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Abstract

In recent years, there has been a drastic growth in wireteffict and in the near future, a
majority of wireless traffic will be video-related. How toport the increasing demand of radio
resources from the bandwidth-hungry services has atttactensive research interests from both
academia and industrial areas. Milli-Meter Wave (mmWagehnhology and Cognitive Radio (CR)
technology was recently proposed to enhance the wireleg®riecapacity.

However, some challenges are needed to be addressed be¢acaroapply these techniques.
For example, how to adjust coding scheme to the changindess@etwork environment to against
the problem of uncertainty of channel condition. Beside£ agnitive Radio Network (CRN), it
is important to coordinate the transmissions of the primesgrs and that of the secondary users
so that Cognitive Users (CUs) will not cause unacceptableference to Primary Users (PUs)
while their utility can be maximized, which also depends loa tadio resource allocation for the
CUs. What's more, in the mmWave network, due to the dynamic reélaconditions, how to
optimally coordinate the concurrent transmissions of Imegging links based on their possible
channel conditions, so that the network throughput is camipeoved.

In this dissertation work we study how to use adaptive videdirgy to combat channel un-
certainty in mmWave network and investigate how to optintize channel allocation in video
streaming over cognitive radio networks.

The first part of this dissertation investigates the probt#nstreaming uncompressed HD
video over mmWave wireless networks so that the expected stpaare error of the reconstructed
video quality is minimized. An adaptive coding scheme tlaaitdynamically adjust to the changing
channel conditions is proposed so that error rate is reduaedl a dynamic interleaving based
transmission strategy is incorporated to avoid busty sriortransmission. Efficient algorithm

with low computational complexity is proposed to solve foe bptimal setup.



The second part of this dissertation investigates the prolf video streaming over CRN.
Spectrum sensing and spectrum allocation are optimizeld thad so that Quality of Experience
(QOE) of CUs are maximized. Due to the non-linearity of the Q@ué&del, the spectrum sensing
problem and the spectrum accessing problem are solvedaselyaand some performance may be
lost. We discuss the case when each CU can sense only one chadnéme and the case when
each CU can sense multiple channels each time.

The third part of this dissertation investigates the problaf video streaming over CRN,
where the spectrum sensing, spectrum allocation, andntiapswer allocation are jointly opti-
mized such that so that Quality of Service (QoS) of CUs are miaeid, which is significantly
different with the second part. We show that the formulatereld Integer NonLinear Program-
ming problem can be decomposed into two sub-problems witbeerificing optimality, and with
a much lower computational complexity. We analyze the psegaterative algorithm with respect
to complexity and time efficiency, and derive a performanmeen bound.

The fourth part of this dissertation investigates the probbf relay and link selection in a
dual-hop mmWave network aiming at minimizing the MaximunpEgted Delivery Time among
all Tx-Rx pairs, while exploiting reflected mmWave transrnosas and considering link blockage
dynamics. Due to the NP-hardness of the formulated problerdevelop a Decomposition Prin-
ciple to transform this problem into two sub-problems, amdihk selection and the other for relay
assignment. We prove that the proposed scheme can achieyiarality gap of just 1 time slot
at greatly reduced complexity. The proposed schemes aigated with simulations with their
superior performance observed.

The fifth part of this dissertation investigates the probt#mser scheduling in multiple hop
mmWave networks, so that the number of time slots neededrte sd user’ traffic demand is
minimized. Channel condition changes over time and at eauhdiot, given the possible channel
states, the PNC decides the optimal routing path and whiehsughould access the channel at
current time slot, aiming at maximizing the long term wilaf the whole network. We propose

a heuristic algorithm with greatly reduced complexity tdveathis problem, which first fix the



optimal routing path for a long term and then maximizes tlséaint network throughput. A simlilar
problem in singel hop mmWave network is also studied andfectafe algorithm is proposed. The
performance of the heuristic algorithms is validated withigations.

In summary, this dissertation aims to improving the QoS/Quivisioning in emerging wire-
less networks by addressing the resource allocation andsaseduling problems. In-depth anal-
ysis and comprehensive results are also provided. Some dihitings may shed light on how to

put emerging techniques into real applications.
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Chapter 1

Introduction

Due to the rapid development of the mobile devices such astghwme and laptops in the
last decade, wireless data traffic has experienced a explgsiwth, where video-related services
is one of the wireless services that enjoyed the fastesttgrmwecent years, according to a im-
ages conducted by Cisco [6]. The drastic expansion of wisdiedfic poses great challenge to
the capacity of existing wireless networks, and efficienhtelogies, such as mmWave and CR,
are proposed recently to magnify the wireless network dap&e accommodate the increasing
wireless traffic.

To resist the channel uncertainty issue in wireless netsvarid the sequential packet loss
problem, adaptive video coding is proposed to adjust to iaging channel conditions to ensure
received video quality. When channel conditions are goodnagchoose aggressive video coding
algorithms so that more effective data can be transmittéaoart corrupted by transmission errors
to improve the received video quality, and while channelditons are poor, conservative video
coding algorithms are chosen so that the most importantrimdton of the video is well-protected
in transmission and received by the receiver so that a badeo\wquality is guaranteed at the
receiver.

Moreover, to expand nowadays wireless network capacitytarslipport High Definition
(HD) video streaming, mmWave frequency is exploited to antmdate the explosion of wireless
data traffic, especially for bandwidth-hungry servicedwsagvideo streaming. However, mmWave
channel is highly directional and susceptible to blockagé®link-of-sight path caused by obsta-
cles, due to its high frequency which leads to serious sigoakr attenuation and a poor capability

of penetrating obstacles. We apply interleaving techrégoehe packets of multiple consecutive
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Figure 1.1: Frequency usage measurement

frames to reduce the bursty error rate in mmWave networkg¢hvhrings in a greater probability
of recovering received video with higher quality.

Cognitive radio is also proven to have great potential to nfgghe wireless network capac-
ity and has attracted intensive attention of researchens fioth academy and industry. According
to the FCC report [2], while some licensed bands are overcedywhany others are underutilized,
as in Fig. 1.1. Under traditional fixed spectrum allocatialiqy, when PUs are not active, the
channels assigned to them are wasted (termed as spectrwortwopies). Cognitive radio net-
works (CRN) are proposed as a hew wireless paradigm for exgjatich spectrum opportunities,
to enable flexible and efficient access to radio spectrum. In GRNcensed users (or, CUs) are
allowed to access the licensed band opportunisticallylesUs gain by collecting revenue for
spectrum leasing. Such a CR paradigm has been shown to hdvedtegntials to enhance spec-
trum efficiency.

However, channel quality may be highly diverse in CRNs due terbgeneous network,
and a channel may have different utility (e.g., SNR) to dédferusers, therefore it is important to
optimize the channel allocation to users so that the ovatdilly of all users can be maximized.
Besides, a reliable spectrum sensing result should not astpwker the available idle spectrum
for a Cognitive radio User (CU), but also not to misidentify theavailable spectrum as available
spectrum for CUs access, in order not to cause interferenB&to If a CU spends more time

on spectrum sensing to guarantee a good sensing resultthielata transmission time will be

2



shorten, which lowers the CU’s throughput. And users may diferent sensing accuracy for the
spectrum.

Power allocation is also important to the performance of Guse way to ensure the desired
SINR at the receiver is to control the transmit power of thigeasession and that of other video
sessions in order to guarantee the strength of the desgedlsand limit the interference to an
acceptable level. When there are concurrent video sessidbBN, it is necessary to control the
power of each transmission in order to constraint the iaterfce caused to other sessions, and
meanwhile achieve the required SINR for each transmission.

For comprehensive evaluation of video quality, we studyhlibe Quality of Service (QoS)
and Quality of Experience (QoE) measurements in our desent where QoS is an objective
assessment method of the performance of network, while @@Esubjective assessment method
of a user’s experiences with a service. In other words, QdRegerceptual QoS from the users
perspective. While monitoring and controlling QoS paramsetd the video transmission system
is important for achieving high video quality, it is more cral to evaluate video quality from the
users perspective. In this work, we study how to improve th& @d QoE based on the developed
QoS and QoE models by jointly optimization of spectrum sampschannel allocation, and power
allocation.

As mentioned above, although the mm Wave band is attractiveést capability of support-
ing high data rates, many challenges should be addressedk® mm Wave networks applica-
ble [143]. The wireless signal propagating in mm Wave chinsgffers from an attenuation that
is much higher than that in 5GHz channels [147]. To overcdrmaditgh attenuation, beamforming
should be used to increase the signal’s effective powelewheé small wavelength allows for in-
tegration of many antenna elements with a small form fadtdras been shown in [146] that the
highly directional links, especially in the outdoor enviroent, can be treated as “pseudowired”,
i.e., the probability of collision even in a dense mm Wavenoek could be small. Although the
pseudowired feature is attractive from the perspectivepafial reuse, extremely narrow transmis-

sion beamwidths will make it hard for network coordinatiardacontrol [147], which all require



the nodes in a neighborhood to be able to hear from each dthedoor mm Wave networks, the

beamwidth is usually wider than that in outdoor networks e smaller transmission distance.
The interference among neighboring links should be consdlm this case. In our work we study
both of the indoor transmission and outdoor transmissigea

In addition, mmWave signals in the mm Wave band usually dceastly diffract around or
penetrate obstacles. A line-of-sight (LOS) path betweentthnsmitter and receiver is required
for a successful transmission. When the LOS path is blockegd (®/ a human body), relay nodes
will be needed to forward data for a hidden receiver or wdleations can be utilized [148]. The
blockage may appear or disappear occasionally due to themmawt of obstacles between the
transmitter and receiver or the movement of the transnuiteeceiver themselves [150, 151]. A
flexible link model that considers both narrow and wide beative and dynamic blockage will
be desirable for the design of mm Wave network protocols.

In the work we investigate the problem of link scheduling agldy assignment in mm Wave
networks, where a two-state Markov chain model is adoptecafure the dynamic blockage
behavior of mm Wave channel. Based on the possible channes gtalocked or unblocked) at
each time slot, we study the problem of optimally assigniaigys to Tx-Rx pairs, and which
Tx-Rx pairs should access channels at each time slot, sohthanterference they cause to each
other is refrained under an acceptable level, and the nktpenformance in terms of throughput
is maximized. Besides, unlike prior works on relay selectiomm Wave networks, we consider
the LOS and multiple reflected NLOS links between transngtand receiving nodes. Although
using reflections will cause additional power loss and rechmwver efficiency, it offers additional
choices for increasing network coverage and improving aghroughput.

The contributions of our work is summarized as follows:

1. We investigated how the bits in different positions in gephave different levels of signif-
icance on recovering the original video frame, and proposeombat the lossy mmWave

channel with Multiple Description Coding (MDC). Specificalbits in a pixel are optimally



divided into multiple segments according to their respecimportance and channel con-
dition, with different level of protection. Besides, packeterleaving are used to further
reduce busty error rate in mmWave networks. We formulatgthblem of minimizing the
Mean Square Error (MSE) of the received video by optimal ssgation of the pixel bits
and optimal interleaving depth. A heuristic algorithm isposed to solve this problem with

greatly reduced complexity.

. We study the problem of maximizing the QoE of all the CUs bgrtjg optimizing spectrum

sensing and channel assignment. Due to the non-linearttyed®oE model, the problem is
formulated as an Nonlinear Integer Programming problenP{NUnder the assumption that
all the spectrum sensors work at the same operating pant\iiith the same probability of
detection and the same probability of false alarm), we st this challenging problem
can be solved with a two-step approach: First, the spectamsiisg scheduling problem is
solved with a greedy algorithm; Second, the channel alioegiroblem, which is a Maxi-

mum Weight Matching problem and can be solved optimally wlith Hungarian Method.

We prove that the two-step solution algorithm is indeedropti decomposing the original
problem into two sub-problems and solving them sequenwntidinot sacrifice the optimality

of the solution.

. We investigate the problem of QoS maximization videoastriag over CRN. Consider-
ing the frequency diversity among users and the transnmigsowver limit, the problem is
formulated as a joint-optimization problem that spectriensing, channel allocation and
transmission power allocation for users are jointly optied, which is an NIP. We decom-
pose the problem into two sub-problems that can be solvddgriatly reduced complexity
and without sacrificing optimality. To further reduce spent sensing overhead for users,
we proposed a heuristic spectrum sensing algorithm with @#empetitive performance val-

idated by simulation results.



4. We investigate the scheduling problem in centralized-top 60GHz networks in the out-
door environment. We adopt the “pseudowired” assumptiahtaos the interference be-
tween different links can be ignored, and the objective ismtoimize the Maximum Ex-
pected Delivery Time among all Tx-Rx pairs by jointly optinmg relay and link selection
in a two-hop wireless network. We develop a Decompositiandiyle to transform this
problem into two sub-problems, one for link selection anel dther for relay assignment.
We prove that the proposed scheme can achieve an optimalityofjjust 1 time slot at
greatly reduced complexity. NLOS links are also utilizedutther improve the coverage

and throughput of the network.

5. We investigate the problem of link scheduling in both oé dp and multi-hop mmWave
networks in the indoor environment, and the interferenceraymeighboring links is consid-
ered in this case. The objective is to minimize the time donateeded to satisfy the traffic
demand of all the links. The optimization consists of two ongjarts, one is to choose the
optimal relays for the transmitters and receivers whichaoarteof the transmission range of
each other (for the multi-hop case), and the other is to deter which Tx-Rx pairs should
access the channels based on the possible channel cosditieach time slot, so that the
interference they cause to each other will not be too higliféztheir transmissions, while
the network throughput can be maximized at the same time farhmulated problem is NP
hard, and we propose heuristic algorithms with greatly ceduicomplexity, which first finds
the optimal streaming path for each Tx-Rx pair (for the miatip case)and then maximizes

the instant network throughput by optimizing the link schigty at each time slot.



Chapter 2
Adaptive Multiple Description Coding and Transmission ofddmpressed Video over mmWave

Networks

2.1 Introduction

With the dramatic advances in wireless networking techylthere is an exponentially in-
creasing demand for wireless data service. In particulabil® video is predicted to grow at
a compound annual growth rate (CAGR) of 90% from 2011 to 2016 (&gnitive radio (CR)
has been recognized as an important technology for entgspiectrum efficiency, while many
dynamic spectrum access techniques are developed to bslitsr the allocated spectrum [72].
On the other hand, millimeter wave (mm-wave) communicaiorthe mmWave band has gained
considerable interest from academia, industry, and stdededies [16]. There is huge unlicensed
bandwidth (i.e., up to 7 GHz) in the mmWave band that is alsélan most parts of the world. In
addition to indoor use, FCC recently updated the rules foutiliensed mmWave band, which
will allow higher emission limits for mmWave devices thatoate outdoors, thus enabling broader
deployment of point-to-point broadband systems [7]. Thesiva unlicensed bandwidth provides
great potential to meet the surging wireless video demanaedl as supporting new bandwidth
demanding applications [8, 20].

Recently, the problem of transmitting uncompressed Highriitefn (HD) videos via mmWave
channels has attracted intensive interest. The immensinadth of the mmWave channel enables
streaming of uncompressed HD videos with high data ratess{#jh as the 1080p video, which
has 19261080 pixels (each of which has 24 bits) per video frame andrtrae size is about
6 MBs. Such high speed wireless links can not only replace uingbersome HDMI cables, but
also relieve the computational burden for video decodirtheatlisplay devices (e.g., projectors or

HDTVs).



Although the larger bandwidth is a great advantage of mmWatworks, the mmWave trans-
missions are highly directional to overcome the high ation, making it susceptible to blockage
of the line-of-sight path by obstacles or pedestrians. Thesnemory of the channel poses a neg-
ative effect on the performance of the system, and chanmalitons such as packet loss rate
may change over time [16]. How to adjust the operation patars®f the transmission system is
critical to maintain a certain level of QoS under such caods.

In this chapter, we investigate the problem of streamingmqressed HD video over mmWave
networks. Considering the fact that bits of different pasifi in a pixel have different levels of sig-
nificance on recovering the original video frame [10], it isstfable to improve the quality of
reconstructed video frames by offering more protectiontf@ more important bits. We adopt
multiple description (MD) coding (MDC) to combat the lossy Wave channel. In MDC, a video
is encoded into multiple descriptions, each can guarani@g but acceptable video quality. More
important, the more descriptions received, the better itheovquality. MDC has been used mostly
for compressed videos in lossy wireless or wireline netwankthe literature [12, 13].

Here we adopt MD coding for uncompressed videos, exploitiegdifferent significance of
the different bits in a pixel. In particular, in order to ensthe quality of the reconstructed video,
we divide the bits in a pixel into multiple segments accogdia their respective significance in
enhancing video quality, and provide higher protectionits tf greater importance by assigning
more forward error correction (FEC) symbols to them. This vlag decoder has a higher proba-
bility of recovering the most important bits, which affebetquality of the reconstructed image to
a larger extent. Such an MD coder is termed MD-FEC. How to fiamtthe bits, i.e., how many
segments the bits should be divided into, and how many bitarécplar segment should have,
affects the significance of a particular segment and thegtitity of decoding the segment.

To combat the bursty errors while transmitting over the mm&\&hannel, interleaving among
multiple video frames is applied in our scheme. We formuéat®nlinear integer programming
problem, which can be solved to find the optimal partitionted pixel bits in the MD coder, as

well as the optimal interleaving depth, for given channeiddibons. To reduce computational



Table 2.1: Notation
Symbol Description

M Number of rows of the image matrix

N Number of columns of the image matrix

C Number of rows of the sub-image matrix

D Number of columns of the sub-image
matrix

Q Number of sub-images of an image

S Number of segments the 8 bits are
divided into

m; Length of thei-th segment] <¢ < S

k Number of bits constituting a symbol

Ji Number of groups the data symbols of
stream; are divided

L Code word length of the RS code

P.(G) Probability of an error occurring in the
good state

P.(B) Probability of an error occurring in the
bad state

Py Channel state transition probability from
good to bad

Py Channel state transition probability from
bad to good

H Number of images interleaved together

A Maximum tolerable time of recovering
the image

A Minimum packet size

A, Maximum packet size

complexity, we solve the problem with a heuristic approamhsiub-optimal solutions. The pro-
posed scheme is adaptive to the dynamic mmWave link condifior enhanced video quality. It
is evaluated with simulations and is shown to outperformyastiag scheme reported in [19] with
considerable gains.

The remainder of this chapter is organized as follows. Relatak is reviewed in Section 6.2.
We present the proposed MD coding and transmission scheSexiion 2.3 and simulation results
in Section 3.6. Section 6.8 concludes this chapter. Theinatased in this chapter is summarized

in Table 2.1.



2.2 Related Work

In this section, we briefly review related work on video tmraission over mmWave channels,
and two MD-FEC techniques and Reed-Solomon coding, whichheréasis of our proposed
scheme.

Considering the similarity in the most important bits of thegihboring pixels in an image,
the authors of [10] propose a technique to correct the emrtirda most important bits in a pixel by
comparing those bits of the pixel with the bits at the saméipos in its neighboring pixels. Shao
et al. in [18] also develop a method to recover the bits of alpigsing the neighboring pixels. With
this scheme, the neighboring pixels are encapsulated iffeveht packets that are transmitted
separately, so that a lost pixel can still be approximatedthgr received packets containing the
neighboring pixels. However, there is no measures on pimyibetter protection for the most
important bits during transmission, which affects the gyalf reconstructed video frames.

In [19], an Uncompressed Video streaming over Wireless ¥)/system is proposed for
transmission of uncompressed video on mmWave channelsisisytstem, the 8 bits representing
a pixel are divided into two 4-bit parts according to thegrsficance in recovering the video: MSB
(most significant bits) and LSB (least significant bits). TM&B portions are better protected
than the LSB portions by being transmitted through a chaaohbktter condition. The encoder
retransmits the MSB part if it has an error, but corrupted L&iBts will not be retransmitted.
However, there is no evidence that the system achieves gig@bdormance by cutting the 8 bits
into two 4-bit segments, and there is no investigation oremathannel condition changes, how to
adjust the operational parameters to make it adaptive tottheging channel conditions.

In [5], Bosco develops a cross-layer adaptive scheme for ldBos streaming over mmWave
channels, where the sender adjusts the modulation andgscliemes (MCS) in response to chan-
nel variations to maintain good video quality. A method obperation with relay for transmission
of HD videos over mmWave channels is developed in [9]. Theé®and relay use different error

correcting codes so that error correcting performance eanbanced, and spatial diversity gain is
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obtained by using the relay. As in [19], the message is alsmttwo fixed parts and the optimal
segmentation of the message is out of concern in this releoekl [9].

MD video coding has been shown to be highly effective for vidger lossy networks [4,11,
13,14, 21]. Among the many MD coding techniques, MD-FEC ispypar one based on Priority
Encoding Transmission (PET) [3], which assigns differe&vels of protection to data segments
according to their respective priority defined by the uséj.[Zhe higher the priority, the smaller
number of packets the decoder needs to decode it, so thaigherpriority segments have a
greater probability of being decoded. The basis of thisrétlgm is Reed-Solomon (RS) code,
which is a sub-class of the Bose-Chadhuri-Hocquenghem (BCH)scoRS coding provides an

effective way of recovering lost data symbols from a portiddata symbols received [17].

2.3 System Model, Problem Statement and Solution Procedure

We consider streaming uncompressed HD video over a mmWaedess link (e.g., from a
storage device to an HDTV or a video projector). The MD-FEG@iog scheme for uncompressed
HD video is introduced in Section 2.3.1. The mmWave chanraehand the interleaving based
transmission strategy is presented in Section 2.3.2. Thepresent our problem formulation in

Section 2.3.3 and solution procedure in Section 2.3.4.

2.3.1 MD-FEC Coding of Uncompressed Video

Consider an uncompressed video frama@bix N pixels. Each pixel consists 8fx 8 = 24
bits, while each 8-bit block corresponding to one of the R/GdBr components as shown in
Fig. 2.1. Thej-th bit in each of the 8-bit block represents a valu@®of. Obviously, thej-th bit is
more important than thej + 7)-th bit, for all: > 1, because it has a greater influence on the color
depth of the R/G/B component of the pixel.

Next we divide the frame evenly int@ sub-imageseach of which hag’ x D pixels, i.e.,

Q = &, for the purpose of:

11
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Figure 2.1: Structure of a pixel in the uncompressed video.
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Figure 2.2: Structure of a data stream, assunsing 3.

e the packet size will not become too large so that the pacaasinission time can be fitted

in the unit time slot in our channel model;

¢ the number of data symbols of a data stream will not becoméatge so that RS codes can

be applied to the data symbols.

Now let's take ther-th sub-image as an example; each of the following procedwikk be
performed on other sub-images as well. First, each of thées&épresenting the R/G/B color in a
pixel is divided intoS segmentsl < S < 8, and the length of (i.e., the number of bits in) segment
1, is denoted as;, 1 < i < S. Rearrange all théth segments of the R/G/B color of all the pixels
in a sub-image into a new segment caltiata streami, which has% bits. We define the
significanceof data stream of sub-image- as the summation of the values of all the data bits in

segment of sub-image-, and denote it ag); .

ml—l

Z 98-%jmimi—L (2.1)

Due to uncompressed video, there is no reason to prefer gakboper another when semantic
content is not considered. We thus have= w! foranyr # ¢, 1 <r < Q,1 < ¢ < Q. Fig. 2.2
shows an example of cutting each of the 8 bits of a pixel in aimdge into 3 segments and

combining all the first segments into data stream 1 of theissye.
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From (2.1), we can see that > wj , foralll <r < @Q,1 <4 < S — 1, which implies
that recovering data streanis more important than recovering data strg@m 1) for the purpose
of enhancing the quality of reconstructed frames at theivece Therefore, we assign higher
protection to data strearthan data streany + 1) to make the probability of recovering data
streami higher than that of recovering data streém- 1). We illustrate how to achieve this goal
below.

First, we letk bits in a data steam formdata symbal For example, we can take= 8 for
the convenience of computer processing. Then data stiezam be represented W data
symbols. Thesémé—z‘,fN symbols of data streatnis further divided intog; groups, each of which
has% data symbols. We apply RS code to each group so that the tatdberuof symbols
(including both data and FEC symbols)iisL < 2¥ — 1, which is a constraint of RS coding.

This way, the number of FEC symbols assigned to each grougtafadream is L. — %
The j-th symbol of all the groups of all the data streams composejin descriptionof the
frame, and is transmitted in one packet. This procedurdusstibted in Fig. 2.3. To assign higher

protection to data streairthan data strearfi + 1), the error correcting capacity, or the amount of

FEC symbols for data streanshould be greater than that of data stream1), i.e., [ — 2325 >
L _ 377’74+1MN

Ohgirs which implies that

(2.2)

As shown in Fig. 2.3, each description (or packet) consikisd®eo data bits and FEC bits
from all the data streams, and is equally important for retroicting the frame. The quality of
the reconstructed frame is proportional to the number ofg@sons received. I%]ﬁ]\’ or more
error-free descriptions are received, then all the grodmiata stream 1 can be decoded, which
guarantees a basic quality for this video frame. In gendrtle decoder receives at Ieaﬁé&%

error-free descriptions, then all the data streams upctn be decoded, resulting in an improved

13



Header Bytes
1 2 IMN e FEC
Oke, | 7| o _____ |
l 1 1 I 1
1 1 1 | 1
l 1 1 I 1
| 1 1 | 1
N E Y N N
1 2 v FEC FEC
T Okg,
l 1
| 1
| Data symbols of data FEC symbols of datal
* | stream i stream i
3m,MN
gigroups | 1 2 e | FEC FEC
ofdata 44— ________ kg | | __ [
symbols | | | | |
and FEC : : } : :
symbols | | | | |
ofdata % | _________ som—+ -~ —
stream i | 1 2 3mMN FEC FEC
Okg;
f | 1
l [
1 1
| 1
|
1] 2 SINLL [ FEC
_____________________ | Okgs o
l 1 | | 1
l | | l 1
| 1 | 1 1
1 [ I l 1
_____________________ _3m\MN -
1 2 FEC FEC
Okg
1 2 . L
—1st packet Packet number

Figure 2.3: Structure of the packets of a sub-image.

quality for the frame. When more thé% < L error-free descriptions are received, the video

frame can be reconstructed without any error.

2.3.2 mmWave Channel and Transmission Schedule

After MD-FEC coding, the video packets are then transmitteer the mmWave link from
the sender (e.g., a storage device) to the receiver (e.BlDAV or video projector). As discussed,
the mmWave channel is highly directional and susceptibleldckage of the link-of-sight path.
Therefore, we model the mmWave link with the Gilbert-EI{@&E) model, which is a discrete-
time two-state Markov chain as shown in Fig. 2.4 [22]. The states are: good state (denoted
asG in the figure) and bad state (denoted)s The probabilities that an error occurring at the
good state and bad state are denotef.&5') andP.(B), respectively. The transition probabilities
from G to B and fromB to G are P, and I, respectively. Because the Gilbert-Elliot channel

is a discrete-time model instead of a continuous-time moaelassume time is slotted and the
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Figure 2.4: The Gilbert-Elliot link model.

transmission time of a packet over the mmWave link is lese tireequal to the duration of one
time slot [4, 13].

When multiple beam paths are available between the tramsnanid receiver (e.g., a direct
path and a second path due to reflection on the wall), the patiititransport technique can be
used for the MD video packets [11]. In this chapter, we foaushe single beam path case, while
the proposed technique can be extended to the case of raligpim paths. Recall that MD-FEC
coding can ensure a minimum video quality if at Ie%%i% error-free packets are received for a
frame. However, if most of the packets are transmitted withbad period, it is possible that less
than 3 MN hackets can be received and the video frame cannot be dectrdedter to reduce

Qkg1

the bursty error rate, we adoipterleavingto the packets of multiple consecutive frames.

The interleaving scheme is illustrated in Fig. 2.5. Timerleaving depths the time interval
between the transmissions of two consecutive packets afahee sub-image. As shown in the
figure, the interleaving depth is set @@, while H is a non-negative integer. We can adjiist
to find the best interleaving depth for different channeldibons in terms ofP.(G), P.(B), and
the transition probabilities. when the average bad pefigd is large, we can increasgH by
increasingH. The probability that multiple consecutive packets of a-snage are transmitted
within the bad period can be reduced. Since RS coding is applieur scheme, the probability
of failing to decode data streairof sub-imageX of imageY is the probability that the decoder

receives less thaﬁ% error-free data packets, which can be expressed as [22]

PiXY — ZPZ(d) {Z [CSbP:b(B) (1— PE(B))d_eb

eb:O

15



Zf CyaPe(G) (1= P(G) %) (2.3)
eg=max{0,i+1—e,}

where P (d) is the probability that given the GE channel is observed abntinuous time slots,
the probability that the channel is in the bad stateiffome slots;” is the block code length of the
error correcting code being used and tiis= L = 2¥ — 1 in our exampleg, ande, denote the
numbers of packets in error when the channel is the bad stdtga@od state, respectivelyis the
error correcting capability of the error correcting codedata streani; and XY = PXY' = P,
forany X # X’ andY # Y’, due to uncompressed videos. Since the sequence numbels of a
the data symbols are known, the RS code can correct tp-td, — % known erasures as an
erasure code [15].

