µ. So let φ : T → X? as in Theorem 3.4. By

condition (3) of Theorem 3.4, we have that for each A ∈M with µ(A) 6= 0,

∫
A

‖φ(t)‖? dµ(t) = ‖m‖ (A) ≤ µ(A)1/p ‖Γ‖? .

So,

1

µ(A)1/p

∫
A

‖φ(t)‖? dµ(t) ≤ ‖Γ‖? <∞.

40



Hence φ ∈ M(p,X?) and ‖φ‖M(p,X?) ≤ ‖Γ‖? . Now, by condition (2) of Theorem 3.4, we

have that Γ(xχA) = m(A)(x) =

∫
A

〈φ(t), x〉dµ(t) =

∫
T

〈φ(t), xχA(t)〉dµ(t). That is,

Γ(xχA) =

∫
T

〈φ(t), xχA(t)〉dµ(t).

Let f ∈ AX(p, µ) with f(t) =
∑
n≥1

xnχAn(t) and
∑
n≥1

‖xn‖X µ(An)1/p. We have that

Γ(f) = Γ

(∑
n≥1

xnχAn

)
=
∑
n≥1

Γ (xnχAn) =
∑
n≥1

∫
T

〈φ(t), xnχAn(t)〉dµ(t)

=
∑
n≥1

∫
T

hn(t)dµ(t), with hn as in Lemma 3.1

=

∫
T

∑
n≥1

hn(t)dµ(t) =

∫
T

∑
n≥1

〈φ(t), xnχAn(t)〉dµ(t)

=

∫
T

〈φ(t),
∑
n≥1

xnχAn(t)〉dµ(t)

=

∫
T

〈φ(t), f(t)〉dµ(t).

Thus,

Γ(f) =

∫
T

〈φ(t), f(t)〉dµ(t).

Now, |Γ(f)| =

∣∣∣∣∫
T

〈φ(t), f(t)〉dµ(t)

∣∣∣∣ ≤ ‖φ‖M(p,X?)‖f‖AX(p,µ), by Theorem 3.3 and thus

‖Γ‖? ≤ ‖φ‖M(p,X?). So we have ‖Γ‖? = ‖φ‖M(p,X?). This completes the proof.

In the following we will show that AX(p, µ) ∼= LX(p, 1) for p ≥ 1, with equivalent

norms. That is, there exist absolute positive constants α and β such that α ‖f‖AX(p,µ) ≤

‖f‖LX(p,1) ≤ β ‖f‖AX(p,µ). The first observation is that M(p,X?) ∼= LX
?
(p′,∞), where
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1/p + 1/p′ = 1 and thus (LX(p, 1))? ≡ (AX(p, µ))?. In the next theorem, we will show

that AX(p, µ) is continuously contained in LX(p, 1).

Theorem 3.6. The space AX(p, µ) is continuously contained in LX(p, 1) with

‖f‖LX(p,1) ≤ ‖f‖AX(p,µ)

for 1 ≤ p <∞.

Proof. First, we observe that given x ∈ X and A ∈ M, we have (‖xχA‖X)∗(t) =

‖x‖X χ∗A(t) = ‖x‖X χ[0,µ(A))(t). Thus ‖xχA‖LX(p,1) =
1

p

∫ ∞
0

‖x‖X χ[0,µ(A))(t)t
1
p
−1dt =

‖x‖X µ(A)1/p. That is, ‖xχA‖LX(p,1) = ‖x‖X µ(A)1/p. Now, let f ∈ AX(p, µ) with

f(t) =
∑
n≥1

xnχAn(t) and
∑
n≥1

‖xn‖X µ(An)1/p < ∞. That is,
∑
n≥1

‖xnχAn‖LX(p,1) < ∞.

Thus, f(t) =
∑
n≥1

xnχAn(t) converges in LX(p, 1) and ‖f‖LX(p,1) ≤
∑
n≥1

‖xn‖X µ(An)1/p.

Taking the infimum over all the representations of f , we get ‖f‖LX(p,1) ≤ ‖f‖AX(p,µ) for

1 ≤ p <∞.

We therefore have the following situations:

(1) AX(p, µ) ⊆ LX(p, 1) and ‖f‖LX(p,1) ≤ ‖f‖AX(p,µ) for 1 ≤ p <∞.

