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Abstract

In recent years, there has been a drastic growth in wireless traffic, and in the near future, a

majority of wireless traffic will be video-related. How to support the increasing demand of radio

resources from the bandwidth-hungry services has attracted intensive research interests from both

academia and industrial areas. Milli-Meter Wave (mmWave) technology and Cognitive Radio (CR)

technology was recently proposed to enhance the wireless network capacity.

However, some challenges are needed to be addressed before one can apply these techniques.

For example, how to adjust coding scheme to the changing wireless network environment to against

the problem of uncertainty of channel condition. Besides, inCognitive Radio Network (CRN), it

is important to coordinate the transmissions of the primaryusers and that of the secondary users

so that Cognitive Users (CUs) will not cause unacceptable interference to Primary Users (PUs)

while their utility can be maximized, which also depends on the radio resource allocation for the

CUs. What’s more, in the mmWave network, due to the dynamic channel conditions, how to

optimally coordinate the concurrent transmissions of neighboring links based on their possible

channel conditions, so that the network throughput is can beimproved.

In this dissertation work we study how to use adaptive video coding to combat channel un-

certainty in mmWave network and investigate how to optimizethe channel allocation in video

streaming over cognitive radio networks.

The first part of this dissertation investigates the problemof streaming uncompressed HD

video over mmWave wireless networks so that the expected mean square error of the reconstructed

video quality is minimized. An adaptive coding scheme that can dynamically adjust to the changing

channel conditions is proposed so that error rate is reduced, and a dynamic interleaving based

transmission strategy is incorporated to avoid busty errors in transmission. Efficient algorithm

with low computational complexity is proposed to solve for the optimal setup.
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The second part of this dissertation investigates the problem of video streaming over CRN.

Spectrum sensing and spectrum allocation are optimized such that so that Quality of Experience

(QoE) of CUs are maximized. Due to the non-linearity of the QoEmodel, the spectrum sensing

problem and the spectrum accessing problem are solved separately and some performance may be

lost. We discuss the case when each CU can sense only one channel each time and the case when

each CU can sense multiple channels each time.

The third part of this dissertation investigates the problem of video streaming over CRN,

where the spectrum sensing, spectrum allocation, and transmit power allocation are jointly opti-

mized such that so that Quality of Service (QoS) of CUs are maximized, which is significantly

different with the second part. We show that the formulated Mixed Integer NonLinear Program-

ming problem can be decomposed into two sub-problems without sacrificing optimality, and with

a much lower computational complexity. We analyze the proposed iterative algorithm with respect

to complexity and time efficiency, and derive a performance upper bound.

The fourth part of this dissertation investigates the problem of relay and link selection in a

dual-hop mmWave network aiming at minimizing the Maximum Expected Delivery Time among

all Tx-Rx pairs, while exploiting reflected mmWave transmissions and considering link blockage

dynamics. Due to the NP-hardness of the formulated problem,we develop a Decomposition Prin-

ciple to transform this problem into two sub-problems, one for link selection and the other for relay

assignment. We prove that the proposed scheme can achieve anoptimality gap of just 1 time slot

at greatly reduced complexity. The proposed schemes are validated with simulations with their

superior performance observed.

The fifth part of this dissertation investigates the problemof user scheduling in multiple hop

mmWave networks, so that the number of time slots needed to serve all user’ traffic demand is

minimized. Channel condition changes over time and at each time slot, given the possible channel

states, the PNC decides the optimal routing path and which users should access the channel at

current time slot, aiming at maximizing the long term utility of the whole network. We propose

a heuristic algorithm with greatly reduced complexity to solve this problem, which first fix the
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optimal routing path for a long term and then maximizes the instant network throughput. A simlilar

problem in singel hop mmWave network is also studied and an effective algorithm is proposed. The

performance of the heuristic algorithms is validated with simulations.

In summary, this dissertation aims to improving the QoS/QoEprovisioning in emerging wire-

less networks by addressing the resource allocation and user scheduling problems. In-depth anal-

ysis and comprehensive results are also provided. Some of the findings may shed light on how to

put emerging techniques into real applications.
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Chapter 1

Introduction

Due to the rapid development of the mobile devices such as smartphone and laptops in the

last decade, wireless data traffic has experienced a explosive growth, where video-related services

is one of the wireless services that enjoyed the fastest growth in recent years, according to a im-

ages conducted by Cisco [6]. The drastic expansion of wireless traffic poses great challenge to

the capacity of existing wireless networks, and efficient technologies, such as mmWave and CR,

are proposed recently to magnify the wireless network capacity to accommodate the increasing

wireless traffic.

To resist the channel uncertainty issue in wireless networks and the sequential packet loss

problem, adaptive video coding is proposed to adjust to the changing channel conditions to ensure

received video quality. When channel conditions are good, wemay choose aggressive video coding

algorithms so that more effective data can be transmitted without corrupted by transmission errors

to improve the received video quality, and while channel conditions are poor, conservative video

coding algorithms are chosen so that the most important information of the video is well-protected

in transmission and received by the receiver so that a basic video quality is guaranteed at the

receiver.

Moreover, to expand nowadays wireless network capacity andto support High Definition

(HD) video streaming, mmWave frequency is exploited to accommodate the explosion of wireless

data traffic, especially for bandwidth-hungry services such as video streaming. However, mmWave

channel is highly directional and susceptible to blockage of the link-of-sight path caused by obsta-

cles, due to its high frequency which leads to serious signalpower attenuation and a poor capability

of penetrating obstacles. We apply interleaving techniques to the packets of multiple consecutive
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Figure 1.1: Frequency usage measurement

frames to reduce the bursty error rate in mmWave network, which brings in a greater probability

of recovering received video with higher quality.

Cognitive radio is also proven to have great potential to magnify the wireless network capac-

ity and has attracted intensive attention of researchers from both academy and industry. According

to the FCC report [2], while some licensed bands are overcrowded, many others are underutilized,

as in Fig. 1.1. Under traditional fixed spectrum allocation policy, when PUs are not active, the

channels assigned to them are wasted (termed as spectrum opportunities). Cognitive radio net-

works (CRN) are proposed as a new wireless paradigm for exploiting such spectrum opportunities,

to enable flexible and efficient access to radio spectrum. In CRN, unlicensed users (or, CUs) are

allowed to access the licensed band opportunistically, while PUs gain by collecting revenue for

spectrum leasing. Such a CR paradigm has been shown to have high potentials to enhance spec-

trum efficiency.

However, channel quality may be highly diverse in CRNs due to heterogeneous network,

and a channel may have different utility (e.g., SNR) to different users, therefore it is important to

optimize the channel allocation to users so that the overallutility of all users can be maximized.

Besides, a reliable spectrum sensing result should not only discover the available idle spectrum

for a Cognitive radio User (CU), but also not to misidentify theunavailable spectrum as available

spectrum for CUs access, in order not to cause interference toPUs. If a CU spends more time

on spectrum sensing to guarantee a good sensing result, thenthe data transmission time will be
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shorten, which lowers the CU’s throughput. And users may havedifferent sensing accuracy for the

spectrum.

Power allocation is also important to the performance of CUs.One way to ensure the desired

SINR at the receiver is to control the transmit power of the target session and that of other video

sessions in order to guarantee the strength of the desired signal and limit the interference to an

acceptable level. When there are concurrent video sessions in CRN, it is necessary to control the

power of each transmission in order to constraint the interference caused to other sessions, and

meanwhile achieve the required SINR for each transmission.

For comprehensive evaluation of video quality, we study both the Quality of Service (QoS)

and Quality of Experience (QoE) measurements in our dissertation, where QoS is an objective

assessment method of the performance of network, while QoE is a subjective assessment method

of a user’s experiences with a service. In other words, QoE isthe perceptual QoS from the users

perspective. While monitoring and controlling QoS parameters of the video transmission system

is important for achieving high video quality, it is more crucial to evaluate video quality from the

users perspective. In this work, we study how to improve the QoS and QoE based on the developed

QoS and QoE models by jointly optimization of spectrum sensing, channel allocation, and power

allocation.

As mentioned above, although the mm Wave band is attractive for its capability of support-

ing high data rates, many challenges should be addressed to make mm Wave networks applica-

ble [143]. The wireless signal propagating in mm Wave channels suffers from an attenuation that

is much higher than that in 5GHz channels [147]. To overcome the high attenuation, beamforming

should be used to increase the signal’s effective power, while the small wavelength allows for in-

tegration of many antenna elements with a small form factor.It has been shown in [146] that the

highly directional links, especially in the outdoor environment, can be treated as “pseudowired”,

i.e., the probability of collision even in a dense mm Wave network could be small. Although the

pseudowired feature is attractive from the perspective of spatial reuse, extremely narrow transmis-

sion beamwidths will make it hard for network coordination and control [147], which all require
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the nodes in a neighborhood to be able to hear from each other.In indoor mm Wave networks, the

beamwidth is usually wider than that in outdoor networks dueto the smaller transmission distance.

The interference among neighboring links should be considered in this case. In our work we study

both of the indoor transmission and outdoor transmission cases.

In addition, mmWave signals in the mm Wave band usually do noteasily diffract around or

penetrate obstacles. A line-of-sight (LOS) path between the transmitter and receiver is required

for a successful transmission. When the LOS path is blocked (e.g., by a human body), relay nodes

will be needed to forward data for a hidden receiver or wall reflections can be utilized [148]. The

blockage may appear or disappear occasionally due to the movement of obstacles between the

transmitter and receiver or the movement of the transmitteror receiver themselves [150, 151]. A

flexible link model that considers both narrow and wide beamwidths and dynamic blockage will

be desirable for the design of mm Wave network protocols.

In the work we investigate the problem of link scheduling andrelay assignment in mm Wave

networks, where a two-state Markov chain model is adopted tocapture the dynamic blockage

behavior of mm Wave channel. Based on the possible channel states (blocked or unblocked) at

each time slot, we study the problem of optimally assigning relays to Tx-Rx pairs, and which

Tx-Rx pairs should access channels at each time slot, so that the interference they cause to each

other is refrained under an acceptable level, and the network performance in terms of throughput

is maximized. Besides, unlike prior works on relay selectionin mm Wave networks, we consider

the LOS and multiple reflected NLOS links between transmitting and receiving nodes. Although

using reflections will cause additional power loss and reduce power efficiency, it offers additional

choices for increasing network coverage and improving network throughput.

The contributions of our work is summarized as follows:

1. We investigated how the bits in different positions in a pixel have different levels of signif-

icance on recovering the original video frame, and propose to combat the lossy mmWave

channel with Multiple Description Coding (MDC). Specifically, bits in a pixel are optimally
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divided into multiple segments according to their respective importance and channel con-

dition, with different level of protection. Besides, packetinterleaving are used to further

reduce busty error rate in mmWave networks. We formulate theproblem of minimizing the

Mean Square Error (MSE) of the received video by optimal segmentation of the pixel bits

and optimal interleaving depth. A heuristic algorithm is proposed to solve this problem with

greatly reduced complexity.

2. We study the problem of maximizing the QoE of all the CUs by jointly optimizing spectrum

sensing and channel assignment. Due to the non-linearity ofthe QoE model, the problem is

formulated as an Nonlinear Integer Programming problem (NIP). Under the assumption that

all the spectrum sensors work at the same operating point (i.e., with the same probability of

detection and the same probability of false alarm), we show that this challenging problem

can be solved with a two-step approach: First, the spectrum sensing scheduling problem is

solved with a greedy algorithm; Second, the channel allocation problem, which is a Maxi-

mum Weight Matching problem and can be solved optimally withthe Hungarian Method.

We prove that the two-step solution algorithm is indeed optimal: decomposing the original

problem into two sub-problems and solving them sequentially do not sacrifice the optimality

of the solution.

3. We investigate the problem of QoS maximization video streaming over CRN. Consider-

ing the frequency diversity among users and the transmission power limit, the problem is

formulated as a joint-optimization problem that spectrum sensing, channel allocation and

transmission power allocation for users are jointly optimized, which is an NIP. We decom-

pose the problem into two sub-problems that can be solved with greatly reduced complexity

and without sacrificing optimality. To further reduce spectrum sensing overhead for users,

we proposed a heuristic spectrum sensing algorithm with very competitive performance val-

idated by simulation results.
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4. We investigate the scheduling problem in centralized dual-hop 60GHz networks in the out-

door environment. We adopt the “pseudowired” assumption and thus the interference be-

tween different links can be ignored, and the objective is tominimize the Maximum Ex-

pected Delivery Time among all Tx-Rx pairs by jointly optimizing relay and link selection

in a two-hop wireless network. We develop a Decomposition Principle to transform this

problem into two sub-problems, one for link selection and the other for relay assignment.

We prove that the proposed scheme can achieve an optimality gap of just 1 time slot at

greatly reduced complexity. NLOS links are also utilized tofurther improve the coverage

and throughput of the network.

5. We investigate the problem of link scheduling in both of one hop and multi-hop mmWave

networks in the indoor environment, and the interference among neighboring links is consid-

ered in this case. The objective is to minimize the time duration needed to satisfy the traffic

demand of all the links. The optimization consists of two major parts, one is to choose the

optimal relays for the transmitters and receivers which areout of the transmission range of

each other (for the multi-hop case), and the other is to determine which Tx-Rx pairs should

access the channels based on the possible channel conditions at each time slot, so that the

interference they cause to each other will not be too high to affect their transmissions, while

the network throughput can be maximized at the same time. Theformulated problem is NP

hard, and we propose heuristic algorithms with greatly reduced complexity, which first finds

the optimal streaming path for each Tx-Rx pair (for the multi-hop case)and then maximizes

the instant network throughput by optimizing the link scheduling at each time slot.
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Chapter 2

Adaptive Multiple Description Coding and Transmission of Uncompressed Video over mmWave

Networks

2.1 Introduction

With the dramatic advances in wireless networking technology, there is an exponentially in-

creasing demand for wireless data service. In particular, mobile video is predicted to grow at

a compound annual growth rate (CAGR) of 90% from 2011 to 2016 [6]. Cognitive radio (CR)

has been recognized as an important technology for enhancing spectrum efficiency, while many

dynamic spectrum access techniques are developed to betterutilize the allocated spectrum [72].

On the other hand, millimeter wave (mm-wave) communications in the mmWave band has gained

considerable interest from academia, industry, and standards bodies [16]. There is huge unlicensed

bandwidth (i.e., up to 7 GHz) in the mmWave band that is available in most parts of the world. In

addition to indoor use, FCC recently updated the rules for theunlicensed mmWave band, which

will allow higher emission limits for mmWave devices that operate outdoors, thus enabling broader

deployment of point-to-point broadband systems [7]. The massive unlicensed bandwidth provides

great potential to meet the surging wireless video demand, as well as supporting new bandwidth

demanding applications [8,20].

Recently, the problem of transmitting uncompressed High Definition (HD) videos via mmWave

channels has attracted intensive interest. The immense bandwidth of the mmWave channel enables

streaming of uncompressed HD videos with high data rates [9], such as the 1080p video, which

has 1920×1080 pixels (each of which has 24 bits) per video frame and theframe size is about

6 MBs. Such high speed wireless links can not only replace the cumbersome HDMI cables, but

also relieve the computational burden for video decoding atthe display devices (e.g., projectors or

HDTVs).
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Although the larger bandwidth is a great advantage of mmWavenetworks, the mmWave trans-

missions are highly directional to overcome the high attenuation, making it susceptible to blockage

of the line-of-sight path by obstacles or pedestrians. Thusthe memory of the channel poses a neg-

ative effect on the performance of the system, and channel conditions such as packet loss rate

may change over time [16]. How to adjust the operation parameters of the transmission system is

critical to maintain a certain level of QoS under such conditions.

In this chapter, we investigate the problem of streaming uncompressed HD video over mmWave

networks. Considering the fact that bits of different positions in a pixel have different levels of sig-

nificance on recovering the original video frame [10], it is desirable to improve the quality of

reconstructed video frames by offering more protection forthe more important bits. We adopt

multiple description (MD) coding (MDC) to combat the lossy mmWave channel. In MDC, a video

is encoded into multiple descriptions, each can guarantee alow but acceptable video quality. More

important, the more descriptions received, the better the video quality. MDC has been used mostly

for compressed videos in lossy wireless or wireline networks in the literature [12,13].

Here we adopt MD coding for uncompressed videos, exploitingthe different significance of

the different bits in a pixel. In particular, in order to ensure the quality of the reconstructed video,

we divide the bits in a pixel into multiple segments according to their respective significance in

enhancing video quality, and provide higher protection to bits of greater importance by assigning

more forward error correction (FEC) symbols to them. This way, the decoder has a higher proba-

bility of recovering the most important bits, which affect the quality of the reconstructed image to

a larger extent. Such an MD coder is termed MD-FEC. How to partition the bits, i.e., how many

segments the bits should be divided into, and how many bits a particular segment should have,

affects the significance of a particular segment and the probability of decoding the segment.

To combat the bursty errors while transmitting over the mmWave channel, interleaving among

multiple video frames is applied in our scheme. We formulatea nonlinear integer programming

problem, which can be solved to find the optimal partition of the pixel bits in the MD coder, as

well as the optimal interleaving depth, for given channel conditions. To reduce computational
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Table 2.1: Notation

Symbol Description

M Number of rows of the image matrix
N Number of columns of the image matrix
C Number of rows of the sub-image matrix
D Number of columns of the sub-image

matrix
Q Number of sub-images of an image
S Number of segments the 8 bits are

divided into
mi Length of thei-th segment,1 ≤ i ≤ S
k Number of bits constituting a symbol
gi Number of groups the data symbols of

streami are divided
L Code word length of the RS code
Pe(G) Probability of an error occurring in the

good state
Pe(B) Probability of an error occurring in the

bad state
Pg|b Channel state transition probability from

good to bad
Pb|g Channel state transition probability from

bad to good
H Number of images interleaved together
∆ Maximum tolerable time of recovering

the image
Λl Minimum packet size
Λu Maximum packet size

complexity, we solve the problem with a heuristic approach for sub-optimal solutions. The pro-

posed scheme is adaptive to the dynamic mmWave link conditions for enhanced video quality. It

is evaluated with simulations and is shown to outperform an existing scheme reported in [19] with

considerable gains.

The remainder of this chapter is organized as follows. Related work is reviewed in Section 6.2.

We present the proposed MD coding and transmission scheme inSection 2.3 and simulation results

in Section 3.6. Section 6.8 concludes this chapter. The notation used in this chapter is summarized

in Table 2.1.
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2.2 Related Work

In this section, we briefly review related work on video transmission over mmWave channels,

and two MD-FEC techniques and Reed-Solomon coding, which arethe basis of our proposed

scheme.

Considering the similarity in the most important bits of the neighboring pixels in an image,

the authors of [10] propose a technique to correct the error in the most important bits in a pixel by

comparing those bits of the pixel with the bits at the same positions in its neighboring pixels. Shao

et al. in [18] also develop a method to recover the bits of a pixel using the neighboring pixels. With

this scheme, the neighboring pixels are encapsulated into different packets that are transmitted

separately, so that a lost pixel can still be approximated byother received packets containing the

neighboring pixels. However, there is no measures on providing better protection for the most

important bits during transmission, which affects the quality of reconstructed video frames.

In [19], an Uncompressed Video streaming over Wireless (UVoW) system is proposed for

transmission of uncompressed video on mmWave channels. In this system, the 8 bits representing

a pixel are divided into two 4-bit parts according to their significance in recovering the video: MSB

(most significant bits) and LSB (least significant bits). TheMSB portions are better protected

than the LSB portions by being transmitted through a channelof better condition. The encoder

retransmits the MSB part if it has an error, but corrupted LSBparts will not be retransmitted.

However, there is no evidence that the system achieves the best performance by cutting the 8 bits

into two 4-bit segments, and there is no investigation on, when channel condition changes, how to

adjust the operational parameters to make it adaptive to thechanging channel conditions.

In [5], Bosco develops a cross-layer adaptive scheme for HD videos streaming over mmWave

channels, where the sender adjusts the modulation and coding schemes (MCS) in response to chan-

nel variations to maintain good video quality. A method of cooperation with relay for transmission

of HD videos over mmWave channels is developed in [9]. The source and relay use different error

correcting codes so that error correcting performance can be enhanced, and spatial diversity gain is
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obtained by using the relay. As in [19], the message is also cut into two fixed parts and the optimal

segmentation of the message is out of concern in this relatedwork [9].

MD video coding has been shown to be highly effective for video over lossy networks [4,11,

13,14,21]. Among the many MD coding techniques, MD-FEC is a popular one based on Priority

Encoding Transmission (PET) [3], which assigns different levels of protection to data segments

according to their respective priority defined by the user [21]. The higher the priority, the smaller

number of packets the decoder needs to decode it, so that the higher priority segments have a

greater probability of being decoded. The basis of this algorithm is Reed-Solomon (RS) code,

which is a sub-class of the Bose-Chadhuri-Hocquenghem (BCH) codes. RS coding provides an

effective way of recovering lost data symbols from a portionof data symbols received [17].

2.3 System Model, Problem Statement and Solution Procedure

We consider streaming uncompressed HD video over a mmWave wireless link (e.g., from a

storage device to an HDTV or a video projector). The MD-FEC coding scheme for uncompressed

HD video is introduced in Section 2.3.1. The mmWave channel model and the interleaving based

transmission strategy is presented in Section 2.3.2. Then we present our problem formulation in

Section 2.3.3 and solution procedure in Section 2.3.4.

2.3.1 MD-FEC Coding of Uncompressed Video

Consider an uncompressed video frame ofM ×N pixels. Each pixel consists of3× 8 = 24

bits, while each 8-bit block corresponding to one of the R/G/Bcolor components as shown in

Fig. 2.1. Thej-th bit in each of the 8-bit block represents a value of28−j. Obviously, thej-th bit is

more important than the(j + i)-th bit, for all i ≥ 1, because it has a greater influence on the color

depth of the R/G/B component of the pixel.