For brevity, retransmission is not explicitly implementadur system. Therefore, the trans-
mission time for all the packets of a data stre@sL H () time slots. A retransmission scheme can

be translated to reducd@ (G) and P.(B), but the transmission times for the data streams could

be longer [19].

2.3.3 Problem Statement

Now we are ready to formulate the problem of MD video over mm&Vaetworks. Due
to uncompressed video, the range of PSNR is from O (all lespasitive infinity (error free),
which makes no practical sense. On the other hand, the Measar&tError (MSE) of the recon-
structed image reflects the distortion of the reconstruictagie compared with the original image.
Therefore our goal is to minimize the expected Mean Squareat @.e., MSE ory/MSE) of the
reconstructed video frames, which is a function of the wegidesign factors as follows.

1 N 3
.. .. 2
MSE= ——= > "> > [I(i,5,x) — I'(i,j, )] (2.4)
3MN & 4
i=1 j=1 x=1
In (2.4),1(3, j, x) is a pixel in the original video frame at locatidh j) and’(i, 7, x) is the pixel

at the same location in the reconstructed video frame. Tdhexig indicates the color components
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(i.,e., R, G or B). Since it is assumed that the three color cormptsrare equally important for the

image quality, we don’t introduce different weights for theee color componentsit follows that

E{vMSE} (2.5)

(

1 Q C D 3 Q
=B 3 NZ ZZZ XT:?)MNMg

1 Q Sq Q
—E{ | D r
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k I
( 2
Q [ s
1 Q
—E{! | = r
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S1 5q [ Q 1 Sq Q
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WhereS,, 1 < g < @ is the total number of segments that each pixel of the sulgémnés divided
into; Ty is the first segment of sub-imagethat cannot be decoded, is the number of packets
of sub-imagey that are received and not corrupted by erto; is the number of data symbols
required to decodé; (and denoter, = 0); P(X, < z7,) is the probability thatX, is less than
rr,, such thatP(X, < x7,) = Pr,, wherePr, is the probability that dat&, cannot be decoded, as
given in (2.3). Note that we assume if a bit cannot be decoldexl it is discarded at the decoder,

meaning that (2.5) is indeed the worst-case expe¢ieISE.

1The same scheme can be applied to videos stored in the YUVatpnwhere the weights for the Y, U and V
components may vary and three optimization problems nebd swlved.
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Figure 2.5: Structure of the interleaver.

We then formulate the following nonlinear integer programgn(NLIP) problem.

minimize E{VMSE} (2.6)
subject to: 72 < "L gor all 4 (2.7)
gi Ji+1
3mg, MN
—* < [ forall 2.8
Qhas, ~ ‘ 29)
L<2F-1 (2.9)
Sq
> “m; =8, forallg (2.10)
i=1
LHQ <A (2.11)
Sq -
A< z; gé < A,,forall ¢. (2.12)

Constraint (3.27) is due to the fact that the transmissioe tfnall the packets of an image must
not be larger than a tolerable transmission delay, i.e.dét@y boundA. Constraint (2.12) is for
the purpose of making the size of a packet adequate for tiassm after adding header bytes to

the packets, i.e., within the range of the minimum packet jzand the maximum packet si2g,.
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2.3.4 Solution Strategy

The formulated problem aims to minimize the expectddSE given in (2.5). This goal is
achieved by tuning the control paramet§gs{m,, ms,--- ,mg,}, {91, 92, , gs,}, forall ¢, and
H to find the optimal partition of the pixel bits for MD coding éthe optimal interleaving depth
for transmission. And the problem is solved once when thamglecondition is changed.

Checking out the search space for the optimal solution, itbmaseen that: (i) the feasible
values forS, is between 1 and 8; (ii) due to constraint (3.26), thés are all small integers; and
(iif) H is also limited by the maximum delay constraint (3.27). Theameters that dominate the
search space of the problem drg, g2, - - , gs, }, for all ¢, since the packet size can be a value
between hundreds to thousands of bytes. This motivatesnasltice the search space by “taking
out” {g1, 92, -+ , gs, }» for all ¢, such that the search space of the problem will be small éntmug
apply an exhaustive search for the remaining parameters widy, the problem can be reduced to
a sub-optimal problem havingj,, {m., ms,--- ,mg,}, andH as its optimization parameters.

In our solution strategy, we reduce constraint (2.12) @;&1 % = A, whereA is a constant,
for all ¢. For a particulars,, for all ¢, we havey; = lf—é] for all .. Furthermore, constraint (3.21) can
be transformed tan; < m;, for all i < j. Then the problem is reduced to a sub-optimal problem
of finding the optimalm;, m,,--- ,mg,} and H under a specifis, value. The search space of
the sub-optimal problem is now much smaller than that of tigirmal problem, so that exhaustive
search can be applied. The ideas of finding the best bitgiparscheme and interleaving depth
are still maintained in the sub-optimal problem, thus theppsed scheme still being adaptive to
channel dynamics. Note that for the case Wh%qeis not an integer, we take = L,f—Squ, for
all1 <37 < S, and the remaining space in the packet left by the data synavelpadded by
redundancy.

In addition, we also aim to reduce the number of loops cauged, lsince a large number of
loops will seriously drag down the speed of the search dlgorias can be seen from (2.5). We
cut the HD video image into many small images (different fittve sub-images mentioned above)

and take each of the small images as an intact image, anditesieaving is applied to these small
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images. Thug) = 1 in the exhaustive search algorithm and our following sirtiafes. And we
omit the subscript; for brevity in the following. This way, the number of loopsrisduced and
simulation speed is greatly improved.

After these simplifications, the computation overhead mit@ted by the computation of (2.3),
which is the probability of failing to decode a data streand By searching for the optimal pixel
bit allocation and interleaving depth within a limited sg@ng space. The computation can be fur-
ther sped up by pre-computing the probabilities (2.3) undepbus cases and store them in a table
for future use. The performance of this solution strategylvéi demonstrated in the performance

evaluation section.

2.4 Simulation Study

2.4.1 Simulation Setup

In this section, we evaluate the performance of the propeskdme. The coding and trans-
mission schemes are implemented and simulated using Mdtiabe simulations, we use 1920
x 1080 HD uncompressed images with 24 bits per pixel (i.e.t8fbr each R/G/B component),
instead of a real HD video stream. The simulation parametershown in Table 6.1. We com-
pare the proposed scheme with UVoOW presented in [19], asisBsd in Section 6.2. Note that
ARQ is not employed in both schemes for a fair comparison. Tia@eel conditions are assumed
to be known in advance, e.g., through a proper channel merasmt/feedback scheme. In the

simulations, we assume a time slot duration @isl

2.4.2 Simulation Results and Analysis

We first examine the operation of the proposed scheme tolrgggaoperties. Figure 2.6
visually shows the different significance of bits at differ@ositions for reducing/MSE. In this
simulation, the segmentation of the eight bits of a color ponent in a pixel is 1-1-1-2-3, which

means the eight bits are divided unevenly into five segmeitis,1, 1, 1, 2, and 3 bits, respectively.
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Table 2.2: Simulation Parameters
Parameters Value

M 1080

N 1920

C 60

D 80

k 6

A 106 time slots
L 51

H 1~5

ne 800 Bytes
A, 2000 Bytes
S5, %k 900 Bytes

The significance of the segments are 128, 64, 32, 24, andpgatdgely. When less than 10 packets
are received, the video cannot be decoded, resultingiM&E of 255. When more than 10 but
less than 20 packets are received, the most important ke ipixels can be decoded, resulting in
greatly reduced/MSE. Thev/MSE curve has a staircase shape and the gap is getting samller
more and more packets are received.

We learn from the figure that recovering the bits of largeugalhas a greater effect on lower-
ing the/MSE than recovering the bits of smaller values, which is thielgjine for the proposed
algorithm. Recall that the total number of FEC symbol&i¥; | g; — 380N where the first
term is the total number of symbols and the second term isotiaériumber of data symbols in a
sub-image. Therefore, the amount of FEC symbols in a sulgensafixed. If we want to provide
stronger protection to the bits of greater values by assggmore FEC symbols to them, then the
bits of smaller values will be less protected, and vice velsthe channel is bad and the packet
loss rate is high, then it is more urgent to offer higher l@fgdrotection to the bits of greater values
than to the bits of smaller values considering their respettvel of significance for lowering the
v/MSE. When channel is good and the packet loss rate is low, treeprbbability of recovering

the bits of greater values will be high enough even if not maBEZ symbols are assigned to them,
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Figure 2.6: Significance of different bits at different gamsis to/MSE.

thus enough FEC symbols may be assigned to the bits of srmallers to enhance the probability
of decoding them to further lower théMSE.

This reasoning has been validated when we checked with ¢fmeesgation of the 8 bits under
different channel conditions in simulations. Another digsis how effective is the MDC compo-
nent of the proposed scheme in improving video quality. Tenaar this question, we compare the
performance between our proposed scheme and another selitbnrgerleaving only but without
MDC. The results is presented in Fig. 2.7, under a channelitondf F;, changes from 0.06
to 0.3, P, = 0.1, and P.(G) = 0.01. Note that according to the channel model, the average
off duration isT,;; = 1/P,,. It can be seen that when the channel condition is good (vitints
off periods), the gain achieved by MDC is not obvious. Howgwhen the channel gets worse
with increased off periods, the gap between the two curvesjaickly increasing. Considerable
reduction inv/MSE by MDC is observed under bad channel conditions.

The relationship between the packet loss tracevdNSBE trace is plotted in Fig. 2.8 under a
channel condition of%,, = 0.1, P, = 0.1, andP.(G) = 0.01. The packet loss trace is plotted in
dashed line using the left-hand-side y-axis, and the cporeding\/MSE is plotted in solid line
using the right-hand-side y-axis. The corresponding ogitisegmentation of the 8 bits is 2-3-3,
and the optimal interleaving depth is 5. We can see from tleeeabfigure that when packet loss

exceeds a certain threshold and thus the last two segmeamntstdae decoded, th¢ MSE of the
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Figure 2.8:+/MSE vs. packet loss trace.

sub-image is about 60; otherwise, tH®SE is 0, which means all the three segments are decoded.
The statistical averag¢/MSE of all the tested sub-images is 3.0652 while the expe¢fetSE
calculated from the minimization problem is 4.1472. Thésdénce may be explained by a limited
number of tested sub-images here, and the dependence bitiveat condition for the consecutive
sub-images which is not considered on the minimization lerabwhich tends to minimize the
expectedy’MSE of a sub-image and doesn't consider the channel conditiorelation problem
of consecutive sub-images.

We next focus on the impact of channel dynamics to show howptbposed scheme adapt
to mmWave channels. We compare the expest®dSE achieved by the proposed scheme and

UVoW, by varying the average duration of the channel badopf} ;. In the simulationsp,; is
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fixed at 0.1 and®,(G) is fixed at 0.01 for both schemes. The results are plottedgnZ9. Note
that using our proposed scheme, the best combinatidrb o, ms, - -+ ,mg, H}, which leads
to the lowest expectedMSE under the given channel condition, can be found for eéfédrent
averagel, s, value. We can see from the figure that the expest®SE of the proposed scheme
is lower than that of UMoW for the entire range. When channabdmon is good (i.e., the average
T,ss is less than 4), the performance gap between the two schemes remarkable. However,
as the channel condition degrades (i.e., avefiageis increased beyond 4), the performance gap
quickly grows, for the reason that the packet loss rate gribws it is of greater importance to
provide stronger protection to the most important bits. \Weewved from the result that when
Tors 1s 4, the optimal segmentation is 4-4 (as in UMoW) and the ogitimterleaving depth is 5;
when averag€y;; is 10, the optimal segmentation is 2-3-3 and optimal ingatileg depth is 5,
which means that more FEC symbols are assigned to the firds 2and interleaving is applied
to overcome the channel burstiness. Thus the proposed sct@madapt to changing channel
conditions, to strengthen the protection for the most irtgrdrbits and increase the interleaving
depth to combat the temporarily blocked channel. On avertdgeproposed scheme achieves
19.6055 reduction in/MSE than UVoW.

Fig. 2.10 demonstrates the relationship between the eagISE andP.(G), the packet

loss probability when the channel is in the good state. Imshinulation,F,, and P, are fixed at
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0.1 for both schemes. AR.(G) is increased, the probability of a packet being lost in thedystate

is increased, which means the error correcting capabilitigebits of the highest priorities should
be enhanced by re-segmentation of the bits. As Fig. 2.10 shibv characteristic of adaptivity
enables the proposed scheme outperform UVoW in termgMSE for the entire range af.(G)
examined in the study. The averag®ISE of the proposed scheme is 44.8486 lower than that of
UVoW. This result also indicates that our proposed scheregtremely suitable for the case that
P.(G) is comparatively high during communication.

We look into the optimal segmentation result obtained byisgl the minimization prob-
lem (4.7). We find that, in general, when channel is good, ndescriptions are created as the
bits are divided into more segments, and the length of theeats of the more significant bits are
shorter. This implies that the number of data symbols ctuteti by the bits of greater values are
smaller compared with the number of FEC symbols assignedtegied them, so that these bits
have a higher level of protection.

Fig. 2.11 and 2.12 plot the relationship betwaéMSE, 7, and transmission delay tolerance
A. Recall that the relationship between transmission delayance (short fodelayhereafter) and
interleaving depttH is given in (3.27). Under a specific delay, the expecf@dSE will decrease
as P, increases; this pattern also applies to the relationsiipesn delay and expectadMSE

under a specifid’,,. Besides, in the entire ranges of delay aig, as shown in this figure,
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the effect of increased delay and that of increasgg on lowering the expecte¢/ MSE do not
conflict with each other, which means choosing a largerledeing depth under a specific channel
condition will be always good for improved video performanespecially when channel condition
is bad (i.e.,F;, ranges from 0.06 to 0.1). This is because the reductioffBE is much more
significant than that achieved when channel condition isdgae., P, ranges from 0.1 to 0.3),
as plotted in Fig. 2.12. This phenomenon motives us to clyedesign the system parameters
under certain channel conditions in order to achieve a baldetween delay and desired video

performance.
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Finally, we examine the visual quality of reconstructed HbBew. In the next simulation,
example video images are used in our performance test. Alfbdistinct images are evaluated
using both the proposed scheme and UVOW. The image whiclctetiee simulation results of
most tested images are selected to undergo about 100 tistmlcations using both schemes in
each test. We choose the results that are representative 00 tests to present in the following.
The optimal solutions of S, my,--- ,mg, H} corresponding to the lowest expecte@SE are
recalculated when channel condition changes, and themedppl the transmission of each sub-
image. Since we tak@ = 1 to reduce the complexity of solving the optimization prabjeve
tend to obtain the optimal solution on sub-image basis, hadptimal solution is the same for
each sub-image in our simulations under the same channel.

In the simulations, the entire image is divided into smafleb-images and we show only
1/16 of the sub-images (termed partial image in the follg)inThis is because the size of an
entire HD image will be too large to fit into this chapter, ahd guality of the partial images is
representative since all the partial images are treatedllggn uncompressed video streaming.
The partial images as shown in Fig. 2.13. The partial imagEign 2.13(a), (b), and (c) are
produced by the proposed scheme and the partial imagessnZi(d), (e), and (f) are produced
by UVoW. Fig. 2.13(a) and (d) are obtained under a good cHamomalition; Fig. 2.13(b) and (e)
are obtained under a bad channel condition; Fig. 2.13(cjfaade obtained under a severe channel
condition. The specific parameters are as follows: (a){d); = 0.3; (b)(e): Py, = 0.1; (c)(f):
Pyg = 0.06. Py, = 0.1 andP,(G) = 0.01 are fixed in all the simulations.

It can be seen that when the channel condition is good, bo#nses work fine by producing
high quality received videos. When the channel is in a baditondi.e., P, = 0.1), the partial
images produced by our scheme are still good with a compahatmuch high quality, while a
portion of the partial images using UVoW are black (meanimgt those pixels are completely
lost). Under such bad channels, the most important bits tihibes received and decoded in our

scheme, but are completely lost in UVoW. This is because theegtion to the most important
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Figure 2.13: Visual quality comparison of the two schemeseunlifferent channel conditions.

bits is adaptively enhanced after re-segmentation of tkel pits to adapt to the degraded channel
condition.

We also observed that the optimal segmentation is 2-3-3ladptimal interleaving depth
is 5 under the bad channel condition. That is, the two mostifségnt bits are better protected.
The change in the color depth in Fig. 2.13(b) (indicated fydiincle) is caused by the loss of the 6
least significant bits during transmission over the mm Wédnamael. The data stream reconstituted
by the last 6 bits cannot be decoded due to the transmissssn lboit the first 2 most significant
bits are correctly decoded since more FEC symbols are asbigrthem to provide a higher level

of protection, and consequently a basic visual qualityiisggiaranteed. Under the same channel
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condition, the UVoW partial image in Fig. 2.13(e) has a feadlblocks, which are caused by the
loss of all the 8 bits in those pixels.

When the channel condition is even worse (if&;, = 0.06), the visual quality of the recon-
structed image using our proposed scheme (in Fig. 2.13s})li much better than that using the
UVoW (in Fig. 2.13(f)). The optimal segmentation is now 1-1-4 and the optimal interleaving
depth is 5 under such channel condition. As can be seen frgsm Eil3(c), although the color
depth has a little change since the last four bits are logt, (®ee the up right corner), and there are
3 black blocks, the visual quality is still acceptable comgglawvith the UVoW image in Fig. 2.13(f),
which has much more black blocks.

These results clearly demonstrate the advantages of baé#apgiee both at the MD video coder

and at the transmission scheduler to the varying channelittons.

2.5 Conclusion

In this chapter, we investigated the problem of streamirgpmpressed HD video over mmWave
wireless networks. We developed an MD-FEC coding schentg#rétions the pixel bits and an
interleaving based transmission strategy to minimize tpeetedv/MSE of the reconstructed
video quality. The main idea is that important bits shouldehlaigher level of protection in trans-
mission. We formulated an Nonlinear Integer Programmiraplem for the optimal partition of
the pixel bits and interleaving of packets, which is NP-hanad derived a sub-optimal solution
for this problem with much lower computational complexifyhe performance of the proposed
scheme was evaluated with simulations and shown to outpeda existing scheme with consid-

erable gains.
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Chapter 3

QOE Driven Multi-user Video Streaming in Cellular CRNs

3.1 Introduction

The Cisco Visual Network Index report predicts a drasticeéase in mobile data and a dom-
inant part of video related data in the near future [62] [45&lls for a more flexible management
of radio resources in today’s and future wireless netwarksrder to unlock the wireless network
capacity by promoting more efficient use of spectrum. To¢hid, the Cognitive Radio (CR) tech-
nology has been widely recognized as an effective soluborfficient and flexible access to the
radio spectrum. CR is an evolutionary technology for moreieffit and flexible access to the radio
spectrum. In a cognitive radio network (CRN), Cognitive Us€&¥8¢) search for the unoccupied
licensed spectrum of the Primary User (PU) network and thmoodunistically access detected
spectrum holes in an unobtrusive manner [26] [43] citeX&®lbbe [46]. Bandwidth-demanding
and elastic mobile services, such as wireless video, wilebeenormously from this new wireless
networking paradigm [27].

In this chapter, we address the challenging problem of diowmhulti-user video streaming
in cellular CRNs. We consider a CRN consisting of one cognitiselstation (CBS) and multiple
CUs. Without loss of generality, we assume each CU can accesshamnel at a time (i.e., with a
single antenna). The CUs cooperatively sense PU signals@amsked channels and the CBS infers
the channel states based on collected CU sensing resultawi@®R fusion rule. Once the idle
channels are detected, the CBS then assigns them to active €dsewalink multi-user video
streaming. We incorporate the video assessment model ggdpo [66, 71], aiming to maximize
the CU QoE by optimal designs of spectrum sensing and accésiepo

Itis obviously a challenging problem to jointly design tlpestrum sensing and access polices

for QoE-aware multi-user video streaming, due to the langmlmer of design factors and the
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complex interactions that should be modeled in a cross-lagemization framework. We first
consider the case where each CU can sense and access at nosmme at a time slot. To make
the problem tractable, we take a divide-and-conquer apprimebreak it into two sub-problems: (i)
Optimal Assignment Sub-problem for Spectrum Sensing (C&)P® discover a sufficient amount
of idle channels reliably and quickly to meet the bandwidtmdnd of the CUs; and (ii) Optimal
Assignment Sub-problem for Video Transmission (OAPVT allocate available channels to CUs
according to their respective QoE requirements and netwtatus. We propose a distributed
Greedy Poly-matching Algorithm that can compute optimélison to the channel sensing sub-
problem, and using the Hungarian Method to compute optiwlatisn to the channel assignment
sub-problem.

Furthermore, we examine the more general case where eachrCd¢ese multiple channels
(e.g., with multiple spectrum sensors) but can still acaedyg one channel at a time slot. We
formulate an integrated problem that maximizes the QoE lofhal CUs byjointly optimizing
spectrum sensing and access policies. Under the assuntipéiball the spectrum sensors work
at the same operating point (i.e., with the same probatfitgetection and the same probability
of false alarm), we show that this challenging problem caisdieed with a two-step approach:
First, the spectrum sensing scheduling problem is solveéld avigreedy algorithm; Second, the
channel allocation problem, which is a Maximum Weight Matghproblem and can be solved
optimally with the Hungarian Method. We prove that the tviepssolution algorithm is indeed
optimal: decomposing the original problem into two sublpeons and solving them sequentially
do not sacrifice the optimality of the solution.

It is worth noting that if we also assume identical operapoits for the spectrum sensors,
the single-channel sensing scenario is a special case witttiechannel sensing scenario, to which
the optimal solution approach also applies. We validateptioposed schemes with simulations,
and the simulation results demonstrate their superioopadnce in terms of the MOS that CUs

can achieve under various network scenarios, when compatietbenchmark schemes.
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The remainder of this chapter is organized as follows. Thatesy model is presented in
Section 3.3. The problem for the case of single channel sgnsiformulated and solved in Sec-
tion 3.4. The problem for the case of multi-channel sensrigrmulated and solved in Section 3.5.
Simulation results are discussed in Section 3.6. Sectdmnefiews related work and Section 6.8

concludes the paper.

3.2 Related Work

In this section we briefly review the prior work on Quality ofiSice (QoS) and QoE provi-
sioning and video streaming over CRNs.

CR research has been largely focused on the aspects of spessnsing and dynamic spec-
trum access [72] [48]. In [73], the authors study the sensiimgughput tradeoff problem that
optimizes the spectrum sensing time so that the CU’s thrautgtgn be maximized with restricted
interference to the PUs. Unlike [73], the protocol proposef¥4] also considers the problem of
which channel to sense, in addition to sensing parametera@ess strategy optimization. More-
over, it is shown that the design of sensing strategy is iaddent to sensing parameters design
and the access strategy, as specifiedgrirzciple of separatiori74]. These works focus on the op-
timization of sensing parameters only, and there is no lootiation between CUs. Considering the
fact that different CUs may have different spectrum sensarfppmance, the algorithm proposed
in [75] forms groups of CUs for cooperative sensing, aimin@jrid the best grouping scheme to
discover most idle channels. Moreover, the problem of sgnsarameter optimization in addition
to optimal sensor selection is investigated in [76], with tibjective to achieve a trade-off between
detection performance and sensing overhead.

The problem of video streaming over CRNs has been studied iwvagif®r works. The
transmission of multimedia over CRN is first proposed by J. Mito [77]. In [63] the quality op-
timization problem is formulated as an mixed integer nadinprogramming (MINLP) problem

and solved with effective algorithms. Authors of [78] deyglan auction game model to deliver
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content-aware multimedia. The authors in [79] considersttenario where multimedia transmis-
sion is scheduled in CRN and a QoE Driven channel allocatioersehis proposed to optimize the
multimedia transmission of priority-based CUs, where the3@odel proposed in [71] is used.
Specifically, each CU has different QoE requirements and hlagsdifferent priority in utilizing
the idle channels of the PU system. Upon the re-appeararee attive PU on the idle licensed
channel, each CU utilizing the idle licensed channels willaaate from the current channel it is
using to avoid conflict with the active PU.

The authors of [93] propose a a learning-based QoE-drivectspn handoff scheme for mul-
timedia transmissions over CR networks. Reinforcement iegiis applied to spectrum handoff
scheme to maximize the QoOE of video transmissions in the teng. The proposed learning
scheme is asymptotically optimal, model-free, and can tgdyp perform spectrum handoff for
the changing channel conditions and traffic load. To exteeds/ideo streaming time for the CUs,
the authors of [94]propose a flexible sensing scheme to neglilce unnecessary channel sens-
ings. Besides, the network abstraction layer units in the SM€o are assigned utilities which
accurately reflect their contributions to the video qualityd different layers are streamed over
different channels based on their contributions to maxantire total utility of the received video.
In order to comprehensively evaluate the utility of the CUsideo streaming, the authors of [95]
propose to not only consider the video quality of each CU, kad eonsider the the number of
satisfied CUs. A 3-dimensional scalable quality of the H.384% video transmission problem
is formulated and solved with an suboptimal solution. In][26e authors consider the case that
the future Internet network may become highly heterogesieand therefore an efficient cognitive
network management is proposed for the optimization of agtwperations like management of

resources, mobility or QoS in order to ensure smooth netwpeétation and high user satisfaction.

3.3 System Model

We consider a primary network operating &h orthogonal licensed channels. The primary

network is co-located with a CR network, which consists of a C&&serting\/ CUs. The CUs
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Algorithm 1: Spectrum Sensing and Access for QoE-driven Multi-user &/i@eaming

1 Phase 1 The CBS determines for each CU which channel to sense basedrhegNback,
and broadcasts the sensing schedule to the CUs ;

2 Phase 2 Each CU follows the sensing schedule to sense the channdlith ¥ is assigned,
and reports the sensing result to the CBS ;

3 Phase 3 The CBS makes two decisions: (i) channel availability at tineent time slot,
based on the sensing results and the fusion rule; and (ipreHassignment to CUs for
multi-user video transmission at the current time sloteblasn channel availability, channel
condition, Content Type (denoted @%) of each CU, and other information. Then the CBS
broadcasts the channel access schedule to the CUs ;

4 Phase 4 The CBS uses the assigned channels to transmit video dateCéafollows the
channel access schedule to receive video data from itsn@sksanannel.

sense the PUs’ usage of the licensed channels and accegetiset channels in an opportunistic
manner. As in prior work [75, 80], we assume the CUs, when theyat receiving data, measure
the SNRs of PU transmissions over all the licensed channdlseqort the measured SNRs to the
CBS through some feedback mechanism. Based on such feedma€iB 8then assigns those CUs
with good channel conditions to sense each licensed channaider to achieve a good sensing
performance.

Here we consider the downlink multi-user video streamirenscio, where the CBS streams
a video to each active CU using the license channels that &eetdd idle. We assume time is
divided into a series of non-overlapping GOP (Group of Resliwindows, each consisting f
time slots. Each time slot can be further divided into fouagds for spectrum sensing and access
for multi-user video streaming, as shown in Algorithm 1.

Note that at the very beginning of the first GOP window, the SiNBrmation used in Phase
1 may not be available yet. However, such information canliained via estimation or learning

techniques, or by simply letting CUs probe the channels wheyn are idle [76].

3.4 The Case of Single Channel Sensing

In this section, we consider the case that each CU can onlg sesisgle channel and access

a single channel during a time slot. We consider the caseetidt spectrum sensor has its own

34



operating point, which may be different from that of otheegpum sensors. This turns out to
be an IP (Integer Programming) problem, which is NP-harddenegal. We then take a divide-
and-conquer approach to break down the problem into an aptssignment sub-problem for
spectrum sensing (termed OAPSS) and an optimal assignuieimreblem for video transmission
(termed OAPVT). We develop effective solution algorithras éach sub-problem and prove their
optimality to each sub-problem. However, the overall soluts near-optimal due to the divide-

and-conquer approach.

3.4.1 Problem Formulation
Optimal Assignment Sub-problem for Spectrum Sensing (OAPS)

In a practical wireless network scenario, CUs are locatedffatreint geographical positions
with different channel gains to primary transmitters. Tther performance on detecting primary
signals on a particular licensed channel would be differeny., a CU with better channel gains
to a primary transmitter may have a higher probability ofedahg the PU singles (if the single
indeed exist). By selecting a group of CUs which has betterrodlayain to detect the PU, then the
PUs signal will have a higher probability of being deteciéthe PUs signal really exist, and then
the probability of causing interference to PU transmissican be reduced [80, 81].