(2) (AX(p, µ))? ∼= (LX(p, 1))?, since M(p,X?) ∼= LX
?
(p′,∞), 1/p+ 1/p′ = 1.

(3) AX(p, µ) is dense in LX(p, 1). Easily verified with standard technique.

As a consequence of these facts, the embedding operator I : AX(p, µ)→ LX(p, 1) defined

by I(f) = f is a Banach space isomorphism. Thus, we have the following result.
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Theorem 3.7. AX(p, µ) ∼= LX(p, 1) with equivalent norms, for 1 ≤ p < ∞. That is,

f ∈ AX(p, µ) ⇐⇒ f ∈ LX(p, 1) and α ‖f‖AX(p,µ) ≤ ‖f‖LX(p,1) ≤ β ‖f‖AX(p,µ) where α

and β are absolute positive constants.

Remark 3.4. Theorem 3.7 implies that given f ∈ LX(p, 1), p ≥ 1, we have that

f(t) =
∑
n≥1

xnχAn(t) with
∑
n≥1

‖xn‖X µ(An)1/p and ‖f‖LX(p,1)
∼= inf

∑
n≥1

‖xn‖X µ(An)1/p.

As we shall see in the next chapter this characterization gives a way to extend the result

by Stein and Weiss for operators defined on measurable vector-valued functions. This

provides a simple way to study the boundedness of operators on LX(p, 1).
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Chapter 4

Applications

4.1 Application of the Atomic Characterization of L1

In this section, we use the characterization of L1 to show that the study of the bounded-

ness of linear operators defined on L1 reduces to the study of the action on characteristic

functions. More specifically, we will study the boundedness of the Multiplication and

Composition operators defined into other Banach spaces such as the Lebesgue Lp and

Lorentz L(p, 1) spaces for p ≥ 1. The following result is the result by Stein and Weiss

given in Theorem 1.3 for p = 1.

Theorem 4.1. If T is a linear operator on the space of measurable functions and

‖T (χA)‖Y ≤ Mµ(A), A ∈ M where Y is a Banach space, then T can be extended to

all L1; that is T : L1 → Y and ‖T (f)‖Y ≤M ‖f‖1.

Proof. Define T : L1 → Y by T (f) =
∑
n≥1

cnT (χAn) for every f ∈ L1 with f(t) =∑
n≥1

cn
1

µ(An)
χAn(t) and

∑
n≥1

|cn| < ∞. We have that T is well-defined on L1 and it is

linear. Now consider, ‖T (f)‖Y ≤
∑
n≥1

|cn|
1

µ(An)
‖T (χAn)‖Y . So, ‖T (f)‖Y ≤ M

∑
n≥1

|cn|.

Taking the infimum on the R.H.S over all representations of f , we get ‖T (f)‖Y ≤M‖f‖1.

Remark 4.1. As mentioned earlier, Theorem 4.1 shows that to study the boundedness of

an operator defined on L1 it is enough to study the action on the characteristic function

of a measurable set as we shall see in the following examples.
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4.1.1 Multiplication Operator on L1

The Multiplication operator, defined as the point-wise multiplication by a measurable

function, is one of the commonly studied operators. It has been studied by many authors

in the past decades, especially on the Lebesgue and Lorentz spaces, and their variants.

For more information, we refer to [15, 16, 17, 21, 22, 23, 24]. In this section, we study

the multiplication operator defined on L1 into the Lebesgue space Lp and the Lorentz

spaces L(p, 1) for 1 ≤ p <∞.

Let g : T → R be a measurable function and Y be a Banach space of functions defined

on T . The Multiplication operator Mg : L1 → Y is defined as follows;

Mg(f) = g · f, for f ∈ L1

where g · f is the point-wise product of g and f , that is, (g · f)(t) = g(t) · f(t) for t ∈ T .

We recall the following Banach spaces, which is a generalization of M(α) introduced

by G. G Lorentz in [10] and denoted M(α, p) for 0 < α ≤ 1 and 1 ≤ p <∞:

M(α, p) =

{
g : T → R; ‖g‖M(α,p) = sup

µ(A)6=0

1

µ(A)α

(∫
A

|g(t)|pdµ(t)

)1/p

<∞

}

Remark 4.2. M(α, 1) = M(α) and thus M(1, 1) = L∞.