Next we divide the frame evenly intoQ sub-images, each of which hasC × D pixels, i.e.,

Q = MN
CD

, for the purpose of:
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Figure 2.1: Structure of a pixel in the uncompressed video.
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Figure 2.2: Structure of a data stream, assumingS = 3.

• the packet size will not become too large so that the packet transmission time can be fitted

in the unit time slot in our channel model;

• the number of data symbols of a data stream will not become toolarge so that RS codes can

be applied to the data symbols.

Now let’s take ther-th sub-image as an example; each of the following procedures will be

performed on other sub-images as well. First, each of the 8 bits representing the R/G/B color in a

pixel is divided intoS segments, 1 ≤ S ≤ 8, and the length of (i.e., the number of bits in) segment

i, is denoted asmi, 1 ≤ i ≤ S. Rearrange all thei-th segments of the R/G/B color of all the pixels

in a sub-image into a new segment calleddata streami, which has3miMN
Q

bits. We define the

significanceof data streami of sub-imager as the summation of the values of all the data bits in

segmenti of sub-imager, and denote it aswr
i .

wr
i =

3MN

Q

mi−1∑

l=1

28−
∑i−1

j=1 mj−l. (2.1)

Due to uncompressed video, there is no reason to prefer one pixel over another when semantic

content is not considered. We thus havewr
i = wq

i for anyr 6= q, 1 ≤ r ≤ Q, 1 ≤ q ≤ Q. Fig. 2.2

shows an example of cutting each of the 8 bits of a pixel in a sub-image into 3 segments and

combining all the first segments into data stream 1 of the sub-image.
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From (2.1), we can see thatwr
i ≥ wr

i+1, for all 1 ≤ r ≤ Q, 1 ≤ i ≤ S − 1, which implies

that recovering data streami is more important than recovering data stream(i+1) for the purpose

of enhancing the quality of reconstructed frames at the receiver. Therefore, we assign higher

protection to data streami than data stream(i + 1) to make the probability of recovering data

streami higher than that of recovering data stream(i + 1). We illustrate how to achieve this goal

below.

First, we letk bits in a data steam form adata symbol. For example, we can takek = 8 for

the convenience of computer processing. Then data streami can be represented by3miMN
Qk

data

symbols. These3miMN
Qk

symbols of data streami is further divided intogi groups, each of which

has 3miMN
Qkgi

data symbols. We apply RS code to each group so that the total number of symbols

(including both data and FEC symbols) isL, L ≤ 2k − 1, which is a constraint of RS coding.

This way, the number of FEC symbols assigned to each group of data streami isL− 3miMN
Qkgi

.

The j-th symbol of all the groups of all the data streams compose the j-th descriptionof the

frame, and is transmitted in one packet. This procedure is illustrated in Fig. 2.3. To assign higher

protection to data streami than data stream(i+ 1), the error correcting capacity, or the amount of

FEC symbols for data streami should be greater than that of data stream(i+1), i.e.,L− 3miMN
Qkgi

≥

L− 3mi+1MN
Qkgi+1

, which implies that

mi

gi
≤ mi+1

gi+1

. (2.2)

As shown in Fig. 2.3, each description (or packet) consists of video data bits and FEC bits

from all the data streams, and is equally important for reconstructing the frame. The quality of

the reconstructed frame is proportional to the number of descriptions received. If3m1MN
Qkg1

or more

error-free descriptions are received, then all the groups of data stream 1 can be decoded, which

guarantees a basic quality for this video frame. In general,if the decoder receives at least3miMN
Qkgi

error-free descriptions, then all the data streams up toi can be decoded, resulting in an improved
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Figure 2.3: Structure of the packets of a sub-image.

quality for the frame. When more than3mSMN
QkgS

≤ L error-free descriptions are received, the video

frame can be reconstructed without any error.

2.3.2 mmWave Channel and Transmission Schedule

After MD-FEC coding, the video packets are then transmittedover the mmWave link from

the sender (e.g., a storage device) to the receiver (e.g., anHDTV or video projector). As discussed,

the mmWave channel is highly directional and susceptible toblockage of the link-of-sight path.

Therefore, we model the mmWave link with the Gilbert-Elliot(GE) model, which is a discrete-

time two-state Markov chain as shown in Fig. 2.4 [22]. The twostates are: good state (denoted

asG in the figure) and bad state (denoted asB). The probabilities that an error occurring at the

good state and bad state are denoted asPe(G) andPe(B), respectively. The transition probabilities

from G to B and fromB to G arePg|b andPb|g, respectively. Because the Gilbert-Elliot channel

is a discrete-time model instead of a continuous-time model, we assume time is slotted and the
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Figure 2.4: The Gilbert-Elliot link model.

transmission time of a packet over the mmWave link is less than or equal to the duration of one

time slot [4,13].

When multiple beam paths are available between the transmitter and receiver (e.g., a direct

path and a second path due to reflection on the wall), the multipath transport technique can be

used for the MD video packets [11]. In this chapter, we focus on the single beam path case, while

the proposed technique can be extended to the case of multiple beam paths. Recall that MD-FEC

coding can ensure a minimum video quality if at least3m1MN
Qkg1

error-free packets are received for a

frame. However, if most of the packets are transmitted within a bad period, it is possible that less

than 3m1MN
Qkg1

packets can be received and the video frame cannot be decoded. In order to reduce

the bursty error rate, we adoptinterleavingto the packets of multiple consecutive frames.

The interleaving scheme is illustrated in Fig. 2.5. Theinterleaving depthis the time interval

between the transmissions of two consecutive packets of thesame sub-image. As shown in the

figure, the interleaving depth is set toQH, while H is a non-negative integer. We can adjustH

to find the best interleaving depth for different channel conditions in terms ofPe(G), Pe(B), and

the transition probabilities. when the average bad periodToff is large, we can increaseQH by

increasingH. The probability that multiple consecutive packets of a sub-image are transmitted

within the bad period can be reduced. Since RS coding is applied in our scheme, the probability

of failing to decode data streami of sub-imageX of imageY is the probability that the decoder

receives less than3miMN
Qkgi

error-free data packets, which can be expressed as [22]

PXY
i =

Z∑

d=0

Pz(d)

{
d∑

eb=0

[
Ceb

d P eb
e (B) (1− Pe(B))d−eb
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Z−d∑

eg=max{0,t+1−eb}
C

eg
Z−dP

eg
e (G) (1− Pe(G))Z−d−eg





 , (2.3)

wherePZ(d) is the probability that given the GE channel is observed atZ continuous time slots,

the probability that the channel is in the bad state ford time slots;Z is the block code length of the

error correcting code being used and thusZ = L = 2k − 1 in our example;eb andeg denote the

numbers of packets in error when the channel is the bad state and good state, respectively;t is the

error correcting capability of the error correcting code for data streami; andPXY
i = PX′Y ′

i = Pi,

for anyX 6= X ′ andY 6= Y ′, due to uncompressed videos. Since the sequence numbers of all

the data symbols are known, the RS code can correct up tot = L − 3miMN
Qkgi

known erasures as an

erasure code [15].

For brevity, retransmission is not explicitly implementedin our system. Therefore, the trans-

mission time for all the packets of a data streami isLHQ time slots. A retransmission scheme can

be translated to reducedPe(G) andPe(B), but the transmission times for the data streams could

be longer [19].

2.3.3 Problem Statement

Now we are ready to formulate the problem of MD video over mmWave networks. Due

to uncompressed video, the range of PSNR is from 0 (all lost) to positive infinity (error free),

which makes no practical sense. On the other hand, the Mean Squared Error (MSE) of the recon-

structed image reflects the distortion of the reconstructedimage compared with the original image.

Therefore our goal is to minimize the expected Mean Squared Error (i.e., MSE or
√

MSE) of the

reconstructed video frames, which is a function of the various design factors as follows.

MSE=
1

3MN

M∑

i=1

N∑

j=1

3∑

χ=1

[I(i, j, χ)− I ′(i, j, χ)]
2
. (2.4)

In (2.4),I(i, j, χ) is a pixel in the original video frame at location(i, j) andI ′(i, j, χ) is the pixel

at the same location in the reconstructed video frame. The indexχ indicates the color components
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(i.e., R, G or B). Since it is assumed that the three color components are equally important for the

image quality, we don’t introduce different weights for thethree color components.1 It follows that

E{
√

MSE} (2.5)

= E
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WhereSq, 1 ≤ q ≤ Q is the total number of segments that each pixel of the sub-imageq is divided

into; Tq is the first segment of sub-imageq that cannot be decoded;Xq is the number of packets

of sub-imageq that are received and not corrupted by error;xTq
is the number of data symbols

required to decodeTq (and denotex0 = 0); P (Xq < xTq
) is the probability thatXq is less than

xTq
, such thatP (Xq < xTq

) = PTq
, wherePTq

is the probability that dataTq cannot be decoded, as

given in (2.3). Note that we assume if a bit cannot be decoded then it is discarded at the decoder,

meaning that (2.5) is indeed the worst-case expected
√

MSE.

1The same scheme can be applied to videos stored in the YUV format, where the weights for the Y, U and V
components may vary and three optimization problems need tobe solved.
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Figure 2.5: Structure of the interleaver.

We then formulate the following nonlinear integer programming (NLIP) problem.

minimize E{
√

MSE} (2.6)

subject to:
mi

gi
≤ mi+1

gi+1

, for all i (2.7)

3mSq
MN

QkgSq

≤ L, for all q (2.8)

L ≤ 2k − 1 (2.9)

Sq∑

i=1

mi = 8, for all q (2.10)

LHQ ≤ ∆ (2.11)

Λl ≤
Sq∑

i=1

gik

8
≤ Λu, for all q. (2.12)

Constraint (3.27) is due to the fact that the transmission time of all the packets of an image must

not be larger than a tolerable transmission delay, i.e., thedelay bound∆. Constraint (2.12) is for

the purpose of making the size of a packet adequate for transmission after adding header bytes to

the packets, i.e., within the range of the minimum packet sizeΛl and the maximum packet sizeΛu.
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2.3.4 Solution Strategy

The formulated problem aims to minimize the expected
√

MSE given in (2.5). This goal is

achieved by tuning the control parametersSq, {m1,m2, · · · ,mSq
}, {g1, g2, · · · , gSq

}, for all q, and

H to find the optimal partition of the pixel bits for MD coding and the optimal interleaving depth

for transmission. And the problem is solved once when the channel condition is changed.

Checking out the search space for the optimal solution, it canbe seen that: (i) the feasible

values forSq is between 1 and 8; (ii) due to constraint (3.26), themi’s are all small integers; and

(iii) H is also limited by the maximum delay constraint (3.27). The parameters that dominate the

search space of the problem are{g1, g2, · · · , gSq
}, for all q, since the packet size can be a value

between hundreds to thousands of bytes. This motivates us toreduce the search space by “taking

out” {g1, g2, · · · , gSq
}, for all q, such that the search space of the problem will be small enough to

apply an exhaustive search for the remaining parameters. This way, the problem can be reduced to

a sub-optimal problem havingSq, {m1,m2, · · · ,mSq
}, andH as its optimization parameters.

In our solution strategy, we reduce constraint (2.12) into
∑Sq

i=1
gik
8

= Λ, whereΛ is a constant,

for all q. For a particularSq, for all q, we havegi = 8Λ
kSq

, for all i. Furthermore, constraint (3.21) can

be transformed tomi ≤ mj, for all i < j. Then the problem is reduced to a sub-optimal problem

of finding the optimal{m1,m2, · · · ,mSq
} andH under a specificSq value. The search space of

the sub-optimal problem is now much smaller than that of the original problem, so that exhaustive

search can be applied. The ideas of finding the best bits-partition scheme and interleaving depth

are still maintained in the sub-optimal problem, thus the proposed scheme still being adaptive to

channel dynamics. Note that for the case where8Λ
kSq

is not an integer, we takegi = ⌊ 8Λ
kSq
⌋, for

all 1 ≤ i ≤ Sq and the remaining space in the packet left by the data symbolsare padded by

redundancy.

In addition, we also aim to reduce the number of loops caused by Q, since a large number of

loops will seriously drag down the speed of the search algorithm, as can be seen from (2.5). We

cut the HD video image into many small images (different fromthe sub-images mentioned above)

and take each of the small images as an intact image, and then interleaving is applied to these small
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images. ThusQ = 1 in the exhaustive search algorithm and our following simulations. And we

omit the subscriptq for brevity in the following. This way, the number of loops isreduced and

simulation speed is greatly improved.

After these simplifications, the computation overhead is dominated by the computation of (2.3),

which is the probability of failing to decode a data stream, and by searching for the optimal pixel

bit allocation and interleaving depth within a limited searching space. The computation can be fur-

ther sped up by pre-computing the probabilities (2.3) undervarious cases and store them in a table

for future use. The performance of this solution strategy will be demonstrated in the performance

evaluation section.

2.4 Simulation Study

2.4.1 Simulation Setup

In this section, we evaluate the performance of the proposedscheme. The coding and trans-

mission schemes are implemented and simulated using Matlab. In the simulations, we use 1920

× 1080 HD uncompressed images with 24 bits per pixel (i.e., 8 bits for each R/G/B component),

instead of a real HD video stream. The simulation parametersare shown in Table 6.1. We com-

pare the proposed scheme with UVoW presented in [19], as discussed in Section 6.2. Note that

ARQ is not employed in both schemes for a fair comparison. The channel conditions are assumed

to be known in advance, e.g., through a proper channel measurement/feedback scheme. In the

simulations, we assume a time slot duration of 1µs.

2.4.2 Simulation Results and Analysis

We first examine the operation of the proposed scheme to reveal its properties. Figure 2.6

visually shows the different significance of bits at different positions for reducing
√

MSE. In this

simulation, the segmentation of the eight bits of a color component in a pixel is 1-1-1-2-3, which

means the eight bits are divided unevenly into five segments,with 1, 1, 1, 2, and 3 bits, respectively.
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Table 2.2: Simulation Parameters

Parameters Value

M 1080
N 1920
C 60
D 80
k 6
∆ 106 time slots
L 51
H 1∼ 5
Λl 800 Bytes
Λu 2000 Bytes∑S

i=1
gik
8

900 Bytes

The significance of the segments are 128, 64, 32, 24, and 7, respectively. When less than 10 packets

are received, the video cannot be decoded, resulting in a
√

MSE of 255. When more than 10 but

less than 20 packets are received, the most important bits inthe pixels can be decoded, resulting in

greatly reduced
√

MSE. The
√

MSE curve has a staircase shape and the gap is getting smalleras

more and more packets are received.

We learn from the figure that recovering the bits of larger values has a greater effect on lower-

ing the
√

MSE than recovering the bits of smaller values, which is the guideline for the proposed

algorithm. Recall that the total number of FEC symbols isL
∑S

i=1 gi − 3·8·M ·N
k

, where the first

term is the total number of symbols and the second term is the total number of data symbols in a

sub-image. Therefore, the amount of FEC symbols in a sub-image is fixed. If we want to provide

stronger protection to the bits of greater values by assigning more FEC symbols to them, then the

bits of smaller values will be less protected, and vice versa. If the channel is bad and the packet

loss rate is high, then it is more urgent to offer higher levelof protection to the bits of greater values

than to the bits of smaller values considering their respective level of significance for lowering the
√

MSE. When channel is good and the packet loss rate is low, then the probability of recovering

the bits of greater values will be high enough even if not manyFEC symbols are assigned to them,
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Figure 2.6: Significance of different bits at different positions to
√

MSE.

thus enough FEC symbols may be assigned to the bits of smallervalues to enhance the probability

of decoding them to further lower the
√

MSE.

This reasoning has been validated when we checked with the segmentation of the 8 bits under

different channel conditions in simulations. Another question is how effective is the MDC compo-

nent of the proposed scheme in improving video quality. To answer this question, we compare the

performance between our proposed scheme and another schemewith interleaving only but without

MDC. The results is presented in Fig. 2.7, under a channel condition of Pb|g changes from 0.06

to 0.3,Pg|b = 0.1, andPe(G) = 0.01. Note that according to the channel model, the average

off duration isToff = 1/Pb|g. It can be seen that when the channel condition is good (with short

off periods), the gain achieved by MDC is not obvious. However, when the channel gets worse

with increased off periods, the gap between the two curves are quickly increasing. Considerable

reduction in
√

MSE by MDC is observed under bad channel conditions.

The relationship between the packet loss trace and
√

MSE trace is plotted in Fig. 2.8 under a

channel condition ofPb|g = 0.1, Pg|b = 0.1, andPe(G) = 0.01. The packet loss trace is plotted in

dashed line using the left-hand-side y-axis, and the corresponding
√

MSE is plotted in solid line

using the right-hand-side y-axis. The corresponding optimal segmentation of the 8 bits is 2-3-3,

and the optimal interleaving depth is 5. We can see from the above figure that when packet loss

exceeds a certain threshold and thus the last two segments cannot be decoded, the
√

MSE of the
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Figure 2.7: Impact of the MDC component under various channel conditions.
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Figure 2.8:
√

MSE vs. packet loss trace.

sub-image is about 60; otherwise, the
√

MSE is 0, which means all the three segments are decoded.

The statistical average
√

MSE of all the tested sub-images is 3.0652 while the expected
√

MSE

calculated from the minimization problem is 4.1472. The difference may be explained by a limited

number of tested sub-images here, and the dependence of the channel condition for the consecutive

sub-images which is not considered on the minimization problem which tends to minimize the

expected
√

MSE of a sub-image and doesn’t consider the channel condition correlation problem

of consecutive sub-images.

We next focus on the impact of channel dynamics to show how theproposed scheme adapt

to mmWave channels. We compare the expected
√

MSE achieved by the proposed scheme and

UVoW, by varying the average duration of the channel bad periodToff . In the simulations,Pg|b is

23



2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

Average T
off

 (no. of time slots)

sq
rt

(M
S

E
)

 

 

proposed scheme
UVOW

Figure 2.9:
√

MSE vs. average off period of the mmWave channelToff .

fixed at 0.1 andPe(G) is fixed at 0.01 for both schemes. The results are plotted in Fig. 2.9. Note

that using our proposed scheme, the best combination of{S,m1,m2, · · · ,mS, H}, which leads

to the lowest expected
√

MSE under the given channel condition, can be found for each different

averageToff value. We can see from the figure that the expected
√

MSE of the proposed scheme

is lower than that of UVoW for the entire range. When channel condition is good (i.e., the average

Toff is less than 4), the performance gap between the two schemes is not remarkable. However,

as the channel condition degrades (i.e., averageToff is increased beyond 4), the performance gap

quickly grows, for the reason that the packet loss rate growsthus it is of greater importance to

provide stronger protection to the most important bits. We observed from the result that when

Toff is 4, the optimal segmentation is 4-4 (as in UVoW) and the optimal interleaving depth is 5;

when averageToff is 10, the optimal segmentation is 2-3-3 and optimal interleaving depth is 5,

which means that more FEC symbols are assigned to the first 2 bits, and interleaving is applied

to overcome the channel burstiness. Thus the proposed scheme can adapt to changing channel

conditions, to strengthen the protection for the most important bits and increase the interleaving

depth to combat the temporarily blocked channel. On average, the proposed scheme achieves

19.6055 reduction in
√

MSE than UVoW.

Fig. 2.10 demonstrates the relationship between the expected
√

MSE andPe(G), the packet

loss probability when the channel is in the good state. In this simulation,Pb|g andPg|b are fixed at
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Figure 2.10:
√

MSE vs. packet loss rate at the good statePe(G).

0.1 for both schemes. AsPe(G) is increased, the probability of a packet being lost in the good state

is increased, which means the error correcting capability of the bits of the highest priorities should

be enhanced by re-segmentation of the bits. As Fig. 2.10 shows, the characteristic of adaptivity

enables the proposed scheme outperform UVoW in terms of
√

MSE for the entire range ofPe(G)

examined in the study. The average
√

MSE of the proposed scheme is 44.8486 lower than that of

UVoW. This result also indicates that our proposed scheme isextremely suitable for the case that

Pe(G) is comparatively high during communication.

We look into the optimal segmentation result obtained by solving the minimization prob-

lem (4.7). We find that, in general, when channel is good, moredescriptions are created as the

bits are divided into more segments, and the length of the segments of the more significant bits are

shorter. This implies that the number of data symbols constituted by the bits of greater values are

smaller compared with the number of FEC symbols assigned to protected them, so that these bits

have a higher level of protection.

Fig. 2.11 and 2.12 plot the relationship between
√

MSE,Pb|g and transmission delay tolerance

∆. Recall that the relationship between transmission delay tolerance (short fordelayhereafter) and

interleaving depthH is given in (3.27). Under a specific delay, the expected
√

MSE will decrease

asPb|g increases; this pattern also applies to the relationship between delay and expected
√

MSE

under a specificPb|g. Besides, in the entire ranges of delay andPb|g as shown in this figure,
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Figure 2.11:
√

MSE vs. transmission delay tolerance under good channel condition.
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Figure 2.12:
√

MSE vs. transmission delay tolerance under bad channel condition.

the effect of increased delay and that of increasedPb|g on lowering the expected
√

MSE do not

conflict with each other, which means choosing a larger interleaving depth under a specific channel

condition will be always good for improved video performance, especially when channel condition

is bad (i.e.,Pb|g ranges from 0.06 to 0.1). This is because the reduction of
√

MSE is much more

significant than that achieved when channel condition is good (i.e.,Pb|g ranges from 0.1 to 0.3),

as plotted in Fig. 2.12. This phenomenon motives us to carefully design the system parameters

under certain channel conditions in order to achieve a balance between delay and desired video

performance.

26



Finally, we examine the visual quality of reconstructed HD video. In the next simulation,

example video images are used in our performance test. About10 distinct images are evaluated

using both the proposed scheme and UVOW. The image which reflects the simulation results of

most tested images are selected to undergo about 100 distinct evaluations using both schemes in

each test. We choose the results that are representative of the 100 tests to present in the following.