Usually cooperative sensing is used to improve the detegioformance by fusing the sens-
ing results from multiple CUs [82], and a certain fusion rideequired to combine these results.
In this chapter, the OR fusion rule is used at the CBS to deterthi@& presence or absence of PU
signal on a particular channel. With the OR rule, if any of @lds reports the presence of a PU
signal then the CBS decides that the channel is busy; Othenhiss€BS decides that the channel
is idle. We use ai/ x N; matrix X to denote the sensing task assignment at time statile the

entry located at théth row andj-th column position is defined as

1, CU i senses channglin time slott
xi. = (3.1)

0, otherwise
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A useful metric to evaluate the performance of detecting asigual isprobability of detec-
tion, which is the probability that a CU successfully detects ttistence of an existing PU signal.
Let P! denote the probability of detection on changiedy CU i at time slott. For an energy

detector, we have [81]

1 A | K
P = erfc| |2 -¢ -1 _ 3.2
dij 92 ((0_% Sij ) 9 (2@%‘ i 1)) ) (3.2)

Where/\;‘fj is the threshold of energy detection on chaninley CU i at time slott, o2 is the power

of the i.i.d. Additive White Gaussian Noise (AWGN) at the G{J,is the SNR of PU’s signall
on channelj at CU ¢, K is the number of samples on chanridby energy detection. In (3.2),
erfc(z) = %77 [ e~ du is the complementary error function, and let eff¢:) denote the inverse
function of erfc(-).

According to the OR fusion rule, the probability of deteotmn channej at time slott is

M .

P =1-T] (1 _ Pjij)zij. (3.3)

i=1

In order to guarantee the protection of the PUs, wnggt: P, by tuning \; for all 4, j. Thus
the probability of detection of the activity of a PU will beagiter thanP, if the channel is sensed
by some CUs (according to (3.3)). In the case that a channeltisemsed by any of the CUs, it
will not be used for video streaming.

Under the assumptions that the PU signal is complex valuadegbhift keying (PSK) and the
noise is circularly symmetric complex Gaussian (CSCG), ther’€probability of false alarnmon

channelj, denoted b)PJfH, can be expressed as [81]

1 A K 1 _ [K
t iy _ = t —1 t
P; = 2erfc <(—0_2 ) 5 ) 2erfc <, /2t + 1erfc (2F,) + 5 gi],) . (3.4)

n

The objective of sensing task assignment is to maximize thbgbility of detecting all the

idle channels at time slat while maintaining fairness among the probabilities oked&bn of the
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N, licensed channels. It has been shown that proportionaldas can be achieved by maximizing

the sum of logarithmic functions. The optimal sensing tastgnment problem is to maximize the

following objective function.

Ny N1 M ot
Stow(1-PL) =Y toe [ (1- 7))
j=1 j=1 i=1
N1 M N1 M
= Z Zlog (1 — PZ;-) Ti; = Z Z ©5 " Th (3.5)
j=1 i=1 j=1 i=1
wherey}; = log (1 - PJf) andP; , P, are defined as in Chapter 3. We assume that each CU
1] 1] (%)
can sense one channel at each time slot, and the number of @Usathbe assigned to sense a

channel at each time slot is unrestricted. Therefore, the optimasisg task assignment problem

is formulated as

N1 M
OAPSS: max Y > ¢l -al, (3.6)
j=1 i=1
N1
st. Y al;=1, forall i (3.7)
j=1
x;; € {0,1}, forall i, ;. (3.8)

Optimal Assignment Problem for Video Transmission (OAPVT)

For video quality assessment, we adopt the QoE model named Beore Opinion (MOS)

that was proposed in [71], where the MOS of €Using channej during time slot, denoted by
Pt

i;» can be expressed as

W, = a+ CTyy + (B + CTi0) In (SBRY,) (3:9)

= o+ CTyy + (8 + CI6) In (Blog, (1 + SNRL)) ,
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wherea = 3.9860, § = 0.0919, v = —5.8497, andd = 0.9844 are constantg,T; is the Content
Type of the video sequences required by CB is the bandwidth of a channel in kbps, asitiz;;
is the SNR of the video signal using chanpeheasured at Cat time slott [71].

Remarks on QoE model (3.9): The QoE model in [71] is applied in the Universal Mobile
Telecommunication Systems. In multimedia applicatiorshsas video conferences over the CR
network, QoE that directly measures the satisfaction ofGlbls cannot be easily realized due to
the limited spectrum resources. Therefore, it is importargtudy how to allocate frequency or
spectrum resources to SUs according to their QOE requiresn€he authors of [79] where video is
streamed over CR network also adopts the same QoE model figrag e do. For the achievable
(or the maximum) bit rate based on Shannon Theorem, the ehaapacity by definition is the
maximum bit rate that can be transmitted across the chanitielanspecific bit error ratio [71].
As pointed out in [71] and [79], the SBR should be adjusted wtting to the changing channel
conditions, e.g., channel data rate, therefore, SBR is arstadjle parameter here in our problem.
The effect of channel degradation on SBR adjustment is ajridebn into account in calculating
the channel capacity, and loss rate and channel congesgaine only two factors that affects
SBR adjustment, and a gradual increase in SBR is allowed wtehahdwidth is available and
there is no/reduced congestion, whereas, quick actioként reduce the SBR in case of severe
congestion, as pointed out in [90], and the adaptive vidéerse gracefully adapted the SBR
to the available network downlink bandwidth, as pointed iout71], [91], and [90]. Since our
simulation is not conducted over the real network which &sdhme as [71], [91], and [90], the
network congestion is not considered in our work, therefloeeSBR is set to the value of available
channel data rate so that the channel bandwidth can supgo8BR without wasting bandwidth
resource.

We assume thaV¥, channels are determined to be idle after the sensing ph&sgew, <
N;. We consider a general case where not all the CUs have dateeiveat all times. Instead, the
probability of a CU has data to receive at each GOP windois¢ < 1. The number of CUs

that have data to receive in a GOP window (called active CU$gieoted ad/,, whereM; < M.
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An M; x N, matrix Z is used to represent channel access assignments on tinte whute the

entry located at théth row and;-th column position is

. 1, assign channelto CUi in time slott
2= (3.10)
0, otherwise
We consider the case where each CU can use at most one chaeaehaime slot due to
hardware constraints, and each channel can be used by abn®€iU at each time slot. We aim
to maximize the expected average MOS of all the CUs during a @DBow by assigning the

available channels.

T M

max : % > ) E[V] (3.11)

t=1 =1

whereV! is the MOS of CU; at time slott. The above objective function can be maximized if we
maximize the expected MOS increment of the CUs during each time slot [63], which can be

written as

M; Nz

My
Y EW] =YY E[v] 2 (3.12)
i=1 i=1 j=1

My, Ny

= Y NP (rh = 0]t = 0) ¢, + P (v} = 1]s} = 0) 0]z,

i=1 j=1
wheres) = 0 indicates the channel is sensed idR; = 0) and P(r} = 1) are the probability of
channel; to be idle or busy at time slat respectively;P(r’ = 0|s} = 0) and P(r} = 1|s} = 0)

(denoted agPy and P/}, respectively) are the conditional probability for chanjéo be idle or

busy conditioned on the sensing result, respectively.llivics that

(1-PL)P(rt=0)

Phl = P(rt =0]st =0) = (3.13)
00 J J (1—Pp)P(rt=0)+ (1— Py )P(rl = 1)
Pl = P(rt = 1]s =0) = 1 — P(r} = 0|s’, = 0). (3.14)
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In (3.12),¢}; and;; are the effective data rate of the received video sequer@d atising channel

j which is indeed idle or busy at time slotrespectively. Denotg!; andv;; as the received SNR

at CU1 using channef which is indeed idle or busy at time slgtrespectively. We then have

K ’I”L()B
t ng

0T B+ )
¢}, = o+ CTyy 4 (B + CL;0) In (Bjlog, (1 + pf;))

%‘ =a+ CTyy+ (B + CT;) In (leog2 (1 + ij)) )

wherel is the transmit power of the CBS on changiglor all ;.
Definew;, as

@' =Pl - ¢l + Pl - 0L (3.15)

vJ

The optimal channel access problem is formulated as

M; N
OAPVT :max » Y ;-2 (3.16)
i=1 j=1
No
st Y 2, <1 ie{l- M} (3.17)
j=1
M,
d o<1 je{l, - Ny} (3.18)
=1
z;; € {0,1}, forall 4, j. (3.19)

OAPVT considering fairness among CUs

Now we consider achieving fairness among CUs for the charloebdion problem. Consid-
ering the fact that our objective is to maximize the expeetestage MOS of all the CUs during
a GOP window by assigning the available channels, we profmaehieve a long term fairness

among CUs.
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In order to achieve long term fairness among CUs, we propaae flirness among CUs
should be achieved by allocating channels to different CUdifierent time slots. For example,
when there is only one available channel and two CUs, A and B, i§ Acheduled for video
streaming in the previous time slot, then at current time, $oshould be scheduled for video
streaming. Generally speaking, at current time slot, whemtimber of idle channels available for
video streaming, e.glV,, is less than the number of CUs requesting video streamigg, ¥ ,,
the CUs that have not been scheduled in previous time slokhawie a higher priority of being
scheduling than the CUs that have been scheduled in prewoasslots, and the objective is still
to maximizing the MOS sum of all CUs. Here we assume that all @daest video streaming at
each time slot, i.eM; = M.

To be more specific, we consider the following cases:

1. Atcurrent time slot)N, > M;. In this case, all CUs can be scheduled for video streaming at

current time slot, and the problem formulation will be thengaas problen©APVT .

2. Ny < M. For the easy of presentation, denétas the whole set of CUs requesting video
streaming at current time slot. Dendtg as a subset 0B, where©, is the set of CUs
whose times of being scheduled in previous time slots, is= 0, 1,2, 3, ..., and denote
Or.1 as a subset o, where©,,; is the set of CUs whose times of being scheduled in
previous time slots i + 1. Denote||-|| as the number of elements in a set. THén = M;,

O UBki1 = 0, |0k + [|Oks1|| = M1 (which we will prove in the following lemma).

o If Ny < ||O]| < M, then the optimization problem is to maximize the MOS sum for
the CUs in©,, , by choosingV, CUs from©,, and allocate théV, available channels

to the N, CUs;

N2
Pl:max > ) ol -2 (3.20)
€0 j=1
N2
st. Y 2, <1, i€6y (3.21)

J=1
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Y o<1 jefl, o No} (3.22)

1€EOL

z; €40,1}, foralli € ©,1 < j < N,. (3.23)

o If |©] > Ny > ||©]], then all the CUs ir®;, would be scheduled, anl, — ||O]|
CUs would be chosen from sé\; ;, and thenV, channels is allocated to th&®, || +

(N2 — [|©%]|) CUs to maximize the MOS sum.

Na
P2:max Y Y ol -z (3.24)
€0 j=1
N2
st. Y zi=1i€0y (3.25)
j=1
N2
D a <1 i€ O (3.26)
j=1
o<1 je{l o Ny} (3.27)
€O
z; €1{0,1}, foralli € ©,1 < j < Ns. (3.28)

Now we are going to prove th&, U ©,,; = ©. Once we hav®, U O, ., = O, then itis

easy to get tdOy || + [|Or41]| = M.

Lemma 3.1. According to the definition 0B, O, and ©,,;, we have®, U ©;,; = O, where

k=0,1,2,...atthe beginning of all time slots.

Proof. Atthe very beginning of thést time slot, each CU has not been scheduled, theréferd),
O, = 6, andO,; = ©. So the lemma stands for thet time slot. Assume that at the beginning

oftime slott,t > 1,0, UB,,; = 6.

1. Assume that problem P1 is solved at time g¢lothen N, CUs in set©,, at the beginning of

t will be moved to se®,.,; at the end of. Thereforeo, U ©,,,; = O at the end of.
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2. Assume that problem P2 is solved at time glofThen CBS will chooseV, — ||©| CUs
from set©, ., to schedule, and the number of times of being scheduled arteoft is
k + 2, then the set formed by these CUs is denote@as. And all the CUs in se®,, at the
beginning oft will be moved to se®;, at the end of, and forms a new s&; ;. Then we

have the following:

Ok12 U O} 1 = Opa U ((Ory1 — Ory2) UOL)
= 12U ((Or11 UBO) — (Ops2 — O4))

= Opi2 U (O — (B2 N Op1))

= Or2 U (O — Op40)

= Op12UO — (Op2 — Op2)

—0-0=0. (3.29)

And from the definition we know thab, ., N ©;,, = ©. Therefore the lemma stands at the

end oft.

3. Assume that OAPVT is solved at time stofThen all CUs in se®;,; and all CUs in se®,,
will be scheduled, which means that,; become®,., and®©, become®, ;. Therefore

Ors1 UBp 2 =0, UBO, , = O atthe end of. Therefore the lemma stands at the end. of

From the above discussions we know that the lemma stands anthof any time slat, i.e., at the

beginning of time slot + 1,7 =0, 1, 2, .. ., which completes our proof. n
3.4.2 Solution Algorithms and Analysis

Poly-matching Based Solution to OAPSS

We can see that the OAPSS problem is formulated as the wellskrGeneral Assignment
Problem (GAP), which is NP-hard in general. However, silezd is no constraint on how many

CUs can be assigned to a channel, the problem is actually anhMiaxi\Weight Poly-Matching
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Algorithm 2: Greedy Poly-Matching Algorithm
1 fori=1— Mdo

2 for j=1— N;do
3 \ ah=0;

4 end
5
6
7

J*=argmax;cq; . 1wl
end

(MWPM) problem on a bipartite graph that matches CUs to licercdannels with edge weights
defined aspj;. Furthermore, a channel can be matched to multiple CUs. Ibeasolved by the
following greedy strategy presented in Algorithm 2 [83].

With this algorithm, each CU selects the channel with thedstrgveight, regardless whether
the selected channel has been chosen by other CUs or not [BB].gfieedy strategy has a time
complexity of O(M Ny). In fact this is a distributed algorithm, since each CU carpskdts best
channels to sense and there is no need to involve the CBS inlthsepSince the CUs can launch
their searching procedures in Line 5 in parallel, this distied strategy has a time complexity of
O(Ny).

In the following theorem, we also show that the Greedy Poateating Algorithm is optimal.

Theorem 3.1. The Greedy Poly-matching Algorithm 2 achieves the optimlait®n to the OAPSS

problem.

Proof. Exchanging the summation order, the objective functiohef®@APSS sub-problem (3.6)
becomesy | <Z§V:11 L - x§j>, where}"™, !, - 2, is the utility that CUi can achieve under
the two constraints (3.7) and (3.8). Since each CU can havest ome channel, the maximum
utility CU ¢ can achieve isnax; {¢!, - 21, }, which is accomplished in Line 5 of Algorithm 2.
Since the optimal strategies of the CUs do not conflict wittheatber and thus are independent

to each other, the maximum utility of the CUs are also indepanhdf each other. It follows that

max M, <Z§V:11 pL - x%) =S, (max; {¢!; - 2, }), and Algorithm 2 is optimal. O
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Solution to Channel Accessing Problem

The three problems of OAPVT, P1, and P2 are all Integer Progriag problems which
is NP-hard in general. However, an interesting characierss the three problems is that the
coefficients of the constraint matrix in these problems &@hee0 or 1, such that the unimodularity
property [24] is satisfied in these problems. As a resulthlibese problems have the optimal
solution with their LP relaxations, and thus they can beelwith the Simplex method [15], [25],

which has a a polynomial-time average-case complexity.

3.5 The Case of Multi-Channel Sensing

In this section, we consider the general case that a CU caa sariiple channels but can still
access one channel at a time (e.g., each CU is equipped witlpla@pectrum sensors but with
only one transceiver). To make the problem tractable, wermasshat all the spectrum sensors are
tuned to have the same probability of detection and the saafpility of false alarm. Under this
assumption, we present a problem formulation that integratdth spectrum sensing and access for
QoE driven video streaming. We then develop a two-step algorwith proven optimality. Note
that if this assumption is made for the problem examined icti&e 3.4, then the single channel
sensing problem becomes a special case of the multi-chaangihg problem, which can be solved
with the optimal solution algorithms developed in this g&tt For brevity, we omit the superscript

t on all the relevant symbols in the rest of this section.

3.5.1 Problem Formulation

We assume that there aké CUs andV licensed channels. Cltan sense at mo&tchannels
and access at most one channel at a time slot. Furthermaie,ceannel must havé CUs to
sense it to guarantee that the cooperative probability téatien on a channel satisfids >
1—(1- Pd)A. We also havel/C < NA, which means that only parts of thé channels can

be sensed at a time slot. As discussed, in additioR,to = P,, we also haveP;,, = Py, for
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all 4, j. This can be achieved by solving the system of these two iemsator the threshold of
energy detection,;; and the number of samplés;; for each spectrum sensbon channe} with

a different SNR value;;. We have

Ko _o erfc ' (2P;) — /2¢;; + lerfc ' (2P;) ’
v Sij
serfc ' (2P
U si;erfc (2Py) ).
erfc " (2Pf) — /2¢;; + lerfc (21)

Let /(5. »,;,—a) b€ an indicator function defined as

I, o= = ’ (3.30)
0, otherwise

We then have

P(sj=0)={P(r; =0)(1 = P,) + P(r; = 1)(1 = Py,) } - IsS, aiy=n) (3.31)
LetS = {s;,7=1,2,---, N} represents the cooperative sensing results on\ttieensed

channels. There a2’ possible outcomes fa in total. Let§h be theh-th outcome) < h <
2N —1. Definel';(h) to be thej-th elementirﬁh,j =1,2,---,N. Assuming independent channel

states, the probability of getting outcorig as a sensing result is

P(S =8, =[[ P(s; =T(m)
= 110 =T5m)P(s; = 0) + T;(h)P(s; = 1)]. (3.33)

For a sensing outcont®,, let ®, = {j:T;(h)=0,j=1,2,---, N} be the set of channels

that are sensed idle. L&f;, = [yfﬂ 1 <1< M, j e &, be the channel assignment matrix,
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where( < yZ < 1 is the amount of time that CBS transmits to Gln channelj in a time
slot, when the sensing outcomeSs. The channel assignment strategy can be express¥d-as
(Yo, Y1, Yon_4].

According to conditional expectation, the expected ové&@S can be derived as

(pr) ZZE\P]S S,)P(S=S8S,)
i=1 h=0

—

— E(,]S = S,)P(S =S,). (3.34)

With the MOS model used in Section 3.4, we have

N N
[xp S = sh] =E Z 1S = §h] =S " (Bl + Py 65) -ls,  (3.35)
j=1 j=1
where
Py = P(r; = 0[s; = 0)
(1-Py)P(r;=0)
_ ) (=PpP(r;=0)+(1-Py)P(r;=1)’ 2w = (3.36)
0, otherwise
and
Ply=P(r;=1]s; =0) = bor 1T 23 (3.37)
0, otherwise
Define

Py - ¢y + Py - 0i5, if >, 2;; = A and channel
Wij = j is sensed idle (3.38)

0, otherwise
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Then the master problem of maximizing the total expected Qfadtl the video sessions, denoted

as MP, can be formulated as follows.

2N-1 M N
MP:max: > > Y wy -yl P(S=S,) (3.39)
h=0 i=1 j=1
N
st. )yl < 1foralli,h (3.40)
j=1
M
>yl <1 forallj (3.41)
=1
M
> ay; < Aforall (3.42)
=1
N
> ay; < Cforalli (3.43)

j=1
Equation (3.38)
x;; = {0,1} ,forall ¢, j (3.44)

yi = {0,1} forall i, j, h. (3.45)

It can be observed that the formulated problem MP is an IntBig@Linear Programming
(INLP) problem, which is NP-hard in general, although ara@g proof is not given in this chapter.
We next show that problem MP can be decomposed into two sattlgms and solved with a two-

step approach without sacrificing optimality.

3.5.2 Solution Algorithms

First, we use Algorithm 7 to solve the spectrum sensing sobipm, denoted as SP1, i.e.,
to determine the sensing task assignment maXrix In Algorithm 7, we sort theV channels
according toP(r; = 0), j = 1,2,..., N, in descending order. We then assign CUs to sense the
sorted channels sequentially as follows. For the first cbbinrthe remaining channel list, if there
are no less tha CUs each of which can still sense some extra channels, chioG44s to sense

the channel; Otherwise, the channel is conservativelyngdito be busy in order to avoid potential
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collision with PUs using this channel. Initially each CU camseC' channels, i.e., with sensing
capabilityC'. Each time a CU is assigned to sense a channel, its sensingldspall be reduced
by 1.

Specifically, line 1 sorts th& channels, line 2 to line 4 initialize the sensing capacitgath
CU, line 5 to line 26 assigns CUs to sense Mie&hannels, where line 6 to line 17 is to chodse
CUs to sense a channel, and the sensing capacity of a CU is tedydeat each time the CU is
chosen to sense a channel. Line 18 to line 25 checks if therains sufficient number of CUs to
sense the next channel. If yes, then assign CUs to sense thehaexel; otherwise, stop sensing
the remaining channels which are not sensed by CUs. Line Aid@L determine the channels
that is not sensed by sufficient number of CUs and thereforetesishined busy.

After obtaining the sensing task assignment maXriscom Algorithm (7), spectrum sensing is
conducted by CUs following the assignments and sensingsem@ reported to the CBS. The CBS
then solves the following sub-problem, denoted as SP2,tairothe channel allocation matri,

which will be broadcast to the CUs for channel access.

M N
SP2:max: Y > wy -y (3.46)
i=1 j=1
N
st.Y y; <1Vi (3.47)
7=1
M
Zyij <LVy (3.48)
1=1
vi; = {0,1} ,for all ¢, 5. (3.49)

Clearly SP2 is also a Maximum Weight Matching problem andesstime as OAPVT. It can

be solved with optimal solution using the Hungarian Method.
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Algorithm 3: Greedy Spectrum Sensing Algorithm

1 SorttheN channels in descending orderBfr; = 0) and let the sorted channel set®e
2 fori=1:Mdo

3 ‘ CZ =C;

4 end

5 forj=1:Ndo

6 | Letj'=E(j);

7| m;=0;

8 for:=1: M do

9 if 77;- > A then
10 | Break;

11 end

12 if C; > 0then
13 T = 1;

14 C;=C;—1;
15 n;=n;+1;
16 end

17 end

18 fori=1: M do

19 if C; > 0then
20 | =1

21 end

22 end

23 if >, u; < Athen
24 | Break;

25 end

26 end

27 for j=1:Ndo

28 if n; < A then

29 \ Channelj is determined to be busy ;
30 end

31 end

3.5.3 Optimality Proof

Although problem MP is solved with the two-step approach acti®n 3.5.2, we show that

the solution is actually optimal in Theorem 3.2.

Theorem 3.2. Let [X*, Y*| denote the optimal solution to problem MP, whégé is the optimal
spectrum sensing strategy and" is the optimal channel allocation strategy. Th&ii can be

obtained by running Algorithm 7 and™ can be obtained by solving problem SP2.
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Proof. Let ;' andj* be the indexes of two licensed channels such fHat = 0) > P(r;- = 0).

DefineW’ = [W/y, -+, Whyp, + Wiy, Whygrs -+ Wiy, -+, W)y ] @and
W* = [Wh’... S Wiags, 7W{j*7... 7W1>§/Ij*7"'7w1<N"" ,w}‘WN].AIsodenote

X' = [Xqp, o Xhps o T T Ty -, Thyy) @nd

X* = [Xjq1, - X1y 0 T, Tage, o, Ting oo, Ty @s the feasible sensing task as-

signment matrices correspondingW’ andW* respectively.

Letz},. = 0in X', for all 4, andx;j, = 0in X*, for all i. Then we havev;;. = 0in W', for
all 4, andwj;, = 0in W, for all i. Letz}; = xj;, forall j # j/,j # j, for all i. It follows that
w;; = wj; (denoted asvyy), for all j # j',j # j*, foralli. Let)  xi, = > 2}, = A. Then
according to (3.38), we have/,, > w;;., for all .

We first proof the following lemma, which will serve as a bdsisthe later part of the proof

for Theorem 3.2.

Lemma 3.2. Denote SP2’ and SPas the channel allocation problem correspondingd and
W+ as defined above, respectively. If there is a feasible soldfi* for SPZ, then there is always
a feasible solution, denoted a8, for W', such thatW’Y'" > W*Y*T, where(-)” denotes the

matrix transpose operation.

Proof. Let Y*= [y, ,¥hsi> " » Ui > Ynjer 0 Yins =+ Yarw) D€ the feasible channel
assignment matrix corresponding¥e*. Lety;; = y;;, for all j # j" or j*, y;; = 0 or 1, for all 4,
i = wi,u; = 0or 1, for alls, yf] =v;,v; = 0or1, for ani€ [ = {1,---, M}, andy;;. =0, for
alli£iiel={1,--- M}

ThenY'= [yiy, - Yhs  Yije s Yy Yins - Y] With g = gy, forall j 7 57
or j*, forall 4, y;,. = u;, for all i (recall thatw;;. = 0, for all i in W’), % = v;, andy;;, = 0, for

all i ;ézz' el ={1,---, M}, will be a feasible solution to SP2’. This is because the tairds

in SP2’ are still satisfied as follows.

e The number of users on any chanpet ;' or j* in solutionY”’ is the same as that in solution

Y*, i.e.,zi yzl»j = Z, Yij = ZZ y:j'

51



e The number of users on channél(or j') in solutionY’ is the same as that on channefor

J*)insolutionY™, i.e., > i = > ui = >, y5y (OF >0, yi = v; = >, yi.). Note that

the constraint on the number of users on chanhé the same as that on channél

e The number of antennas that GUses in solutiofY” is the same as that in solutidft, i.e.,

Dt Wy F Wi FY5) = Dy Wy F s+ 0p) = 20 e o (W 45, 4L

e The number of antennas that GUfor all i £ 7, uses in solutiofY” is the same as that in
solutionY™, i.€.,3 s o (Yl + Ui + i) = D5z o (U H s +0) = D050 (%j +yi +
Yije)-
From the first two bullets above, it can be seen that in SP2’ctnstraint for each channel
j is satisfied. From the third and fourth bullets above, we kitwat the constraint for each CU is

also satisfied. Therefore, we conclude thais also a feasible solution to problem SP2’.

It then follows that

W/Y/T . W*Y*T
= Z Z w;jyz/'j - Z Z w:jy:j
7 J 7 7
B Z Z w”y” + wa*yw + wa’yw

i gEI*!
(E E w; w”+ E ww*yw + g w”,yw>
v j#EG*G
_ 1o E r_ x .
= g WY — E w;;y;- (recallw;.. = 0 andw;;, = 0, Vi)
i i
o I + I
= D Wi¥iy T WY WigeYige + WY
17&; 7,761
_ I / /. * * *
= E Wi 0+wl~,j,y;j, g W 0+w{j*?ﬁj*
i#i i#i
[ A N
/ *
= w-, v — W, Vs
17" 1) 7
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%)

> (uﬁ. — wk )m (recallwy; > wj;., Vi)

Then the lemma immediately follows. O

DenoteM P’ andM P* as the original joint-optimization problem wiffW’, Y'}, and{ W*  Y*}
as defined above, respectively, adand A* as the corresponding objective function value of
M P" and M P*, respectively. It follows Lemma (3.2) that

2N 1

A -A =Y P(S=S§ (W’Y’T - W*Y*T) > 0. (3.50)

h=0

Eqg. (3.50) indicates that when we have limited spectrumisgreapability and cannot guar-
antee a satisfactory probability of detection to all thersteds, in order to maximize the expected
utility we can obtain from the possible sensing results &wedcbrresponding optimal transmission
strategy, we should assign the highest priority to the cbhtivat has the highest probability of
being idle, and allocate CUs that still have sensing capglidi sense this channel. It would be
suboptimal if we allocate CUs with extra sensing capabilityhey do exist) to sense other chan-
nel(s) that has(have) a lower probability of being idle. sTisi exactly the same strategy used in
Algorithm 7, i.e., assigning CUs to sense the channels in eedsmg order of their probabilities
of being idle.

This concludes the proof of the theorem. O

3.6 Simulation Study

3.6.1 Simulation Setup

In this section, the performance of the proposed algoritiswalidated with Matlab simula-
tions. We consider a scenario in which the PUs and CUs are nagdbstributed around a CBS

within the service radius of the CBS. Table 6.1 presents theegadf simulation parameters used in
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Table 3.1: Simulation Parameters

Parameters| Value || Parameters | Value

M 30 s —21dBto—11dB
N 30 I/fj —80dB to—-60 dB
K 0t ¢ —30dB to—10 dB
fs 105 Hz || max; {Pr (H{;)} | 0.9

T 10 P, 0.95

B 105 Hz || Py 0.1

C 3 A 4

the simulations, wherég, is the sampling frequency at the CUs with energy detectias.vi¢rified
that the range of MOS is within 1 to 5 with the value of the pastars provided as in [71].