Theorem 4.2. The multiplication operator Mg : L1 → Lp, for p ≥ 1 is bounded if and

only if g ∈M(1, p) and ‖Mg‖ = ‖g‖M(1,p).

Proof. Suppose g ∈M(1, p) and let A ∈M. Consider

‖Mg(χA)‖p =

(∫
T

|g(t)χA(t)|pdµ(t)

)1/p

=

(∫
A

|g(t)|pdµ(t)

)1/p

≤ ‖g‖M(1,p) µ(A).
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That is,

‖Mg(χA)‖p ≤ ‖g‖M(1,p) µ(A).

So by Theorem 4.1, we have that ‖Mg(f)‖p ≤ ‖g‖M(1,p) ‖f‖1 for all f ∈ L1 and

‖Mg‖ ≤ ‖g‖M(1,p) .

Conversely, suppose Mg is bounded, that is ‖Mg(f)‖p ≤ ‖Mg‖ ‖f‖1 for all f ∈ L1. In

particular, for any A ∈M with µ(A) 6= 0, we have ‖Mg(χA)‖p ≤ ‖Mg‖ ‖χA‖1. That is,

(∫
A

|g(t)|pdµ(t)

)1/p

≤ ‖Mg‖µ(A).

So,

sup
µ(A)6=0

1

µ(A)

(∫
A

|g(t)|pdµ(t)

)1/p

≤ ‖Mg‖ <∞

Hence, g ∈M(1, p) and ‖g‖M(1,p) ≤ ‖Mg‖. Thus, ‖Mg‖ = ‖g‖M(1,p).

Remark 4.3. In particular, the multiplication operator Mg : L1 → L1 is bounded if and

only if g ∈ L∞ and ‖Mg‖ = ‖g‖∞.

To study the multiplication operator Mg : L1 → L(p, 1), we consider the following

space;

∆(p) =

{
g : T → R; ‖g‖∆(p) = sup

µ(A)6=0

1

pµ(A)

∫ µ(A)

0

g∗(t)t
1
p
−1dt <∞

}

Remark 4.4. ∆(p) ⊆ L∞ and ∆(1) = L∞.
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Theorem 4.3. The multiplication operator Mg : L1 → L(p, 1), for p ≥ 1 is bounded if

and only if g ∈ ∆(p) and ‖Mg‖ = ‖g‖∆(p).

Proof. Suppose g ∈ ∆(p) and let A ∈ M. By Proposition 1.2, we have (gχA)∗(t) ≤

g∗(t)χ[0,µ(A))(t), for all t ∈ [0,∞). Consider

‖Mg(χA)‖L(p,1) =
1

p

∫ ∞
0

(gχA)∗(t)t
1
p
−1dt ≤ 1

p

∫ µ(A)

0

g∗(t)t
1
p
−1dt.

So,

‖Mg(χA)‖L(p,1) ≤ ‖g‖∆(p) µ(A).

Hence, by Theorem 4.1 we have ‖Mg(f)‖L(p,1) ≤ ‖g‖∆(p) ‖f‖1 for all f ∈ L1 and

‖Mg‖ ≤ ‖g‖∆(p)

Conversely, suppose Mg is bounded, that is ‖Mg(f)‖L(p,1) ≤ ‖Mg‖ ‖f‖1 for all f ∈ L1.

Let A ∈ M with µ(A) 6= 0. By Proposition 1.3, choose Ã ∈ M with µ(Ã) = µ(A) and

(gχÃ)∗(t) = g∗(t)χ[0,µ(A))(t), for all t ∈ [0,∞). Now consider,

1

p

∫ µ(A)

0

g∗(t)t
1
p
−1dt =

1

p

∫ ∞
0

(
g∗(t)χ[0,µ(A))(t)

)
t
1
p
−1dt

=
1

p

∫ ∞
0

(gχÃ)∗ (t)t
1
p
−1dt

= ‖Mg(χÃ)‖L(p,1)

≤ ‖Mg‖ ‖χÃ‖1

= ‖Mg‖µ(A)
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So, we have

sup
µ(A)6=0

1

pµ(A)

∫ µ(A)

0

g∗(t)t
1
p
−1dt ≤ ‖Mg‖ <∞

Thus, g ∈ ∆(p) and ‖g‖∆(p) ≤ ‖Mg‖. Hence, ‖Mg‖ = ‖g‖∆(p)

4.1.2 Composition Operator on L1

Just as the multiplication operator, the composition operator has also received con-

siderable attention over the years. In this section we study the boundedness of the

composition operator define on L1 in to Lp and L(p, 1).