The optimal solutions of{S,m1, · · · ,mS, H} corresponding to the lowest expected
√

MSE are

recalculated when channel condition changes, and then applied to the transmission of each sub-

image. Since we takeQ = 1 to reduce the complexity of solving the optimization problem, we

tend to obtain the optimal solution on sub-image basis, and the optimal solution is the same for

each sub-image in our simulations under the same channel.

In the simulations, the entire image is divided into smallersub-images and we show only

1/16 of the sub-images (termed partial image in the following). This is because the size of an

entire HD image will be too large to fit into this chapter, and the quality of the partial images is

representative since all the partial images are treated equally in uncompressed video streaming.

The partial images as shown in Fig. 2.13. The partial image inFig. 2.13(a), (b), and (c) are

produced by the proposed scheme and the partial images in Figs. 2.13(d), (e), and (f) are produced

by UVoW. Fig. 2.13(a) and (d) are obtained under a good channel condition; Fig. 2.13(b) and (e)

are obtained under a bad channel condition; Fig. 2.13(c) and(f) are obtained under a severe channel

condition. The specific parameters are as follows: (a)(d):Pb|g = 0.3; (b)(e): Pb|g = 0.1; (c)(f):

Pb|g = 0.06. Pg|b = 0.1 andPe(G) = 0.01 are fixed in all the simulations.

It can be seen that when the channel condition is good, both schemes work fine by producing

high quality received videos. When the channel is in a bad condition (i.e.,Pb|g = 0.1), the partial

images produced by our scheme are still good with a comparatively much high quality, while a

portion of the partial images using UVoW are black (meaning that those pixels are completely

lost). Under such bad channels, the most important bits can still be received and decoded in our

scheme, but are completely lost in UVoW. This is because the protection to the most important
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Figure 2.13: Visual quality comparison of the two schemes under different channel conditions.

bits is adaptively enhanced after re-segmentation of the pixel bits to adapt to the degraded channel

condition.

We also observed that the optimal segmentation is 2-3-3 and the optimal interleaving depth

is 5 under the bad channel condition. That is, the two most significant bits are better protected.

The change in the color depth in Fig. 2.13(b) (indicated by the circle) is caused by the loss of the 6

least significant bits during transmission over the mm Wave channel. The data stream reconstituted

by the last 6 bits cannot be decoded due to the transmission loss, but the first 2 most significant

bits are correctly decoded since more FEC symbols are assigned to them to provide a higher level

of protection, and consequently a basic visual quality is still guaranteed. Under the same channel
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condition, the UVoW partial image in Fig. 2.13(e) has a few black blocks, which are caused by the

loss of all the 8 bits in those pixels.

When the channel condition is even worse (i.e.,Pb|g = 0.06), the visual quality of the recon-

structed image using our proposed scheme (in Fig. 2.13(c)) is still much better than that using the

UVoW (in Fig. 2.13(f)). The optimal segmentation is now 1-1-1-1-4 and the optimal interleaving

depth is 5 under such channel condition. As can be seen from Figs. 2.13(c), although the color

depth has a little change since the last four bits are lost (e.g., see the up right corner), and there are

3 black blocks, the visual quality is still acceptable compared with the UVoW image in Fig. 2.13(f),

which has much more black blocks.

These results clearly demonstrate the advantages of being adaptive both at the MD video coder

and at the transmission scheduler to the varying channel conditions.

2.5 Conclusion

In this chapter, we investigated the problem of streaming uncompressed HD video over mmWave

wireless networks. We developed an MD-FEC coding scheme that partitions the pixel bits and an

interleaving based transmission strategy to minimize the expected
√

MSE of the reconstructed

video quality. The main idea is that important bits should have higher level of protection in trans-

mission. We formulated an Nonlinear Integer Programming problem for the optimal partition of

the pixel bits and interleaving of packets, which is NP-hard, and derived a sub-optimal solution

for this problem with much lower computational complexity.The performance of the proposed

scheme was evaluated with simulations and shown to outperform an existing scheme with consid-

erable gains.
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Chapter 3

QoE Driven Multi-user Video Streaming in Cellular CRNs

3.1 Introduction

The Cisco Visual Network Index report predicts a drastic increase in mobile data and a dom-

inant part of video related data in the near future [62] [45].calls for a more flexible management

of radio resources in today’s and future wireless networks,in order to unlock the wireless network

capacity by promoting more efficient use of spectrum. To thisend, the Cognitive Radio (CR) tech-

nology has been widely recognized as an effective solution for efficient and flexible access to the

radio spectrum. CR is an evolutionary technology for more efficient and flexible access to the radio

spectrum. In a cognitive radio network (CRN), Cognitive Users (CUs) search for the unoccupied

licensed spectrum of the Primary User (PU) network and then opportunistically access detected

spectrum holes in an unobtrusive manner [26] [43] citeXiao16Globe [46]. Bandwidth-demanding

and elastic mobile services, such as wireless video, will benefit enormously from this new wireless

networking paradigm [27].

In this chapter, we address the challenging problem of downlink multi-user video streaming

in cellular CRNs. We consider a CRN consisting of one cognitive base station (CBS) and multiple

CUs. Without loss of generality, we assume each CU can access one channel at a time (i.e., with a

single antenna). The CUs cooperatively sense PU signals on licensed channels and the CBS infers

the channel states based on collected CU sensing results withan OR fusion rule. Once the idle

channels are detected, the CBS then assigns them to active CUs for downlink multi-user video

streaming. We incorporate the video assessment model proposed in [66, 71], aiming to maximize

the CU QoE by optimal designs of spectrum sensing and access policies.

It is obviously a challenging problem to jointly design the spectrum sensing and access polices

for QoE-aware multi-user video streaming, due to the large number of design factors and the
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complex interactions that should be modeled in a cross-layer optimization framework. We first

consider the case where each CU can sense and access at most onechannel at a time slot. To make

the problem tractable, we take a divide-and-conquer approach to break it into two sub-problems: (i)

Optimal Assignment Sub-problem for Spectrum Sensing (OAPSS): to discover a sufficient amount

of idle channels reliably and quickly to meet the bandwidth demand of the CUs; and (ii) Optimal

Assignment Sub-problem for Video Transmission (OAPVT): toallocate available channels to CUs

according to their respective QoE requirements and networkstatus. We propose a distributed

Greedy Poly-matching Algorithm that can compute optimal solution to the channel sensing sub-

problem, and using the Hungarian Method to compute optimal solution to the channel assignment

sub-problem.

Furthermore, we examine the more general case where each CU can sense multiple channels

(e.g., with multiple spectrum sensors) but can still accessonly one channel at a time slot. We

formulate an integrated problem that maximizes the QoE of all the CUs byjointly optimizing

spectrum sensing and access policies. Under the assumptionthat all the spectrum sensors work

at the same operating point (i.e., with the same probabilityof detection and the same probability

of false alarm), we show that this challenging problem can besolved with a two-step approach:

First, the spectrum sensing scheduling problem is solved with a greedy algorithm; Second, the

channel allocation problem, which is a Maximum Weight Matching problem and can be solved

optimally with the Hungarian Method. We prove that the two-step solution algorithm is indeed

optimal: decomposing the original problem into two sub-problems and solving them sequentially

do not sacrifice the optimality of the solution.

It is worth noting that if we also assume identical operatingpoints for the spectrum sensors,

the single-channel sensing scenario is a special case of themulti-channel sensing scenario, to which

the optimal solution approach also applies. We validate theproposed schemes with simulations,

and the simulation results demonstrate their superior performance in terms of the MOS that CUs

can achieve under various network scenarios, when comparedwith benchmark schemes.
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The remainder of this chapter is organized as follows. The system model is presented in

Section 3.3. The problem for the case of single channel sensing is formulated and solved in Sec-

tion 3.4. The problem for the case of multi-channel sensing is formulated and solved in Section 3.5.

Simulation results are discussed in Section 3.6. Section 6.2 reviews related work and Section 6.8

concludes the paper.

3.2 Related Work

In this section we briefly review the prior work on Quality of Service (QoS) and QoE provi-

sioning and video streaming over CRNs.

CR research has been largely focused on the aspects of spectrum sensing and dynamic spec-

trum access [72] [48]. In [73], the authors study the sensing-throughput tradeoff problem that

optimizes the spectrum sensing time so that the CU’s throughput can be maximized with restricted

interference to the PUs. Unlike [73], the protocol proposedin [74] also considers the problem of

which channel to sense, in addition to sensing parameters and access strategy optimization. More-

over, it is shown that the design of sensing strategy is independent to sensing parameters design

and the access strategy, as specified in aprinciple of separation[74]. These works focus on the op-

timization of sensing parameters only, and there is no collaboration between CUs. Considering the

fact that different CUs may have different spectrum sensing performance, the algorithm proposed

in [75] forms groups of CUs for cooperative sensing, aiming tofind the best grouping scheme to

discover most idle channels. Moreover, the problem of sensing parameter optimization in addition

to optimal sensor selection is investigated in [76], with the objective to achieve a trade-off between

detection performance and sensing overhead.

The problem of video streaming over CRNs has been studied in a few prior works. The

transmission of multimedia over CRN is first proposed by J. Mitola in [77]. In [63] the quality op-

timization problem is formulated as an mixed integer nonlinear programming (MINLP) problem

and solved with effective algorithms. Authors of [78] develop an auction game model to deliver
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content-aware multimedia. The authors in [79] consider thescenario where multimedia transmis-

sion is scheduled in CRN and a QoE Driven channel allocation scheme is proposed to optimize the

multimedia transmission of priority-based CUs, where the MOS model proposed in [71] is used.

Specifically, each CU has different QoE requirements and thushas different priority in utilizing

the idle channels of the PU system. Upon the re-appearance ofan active PU on the idle licensed

channel, each CU utilizing the idle licensed channels will evacuate from the current channel it is

using to avoid conflict with the active PU.

The authors of [93] propose a a learning-based QoE-driven spectrum handoff scheme for mul-

timedia transmissions over CR networks. Reinforcement learning is applied to spectrum handoff

scheme to maximize the QoE of video transmissions in the longterm. The proposed learning

scheme is asymptotically optimal, model-free, and can adaptively perform spectrum handoff for

the changing channel conditions and traffic load. To extend the video streaming time for the CUs,

the authors of [94]propose a flexible sensing scheme to reducing the unnecessary channel sens-

ings. Besides, the network abstraction layer units in the SVCvideo are assigned utilities which

accurately reflect their contributions to the video quality, and different layers are streamed over

different channels based on their contributions to maximize the total utility of the received video.

In order to comprehensively evaluate the utility of the CUs invideo streaming, the authors of [95]

propose to not only consider the video quality of each CU, but also consider the the number of

satisfied CUs. A 3-dimensional scalable quality of the H.264/SVC video transmission problem

is formulated and solved with an suboptimal solution. In [96], the authors consider the case that

the future Internet network may become highly heterogeneous, and therefore an efficient cognitive

network management is proposed for the optimization of network operations like management of

resources, mobility or QoS in order to ensure smooth networkoperation and high user satisfaction.

3.3 System Model

We consider a primary network operating onN1 orthogonal licensed channels. The primary

network is co-located with a CR network, which consists of a CBS supportingM CUs. The CUs
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Algorithm 1: Spectrum Sensing and Access for QoE-driven Multi-user Video Streaming

1 Phase 1: The CBS determines for each CU which channel to sense based on SNR feedback,
and broadcasts the sensing schedule to the CUs ;

2 Phase 2: Each CU follows the sensing schedule to sense the channel to which it is assigned,
and reports the sensing result to the CBS ;

3 Phase 3: The CBS makes two decisions: (i) channel availability at the current time slot,
based on the sensing results and the fusion rule; and (ii) channel assignment to CUs for
multi-user video transmission at the current time slot, based on channel availability, channel
condition, Content Type (denoted asCT ) of each CU, and other information. Then the CBS
broadcasts the channel access schedule to the CUs ;

4 Phase 4: The CBS uses the assigned channels to transmit video data; each CU follows the
channel access schedule to receive video data from its assigned channel.

sense the PUs’ usage of the licensed channels and access the licensed channels in an opportunistic

manner. As in prior work [75,80], we assume the CUs, when they are not receiving data, measure

the SNRs of PU transmissions over all the licensed channels and report the measured SNRs to the

CBS through some feedback mechanism. Based on such feedback, the CBS then assigns those CUs

with good channel conditions to sense each licensed channel, in order to achieve a good sensing

performance.

Here we consider the downlink multi-user video streaming scenario, where the CBS streams

a video to each active CU using the license channels that are detected idle. We assume time is

divided into a series of non-overlapping GOP (Group of Pictures) windows, each consisting ofT

time slots. Each time slot can be further divided into four phases for spectrum sensing and access

for multi-user video streaming, as shown in Algorithm 1.

Note that at the very beginning of the first GOP window, the SNRinformation used in Phase

1 may not be available yet. However, such information can be obtained via estimation or learning

techniques, or by simply letting CUs probe the channels when they are idle [76].

3.4 The Case of Single Channel Sensing

In this section, we consider the case that each CU can only sense a single channel and access

a single channel during a time slot. We consider the case thateach spectrum sensor has its own
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operating point, which may be different from that of other spectrum sensors. This turns out to

be an IP (Integer Programming) problem, which is NP-hard in general. We then take a divide-

and-conquer approach to break down the problem into an optimal assignment sub-problem for

spectrum sensing (termed OAPSS) and an optimal assignment sub-problem for video transmission

(termed OAPVT). We develop effective solution algorithms for each sub-problem and prove their

optimality to each sub-problem. However, the overall solution is near-optimal due to the divide-

and-conquer approach.

3.4.1 Problem Formulation

Optimal Assignment Sub-problem for Spectrum Sensing (OAPSS)

In a practical wireless network scenario, CUs are located at different geographical positions

with different channel gains to primary transmitters. Thustheir performance on detecting primary

signals on a particular licensed channel would be different, e.g., a CU with better channel gains

to a primary transmitter may have a higher probability of detecting the PU singles (if the single

indeed exist). By selecting a group of CUs which has better channel gain to detect the PU, then the

PUs signal will have a higher probability of being detected,if the PUs signal really exist, and then

the probability of causing interference to PU transmissions can be reduced [80,81].

Usually cooperative sensing is used to improve the detection performance by fusing the sens-

ing results from multiple CUs [82], and a certain fusion rule is required to combine these results.

In this chapter, the OR fusion rule is used at the CBS to determine the presence or absence of PU

signal on a particular channel. With the OR rule, if any of theCUs reports the presence of a PU

signal then the CBS decides that the channel is busy; Otherwise, the CBS decides that the channel

is idle. We use anM ×N1 matrixX to denote the sensing task assignment at time slott, while the

entry located at thei-th row andj-th column position is defined as

xt
ij =





1, CU i senses channelj in time slott

0, otherwise.
(3.1)
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A useful metric to evaluate the performance of detecting a PUsignal isprobability of detec-

tion, which is the probability that a CU successfully detects the existence of an existing PU signal.

Let P t
dij

denote the probability of detection on channelj by CU i at time slott. For an energy

detector, we have [81]

P t
dij

=
1

2
erfc

((
λt
ij

σ2
n

− ς tij − 1

)√
K

2
(
2ς tij + 1

)
)
, (3.2)

whereλt
ij is the threshold of energy detection on channelj by CU i at time slott, σ2

n is the power

of the i.i.d. Additive White Gaussian Noise (AWGN) at the CU,ς tij is the SNR of PU’s signal

on channelj at CU i, K is the number of samples on channelj by energy detection. In (3.2),

erfc(z) = 2√
π

∫∞
z

e−u2
du is the complementary error function, and let erfc−1 (·) denote the inverse

function of erfc(·).

According to the OR fusion rule, the probability of detection on channelj at time slott is

P t
dj

= 1−
M∏

i=1

(
1− P t

dij

)xt
ij

. (3.3)

In order to guarantee the protection of the PUs, we setP t
dij

= P̄d by tuningλt
ij for all i, j. Thus

the probability of detection of the activity of a PU will be greater thanP̄d if the channel is sensed

by some CUs (according to (3.3)). In the case that a channel is not sensed by any of the CUs, it

will not be used for video streaming.

Under the assumptions that the PU signal is complex valued phase-shift keying (PSK) and the

noise is circularly symmetric complex Gaussian (CSCG), then CUi’s probability of false alarmon

channelj, denoted byP t
fij

, can be expressed as [81]

P t
fij

=
1

2
erfc

((
λt
ij

σ2
n

− 1

)√
K

2

)
=

1

2
erfc

(√
2ς t

ij
+ 1 erfc−1

(
2P̄d

)
+

√
K

2
ς t
ij

)
. (3.4)

The objective of sensing task assignment is to maximize the probability of detecting all the

idle channels at time slott, while maintaining fairness among the probabilities of detection of the
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N1 licensed channels. It has been shown that proportional fairness can be achieved by maximizing

the sum of logarithmic functions. The optimal sensing task assignment problem is to maximize the

following objective function.

N1∑

j=1

log
(
1− P t

fj

)
=

N1∑

j=1

log
M∏

i=1

(
1− P t

fij

)xt
ij

=

N1∑

j=1

M∑

i=1

log
(
1− P t

fij

)
xt
ij =

N1∑

j=1

M∑

i=1

ϕt
ij · xt

ij , (3.5)

whereϕt
ij

.
= log

(
1− P t

fij

)
, andP t

fij
, P t

dij
are defined as in Chapter 3. We assume that each CU

can sense one channel at each time slot, and the number of CUs that can be assigned to sense a

channeli at each time slot is unrestricted. Therefore, the optimal sensing task assignment problem

is formulated as

OAPSS: max
N1∑

j=1

M∑

i=1

ϕt
ij · xt

ij (3.6)

s.t.
N1∑

j=1

xt
ij = 1, for all i (3.7)

xt
ij ∈ {0, 1}, for all i, j. (3.8)

Optimal Assignment Problem for Video Transmission (OAPVT)

For video quality assessment, we adopt the QoE model named Mean Score Opinion (MOS)

that was proposed in [71], where the MOS of CUi using channelj during time slott, denoted by

Ψt
ij, can be expressed as

Ψt
ij = α + CTiγ + (β + CTiδ) ln

(
SBRt

ij

)
(3.9)

= α + CTiγ + (β + CTiδ) ln
(
Blog2

(
1 + SNRt

ij

))
,

37



whereα = 3.9860, β = 0.0919, γ = −5.8497, andδ = 0.9844 are constants,CTi is the Content

Type of the video sequences required by CUi, B is the bandwidth of a channel in kbps, andSNRt
ij

is the SNR of the video signal using channelj measured at CUi at time slott [71].

Remarks on QoE model (3.9): The QoE model in [71] is applied in the Universal Mobile

Telecommunication Systems. In multimedia applications such as video conferences over the CR

network, QoE that directly measures the satisfaction of theCUs cannot be easily realized due to

the limited spectrum resources. Therefore, it is importantto study how to allocate frequency or

spectrum resources to SUs according to their QoE requirements. The authors of [79] where video is

streamed over CR network also adopts the same QoE model from [71] as we do. For the achievable

(or the maximum) bit rate based on Shannon Theorem, the channel capacity by definition is the

maximum bit rate that can be transmitted across the channel with a specific bit error ratio [71].

As pointed out in [71] and [79], the SBR should be adjusted according to the changing channel

conditions, e.g., channel data rate, therefore, SBR is an adjustable parameter here in our problem.

The effect of channel degradation on SBR adjustment is already taken into account in calculating

the channel capacity, and loss rate and channel congestion are the only two factors that affects

SBR adjustment, and a gradual increase in SBR is allowed when the bandwidth is available and

there is no/reduced congestion, whereas, quick action is taken to reduce the SBR in case of severe

congestion, as pointed out in [90], and the adaptive video scheme gracefully adapted the SBR

to the available network downlink bandwidth, as pointed outin [71], [91], and [90]. Since our

simulation is not conducted over the real network which is the same as [71], [91], and [90], the

network congestion is not considered in our work, thereforethe SBR is set to the value of available

channel data rate so that the channel bandwidth can support the SBR without wasting bandwidth

resource.

We assume thatN2 channels are determined to be idle after the sensing phase, whereN2 ≤

N1. We consider a general case where not all the CUs have data to receive at all times. Instead, the

probability of a CU has data to receive at each GOP window is0 ≤ ξ ≤ 1. The number of CUs

that have data to receive in a GOP window (called active CUs) isdenoted asM1, whereM1 ≤M .
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An M1 × N2 matrix Z is used to represent channel access assignments on time slott, while the

entry located at thei-th row andj-th column position is

ztij =





1, assign channelj to CU i in time slott

0, otherwise.
(3.10)

We consider the case where each CU can use at most one channel ateach time slot due to

hardware constraints, and each channel can be used by at mostone CU at each time slot. We aim

to maximize the expected average MOS of all the CUs during a GOPwindow by assigning the

available channels.

max :
1

T

T∑

t=1

M1∑

i=1

E
[
Ψt

i

]
(3.11)

whereΨt
i is the MOS of CUi at time slott. The above objective function can be maximized if we

maximize the expected MOS increment of theM1 CUs during each time slot [63], which can be

written as

M1∑

i=1

E
[
Ψt

i

]
=

M1∑

i=1

N2∑

j=1

E
[
Ψt

ij

]
· ztij (3.12)

=

M1∑

i=1

N2∑

j=1

[P
(
rtj = 0|stj = 0

)
φt
ij + P

(
rtj = 1|stj = 0

)
θtij]z

t
ij ,

wherestj = 0 indicates the channel is sensed idle;P (rtj = 0) andP (rtj = 1) are the probability of

channelj to be idle or busy at time slott, respectively;P (rtj = 0|stj = 0) andP (rtj = 1|stj = 0)

(denoted asP j,t
00 andP j,t

10 , respectively) are the conditional probability for channel j to be idle or

busy conditioned on the sensing result, respectively. It follows that

P j,t
00 = P (rtj = 0|stj = 0) =

(1− P t
fj
)P (rtj = 0)

(1− P t
fj
)P (rtj = 0) + (1− P t

dj
)P (rtj = 1)

(3.13)

P j,t
10 = P (rtj = 1|stj = 0) = 1− P (rtj = 0|stj = 0). (3.14)
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In (3.12),φt
ij andθtij are the effective data rate of the received video sequence atCU i using channel

j which is indeed idle or busy at time slott, respectively. Denoteµt
ij andνt

ij as the received SNR

at CUi using channelj which is indeed idle or busy at time slott, respectively. We then have

µt
ij =

Γgi
n0B

νt
ij =

Γgi
n0B(1 + ς tij)

φt
ij = α + CTiγ + (β + CTiδ) ln

(
Bjlog2

(
1 + µt

ij

))

θtij = α + CTiγ + (β + CTiδ) ln
(
Bjlog2

(
1 + νt

ij

))
,

whereΓ is the transmit power of the CBS on channelj, for all j.