We first examine the performance of the proposed algoritlonthe single-channel sensing
case which solves the OAPSS and OAPVT problems separatetg Wk term this algorithm "Pro-
posed Scheme 1 (PS1)” in the simulations. And we compare RtBlwee benchmark schemes
presented in [89] (termeBenchmark lin simulations), [79] (termedenchmark 2 and [92]
(termedBenchmark B respectively.

Specifically, in [89], the authors assume that the QoE madehown but the parameters are
unknown. The algorithm estimates the QOE models througloliservation of the realized QoE
sum, then it dynamically changes the channel allocatioadaa the estimated QoE parameters, in
order to maximize the QoE sum of all users. However, sincédmi model is adopted from [71],
where the authors do not consider the packet error rate (PBEIR the authors of [89]consider the
PER in the QoE model, we set the PER in the QoE model adopte39]nds the authors of [79]
do, in order for a fair comparison. In [79], the whole groupCGifis are categorized into three
different classes of priority. Each CU has a priority, andgherity of a CU is determined by the
video sequence that it acquires from the CBS. The CUs acquinimgSuzie” sequence have the
highest priority, the CUs acquiring the "Carphone” sequeraetihe second highest priority, and
the CUs acquiring the "Football” sequence have the lowestipyj where "Suzie”, "Carphone”,

and "Football” are three video sequences of different auntgpes we use in our simulations.
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Figure 3.1: MOS and data rate relationship for three refaetideo sequences.

The CUs of a higher priority will have a higher priority of asseng a channel. However, this
scheme doesn’t consider the variability of channel gainregnbie CUs. We also compare the
performance of our proposed algorithm with that of the athor proposed in [92], where the
authors propose a set of novel acceptability-based QoE Isyadknoted as A-QOE, based on the
results of comprehensive user studies on subjective guaditeptance assessments. The models

are able to predict users acceptability and pleasantnessious mobile video usage scenarios.

3.6.2 Simulation Results and Analysis

As a basis for our simulations and discussions, Fig. 3.Ispla relationship between MOS
and data rate according to (3.9) for three widely used telossequences with different content
types, including Suzie, Carphone, and Football. The pammmetre obtained from [71]. The
results are as expected since generally for the same datahmatMOS of a slow motion video
sequence is higher than that of a high motion video sequékieeise these video sequences in the
simulations presented in the rest of this section.

The effectiveness of the sensing algorithm component ofiB$tesented in Fig. 3.2. We
increase the minimum channel idle probabilityn; { P (% = 0) } from 0.1 to 0.47 and plot the
real channel states and the sensed channel states. As arfa@kctve also present the simulation

results with the random sensing scheme used in [85] and [88fh random sensing, each CU
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Figure 3.2: Performance of channel sensing vs. the minimuanmel idle probability.

randomly and independently selects one of Miechannels to sense with equal probability. As
utilization of the channels decreases, the number of idd@ctls increases. The proposed sensing
algorithm can discover more idle channels for CUs to use. bae the number of channels that
miss detection is less th&nb on average, which is less thaf x (1 — P;j) = 1.5. Recall thatV,
is the total number of channels aﬁgﬂj is the probability of detection. S&; x (1 — ij) is the
expected number of channels that miss detection. The gealgjarithm offers an acceptable level
of protection to the PUs, and is effective in detecting idiamnels for the CUs.

We next compare the expected MOS of all the CUs at each timédgabted a¥/;) during
an entire GOP window. In our simulations, each CU requestdenvsequence of a certain content
type (different CUs may request videos of different contgpej, and the request is sent to the
BS. The BS decides the channel allocation based on the olgeaftimaximizing the MOS sum
of all CUs. In Fig. 3.3, we plot the achieved MOS sum of all the Gldkieved by PS1 and the
Benchmark schemes. We sein; { P (r} = 0) } = 0.5 and traffic load¢ = 1 in this simulation.
Fig. 3.3 shows that the proposed QoE-aware scheme achievesiatently high QoE sum than all
the three benchmark schemes during the entire GOP windosvmEin reason is that Benchmark
schemes 1 and 3 only consider channel gain diversity aman@ths while allocating channels,

and Benchmark scheme 2 assigns channels to the CUs basedraagpective priorities only and
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Figure 3.3: Instant MOS per CU over time during 10 GOP windows.
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Figure 3.4: Average MOS per CU over time during 10 GOP windawslifferent traffic loads.

channel gain diversity is not considered among the CUs, wihigresult in a suboptimal strategy
to the objective of maximizing the MOS of all the CUs.

Fig. 3.4 demonstrates how the CU video quality is affectedheyttaffic load of the CUs
(i.e.,£&). The average MOS per CU during 10 GOP windows achieved by R&1ha benchmark
schemes are plotted, whe¥8% confidence intervals are plotted as error bars. As the CUdraffi
load is increased, more CUs need channels for video transmis§Ve can see that while the
number of the really idle channels is greater than the nurmbactive CUs, the average MOS per
CU of all schemes increases wighand the performance gap between our proposed scheme and
the benchmark schemes grows larger. While the number of/relédl channels is no greater than
the number of active CUs, the average MOS sum of both schemmasiréhe same, since no more

channel resource is available to satisfy the need of tha &lirs.
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Figure 3.5: Average MOS sum of the CUdsg_V, vs. the minimum channel idle probability,
min; ; {Pr (H{;) }, and the minimum SNR of CUsin; ; {/;}.

In Fig. 3.5, we examine the impact of PU channel utilizationd ahe SNR at the CUs on
CU video quality. In the 3-D plots, the x-axis is the minimumaohel idle probability, i.e.,
min; { P (r} = 0) }, and the y-axis is the minimum SNR of CUs, i.ejn; ; {x!;}. It can be
observed from the figure that as channel utilization is deswd, a channel has a higher probability
of being idle and there will be more channels available for @Uhe transmission phase. Thus

the average MOS sum of the CUs is improved. Furthermore |lavisifrom (3.15) that

ot zP(rt-:O|st-=O)-( ?—9?)%—6’?
(1= P})P(ri = 0) - (¢f; — 05))

¢
+ H,L‘j.

(1—Pt)P( —O)+(1—Pt)P( =1)

Sincegbj andef. are the MOS gain when channgeis idle and busy at time slat respectively, we
have (¢, — 0;;) > 0. Thereforeu;; is an increasing function aP (7’ = 0) and the overall MOS
sum is improved withP (r§ = 0). On the other hand, an increased minimum SNR at the CUs leads
to a higher data rate (i.e., a high&BR in (3.9)), and results in a higher MOS value for the CUs
according to the MOS model given in (3.9). We also find PS1eddpms the Benchmark scheme

for the entire range ahin; ; {;;} andmin; { P (r! = 0) } in terms of the average MOS sum over

an GOP window in this simulation.
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Figure 3.6: Distribution of the CU MOS values under differgaffic loads.

We next show how the traffic load affects the performance df RS-ig. 3.6. In particular,
we simulated two traffic loads, i.&,= 0.5 and§ = 0.9, and plot the distribution of the CU MOS
values. The entire MOS rangé (o 5) is evenly divided intot ranges with unit spans, and the
number of CU MOS falling into each range is plotted in the stalckanner. We find that when the
traffic load is light, most of the active CUs get the opportytdt receive video data, thus yielding
a comparatively higher MOS value in this case. When the triffid is heavy, the amount of idle
channels becomes lower than the amount of active CUs, andgdmus CUs are not scheduled for
video streaming. The proposed scheme outperforms the bemklschemes in both cases.

In the following we examine the performance of the proposaddtep approach for the multi-
channel sensing phase, which is termed "PS2” in the sinaulatiln Figs. 3.7 and 3.8, we plot the
number of idle channels detected and the achieved MOS valvesuse a modified version of
the Greedy Poly-matching Algorithm (GPA) that solves theR®S problem in Section 3.4.1 as a
benchmark scheme where the channel allocation stratebg saime as that of our proposed two-
step approach, since we only want to show the performandeegbtoposed two-step approach.
We change the algorithm by letting the Right Hand Side (RHS)owistraint (3.7) be”', which
is the spectrum sensing capacity of each CUE’SZQI x; = C, for all 4, and add a constraint

Zf‘il x;?j = A. This way, since all theP;g.’s are identical, for alk, j, ¢, all the ¢;,'s are also

identical, for alli, 7, ¢, and the algorithm will choos&/C'/A channels to sense.
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Figure 3.7: Sensing performance comparison.

In Fig. 3.7 we can see that the number of idle channels detégt®S2 is considerably greater
than that by GPA. This is because in PS2, channels with aagrpatbability of being idle will
have a higher probability of being sensed, while in GPA, latlrnels, regardless of the probability
of being idle, have the same probability of being sensed.dommon sense that if a channel has a
high probability of being idle, then it will have a high prdility of being found idle by spectrum
sensing. Note that in the multi-channel sensing case, at annoamber of% channels will be
sensed at a time slot.

In Fig. 3.8, we compare the MOS performance of PS2 and thenethassignment algorithm
as in SP2 combined with GPA. Since the proposed scheme terithsl tmore idle channels than
GPA does, more channels will be used for video streaminglingato better QoE performance.
This result also validate the fact that the proposed twp-amproach which treats the spectrum-
sensing-and-accessing-joint-optimization problem agtatt problem and solves for the jointly
optimized sensing and accessing strategy, will achieveptienality, the approach of decoupling
the joint-optimization problem into two subproblems, asti®m |1l does, will lost optimality in
some extent.

Finally, we examine the fairness performance the chanlusatlon strategy considering fair-
ness among CUs, i.e., P1 and P2. We adopt Jain’s fairnessasdeX{112]: f (e, es, ..., en) =
(Zf‘il ei)Q/ <M SM e?), wheree; is the average MOS of CWduring a period of time (10
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Figure 3.9: Fairness comparison between channel allocatrategy considering fairness among
CUs and channel allocation strategy without considerinaéss among CUs.

GOP windows in our simulation), = 1,2,..., M. The fairness index ranges from 0 (worst) to
1 (best). The benchmark scheme is the channel allocatiategyr without considering fairness

among CUs, i.e., OAPVT.

3.7 Conclusion

In this chapter, we investigated the problem of QoE-awallewistreaming over CRNs where
each CU can access one channel at a time. For the case wher€l@aemn sense and access at
most one channel at a time, we formulated an IP problem ortrsppesensing and solved it with
a optimal Greedy Poly-matching Algorithm. We then formeatht channel assignment problem
and solved it with the Hungarian Method that is also optimighwespect to QoE of the multi-user

videos. For the case where each CU can sense multiple chdnnelscess only one channel, we
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presented a more general, integrated formulation. Based assaimption on the spectrum sensor
configuration, we developed a two-step approach to solventegrated problem and proved its
optimality. The proposed schemes were shown to outperfexraral alternative schemes in the

simulation study.
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Chapter 4

A Decomposition Approach to QoS Driven Multi-user Videoestming in Cellular CRNs

4.1 Introduction

In previous chapters, we discussed the subjective assessme¢hod for the video quality,
i.e., QOE. In this chapter, we are going to introduce the abje assessment method of video
quality, i.e., QoS, which is to evaluate the video qualignfrthe network performance perspective.
QoS is an effective metric to evaluate the quality of multilaeapplications. Various factors,
such as throughput, delay, packet loss ration, and distgrtian be taken into consideration when
developing QoS models. Besides, differnt from the pervidwegpter where CUs can only access
at most one channel each time, here we allow CUs to accesglaudtiannels each time, so that
CUs have higher data rate and thus the QoS is improved furthieat's more, instead of fixed
transmission power in previous chapter, here we also cenpiower adaptation for CUs so that
transmission power can be dynamically adapted accorditigetchannel conditions and a higher
data rate for the channels can be achieved.

Although with great potential, the problem of video over CRNXadps about a whole level of
technical challenges, particularly due to the extra dinmenef dynamics on channel availability
and the uncertainty from spectrum sensing and access. Thdohdadesign trade-offs, multi-
farious network dynamics, limited network resources andihe other hand, video’s stringent
QoS constraints, necessitate a holistic cross-layer degpgroach to “squeeze” the most out of
the CRN. Usually such cross-layer design results in a tremestg@aomplex global optimization
problem, where all the layers (i.e., the PHY, MAC, networkd application layers) and all the
users (i.e., PUs and CUs) are tightly coupled [63] [52] [53]d&composition principl¢éhat helps
to decouple the design of spectrum sensing, access, andajgel QoS provisioning would be

crucial for making the problem manageable [32].
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In this chapter, we consider the scenario of downlink muster video streaming in a cellular
CRN, where each CU receives a video stream from the Cognitive Baser§(CBS). Each CU is
able to sense (with multiple sensors or sequentially sgrieenchannels [33]) and access (e.g., with
channel bonding/aggregation [85]) multiple channels. A&pathe H.264 Scalable Video Coding
(SVC) (Quality Scalability) model from [36], and jointly dgs spectrum sensing, channel access,
and power control for maximizing the QoS of all the CUs. Thaeetavo tightly coupled parts in
this problem: the spectrum sensing problem (SP1) to determhich CU to sense which channel;
and the channel assignment and power allocation proble®) 8Rllocate channels and transmit
power to the CUs.

The formulated problem turns out to be a Mixed Integer NoekaimProgramming (MINLP)
problem, which is NP-hard in general [49]. However, as il [8here aseparation principlas es-
tablished to decouple the design of sensing strategy fratroflsensor and access policy, we show
that our problem can also be decoupled into two relative$yezaub-problems with decomposi-
tion principleand develop an effective Column Generation (CG) based solatgorithm [155].

The major contributions made in this chapter include:
1. A holistic problem formulatiorthat jointly optimizes the spectrum sensing, channel assig

ment, and power allocation strategies for maximizing CU QoS.

2. A decomposition principléo decouple the original problem into a sensing strategy opt
mization problem SP1 and a resource allocation problem 8@#&yut sacrificing optimality

under certain conditions, amdfective algorithmso solve SP1 and SP2.

3. Aheuristic sensing schentieat is less demanding on CU hardware than the optimal sensing

strategy, but can achieve highly competitive sensing perdoce.

4. Anupper boundor the performance of the CG-based distributed algoriththamanalysis

of complexity and efficiency in terms of time savings.

5. Simulation validatiorto demonstrate the superior performance of our proposextigims

in terms of sensing performance and the QoS achieved by CUs.
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The remainder of this chapter is organized as follows. 8edi.2 reviews related work.
The system model and problem formulation are presenteddtic®ed.3, while the decomposi-
tion principle and the two sub-problems SP1 and SP2 aremtexsen Section 4.4. The CG-based
distributed algorithm to solve SP2 is developed in Sectiéafhd analyzed in Section 6.7.2. Sec-

tion 5.6 presents the performance validation and Secti®odhcludes this chapter.

4.2 Related Work

CR research has been largely focused on the aspects of spessnsing and dynamic spec-
trum access. In [73], the authors study the sensing-thqouighadeoff problem that optimizes the
spectrum sensing time so that the CU’s throughput can be nieedhwith restricted interference
to the PUs. Unlike [73], the protocol proposed in [32] alsagiders the problem of which channel
to sense, in addition to sensing parameters and accesygtagitimization. Moreover, the design
of sensing strategy is independent to sensing parametsigndend the access strategy, as speci-
fied in aprinciple of separatiori32]. These works focus on the optimization of sensing patans
only, and there is no collaboration among CUs. Considerindatiethat different CUs may have
different spectrum sensing performance, the authors ihditpose an algorithm where groups of
CUs are formed for cooperative sensing, aiming to find thedpestping scheme to discover most
idle channels. Furthermore, the problem of sensing paemogtimization in addition to optimal
sensor selection is addressed in [76], in order to achienaadatoff between detection performance
and sensing overhead.

Recently, cross layer design for video streaming over CRNs th@sted considerable inter-
est. An auction game model is proposed in [78] to solve thélpro of spectrum allocation in
delay-sensitive content-aware multimedia delivering. r@led/path selection for multi-user video
streaming is formulated as an MINLP problem in [63] to maxeiihe received video quality while
restricting collisions with PUs. Packet scheduling is sddn [85] in which spectrum sensing at
the PHY is integrated with packet scheduling at the MAC lagemprove delay-QoS provision-

ing over CRNs. The authors also analyze the throughput ang gelformance with a Markov
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chain andM /Gy /1 queuing model. Beyond these, other cross layer factors siEina Grained
Scalability (FGS) coding, error control, and modulatiorg pintly considered in [27] to achieve
the maximum QoS for CUs in a cellular CRN. Interestingly, creg®f optimization of streaming
videos over a CR link can also be modeled as a POMDP (Partidse©able Markov Decision
Process) as in [42], in which intra refreshing rate, a videtdec parameter, along with spectrum
sensing and access strategies are jointly designed.

Different from the above mentioned prior works that consttie physical layer factors, some
other works treat the problem of video streaming over CRNsarMbdium Access Control (MAC)
layer, Network layer, Transportation layer, and Applioatiayer. The authors in [29] model the
routing problem in video streaming over CRNs as a decisiongdreklem, where the quality of a
multi-hop path is determined by the quality of the chann&ag@this path, and the quality of the
channels is inferred using prior distribution and postedistribution. Then the routing scheme is
optimized in order to maximize the PSNR of the received videquence. Considering the fact
that different CUs may have different channel data rate afidrent buffer storage size, which
result in different abilities of tolerating network dynaigj the authors of [30] propose to allocate
channels to CUs according to their buffer storages. BasjdailyCU with a smaller buffer will
have a higher priority of accessing channels to avoid plagatage. Reducing the playout speed
to a certain extent when the buffered data at the receivenis$ also a feasible solution to reduce
the probability of playout outage, as the authors propog48ih The proposed scheme is based
on the observation that varying the video playout rate by 26%0% can be unnoticeable by the
viewers.

This chapter is motivated by these interesting prior woaksl is mainly focused on the joint
design of spectrum sensing and resource allocation sieatéay streaming multi-user videos over
the downlink of a cellular CRN with a novel decomposition pijrhe, which is not well addressed
in prior work but is essential for supporting the demand ajéabandwidth for video applications

and enhance the QoS of CUs.
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4.3 System Model and Problem Statement

4.3.1 System Model

We consider a primary network operating 6A licensed orthogonal channels, while each
channelj has bandwidthB;. A CR network is co-located with the primary network, coriapt
of a CBS andM CUs. The CUs sense the PU activities on the licensed channeélacoess
the channels in an opportunistic manner. As in prior worl,[8& first assume that each CU is
equipped with/N; sensors so that it can sense all the channels simultanedttsity assumption
is relaxed in Section 4.4.2, where each CU can only sense alannels at a time. The CBS
determines the status of the licensed channels based oertbiag results reported from the CUs.

We consider the scenario of downlink multi-user video strieg, where the CBS transmits
different video streams to the CUs using the channels senéed ©Once the channel states are
estimated, the CBS and CUs determine the allocation of the fdlarels, and the CBS selects a
power levelk, k = 1,2,--- | K, for the video transmission to a CU on each allocated channel.

We assume that each CU and the CBS adopt the channel bondiregfatygn technique [35,
85], such that they can transmit on multiple assigned cHarsm@ultaneously to make use of all
the available spectrum. To enforce a certain level of fasreamong the CRs, we define an upper
bound(; on how much total time a CWcan access all the channels.df is less than the total
number of channels, this can limit how much channel time a GRheae at most. Otherwise, if
C; is equal to the number of channels, then there is no suchefarconstraint and a CR can access
all the channels for the entire time slot.

We assume time is divided into a series of non-overlappiray@of Pictures (GOP) windows,
each consisting df time slots. The operations of the CBS and CUs in each time sldisagssed

above, are summarized in Fig. 4.1.
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Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6

The CBS Each CU The CBS The CBS The CBS The CBS
computes | |senses the| |computes and CUs | |broadcasts| | transmits

a sensing channels the set of | |determine the videos to
schedule >  and | available > channel > channel —»{ CUs on
and reports channels | |and power| |allocation assigned
notifies results to allocation schedule channels
CUs the CBS schedule

Figure 4.1: Operations of CBS and CUs in a time slot.
4.3.2 Problem Statement

Due to multipath fading and shadowing, different CUs usuehperience different SNRs
when detecting a PU signal, and thus may have differentisgm&rformance. It is important to
choose a suitable set of CUs to sense a licensed channel fraghieve diversity gain, cooperative
sensing is usually used to improve the detection perforednycfusing the sensing results from
multiple CUs, where a certain fusion rule is used to combire€Xb sensing results. In this chapter,
we consider cooperative sensing with the OR fusion rulenyfaf the CUs reports the presence of
a PU signal on a channel, the CBS will determine that the chasiheisy; otherwise, the channel
is considered to be idle.

We use anV/ x N1 matrix X to represent the assignment of sensing tasks, where eacardle
z;; Is defined as

1, CU 1 is assigned to sense chanpel

0, otherwise

As in previous chapter, here we adopt the energy detectidhaddor spectrum sensing, and
the probability of detection of PU signal on channddy CU i, P, ,the probability of false alarm
on channelj by CU i, Py, ., and the probability of detection of PU signal on chanpeF;;, the
probability of false alarm on channgl P;, for cooperative sensing with the OR fusion rule,, are
the same as in previous chapter.

To provide a graceful protection to PUs, we $&t = F,..,, where P, is the maximum
interference from the CU system that can be tolerated by theyRtém, angd Y, z;; = A;, for
all j = 1,2,---, Ny, whereA; is the minimum number of CUs to sense channellf we set

Py, = Py, =1— (1= Pyy)'/™, it follows (3.3) thatPy, = P,,.

68



Letr; denote the real state of chanpel; = 0 when channej is idle, andr; = 1 otherwise.
Also lets; be the cooperative sensing result on channe} = 0 if the channel is determined idle,

ands; = 1 otherwise. We have

P(sj=0) = P(r;=0)(1=Pp)+ P(r;=1)(1-Fy) 4.2)
P(Sj:].) = P(Tj:O)Pfj+P(Tj:1)de.

The cooperative sensing results on fyechannels can be represente@as {sj,7=1,---,Ni}.
There are™' possible outcomes f&¥, and Iet§h be theh-th outcome() < h < 2M1 —1. To deter-
mine thej-th element irS,, let s; =1;(h),j=1,2,---, Ny, denote the relationship betwesp

ands;. Assuming independent channel states, the probabilitgting outcomeS,, can be written

as
P§ =8, =[] Pls; = T,(h)
= [T =T5(n)P(s; = 0) + T;(h)P(s; = 1)]. (4.3)

j=1

We adopt the QoS model for H.264 SVC (Quality Scalabilitgnfr[36] as
pi = a; + B - Ry, (4.4)

wherep; is the Y-PSNR (Peak Signal-to-Noise Ratio) of the receivegwiat CUi, o; and3; are
constants dependent on the content type of the video segjuamd?; is the effective data rate of
the video sequence. According to conditional expectattmmexpected overall QoS can be derived

M
— > E(pilS = Si)P(S =S). (4.5)
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ForS = S, let®, = {j: I';(h) =0,7=1,2,---,N;} be the set of channels sensed idle.
LetY, = [y/4x] .1 <i < M,j e ®,1 < k < K, be the channel assignment and power
allocation matrix, wher® < yfjk < 1 is the amount of time that CBS transmits to CWith
a power level ofk on channelj in a time slot, when the sensing outcomeSis The channel
assignment and power allocation strategy can be expres3d-a[Y1, Yy, - - Yon |.

Putting it all together, it follows that

E(pilS = Sh) = i + B - E(Ri|S = S))

K
ZOéH—ﬂi'E( ZRijk'ka’§:§h>
je

@y k=1

K
=i+ 5 0 D (PRE + PRI - ol (4.6)

jED, k=1

whereGj, is the power of levek, d;; is the channel gain between the CBS and Ch channel

(1=Py;)P(r;=0)
(1=Py; ) P(r; 0)+(1—de)P(r‘,-:1)’

jy By = P(rj = 0ls; = 0) = Ply = P(r; = 1]s; = 0) = 1 = By,
Ry = Bjlogy(1 + Gidi;/(noB;)), andRyy = B;log,(1 + Grdi;/ (noB; (1 + 7))
Definew;;, = a; + 6:B;( PRy + PlyRY). The master problem of maximizing the total

expected QoS, denoted as PO, can be formulated as follows.

2N1-1 M

PO : max: Z Z Z szﬂf Yl - P(S=Sy) 4.7)

h=0 1i=1 jed, k=1

K
st Y D> yh, <CiVih (4.8)

je@h k=1

Z Z Yijk S (4.9)
z;/[ =
Z Z Zymk Gk < Gtotalyv h (410)

i=1 jedy k=1

M

Z =AY j (4.11)
=1
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c(0.1]. if Gudsi/(noB;) > =
e 0,1] s/ (noB;) 2 7 Vi ik (4.13)

=0, otherwise

In each time slot, constraint (6.15) enforces that the sutma CU: spend on all channels
is less tharC;.

According to [33, 35, 85], using discontinuous orthogomaljtiency division multiplexing
(D-OFDM), the CBS or a CU can aggregate multiple discontinuatisogonal channels together
to form an aggregated channel and then access the aggrefeabedel. This way, the CBS or
a CU can aggregate and access all the channels assignednultasieously. Therefore, after
computing all theyfjk’s, the CBS transmits to all CUs sequentially according togj;lgs, and
each CU is informed of this schedule before transmission aoetéich CU knows when to access
which channel, then it is a feasible and optimal scheduling.

Constraint (6.16) enforces that the transmission time oh ehannel is within 1 time slot.
constraint (4.10) enforces that the total transmissiongs@fithe CBS must not exceed the average
power limit G,,; constraint (4.11) enforces that there areCUs to sense each channeland
constraint (4.13) enforces that the necessary conditioth®CBS to transmit to Con channel
j with power levelk is that the resulting SNR must be greater than a predefinedtbldy such
that CU+ can successfully decode the received video.

Note that constraint (4.13) indicatggk > 0. Combined with constraint (6.16), it follows that

each0 < ylhjk < 1. Therefore, constraint (4.13) can be rewritten as

>0, if Gpds;/(noB:) > 3
vl T s/ (noB;) 2 7 Vi j k. (4.14)

=0, otherwise

The upper bound of 1 on th,é;k’s is thus removed and the problem can be solved more effigient

since usually LP solvers solve an LP without upper boundefalsan LPs with upper bounds.
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4.4 Problem Decomposition

4.4.1 Optimal Sensing Strategy

The formulated problem PO is an MINLP, which is NP-hard. Hegrewe observe that the
optimal sensing strategy can be obtained by solving a velgteasier problem as follows.

We first introduce Lemma 4.1 as a basis for our later analysis.

Lemma 4.1. The objective value of PO is a decreasing functio®pf for all j = 1,2,---, Ny,

—

Proof. DefineF (X, Y3) = S, Yoco, Sncs wikyle P(S = Sy) andf(X,Y) = 27 o VR(X,Y).

The partial derivative of'(X, Y},) with respect taP, is

~

OF(X,Y . K Z
E)Tjh) —ywk PS S ZZ(ﬂZ ROJOk

(1= Freg) P(rj = 0)P(rj = 1) + (1= Py, ) P(r; = 0)*)+
0P (r; = O) (R Py + BRIy PLy)/B;) < 0.

af(x Y) . 2N1 -1 9F(X,Y}) <0

It follows that h=0 T < 0. O]
J

Theorem 4.1. The optimal spectrum sensing strategy to problem PO can tanaa by solving

the following problem SP1.

M
min: Py, =1—[J(1 - Py, )™ (4.15)
=1
M
=1

Proof. Let the optimal solution to the original problem PO®@&,Y") and the solution to SP1 be
X*. SinceX' is optimal to the maximization problem PO, we ha¥&*,Y') < f(X',Y’). On

the other hand, sincK* is optimal to the minimization problem SP1, it follows Lem#d. that
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f(X*,Y") > f(X',Y"). Therefore we conclude th#tX*,Y') = f(X',Y') andX* is optimal to
problem PO.

After obtainingX*, we substitute it into problem PO to solve f&r*. The Y* obtained this
way is also optimal to PO, i.e., we hay¢X*, Y*) > f(X*)Y) > f(X,Y), forall X, Y. The

proof is completed. n

From the proof of Theorem 4.1, we have the following DecontmosPrinciple for the joint

sensing, channel assignment and power allocation problem.

Corollary 4.1.1. If there is no restriction on the sensing capability for edel, orn; < ©,, for

all 7, then the problem PO that jointly optimizes spectrum se@psinannel assignment, and power
allocation can be decomposed into two sub-problems: onénoptimal spectrum sensing strat-
egy, and the other for the optimal channel assignment and pallecation, without sacrificing

optimality.

Problem SP1 can be rewritten as the following problem SP1a,

SPla:Vj=1,2---,N,

M
max: Y ;- log,y(1 — Py,) (4.17)
=1
M
S.t. inj = Aj, (418)
=1

which can be solved easily with an LP solver.