Given a measurable and non-singular function g : T → T and a Banach space Y , the

composition operator Cg : L1 → Y is defined by;

Cg(f) = f ◦ g, for all f ∈ L1

where f ◦ g is the composite of f and g.

Remark 4.5. We observe that for any A ⊆ T and g : T → T , χA ◦ g = χg−1(A), where

g−1 denotes the pre-image of A under g,that is, g−1(A) = {t ∈ T : g(t) ∈ A}.

Theorem 4.4. The composition operator Cg : L1 → Lp, 1 ≤ p < ∞ is bounded if and

only if µ(g−1(A))1/p ≤ Cµ(A) for some C > 0 and all A ∈M, and

‖Cg‖ = sup
µ(A)6=0

µ(g−1(A))1/p

µ(A)
.

Proof. Suppose g satisfies the condition µ(g−1(A))1/p ≤ Cµ(A) for all A ∈M and some

C > 0. So, we have ‖Cg(χA)‖p =
∥∥χg−1(A)

∥∥
p

= µ(g−1(A))1/p ≤ Cµ(A). Thus,

‖Cg(χA)‖p ≤ Cµ(A), for all A ∈M
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Hence, ‖Cg(f)‖p ≤

(
sup

µ(A)6=0

µ(g−1(A))1/p

µ(A)

)
‖f‖1 , f ∈ L1 by Theorem 4.1 and

‖Cg‖ ≤ sup
µ(A)6=0

µ(g−1(A))1/p

µ(A)
.

Conversely, if Cg : L1 → Lp is bounded, then for any A ∈M with µ(A) 6= 0, we have

‖Cg(χA)‖p ≤ ‖Cg‖ ‖χA‖1

That is,

µ(g−1(A))1/p ≤ ‖Cg‖µ(A)

So,

sup
µ(A)6=0

µ(g−1(A))1/p

µ(A)
≤ ‖Cg‖ <∞, and thus ‖Cg‖ = sup

µ(A) 6=0

µ(g−1(A))1/p

µ(A)

Theorem 4.5. The composition operator Cg : L1 → L(p, 1), 1 ≤ p < ∞ is bounded if

and only if µ(g−1(A))1/p ≤ Cµ(A) for some C > 0 and all A ∈M, and

‖Cg‖ = sup
µ(A)6=0

µ(g−1(A))1/p

µ(A)
.

The proof of Theorem 4.5 is similar to that of Theorem 4.4 and therefore omitted.

In the next section we study the Multiplication and Composition operators on the

Lorentz-Bochner spaces LX(p, 1).
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4.2 Application of the Atomic Characterization of the Lorentz-Bochner Space

LX(p, 1)

As a consequence of the characterization given in Theorem 3.7, we have a simple way

to study the boundedness of operators defined on the Lorentz-Bochner space LX(p, 1) for

p ≥ 1. First, we have the following result which is an extension of Theorem 1.3 by E.

Stein and G. Weiss for Lorentz-Bochner spaces.

Theorem 4.6. Let T be a linear operator defined on the space of measurable vector-valued

functions into a Banach space Y such that ‖T (xχA)‖Y ≤M ‖x‖X (µ(A))1/p, 1 ≤ p <∞,

x ∈ X and A ∈ M. Then T can be extended to all LX(p, 1); that is T : LX(p, 1) → Y

and ‖T (f)‖Y ≤M ‖f‖LX(p,1) for all f ∈ LX(p, 1).

Proof. Indeed T can be extended to all of LX(p, 1) as follows; T : LX(p, 1) → Y with

T (f)
.
=
∑
n≥1

T (xnχAn), f ∈ LX(p, 1) with f(t) =
∑
n≥1

xnχAn and
∑
n≥1

‖xn‖X µ(An)1/p <∞.

T is well-defined on LX(p, 1) and ‖T (f)‖Y ≤
∑
n≥1

‖T (xnχAn)‖Y ≤M
∑
n≥1

‖xn‖X µ(An)1/p.