Define̟t
ij

as

̟t
ij
= P j,t

00 · φt
ij + P j,t

10 · θtij. (3.15)

The optimal channel access problem is formulated as

OAPVT : max
M1∑

i=1

N2∑

j=1

̟t
ij · ztij (3.16)

s.t.
N2∑

j=1

ztij ≤ 1, i ∈ {1, · · · ,M1}. (3.17)

M1∑

i=1

ztij ≤ 1, j ∈ {1, · · · , N2} (3.18)

ztij ∈ {0, 1}, for all i, j. (3.19)

OAPVT considering fairness among CUs

Now we consider achieving fairness among CUs for the channel allocation problem. Consid-

ering the fact that our objective is to maximize the expectedaverage MOS of all the CUs during

a GOP window by assigning the available channels, we proposeto achieve a long term fairness

among CUs.
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In order to achieve long term fairness among CUs, we propose that, fairness among CUs

should be achieved by allocating channels to different CUs indifferent time slots. For example,

when there is only one available channel and two CUs, A and B, if Ais scheduled for video

streaming in the previous time slot, then at current time slot, B should be scheduled for video

streaming. Generally speaking, at current time slot, when the number of idle channels available for

video streaming, e.g.,N2, is less than the number of CUs requesting video streaming, e.g., M1,,

the CUs that have not been scheduled in previous time slots will have a higher priority of being

scheduling than the CUs that have been scheduled in previous time slots, and the objective is still

to maximizing the MOS sum of all CUs. Here we assume that all CUs request video streaming at

each time slot, i.e.,M1 = M .

To be more specific, we consider the following cases:

1. At current time slot,N2 ≥M1. In this case, all CUs can be scheduled for video streaming at

current time slot, and the problem formulation will be the same as problemOAPVT .

2. N2 < M1. For the easy of presentation, denoteΘ as the whole set of CUs requesting video

streaming at current time slot. DenoteΘk as a subset ofΘ, whereΘk is the set of CUs

whose times of being scheduled in previous time slots isk, k = 0, 1, 2, 3, . . ., and denote

Θk+1 as a subset ofΘ, whereΘk+1 is the set of CUs whose times of being scheduled in

previous time slots isk+1. Denote‖·‖ as the number of elements in a set. Then‖Θ‖ = M1,

Θk ∪Θk+1 = Θ, ‖Θk‖+ ‖Θk+1‖ = M1 (which we will prove in the following lemma).

• If N2 ≤ ‖Θk‖ ≤ M1, then the optimization problem is to maximize the MOS sum for

the CUs inΘk , by choosingN2 CUs fromΘk and allocate theN2 available channels

to theN2 CUs;

P1 : max
∑

i∈Θk

N2∑

j=1

̟t
ij · ztij (3.20)

s.t.
N2∑

j=1

ztij ≤ 1, i ∈ Θk. (3.21)
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∑

i∈Θk

ztij ≤ 1, j ∈ {1, · · · , N2} (3.22)

ztij ∈ {0, 1}, for all i ∈ Θk, 1 ≤ j ≤ N2. (3.23)

• If ‖Θ‖ > N2 > ‖Θk‖, then all the CUs inΘk would be scheduled, andN2 − ‖Θk‖

CUs would be chosen from setΘk+1, and thenN2 channels is allocated to the‖Θk‖+

(N2 − ‖Θk‖) CUs to maximize the MOS sum.

P2 : max
∑

i∈Θ

N2∑

j=1

̟t
ij · ztij (3.24)

s.t.
N2∑

j=1

ztij = 1, i ∈ Θk. (3.25)

N2∑

j=1

ztij ≤ 1, i ∈ Θk+1. (3.26)

∑

i∈Θ
ztij ≤ 1, j ∈ {1, · · · , N2} (3.27)

ztij ∈ {0, 1}, for all i ∈ Θ, 1 ≤ j ≤ N2. (3.28)

Now we are going to prove thatΘk ∪ Θk+1 = Θ. Once we haveΘk ∪ Θk+1 = Θ, then it is

easy to get to‖Θk‖+ ‖Θk+1‖ = M1.

Lemma 3.1. According to the definition ofΘ,Θk, andΘk+1, we haveΘk ∪ Θk+1 = Θ, where

k = 0, 1, 2, . . . at the beginning of all time slots.

Proof. At the very beginning of the1st time slot, each CU has not been scheduled, thereforek = 0,

Θk = Θ, andΘk+1 = ⊘. So the lemma stands for the1st time slot. Assume that at the beginning

of time slott, t ≥ 1, Θk ∪Θk+1 = Θ.

1. Assume that problem P1 is solved at time slott. ThenN2 CUs in setΘk at the beginning of

t will be moved to setΘk+1 at the end oft. ThereforeΘk ∪Θk+1 = Θ at the end oft.
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2. Assume that problem P2 is solved at time slott. Then CBS will chooseN2 − ‖Θk‖ CUs

from setΘk+1 to schedule, and the number of times of being scheduled at theend of t is

k+2, then the set formed by these CUs is denoted asΘk+2. And all the CUs in setΘk at the

beginning oft will be moved to setΘk+1 at the end oft, and forms a new setΘ′
k+1. Then we

have the following:

Θk+2 ∪Θ′
k+1 = Θk+2 ∪ ((Θk+1 −Θk+2) ∪Θk)

= Θk+2 ∪ ((Θk+1 ∪Θk)− (Θk+2 −Θk))

= Θk+2 ∪ (Θ− (Θk+2 ∩Θk+1))

= Θk+2 ∪ (Θ−Θk+2)

= Θk+2 ∪Θ− (Θk+2 −Θk+2)

= Θ−⊘ = Θ. (3.29)

And from the definition we know thatΘk+2 ∩Θ′
k+1 = ⊘. Therefore the lemma stands at the

end oft.

3. Assume that OAPVT is solved at time slott. Then all CUs in setΘk+1 and all CUs in setΘk

will be scheduled, which means thatΘk+1 becomesΘk+2 andΘk becomesΘk+1. Therefore

Θk+1 ∪Θk+2 = Θk ∪Θk+2 = Θ at the end oft. Therefore the lemma stands at the end oft.

From the above discussions we know that the lemma stands at the end of any time slott, i.e., at the

beginning of time slott+ 1, t = 0, 1, 2, . . ., which completes our proof.

3.4.2 Solution Algorithms and Analysis

Poly-matching Based Solution to OAPSS

We can see that the OAPSS problem is formulated as the well-known General Assignment

Problem (GAP), which is NP-hard in general. However, since there is no constraint on how many

CUs can be assigned to a channel, the problem is actually a Maximum Weight Poly-Matching
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Algorithm 2: Greedy Poly-Matching Algorithm

1 for i = 1→M do
2 for j = 1→ N1 do
3 xt

ij = 0 ;
4 end
5 j∗ = argmaxj∈{1,··· ,N1}{ϕt

ij} ;
6 xt

ij∗ = 1 ;
7 end

(MWPM) problem on a bipartite graph that matches CUs to licensed channels with edge weights

defined asϕt
ij. Furthermore, a channel can be matched to multiple CUs. It canbe solved by the

following greedy strategy presented in Algorithm 2 [83].

With this algorithm, each CU selects the channel with the largest weight, regardless whether

the selected channel has been chosen by other CUs or not [83]. This greedy strategy has a time

complexity ofO(MN1). In fact this is a distributed algorithm, since each CU can choose its best

channels to sense and there is no need to involve the CBS in this phase. Since the CUs can launch

their searching procedures in Line 5 in parallel, this distributed strategy has a time complexity of

O(N1).

In the following theorem, we also show that the Greedy Poly-matching Algorithm is optimal.

Theorem 3.1.The Greedy Poly-matching Algorithm 2 achieves the optimal solution to the OAPSS

problem.

Proof. Exchanging the summation order, the objective function of the OAPSS sub-problem (3.6)

becomes
∑M

i=1

(∑N1

j=1 ϕ
t
ij · xt

ij

)
, where

∑N1

j=1 ϕ
t
ij · xt

ij is the utility that CUi can achieve under

the two constraints (3.7) and (3.8). Since each CU can have at most one channel, the maximum

utility CU i can achieve ismaxj
{
ϕt
ij · xt

ij

}
, which is accomplished in Line 5 of Algorithm 2.

Since the optimal strategies of the CUs do not conflict with each other and thus are independent

to each other, the maximum utility of the CUs are also independent of each other. It follows that

max
∑M

i=1

(∑N1

j=1 ϕ
t
ij · xt

ij

)
=
∑M

i=1

(
maxj

{
ϕt
ij · xt

ij

})
, and Algorithm 2 is optimal.
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Solution to Channel Accessing Problem

The three problems of OAPVT, P1, and P2 are all Integer Programming problems which

is NP-hard in general. However, an interesting characteristic of the three problems is that the

coefficients of the constraint matrix in these problems are either 0 or 1, such that the unimodularity

property [24] is satisfied in these problems. As a result, both these problems have the optimal

solution with their LP relaxations, and thus they can be solved with the Simplex method [15], [25],

which has a a polynomial-time average-case complexity.

3.5 The Case of Multi-Channel Sensing

In this section, we consider the general case that a CU can sense multiple channels but can still

access one channel at a time (e.g., each CU is equipped with multiple spectrum sensors but with

only one transceiver). To make the problem tractable, we assume that all the spectrum sensors are

tuned to have the same probability of detection and the same probability of false alarm. Under this

assumption, we present a problem formulation that integrates both spectrum sensing and access for

QoE driven video streaming. We then develop a two-step algorithm with proven optimality. Note

that if this assumption is made for the problem examined in Section 3.4, then the single channel

sensing problem becomes a special case of the multi-channelsensing problem, which can be solved

with the optimal solution algorithms developed in this section. For brevity, we omit the superscript

t on all the relevant symbols in the rest of this section.

3.5.1 Problem Formulation

We assume that there areM CUs andN licensed channels. CUi can sense at mostC channels

and access at most one channel at a time slot. Furthermore, each channel must haveΛ CUs to

sense it to guarantee that the cooperative probability of detection on a channel satisfiesPd ≥

1 −
(
1− P̄d

)Λ
. We also haveMC < NΛ, which means that only parts of theN channels can

be sensed at a time slot. As discussed, in addition toPdij = P̄d, we also havePfij = P̄f , for
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all i, j. This can be achieved by solving the system of these two equations for the threshold of

energy detectionλij and the number of samplesKij for each spectrum sensori on channelj with

a different SNR valueςij. We have

Kij = 2

(
erfc−1(2P̄f )−

√
2ςij + 1erfc−1(2P̄d)

ςij

)2

λij = σ2
n

(
1 +

ςijerfc−1(2P̄f )

erfc−1(2P̄f )−
√
2ςij + 1erfc−1(2P̄d)

)
.

Let I(∑i xij=Λ) be an indicator function defined as

I(∑i xij=Λ) =





1, if
∑

i xij = Λ

0, otherwise.
(3.30)

We then have

P (sj = 0) =
{
P (rj = 0)(1− Pfj) + P (rj = 1)(1− Pdj)

}
· I(∑i xij=Λ) (3.31)

P (sj = 1) = 1− P (sj = 0) (3.32)

Let ~S = {sj, j = 1, 2, · · · , N} represents the cooperative sensing results on theN licensed

channels. There are2N possible outcomes for~S in total. Let~Sh be theh-th outcome,0 ≤ h ≤

2N−1. DefineΓj(h) to be thej-th element in~Sh, j = 1, 2, · · · , N . Assuming independent channel

states, the probability of getting outcome~Sh as a sensing result is

P (~S = ~Sh) =
N∏

j=1

P (sj = Γj(h))

=
N∏

j=1

[(1− Γj(h))P (sj = 0) + Γj(h)P (sj = 1)] . (3.33)

For a sensing outcome~Sh, let Φh = {j : Γj(h) = 0, j = 1, 2, · · · , N} be the set of channels

that are sensed idle. LetYh =
[
yhij
]
, 1 ≤ i ≤ M , j ∈ Φh, be the channel assignment matrix,
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where0 ≤ yhij ≤ 1 is the amount of time that CBS transmits to CUi on channelj in a time

slot, when the sensing outcome is~Sh. The channel assignment strategy can be expressed asY =

[Y0,Y1, · · ·Y2N−1].

According to conditional expectation, the expected overall MOS can be derived as

E

(
M∑

i=1

Ψi

)
=

M∑

i=1

2N−1∑

h=0

E(Ψi|~S = ~Sh)P (~S = ~Sh)

=
2N−1∑

h=0

M∑

i=1

E(Ψi|~S = ~Sh)P (~S = ~Sh). (3.34)

With the MOS model used in Section 3.4, we have

E
[
Ψi|~S = ~Sh

]
= E

[
N∑

j=1

Ψij|~S = ~Sh

]
=

N∑

j=1

(
P j
00 · φij + P j

10 · θij
)
· yhij , (3.35)

where

P j
00 = P (rj = 0|sj = 0)

=





(1−Pf )P (rj=0)

(1−Pf )P (rj=0)+(1−Pd)P (rj=1)
, if

∑
i xij = Λ

0, otherwise,
(3.36)

and

P j
10 = P (rj = 1|sj = 0) =





1− P j
00, if

∑
i xij = Λ

0, otherwise.
(3.37)

Define

wij =





P j
00 · φij + P j

10 · θij , if
∑

i xij = Λ and channel

j is sensed idle

0, otherwise.

(3.38)
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Then the master problem of maximizing the total expected QoEof all the video sessions, denoted

as MP, can be formulated as follows.

MP : max :
2N−1∑

h=0

M∑

i=1

N∑

j=1

wij · yhij · P (~S = ~Sh) (3.39)

s.t.
N∑

j=1

yhij ≤ 1, for all i, h (3.40)

M∑

i=1

yhij ≤ 1, for all j (3.41)

M∑

i=1

xij ≤ Λ, for all j (3.42)

N∑

j=1

xij ≤ C, for all i (3.43)

Equation (3.38)

xij = {0, 1} , for all i, j (3.44)

yhij = {0, 1} , for all i, j, h. (3.45)

It can be observed that the formulated problem MP is an Integer NonLinear Programming

(INLP) problem, which is NP-hard in general, although a rigorous proof is not given in this chapter.

We next show that problem MP can be decomposed into two sub-problems and solved with a two-

step approach without sacrificing optimality.

3.5.2 Solution Algorithms

First, we use Algorithm 7 to solve the spectrum sensing sub-problem, denoted as SP1, i.e.,

to determine the sensing task assignment matrixX. In Algorithm 7, we sort theN channels

according toP (rj = 0), j = 1, 2, . . . , N , in descending order. We then assign CUs to sense the

sorted channels sequentially as follows. For the first channel in the remaining channel list, if there

are no less thanΛ CUs each of which can still sense some extra channels, chooseΛ CUs to sense

the channel; Otherwise, the channel is conservatively claimed to be busy in order to avoid potential
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collision with PUs using this channel. Initially each CU can senseC channels, i.e., with sensing

capabilityC. Each time a CU is assigned to sense a channel, its sensing capability will be reduced

by 1.

Specifically, line 1 sorts theN channels, line 2 to line 4 initialize the sensing capacity ofeach

CU, line 5 to line 26 assigns CUs to sense theN channels, where line 6 to line 17 is to chooseλ

CUs to sense a channel, and the sensing capacity of a CU is reduced by 1 at each time the CU is

chosen to sense a channel. Line 18 to line 25 checks if there remains sufficient number of CUs to

sense the next channel. If yes, then assign CUs to sense the next channel; otherwise, stop sensing

the remaining channels which are not sensed by CUs. Line 27 to line 31 determine the channels

that is not sensed by sufficient number of CUs and therefore is determined busy.

After obtaining the sensing task assignment matrixX from Algorithm (7), spectrum sensing is

conducted by CUs following the assignments and sensing results are reported to the CBS. The CBS

then solves the following sub-problem, denoted as SP2, to obtain the channel allocation matrixY,

which will be broadcast to the CUs for channel access.

SP2: max :
M∑

i=1

N∑

j=1

wij · yij (3.46)

s.t.
N∑

j=1

yij ≤ 1, ∀ i (3.47)

M∑

i=1

yij ≤ 1, ∀ j (3.48)

yij = {0, 1} , for all i, j. (3.49)

Clearly SP2 is also a Maximum Weight Matching problem and is the same as OAPVT. It can

be solved with optimal solution using the Hungarian Method.
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Algorithm 3: Greedy Spectrum Sensing Algorithm

1 Sort theN channels in descending order ofP (rj = 0) and let the sorted channel set beΞ ;
2 for i = 1 : M do
3 Ci = C;
4 end
5 for j = 1 : N do
6 Let j′ = Ξ(j) ;
7 η′j = 0 ;
8 for i = 1 : M do
9 if η′j ≥ Λ then

10 Break;
11 end
12 if Ci > 0 then
13 xij′ = 1 ;
14 Ci = Ci − 1 ;
15 η′j = η′j + 1 ;
16 end
17 end
18 for i = 1 : M do
19 if Ci > 0 then
20 µi = 1 ;
21 end
22 end
23 if

∑
i µi < Λ then

24 Break ;
25 end
26 end
27 for j = 1 : N do
28 if ηj < Λ then
29 Channelj is determined to be busy ;
30 end
31 end

3.5.3 Optimality Proof

Although problem MP is solved with the two-step approach in Section 3.5.2, we show that

the solution is actually optimal in Theorem 3.2.

Theorem 3.2. Let [X∗,Y∗] denote the optimal solution to problem MP, whereX
∗ is the optimal

spectrum sensing strategy andY∗ is the optimal channel allocation strategy. ThenX∗ can be

obtained by running Algorithm 7 andY∗ can be obtained by solving problem SP2.
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Proof. Let j′ andj∗ be the indexes of two licensed channels such thatP (r′j = 0) ≥ P (rj∗ = 0).

DefineW′ = [w′
11, · · · ,w′

M1, · · · ,w′
1j′ , · · · ,w′

Mj′ , · · · , w′
1N , · · · , w′

MN ] and

W
∗ = [w∗

11, · · · ,w∗
M1, · · · ,w∗

1j∗ , · · · ,w∗
Mj∗ , · · · , w∗

1N , · · · , w∗
MN ]. Also denote

X
′ = [x′

11, · · · ,x′
M1, · · · , x′

1j′ , · · · , x′
Mj′, · · · , x′

1N , · · · , x′
MN ] and

X
∗ = [x∗

11, · · · ,x∗
M1, · · · , x1j∗ , · · · , xMj∗ , · · · , x1N , · · · , xMN ] as the feasible sensing task as-

signment matrices corresponding toW′ andW∗ respectively.

Let x′
ij∗ = 0 in X

′, for all i, andx∗
ij′ = 0 in X

∗, for all i. Then we havew′
ij∗ = 0 in W

′, for

all i, andw∗
ij′ = 0 in W

∗, for all i. Let x′
ij = x∗

ij, for all j 6= j′, j 6= j, for all i. It follows that

w′
ij = w∗

ij (denoted aswij), for all j 6= j′, j 6= j∗, for all i. Let
∑

i x
′
ij′ =

∑
i x

∗
ij∗ = Λ. Then

according to (3.38), we havew′
ij′ ≥ w∗

ij∗, for all i.

We first proof the following lemma, which will serve as a basisfor the later part of the proof

for Theorem 3.2.

Lemma 3.2. Denote SP2’ and SP2∗ as the channel allocation problem corresponding toW
′ and

W
∗ as defined above, respectively. If there is a feasible solutionY∗ for SP2∗, then there is always

a feasible solution, denoted asY′, for W′, such thatW′
Y

′T ≥W
∗
Y

∗T, where(·)T denotes the

matrix transpose operation.

Proof. Let Y∗= [y∗11, · · · , y∗M1, · · · , y∗1j∗ , · · · , y∗Mj∗ , · · · , y∗1N , · · · , y∗MN ] be the feasible channel

assignment matrix corresponding toW∗. Let y∗ij = yij, for all j 6= j′ or j∗, yij = 0 or 1, for all i,

y∗ij′ = ui, ui = 0 or 1, for alli, y∗
îj∗

= v̂i, v̂i = 0 or 1, for an̂i ∈ I = {1, · · · ,M}, andy∗ij∗ = 0, for

all i 6= î, i ∈ I = {1, · · · ,M}.

ThenY′= [y′11, · · · , y′M1, · · · , y′1j′ , · · · , y′Mj′ , · · · , y′1N , · · · , y′MN ] with y′ij = yij, for all j 6= j′

or j∗, for all i, y′ij∗ = ui, for all i (recall thatw′
ij∗ = 0, for all i in W

′), y′
îj′

= v̂i, andy′ij′ = 0, for

all i 6= î, i ∈ I = {1, · · · ,M}, will be a feasible solution to SP2’. This is because the constraints

in SP2’ are still satisfied as follows.

• The number of users on any channelj 6= j′ or j∗ in solutionY′ is the same as that in solution

Y
∗, i.e.,

∑
i y

′
ij =

∑
i yij =

∑
i y

∗
ij.
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• The number of users on channelj∗ (or j′) in solutionY′ is the same as that on channelj′ (or

j∗) in solutionY∗, i.e.,
∑

i y
′
ij∗ =

∑
i ui =

∑
i y

∗
ij′ (or

∑
i y

′
ij′ = v̂i =

∑
i y

∗
ij∗). Note that

the constraint on the number of users on channelj∗ is the same as that on channelj′.