4.4.2 Optimal Solution to a More General Problem

Due to the time constraint (i.e., when the channels are desesguentially) or the hardware
constraint, it may not be feasible for a CU to sense all the mblgn(although this may not be
a problem for the CBS). In this section, we consider a more gémase of spectrum sensing,

where each CU can only sense at mosi; channels simultaneously at a time slot. Therefore
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the following additional constraint is added to Problem P@oblem PO is a special case when

@i = Nl-

ixij <0; < N, Vi (4.19)
j=1
Denote the more general problem as POa. We still apply thes satution algorithm as

in Theorem 4.1 to Problem POa, and each charineill select A; users with the best sensing
performance (smallest false alarm probability). Thereteane@different cases. First, if a CWis
selected by more thaf, channels, then the new Constraint (4.19) is violated. Sedb@dl i is
selected by less thad; channels, then Constraint (4.19) is still satisfied and Térat still holds
true and the solution is optimal under the new constrainhdb&ll; as the set of\; CUs with the
best sensing performance regarding to channé&Ve can use the following procedure shown in

Algorithm 4 to check if each CWis selected by less tha,; channels.

Algorithm 4: Applicability of Theorem 4.1

1 fori=1:Mdo
n; =0;
for j=1:N;do
if CUi € 11, then
| omi=ni+ 1
end
nd
n; > O; then
Theorem 1 is not applicable ;
Break ;

D

© 00 N o U b~ WODN
=

=
o

end

[N
[

end

=
N

Algorithm 4 has a polynomial complexity @ (M N?). We conjecture that if the PUs are
widely separated, or when the channels are highly divereepiem 4.1 will be more likely to
hold true under the new practical constraint (4.19). HoweWerheorem 4.1 is not applicable
under (4.19), we can use a heuristic algorithm to obtain &optmal solution to POa, which is

presented in the following section.
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Algorithm 5: Heuristic Spectrum Sensing Algorithm

1 Sort theN; channels in descending orderBfr; = 0) and let the sorted channel set®Be
2 forj=1:N;do

3 Letj’ = Z(j);

4 Solve problem SP1b and denote the solutio®as,
5 if ©, = 0 then

6 \ Channel;’ is determined to be busy ;

7 end

8 if z;;; = 1then

9 ‘ 0,=0,;,—1;

10 end

11 end

4.4.3 Heuristic Spectrum Sensing Algorithm

The idea of heuristic algorithm to Problem POa is to sortthe€hannels according tB(r; =
0), forallj =1,2,..., Ny, in the descending order, and then minimi2e, forall j = 1,..., Ny,
sequentially. The heuristic spectrum sensing algorithprésented in Algorithm 7. In Line 4, the

following problem SP1b is solved.

SPla:Vj=1,2---,N,

M
min: Py, =1-[](1 - Py )" (4.20)
=1
M
S.t. Z Tijr = Aj/ (421)
=1
Ty < Oy (4.22)

In Lines 5v7, if there is no feasible solution to problem SP1b, thereoisansufficient number of
CUs to sense channgl, and we conservatively assume that chanphe busy to avoid collision
with PUs. Each time if CU is assigned to sense a chanitgljs decreased by 1 as in Lines-&0.

When©; reaches 0, constraint (4.22) will prevent Ctd be assigned to sense any more channels.
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In Section 5.6, we will show that the performance of Alganitf is very close to that of the
optimal sensing strategy in terms of both sensing perfocmamd the expected overall QoS, even

when®; < Nj.

4.4.4 Optimal Chanel Assignment and Power Allocation Solubn

After obtainingX*, cooperative sensing is conducted and the CBS determinesttbtavail-
able channels based on sensing results, as shown in Figzrérh. now on, we omit the subscript
(or superscript) in all the symbols, since the cooperative sensing resulthev; channels is
already determined. Denote the number of channels senkedsd’;, and re-index théV, idle
channels ag,2,--- , N,. Then the remaining channel assignment and power allocatioblem

SP2 can be written as follows.

M Ny K
SP2:max: Y > > wijk - vk (4.23)
1;21 ][:{1 k=1
St Dy <CiVi (4.24)
j=1 k=1
M K
Z Zyijkz <LVvy (4.25)

i=1 k=1
M N

DD ik Gi < Guota (4.26)

i=1 j=1 k=1

=

Constraint (4.14)

In practice, there may be a large number of CUs and licensathelsg and the CBS also has
a great flexibility to choose the power level for transmisgso a channel. Therefore, the constraint
matrix of SP2 could be huge and it may be hard to solve with asdli#er due to its size. In the
next section, we propose to use the Column Generation (CGhglb5] to solve SP2 and derive
a decentralized algorithm for better scalability. With greposed CG method, the CBS and CUs

solve different sub-problems, thus alleviating the corapanal burden on the CBS.
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4.5 Column Generation Method for Sub-problem

4.5.1 Dantzig-Wolfe Decomposition

We first reformulate problem SP2 from the standard form inthsaggregated formulation
by applying Dantzig-Wolfe decomposition of LP problems][54
Fori=1,2,---,M,let®; = {X},Xf, - ,X?l} denote the set of feasible channel assign-

ment and power allocation schemes to COhen
X? = {yg]]w] - 1a27"' aN27k:: 1727"' 7K}7

forq=1,2,---,Q;, is a feasible scheme satisfying all the constraints, ng{;ge: 1 if the CBS
transmits to CU on channej at power levek, andyjjk = 0 otherwise. Thus, the feasible schemes
are indeed the extreme points of the the feasible region Bf 8Rich is the key for Dantzig-Wolfe
decomposition [54].

Introduce a variabl® < z! < 1 to denote the amount of time the CBS transmits using
feasible schemg? within a time slot. Let the “utility” gained by using! for CU i asw; =
Z;.le S Wik - Y- Then SP2 can be represented ised-partition form termed the Master

Problem (MP), as

M Q;
MP:max: » » a2 (4.27)
=1 g=1
Qi
S.t. sz <1,Vi, (4.28)
qg=1
M Q; K
> (Z yé’jk> A <1V, (4.29)
i=1 ¢g=1 \k=1
M Q; Ny K
Z Z < Zygjk ’ Gk) qu < Gtotal; (430)
i=1 q=1 \j=1 k=1
0<z!<1,Viq. (4.31)



Constraint (4.28) ensures that< y;;;, = Zqul Yirz < 1, for all i, 5, k; constraints (4.29)

and (4.30) correspond to constraints (4.25) and (4.26pewely; and constraints (4.24) and
(4.14) are specified in the INitialization Problem (INP) dnicing Problem (PP) defined next in
Section 4.5.2. For convenience of our later discussionptbblem containing a subset of the

columns and cost coefficients (variables) of the MP is cdRedtricted MP (RMP).

4.5.2 Design of the Column Generation Method

Obviously, it is infeasible to solve the MP directly due te gxponential number of columns.
However, usually most of the variables in the optimal solutio the MP are equal to zero, with
only a small number of positive-valued variables. The MRiBoh can be re-optimized iteratively
by finding the variables having the potential to improve thgotive value at each iteration. This is
done by iteratively solving the PP, which examines whetherd exists a variable with a negative
(in the case of a minimization problem) or positive (in theeaf a maximization problem) reduced
cost, and then generates the corresponding column to amlthié RMP.

The RMP contains only a small subset of all the feasible cotuand variables of the MP
and thus can be solved quickly. The simplex multiplier aledi from the RMP will be passed to
the PP to identify a new column to enter the RMP again, untrigieno variables whose reduced
cost is negative (in the case of a minimization problem) @itpe@ (in the case of a maximization
problem). Thus an optimal feasible solution to the MP is thufhe purpose of RMP is to generate
the simplex multiplier for solving the PP.

The CG based Distributed Optimization Algorithm (CDOA) inbés the following six steps.

Algorithm 2: CG Based Distributed Optimization Algorithm
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Step I CU i solves the following-th INP and reports its solution to the CBS+ 1,2, --- , M.

Ny K
INP : max: Z Z Wiik * Yijk (432)
j=1 k=1
Ny K
j=1 k=1
K
> gk <1,V (4.34)
k=1
€ {0,1}, if Gpd;i/(ngB;) >~
Yk { } k ]/( 0 J) Y ik (4.35)
=0, otherwise

Each of theM solutions generates a feasible column of the MP. The CBS use¥/tfeasible
columns and the corresponding cost coefficients to initte#eRMP, which has the same formula-
tion with the MP, but withQ, = 1, forall: =1,2,--- , M.

Step 2 The CBS solves the RMP, from which a vector of simplex multipiié = (v7, 17, )

is obtained, wheré-)” denotes the transpose of a vectef, is a1l x M vector with thei-th
entry v; corresponding to théth constraint in the RMPu? is a1l x N, vector with thej-th
entry i; corresponding to théM + j)-th constraint in the RMP, and is the simplex multiplier
corresponding to the last constraint in the RMP. The objeatalue of the RMP is bower bound
to the MP.

Step 3 The CBS broadcasf3’ to all CUs and assigns Cito solve the following-th PP, to find
the column and the corresponding variable with the mosttigesieduced cost [155] to enter the

RMP to improve the objective value of the MP.

Ny K
E’: max: Al = Z Z(wijk—u]—QOGk) *Yijk — Vi (436)
j=1 k=1
N2 K
St Y ik <G, (4.37)
j=1 k=1
K
Z Yije < 1,V 7, (4.38)
k=1
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Constraint (4.35)

Step 4 Each CUi decides when to report its optimal solution to ik PP to the CBS according
to a delay

i = &§(A), (4.39)

whereé(-) denotes a decreasing functiond®f. Define an index. = argmax,_, .. ,,{A;}. Incase
thatA, > 0, then the current optimal solution to the RMP is not optimaheaMP and ClW: sends
its solution in the earliest time, (since it has the maximum valuk,). Other CUs overhearing
CU a’s message will not send their respective messages. Inlkbasa t < 0, the current optimal

solution to the RMP is also optimal to the MP, and no CU sends agest® CBS.

Step 5 The CBS verifies the optimality of the current solution: if moi is received from the
CUs after a predefined period of time, the CBS concludesAhat 0 and thus the CG method is

terminated; otherwise, go to Step 6.

Step @ For indexa = argmax,_; .. ,{Ai}, letQ. = Q. + 1 and generate the column

T

K K Ny K
HL?(L = €aazy§f}7'” ’ny?ﬁ?k’zzygﬁka (440)
k=1 k=1

j=1 k=1

with the solution to thei-th PP derived in Step 3, wheeg is al x M unit vector with thea-th

entry being 1. Add the column and the corresponding varigpleo the RMP and go to Step 2.

4.6 Upper Bound, Complexity and Time Efficiency

4.6.1 Upper Bound for the Master Problem

In the following, we derive an upper bound for the optimaleuitive value of the MP in each

iteration of the CG method.
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Theorem 4.2. At each iteration, letQ” be the simplex multiplier vector of the RMB, =
max;_; .. ,{A;} be the most positive reduced cost obtained from the PR& a (M + N, +
1) x 1 column vector with the-th entry being the value of right hand side of théh con-
straint of the RMP; = 1,2,--- (M + Ny + 1); g be a(M + N, + 1) x 1 column vec-

torasg = (11---1  00---0 )¥. Then an upper bound for the MP can be derived as:
N—— N——
M ones(N, + 1) zeros

Qb= (QF + A§)b.

Proof. Let QT be a feasible solution to the dual problem of the MP (termedPpNMccording to

the relationship between the dual and primal problems [Mé&]have
ﬁTH{]Zqu, 22177M7q:177QZ7 (441)

where H is given in (4.40). As discussed, at each iteration we caaiolat simplex multiplier

vectorQ)? by solving the RMP, as well as the most positive reduced cosbhing the PP.

A, = max{w! — QT HI}
Z7q

= Q'H > w! —Ayi=1,--- ,M,g=1,---,Q;, (4.42)
whereA, > 0. Denotel)’ = (QT + A,g) and multiply its both sides b§7. We have

Q' HI = QTHI + AGH! = Q' H = Q"H + A, - 1
SO H - A, =Q"HI = Q HI - A, > @ — A,

SQH >w! i=1,--- M, g=1,---,Q.

The first inequality is from (4.42). This means tfat is a feasible solution to the DMP. By
duality, the corresponding dual LP of a maximization LP isiaimization LP [155]. So the DMP

is a minimization LP, an@T is a feasible solution to the DMP.
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Let the optimal solution to DMP b@”". It follows that
Q> Q" =T, (4.43)

whereY™ is the optimal objective value of the minimization LP DMP.&uo Strong Duality T* is
also the optimal objective value of the MP. It follows tifts = (27 + A,g)b is an upper bound

for the MP according to (4.43). O

4.6.2 Complexity and Optimality Analysis

In the general problems solved by the CG method, the INP and&#emns are at least as
hard as the one dimensional 0-1 Knapsack problem, which a8 [87].

However, an interesting characteristic of the INP and PRiuircase is that the coefficients of
the constraint matrix in the INP and PP are either 0 or 1, suahtheunimodularity property86]
is satisfied in both problems. As a result, both the INP and&/e the optimal solution with their
LP relaxations, and thus they can be solved with the Simplethad [87, 155]. Again, the upper

bound of 1 ory;;;, can be removed as in PO.

Lemma 4.2. The INP and PP are indeed LPs and thus can be solved with the &im@thod with

a polynomial-time average-case complexity.

Although the INP and PP can be solved with the Simplex methloidiwhas a average com-
plexity of polynomial-time, it is possible that the Simpleethod will require exponential time in
extreme cases. Here we introduce a Greedy algorithm whislesthe INP and PP in strongly
polynomial time and still gets the optimal solution, to reduhe time complexity of CDOA.

The basic idea of our Greedy Algorithm is that, for the INP & ¢t each CU, the decision
variables corresponding to the combinations of channelpaeer level that having the highest
"utilities” among all possible combinations and still s&yithe constraints of the INP or PP, take
value of 1, while the other decision variables take value.ofn0this way a feasible and optimal

solution is guaranteed.
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Note that Line 1 to Line 5 of Greedy Algorithm executes in Steyf CDOA to solve the INP
and thus executes only once, in order to further reduce thguatation complexity of our Greedy
Algorithm, while Line 6 to Line 36 executes in Step 3 of CDOA ww& the PP and thus may

executes multiple times during a whole operation of CDOA.
Theorem 4.3. The Greedy Algorithm yields the optimal solution for the INTel #P.

Proof. We can see from constraint (4.38) that each channel can [s®clad most once with one
power level on it, and for each combination of channel andgdevel, there is an associated

Therefore, in order to maximize the total utility:

1. For each channel, we choose the combination of channgi@melr level having the greatest

utility among all theK” combinations;

2. If a combination has a negative utility, s&y,., then the combination should not be used,
l.e., yi;x = 0 in the optimal solution. So the chosen combination shoulek @ positive

utility;

3. From constraint (4.35) we know that if the resulting SNRi@ombination, say;, is less
than the threshold, then the combination should not be uSedthe chosen combination

should have a resulting SNR greater than the threshold.

We form a set using the combinations where each combinatigst satisfy the above three
conditions.

From constraint (4.37) we know that each CU can use at d@ipshannels. Therefor, from
the above set, we choogecombinations having the greatest utilities among all thalmoations,
wherep; = C; if the number of elements in this set is greater or equél;t@ndp; < C; otherwise.

In this algorithm, all the constraints are used and thus dhatisn is feasible, and from the

discussion we know that the solution is also optimal.
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For the greedy algorithm that solves the INP at optimalitg, just need to replacg;, =

wijr — p — PGy With &, = wy;,, at Line 6 of the above algorithm.
Lemma 4.3. The Greedy Algorithm has a polynomial computational comipl@fO (N2 + N, K).

Proof. From the algorithm we can see that Line 1 to Line 5 has a conitplek N, K, line 6 to
line 15 has a complexity &f N, K, line 16 to line 19 has a complexity af, (K + 1), line 20 has a
complexity of 1, line 21 to line 25 has a complexity less orada 2V, line 26 has a complexity
of O(p?) which is less or equal t&(N2), line 27 to line 36 has a complexity af+ 2min {p;, C;}
which is less or equal tb+ 2/N,. Summing up all these together, we conclude that the contyplex

of the algorithm isO(N2 + Ny K). O

4.6.3 Time Efficiency

Finally we analyze the time efficiency of CDOA. We compare iheetneeded to solve the
MP with CODA (with a distributed parallel executiont), and that without using CODA (with a
centralized sequential executiory,

Let the number of iterations of CDOA he. Let 7,,; be the amount of time to process the
RMP, 7,, the amount of time to process a Bpthe time for the CBS to broadcast the simplex
multiplier to the CUsy,, the time for CUa (Wherea = max;_; ... ;{A;}) to report its solution to
the a-th PP to the CBS, all in th&th iteration of CDOA. Also assume that the time to broadcast
the simplex multiplier to the CUs by the CBS is negligible. Timee savings = t, — t; achieved

by the distributed, parallel execution can be approximated

L

(Tont + M - 750) =Y (Tout + Ty + 70 + 721
1 =1

i
Mh

l

I
] =

(M =1) -7 — 1 — 7). (4.44)

~

1
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Since the size of the PP does not change during each iteratomssume that, = 7,. Then (4.44)

can be rewritten as

L

s=7, ((M - nF T”) . (4.45)

-
=1 p

In (4.45),7, andr,, are usually negligible compared withfor even a modest problem having
hundreds or thousands of constraints and variables. Whenuimder of simplex iterations is
proportional to the number of constraints, the overall cdshe simplex method i€ (m* + nm?)
arithmetic operations for a problem havingconstraints and variables [87]. Therefore, can be

further approximated by
s =0 (LM(Nj+ KN3)) . (4.46)

It can be seen thatis an increasing function of, M, N,, and K, which represent the size of
the problem. Such improvement in time efficiency demonstiia¢ advantages of the distributed

CG-based algorithm.

4.7 Simulation Study

4.7.1 Simulation Setup

In this section, Matlab simulation results are used to destrate the performance of the pro-
posed algorithms. Unless specified, the value of simulgiamameters are as shown in Table 6.1.
Each simulated point in the figures is obtained by repeatiegstmulationr, = 50 times with
different random seeds, and 95% confidence intervals ar@utath and plotted in the figures to

guarantee credible results.
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Table 4.1: Simulation Parameters

Parameter| Value | Parameter | Value
M 30 5 —95dB
N 30 A 3

K 10 r 50

Y 104 @z 3

d;; —15~ —9dB | 7 —100 ~ 0 dB
Ci 3 Gtotal 50

G 101 Preq 0.99

fs 10° H, min; {P(r;=0)} | 0.2

o 1076 max; {P(r;=0)} | 0.9

B; 10° H,

4.7.2 Simulation Results and Analysis

As a basis for our simulations and discussions in the folowkig. 4.2 plots the relationship
between Y-PSNR and data rate according to (4.4) for threelwidsed test video sequences of
different content types.

The three videos are in uncompressed YUVAMPEG format. Thpyesent three levels of
motions: slow (Suzie), medium (Carphone), and quick (FdhtbBadeos of different motion levels
are often used as tested sequences to demonstrate thenaaréerof proposed algorithms [71,79].
These and other video sequences can be downloadedftpr: //media.xiph.org/video/der f |

In the figure, the markers are obtained by experiment withréhévideo sequences, and the
lines are obtained by linear regression. Video QoS parasieteand 3; for the three sequences
are calculated based on their respective linear regrepiits

In Figs. 4.3 and 4.4 we compare the performance of the opserading strategy and that of
the Heuristic algorithm, in terms of sensing performance tie resulting overall Y-PSNR of the
received videos, respectively, We consider four caseshieatumber of sensors a CU has in the
Heuristic algorithmo, = 3, 4, 5, and 6, wher®,; < N; = 30. Note thatM/ - ©;, > N; - A; is
a necessary condition to have any channel sensed by at lesinsors. In Fig. 4.3, the legend

‘Idle channels’ means the number of channels cooperats@atged idle; ‘Missed channels’ means
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Algorithm 6: Greedy Algorithm
1 for j=1:Nydo
fork=1:kdo

Computed; i, =
end

Grdij .
nij ’

2
3

4

5 end
6 for j=1: Ny do
7
8
9

fork=1:Kdo
if 6ijk: <% then
Set¢; ;1. = o, whereo < 0 and is a fixed constant;
10 else
1 | Computes;jx = wijr — 1! — @Gy ;
12 end
13 end
14 end
15 end

16 for j =1: Ny do

17 Find £’ such thaE,»jk/ > fijk,Vk 75 k' )
18 Denote@-j =&k

19 end

20 Letp; =0;

21 for j =1: Ny do

22 | if &; > Othen

23 | pi=pi+1;

24 end

25 end

26 Sort thep; channels in the decreasing orderfgfand let the sorted channel set e
27 if p; < Cj then

28 for j =1:p; do

29 | Setyugw =1;

30 end

31 else

32 forj=1:C;do
33 ‘ Setym(j)k/ =1;
34 end

35 end

36 end

the number of channels cooperatively sensed idle whilestbbannels are actually busy, so the
number of channels that are sensed idle and are actuallisitiie difference between the two.
From these two figures we can see that the heuristic algoattitreves a performance close

to the optimal sensing strategy whén > 3.
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Figure 4.2: Y-PSNR versus data rate for three referencewdgquences: model versus simulation.
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Figure 4.3: Optimal versus Heuristic Sensing in terms ossenperformance fo® = 3,4, 5, 6.

In this case, we havé/ - ©, = N; - A;. A channelj, may not have ‘good’ CUs (i.e., with a
relative smallP, ) to sense it, since these CUs may have already been assigaeother channel
J'» which has a higheP(r; = 0) and thus has a higher priority of being optimized. Thus clkeann
j may be discarded due to insufficient CUs to sense it, resultireglower value of SP2 due to
fewer available channels for video streaming.

Recall that© is the number of channels that a CU can sense at a time slot. ©Qi¢
is assigned to senge channels, it is deleted from the remaining CUs list. TheefasO is

increased, which means that a CU can sense more channelsva aldt, it is more likely that
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Figure 4.4: Optimal versus Heuristic Sensing in terms ofaN&-PSNR in dB for© = 3,4, 5, 6.

each channel can be sensed by the best CUs. Thus the sensorgpece of each channel will
be improved. We found that whénis selected from 3 to 6, the result is sufficiently good.

However, as the last three sub-figures shows, the Heurigbcitom achieves almost the same
performance as the optimal sensing strategy when 4, 5, and 6. Thus even the channels having
a lower priority will have a higher chance to be sensed by @s. ThenP;,,j = 1,2,..., N,
is more likely to be reduced, and the objective function gatuimproved.

Note that both the heuristic and the optimal sensing havedhee computational complexity
and workload for the ‘good’ cognitive users, since in bothoaithms each channel will be sensed
by the CUs with the best sensing performance. The only diffsxes that in the optimal sensing
strategy, the sensing of each channel is optimized at the 8ara; while in the heuristic algorithm,
the sensing of each channel is optimized sequentially,a@rotller of decreasing priority, which is
determined by its probability of being idle.

Besides, we also compare the sensing performance and ovd?&INR performance of our
proposed Heuristic algorithm with a Benchmark Algorithmleaithe Random Algorithm, as the
authors in [85] did, which randomly assigns CUs to sense channg| V5. We can see that the
Heuristic algorithm outperforms the Random Algorithm sfgpaintly, the main reason for which
is that the Random Algorithm doesn’t consider the sensingracy of different CUs for different

channels. It is very likely that for a particular channek RRandom Algorithm will assign CUs
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having a high false alarm probability to this channel to saysvhich results in a great probability

of this channel being false alarmed. That's why the numbadlefchannels found by the Ran-
dom Algorithm is very small, although the number of misseteded channels of the Random
Algorithm is close with that of the Heuristic Algorithm anket optimal sensing strategy. Under
such sensing performance, it is within our expectationttabverall Y-PSNR performance of the
Random Algorithm falls behind that of the Heuristic Algonthdrastically. Therefore, we claim

that Heuristic Algorithm provides a much better performatitan Random Algorithm does.

Fig. 4.5 demonstrates the convergence of the CG method inds&scl/ = 9, N; = 18 (the
upper figure) and/ = 15, N; = 30 (the lower figure). We set’; = 2, foralli = 1,2,..., M in
both cases.

We have the following observations. (i) The number of iterad is positively correlated to
the problem size, since as the number of CUs and channels gtiosve may be more feasible
schemes to improves the current objective value at a spé@fation. (ii) The most positive
reduced cost maXA;} tends to decrease over iterations. This trend is the re§tifteogreedy
approach of the CG algorithm, which means that the algorithooses the feasible scheme having
the most positive reduced cost (thus possibly having thatgse potential to improve the current
objective value of the MP) from the remaining candidateitdaschemes, to enter the RMP at each
iteration. (iii) The increment of the objective functionaaspecific iteration is positive correlated to
max {A;}. This follows directly from the above discussions. (iv) Tugper bound to the optimal
objective function value converges quickly, and is alsatpedy correlated to max{A;}. From
Theorem 4.2, the upper bound at a certain iteraiohis actually a positive function of maxA;}
(A, in Theorem 4.2) at this iteration. Since m&xX;} drops quickly and become very close to 0,
Qb drops and then converges to the optimal objective functedoesquickly. Note thaf)' b is
not necessary decreasing as the iteration goes. There @amaam reasons: (a) mafA;} is not
necessary decreasing as the iteration goes although itssadvend of decreasing. (@Tb also

depends on the simplex multipli€¥-, whose convergence is hard to analysis.
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Figure 4.5: Convergence performance of Column Generatiohadet

The convergence of the Y-PSNR of each type of received videteiutwo cases:M =
9, N; = 18 (the upper figure) and/ = 15, N; = 30 (the lower figure), wher€’; = 2, for all
1=1,2,...,M in both cases, is shown in Fig. 4.6.

It is observed that for the type 3 video, the Y-PSNR shows ddray of increasing as the
iteration goes. For the type 1 video, the Y-PSNR shows a toértecreasing, especially in the
lower plot in Fig. 4.6. The Y-PSNR of type 2 video is decreasethe upper plot and doesn’t
show much change in the lower plot. However, the overall WR®f the three types of videos
increases along with the iterations. The main reason istthahprove the overall Y-PSNR, at
each iteration, the CG algorithm preferentially assignswaleband power resources to the type of
video which may have the greatest potential for improvirgydkierall Y-PSNR. Recall that under
the same data rate, the Y-PSNR of type 3 video is the greatddha Y-PSNR of type 1 video is
the smallest among the three types. Thus on the conditianhiteaumber of available channels is
limited and is less than the number of video sessions, clhamaepower resources will be taken
from what have been allocated to type 1 videos and then bgreskio type 3 videos first, then to
type 2 video. Besides, the magnitude of changes of the thpes tyf videos decreases quickly over

iterations, which is in consistence with the change of trevalV Y-PSNR, as shown in Fig. 4.5.
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Figure 4.7: QoS and QoE comparison between the proposethsdred the benchmark.

In Fig. 4.7, we compare the proposed algorithm with a benckiszheme [79], with respect
to both QoS (i.e., Y-PSNR) and QoE of the received videos. ébinchmark scheme, an idle
channel, say channgl with a higherP(r; = 0) is assigned to a CU, say CU that is less
delay-tolerant and thus have a higher priority to use thdaa channels. In our simulation we
randomly assign an integer priority level ranging from 1 tim @ach CU. We use the MOS (Mean
Opinion Score) to evaluate QoE and the MOS model is adopbed [ff 1] as the benchmark scheme
does [79].
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It can be seen that whenin;{ P(r; = 0)} > 0.35, the Y-PSNR achieved by the benchmark
scheme is about 100 dB lower than that achieved by the prdmzdeeme, which means that each
CU with our proposed scheme has an average Y-PSNR of 3 dB higgnethat with the benchmark
scheme. Both curves tends to increasenas; { P(r; = 0)} increases, since more channels are
likely to be available for video transmission. Within thetiemrange ofmin; { P(r; = 0)}, our
proposed algorithm outperforms the benchmark schemernmstef Y-PSNR, because the solution
to the problem in [79] is not necessary optimal to our probéemd thus yields a lower bound to our
problem. Furthermore, we find that the overall MOS of the taltesnes are almost the same. Thus
our proposed algorithm achieves a considerably higher @odSaacomparable QoE performance

as the benchmark scheme.