That is, ‖T (f)‖Y ≤M
∑
n≥1

‖xn‖X µ(An)1/p and so ‖T (f)‖Y ≤M ‖f‖LX(p,1).

Thus, to study the boundedness of a linear operator defined on LX(p, 1) it is enough

to study the situation for f = xχA, for x ∈ X and A ∈ M as we shall show with the

multiplication and composition operators. These operators have been studied by many

authors in particular by Arora et al in [23]. However, we believe that our technique and

simplicity of our approach is worth noting to enrich the subject. To do this, we first

consider the following definitions.

Let B(X) = {L : X → X : L is linear and bounded} with norm ‖L‖ = sup{‖L(x)‖X :

‖x‖X = 1} for L ∈ B(X). For a strongly measurable function u(·) : T → B(X), define
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‖u(·)‖ : T → R by ‖u(·)‖ (w) = ‖u(w)‖ and ‖u(·)(x)‖X : T → R by ‖u(·)(x)‖X (w) =

‖u(w)(x)‖X for w ∈ T and x ∈ X. We define the spaces Mp
1 (B(X)) and Vp as follows;

Mp
1 (B(X)) =

{
u(·) : T → B(X) : ‖u‖Mp

1 (B(X)) = sup
µ(A)6=0

1

pµ(A)1/p

∫ µ(A)

0

‖u(·)‖∗ (t)t
1
p
−1 dt <∞

}

and

Vp =

{
g : T → T : ‖g‖Vp = sup

µ(A)6=0

{
µ(g−1(A))

µ(A)

}1/p

<∞

}
,

where g is non-singular and measurable.

Remark 4.6. We note that Mp
1 (B(X)) ∼= L∞(B(X)) with ‖u‖Mp

1 (B(X)) = ‖u‖L∞(B(X)).

This is an extension of the result obtained by De Souza et al and we refer the reader to

[24].

For a strongly measurable function u(·) : T → B(X), the Multiplication operator

Mu : LX(p, 1)→ L(T,X) is defined as

(Muf)(w) = u(w)(f(w)), for all w ∈ T,

where L(T,X) is the space of all measurable functions from T to X. For a non-singular

measurable function g : T → T , the Composition operator Cg : LX(p, 1) → L(T,X) is

defined as

(Cgf)(w) = f(g(w)), for all w ∈ T.

Theorem 4.7. The multiplication operator Mu : LX(p, 1) → LX(p, 1) is bounded if and

only if u ∈Mp
1 (B(X)). Furthermore,

‖Mu‖ = ‖u‖Mp
1 (B(X))
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Proof. Suppose u ∈ Mp
1 (B(X)) and let f = xχA for A ∈ M and x ∈ X. It is straight

forward to see that ‖MuxχA‖∗X (t) ≤ ‖u(·)‖∗ (t) ‖x‖X χ[0,µ(A))(t) and thus

‖MuxχA‖LX(p,1) ≤
1

p
‖x‖X

∫ µ(A)

0

‖u(·)‖∗ (t)t
1
p
−1 dt.

Hence, it follows that

‖MuxχA‖LX(p,1) ≤ ‖u‖Mp
1 (B(X)) ‖x‖X µ(A)1/p.

Thus, by Theorem 4.6, we have that

‖Muf‖LX(p,1) ≤ ‖u‖Mp
1 (B(X)) ‖f‖LX(p,1) , for all f ∈ LX(p, 1) and ‖Mu‖ ≤ ‖u‖Mp

1 (B(X)) .

Now suppose that Mu : LX(p, 1) → LX(p, 1) is bounded. Let A ∈ M with µ(A) 6= 0.

Given ε > 0, choose x(·) ∈ X with
∥∥x(·)

∥∥
X

= 1 such that

‖u(·)‖ ≤
∥∥u(·)(x(·))

∥∥
X

+ ε.

It follows that,

‖u(·)‖∗ (t) ≤
∥∥u(·)(x(·))

∥∥∗
X

(t/2) + ε, for t ≥ 0.