• The number of antennas that CUî uses in solutionY′ is the same as that in solutionY∗, i.e.,
∑

j 6=j∗,j′(y
′
îj
+ y′

îj∗
+ y′

îj′
) =

∑
j 6=j∗,j′(ŷij + uî + v̂i) =

∑
j 6=j∗,j′(y

′
îj
+ y∗

îj′
+ y∗

îj∗
).

• The number of antennas that CUi, for all i 6= î, uses in solutionY′ is the same as that in

solutionY∗, i.e.,
∑

j 6=j∗,j′(y
′
ij + y′ij∗ + y′ij′) =

∑
j 6=j∗,j′(ŷij +uî+0) =

∑
j 6=j∗,j′(y

′
îj
+ y∗ij′ +

y∗ij∗).

From the first two bullets above, it can be seen that in SP2’, the constraint for each channel

j is satisfied. From the third and fourth bullets above, we knowthat the constraint for each CU is

also satisfied. Therefore, we conclude thatY’ is also a feasible solution to problem SP2’.

It then follows that

W
′
Y

′T −W
∗
Y

∗T

=
∑

i

∑

j

w′
ijy

′
ij −

∑

i

∑

j

w∗
ijy

∗
ij

=
∑

i

∑

j 6=j∗,j′

w′
ijy

′
ij +

∑

i

w′
ij∗y

′
ij∗ +

∑

i

w′
ij′y

′
ij′−

(
∑

i

∑

j 6=j∗,j′

w∗
ijw

∗
ij +

∑

i

w∗
ij∗y

∗
ij∗ +

∑

i

w∗
ij′y

∗
ij′

)

=
∑

i

w′
ij′y

′
ij′ −

∑

i

w∗
ij∗y

∗
ij∗(recallw′

ij∗ = 0 andw∗
ij′ = 0, ∀i)

=
∑

i 6=î

w′
ij′y

′
ij′ + w′

îj′
y′
îj′
−


∑

i 6=î

w∗
ij∗y

∗
ij∗ + w∗

îj∗
y∗
îj∗




=
∑

i 6=î

w′
ij′ · 0 + w′

îj′
y′
îj′
−


∑

i 6=î

w∗
ij∗ · 0 + w∗

îj∗
y∗
îj∗




= w′
îj′
y′
îj′
− w∗

îj∗
y∗
îj∗

= w′
îj′
v̂i − w∗

îj∗
v̂i

52



≥
(
w∗

îj∗
− w∗

îj∗

)
v̂i (recallw′

ij′ ≥ w∗
ij∗ , ∀i)

= 0.

Then the lemma immediately follows.

DenoteMP ′ andMP ∗ as the original joint-optimization problem with{W′,Y′}, and{W∗,Y∗}

as defined above, respectively, and∆′ and∆∗ as the corresponding objective function value of

MP ′ andMP ∗, respectively. It follows Lemma (3.2) that

∆′ −∆∗ =
2N−1∑

h=0

P (~S = ~Sh)
(
W

′
Y

′T −W
∗
Y

∗T
)
≥ 0. (3.50)

Eq. (3.50) indicates that when we have limited spectrum sensing capability and cannot guar-

antee a satisfactory probability of detection to all the channels, in order to maximize the expected

utility we can obtain from the possible sensing results and the corresponding optimal transmission

strategy, we should assign the highest priority to the channel that has the highest probability of

being idle, and allocate CUs that still have sensing capability to sense this channel. It would be

suboptimal if we allocate CUs with extra sensing capability (if they do exist) to sense other chan-

nel(s) that has(have) a lower probability of being idle. This is exactly the same strategy used in

Algorithm 7, i.e., assigning CUs to sense the channels in a decreasing order of their probabilities

of being idle.

This concludes the proof of the theorem.

3.6 Simulation Study

3.6.1 Simulation Setup

In this section, the performance of the proposed algorithmsis validated with Matlab simula-

tions. We consider a scenario in which the PUs and CUs are randomly distributed around a CBS

within the service radius of the CBS. Table 6.1 presents the values of simulation parameters used in
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Table 3.1: Simulation Parameters
Parameters Value Parameters Value

M 30 µt
ij −21 dB to−11 dB

N1 30 νt
ij −80 dB to−60 dB

K 104 ς t
ij

−30 dB to−10 dB
fs 106 Hz maxj

{
Pr
(
H t

0j

)}
0.9

T 10 P̄d 0.95
B 106 Hz P̄f 0.1
C 3 Λ 4

the simulations, wherefs is the sampling frequency at the CUs with energy detection. Itis verified

that the range of MOS is within 1 to 5 with the value of the parameters provided as in [71].

We first examine the performance of the proposed algorithms for the single-channel sensing

case which solves the OAPSS and OAPVT problems separately. Here we term this algorithm ”Pro-

posed Scheme 1 (PS1)” in the simulations. And we compare PS1 with three benchmark schemes

presented in [89] (termedBenchmark 1in simulations), [79] (termedBenchmark 2), and [92]

(termedBenchmark 3), respectively.

Specifically, in [89], the authors assume that the QoE model is known but the parameters are

unknown. The algorithm estimates the QoE models through theobservation of the realized QoE

sum, then it dynamically changes the channel allocation based on the estimated QoE parameters, in

order to maximize the QoE sum of all users. However, since ourQoE model is adopted from [71],

where the authors do not consider the packet error rate (PER) while the authors of [89]consider the

PER in the QoE model, we set the PER in the QoE model adopted in [89], as the authors of [79]

do, in order for a fair comparison. In [79], the whole group ofCUs are categorized into three

different classes of priority. Each CU has a priority, and thepriority of a CU is determined by the

video sequence that it acquires from the CBS. The CUs acquiring the ”Suzie” sequence have the

highest priority, the CUs acquiring the ”Carphone” sequence have the second highest priority, and

the CUs acquiring the ”Football” sequence have the lowest priority, where ”Suzie”, ”Carphone”,

and ”Football” are three video sequences of different content types we use in our simulations.
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Figure 3.1: MOS and data rate relationship for three reference video sequences.

The CUs of a higher priority will have a higher priority of accessing a channel. However, this

scheme doesn’t consider the variability of channel gain among the CUs. We also compare the

performance of our proposed algorithm with that of the algorithm proposed in [92], where the

authors propose a set of novel acceptability-based QoE models, denoted as A-QoE, based on the

results of comprehensive user studies on subjective quality acceptance assessments. The models

are able to predict users acceptability and pleasantness invarious mobile video usage scenarios.

3.6.2 Simulation Results and Analysis

As a basis for our simulations and discussions, Fig. 3.1 plots the relationship between MOS

and data rate according to (3.9) for three widely used test video sequences with different content

types, including Suzie, Carphone, and Football. The parameters are obtained from [71]. The

results are as expected since generally for the same data rate, the MOS of a slow motion video

sequence is higher than that of a high motion video sequence.We use these video sequences in the

simulations presented in the rest of this section.

The effectiveness of the sensing algorithm component of PS1is presented in Fig. 3.2. We

increase the minimum channel idle probabilityminj

{
P
(
rtj = 0

)}
from 0.1 to 0.47 and plot the

real channel states and the sensed channel states. As a benchmark, we also present the simulation

results with the random sensing scheme used in [85] and [88].With random sensing, each CU
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Figure 3.2: Performance of channel sensing vs. the minimum channel idle probability.

randomly and independently selects one of theN1 channels to sense with equal probability. As

utilization of the channels decreases, the number of idle channels increases. The proposed sensing

algorithm can discover more idle channels for CUs to use. Moreover, the number of channels that

miss detection is less than0.5 on average, which is less thanN1× (1− P t
dj
) = 1.5. Recall thatN1

is the total number of channels andP t
dj

is the probability of detection. SoN1 × (1 − P t
dj
) is the

expected number of channels that miss detection. The sensing algorithm offers an acceptable level

of protection to the PUs, and is effective in detecting idle channels for the CUs.

We next compare the expected MOS of all the CUs at each time slot(denoted asΨt) during

an entire GOP window. In our simulations, each CU requests a video sequence of a certain content

type (different CUs may request videos of different content type), and the request is sent to the

BS. The BS decides the channel allocation based on the objective of maximizing the MOS sum

of all CUs. In Fig. 3.3, we plot the achieved MOS sum of all the CUsachieved by PS1 and the

Benchmark schemes. We setminj

{
P
(
rtj = 0

)}
= 0.5 and traffic loadξ = 1 in this simulation.

Fig. 3.3 shows that the proposed QoE-aware scheme achieves aconsistently high QoE sum than all

the three benchmark schemes during the entire GOP window. The main reason is that Benchmark

schemes 1 and 3 only consider channel gain diversity among the CUs while allocating channels,

and Benchmark scheme 2 assigns channels to the CUs based on their respective priorities only and
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Figure 3.3: Instant MOS per CU over time during 10 GOP windows.
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Figure 3.4: Average MOS per CU over time during 10 GOP windows for different traffic loads.

channel gain diversity is not considered among the CUs, whichmay result in a suboptimal strategy

to the objective of maximizing the MOS of all the CUs.

Fig. 3.4 demonstrates how the CU video quality is affected by the traffic load of the CUs

(i.e., ξ). The average MOS per CU during 10 GOP windows achieved by PS1 and the benchmark

schemes are plotted, where95% confidence intervals are plotted as error bars. As the CU traffic

load is increased, more CUs need channels for video transmission. We can see that while the

number of the really idle channels is greater than the numberof active CUs, the average MOS per

CU of all schemes increases withξ, and the performance gap between our proposed scheme and

the benchmark schemes grows larger. While the number of really idle channels is no greater than

the number of active CUs, the average MOS sum of both schemes remain the same, since no more

channel resource is available to satisfy the need of the extra CUs.
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Figure 3.5: Average MOS sum of the CUsavg Ψ, vs. the minimum channel idle probability,
mini,j

{
Pr
(
H t

0j

)}
, and the minimum SNR of CUs,mini,j

{
µt
ij

}
.

In Fig. 3.5, we examine the impact of PU channel utilization and the SNR at the CUs on

CU video quality. In the 3-D plots, the x-axis is the minimum channel idle probability, i.e.,

minj

{
P
(
rtj = 0

)}
, and the y-axis is the minimum SNR of CUs, i.e.,mini,j

{
µt
ij

}
. It can be

observed from the figure that as channel utilization is decreased, a channel has a higher probability

of being idle and there will be more channels available for CUsin the transmission phase. Thus

the average MOS sum of the CUs is improved. Furthermore, it follows from (3.15) that

̟t
ij
= P (rtj = 0|stj = 0) ·

(
φt
ij − θtij

)
+ θtij

=
(1− P t

fj
)P (rtj = 0) ·

(
φt
ij − θtij

)

(1− P t
fj
)P (rtj = 0) + (1− P t

dj
)P (rtj = 1)

+ θtij.

Sinceφt
ij andθtij are the MOS gain when channelj is idle and busy at time slott, respectively, we

have(φt
ij − θtij) > 0. Therefore,wt

ij is an increasing function ofP
(
rtj = 0

)
and the overall MOS

sum is improved withP
(
rtj = 0

)
. On the other hand, an increased minimum SNR at the CUs leads

to a higher data rate (i.e., a higherSBR in (3.9)), and results in a higher MOS value for the CUs

according to the MOS model given in (3.9). We also find PS1 outperforms the Benchmark scheme

for the entire range ofmini,j

{
µt
ij

}
andminj

{
P
(
rtj = 0

)}
in terms of the average MOS sum over

an GOP window in this simulation.
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Figure 3.6: Distribution of the CU MOS values under differenttraffic loads.

We next show how the traffic load affects the performance of PS1 in Fig. 3.6. In particular,

we simulated two traffic loads, i.e.,ξ = 0.5 andξ = 0.9, and plot the distribution of the CU MOS

values. The entire MOS range (1 to 5) is evenly divided into4 ranges with unit spans, and the

number of CU MOS falling into each range is plotted in the stacked manner. We find that when the

traffic load is light, most of the active CUs get the opportunity to receive video data, thus yielding

a comparatively higher MOS value in this case. When the trafficload is heavy, the amount of idle

channels becomes lower than the amount of active CUs, and thussome CUs are not scheduled for

video streaming. The proposed scheme outperforms the benchmark schemes in both cases.

In the following we examine the performance of the proposed two-step approach for the multi-

channel sensing phase, which is termed ”PS2” in the simulations. In Figs. 3.7 and 3.8, we plot the

number of idle channels detected and the achieved MOS values. We use a modified version of

the Greedy Poly-matching Algorithm (GPA) that solves the OAPSS problem in Section 3.4.1 as a

benchmark scheme where the channel allocation strategy is the same as that of our proposed two-

step approach, since we only want to show the performance of the proposed two-step approach.

We change the algorithm by letting the Right Hand Side (RHS) of constraint (3.7) beC, which

is the spectrum sensing capacity of each CU, as
∑N1

j=1 x
t
ij = C, for all i, and add a constraint

∑M
i=1 x

t
ij = Λ. This way, since all theP t

ij ’s are identical, for alli, j, t, all the ϕt
ij ’s are also

identical, for alli, j, t, and the algorithm will chooseMC/Λ channels to sense.
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Figure 3.7: Sensing performance comparison.

In Fig. 3.7 we can see that the number of idle channels detected by PS2 is considerably greater

than that by GPA. This is because in PS2, channels with a greater probability of being idle will

have a higher probability of being sensed, while in GPA, all channels, regardless of the probability

of being idle, have the same probability of being sensed. It is common sense that if a channel has a

high probability of being idle, then it will have a high probability of being found idle by spectrum

sensing. Note that in the multi-channel sensing case, at most a number ofMC
Λ

channels will be

sensed at a time slot.

In Fig. 3.8, we compare the MOS performance of PS2 and the channel assignment algorithm

as in SP2 combined with GPA. Since the proposed scheme tends to find more idle channels than

GPA does, more channels will be used for video streaming, leading to better QoE performance.

This result also validate the fact that the proposed two-step approach which treats the spectrum-

sensing-and-accessing-joint-optimization problem as anintact problem and solves for the jointly

optimized sensing and accessing strategy, will achieve theoptimality, the approach of decoupling

the joint-optimization problem into two subproblems, as Section III does, will lost optimality in

some extent.

Finally, we examine the fairness performance the channel allocation strategy considering fair-

ness among CUs, i.e., P1 and P2. We adopt Jain’s fairness indexas in [112]:f(e1, e2, . . . , eM) =
(∑M

i=1 ei

)2
/
(
M
∑M

i=1 e
2
i

)
, whereei is the average MOS of CUi during a period of time (10
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Figure 3.8: MOS performance comparison.
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Figure 3.9: Fairness comparison between channel allocation strategy considering fairness among
CUs and channel allocation strategy without considering fairness among CUs.

GOP windows in our simulation),i = 1, 2, . . . ,M . The fairness index ranges from 0 (worst) to

1 (best). The benchmark scheme is the channel allocation strategy without considering fairness

among CUs, i.e., OAPVT.

3.7 Conclusion

In this chapter, we investigated the problem of QoE-aware video streaming over CRNs where

each CU can access one channel at a time. For the case where eachCU can sense and access at

most one channel at a time, we formulated an IP problem on spectrum sensing and solved it with

a optimal Greedy Poly-matching Algorithm. We then formulated a channel assignment problem

and solved it with the Hungarian Method that is also optimal with respect to QoE of the multi-user

videos. For the case where each CU can sense multiple channelsbut access only one channel, we
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presented a more general, integrated formulation. Based on an assumption on the spectrum sensor

configuration, we developed a two-step approach to solve theintegrated problem and proved its

optimality. The proposed schemes were shown to outperform several alternative schemes in the

simulation study.
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Chapter 4

A Decomposition Approach to QoS Driven Multi-user Video Streaming in Cellular CRNs

4.1 Introduction

In previous chapters, we discussed the subjective assessment method for the video quality,

i.e., QoE. In this chapter, we are going to introduce the objective assessment method of video

quality, i.e., QoS, which is to evaluate the video quality from the network performance perspective.

QoS is an effective metric to evaluate the quality of multimedia applications. Various factors,

such as throughput, delay, packet loss ration, and distortion, can be taken into consideration when

developing QoS models. Besides, differnt from the pervious chapter where CUs can only access

at most one channel each time, here we allow CUs to access multiple channels each time, so that

CUs have higher data rate and thus the QoS is improved further.What’s more, instead of fixed

transmission power in previous chapter, here we also consider power adaptation for CUs so that

transmission power can be dynamically adapted according tothe channel conditions and a higher

data rate for the channels can be achieved.

Although with great potential, the problem of video over CRNs brings about a whole level of

technical challenges, particularly due to the extra dimension of dynamics on channel availability

and the uncertainty from spectrum sensing and access. The manifold design trade-offs, multi-

farious network dynamics, limited network resources and, on the other hand, video’s stringent

QoS constraints, necessitate a holistic cross-layer design approach to “squeeze” the most out of

the CRN. Usually such cross-layer design results in a tremendously complex global optimization

problem, where all the layers (i.e., the PHY, MAC, network, and application layers) and all the

users (i.e., PUs and CUs) are tightly coupled [63] [52] [53]. Adecomposition principlethat helps

to decouple the design of spectrum sensing, access, and application QoS provisioning would be

crucial for making the problem manageable [32].
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In this chapter, we consider the scenario of downlink multi-user video streaming in a cellular

CRN, where each CU receives a video stream from the Cognitive Base Station (CBS). Each CU is

able to sense (with multiple sensors or sequentially sensing the channels [33]) and access (e.g., with

channel bonding/aggregation [85]) multiple channels. We adopt the H.264 Scalable Video Coding

(SVC) (Quality Scalability) model from [36], and jointly design spectrum sensing, channel access,

and power control for maximizing the QoS of all the CUs. There are two tightly coupled parts in

this problem: the spectrum sensing problem (SP1) to determine which CU to sense which channel;

and the channel assignment and power allocation problem (SP2) to allocate channels and transmit

power to the CUs.

The formulated problem turns out to be a Mixed Integer NonLinear Programming (MINLP)

problem, which is NP-hard in general [49]. However, as in [32], where aseparation principleis es-

tablished to decouple the design of sensing strategy from that of sensor and access policy, we show

that our problem can also be decoupled into two relatively easier sub-problems with adecomposi-

tion principleand develop an effective Column Generation (CG) based solution algorithm [155].

The major contributions made in this chapter include:

1. A holisticproblem formulationthat jointly optimizes the spectrum sensing, channel assign-

ment, and power allocation strategies for maximizing CU QoS.

2. A decomposition principleto decouple the original problem into a sensing strategy opti-

mization problem SP1 and a resource allocation problem SP2,without sacrificing optimality

under certain conditions, andeffective algorithmsto solve SP1 and SP2.

3. A heuristic sensing schemethat is less demanding on CU hardware than the optimal sensing

strategy, but can achieve highly competitive sensing performance.

4. An upper boundfor the performance of the CG-based distributed algorithm and an analysis

of complexity and efficiency in terms of time savings.

5. Simulation validationto demonstrate the superior performance of our proposed algorithms

in terms of sensing performance and the QoS achieved by CUs.
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The remainder of this chapter is organized as follows. Section 6.2 reviews related work.

The system model and problem formulation are presented in Section 4.3, while the decomposi-

tion principle and the two sub-problems SP1 and SP2 are presented in Section 4.4. The CG-based

distributed algorithm to solve SP2 is developed in Section 4.5 and analyzed in Section 6.7.2. Sec-

tion 5.6 presents the performance validation and Section 6.8 concludes this chapter.

4.2 Related Work

CR research has been largely focused on the aspects of spectrum sensing and dynamic spec-

trum access. In [73], the authors study the sensing-throughput tradeoff problem that optimizes the

spectrum sensing time so that the CU’s throughput can be maximized with restricted interference

to the PUs. Unlike [73], the protocol proposed in [32] also considers the problem of which channel

to sense, in addition to sensing parameters and access strategy optimization. Moreover, the design

of sensing strategy is independent to sensing parameters design and the access strategy, as speci-

fied in aprinciple of separation[32]. These works focus on the optimization of sensing parameters

only, and there is no collaboration among CUs. Considering thefact that different CUs may have

different spectrum sensing performance, the authors in [75] propose an algorithm where groups of

CUs are formed for cooperative sensing, aiming to find the bestgrouping scheme to discover most

idle channels. Furthermore, the problem of sensing parameter optimization in addition to optimal

sensor selection is addressed in [76], in order to achieve a trade-off between detection performance

and sensing overhead.

Recently, cross layer design for video streaming over CRNs has attracted considerable inter-

est. An auction game model is proposed in [78] to solve the problem of spectrum allocation in

delay-sensitive content-aware multimedia delivering. Channel/path selection for multi-user video

streaming is formulated as an MINLP problem in [63] to maximize the received video quality while

restricting collisions with PUs. Packet scheduling is studied in [85] in which spectrum sensing at

the PHY is integrated with packet scheduling at the MAC layerto improve delay-QoS provision-

ing over CRNs. The authors also analyze the throughput and delay performance with a Markov
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chain andM/GY /1 queuing model. Beyond these, other cross layer factors such as Fine Grained

Scalability (FGS) coding, error control, and modulation, are jointly considered in [27] to achieve

the maximum QoS for CUs in a cellular CRN. Interestingly, cross layer optimization of streaming

videos over a CR link can also be modeled as a POMDP (Partially Observable Markov Decision

Process) as in [42], in which intra refreshing rate, a video codec parameter, along with spectrum

sensing and access strategies are jointly designed.