4.8 Conclusion

In this chapter, we investigated the problem of QoS-drivesitiruser video streaming over
cellular CRNs. We showed that there exisidegomposition principlén the optimal joint design
of spectrum sensing, channel assignment, and power atladhiat circumvents theurse of di-
mensionalityin general MINLPs. The decomposed spectrum sensing probisrsolved with an
optimal algorithm, along with a heuristic algorithm thatnmich less demanding on CUs’ hard-
ware. A CG-based decentralized channel assignment and @doeation algorithm was next
developed to relieve the computation burden on the CBS. AnceadyrAlgorithm which solves
the sub-problems generated during the CG based algorithptiatadity in polynomial time is pro-
posed to reduce the computational complexity. We analyzedomplexity and time efficiency,
and derive an upper bound for the CG-based algorithm, andateli its performance with simu-

lations.
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Chapter 5

A Decomposition Principle for Link and Relay Selection in Dhap mm Wave Networks

5.1 Introduction

mm Wave Millimeter wave (mmWave) communications has becamesearch hot spot re-
cently. There is up to 7 GHz license-free spectrum in thigldhat is available in many countries,
making mm Wave communications and networks a promisingiigcie to meet the wireless data
challenge, as well as a core technology for future 5G Wisetgstems [112]. What's more, the
authors of [113] propose to augment wired hybrid data cemdéworks with highly directional
60GHz wireless links to provide flexible network connedyivivhich reveals the great potential of
60GHz technology in other applications. However, to make Wlave mmWave networks appli-
cable, many research challenges should be addressed. fBhessisignal attenuation in mm Wave
channels is much serious than that in the 5 GHz or 2.5 GHz @tafitd8], making beamforming
indispensable. The authors in [146] show that the highlgadional links, especially in the outdoor
environment, can be regarded@seudo-wiredvith negligible collision probabilities. This model
has been adopted in many works on mm Wave networks [112, 19$—1

Furthermore, mmWave signals usually do not diffract aroonpenetrate obstacles. A Line-
Of-Sight (LOS) path between the transmitter and receiviexqsired for a successful transmission.
However, in practical networks, an LOS path may not alwaysteand it is possible that an LOS
path is blocked (e.g., by a pedestrian or car) from time teetinkirst, relay nodes should be
used to forward data for a distant or blocked receiver [1B9]setting up an LOS path between
the transmitter and relay, and that between the relay argviesc Second, the blockage between
two nodes may appear or disappear dynamically due to the mmvieof objects or the nodes
themselves [150, 151]. A realistic mm Wave network protadabuld consider the use of relay

nodes and model the dynamic blockages of mm Wave links [50].
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As a unique feature of mmWave communications, network cotiigy can be enhanced by
exploiting reflections from walls and other surfaces torssgeund obstacles [123]. The authors
in [124] use static reflectors to maintain the coverage of mem&wetworks. When the LOS path is
blocked, the authors in [125] suggest to switch the beamfpatihan LOS link to a Non-Line-Of-
Sight (NLOS) link. Although using reflections will cause #@zhal power loss and reduce power
efficiency, it offers additional choices for increasingwetk coverage and improving network
throughput.

In this chapter we investigate the scheduling problem inrdrazed dual-hop mm Wave
network. The network here we consider consists of one PNCghwisi the central coordinator,
multiple SD pairs, and multiple relays. When a source andirdgsgin are unable to directly
communicate with each other (e.g., out of range of each otrepermanently blocked by an
obstacle), a relay will be used to forward their traffic. Téare multiple links, including both
the LOS link and NLOS links (e.g., reflected from a wall), fr@axsource to a relay and a relay
to a destination. We adopt a two-state Markov chain modelafgtwre the dynamic blockage
behavior of mm Wave links. At each time slot, the PNC decitheslink and relay selection for
each SD pair to minimize the Maximum Expected Delivery TilEEDT) among all SD pairs, by
jointly optimizing relay and link selection, while exploiy reflected mmWave transmissions and
considering link blockage dynamics. We develop a nonlinegger programming formulation
of the link and relay selection problem, and then developa#iffe algorithms that can provide
highly competitive solutions. Specifically, we develop acbmposition Principle to transform this
problem into two sub-problems, one for link selection anel ¢ther for relay assignment when
there is enough replays. We prove that the proposed schamach&ve an optimality gap of just
1 time slot at greatly reduced complexity. We also developuaristic scheme to handle the case
when there is no enough relays. The proposed schemes atatedliwith simulations with their

superior performance observed.

e Unlike prior works on relay selection in mm Wave networks§11119,126-129], we consider

the LOS and multiple reflected NLOS links between sourceyrend destination nodes, as
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well as link blockage dynamics in our formulation, and pdava rigorous analysis of the

joint link and relay selection problem.

e We develop a Decomposition Principle to break down the fdawed NIP problem into a
link selection sub-problem and a relay selection sub-gmblWe prove that the two sub-
problems together provides a sub-optimal solution to the ptbblem with greatly reduced
complexity, and more important, the optimality gap is boeshéy only 1 time slot, if there

is a sufficient number of relays.

e When there is no enough relays, we propose a heuristic digotftat can still achieve highly

competitive solutions at a low complexity.

e We validate the proposed algorithms with extensive siniatand comparison with two
scheduling algorithms for mm Wave networks. We find both tteppsed Decomposition
Principle and heuristic scheme outperform the two benchksiarall the cases that we sim-

ulate, with respect to delay, MEDT, throughput, and faisnes

In the rest of this chapter, related work is reviewed in ®#c6.2, the system model is pre-
sented in Section 6.3 and the problem formulation in Se&idn We develop the Decomposition
Principle and the heuristic algorithm in Section 5.5 andwai® their performance in Section 5.6.

and Section 5.7 concludes the chapter.

5.2 Related Work

There have been some interesting work on link schedulingimWave networks. The authors
in [131] propose a Partially Observable Markov Decisiondess (POMDP) framework to model
the link status in mm Wave networks, and a greedy schedutiagegy that aims to maximize
the instant throughput at each time slot. However, thigesgsais only applicable for single-hop
centralized networks, and the multiple potential linksimstn a node pair is not explored in this

chapter. A similar problem is studied in [129] with a spe®aknario of a single-transmitter.
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To improve network throughput, the authors in [126] propadast relay selection algorithm to
reduce the overhead of relay selection time, so that thdtéevmore time for data transmission.
The basic idea is to determine the sectors where the begtmag be located, and then find the
best relays in the selected sector. However, the author®@toomsider coordinating concurrent
transmissions of multiple transmitters. It is possiblé th#erent transmitters may select the same
relay and thus collision happens.

In [119], the authors consider the fact that different relemay have different path losses, and
thus having different outage probabilities. A relay setatscheme is proposed to minimize the
outage probability for a single transmitter. In both indaad outdoor environments, the obstacles
may change over time (e.g., pedestrians move) and thusdbkdge of a mm Wave link is actually
not static. Such dynamic channel condition is not consaiéne[119]. A network throughput
maximization problem for a dual-hop network is studied idg], where different relays may
provide different capacities for a SD pair. Relays assigrifeermultiple SD pairs is optimized to
maximize the network throughput. The path loss and blockageel considered in this work are
also time-invariant, and thus the proposed algorithm maybeasuitable for mm Wave networks
with dynamic link conditions. To overcome the problem okliireakage and degradation in point-
to-point 60GHz networks, the authors of [136] propose torapeaterdo provide alternate paths
when the direct path between transmitter and receiver degrdt is assumed that the nodes and
repeaters can beamform in any direction and thus by tunmgrdmsmitting and receiving antenna
to the repeater, a new link between the transmitter andwexcean be established. However, it is
worthy of noting that in complex environments, the placetr@aml selection of repeaters is a non-
trivial problem. In [137], to reinforce transmission ef@aicy and also reduce power consumption
of 60GHz devices, the authors propose a fast beam-switdtimgme, which employs an efficient
beamforming training algorithm based on the direct nuna¢search so that only a small portion
of beam-pairs will be sequentially tested while most otresrh-pairs will never be probed, so that

the search complexity can be significantly reduced.

97



In [112], the authors propose a heuristic scheduling scHemgiven traffic demands under
static channel conditions, aiming to minimize the time regktb clear all the traffic demands. The
pseudo-wired mm Wave channel model is adopted in this wohke duthors in [127] study the
relationship between the collision probability of two cament transmissions on two links and the
link distances. It is found that the collision probabilisyan increasing function of link distance.
Based on this finding, the authors propose a hop selectiomcbased on link distance, to reduce
the collision probability of concurrent transmissions. Byplacing a single long hop with mul-
tiple short hops, the proposed scheme can improve the nuofls®ncurrent transmission flows
while constraining the harmful interference below an atalgle level. However, the algorithm is
heuristic and lacks consideration of multiple coexistiimis. The time slot allocation problem in
multi-hop mm Wave networks is investigated in [128], whére direct path shares time slots with
the relay path. Different time slot allocation schemes nesult in different system throughput,
and the effective system throughput is optimized with tinog¢ allocation. A sub-optimal solution
is proposed to solve the formulated NP-hard problem. Besiahesslot allocation, channel alloca-
tion is also significant to the improvement of network thropgt. The authors of [139] investigate
the problem of channel allocation in 60 GHz indoor WLANS in@rtb maximize throughput, and
two SDMA (Spatial Division Multiple Access) algorithms apeoposed, for the single-channel
case and the multiple-channel case respectively, to éxpieipeculiar propagation properties so
that data rates to end users can be improved.

There are also some papers on designing MAC protocols foH&O0freless networks and
performance analysis of MAC protocols. In [135], the authdaim that conventional directional
CSMA/CA protocols do not work well at 60GHz networks due to theaired carrier sensing at the
transmitters. To overcome this difficulty, the authors jmsga novel protocol which adopts virtual
carrier sensing instead of physical carrier sensing, ali@ksren a central coordinator to distribute
network allocation vector (NAV) information. The authors[©38] present an analytical model
for computing the saturation throughput of a Medium- Tramept MAC protocol in 60GHz radio-

over-fiber networks. Both of the contention at the optical twedvireless layer are considered. The
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Figure 5.1: (a) Network model. (b) Two-hop relay path model.
authors derive the saturation throughput performanceeMbdium Transparent MAC protocol
under various scenarios. To provide a more comprehensiverpance analysis of the Medium
Transparent MAC protocol for 60GHz radio-over-fiber netkgmithe authors of [140] analysis the
delay fairness performance of the Medium Transparent MAS&Eqgaol, and it is shown that delay
eqgualization can be achieved even for highly varying useutadion patterns among the different

antenna units when certain wavelength availability coodg are satisfied.

5.3 System Model

As shown in Fig. 5.1(a), we consider a centralized dual-ho@Hz network consisting of
multiple nodes and one PNC. Each node can be either a soureg(8pdc destination node (D),
or a potential relay node (R). When the source and destinatideshare unable to directly com-
municate with each other (e.g., permanently blocked by atacke/wall, or out of range), a relay
is used to forward their traffic. Due to point-to-point mm Wdinks (unlike traditional broadcast-
based relay networks), we assume that each SD pair can cbolysane relay at a time. However,
a relay may serve multiple SD pairs at different time slotg (ot at the same time slot).

To overcome the deafness problem, which makes it highljiengihg for coordination of the
highly directional links, we assume a lower frequency pubdintrol channel (e.g., a WiFi channel)
for all nodes and the PNC [130]. Due to the omnidirectioremhémissions, better propagation, and
larger coverage, the nodes on the control channel actualiy & single-hop network. Network
state and control information of the dual-hop mm Wave nektwean be effectively exchanged
among the nodes on the control channel [118, 119, 130, I1&djiding the following at each time

slot.
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e The PNC collects network state information, such as traffiuests, link status, etc., from

each node

e The PNC broadcasts link transmission schedules to all tHesid it makes a new schedule

at this time slot

e Receiving nodes inform the PNC whether the reception is ssfalor not, so that the PNC

knows the link status.

As shown in Fig. 5.1(b), there may be multiple links betwegmaa of nodes within range
of each other: there may be one LOS link, as well as other NL@GK lformed by exploiting
reflections from walls and other surfaces [116]. Due to th@ingpobstacles, the state of a link
is either blocked or unblocked at each time slot. We assumértk state follows a discrete-time
Markov process [129, 131], while the nodes learn the tremmsprobabilities of their links and
inform the PNC these parameters. Note that if the LOS linkasaikely to be blocked, an NLOS
link may be a better choice. A successful transmission omkeréquires the link being unblocked.

Without loss of generality, we assume each node is equiptdaw electronically steerable
antenna array to beamform in the transmitting or receivimgctions; so each node works in
the half-duplexmode [132]. Both transmission and reception are directiwith a very narrow
beamwidth. The beamforming weights learned when receivorg a given node can then be used
to transmit back to that node, assumal@nnel reciprocity Some commercial mm Wave products
can have a beamwidth ©f4° or even as small a56°. A probabilistic analysis is presented in [116]
on the interference caused by uncoordinated transmissiosisch highly directional mm Wave
networks. The analysis shows that “interference can esdlgrtte ignored in the MAC design”
and the links can be regarded@seudo-wired116]. We adopt such a pseudo-wired link model in
this chapter, as in prior works [116-119].

A relay can be in one of the three states at each time slot; tidlasmitting, or receiving.
If a relay is selected for a source, it receive from the soundde first hop. Once finishing the

reception, the relay transmit the received packet to theitpe destination in the second hop.
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Until the packet is successfully transmitted to the detitinathe relay cannot receive more data
from this or other sources due to the half-duplex operaticerelay is not selected for any source,

it stays in the idle state. This model is illustrated in Fid.(6) as in prior works [118,119, 133].

5.4 Problem Formulation

5.4.1 Dynamic Link Blockage Model

For a linkl, denoteC? as the event that linkis unblocked at time slat andC? the opposite.
Recall that link state follows a discrete-time two-state kéarchain. Let) < p;, ¢, < 1 be the one-
step transition probability from blocked to unblocked, &wan unblocked to blocked, respectively.
The one-step transition probability matrix of litks

P(CIHCY) P(CTCY) l—p  m

Pl(l): ~t+1 t+1 N
pereh peicn) \ e 1-a

Then-step transition probability matrix of linkis [134]

P(C/™|CY) P(C;™|CY)
Pi(n) = B
P(C/™|Cy) P(C™|CY)

1 Y Jr(1—pl—ql)" o~
Pt it aq

qr Di —q  q

I O 0 Cn=12.. .. (5.1)

a(n) 1—q(n)
5.4.2 Expected Delivery Time (EDT)

We consider two types of SD pairs. The first type, denoted;ass that the source and
destination are within one-hop distance with each otheramadhot permanently blocked (e.g., by

a wall). Hence the SD pair can either communication with exshbr directly, or use a relay if the
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direct link is poor. The second type, denotedSasis that the SD pair are either out of range or
blocked by a permanent obstacle between them. Thus a refe@gded for them to communicate
with each other. Defing,;,; = S; U S;. We next derive the expected delivery time (EDT) for the

relay-assisted and direct transmission cases.

EDT via Relay

Let s denote a source with destinatidfs), andr be a relay that can communicate directly
with both s andd(s). Denote a link betweer andr asl,,., and the set of alk— links as.,,.
Similarly, we defind, ) as a link between andd(s) and, . as the set of these links.

Let 7, be the delivery time froms to » when linkl,, is used in the first hop for a block of
data no greater than the channel capacity (normalized tme glot), andl’ be the current time
slot, 7" > 1. The expectatior£(7},.) is the average number of trials until the first successful

transmission happens &5, which can be expressed as

E(T,,) =Y tP(T}, =t)=1-P(C/ )+
t=1

A 1—P(CE
ST ), =14 LD 62
t:2 sTr

whereP(C/ ) is the probability that,, is unblocked af".

Now let7;,, , be the delivery time from to d(s) when linkl,, is chosen in the first hop

rd(s)

and linki,4s) is used in the second hop. To deri€r;,, ; , .,), e first note that

BTy a0 Thr = 1) (5.3)
o) 1— P(CZT;Zt))
- Zt,P(ﬂsr’l"d@) - t/|,1_7lsr - t) - ]- + e
=t plrd(s)
According to thdaw of total expectatiorwe have
E(ﬂs'r'ylrd(s)) = E(E(Tl”m(s) T, = t))
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- P <Clrd(s)) P<7jlsr - t)

& 7Tlrd(s) Tlrd(s)
= Z (P (C ) plrd(s) (T + t - jjl,pd(s)) + P <Cl'rd(s) ) (1 - QIT'd(s) (T + t — ﬂrd(s)))) P(EST = t)
t=1

l’r‘d(s)

-+
Il

= = T—T; +2
_ P(O[z;> i P(CZT)(plT-d(s) + l,qqs) )plsr ) (1 — Pl — QZM(S)) fr() (5 6)
plrd + qlrd(s) plrd(s) + ql'rd(s) (1 - (1 - plrd(s) - qlrd(s))(l - plST))
= Z E(ﬂs‘l’vlrd(s) ﬂsv* = t)P(ﬂsr = t)
t=1
1 R
=1+ —~ > PG P(T,, = 1), (5.4)

pl'rd(s) plrd(s) t=1
To calculateE(1;,, ) in (5.2) andE(Ts,, 4, ,..,) in (5.4), we need to derive (CY ) andP(le;;).
Let ¢; be the last time (before the current tirdg that PNC knew the state of link(being either

blocked or unblocked). We have

P(Cl) = P(Cp(T — 1) + P(C}) (1 — (T — 1))

P (1—p —q) "

Cntaq o+ q

(@ + PC) (e + @) - (5.5)

Furthermore, we derive the summation term in (5.4), whiclgiven at the top of next page.
Substituting (5.5) and (5.6) into (5.2) and (5.4), we thusvaethe closed-form expression for
the EDT when link,, and linkl, 4 are chosen for the two-hop relay path, denoteB @s, 4s)),

which is given by

E(TS""d(S)) = E(ﬂsr) + E(Esr:lrd(s)>‘ (5'7)
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EDT via Direct link

Consider the case whenandd(s) use a direct link/,;;) between them to communicate

without using a relay. The EDT fromto d(s) via link [,4(,), denoted a&(74()), can be derived

kP(Cid(s))

asE(Tus)) = 1+

plsd(s)

5.4.3 Problem Formulation

Let R(s) be the set of relays that can communicate directly with botlvees and its desti-
nationd(s), andS(r) be the set of sources that can communicate directly witly rel®enote all
the relays and sources BRsandS,; ;, respectively. LeL, ) be the set of alk-d(s) links. We then

define the following decision variables.

1, sources transmits on link,. in hop1

e 0, otherwise,
Vs eSS, €R(S), sy € Ly (5.8)
B 1, relayr transmits on link, s in hop2
e 0, otherwise
Vs €Sy € R(5), lrasy € Lrags) (5.9)
1, sources transmits to its destinatiod(s)
Tl = via direct linklq(,)
0, otherwise
V' s € Sijy lsa(s) € Lsags)- (5.10)

Since each relay can be selected by at most 1 SD pair and only one link can betedlat

each hop, we have

2, <1,Vr e R. (5.11)
2. 2.

SES(T‘) ls'r ecsr
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Note that if relayr is selected by in the hop 1, them must also be selected kys) in hop 2, i.e.,

Z Xy, = Z 1, 40> VS € Sivj, 7 € R(3). (5.12)

lsr€Lsr lrd(s) e‘C'rd(s)

An SD pair can use either a relay or a direct link to commueichtectly. So we have the

following constraint.

YD wat ) m,,=1VsE Sy, (5.13)

reR(s) lsr€Lsr lsd(s)€£sd(s)

Furthermore, a typ&; SD pair has to use a relay, i.e.,

YD @, =1VseS; (5.14)

T‘ER(S) ls'r ELS’V‘

If a relay is selected for an SD pair with sourc@nd destinatior(s), the EDT froms to d(s),

denoted ag,, is

g.= > | D E(Ti)+ Y BTt |

T‘ER(S) lsr€Lsr l’rd(s)e‘c'rd(s)
= E : E<7}sr)xlsr + : z ':Clsv‘ E E<Esr>lrd(s) )xlrd(s) * (515)
reR(s) lsrELsr reR(s) lsr€Lsr lrd(s)EL"rd(s)

If a relay is not selected, the EDT frosto d(s), denoted as, is

Us = Z E(Th g0 )10 (5.16)
lsa(s)ELsd(s)

Determine If There Is Enough Relays

Before our problem formulation, we first need to determinetivieeach SD pair i5; can
have a relay. Let index variablge, = 1 denote that relay is assigned to SD pai;, andy,, = 0

otherwise. This problem can be formulated as follows.
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PO max: Y )y, (5.17)

s€S; reR(s)
st Y <1 Vremr (5.18)
seS(r)
S <l vses, (5.19)
reR(s)
v <R (5.20)

where||R|| is the total number of relays in the network.

The constraints are due to the fact that each source can useame relay, and each relay
can serve at most one source at a time. Y.dte the Objective Function Value (OFV) of problem
PO. If Y > ||S;||, where||-|| denotes the cardinality of a set, each SD paifjrcan be served by
a relay; otherwise, there are some SD pair§iithat cannot have a relay. We have the following

two cases.

WhenY > ||S,||

This is the case when each SD pairSpcan have a relay. In this case, our objective is to

minimize theMEDT among all the SD pairs. We thus have the following problemmidation.

P1:min: maxcs, {gs + s} (5.21)

S.t.(5.8) — (5.14).

Note that whert” > ||S;

, problemP1 must have a solution. Although the constraints are linear,
the objective function is not. Therefore problétt is a nonlinear integer programming problem
(NIP), which is generally NP-hard. In the next section, wegase a Decomposition Principle to

solve this problem.
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WhenY < ||S;||

In this case, problerf?1is not applicable since a typ®, SD pair may not have a relay to
forward its data, if all relays within range are assignedtteeo SD pairs. We develop a heuristic

algorithm to address this case in Section 5.5.8.

5.5 Problem Decomposition and Solution

In this section, we present the Decomposition Principletiier case when each SD pair in
S, can have a relay, which breaks down problBinto a subproblem for link selection and
another subproblem for relay selection. The basic idea determine the link selection for each
relay first, and then determine the relay selection basetd@result of link selection. Moreover,
the link selection sub-problem can be further decompostdtimee sub-problems, one for link
selection in hop 1, the second for link selection in hop 2, #nedthird for direct link selection.
We develop effective algorithms to solve the decomposeblenes, and more important, prove
a tight optimality boundfor the decomposition principle solution. In the case tlnaré is no
enough relays for the SD pairsdf), we develop a heuristic algorithm that can still producéahyig

competitive solutions.

5.5.1 Optimal Choice and Greedy Choice

We first define an optimal choice, Optimal Choice 1 (OC1), andedy choice, Greedy
Choice 1 (GC1), as follows.

e Optimal Choice 1 (OC1) Given a linki, 4 in hop 2, choose the hop 1 link as
Z:T = a‘rg mln{E(ﬂsr) + ]E<7}sr7lrd(s))}' (522)

ls’reﬁs’r'

That is, choose the hop 1 link that minimizes the EDT froto d(s) for a given hop 2 link.
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e Greedy Choice 1 (GC1) Given a linkl, 4 in hop 2, choose the hop 1 link as

I} = argminE(T;,,). (5.23)

ls'r GEST‘

That is, choose the hop 1 link that minimizes the EDT froto r for a given hop 2 link.

Obviously, the choice of;, depends o, but that ofl}. does not. We have the following

theorem for OC1 and GC1.

Theorem 5.1. For a given relayr and a hop 2 link, GC1 can achieve an EDT freno d(s) viar

that is at most 1 time slot greater than OC1 does.

Proof. Let the hop 2 link be, and recall that;. andi:. are the links chosen by GC1 and OC1,

respectively. For two time slots andt,, denoted; = ¢, — 1, which is an integer.

We consider the following four cases.

1. Case 1p, + ¢ < 1 andA; > 0. From (5.3) and (5.5), we have (5.24) given on top of the
next page. Sincé < (1 —p, — ¢)? < 1,then—1 < (1 — p, — ¢)* — 1 < 0. And since

- < q— P(CH(p +q) < q, we have

D < QZ_P(C;Z)(pl‘i‘CIl) < )

—-1< - < < <1
Pt Pt pt+aq
Since(1 — p; — q)T 274 < 1, it follows (5.24) that
(T3 | Ty, = t1) = E(Tiz,al Ty, = t2)] < 1, (5.26)

where|-| denotes the absolute value.
2. Case 2;p+q < 1andA; < 0. A similar reasoning as the above yields the following
inequality.
|E(The o|Tis, = t2) = E(T1 || T =t1)| < 1
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P(szi-i-tz) - p(cﬁ?—h)

plrd(s)

E (T Ty, = t1) —E (T 4l Ths, = ta) =

1-P(C))q—P(C}
_ ( (1)@ (G )pl((1_pl_ql)T+t2—tl_(1_pl_ql)T+t1—tl)

D+ q
— P(C")(p, + _
0= POOEEa) (g g1 - py - g - 1), (5.24)
i+ aq
a _P(Cztl>(p1+(ﬂ) T+to—t A
1 _ _ 271 1 _ _ t 1
[ (( b C_Iz) )(( bi Ql) )
q — P(Cltl)@l + QZ) T4to—t A
— . 1 — _ 2~ |, 1 — _ t_ 1
ot (1 —p—a) || =p—a) }
1
< lg— P(CY(p, + )| - ——— - |(1 = p, — g))TH2=t| (p, +
< | = P(C)) (o1 + )| P (1 —p—a) | (o + )
=la—PCHp+a)| |Q—p—aq) " <1 (5.25)
= Inequality(5.26). (5.27)

3. Case 31 <p, +¢q <2andA; > 0. It follows that

(1=p =) =1 <[1—p— @)™ +1< 1+

l—p—al=1-0-p—q)=p+aq. (5.28)
Then we have (5.25) as shown on top of the next page, whichamplequality (5.26).

4. Case 4l < p + q < 2andA,; < 0. Again, a similar reasoning as the above yields (5.27).

From Cases 1,2,3 and 4, we conclude that fortall> 1,t, > 1, and0 < p; + ¢ < 2,
inequality (5.26) holds.

According to (5.4), we can comput&(7;. ;) — E(7;; ;) as inequality (5.29) on top of the
next page. RecalE(Ty;) = miny, e, E(T),, ). AssumeE(T;;) — E(Ti,,) = P(CL)/ps, —
P(Clg)/plst = a < 0. By (5.29) we have

1+ a<E(Ty ) +E(Ty) —E(T) ~E(T;) < 1+a< L. (5.30)



E(T: ) —E(Ty,0) = E(E(Tys , — Tz, [Ty = 11, T, = 1))
=Y E(Ty,—Tya|Ty, =00, Ty, =ta) - P (L, = 01, Ty, = 1)

t1,t2

= > (BT, Ty =t Tiy, = ta) =BTy [Ty = 00, Ty, = 12)) - P (Tyy, = 11, Ty, = o)

t1,t2

= S (BT, T = t1) — E(Tig 0 |Tis, = t2)) - P(Tys = t1, Ty, = 1)
t1,t2
<Y 1-P(Tye =t1, Ty, = 1) = 1. (5.29)

t1,t2

Moreover, ifa < —1, then we havé&(T ) + E(T;+ ) —E(Ti, 1) — E(T1;,) < 0. RecallE(T;;, ) +
E(Ty, 1) = ming,, ec, {E(Th,.) +E(Ti,, 1)} Thereforel(T;: ) +E(T;+ ) — E(Tix, 1) —E(T3:,) = 0,
which means GC1 equals OC1 in terms of EDT freto d(s).

Thus we conclude that theorem holds true. ]

In the following, we show how to use GC1 to reduce probRiinto a simpler problem.

5.5.2 Link Selection in Hop 1

The problem is to minimize the MEDT among the SD pairs whikeréhare plenty of relays.
With GC1, we consider linkg,, for all s € S;;, 7 € R(s) in hop 1 of problenP1, as

xl;‘} € {0, 1},;1;1” = O,V lsr # l;;,,lsr € LST,S € Siuj,r € R(S) (531)

Substitute constraint (5.31) into probld? and then we have a reduced problem, termed problem

P2, as follows.

P2 min : max Z E(T}+ )z + Z Ty X

SES;U;
7\ rer(s) reR(s)
E : E(ﬂj;,lrd(g))wlrd(s)—i_
lrd(s)eﬁrd(s)

110



Z E(ﬂsd(s) )xlsd(s) (5.32)

lsd(s)ecsd(s)
st. Y <1, Vrewr, (5.33)
seS(r)
T =Y @y, Vs €Sy, € R(s), (5.34)
lrd(s)e‘c'rd( )
Z xlsr + Z Llggsy = L, Vse Sin (535)
reR(s lsa(s) €L sa(s)
E:xl—1VS€S (5.36)
reR(s)
+ ={0,1}, Vs € Siyj,m € R(s) (5.37)

Constraintg5.9) and(5.10).

The number of decision variables of problétf is much less than that of probleR1L. We
will prove below that the difference between the OFV of perbP2 and that of problenfPlis at
most 1 time slot. We first introduce a lemma as a basis of thefpFeor ease of presentation, let
&1 denote the set of sources that are assigned with relays ioptif@al solution to probleni1,

ie.,zs = E(T),, )+ E(T,,., for all s € §;, andS, be the set of sources that are not assigned

rd(s))’
with relays and communicate with their destinations usidgect link, i.e.,z; = E(Tj,,,,, ), for all

s € Sy. Also denoteS;; = §; U Ss,. Note thatS; U S, = S; U S;.