So,

∫ µ(A)

0

‖u(·)‖∗ (t)t
1
p
−1 dt ≤

∫ µ(A)

0

∥∥u(·)(x(·))
∥∥∗
X

(t/2)t
1
p
−1 dt+ pεµ(A)1/p

= 21/p

∫ µ(A)/2

0

∥∥u(·)(x(·))
∥∥∗
X

(t)t
1
p
−1 dt+ pεµ(A)1/p

= 21/p

∫ ∞
0

∥∥u(·)(x(·))
∥∥∗
X

(t)χ[0,µ(A)/2)(t)t
1
p
−1 dt+ pεµ(A)1/p.
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Choose Ã ∈M with µ(Ã) = µ(A)/2 such that

(
∥∥u(·)(x(·))

∥∥
X
χÃ)∗(t) =

∥∥u(·)(x(·))
∥∥∗
X

(t)χ[0,µ(Ã))(t).

Thus, we have

∫ µ(A)

0

‖u(·)‖∗ (t)t
1
p
−1 dt ≤ 21/p

∫ ∞
0

(
∥∥u(·)(x(·))

∥∥
X
χÃ)∗(t)t

1
p
−1 dt+ pεµ(A)1/p

= 21/p

∫ ∞
0

(
∥∥u(·)(x(·)χÃ)

∥∥
X

)∗(t)t
1
p
−1 dt+ pεµ(A)1/p

= p21/p
∥∥Mux(·)χÃ

∥∥
LX(p,1)

+ pεµ(A)1/p

≤ p21/p ‖Mu‖
∥∥x(·)

∥∥
X
µ(Ã)1/p + pεµ(A)1/p, since Mu is bounded

= pµ(A)1/p(‖Mu‖+ ε).

Hence,

1

pµ(A)1/p

∫ µ(A)

0

‖u(·)‖∗ (t)t
1
p
−1 dt ≤ ‖Mu‖+ ε.

Letting ε→ 0, we get that u ∈Mp
1 (B(X)) and ‖u‖Mp

1 (B(X)) ≤ ‖Mu‖. Thus,

‖Mu‖ = ‖u‖Mp
1 (B(X)) .

Theorem 4.8. The composition operator Cg : LX(p, 1) → LX(p, 1) is bounded if and

only if g ∈ Vp. Furthermore,

‖Cg‖ = ‖g‖Vp
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Proof. Suppose g ∈ Vp. LetA ∈M, x ∈ X and consider (CgxχA)(w) = xχg−1(A)(w), w ∈

T and thus ‖CgxχA‖∗X (t) = ‖x‖X χ[0,µ(g−1(A))). So,

‖CgxχA‖LX(p,1) =
1

p

∫ ∞
0

‖CgxχA‖∗X (t)t
1
p
−1 dt

=
1

p
‖x‖X

∫ µ(A)

0

t
1
p
−1 dt

= ‖x‖X (µ(g−1(A)))1/p.

So, we have that

‖CgxχA‖LX(p,1) = ‖x‖X (µ(g−1(A)))1/p, and thus ‖CgxχA‖LX(p,1) ≤ ‖g‖Vp ‖x‖X µ(A)1/p.

Hence, by Theorem 4.6, we get

‖Cgf‖LX(p,1) ≤ ‖g‖Vp ‖f‖LX(p,1) , for all f ∈ LX(p, 1) and ‖Cg‖ ≤ ‖g‖Vp .

Conversely, suppose Cg : LX(p, 1)→ LX(p, 1) is bounded, and let A ∈M with µ(A) 6= 0

and x ∈ X with ‖x‖X = 1. We have

‖CgxχA‖LX(p,1) ≤ ‖Cg‖ ‖x‖X µ(A)1/p, since Cg is bounded.

That is,

‖x‖X (µ(g−1(A)))1/p ≤ ‖Cg‖ ‖x‖X µ(A)1/p.

Hence, we have {
µ(g−1(A))

µ(A)

}1/p

≤ ‖Cg‖ .

So, we conclude that g ∈ Vp and ‖g‖Vp ≤ ‖Cg‖. Thus, ‖Cg‖ = ‖g‖Vp .
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4.3 Conclusion

A decomposition of the Lebesgue space L1, and the Lorentz-Bochner space LX(p, 1)

for p ≥ 1 has been studied in this work. It is worth noting that these decompositions

are in terms of characteristic functions of measurable sets. These decompositions are

used to study the boundedness of some linear operators defined on the spaces into other

Banach spaces. The computations provided are quiet simple and straightforward since

we only have to consider the action on characteristic functions which are simple functions

to deal with. Similar decompositions will be studied for other well known Banach spaces

in future work.
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