Different from the above mentioned prior works that consider the physical layer factors, some

other works treat the problem of video streaming over CRNs in the Medium Access Control (MAC)

layer, Network layer, Transportation layer, and Application layer. The authors in [29] model the

routing problem in video streaming over CRNs as a decision treeproblem, where the quality of a

multi-hop path is determined by the quality of the channels along this path, and the quality of the

channels is inferred using prior distribution and posterior distribution. Then the routing scheme is

optimized in order to maximize the PSNR of the received videosequence. Considering the fact

that different CUs may have different channel data rate and different buffer storage size, which

result in different abilities of tolerating network dynamics, the authors of [30] propose to allocate

channels to CUs according to their buffer storages. Basically, the CU with a smaller buffer will

have a higher priority of accessing channels to avoid playout outage. Reducing the playout speed

to a certain extent when the buffered data at the receiver is low, is also a feasible solution to reduce

the probability of playout outage, as the authors propose in[31]. The proposed scheme is based

on the observation that varying the video playout rate by 25%to 50% can be unnoticeable by the

viewers.

This chapter is motivated by these interesting prior works,and is mainly focused on the joint

design of spectrum sensing and resource allocation strategies for streaming multi-user videos over

the downlink of a cellular CRN with a novel decomposition principle, which is not well addressed

in prior work but is essential for supporting the demand of large bandwidth for video applications

and enhance the QoS of CUs.
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4.3 System Model and Problem Statement

4.3.1 System Model

We consider a primary network operating onN1 licensed orthogonal channels, while each

channelj has bandwidthBj. A CR network is co-located with the primary network, consisting

of a CBS andM CUs. The CUs sense the PU activities on the licensed channels and access

the channels in an opportunistic manner. As in prior work [33], we first assume that each CU is

equipped withN1 sensors so that it can sense all the channels simultaneously. This assumption

is relaxed in Section 4.4.2, where each CU can only sense a few channels at a time. The CBS

determines the status of the licensed channels based on the sensing results reported from the CUs.

We consider the scenario of downlink multi-user video streaming, where the CBS transmits

different video streams to the CUs using the channels sensed idle. Once the channel states are

estimated, the CBS and CUs determine the allocation of the idle channels, and the CBS selects a

power levelk, k = 1, 2, · · · , K, for the video transmission to a CU on each allocated channel.

We assume that each CU and the CBS adopt the channel bonding/aggregation technique [35,

85], such that they can transmit on multiple assigned channels simultaneously to make use of all

the available spectrum. To enforce a certain level of fairness among the CRs, we define an upper

boundCi on how much total time a CUi can access all the channels. IfCi is less than the total

number of channels, this can limit how much channel time a CR can have at most. Otherwise, if

Ci is equal to the number of channels, then there is no such fairness constraint and a CR can access

all the channels for the entire time slot.

We assume time is divided into a series of non-overlapping Group of Pictures (GOP) windows,

each consisting ofT time slots. The operations of the CBS and CUs in each time slot, asdiscussed

above, are summarized in Fig. 4.1.
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Figure 4.1: Operations of CBS and CUs in a time slot.

4.3.2 Problem Statement

Due to multipath fading and shadowing, different CUs usuallyexperience different SNRs

when detecting a PU signal, and thus may have different sensing performance. It is important to

choose a suitable set of CUs to sense a licensed channel [75]. To achieve diversity gain, cooperative

sensing is usually used to improve the detection performance by fusing the sensing results from

multiple CUs, where a certain fusion rule is used to combine the CU sensing results. In this chapter,

we consider cooperative sensing with the OR fusion rule: if any of the CUs reports the presence of

a PU signal on a channel, the CBS will determine that the channelis busy; otherwise, the channel

is considered to be idle.

We use anM×N1 matrixX to represent the assignment of sensing tasks, where each element

xij is defined as

xij =





1, CU i is assigned to sense channelj

0, otherwise.
(4.1)

As in previous chapter, here we adopt the energy detection method for spectrum sensing, and

the probability of detection of PU signal on channelj by CU i, Pdij ,the probability of false alarm

on channelj by CU i, Pfij , and the probability of detection of PU signal on channelj, Pdj , the

probability of false alarm on channelj, Pfj for cooperative sensing with the OR fusion rule,, are

the same as in previous chapter.

To provide a graceful protection to PUs, we setPdj = Preq, wherePreq is the maximum

interference from the CU system that can be tolerated by the PUsystem, and
∑M

i=1 xij = Λj, for

all j = 1, 2, · · · , N1, whereΛj is the minimum number of CUs to sense channelj. If we set

Pdij = P̄dj = 1− (1− Preq)
1/Λj , it follows (3.3) thatPdj = Preq.
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Let rj denote the real state of channelj: rj = 0 when channelj is idle, andrj = 1 otherwise.

Also letsj be the cooperative sensing result on channelj: sj = 0 if the channel is determined idle,

andsj = 1 otherwise. We have





P (sj=0) = P (rj=0)(1−Pfj)+P (rj=1)(1−Pdj)

P (sj=1) = P (rj=0)Pfj+P (rj=1)Pdj .
(4.2)

The cooperative sensing results on theN1 channels can be represented as~S = {sj, j = 1, · · · , N1}.

There are2N1 possible outcomes for~S, and let~Sh be theh-th outcome,0 ≤ h ≤ 2N1−1. To deter-

mine thej-th element in~Sh, let sj = Γj(h), j = 1, 2, · · · , N1, denote the relationship between~Sh

andsj. Assuming independent channel states, the probability of getting outcome~Sh can be written

as

P (~S = ~Sh) =

N1∏

j=1

P (sj = Γj(h))

=

N1∏

j=1

[(1− Γj(h))P (sj = 0) + Γj(h)P (sj = 1)] . (4.3)

We adopt the QoS model for H.264 SVC (Quality Scalability) from [36] as

ρi = αi + βi ·Ri, (4.4)

whereρi is the Y-PSNR (Peak Signal-to-Noise Ratio) of the received video at CUi, αi andβi are

constants dependent on the content type of the video sequence, andRi is the effective data rate of

the video sequence. According to conditional expectation,the expected overall QoS can be derived

as

E

(
M∑

i=1

ρi

)
=

M∑

i=1

2N1−1∑

h=0

E(ρi|~S = ~Sh)P (~S = ~Sh)

=
2N1−1∑

h=0

M∑

i=1

E(ρi|~S = ~Sh)P (~S = ~Sh). (4.5)
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For ~S = ~Sh, let Φh = {j : Γj(h) = 0, j = 1, 2, · · · , N1} be the set of channels sensed idle.

Let Yh =
[
yhijk
]
, 1 ≤ i ≤ M , j ∈ Φh, 1 ≤ k ≤ K, be the channel assignment and power

allocation matrix, where0 ≤ yhijk ≤ 1 is the amount of time that CBS transmits to CUi with

a power level ofk on channelj in a time slot, when the sensing outcome is~Sh. The channel

assignment and power allocation strategy can be expressed asY = [Y1,Y2, · · ·Y2N1 ].

Putting it all together, it follows that

E(ρi|~S = ~Sh) = αi + βi · E(Ri|~S = ~Sh)

= αi + βi · E
(
∑

j∈Φh

K∑

k=1

Rijk · yhijk|~S = ~Sh

)

= αi + βi

∑

j∈Φh

K∑

k=1

(
P j
00R

ijk
00 + P j

10R
ijk
10

)
· yhijk (4.6)

whereGk is the power of levelk, dij is the channel gain between the CBS and CUi on channel

j, P j
00 = P (rj = 0|sj = 0) =

(1−Pfj
)P (rj=0)

(1−Pfj
)P (rj=0)+(1−Pdj

)P (rj=1)
, P j

10 = P (rj = 1|sj = 0) = 1 − P j
00,

Rijk
00 = Bj log2(1 +Gkdij/(n0Bj)), andRijk

10 = Bj log2(1 +Gkdij/(n0Bj(1 + γij))).

Definewijk = αi + βiBj(P
j
00R

ijk
00 + P j

10R
ijk
10 ). The master problem of maximizing the total

expected QoS, denoted as P0, can be formulated as follows.

P0 : max :
2N1−1∑

h=0

M∑

i=1

∑

j∈Φh

K∑

k=1

wijk · yhijk · P (~S = ~Sh) (4.7)

s.t.
∑

j∈Φh

K∑

k=1

yhijk ≤ Ci, ∀ i, h (4.8)

M∑

i=1

K∑

k=1

yhijk ≤ 1, ∀ j (4.9)

M∑

i=1

∑

j∈Φh

K∑

k=1

yhijk ·Gk ≤ Gtotal, ∀ h (4.10)

M∑

i=1

xij = Λj, ∀ j (4.11)

xij = {0, 1} , ∀ i, j (4.12)
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yhijk




∈ [0, 1] , if Gkdij/(n0Bj) ≥ γ̄

= 0, otherwise,
∀ i, j, k. (4.13)

In each time slot, constraint (6.15) enforces that the sum oftime CU i spend on all channels

is less thanCi.

According to [33, 35, 85], using discontinuous orthogonal frequency division multiplexing

(D-OFDM), the CBS or a CU can aggregate multiple discontinuous orthogonal channels together

to form an aggregated channel and then access the aggregatedchannel. This way, the CBS or

a CU can aggregate and access all the channels assigned to it simultaneously. Therefore, after

computing all theyhijk’s, the CBS transmits to all CUs sequentially according to theyhijk’s, and

each CU is informed of this schedule before transmission so that each CU knows when to access

which channel, then it is a feasible and optimal scheduling.

Constraint (6.16) enforces that the transmission time on each channel is within 1 time slot.

constraint (4.10) enforces that the total transmission power of the CBS must not exceed the average

power limitGtotal; constraint (4.11) enforces that there areΛj CUs to sense each channelj; and

constraint (4.13) enforces that the necessary condition for the CBS to transmit to CUi on channel

j with power levelk is that the resulting SNR must be greater than a predefined thresholdγ̄ such

that CUi can successfully decode the received video.

Note that constraint (4.13) indicatesyhijk ≥ 0. Combined with constraint (6.16), it follows that

each0 ≤ yhijk ≤ 1. Therefore, constraint (4.13) can be rewritten as

yhijk




≥ 0, if Gkdij/(n0Bj) ≥ γ̄

= 0, otherwise,
∀ i, j, k. (4.14)

The upper bound of 1 on theyhijk’s is thus removed and the problem can be solved more efficiently,

since usually LP solvers solve an LP without upper bounds faster than LPs with upper bounds.
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4.4 Problem Decomposition

4.4.1 Optimal Sensing Strategy

The formulated problem P0 is an MINLP, which is NP-hard. However, we observe that the

optimal sensing strategy can be obtained by solving a relatively easier problem as follows.

We first introduce Lemma 4.1 as a basis for our later analysis.

Lemma 4.1. The objective value of P0 is a decreasing function ofPfj , for all j = 1, 2, · · · , N1.

Proof. DefineF (X,Yh) =
∑M

i=1

∑
j∈Φh

∑K
k=1wijk·yhijk·P (~S = ~Sh) andf(X,Y) =

∑2N1−1
h=0 F (X,Yh).

The partial derivative ofF (X,Yh) with respect toPfj is

∂F (X,Yh)

∂Pfj

= −yhijk · P (~S = ~Sh) ·
M∑

i=1

K∑

k=1

(
βi ·Rijk

00 ·

((1−Preq)P (rj = 0)P (rj = 1) + (1−Pfj)P (rj = 0)2)+

αiP (rj = 0)(Rijk
00 P

j
00 +Rijk

10 P
j
10)/Bj

)
≤ 0.

It follows that ∂f(X,Y)
∂Pfj

=
∑2N1−1

h=0
∂F (X,Yh)

∂Pfj

≤ 0.

Theorem 4.1. The optimal spectrum sensing strategy to problem P0 can be obtained by solving

the following problem SP1.

SP1: ∀ j = 1, 2, · · · , N1

min : Pfj = 1−
M∏

i=1

(1− Pfij)
xij (4.15)

s.t.
M∑

i=1

xij = Λj. (4.16)

Proof. Let the optimal solution to the original problem P0 be(X
′

,Y
′

) and the solution to SP1 be

X
∗. SinceX

′

is optimal to the maximization problem P0, we havef(X∗,Y
′

) ≤ f(X
′

,Y
′

). On

the other hand, sinceX∗ is optimal to the minimization problem SP1, it follows Lemma4.1 that
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f(X∗,Y
′

) ≥ f(X
′

,Y
′

). Therefore we conclude thatf(X∗,Y
′

) = f(X
′

,Y
′

) andX∗ is optimal to

problem P0.

After obtainingX∗, we substitute it into problem P0 to solve forY∗. TheY∗ obtained this

way is also optimal to P0, i.e., we havef(X∗,Y∗) ≥ f(X∗,Y) ≥ f(X,Y), for all X,Y. The

proof is completed.

From the proof of Theorem 4.1, we have the following Decomposition Principle for the joint

sensing, channel assignment and power allocation problem.

Corollary 4.1.1. If there is no restriction on the sensing capability for eachCU, or ηi ≤ Θi, for

all i, then the problem P0 that jointly optimizes spectrum sensing, channel assignment, and power

allocation can be decomposed into two sub-problems: one for the optimal spectrum sensing strat-

egy, and the other for the optimal channel assignment and power allocation, without sacrificing

optimality.

Problem SP1 can be rewritten as the following problem SP1a,

SP1a: ∀ j = 1, 2, · · · , N1,

max :
M∑

i=1

xij · log2(1− Pfij) (4.17)

s.t.
M∑

i=1

xij = Λj, (4.18)

which can be solved easily with an LP solver.

4.4.2 Optimal Solution to a More General Problem

Due to the time constraint (i.e., when the channels are sensed sequentially) or the hardware

constraint, it may not be feasible for a CU to sense all the channels (although this may not be

a problem for the CBS). In this section, we consider a more general case of spectrum sensing,

where each CUi can only sense at mostΘi channels simultaneously at a time slot. Therefore
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the following additional constraint is added to Problem P0.Problem P0 is a special case when

Θi = N1.

N1∑

j=1

xij ≤ Θi ≤ N1, ∀ i. (4.19)

Denote the more general problem as P0a. We still apply the same solution algorithm as

in Theorem 4.1 to Problem P0a, and each channelj will select Λj users with the best sensing

performance (smallest false alarm probability). There aretwo different cases. First, if a CUi is

selected by more thanΘi channels, then the new Constraint (4.19) is violated. Second, if CU i is

selected by less thanΘi channels, then Constraint (4.19) is still satisfied and Theorem 1 still holds

true and the solution is optimal under the new constraint. DenoteΠj as the set ofΛj CUs with the

best sensing performance regarding to channelj. We can use the following procedure shown in

Algorithm 4 to check if each CUi is selected by less thanΘi channels.

Algorithm 4: Applicability of Theorem 4.1

1 for i = 1 : M do
2 ηi = 0;
3 for j = 1 : N1 do
4 if CU i ∈ Πj then
5 ηi = ηi + 1;
6 end
7 end
8 if ηi > Θi then
9 Theorem 1 is not applicable ;

10 Break ;
11 end
12 end

Algorithm 4 has a polynomial complexity ofO(MN2
1 ). We conjecture that if the PUs are

widely separated, or when the channels are highly diverse, Theorem 4.1 will be more likely to

hold true under the new practical constraint (4.19). However, if Theorem 4.1 is not applicable

under (4.19), we can use a heuristic algorithm to obtain a near-optimal solution to P0a, which is

presented in the following section.
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Algorithm 5: Heuristic Spectrum Sensing Algorithm

1 Sort theN1 channels in descending order ofP (rj = 0) and let the sorted channel set beΞ ;
2 for j = 1 : N1 do
3 Let j′ = Ξ(j) ;
4 Solve problem SP1b and denote the solution asΘj′ ;
5 if Θj′ = ∅ then
6 Channelj′ is determined to be busy ;
7 end
8 if xij′ = 1 then
9 Θi = Θi − 1 ;

10 end
11 end

4.4.3 Heuristic Spectrum Sensing Algorithm

The idea of heuristic algorithm to Problem P0a is to sort theN1 channels according toP (rj =

0), for all j = 1, 2, . . . , N1, in the descending order, and then minimizePfj , for all j = 1, . . . , N1,

sequentially. The heuristic spectrum sensing algorithm ispresented in Algorithm 7. In Line 4, the

following problem SP1b is solved.

SP1a: ∀ j = 1, 2, · · · , N1,

min : Pfj′
= 1−

M∏

i=1

(1− Pfij′
)xij′ (4.20)

s.t.
M∑

i=1

xij′ = Λj′ (4.21)

xij′ ≤ Θi. (4.22)

In Lines 5∼7, if there is no feasible solution to problem SP1b, there is not a sufficient number of

CUs to sense channelj′, and we conservatively assume that channelj′ is busy to avoid collision

with PUs. Each time if CUi is assigned to sense a channel,Θi is decreased by 1 as in Lines 8∼10.

WhenΘi reaches 0, constraint (4.22) will prevent CUi to be assigned to sense any more channels.
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In Section 5.6, we will show that the performance of Algorithm 7 is very close to that of the

optimal sensing strategy in terms of both sensing performance and the expected overall QoS, even

whenΘi ≪ N1.

4.4.4 Optimal Chanel Assignment and Power Allocation Solution

After obtainingX∗, cooperative sensing is conducted and the CBS determines the set of avail-

able channels based on sensing results, as shown in Fig. 4.1.From now on, we omit the subscript

(or superscript)h in all the symbols, since the cooperative sensing results ontheN1 channels is

already determined. Denote the number of channels sensed idle asN2, and re-index theN2 idle

channels as1, 2, · · · , N2. Then the remaining channel assignment and power allocation problem

SP2 can be written as follows.

SP2: max :
M∑

i=1

N2∑

j=1

K∑

k=1

wijk · yijk (4.23)

s.t.
N2∑

j=1

K∑

k=1

yijk ≤ Ci, ∀ i (4.24)

M∑

i=1

K∑

k=1

yijk ≤ 1, ∀ j (4.25)

M∑

i=1

N2∑

j=1

K∑

k=1

yijk ·Gk ≤ Gtotal (4.26)

Constraint (4.14).

In practice, there may be a large number of CUs and licensed channels, and the CBS also has

a great flexibility to choose the power level for transmission on a channel. Therefore, the constraint

matrix of SP2 could be huge and it may be hard to solve with an LPsolver due to its size. In the

next section, we propose to use the Column Generation (CG) method [155] to solve SP2 and derive

a decentralized algorithm for better scalability. With theproposed CG method, the CBS and CUs

solve different sub-problems, thus alleviating the computational burden on the CBS.
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4.5 Column Generation Method for Sub-problem

4.5.1 Dantzig-Wolfe Decomposition

We first reformulate problem SP2 from the standard form into adisaggregated formulation

by applying Dantzig-Wolfe decomposition of LP problems [54].

For i = 1, 2, · · · ,M , let Θi =
{
χ1
i , χ

2
i , · · · , χQi

i

}
denote the set of feasible channel assign-

ment and power allocation schemes to CUi. Then

χq
i =

{
yqijk, j = 1, 2, · · · , N2, k = 1, 2, · · · , K

}
,

for q = 1, 2, · · · , Qi, is a feasible scheme satisfying all the constraints, whereyqijk = 1 if the CBS

transmits to CUi on channelj at power levelk, andyqijk = 0 otherwise. Thus, the feasible schemes

are indeed the extreme points of the the feasible region of SP2, which is the key for Dantzig-Wolfe

decomposition [54].

Introduce a variable0 ≤ zqi ≤ 1 to denote the amount of time the CBS transmits using

feasible schemeχq
i within a time slot. Let the “utility” gained by usingχq

i for CU i as̟q
i =

∑N2

j=1

∑K
k=1wijk · yqijk. Then SP2 can be represented in aset-partition form, termed the Master

Problem (MP), as

MP : max :
M∑

i=1

Qi∑

q=1

̟q
i · zqi (4.27)

s.t.
Qi∑

q=1

zqi ≤ 1, ∀ i, (4.28)

M∑

i=1

Qi∑

q=1

(
K∑

k=1

yqijk

)
zqi ≤ 1, ∀ j, (4.29)

M∑

i=1

Qi∑

q=1

(
N2∑

j=1

K∑

k=1

yqijk ·Gk

)
zqi ≤ Gtotal, (4.30)

0 ≤ zqi ≤ 1, ∀ i, q. (4.31)
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Constraint (4.28) ensures that0 ≤ yijk =
∑Qi

q=1 y
q
ijkz

q
i ≤ 1, for all i, j, k; constraints (4.29)

and (4.30) correspond to constraints (4.25) and (4.26), respectively; and constraints (4.24) and

(4.14) are specified in the INitialization Problem (INP) andPricing Problem (PP) defined next in

Section 4.5.2. For convenience of our later discussion, theproblem containing a subset of the

columns and cost coefficients (variables) of the MP is calledRestricted MP (RMP).

4.5.2 Design of the Column Generation Method

Obviously, it is infeasible to solve the MP directly due to the exponential number of columns.

However, usually most of the variables in the optimal solution to the MP are equal to zero, with

only a small number of positive-valued variables. The MP solution can be re-optimized iteratively

by finding the variables having the potential to improve the objective value at each iteration. This is

done by iteratively solving the PP, which examines whether there exists a variable with a negative

(in the case of a minimization problem) or positive (in the case of a maximization problem) reduced

cost, and then generates the corresponding column to add it to the RMP.

The RMP contains only a small subset of all the feasible columns and variables of the MP

and thus can be solved quickly. The simplex multiplier obtained from the RMP will be passed to

the PP to identify a new column to enter the RMP again, until there is no variables whose reduced

cost is negative (in the case of a minimization problem) or positive (in the case of a maximization

problem). Thus an optimal feasible solution to the MP is found. The purpose of RMP is to generate

the simplex multiplier for solving the PP.

The CG based Distributed Optimization Algorithm (CDOA) includes the following six steps.

Algorithm 2: CG Based Distributed Optimization Algorithm
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Step 1: CU i solves the followingi-th INP and reports its solution to the CBS,i = 1, 2, · · · ,M .