Lemma 5.1. Denote¢* = {x;: = 1,1y =1,VsesS, anda:l:d(s) =1,V s e S} as

:d(s)
the optimal solution to probler®1. For all s € &;, setx;r = 1 and then setr;; = 0. Then

¢ =z =L,

=1,Vses, andxl:d(s) =1,V s € S,} is a feasible solution to problem

P2

Proof. Comparingp with ¢*, only the hop 1 link choice is different. Since for aliwe setr;: =1
and then set;: = 0, the link choice of hop 1 still satisfies all the constraimtgioblemP2. Hence

¢ is a feasible solution to probleR2. n

Theorem 5.2. The OFV of problen2is at most 1 time slot greater than that of probl&h
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Proof. If ¢* is also the optimal solution to probleR®, denote the corresponding EDT of each SD
pair asz?, for all s € S;2, and the OFV of problen?1 asz = max;es, ,{2:}. if ¢ is a feasible
solution to problenP2, denote the corresponding EDT of each SD paitasfor all s € Sy .
Then the difference between the OFV of problB&and that of problen1 can be written as

max z] —z= max {z} — z}. (5.38)

seS1u2 5 s€S1U2

Since links{l7,,V s,r € R(s)} are chosen by GC1, it follows Theorem 5.1 that— = < 1,

sr?

for all s € S;. Besides, we havel = z* = E(Tl:d(s))’ for all s € S,. Thus we have

2P =2 <1, Vs e S (5.39)

+_
Sincez > 2%, for all s € Sy 2, we have

i <2 4+1<z+1= 2 —2< 1,5 € S,

T2 <1 M _z<1.
isrergaﬁ{zs } < :nggcﬁ{zs} <

Thus we conclude that Theorem 1 holds true. ]

5.5.3 Link Selection in Hop 2

Lemma 5.1 indicates that = {7+ = 1,xl:d(s) =1,VsesS, andxl:d<s) =1,VseStisa
feasible, but not necessary optimal, solution to probinFurthermore/;, ),V s € &, is hard
to obtain because it requires computing the EDT of all padsdibks in hops 1 and 2. To obtain
the optimal solution to problerR2, we first define another greedy choice, termed Greedy Choice

2 (GC2), as follows.

112



e Greedy Choice 2 (GC2) Given a linki} obtained by GC1 in hop 1, choose the hop 2 link

+

ljd(s) = argmin E(T}+ (5.40)

rd(s )
lr‘d(s)e‘c'r'd(s) (=)

That is, choose the hop 2 link that minimizes the EDT fromo d(s) for given hop 1 link
I3
With GC2, we only consider links,, ,, for all s € Sy;,r € R(s) in hop 2 for problenP2, which

means

ZL’l+
rd(s)

S {07 1}7 I.lT‘(i(S) = 07 v lrd(s) 7é l;t[(sy lrd(s) € £rd(s)7

Vs e Suy,re R(s). (5.41)

Then we have the following claims for the optimal solutiorptoblemP2.

Lemma 5.2. Denoted* = {z,+ = 1,2+

rd(s

= L,V s € Sy, ape, = 1,V s € S} as the optimal

(s

solution to probleni2. Forall s € S, setrl+d( =1 aNdez;:d(s) — 0. Theng = {73 = Ly =

) (s)

1,VsedS, T, = 1,V s € S, } is a feasible solution to proble2.

Proof. Comparing¢ with ¢*, only the hop 2 link choice is different. Since for all we set

:El+
rd(s)

problemP2. Henceg is a feasible solution to probleR2. n

= 1 and then sejrl:d(s) = 0, the link choice of hop 2 still satisfies all the constraints i

Theorem 5.3.In the optimal solution to problefA2, the link selection in hop 2 i{:‘mﬁd( € {0,1},

:cle(S) =0,V lrd(s) 7é l;rd(s)’ lrd(s) < Erd(s)’ Vse 81, re R(S)}

Proof. Recall¢ is a feasible solution to proble®2. With this solution, define/+ = E(T: ) +

E(Z}mjd ), forall s € Sy, andz, = E(T}+ ) + E(Tz;,zm@)' for all /,.4(5) # ljd(s), lras) € Lrags)

()
forall s € S.
SinceE(T;+ i )) = miny,,  ec,) B(T) ) We havez [T < 2, forall s € 5,. We also
srbnd(s ra(s ra(s sTibrd(s

have:/* =z = E(ﬂ:d(‘)), forall s € S,.
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LetZ = maxges, ,{z.}. It follows that

2T < <7, Vs € S (5.42)

We thus have

max {27} — max {2/} = max {2/} -7

s€S102 sE€ES1U2 s€ES1U2
Inequality (5.42)
= max {zT -7} < 0
SE€ES1L2

++ < /
AR A

Note that the objective of proble®2 is to minimize the MEDT among all SD pairs. $ds

optimal to problenP2. The proof is completed. O

5.5.4 Link Selection in Direct Path

Link selection when the SD pair communicate directly in théraal solution to problen2
can also be obtained with a greedy approach.

Foralls € S;, setE(T; .V Lsaisy € Lsags), to an arbitrary constant, because the constraints

sd(s))
will ensure that for alk € S;, the direct link will not be selected. Define a greedy choieemed

Greedy Choice 3 (GC3), as follows.

e Greedy Choice 3 (GC3) Choose the link in the direct SD pathlgis) =argmin,  cp E(T1,,.,)-

That is, choose the link in the direct SD path that minimizesEDT froms to d(s).

Theorem 5.4. In the optimal solution to problel®2, link selection in the direct path i‘sfﬁd( €

)
{0, 1}, Ty = 0,V lsd(s) 7§ l:d(s)’ lsd(s) € £5d(5), Vs € Sz‘uj}-

Proof. Definez, = E(Tl;(S)), foralls € Sy, andz, = E(Tlsd(s)), for all I,q5) # l;(s),lsd(s) €

Lsa(s), for all s € S,. Then we have, < Z,. We also have, = Z,, forall s € S;.
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Let Z = maxges, ,{Zs}- It follows that

735 S 25 S 27 Vs € SlUQ- (543)

We thus have

max {2} — max {Z;} = max {Z,} — 2

SES1U2 sES1U2 s€S1u2
Inequality (5.43)
= max {Z, — Z} < 0
s€S1u2

. .
= ax {5} < max {Z}

Note that the objective of probleR2 is to minimize the MEDT among all SD pairs. Spis

the optimal solution for direct link selection to probld?@. The proof is completed. O

5.5.5 Relay Assignment

Now that the hop 1, hop 2, and direct link selection sub-potd having been solve with
GC1, GC2, and GC3, respectively, we next solve the remaininglemo of relay assignment.
Substituting the following into problerR2,

—0,Y 1, #1F

ST

xl+ = xl;’ xls'f’ = 07 Ilrd(s) = 07 xlsd(

rd(s) s)

v lrd(s) 7é l;rd(s)av lsd(s) % l:d(s)’ lor € £sr> lrd(s) S E'r‘d(s)a

lsd(s) S ‘C’sd(s)uv s c Siuja re R(5>7 (544)

we obtain a reduced problem, term®8B2 as follows.

SP2: min: max Z <E<Tl$) + IE(le“ﬁd( ))) T+ +

SES;u;
v reR(s)

E(T,
Z ( ljd(s))xljd(s)

lsd(s) E[:sd(s)
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st Y af tap  =1.Vs € Sy (5.45)
reR(s) o

T+ = {0, 1},V8 S Siuj (5.46)

sd(s)

Constraintg5.33), (5.36), and(5.37).

Also the OFV of problenEP2equals to that of probledA2. According to Theorem (5.2), we

have Theorem (5.5) as follows.

Theorem 5.5. The OFV of problen$P2is at most 1 time slot greater than that of probl&h

5.5.6 Decomposition Principle and Problem Reformulation

With analysis in Sections 5.5.1 to 5.5.5, we are now able ¢sgmt the following theorem on

the Decomposition Principle.

Theorem 5.6. ProblemP1 can be solved with the following four-step procedure, and th¥ Of

the solution is at most 1 time slot larger than that of the wyatii solution.

e Step 1: Choose the set of links in hop 1, {é},}, as

P

I3, =argmin;, .. E(T,),V s € Sy;,r € R(s).

e Step 2: With{/ }, choose the set of links in hop 2, i.eL;Ld(s)}, as

+ . .
lrd(s) =argming , cp o E(]};’lrd(s)),v s € Siuj,m € R(s).

e Step 3: Choose the set of links in the direct path, {£,,,}, as

E(T;,.),V s €S, e R(s).

+ o .
lsd(s) = arg min; i)

sd(s) eLscl(s)

e Step 4: With (5.44) derived, solve probl&R2

Let the problem in Step 1, Step 2, and Step 3 of Theorem 5.6rbeeteSPL1 Note that
problemSP2is not in the general Integer Linear Programming (ILP) forifo solve problem

SP2 we reformulate it into a linear programming (LP) problemtréducing a new variable =
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{E(T;+

maXsGS ad(s)

)IZM + 2 vere) E(Tx) + E(Tyx i+ )z }, we have

iJj T rd(s)

w>E(Tr Jaf o+ Y (E(T) + BTy, ), Vs € Suy. (5.47)

sd(s) rd(s)
reR(s)

ThenSP2can be rewritten as

SP2* min : w

s.t. Constraintg5.33), (5.36), (5.37), (5.45), (5.46),and(5.47).

ProblemSP2’is a mixed integer linear programming problem (MILP) and barsolved with
an existing effective solver. Once the relay and link séb&care completed, the PNC will inform
the nodes to start transmission as scheduled. If and onlyl&aat one of the following events
happens, the PNC will reschedule the link selection and/ratsignment for all the SD pairs

based on feedback.

e Case 1: If a source had no traffic in the previous time slot bsttreific in the current time

slot.

e Case 2: Whenever a relay finishes transmission to a destiraimithus becomes available

for source(s).

5.5.7 Complexity Analysis

Since problemSP1is easy to solve, we just compare the complexity of probRnand

problemSP2’ from the following aspects.

e ProblemP1is an NIP, while problenSP2’ is an MILP. Currently there are existing effi-
cient solvers for MILP, such as the Gorubi MIP solver and thatllib Intlinprog function
(implementing the Branch and Bound algorithm). Such kind objfgms have been solved

effectively in prior works [131, 133], especially when stdun space is relatively small.
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Algorithm 7: Heuristic Algorithm for Link and Relay Assignment When So&eSD Pairs
Do Not Have Relays
Solve problenPO;
if Y > ||S;] then
\ Apply the Decomposition Principle to solve probléh ;
else
for Vs € S; do
‘ Choose direct IinK;(s) to communicate withi(s) ;

end
Assign relays to typé&; SD pairs according to the solution R® ;
Denote the set of typ§; SD pairs that have a relay §§ ;

Findi}., 17, . foralls € S}, r € R(s) ;

s "rd(s)

© 0o N O O b~ W N PP

=
o

end

[N
=

e The number of decision variables of problétis

Zse&‘uj ZT‘ER(S) ||‘C37“|| + ZSESz‘Uj zT‘ER(S) H'Crd(s) H + ZSGSi

while the number of decision variables®®2’is ZSQSM D oreR(s) Hl;';||+zseswj

'Csd(s)

+
lsd(s)
D sesi; 2orer(s) LT 2sesi, 1 = 2ses, IR(8)I + 1Sl considerably smaller than that

of problemP1.

5.5.8 WhenY < ||S;]|

If a type S; SD pair cannot be served by a relay, its EDT cannot be defined ¢&15)
or (5.16). Thus we cannot directly employ the DecomposiBanciple to solve the link and relay
assignment problem in this case. We then propose a heuwaigicithm to solve the problem.
The basic idea is to maximize the number of SD pairs that camsinit concurrently by relay
assignment. We let each type SD pair transmit via its direct link, and then assign relays/pe
S, SD pairs to maximize the number 6§ SD pairs that can transmit concurrently. The more
concurrent transmissions, the smaller the MEDT.

The Heuristic algorithm is presented in Algorithm 7.
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5.6 Simulation Study

5.6.1 Simulation Setup

In this section we validate the performance of the proposetbihposition Principle by Mat-
lab simulations. Unless otherwise specified, the valuesnafilation parameters are as given in
Table 6.1. Each simulated point in the figures is obtainecpgating the simulation 50 times with
different random seeds, while 95% confidence intervals angpcited and plotted as error bars in
the figures.

We compare the performance of the proposed algorithm in fEne@5.6) (termedProposedl
with two existing schemes designed for mmWave networks.fifsteone (terme®enchmark Lis
proposed in [129], where a source tries to maximize its thinpuit by choosing the optimal Access
Points (APs), and the source-AP channels are modeled asoMahkains. A heuristic algorithm
is used to solve the formulated NP-hard problem in [129]. $&eond one (termeBenchmark
2) is proposed in [128], where relay paths are determined idtiphe SD pairs with a heuristic
to maximize the total throughput under static channel domti. Throughput fairness among
multiple SD pairs is not considered in this scheme.

The performance metrics to evaluate the proposed algoatiedelay, MEDT among all SD
pairs, and network throughput. The delay of a packet is tine it spends at the source queue
plus the packet delivery time from source to destinatione hffic is generated with a Bernoulli
process [112]. At each time slot, the source generates aewaofipackets with a predetermined
probability, denoted as,;, and the total volume of bits of the packets generated at &aehslot

does not exceed the channel capacity.

5.6.2 Simulation Results and Analysis

The performance of the proposed algorithm is demonstratd€elg. 5.2 by comparing the
OFV of problemSP2’ with that of problemP1 (i.e., theOptimal under increasing channel tran-

sition probabilityg;. ProblemP1is an NIP whose solution takes a very long time to obtain using
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Table 5.1: Simulation Parameters

Parameter | Value

[1Sius | 10

IRl 10

| Lsl, Vs, randome [3, 7]
Lras|| Vs, r randome |3, 7]
Lsaes)||, Vs randome |0, 3]

MAX (1€ (L, UL, g(0) UL sa () Vsir} D 0.9

1, VI € (,CST U ‘Crd(s) U £sd(s)); Vs,r | randome [0.3, 0.7]

Chanel capacity 1 Gbps

Time slot duration 1ls

exhaustive search even for a moderately-sized networkrefdre we simulate a relative small
network with 2 SD pairs, 2 relays, 2 links in hop 1, 2 links irpi#&y and 1 link in the direct path,
for each SD pair and relay, to obtain the optimal solutiorhimia reasonable time. From Fig. 5.2,
we fine the difference between the OFV of probl&m2’ and that of problenflis strictly within

1 time slot over the entire range @f The gap is actually much smaller than 1 time slot, which
suggests that 1 time slot is in fact the worst case upper bdeadhermore, the gap increases as
q; grows, since a sub-optimal schedule may result in a relgtwerse performance when channel

conditions are bad, which means a greater MEDT.

4.5

—— Proposed
| | —=— Optimal

IN

w
o

MEDT (time slots)
w

N
3]

2 i i i i i i i i
02 03 04 05 06 07 08 09
Min Transition Prob. from Unblocked to Blocked

Figure 5.2:The OFV of the proposed decomposition principle and thahefdptimal solution versusiin;{q;},
while P; = 0.8.
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Figure 5.3:Delay versus minimum traffic generation probabiliy, while mingy{eq} = 0.2.
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Figure 5.4:MEDT versusming;; {¢}, while P = 0.8.

We next compare the delay performance of the proposed scivémthat of the two bench-
mark schemes in Fig. 5.3 under various traffic generatianffat As F is increased, the average
delays of all the three schemes increase due to the incréradielload, while the average delay
of our proposed algorithm is always considerably lower tthet of the two benchmark schemes.
Benchmark 1 does not consider coordinating the concurr@mémnissions among SD pairs. There-
fore different SD pairs may select the same relay and thusiool happens, resulting in an in-
creased delivery time. Benchmark 2 does not consider chalyn@mics and thus its schedules
may be sub-optimal. This comparison also demonstratesr#titat collision has a serious negative

effect on delay performance.

121



Figure 5.4 shows the MEDT among all SD pairs under changiranmél state transition
probability ¢;. The proposed scheme achieves the lowest MEDT among the thine confidence
interval of Benchmark 1 is greater than that of the other twweswes, indicating Benchmark 1
is less stable in terms of the number of trails until the fitstc@ssful transmission is achieved.
Benchmark 2 considers the channel conditions as static alagk$s adaptation to the channel
dynamics, which certainly has an effect on the instantasiscteduling decision for the current
time slot.

The throughput performance achieved by the three schenmaesented in Fig. 5.5. The
network throughput is defined as the total number of bitsvdetid for all the SD pairs per time slot,
i.e., per second. As channel condition degrades, the nuaibieks available for transmission is
decreased at each time slot. So the number of bits that cagliberéd at each time slot is reduced.
For Benchmark 1, due to the possible collisions, the numbbkit®tuccessfully delivered per time
slot is less than that of the proposed algorithm. For Benchkrdadue to lack of consideration of
channel dynamics, although it tends to maximize the totpéeted throughput of all SD pairs, it
still makes sub-optimal scheduling decisions under dynahannel conditions, thus achieving a

lower throughput.
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Figure 5.5:Throughput versusing; {¢;}, while P; = 0.8.

In Fig. 5.6, we compare the MEDT of the Heuristic link and ye&election algorithm de-

scribed in Algorithm (7) (termeéfieuristic with that of the two benchmarks under the condition
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Figure 5.6:MEDT versusming; {¢;} for the proposed Heuristic algorithm, whifé; = 0.8 and the number of
relays is 6. 4
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Figure 5.7:Throughput vaming;, {¢} for the proposed Heuristic algorithm, whifé; = 0.8 and the number of
relays is 6.
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Figure 5.9: Fairness performance versus minimum trafficegeion probability, for Heuristic
Scheme, whilening, {¢;} = 0.2 andFP; < 0.8.

that there is an insufficient number of relays to serve allSbepairs. Here we set the number of
relays equals to 6, while other parameters are as given ile Bab. Comparing to the results in
Fig. 5.4, the MEDT of Heuristic is slightly higher, due to tinsufficient number of realys to serve
the 10 SD pairs. For example, whering, {¢} = 0.2, the MEDT is increased from 2 to 2.7881.
However, it can be observed that Heuristic still outperfeboth benchmark schemes with consid-
erable gains. This result makes sense since letting&$y®D pairs to communicate using direct
links, instead of using a relay, will save more relaying appaity to TypeS; SD pairs, so these
SD pairs may need less time to successfully delivery thelk@s. A similar reasoning can be ap-
plied to the comparison of throughput performance of Héigrngith that of the two benchmarks,
as shown in Fig. 5.7.

Finally, we compare the fairness performance of the threerses, in terms of average delay
of the SD pairs. Fig. 5.8 shows the fairness performance aasgn between the proposed scheme
and the benchmark schemes. We adopt Jain’s fairness index[4%2]: f(e;,es,...,en) =
<fo:1 en>2/ (N PO ei), wheree,, is the average delay of SD paitn = 1,2,...,N. The
fairness index ranges from 0 (worst) to 1 (best). We can saeotlr proposed algorithm consis-

tently achieves a higher fairness index than the other tlverses do, due to thminimaxapproach

adopted in the problem formulation.

124



The fairness performance comparison between the hewsisteme and the benchmark schemes
are shown in Fig. 5.9. We can see that the fairness perforenzirtbe heuristic scheme is also con-

sistently better than that of the benchmark schemes.

5.7 Conclusion

We developed a Decomposition Principle for the problemr And relay selection in cen-
tralized dual-hop mm Wave networks. The objective was toimmize the MEDT, and the main
idea was to decompose the original problem into a sub-pnofide link selection, and the other for
relay selection. When there are a sufficient amount of relaggroved that the two sub-problems
together can provide a sub-optimal solution to the origimablem with an optimality gap bounded
by 1 time slot, with greatly reduced complexity. We also deped a heuristic scheme to handle
the case when there is not enough relays to serve the SD parsugh simulations, we showed
that both proposed schemes outperformed two mm Wave netsebeduling schemes with con-

siderable gains.
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Chapter 6

On Link Scheduling under Blockage and Interference in mmWsaéloc Networks

6.1 Introduction

Before one can deploy the mmWave networks, many challengabstoebe addressed. Wire-
less signal attenuation in mmWave (e.g., 60GHz) channelsserious issue, much more than in
the case of 5GHz or 2.5GHz channels [145], thereby makinghb@aning indispensable. Be-
cause of the small wavelength, large antenna arrays anblia$he authors in [146] show that
the highly directional links, especially in the outdoor Bamment, can be regarded as “pseu-
dowired” with negligible collision probabilities. Althah this characteristic is very attractive for
spatial reuse, network coordination and scheduling beattremely challenging with such nar-
row beamwidths [147]. In the indoor environment, as mermabove, the beamwidth is usually
wider and thus the interference among neighboring linksuhbe considered since the pseu-
dowired assumption may not hold in this case.

Furthermore, mmWave signals usually do not diffract aroondenetrate obstacles. A line-
of-sight (LOS) path between the transmitter and receiveedsired for successful transmission.
However, in practical networks, a LOS path may not alwaystekesides, it is possible that a LOS
path can be blocked (e.g., by a human body) from time to timéhdt case, relay nodes would be
needed to forward data to a distant or blocked receiver [1I8ketting up a LOS path between
the transmitter and relay, and then between the relay amiverc Second, the blockage between
two nodes may appear or disappear intermittently due to theement of objects between them or
the movement of the nodes themselves [150, 151]. A reahstidNVave network protocol should
consider the multi-hop path model and dynamic blockagesd®st nodes.

In this chapter, we investigate the problem of link schedyln mmWave Ad Hoc networks.

We consider the case where each device (DEV) schedulesntsransmission based on the traffic
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demand (e.g., the amount of packets backlogged in its bfdfesther DEVs, or the amount of
traffic requested by the DEVs for the next scheduling peraod) the status of the mmWave links.
We adopt a directional link model from the literature, whiohorporates the beamwidths as well
as the beam directions to allow flexibly modeling interf@eamong the directional links. Such
a model is known as “directional beamforming,” in contrastdday’s cellular use of the term
beamforming that merely looks to null out interfering usgithout maximizing gain in a particular
direction [152]. We also model blockage of the LOS path witlisgrete-time Markov chain model.
A successful transmission requires an unblocked LOS patlelhsis a good Signal to Interference
plus Noise Ratio (SINR). By tuning the parameters of the interfee and blockage models, both
indoor and outdoor mmWave links can be modeled.

We first consider the single-hop network case WIHDEVs, where all the data transmissions
are through one-hop, single links. That is, any pair of DEYB communicate with each other
directly. We formulate the link scheduling problem as a ¢@ised Binary Integer Programming
(BIP) problem, aiming to determine the minimum time lengthextule, i.e., to minimize the time
duration needed to satisfy the traffic demand of all the litns develop a greedy algorithm (GA)
to maximize the instantaneous throughput of each time gleblve the formulated BIP problem
heuristically.

We then consider the multi-hop case fr DEVs, where some DEVs are not within one-
hop distance with each other, e.g., if their distance is éortban the transmission range or if
the LOS path between them is blocked. In this case, intemed)EVS are needed to relay
the traffic for DEVs that are not within one-hop distance ofteather. A multi-hop minimum
time length scheduling problem is formulated incorpomtiouting and the flow conservation
constraint. We then propose an effective algorithm to stilieeproblem. The performance of the
proposed algorithms are validated with simulation and canspn with a benchmark scheme.

The remainder of this chapter is organized as follows. Relatak is reviewed in Section 6.2.
The system model and problem formulation for the single-hefwork scenario are presented

in Section 6.3. The proposed solution algorithms for thelsiihop scenario are presented in
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Section 6.4. The problem formulation for the multi-hopewak case is described in Section 6.5
and the solution algorithm is presented in Section 6.6. Thegsed algorithms are evaluated in

Section 6.7. Section 6.8 concludes the paper.

6.2 Related Work

There have been considerable work on link scheduling inlesseenetworks. However, most
of the prior work do not consider the specific properties of\Whawme channels and thus may not
be applied for mmWave networks. In [158, 160], the authohgesthe problem of spatial TDMA
scheduling in ad hoc networks, where each link has its trdéimand and the objective is to find
the optimal scheduling of the links to minimize the time léngeeded to satisfy the traffic demand
of all links. However, the channel state of each link is assdite be static during the entire period,
which may not be a valid assumption for mmWave networks wtiegechannel state may change
dramatically due to blockage of the LOS path.

The uncertainty of channel availability in Cognitive RadiotNerks is considered in [161].
The problem of deciding which channel to sense and accesslén tb maximize the throughput
of the secondary user is formulated as a Partially Obsezvwdarkov Decision Process (POMDP),
and a separation principle is proposed to reveal the optynall myopic spectrum sensing and
accessing strategies. However, this chapter only corsstitlercase where only one channel can be
sensed and accessed at each time slot, and the interferetme=eh links of concurrent transmis-
sions is not considered, which is obviously not the case vgpatial reuse is considered.

There are also several interesting prior works on link sahed and interference modeling
in mmWave networks. For example, the authors in [146] find the interference between links
of concurrent transmission can be ignored in outdoor mmWaeorks because of high attenu-
ation of mmWave channel and the extremely small beamwidthiseodirectional transmissions.
Motivated by this observation, a Graph Coloring method ippsed in [162,163] as a scheduling

algorithm to compute a schedule for given traffic demandsh slat the total transmission time is
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minimized for the mmWave network. These papers considezugewired” mmWave links and
do not take the potential co-channel interference (CCIl) [bt consideration.

On the other hand, some prior work rely on a low-rate omreational transmission to over-
come the deafness problem [164, 165]. The authors of [16&)qse the concept axclusive
regions which is described by the relative geo-location and theramd angle between the trans-
mitter and receiver, to exclude certain concurrent traesions in the mmWave network. To pro-
vide a more accurate attenuation model for the mmWave chatieeauthors of [147] conduct
extensive urban cellular and peer-to-peer RF wideband ehameasurements and find that there
are very few unique antenna angles for creating a link, aalirectional link is hard to find in
mmWave networks. Motivated by the prior works, in this cleaptie consider a more general
interference and blockage model compared with the previtarature as described in Section 6.3
and develop effective link scheduling algorithms. In owspous work [167], we propose a link
scheduling algorithm to minimize the required time lengtisérve a given data demand for all the
nodes. However, the algorithms can only apply to singledeniralized mmWave downlink net-
works where a PNC (Piconet coordinator) is required to cdoatd the traffic and only downlink

transmissions are considered.

6.3 System Model and Problem formulation: The Single-hop Case

6.3.1 System Model

We first consider a mmWave Ad Hoc network consisting\oDEVs with directional trans-
missions, where all DEVs are within one-hop distance wittheather. We assume slotted time
with unit length time slots and a common control channel.(@dNiFi channel) through which
each DEV can broadcast its traffic demands and link stagistiother DEVs. Alternatively, some
control time slots can be reserved for the DEVs to excharafictidemand and link statistics with
their neighbors through directional transmissions. A sroé consists of a data transmission phase
and an acknowledgement (ACK) phase. Each DEV then executek scheduling algorithm to

compute the link transmission schedule based on the comnformation. Finally, the DEVs
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point to each other to transmit data according to the trassion schedule. Following the data
transmission, the receiving DEV will send feedback (i.6CK&) to the sender in the ACK phase.
From the feedback, the transmitting DEV can learn the sthtikeodirectional link by end of the
current time slot and update the remaining traffic demants.DEV will remain transmitting until

it has reached its allocated time slot limit (which is assditaebe sufficiently large in this chapter)
or until it has successfully transmitted its traffic demaady new traffic that arrives during the
current transmission period will be saved in the DEV buff&#hen the current traffic demands are
all served, the buffer backlogs will be used as new traffic aednfor the next scheduling phase,
which will be served with a new link schedule during that ghasd so forth.

Denote the set of all links within the one-hop distancedasLink /;; € A is the LOS link
fromDEVito DEV j,1 < 1,57 < N andi # 5. We assume 2D beam pattern for indoor or low
antenna heights in this chapter, although this approactd dmigeneralized to the 3D case. We
use the directional antenna gain mofe}|*I'(6), where|h;;|* is the maximum gair is the angle
offset from the peak gain direction, aig6) is a non-negative, non-increasing functionéoih
[0,1] with I"(0) = 1. With the directional antenna gain model, the receivedaigower ofi;; is
Bilhi;i’T%(0) = P,|hi;)?, whereP, is the transmit power. The interference from transmittesf
link 7;+;« to receiverj of link ;; is Py|h; [T (0(L+j, i j«))T(0(Ljix, 1)), Wheref(ly;, 1+ ) is the
angle between link;;- and link/;-;, as shown in Fig. 6.1, and similar fé(i;;-,(;;). Let Q(7)
denote the set of DEVs within one hop distance to npde< 7 < N, excluding node itself, and
assume thaf € () in the following. Note thay € Q(:) implies: € €(j). Transmission on an
unblocked linkl;; will be successful if and only if the SINR at receiveexceeds a fixed threshold

~, which can be expressed as

200 (L g, Ly ) )T (OLjiv, 1)) Py + 02 = 7

Zzi*j*ﬂij | e

forall /;; € A. (6.1)

wheres? is the noise power.
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Figure 6.1: Interference between two directional links

We also model the dynamic blockage ((also called shadoyioigh mmWave link with a
discrete-time two-state Markov chain. For lihk let G denote the good state (unblocked) asnd
denote the bad state (blocked)(g|b);,; andPr(b|g);,, are the transition probabilities frod to
B and fromB to G, respectivelyPr(g|g)

1, = 1 — Pr(g|b);,, andPr(b|b);,, = 1 — Pr(blg),, -

6.3.2 Problem Formulation

Define the link state variablg; as

1, link [;; is in the good state
Sij = A l” (62)
0, otherwise
In the ACK phase of each time slot, the receiver DEV returns @K £0 the transmitter DEV
if the transmission is successful. Define index variabdes

1, an ACK s received
a = (6.3)

0, otherwise

131



Let U™(als;;) be the probability that when link; is activated at time slot:, the ACK status is:
conditioned on that the state of lidk is s;;. Assuming error-free ACKs, we have
U™ (1 Sii) = Sii
(i) = 5 v m. (6.4)
Um(0|8w) =1- Um(1|8”) =1- Sijy
It can be easily seen that™(a|s;;) is either 1 (i.e., ACK received) or 0 (ACK missing).

Define scheduling index variable$; as

1, link [;; is activated in time sloin
xl = V1, m. (6.5)

iJ . 17
0, otherwise
If a DEV works in the Half-Duplex (HD) mode, it can only eitheeansmit or receive at each

time slot. We have the following capability constraint fODEV.

Z T + Z i <1, Vjm (6.6)

1€Q(j) z€Q(j4)

Since many antenna beam pointing positions are availdabteaiso possible to configure the
DEV to work in the same-channel Full-Duplex (FD) mode [158here the DEV can transmit
to one direction and receive from another direction on theesahannel simultaneously [154].
Assuming effective self-interference cancellation angligéle residual self-interference, we have

the following capability constraint that holds true for éageDEV.

> ap <1 Z Z <1, Vj,m (6.7)

1€Q(j) 2€Q(J

The probability that the state of link; is s;; at time slot(m + 1), denoted as}\;’;jl, can be

derived as

m+1 _ _m+1
Ao =x (L —a— sij + 2asy)
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— it Z AT Pr(sijls);), (6.8)

370

wherePr(s;;]s};) is the channel state transition probability. We set the nbbstate at time slot 0

according to the steady state distribution, as

Pr(blg)i,;

=1
o ) T, riieln, 0 59
s Pr(glb) Ly (6.9)
Prl)n, +or(gy, 0 S = U
Define channel utilization index variabi& for all time slotsm as
1, one or more links activated at time
m = (6.10)

0, otherwise

Recall that there ar® DEVs and letM be a sufficiently large integer indicating a future time slot
when all the traffic demands will be certainly transmitteet L7 (A7} ) be the expected amount

of traffic delivered by linkl;; from time slotm to the future time slofi/. We then have

1
OV Z XY U™ (alsig) larit™+

545=0 a=0
m+1/ym+1
VIR, V1<m <M —1, (6.11)

wherer;; is the number of packets delivered by lihkif the transmission on link;; is successful,
i.e., the SINR of linkl;; is higher than a threshold and the link is not blocked.

Let ¢f} be the expected amount of traffic delivered by ligk Recall that}} indicates if link
l;; is activated or not in time sloh.. The expected amount of traffic delivered by lipkfrom time

slot 1 to time slotM can be derived as

V(ML) = Zc;jx:j,vzw, (6.12)
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Wherecg? can be derived from the link states and feedbacks from tiote $b time slotm as

1 1 1 1
C?; - Z )\iu Z{) Ul(a|5ij) Z )‘gu Zo UQ(a|3ij) o

83=0 83=0

1 1
. Z Aos, Z U™ (alsi;)ar;; . (6.13)
5;=0 a=0

Denote the series of packet transmissions, i.e., a sessoom,DEV i to DEV j asw;;. The
total amount of packets to be transmitted is this sessian &V ¢ to DEV j is D;;. We aim to
minimize the total amount of time slots, and thus the minimamount of time, used to serve all
the traffic demands under SINR and blockage constraints.pfdi@dem, denoted a1, to solve
the minimum time used (i.e., the smallest number of times}ltt serve all the traffic demands
assuming the 2D directional antenna interference modettadynamic link blockage model is

formulated as

M

(PYmin: 7= " (6.14)
m=1

s.t. ‘/E()‘i”) > Dij, Vi (6.15)

t" > Y m (6.16)

l’:’; € {O, 1}, i lij,m. (617)

With this formulation, the traffic demands will be served ineatain amount o€onsecutive
time slots (for which™ = 1); when the traffic demands are all cleared, we héve- 0 for all the
future time slots, as given in constraints (6.10) and (6.Mg)te that the SINR constraint (6.1) is
implicitly expressed in the formulated problem in that tkpected number of packets transmitted
in time slotm, i.e.,c[}'s, are generated by the feasiblg set, for alll;; andm that satisfy the SINR
constraint. Furthermore, the feasibfg set should also satisfy the capability constraint (6.6)teNo
that M can be set to a sufficiently large value so that there is ahaaigmsible solution (i.e., all

the traffic demands can certainly be served withirtime slots). As we will show later, with the
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proposed algorithms, the value df does not affect the solution and objective value as long as it
is sufficiently large.

To formulate the problem when the DEVs can operate in the FDanave only need to
replace constraint (6.6) (which is implicitly expressegiblemP1) with constraint (6.7), which

will give us the problem formulation for the FD case, denasgroblenP2.

6.4 Solution Algorithms: The Single-hop Case

ProblemP1lis a Binary Integer Programming (BIP) problem. The coeffigaithe constraint
matrix all take on continuous values betweern|, which indicate that the BIP does not satisfy
the property olunimodularity[155]. Thus the BIP cannot be reduced into a Linear Programmin
(LP) problem. Itis, in fact, NP-hard [156].

Furthermore, itis infeasible to list all the columns of tleastraint matrix for constraints (6.15)
and (6.16)), since the number of all feasible columns in thestraint matrix is as large dg. An
exhaustive search to construct the constraint matrix igaetgral. Even if it is possible, a huge
memory may be needed to store the constraint matrix. In #ugan, we introduce two effective

algorithms to solve the BIP problem with greatly reduced clexify.

6.4.1 Greedy Algorithm

We first propose to solve the BIP problem with an iterative dyesdgorithm (GA). The main
idea is rather than to minimize = 2%21 t™, we instead maximize the instant throughput of the
current time slot.

Denote H™ as the set of links whose traffic demands have not yet beeedatvthen-th

iteration (i.e., time slotn).
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HD Case

The problem to be solved at the-th iteration, denoted @&H™, can be formulated as

(PH™ max: Y clal) (6.18)

i
lj]’GHm

s.t. constraint$6.6) and(6.20)

e e {0,1}, Vi; € H™, (6.19)

where constraint (6.20) (given subsequently) ensuresttigaSINR requirement is satisfied on
all of the active links. This problem can be solved with ther@faand-Bound technique [157],
which, for example, is implemented in tligniprog function in Matlab.

Once ther}}’s are obtained, transmissions are scheduled for the duimes slotm according
to thex]?’s. With feedback from DEVj, DEV i will know A["*' and¢)**, for all I;;, with which
it can solvePH™ ! to obtainz]}*' for the next time slotm + 1), for all /;;, until H™ becomes
empty orPH" is solved.

The iterative greedy algorithm is presented above as inmtlga 8, which is executed at
each DEV. Denote the most recently completed time slatasn which link /;; was activated. In

line 11 of Algorithm 8,c]? is updated as

1 1 1

mo__ mij mij B mi;+1
= ATy U™ (alsy) | Y AT

Sij =0 a=0 Sij =0
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1 1

Z Umij+1(a|3ij) Z Umij“(afsij)

a=0 a=0

1 1
DoAY U™alsy)ary | | Y L. (6.21)
a=0

845=0

Algorithm 8: Greedy Algorithm for Problem P1
m=1,;
while H™ # () do
SolvePH™ to obtainz;?, for all I;; ;
Schedule transmission accordingﬁ;@, forall /;; ;
m+<m-—+1;
UpdateH™ andD;;’s according to feedback ;
for I;; € Ado

for s;; =0:1do

| Update)y” ;

end

Updatec;; as in (6.21) ;
end

© 00 N o o b~ W DN PP

[
= O

=
N

end

=
w

FD Case

For the FD case, we need to replace constraint (6.6) witht@ns(6.7) in problenPH™,
which will give us a new problem for the FD case, denote®&%. ProblemPF™ can be solved

with a similar algorithm as in Algorithm 8.

6.5 System Model and Problem Formulation: The Multi-hop Case

We now consider the case where there may not be an LOS patledret@any pair of DEVs
in the network. Thus intermediate DEVs may be needed to teddfyc for a source DEV to its
destination DEV. For a DEV, recall that the set of DEVs that are within one-hop distaisce
denoted by2(i). AS before, we denote the session from DEYW DEV 2 asw,, and the set of
all sessions aBV, wherew,, € WW. Without loss of generality, we allow a source DEV to trartsmi

multiple sessions, each to a different destination DEV, axéstination DEV to receive multiple
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sessions, each from a different source DEV. We need to redifinscheduling index variables for

the multi-hop case. For sessiar)., define scheduling index variableg ™ as

1, link [;; is activated to transmit session
m,Wy

T;5 = wy,in time slotm

0, otherwise

Y lija Wy z- (622)

From the definitions o&?’wyz andt™ (which is the same as that in the single-hop case), we
have that™ = 1if 35, 3%, @™ > Ltm=0if 30, >, 2" =0.

The probability that the state of link; is s;; at time slot(m + 1), i.e., A7*!, can now be
derived as

m+1 m+17wyz
)\Sij = ‘rij (1 —a— S + ZCLSij)—l—

Wy 2

1) o Z Y Pr(syls)), (6.23)
Wyz 8 70
Let V;;""**(\] ) be the expected amount of traffic of sessiop delivered by linkZ;; from

time slotm to a future time slof\/. We have

1
mwyz )\m Z /\le Z Um(CL|Sij) [arijxg,wyz+
=0

5;5=0

V(‘m-i-l),wyz ()\Zjl)} 7 forir<m< M —1. (624)

v

The expected amount of traffic delivered by lihkfor sessiony,, from time slot 1 to}M can be

derived as

51] 1]

M
V(AL = ) cpat, (6.25)
m=1
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wherec]; is the same as that in the single-hop case.
Recall that DEVy is the source of sessian,, and()(y) is the set of one hop neighbors of

nodey. For DEVy we have

M
SN et > D, V1<y 2 <Ny # = (6.26)

m=1jeQ(y)
If DEV j relays traffic for sessiomw,. andm/’ is a time slot, then we have

m mwuz m N, Wyz
5 Z B> 3 Y e

m=14eQ(j m=1 keQ(j)

Vwy, 1<j<Nj#z1<m <M, (6.27)

which means that the traffic received by a DEV should be nothess the traffic it forwards for a
flow.

In the HD mode, the following capability constraint holds &my DEV.

DD SELINID OB S Sur!

1€Q()) wyz keQ(j) wyz

V1<j<N. (6.28)

In the FD mode, we have the following capability constraioitds for any DEV.

Z mewyz Z Z mwyz<1

’LGQ )wyz k‘EQ )wyz

V1<j<N. (6.29)

DEV z is the destination of sessian,.. We have

Z Z i 2 Dy, ¥ wy. (6.30)

m=1jeQ(z
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2Ll ey )T (O(Lie L)) P

T Z Z |hi*]"2r(9<li*jv Ly ) )T (0L, 1)) P + o’ — 771‘hij‘2pt x;?’wyz

wyz ll*J* #l”

<D > Ihey

wyz li*j* #lu

2T(O(Livgy L )D(O(Ljin, L)) Pry ¥ 15 € A. (6.31)

The SINR constraint (6.1) can be rewritten as (6.31) on tap®hext page, which guarantees
that the SINR of each activated link at each time slot be alowr&SINR threshold.
We aim to minimize the total amount of time slots used to séineetraffic demands under

SINR and blockage constraints in the multi-hop network. ptablem can be formulated as

M
(PYmin: 7= " (6.32)

m=1

s.t. Constraints (6.26), (6.27), (6.28), (6.305.31)

=1, if Y, Y, e > 1

t" v m (6.33)
=0, otherwise

t" > "t Y m (6.34)

xZL»wyz € {0,1}, V1, wy., m. (6.35)

To formulate the problem when the DEVs can operate in the Fdanwe only need to
replace constraint (6.28) with constraint (6.29) in Prabke3. The new multi-hop problem for the

FD case is denoted as problém.

6.6 Solution Algorithms: The Multi-hop Case

The formulated probler®3 of the multi-hop case is much more complicated than the singl
hop problemP1. Therefore we develop a heuristic algorithm to solve pnodR8. The basic idea

is: first, it determines the optimal transmission path fahedata flow based on a certain reliability
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criterion; next, it maximizes the overall throughput oftakk data flows by deciding the set of links

to be activated at the current time slot based on the estiniatestates and interference.

6.6.1 Path Selection Algorithm

To simplify our problem, we restrict that each data flow skdag carried by one and only one
path. Denote a path for sessiay), asP(yz) and the set of directional links that belongRg¢yz)
asL(P(yz)). We define the reliability o (yz) as the joint reliability probability of all the links

alongP(yz), i.e.,

Pr(g[b)y,
71-(C¥7D(yz)> - H W(Gli‘j) = H ij ‘
li €L(P(yz)) Li; €L(P(yz)) Pr(g[b)i; + Pr(blg)u,

Naturally, if we define the link weight (for those valid links) asw;; = —log(7(Gj,,)), then
a shortest path routing algorithm will find the pa®tyz) with the largestr(G'p(y.)), i.€., the most
reliable path. In this chapter, we addpijkstra’s Algorithmto find the shortest path between the
source and destination DEV in the network, which has thesktreeliability probability among all

possible paths.

6.6.2 Link Scheduling Algorithm

After determining the path for each data flow, we decide whiks to activate at each time
slot. Let the current time slot be’, and denote afl™ the set of sessions whose traffic demands
have not been satisfied yet at time slet For a sessiow,, € H™ , denote the number of its
packets that link;; has delivered at time slet as f;;"***, 1 < m < m'. Let L(P(yz)) be the set

of links /;; such that is along patR(yz) and the traffic it has carried for the session up to time slot

m' is less than the demarid,.. Also denote the set of relay nodes along fathz) asR(P(yz)).
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Z Z 1uns “GG

20(0(lj, Liv o NT(O(Lyie, Lji)) P

li* 5k
wyz€H™ Lk jx €L(Q(Y2)) lyx jx #lij ’
+ ) > i PG (0L, Liv o ))T (O (Lo, 1s) ) P 4 0 — L
wyz€H™  \Lix jx €L(Q(y2)) L j= #lij

< Y > .., PGET (01, <) )T (O(Ljix, 1)) Py, For all 1 € L£(Q(yz)).

Wy €H™ Lix jx €L(Q(Y2)) Ly j #lij

(6.40)

For the HD case, we aim at maximizing the instant overallughgput of links inZ(P(yz))

for all w,, € H™ at time slotm’, by solving Problent. S} defined as follows.

Lsy' min: > N el (6.36)

wyzeHm/ llJGE(P(yz))

s.t. SINR Constrain{6.40) (at top of the next page)
Z mwuz m m Wy Z mwyz v lzj,

i € L(P(y2)),j € R(P(y2)),w,. € H™

(6.37)
D S P VD M

wy€H™ li; EL(P(yz)) wy. €H™ Ljr€L(P(yz))
<1, VjeR(Pyz),w,.cH™ (6.38)
zy " € 0,1}, V1 € L(P(y2)), w,. € H™. (6.39)

Constraint (6.37) indicates the flow conservation conditmmreach relay node, i.e., the vol-
ume of transmitted data must not exceed the volume of redala¢a. Constraint (6.38) corre-
sponds to the HD constraint (6.28) in Probl&8 ProblemLS!” can be solved using tHginary

Integer Programmingechnique [155]. The greedy algorithm for solving probl®3is given
in Algorithm 9.
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Algorithm 9: Greedy Algorithm for Problem P3

1 Set link weights to- log(7(Gy,;)) for all valid link I;; ;

2 Use Dijkstra’s Algorithm to find the shortest paft{yz) for each sessiow, ;
3m/ =1;

4 while H™ # ( do

s | SolveLS}" to obtaina? ", for all I;; ;

/
Wy z

6 Schedule link transmissions accordingrt 's, for all I;; ;
7 m =m'+1;

8 UpdatesH™ and£(P(yz)), for allw,, € H™ ;
9

for l;; € L(P(yz)), ¥ w,. € H™ do

10 for s;; =0:1do
1 | Updater?” ;
12 end

13 Updatec ;

14 end

15 end

In the FD case, the flow conservation constraint for a relalenos R(P(yz)) becomes

-1 -1

m,Wyz m'z m,awyz m,Wyz mlywyz mlywyz
DS <Yy Tl
m=1 m=1

Vi, Lk € L(P(y2)),7 € R(P(yz)),w,. € H™. (6.41)

The capability constraint for relay noge= R(P(yz)) becomes

S W <1, € R(P(y2)), wye € H (6.42)
zeH(m') l;;€L(P(yz))
S M <LV e R(P(y2) w, € HT (6.43)

z€H(m') Ljr€L(P(yz))

Replacing constraints (6.37) and (6.38)Li&7" with constraints (6.41)—(6.42) yields the in-
stant throughput maximization problem for the FD case fer ittulti-hop scenario, denoted as

problemLS?'. The FD problenLS}"’ can be solved with a similar algorithm as in Algorithm 9.
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Table 6.1: Simulation Parameters

Parameter| Value | Parameter | Value

P 1 watt ’hli]. 20(11'*]‘, ll*J*) [0, 1], VZU

o? 0.1 watt || 7 10 pkts/slot,vl;;
N 10 D, [50, 60] pkts,Vz

6.7 Simulation Study

6.7.1 Simulation Setup

In this section we use Matlab simulations to validate théquarance of the proposed algo-
rithms. Unless otherwise specified, the values of simuilapiarameters are set as shown in Ta-
ble 6.1. Each simulated point in the figures is obtained bgatipg the simulation 50 times with
different random seeds, and 95% confidence intervals ar@ui@a and plotted in the figures as
error bars to guarantee credible results. We compare therpemce of our proposed algorithms
with that of a benchmark scheme proposed in [158]. The beadhstheme does not consider link
blockages when making routing selection and solving thealdems with the greedy method.
With the benchmark schemq; =1, forall [, andw(Gli].) = 1, for all /;;, in routing selection. It
randomly selects a route. Note that the capacity of a linkfected by the noise plus interference
level in the benchmark scheme. We set the total number ofosssis the network equals t@,

whereN is the total number of DEVs. We allow a DEV to have multiplessess.

6.7.2 Simulation Results and Analysis

The performance of the proposed algorithms under diffeBNR thresholdsy is shown
in Fig. 6.2 and Fig. 6.3 for the HD mode single-hop and mutipttase, respectively. All the
algorithms have degraded performance wheas increased. The reason is that a largeneans
that for a specific link, given a fixed channel gain and trassion power, a lower interference

can be tolerated. Fewer concurrent transmissions can lbenacocdated in the system to leverage
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Figure 6.2: Number of time slots to serve the traffic demardkurarious SINR thresholgt HD
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and multi-hop casel(g|b);,, = Pr(blg);,, = [0.4,0.7], for all 1;;).

spatial reuse and the throughput of each time slot is redueerefore, the number of time slots
needed to satisfy the traffic demand is increased grows.

It would also be helpful to examine constraint (6.20) of peotbPH™ in Section 6.4. It can be
seen that ify is increased, the value of the left hand side (LHS) of (6.2)also increase, which
means that constraint (6.20) will become tighter. Theef®H™ will have a smaller solution
space and its optimal objective value may be reduced. Theraythroughput in each time slot

may be reduced as a result and the time length needed to $eladidbe traffic will be prolonged.
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Figure 6.4: Number of time slots to serve the traffic demargdkunarious transition probabilities
for the mmWave channel®r(g|g),;: HD single-hop caselr(g|b);,, = [0.2,0.4], andy = 0.4).

A similar observation can be obtained for the multi-hop dasee check the SINR constraint in
the subproblen. S}

The performance gap on scheduling time between our promxdesime and the benchmark
scheme under different minimum link state transition ptolitges min, {Pr(g|g);,; } is shown in
Figs. 6.4 and 6.5 for the HD single-hop case and HD multi-heigecrespectively. It can be seen

from (6.9) that as Ry|g);,;, = 1 — Pr(b|g),,, is increased, the stationary probability of lifk in

lij
the good state is increased. Thus more links may have sdicbesscurrent transmissions at each
time slot, which improves the network throughput. It mayetédss time slots for a DEV to deliver
the requested packets to its neighboring DEVSs; for the DEWs{ransmission delay between two
adjacent DEVs on a path will be shortened due to a greatenpiiitly of successful transmissions.
These two factors are the main reasons for the shortenedwaigetime when mip, {Pr(g|g);,; }
is increased.

However, the decrement cannot go indefinitely and the timgtleneeded will converge to
a certain threshold, regardless of the increase of, iRr(g|g);,, } once it goes beyond a specific
value. The main reason is that since a certain level of SINRtrha satisfied for a successful
transmission, the maximum number of links that can transamitcurrently is limited. Even if

7(Gy,) is large for alll;;, i.e., each link has a high probability of being in good sttite maximum
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lq;j

number of concurrent transmission links is still limitedherefore we have a bounded network
throughput at each time slot and thus a lower bound on thenmaimi time length to schedule the
traffic demand of all the links.

Figures 6.6 and 6.7 present the performance comparisom @rtposed and the benchmark
algorithm under different SINR thresholddor the FD single-hop case and FD multi-hop case, re-
spectively. We can see that for all the algorithms, FD aasevbetter performance than HD does.
The main reason is that FD allows more concurrent transamssiThe FD network is expected to
achieve a higher throughput than the HD network, which l¢adslower scheduling time. The
proposed scheme outperforms the benchmark in both FD and etizsn since it considers the
dynamic link states and always chooses the best set of in&adh time slot.

Examining constraints (6.6) and (6.7) for the single-haogeoaill also help us to better under-
stand the advantage of FD over HD. The HD constraint (6.6sig@et of the FD constraint (6.7).
The feasible solution region for the FD case is larger than i the HD case. Thus a better so-
lution may be found and the optimal objective value can besimged, which translates to a higher
network throughput for FD. Similar observations can be nfadéhe multi-hop case by checking
constraints (6.38), (6.42), and (6.43).

The performance gap between the proposed algorithms abétithmark under different link

state transition probabilities mjn{Pr(g|g);,, } for the FD single-hop case and FD multi-hop case
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is shown in Figs. 6.8 and 6.9, respectively. The previousaggtion for the changing scenario
at the FD mode is also applicable for the simulation resuitthe changing mip {Pr(g|g):,, }

lij

scenario.

6.8 Conclusion

In this chapter, we investigated the problem of minimum tlergth scheduling in mmWave
Ad Hoc networks under both traffic demand and SINR conssailife considered both single-

hop and multi-hop ad hoc networks and HD and FD transmissienagios. We formulated the
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minimum time length scheduling problems adopting a gerirattional interference model and a
dynamic channel blocking model, and developed effectihatiom algorithms. Simulation results

validated the performance of our proposed algorithms bypaosison with a benchmark scheme.
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Chapter 7

Conclusions

In this dissertation work, we investigate the problem of @& provision in emerging wire-
less networks such as mmWave and networks. mmWave technalmyCR technology was re-
cently proposed to enhance the wireless network capaaityptth are suffered from channel
condition uncertainty, therefore there are many techrdballenges for incorporating these tech-
niques to existing wireless networks. For instance, howdfast the coding schemes to adapt to
the changing channel conditions, how to coordinate thesiréssions of the PUs and that of the
CUs, and how to optimally assign radio resources and adogrivssion power for users, and how
to optimally coordinate the concurrent transmissions ajimaoring links, are crucial issues for the
performance improvement of mmWave and CR networks. To addhese challenges motivates
this dissertation work.

In chapter 2, the problem of streaming uncompressed HD vigeo mmWave wireless net-
works is investigated. The objective is to minimize the etpd mean square error of the recon-
structed video quality. An MD-FEC coding scheme that parid the pixel bits is proposed so that
more important bits have higher level of protection thusehavhigher probability of recovery at
the receiver, an interleaving based transmission strategyoid busty errors in transmission. We
formulated an Nonlinear Integer Programming problem ferdptimal partition of the pixel bits
and interleaving of packets, which is NP-hard, and derivedizoptimal solution for this prob-
lem with much lower computational complexity. The perforoa of the proposed scheme was
evaluated with simulations.

In chapter 3, the problem of video streaming over CRNSs is iinyat&d, aiming at maximizing

the CU Quality of Experience (QoE) by optimal designs of speotsensing and access policies.
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Due to the non-linearity of the QoE model, we solve the sp@ctsensing problem and the spec-
trum accessing problem separately. The CUs chosen to sehs@iaat is optimized such that the
false alarm probability of the channel is minimized , and @és allowed to access a channel is
optimized such that the network throughput is maximized.tRe case where each CU can sense
and access at most one channel at a time, we derive simplgtlalgs to solve the channel sensing
and accessing problem and prove its optimaility. For the edsere each CU can sense multiple
channels but access only one channel, we presented a mamfamegrated formulation. Based
on an assumption on the spectrum sensor configuration, vedogied a two-step approach to solve
the integrated problem and proved its optimality. The pegglbschemes were shown to outperform
several alternative schemes in the simulation study.

In chapter 4, the problem of video streaming over CRNs is inyatgd, aiming at maximiz-
ing the CU Quiality of Service (QoS) by optimal designs of speutsensing, access and power
allocation. Different with the previous work which solvd®tspectrum sensing problem and ac-
cessing problem separately, in this chapter the spectrasirgg channel assignment, and power
allocation strategies are jointly optimized to maximize @oS for the CUs. What's more, in this
chapter each CU can sense and access multiple channels a\&etishow that the formulated
Mixed Integer NonLinear Programming problem can be dec@agdanto two sub-problems: SP1
for the optimal spectrum sensing strategy, and SP2 for timapchannel assignment and power
allocation, without sacrificing optimality. We show that1S€an be optimally solved under cer-
tain conditions and develop an algorithm to solve SP2 iigxltin a distributed manner. We also
develop a heuristic algorithm for spectrum sensing wittatlyereduced requirement on CU hard-
ware, while still achieving a highly competitive sensingfpemance. We analyze the proposed
algorithms with respect to complexity and time efficiencyl @erive a performance upper bound.
The proposed algorithms are validated with simulations.

In chapter 5, the relay and link selection problem in a dugd-mmWave network is studied.
The objective is to minimize the Maximum Expected Deliveliyn& among all Tx-Rx pairs by

jointly optimizing relay and link selection, while exploiy reflected mmWave transmissions and
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considering link blockage dynamics. We develop a DecontiposPrinciple to transform this
problem into two sub-problems, one for link selection anel dther for relay assignment when
there is enough replays. We prove that the proposed schamachave an optimality gap of just
1 time slot at greatly reduced complexity. We also developuaristic scheme to handle the case
when there is no enough relays. The proposed schemes atatedliwith simulations with their
superior performance observed.

In chapter 6, the problem of minimizing the scheduling tiredth to serve users traffic de-
mand by user scheduling in one hop and multi-hop mmWave @gsahetworks is studied. Differ-
ent with the previous chapter which considers the outd@rsimission environment and assumes
the links arepsudo-wiredin this chapter we consider the indoor transmission enwirent and
there are interference between neighboring links and thegs$udo-wiredassumption doesn’t
hold. Channel conditions change overtime, and at each tiotetele PNC decides which users
should access the channel based on the possible chaneeltstatrent slot, aiming at maximizing
the long term utility of the whole network. The formulate@blem incorporates a flexible interfer-
ence model for directional transmissions and a Markov chased blockage model. We propose
efficient algorithms with greatly reduced complexity tovethe one-hop problem and multi-hop
problem, respectively. For the one-hop problem, the instatwork throughput is maximized at
each time slot; for the multi-hop problem, we first fix the opdi routing path for a long term and
then maximizes the instant network throughput. In this way,achieve a balance between long
term utility and short term utility. The performance of theunistic algorithm is validated with

simulations.
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