INP : max :
N2∑

j=1

K∑

k=1

wijk · yijk (4.32)

s.t.
N2∑

j=1

K∑

k=1

yijk ≤ Ci, (4.33)

K∑

k=1

yijk ≤ 1, ∀ j, (4.34)

yijk




∈ {0, 1}, if Gkdij/(n0Bj) ≥ γ̄

= 0, otherwise,
∀ j, k. (4.35)

Each of theM solutions generates a feasible column of the MP. The CBS uses the M feasible

columns and the corresponding cost coefficients to initiatethe RMP, which has the same formula-

tion with the MP, but withQi = 1, for all i = 1, 2, · · · ,M .

Step 2: The CBS solves the RMP, from which a vector of simplex multiplier ΩT = (νT , µT , ϕ)

is obtained, where(·)T denotes the transpose of a vector,νT is a 1 × M vector with thei-th

entry νi corresponding to thei-th constraint in the RMP,µT is a 1 × N2 vector with thej-th

entryµj corresponding to the(M + j)-th constraint in the RMP, andϕ is the simplex multiplier

corresponding to the last constraint in the RMP. The objective value of the RMP is alower bound

to the MP.

Step 3: The CBS broadcastsΩT to all CUs and assigns CUi to solve the followingi-th PP, to find

the column and the corresponding variable with the most positive reduced cost [155] to enter the

RMP to improve the objective value of the MP.

PP : max : ∆i =

N2∑

j=1

K∑

k=1

(wijk−µj−ϕGk) · yijk−νi (4.36)

s.t.
N2∑

j=1

K∑

k=1

yijk ≤ Ci, (4.37)

K∑

k=1

yijk ≤ 1, ∀ j, (4.38)
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Constraint (4.35).

Step 4: Each CUi decides when to report its optimal solution to thei-th PP to the CBS according

to a delay

τi = ξ(∆i), (4.39)

whereξ(·) denotes a decreasing function of∆i. Define an indexa = argmaxi=1,··· ,M{∆i}. In case

that∆a > 0, then the current optimal solution to the RMP is not optimal tothe MP and CUa sends

its solution in the earliest timeτa (since it has the maximum value∆a). Other CUs overhearing

CU a’s message will not send their respective messages. In case that∆a ≤ 0, the current optimal

solution to the RMP is also optimal to the MP, and no CU sends message to CBS.

Step 5: The CBS verifies the optimality of the current solution: if nothing is received from the

CUs after a predefined period of time, the CBS concludes that∆a ≤ 0 and thus the CG method is

terminated; otherwise, go to Step 6.

Step 6: For indexa = argmaxi=1,··· ,M{∆i}, letQa = Qa + 1 and generate the column

HQa

a =

[
ea,

K∑

k=1

yQa

a1k, · · · ,
K∑

k=1

yQa

aN2k
,

N2∑

j=1

K∑

k=1

yQa

ajk ·Gk

]T
(4.40)

with the solution to thea-th PP derived in Step 3, whereea is a1 ×M unit vector with thea-th

entry being 1. Add the column and the corresponding variablezQa
a to the RMP and go to Step 2.

4.6 Upper Bound, Complexity and Time Efficiency

4.6.1 Upper Bound for the Master Problem

In the following, we derive an upper bound for the optimal objective value of the MP in each

iteration of the CG method.
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Theorem 4.2. At each iteration, letΩT be the simplex multiplier vector of the RMP;∆a =

maxi=1,··· ,M{∆i} be the most positive reduced cost obtained from the PPs;~b be a (M + N2 +

1) × 1 column vector with thei-th entry being the value of right hand side of thei-th con-

straint of the RMP,i = 1, 2, · · · , (M + N2 + 1); ~g be a (M + N2 + 1) × 1 column vec-

tor as g = (11 · · · 1︸ ︷︷ ︸
M ones

00 · · · 0︸ ︷︷ ︸
(N2 + 1) zeros

)T . Then an upper bound for the MP can be derived as:

Ω
T~b = (ΩT +∆a~g)~b.

Proof. Let Ω̂T be a feasible solution to the dual problem of the MP (termed DMP), according to

the relationship between the dual and primal problems [155], we have

Ω̂THq
i ≥ ̟q

i , i = 1, · · · ,M, q = 1, · · · , Qi, (4.41)

whereHq
i is given in (4.40). As discussed, at each iteration we can obtain a simplex multiplier

vectorΩT by solving the RMP, as well as the most positive reduced cost bysolving the PP.

∆a = max
i,q
{̟q

i − ΩTHq
i }

⇒ ΩTHq
i ≥ ̟q

i −∆a, i = 1, · · · ,M, q = 1, · · · , Qi, (4.42)

where∆a > 0. DenoteΩ
T
= (ΩT +∆a~g) and multiply its both sides byHq

i . We have

Ω
T
Hq

i = ΩTHq
i +∆a~gH

q
i ⇒ Ω

T
Hq

i = ΩTHq
i +∆a · 1

⇒ Ω
T
Hq

i −∆a = ΩTHq
i ⇒ Ω

T
Hq

i −∆a ≥ ̟q
i −∆a

⇒ Ω
T
Hq

i ≥ ̟q
i , i = 1, · · · ,M, q = 1, · · · , Qi.

The first inequality is from (4.42). This means thatΩ
T

is a feasible solution to the DMP. By

duality, the corresponding dual LP of a maximization LP is a minimization LP [155]. So the DMP

is a minimization LP, andΩ
T

is a feasible solution to the DMP.
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Let the optimal solution to DMP beΩT . It follows that

Ω
T~b ≥ ΩT~b = Υ∗, (4.43)

whereΥ∗ is the optimal objective value of the minimization LP DMP. Due toStrong Duality, Υ∗ is

also the optimal objective value of the MP. It follows thatΩ
T~b = (ΩT +∆a~g)~b is an upper bound

for the MP according to (4.43).

4.6.2 Complexity and Optimality Analysis

In the general problems solved by the CG method, the INP and PP problems are at least as

hard as the one dimensional 0-1 Knapsack problem, which is NP-hard [87].

However, an interesting characteristic of the INP and PP in our case is that the coefficients of

the constraint matrix in the INP and PP are either 0 or 1, such that theunimodularity property[86]

is satisfied in both problems. As a result, both the INP and PP have the optimal solution with their

LP relaxations, and thus they can be solved with the Simplex method [87, 155]. Again, the upper

bound of 1 onyijk can be removed as in P0.

Lemma 4.2. The INP and PP are indeed LPs and thus can be solved with the Simplex method with

a polynomial-time average-case complexity.

Although the INP and PP can be solved with the Simplex method which has a average com-

plexity of polynomial-time, it is possible that the Simplexmethod will require exponential time in

extreme cases. Here we introduce a Greedy algorithm which solves the INP and PP in strongly

polynomial time and still gets the optimal solution, to reduce the time complexity of CDOA.

The basic idea of our Greedy Algorithm is that, for the INP or PP of each CU, the decision

variables corresponding to the combinations of channel andpower level that having the highest

”utilities” among all possible combinations and still satisfy the constraints of the INP or PP, take

value of 1, while the other decision variables take value of 0. In this way a feasible and optimal

solution is guaranteed.
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Note that Line 1 to Line 5 of Greedy Algorithm executes in Step1 of CDOA to solve the INP

and thus executes only once, in order to further reduce the computation complexity of our Greedy

Algorithm, while Line 6 to Line 36 executes in Step 3 of CDOA to solve the PP and thus may

executes multiple times during a whole operation of CDOA.

Theorem 4.3.The Greedy Algorithm yields the optimal solution for the INP and PP.

Proof. We can see from constraint (4.38) that each channel can be chosen at most once with one

power level on it, and for each combination of channel and power level, there is an associated

utility ξijk.

Therefore, in order to maximize the total utility:

1. For each channel, we choose the combination of channel andpower level having the greatest

utility among all theK combinations;

2. If a combination has a negative utility, say,ξijk, then the combination should not be used,

i.e., yijk = 0 in the optimal solution. So the chosen combination should have a positive

utility;

3. From constraint (4.35) we know that if the resulting SNR ofa combination, sayδijk, is less

than the threshold, then the combination should not be used.So the chosen combination

should have a resulting SNR greater than the threshold.

We form a set using the combinations where each combination must satisfy the above three

conditions.

From constraint (4.37) we know that each CU can use at mostCi channels. Therefor, from

the above set, we chooseρi combinations having the greatest utilities among all the combinations,

whereρi = Ci if the number of elements in this set is greater or equal toCi, andρi < Ci otherwise.

In this algorithm, all the constraints are used and thus the solution is feasible, and from the

discussion we know that the solution is also optimal.
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For the greedy algorithm that solves the INP at optimality, we just need to replaceξijk =

wijk − µj − ϕGk with ξijk = wijk at Line 6 of the above algorithm.

Lemma 4.3. The Greedy Algorithm has a polynomial computational complexity ofO(N2
2 +N2K).

Proof. From the algorithm we can see that Line 1 to Line 5 has a complexity of N2K, line 6 to

line 15 has a complexity of2N2K, line 16 to line 19 has a complexity ofN2(K + 1), line 20 has a

complexity of 1, line 21 to line 25 has a complexity less or equal to2N2, line 26 has a complexity

of O(ρ2i ) which is less or equal toO(N2
2 ), line 27 to line 36 has a complexity of1 + 2min{ρi, Ci}

which is less or equal to1+ 2N2. Summing up all these together, we conclude that the complexity

of the algorithm isO(N2
2 +N2K).

4.6.3 Time Efficiency

Finally we analyze the time efficiency of CDOA. We compare the time needed to solve the

MP with CODA (with a distributed parallel execution),t1, and that without using CODA (with a

centralized sequential execution),t2.

Let the number of iterations of CDOA beL. Let τml be the amount of time to process the

RMP, τpl the amount of time to process a PP,τb the time for the CBS to broadcast the simplex

multiplier to the CUs,τrl the time for CUa (wherea = maxi=1,··· ,M{∆i}) to report its solution to

thea-th PP to the CBS, all in thel-th iteration of CDOA. Also assume that the time to broadcast

the simplex multiplier to the CUs by the CBS is negligible. Thetime savings = t2 − t1 achieved

by the distributed, parallel execution can be approximatedas

s =
L∑

l=1

(τml +M · τpl)−
L∑

l=1

(τml + τpl + τb + τrl)

=
L∑

l=1

((M − 1) · τpl − τb − τrl). (4.44)
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Since the size of the PP does not change during each iteration, we assume thatτpl = τp. Then (4.44)

can be rewritten as

s = τp

L∑

l=1

(
(M − 1)− τb + τrl

τp

)
. (4.45)

In (4.45),τb andτrl are usually negligible compared withτp for even a modest problem having

hundreds or thousands of constraints and variables. When thenumber of simplex iterations is

proportional to the number of constraints, the overall costof the simplex method isO(m4 + nm2)

arithmetic operations for a problem havingm constraints andn variables [87]. Therefore,s can be

further approximated by

s = O
(
LM(N4

2 +KN3
2 )
)
. (4.46)

It can be seen thats is an increasing function ofL, M , N2, andK, which represent the size of

the problem. Such improvement in time efficiency demonstrate the advantages of the distributed

CG-based algorithm.

4.7 Simulation Study

4.7.1 Simulation Setup

In this section, Matlab simulation results are used to demonstrate the performance of the pro-

posed algorithms. Unless specified, the value of simulationparameters are as shown in Table 6.1.

Each simulated point in the figures is obtained by repeating the simulationrp = 50 times with

different random seeds, and 95% confidence intervals are computed and plotted in the figures to

guarantee credible results.
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Table 4.1: Simulation Parameters
Parameter Value Parameter Value

M 30 γ̄ −25 dB
N1 30 Λj 3
K 10 rp 50
κ 104 Θi 3
dij −15 ∼ −9 dB γij −100 ∼ 0 dB
Ci 3 Gtotal 50

Gk 10−
k
10 Preq 0.99

fs 106 Hz minj {P (rj=0)} 0.2
n0 10−6 maxj {P (rj=0)} 0.9
Bj 106 Hz

4.7.2 Simulation Results and Analysis

As a basis for our simulations and discussions in the following, Fig. 4.2 plots the relationship

between Y-PSNR and data rate according to (4.4) for three widely used test video sequences of

different content types.

The three videos are in uncompressed YUV4MPEG format. They represent three levels of

motions: slow (Suzie), medium (Carphone), and quick (Football). Videos of different motion levels

are often used as tested sequences to demonstrate the performance of proposed algorithms [71,79].

These and other video sequences can be downloaded fromhttps : //media.xiph.org/video/derf/

In the figure, the markers are obtained by experiment with thereal video sequences, and the

lines are obtained by linear regression. Video QoS parameters αi andβi for the three sequences

are calculated based on their respective linear regressionplots.

In Figs. 4.3 and 4.4 we compare the performance of the optimalsensing strategy and that of

the Heuristic algorithm, in terms of sensing performance and the resulting overall Y-PSNR of the

received videos, respectively, We consider four cases thatthe number of sensors a CU has in the

Heuristic algorithmΘi = 3, 4, 5, and 6, whereΘi ≪ N1 = 30. Note thatM · Θi ≥ N1 · Λj is

a necessary condition to have any channel sensed by at lestΛj sensors. In Fig. 4.3, the legend

‘Idle channels’ means the number of channels cooperativelysensed idle; ‘Missed channels’ means
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Algorithm 6: Greedy Algorithm

1 for j = 1 : N2 do
2 for k = 1 : k do
3 Computeδijk =

Gkdij
n0Bj

;

4 end
5 end
6 for j = 1 : N2 do
7 for k = 1 : K do
8 if δijk < γ̄ then
9 Setξijk = σ, whereσ < 0 and is a fixed constant;

10 else
11 Computeξijk = wijk − µj − ϕGk ;
12 end
13 end
14 end
15 end
16 for j = 1 : N2 do
17 Findk′ such thatξijk′ ≥ ξijk, ∀k 6= k′ ;

18 Denoteξ̂ij = ξijk′ ;
19 end
20 Let ρi = 0 ;
21 for j = 1 : N2 do
22 if ξ̂ij > 0 then
23 ρi = ρi + 1 ;
24 end
25 end

26 Sort theρi channels in the decreasing order ofξ̂ij and let the sorted channel set beA ;
27 if ρi ≤ Ci then
28 for j = 1 : ρi do
29 SetyiA(j)k′ = 1 ;
30 end
31 else
32 for j = 1 : Ci do
33 SetyiA(j)k′ = 1 ;
34 end
35 end
36 end

the number of channels cooperatively sensed idle while these channels are actually busy, so the

number of channels that are sensed idle and are actually idleis the difference between the two.

From these two figures we can see that the heuristic algorithmachieves a performance close

to the optimal sensing strategy whenΘi ≥ 3.
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Figure 4.2: Y-PSNR versus data rate for three reference video sequences: model versus simulation.
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Figure 4.3: Optimal versus Heuristic Sensing in terms of sensing performance forΘ = 3, 4, 5, 6.

In this case, we haveM · Θi = N1 · Λj. A channelj, may not have ‘good’ CUs (i.e., with a

relative smallPfij ) to sense it, since these CUs may have already been assigned toanother channel

j′, which has a higherP (rj′ = 0) and thus has a higher priority of being optimized. Thus channel

j may be discarded due to insufficient CUs to sense it, resultingin a lower value of SP2 due to

fewer available channels for video streaming.

Recall thatΘ is the number of channels that a CU can sense at a time slot. Oncea CU

is assigned to senseΘ channels, it is deleted from the remaining CUs list. Therefore, asΘ is

increased, which means that a CU can sense more channels at a time slot, it is more likely that
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Figure 4.4: Optimal versus Heuristic Sensing in terms of overall Y-PSNR in dB forΘ = 3, 4, 5, 6.

each channel can be sensed by the best CUs. Thus the sensing performance of each channel will

be improved. We found that whenΘ is selected from 3 to 6, the result is sufficiently good.

However, as the last three sub-figures shows, the Heuristic algorithm achieves almost the same

performance as the optimal sensing strategy whenΘi = 4, 5, and 6. Thus even the channels having

a lower priority will have a higher chance to be sensed by ‘good’ CUs. ThenPfj , j = 1, 2, . . . , N2

is more likely to be reduced, and the objective function value is improved.

Note that both the heuristic and the optimal sensing have thesame computational complexity

and workload for the ‘good’ cognitive users, since in both algorithms each channel will be sensed

by the CUs with the best sensing performance. The only difference is that in the optimal sensing

strategy, the sensing of each channel is optimized at the same time; while in the heuristic algorithm,

the sensing of each channel is optimized sequentially, in the order of decreasing priority, which is

determined by its probability of being idle.

Besides, we also compare the sensing performance and overallY-PSNR performance of our

proposed Heuristic algorithm with a Benchmark Algorithm called the Random Algorithm, as the

authors in [85] did, which randomly assignsΛj CUs to sense channelj, ∀j. We can see that the

Heuristic algorithm outperforms the Random Algorithm significantly, the main reason for which

is that the Random Algorithm doesn’t consider the sensing accuracy of different CUs for different

channels. It is very likely that for a particular channel, the Random Algorithm will assign CUs
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having a high false alarm probability to this channel to sense it, which results in a great probability

of this channel being false alarmed. That’s why the number ofidle channels found by the Ran-

dom Algorithm is very small, although the number of missed detected channels of the Random

Algorithm is close with that of the Heuristic Algorithm and the optimal sensing strategy. Under

such sensing performance, it is within our expectation thatthe overall Y-PSNR performance of the

Random Algorithm falls behind that of the Heuristic Algorithm drastically. Therefore, we claim

that Heuristic Algorithm provides a much better performance than Random Algorithm does.

Fig. 4.5 demonstrates the convergence of the CG method in two cases:M = 9, N1 = 18 (the

upper figure) andM = 15, N1 = 30 (the lower figure). We setCi = 2, for all i = 1, 2, . . . ,M in

both cases.

We have the following observations. (i) The number of iterations is positively correlated to

the problem size, since as the number of CUs and channels grows, there may be more feasible

schemes to improves the current objective value at a specificiteration. (ii) The most positive

reduced cost maxi {∆i} tends to decrease over iterations. This trend is the result of the greedy

approach of the CG algorithm, which means that the algorithm chooses the feasible scheme having

the most positive reduced cost (thus possibly having the greatest potential to improve the current

objective value of the MP) from the remaining candidate feasible schemes, to enter the RMP at each

iteration. (iii) The increment of the objective function ata specific iteration is positive correlated to

maxi {∆i}. This follows directly from the above discussions. (iv) Theupper bound to the optimal

objective function value converges quickly, and is also positively correlated to maxi {∆i}. From

Theorem 4.2, the upper bound at a certain iterationΩ
T
b is actually a positive function of maxi {∆i}

(∆a in Theorem 4.2) at this iteration. Since maxi {∆i} drops quickly and become very close to 0,

Ω
T
b drops and then converges to the optimal objective function value quickly. Note thatΩ

T
b is

not necessary decreasing as the iteration goes. There are two main reasons: (a) maxi {∆i} is not

necessary decreasing as the iteration goes although it shows a trend of decreasing. (b)Ω
T
b also

depends on the simplex multiplierΩT , whose convergence is hard to analysis.
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Figure 4.5: Convergence performance of Column Generation method

The convergence of the Y-PSNR of each type of received video under two cases:M =

9, N1 = 18 (the upper figure) andM = 15, N1 = 30 (the lower figure), whereCi = 2, for all

i = 1, 2, . . . ,M in both cases, is shown in Fig. 4.6.

It is observed that for the type 3 video, the Y-PSNR shows a tendency of increasing as the

iteration goes. For the type 1 video, the Y-PSNR shows a trendof decreasing, especially in the

lower plot in Fig. 4.6. The Y-PSNR of type 2 video is decreasedin the upper plot and doesn’t

show much change in the lower plot. However, the overall Y-PSNR of the three types of videos

increases along with the iterations. The main reason is thatto improve the overall Y-PSNR, at

each iteration, the CG algorithm preferentially assigns channel and power resources to the type of

video which may have the greatest potential for improving the overall Y-PSNR. Recall that under

the same data rate, the Y-PSNR of type 3 video is the greatest and the Y-PSNR of type 1 video is

the smallest among the three types. Thus on the condition that the number of available channels is

limited and is less than the number of video sessions, channel and power resources will be taken

from what have been allocated to type 1 videos and then be assigned to type 3 videos first, then to

type 2 video. Besides, the magnitude of changes of the three types of videos decreases quickly over

iterations, which is in consistence with the change of the overall Y-PSNR, as shown in Fig. 4.5.
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Figure 4.6: PSNR comparison for three types of videos achieved by Column Generation method.
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Figure 4.7: QoS and QoE comparison between the proposed scheme and the benchmark.

In Fig. 4.7, we compare the proposed algorithm with a benchmark scheme [79], with respect

to both QoS (i.e., Y-PSNR) and QoE of the received videos. In the benchmark scheme, an idle

channel, say channelj, with a higherP (rj = 0) is assigned to a CU, say CUi, that is less

delay-tolerant and thus have a higher priority to use the available channels. In our simulation we

randomly assign an integer priority level ranging from 1 to 3to each CU. We use the MOS (Mean

Opinion Score) to evaluate QoE and the MOS model is adopted from [71] as the benchmark scheme

does [79].
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It can be seen that whenminj{P (rj = 0)} ≥ 0.35, the Y-PSNR achieved by the benchmark

scheme is about 100 dB lower than that achieved by the proposed scheme, which means that each

CU with our proposed scheme has an average Y-PSNR of 3 dB higherthan that with the benchmark

scheme. Both curves tends to increase asminj {P (rj = 0)} increases, since more channels are

likely to be available for video transmission. Within the entire range ofminj {P (rj = 0)}, our

proposed algorithm outperforms the benchmark scheme in terms of Y-PSNR, because the solution

to the problem in [79] is not necessary optimal to our problemand thus yields a lower bound to our

problem. Furthermore, we find that the overall MOS of the two schemes are almost the same. Thus

our proposed algorithm achieves a considerably higher QoS and a comparable QoE performance

as the benchmark scheme.

4.8 Conclusion

In this chapter, we investigated the problem of QoS-driven multi-user video streaming over

cellular CRNs. We showed that there exists adecomposition principlein the optimal joint design

of spectrum sensing, channel assignment, and power allocation that circumvents thecurse of di-

mensionalityin general MINLPs. The decomposed spectrum sensing problemwas solved with an

optimal algorithm, along with a heuristic algorithm that ismuch less demanding on CUs’ hard-

ware. A CG-based decentralized channel assignment and powerallocation algorithm was next

developed to relieve the computation burden on the CBS. And a Greedy Algorithm which solves

the sub-problems generated during the CG based algorithm at optimality in polynomial time is pro-

posed to reduce the computational complexity. We analyzed the complexity and time efficiency,

and derive an upper bound for the CG-based algorithm, and validated its performance with simu-

lations.
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Chapter 5

A Decomposition Principle for Link and Relay Selection in Dual-hop mm Wave Networks

5.1 Introduction

mm Wave Millimeter wave (mmWave) communications has becomea research hot spot re-

cently. There is up to 7 GHz license-free spectrum in this band that is available in many countries,

making mm Wave communications and networks a promising technique to meet the wireless data

challenge, as well as a core technology for future 5G Wireless systems [112]. What’s more, the

authors of [113] propose to augment wired hybrid data centernetworks with highly directional

60GHz wireless links to provide flexible network connectivity, which reveals the great potential of

60GHz technology in other applications. However, to make mmWave mmWave networks appli-

cable, many research challenges should be addressed. The wireless signal attenuation in mm Wave

channels is much serious than that in the 5 GHz or 2.5 GHz channels [148], making beamforming

indispensable. The authors in [146] show that the highly directional links, especially in the outdoor

environment, can be regarded aspseudo-wiredwith negligible collision probabilities. This model

has been adopted in many works on mm Wave networks [112,116–119].

Furthermore, mmWave signals usually do not diffract aroundor penetrate obstacles. A Line-

Of-Sight (LOS) path between the transmitter and receiver isrequired for a successful transmission.

However, in practical networks, an LOS path may not always exist, and it is possible that an LOS

path is blocked (e.g., by a pedestrian or car) from time to time. First, relay nodes should be

used to forward data for a distant or blocked receiver [120],by setting up an LOS path between

the transmitter and relay, and that between the relay and receiver. Second, the blockage between

two nodes may appear or disappear dynamically due to the movement of objects or the nodes

themselves [150, 151]. A realistic mm Wave network protocolshould consider the use of relay

nodes and model the dynamic blockages of mm Wave links [50].
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As a unique feature of mmWave communications, network connectivity can be enhanced by

exploiting reflections from walls and other surfaces to steer around obstacles [123]. The authors

in [124] use static reflectors to maintain the coverage of mm Wave networks. When the LOS path is

blocked, the authors in [125] suggest to switch the beam pathfrom an LOS link to a Non-Line-Of-

Sight (NLOS) link. Although using reflections will cause additional power loss and reduce power

efficiency, it offers additional choices for increasing network coverage and improving network

throughput.

In this chapter we investigate the scheduling problem in a centralized dual-hop mm Wave

network. The network here we consider consists of one PNC, which is the central coordinator,

multiple SD pairs, and multiple relays. When a source and destination are unable to directly

communicate with each other (e.g., out of range of each other, or permanently blocked by an

obstacle), a relay will be used to forward their traffic. There are multiple links, including both

the LOS link and NLOS links (e.g., reflected from a wall), froma source to a relay and a relay

to a destination. We adopt a two-state Markov chain model to capture the dynamic blockage

behavior of mm Wave links. At each time slot, the PNC decides the link and relay selection for

each SD pair to minimize the Maximum Expected Delivery Time (MEDT) among all SD pairs, by

jointly optimizing relay and link selection, while exploiting reflected mmWave transmissions and

considering link blockage dynamics. We develop a nonlinearinteger programming formulation

of the link and relay selection problem, and then develop effective algorithms that can provide

highly competitive solutions. Specifically, we develop a Decomposition Principle to transform this

problem into two sub-problems, one for link selection and the other for relay assignment when

there is enough replays. We prove that the proposed scheme can achieve an optimality gap of just

1 time slot at greatly reduced complexity. We also develop a heuristic scheme to handle the case

when there is no enough relays. The proposed schemes are validated with simulations with their

superior performance observed.

• Unlike prior works on relay selection in mm Wave networks [118,119,126–129], we consider

the LOS and multiple reflected NLOS links between source, relay, and destination nodes, as
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well as link blockage dynamics in our formulation, and provide a rigorous analysis of the

joint link and relay selection problem.

• We develop a Decomposition Principle to break down the formulated NIP problem into a

link selection sub-problem and a relay selection sub-problem. We prove that the two sub-

problems together provides a sub-optimal solution to the NIP problem with greatly reduced

complexity, and more important, the optimality gap is bounded by only 1 time slot, if there

is a sufficient number of relays.

• When there is no enough relays, we propose a heuristic algorithm that can still achieve highly

competitive solutions at a low complexity.

• We validate the proposed algorithms with extensive simulations and comparison with two

scheduling algorithms for mm Wave networks. We find both the proposed Decomposition

Principle and heuristic scheme outperform the two benchmarks in all the cases that we sim-

ulate, with respect to delay, MEDT, throughput, and fairness.

In the rest of this chapter, related work is reviewed in Section 6.2, the system model is pre-

sented in Section 6.3 and the problem formulation in Section5.4. We develop the Decomposition

Principle and the heuristic algorithm in Section 5.5 and evaluate their performance in Section 5.6.

and Section 5.7 concludes the chapter.

5.2 Related Work

There have been some interesting work on link scheduling in mm Wave networks. The authors

in [131] propose a Partially Observable Markov Decision Process (POMDP) framework to model

the link status in mm Wave networks, and a greedy scheduling strategy that aims to maximize

the instant throughput at each time slot. However, this strategy is only applicable for single-hop

centralized networks, and the multiple potential links between a node pair is not explored in this

chapter. A similar problem is studied in [129] with a specialscenario of a single-transmitter.
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To improve network throughput, the authors in [126] proposea fast relay selection algorithm to

reduce the overhead of relay selection time, so that there will be more time for data transmission.

The basic idea is to determine the sectors where the best relay may be located, and then find the

best relays in the selected sector. However, the authors do not consider coordinating concurrent

transmissions of multiple transmitters. It is possible that different transmitters may select the same

relay and thus collision happens.

In [119], the authors consider the fact that different relays may have different path losses, and

thus having different outage probabilities. A relay selection scheme is proposed to minimize the

outage probability for a single transmitter. In both indoorand outdoor environments, the obstacles

may change over time (e.g., pedestrians move) and thus the blockage of a mm Wave link is actually

not static. Such dynamic channel condition is not considered in [119]. A network throughput

maximization problem for a dual-hop network is studied in [118], where different relays may

provide different capacities for a SD pair. Relays assignment for multiple SD pairs is optimized to

maximize the network throughput. The path loss and blockagemodel considered in this work are

also time-invariant, and thus the proposed algorithm may not be suitable for mm Wave networks

with dynamic link conditions. To overcome the problem of link breakage and degradation in point-

to-point 60GHz networks, the authors of [136] propose to userepeatersto provide alternate paths

when the direct path between transmitter and receiver degrades. It is assumed that the nodes and

repeaters can beamform in any direction and thus by tuning the transmitting and receiving antenna

to the repeater, a new link between the transmitter and receiver can be established. However, it is

worthy of noting that in complex environments, the placement and selection of repeaters is a non-

trivial problem. In [137], to reinforce transmission efficiency and also reduce power consumption

of 60GHz devices, the authors propose a fast beam-switchingscheme, which employs an efficient

beamforming training algorithm based on the direct numerical search so that only a small portion

of beam-pairs will be sequentially tested while most other beam-pairs will never be probed, so that

the search complexity can be significantly reduced.
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In [112], the authors propose a heuristic scheduling schemefor given traffic demands under

static channel conditions, aiming to minimize the time needed to clear all the traffic demands. The

pseudo-wired mm Wave channel model is adopted in this work. The authors in [127] study the

relationship between the collision probability of two concurrent transmissions on two links and the

link distances. It is found that the collision probability is an increasing function of link distance.

Based on this finding, the authors propose a hop selection metric based on link distance, to reduce

the collision probability of concurrent transmissions. By replacing a single long hop with mul-

tiple short hops, the proposed scheme can improve the numberof concurrent transmission flows

while constraining the harmful interference below an acceptable level. However, the algorithm is

heuristic and lacks consideration of multiple coexisting links. The time slot allocation problem in

multi-hop mm Wave networks is investigated in [128], where the direct path shares time slots with

the relay path. Different time slot allocation schemes may result in different system throughput,

and the effective system throughput is optimized with time slot allocation. A sub-optimal solution

is proposed to solve the formulated NP-hard problem. Besidestime slot allocation, channel alloca-

tion is also significant to the improvement of network throughput. The authors of [139] investigate

the problem of channel allocation in 60 GHz indoor WLANs in order to maximize throughput, and

two SDMA (Spatial Division Multiple Access) algorithms areproposed, for the single-channel

case and the multiple-channel case respectively, to exploit the peculiar propagation properties so

that data rates to end users can be improved.

There are also some papers on designing MAC protocols for 60GHz wireless networks and

performance analysis of MAC protocols. In [135], the authors claim that conventional directional

CSMA/CA protocols do not work well at 60GHz networks due to the impaired carrier sensing at the

transmitters. To overcome this difficulty, the authors propose a novel protocol which adopts virtual

carrier sensing instead of physical carrier sensing, and relies on a central coordinator to distribute

network allocation vector (NAV) information. The authors of [138] present an analytical model

for computing the saturation throughput of a Medium- Transparent MAC protocol in 60GHz radio-

over-fiber networks. Both of the contention at the optical andthe wireless layer are considered. The
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Figure 5.1: (a) Network model. (b) Two-hop relay path model.

authors derive the saturation throughput performance of the Medium Transparent MAC protocol

under various scenarios. To provide a more comprehensive performance analysis of the Medium

Transparent MAC protocol for 60GHz radio-over-fiber networks, the authors of [140] analysis the

delay fairness performance of the Medium Transparent MAC protocol, and it is shown that delay

equalization can be achieved even for highly varying user population patterns among the different

antenna units when certain wavelength availability conditions are satisfied.

5.3 System Model

As shown in Fig. 5.1(a), we consider a centralized dual-hop 60GHz network consisting of

multiple nodes and one PNC. Each node can be either a source node (S), a destination node (D),

or a potential relay node (R). When the source and destination nodes are unable to directly com-

municate with each other (e.g., permanently blocked by an obstacle/wall, or out of range), a relay

is used to forward their traffic. Due to point-to-point mm Wave links (unlike traditional broadcast-

based relay networks), we assume that each SD pair can chooseonly one relay at a time. However,

a relay may serve multiple SD pairs at different time slots (but not at the same time slot).

To overcome the deafness problem, which makes it highly challenging for coordination of the

highly directional links, we assume a lower frequency public control channel (e.g., a WiFi channel)

for all nodes and the PNC [130]. Due to the omnidirectional transmissions, better propagation, and

larger coverage, the nodes on the control channel actually form a single-hop network. Network

state and control information of the dual-hop mm Wave network can be effectively exchanged

among the nodes on the control channel [118,119,130,131], including the following at each time

slot.
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• The PNC collects network state information, such as traffic requests, link status, etc., from

each node

• The PNC broadcasts link transmission schedules to all the nodes if it makes a new schedule

at this time slot

• Receiving nodes inform the PNC whether the reception is successful or not, so that the PNC

knows the link status.

As shown in Fig. 5.1(b), there may be multiple links between apair of nodes within range

of each other: there may be one LOS link, as well as other NLOS links formed by exploiting

reflections from walls and other surfaces [116]. Due to the moving obstacles, the state of a link

is either blocked or unblocked at each time slot. We assume the link state follows a discrete-time

Markov process [129, 131], while the nodes learn the transition probabilities of their links and

inform the PNC these parameters. Note that if the LOS link is more likely to be blocked, an NLOS

link may be a better choice. A successful transmission on a link requires the link being unblocked.

Without loss of generality, we assume each node is equipped with an electronically steerable

antenna array to beamform in the transmitting or receiving directions; so each node works in

the half-duplexmode [132]. Both transmission and reception are directionalwith a very narrow

beamwidth. The beamforming weights learned when receivingfrom a given node can then be used

to transmit back to that node, assumingchannel reciprocity. Some commercial mm Wave products

can have a beamwidth of1.4◦ or even as small as0.6◦. A probabilistic analysis is presented in [116]

on the interference caused by uncoordinated transmissionsin such highly directional mm Wave

networks. The analysis shows that “interference can essentially be ignored in the MAC design”

and the links can be regarded aspseudo-wired[116]. We adopt such a pseudo-wired link model in

this chapter, as in prior works [116–119].

A relay can be in one of the three states at each time slot: idle, transmitting, or receiving.

If a relay is selected for a source, it receive from the sourcein the first hop. Once finishing the

reception, the relay transmit the received packet to the specified destination in the second hop.
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Until the packet is successfully transmitted to the destination, the relay cannot receive more data

from this or other sources due to the half-duplex operation.If a relay is not selected for any source,

it stays in the idle state. This model is illustrated in Fig. 5.1(b) as in prior works [118,119,133].

5.4 Problem Formulation

5.4.1 Dynamic Link Blockage Model

For a linkl, denoteCt
l as the event that linkl is unblocked at time slott, andC̄t

l the opposite.

Recall that link state follows a discrete-time two-state Markov chain. Let0 ≤ pl, ql ≤ 1 be the one-

step transition probability from blocked to unblocked, andfrom unblocked to blocked, respectively.

The one-step transition probability matrix of linkl is

Pl(1)=



P (C̄t+1

l |C̄t
l ) P (Ct+1

l |C̄t
l )

P (C̄t+1
l |Ct

l ) P (Ct+1
l |Ct

l )


=



1− pl pl

ql 1− ql


 .

Then-step transition probability matrix of linkl is [134]

Pl(n) =



P (C̄t+n

l |C̄t
l ) P (Ct+n

l |C̄t
l )

P (Ct+n
l |Ct

l ) P (C̄t+n
l |Ct

l )




=
1

pl + ql



ql pl

ql pl


+

(1− pl − ql)
n

pl + ql




pl −pl
−ql ql




=



1− pl(n) pl(n)

ql(n) 1− ql(n)


 , n = 1, 2, . . . . (5.1)

5.4.2 Expected Delivery Time (EDT)

We consider two types of SD pairs. The first type, denoted asSi, is that the source and

destination are within one-hop distance with each other andare not permanently blocked (e.g., by

a wall). Hence the SD pair can either communication with eachother directly, or use a relay if the
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direct link is poor. The second type, denoted asSj, is that the SD pair are either out of range or

blocked by a permanent obstacle between them. Thus a relay isneeded for them to communicate

with each other. DefineSi∪j = Si ∪ Sj. We next derive the expected delivery time (EDT) for the

relay-assisted and direct transmission cases.

EDT via Relay

Let s denote a source with destinationd(s), andr be a relay that can communicate directly

with both s andd(s). Denote a link betweens andr as lsr, and the set of alls–r links asLsr.

Similarly, we definelrd(s) as a link betweenr andd(s) andLrd(s) as the set of these links.

Let Tlsr be the delivery time froms to r when link lsr is used in the first hop for a block of

data no greater than the channel capacity (normalized to a time slot), andT be the current time

slot, T ≥ 1. The expectationE(Tlsr) is the average number of trials until the first successful

transmission happens onlsr, which can be expressed as

E(Tlsr) =
∞∑

t=1

tP (Tlsr = t) = 1 · P (CT
lsr)+

∞∑

t=2

tP (C̄T
lsr)(1− plsr)

(t−2)plsr = 1 +
1− P (CT

lsr
)

plsr
, (5.2)

whereP (CT
lsr
) is the probability thatlsr is unblocked atT .

Now let Tlsr ,lrd(s) be the delivery time fromr to d(s) when link lsr is chosen in the first hop

and linklrd(s) is used in the second hop. To deriveE(Tlsr,lrd(s)), we first note that

E(Tlsr,lrd(s) |Tlsr = t) (5.3)

=
∞∑

t′=1

t′P (Tlsr ,lrd(s) = t′|Tlsr = t) = 1 +
1− P (CT+t

lrd(s)
)

plrd(s)
.

According to thelaw of total expectation, we have

E(Tlsr,lrd(s)) = E(E(Tlsr,lrd(s) |Tlsr = t))
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∞∑

t=1

P
(
CT+t

lrd(s)

)
P (Tlsr = t)

=
∞∑

t=1

(
P
(
C̄

Tlrd(s)

lrd(s)

)
plrd(s)(T + t− Tlrd(s)) + P

(
C

Tlrd(s)

lrd(s)

)
(1− qlrd(s)(T + t− Tlrd(s)))

)
P (Tlsr = t)

=
P (C̄T

lsr
)

plrd + qlrd(s)
+

P (C̄T
lsr
)(plrd(s) + qlrd(s))plsr

plrd(s) + qlrd(s)
·

(1− plsr − qlrd(s))
T−Tlrd(s)

+2

(1− (1− plrd(s) − qlrd(s))(1− plsr))
. (5.6)

=
∞∑

t=1

E(Tlsr,lrd(s) |Tlsr = t)P (Tlsr = t)

= 1 +
1

plrd(s)
− 1

plrd(s)

∞∑

t=1

P (CT+t
lrd(s)

)P (Tlsr = t). (5.4)

To calculateE(Tlsr) in (5.2) andE(Tlsr,lrd(s)) in (5.4), we need to deriveP (CT
lsr
) andP (CT+t

lrd(s)
).

Let tl be the last time (before the current timeT ) that PNC knew the state of linkl (being either

blocked or unblocked). We have

P (CT
l ) = P (C̄tl

l )pl(T − tl) + P (Ctl
l )(1− ql(T − tl))

=
pl

pl + ql
+

(1− pl − ql)
T−tl

pl + ql

(
ql + P (Ctl

l )(pl + ql)
)
. (5.5)

Furthermore, we derive the summation term in (5.4), which isgiven at the top of next page.

Substituting (5.5) and (5.6) into (5.2) and (5.4), we thus derive the closed-form expression for

the EDT when linklsr and link lrd(s) are chosen for the two-hop relay path, denoted asE(Tsrd(s)),

which is given by

E(Tsrd(s)) = E(Tlsr) + E(Tlsr,lrd(s)). (5.7)
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EDT via Direct link

Consider the case whens and d(s) use a direct linklsd(s) between them to communicate

without using a relay. The EDT froms to d(s) via link lsd(s), denoted asE(Tsd(s)), can be derived

asE(Tsd(s)) = 1 +
1−P (CT

lsd(s)
)

plsd(s)
.

5.4.3 Problem Formulation

LetR(s) be the set of relays that can communicate directly with both sources and its desti-

nationd(s), andS(r) be the set of sources that can communicate directly with relay r. Denote all

the relays and sources asR andSi∪j, respectively. LetLsd(s) be the set of alls-d(s) links. We then

define the following decision variables.

xlsr =





1, sources transmits on linklsr in hop1

0, otherwise,

∀ s ∈ Si∪j , r ∈ R(s), lsr ∈ Lsr (5.8)

xlrd(s) =





1, relayr transmits on linklrd(s) in hop2

0, otherwise

∀ s ∈ Si∪j , r ∈ R(s), lrd(s) ∈ Lrd(s) (5.9)

xlsd(s) =





1, sources transmits to its destinationd(s)

via direct linklsd(s)

0, otherwise

∀ s ∈ Si∪j , lsd(s) ∈ Lsd(s). (5.10)

Since each relayr can be selected by at most 1 SD pair and only one link can be selected at

each hop, we have

∑

s∈S(r)

∑

lsr∈Lsr

xlsr ≤ 1, ∀r ∈ R. (5.11)
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Note that if relayr is selected bys in the hop 1, thenr must also be selected byd(s) in hop 2, i.e.,

∑

lsr∈Lsr

xlsr =
∑

lrd(s)∈Lrd(s)

xlrd(s) , ∀s ∈ Si∪j , r ∈ R(s). (5.12)

An SD pair can use either a relay or a direct link to communicate directly. So we have the

following constraint.

∑

r∈R(s)

∑

lsr∈Lsr

xlsr+
∑

lsd(s)∈Lsd(s)

xlsd(s) =1, ∀ s ∈ Si∪j . (5.13)

Furthermore, a typeSj SD pair has to use a relay, i.e.,

∑

r∈R(s)

∑

lsr∈Lsr

xlsr = 1, ∀ s ∈ Sj. (5.14)

If a relay is selected for an SD pair with sources and destinationd(s), the EDT froms to d(s),

denoted asgs, is

gs =
∑

r∈R(s)


 ∑

lsr∈Lsr

E(Tlsr) +


 ∑

lrd(s)∈Lrd(s)

E(Tlsr,lrd(s))xlrd(s)


 xlsr




=
∑

r∈R(s)

∑

lsr∈Lsr

E(Tlsr)xlsr +
∑

r∈R(s)

∑

lsr∈Lsr

xlsr

∑

lrd(s)∈Lrd(s)

E(Tlsr,lrd(s))xlrd(s) . (5.15)

If a relay is not selected, the EDT froms to d(s), denoted asus, is

us =
∑

lsd(s)∈Lsd(s)

E(Tlsd(s))xlsd(s) . (5.16)

Determine If There Is Enough Relays

Before our problem formulation, we first need to determine whether each SD pair inSj can

have a relay. Let index variableyrs = 1 denote that relayr is assigned to SD pairs, andyrs = 0

otherwise. This problem can be formulated as follows.
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P0: max :
∑

s∈Sj

∑

r∈R(s)

yrs (5.17)

s.t.
∑

s∈S(r)
yrs ≤ 1, ∀ r ∈ R (5.18)

∑

r∈R(s)

yrs ≤ 1, ∀ s ∈ Sj (5.19)

Y ≤ ‖R‖ . (5.20)

where‖R‖ is the total number of relays in the network.

The constraints are due to the fact that each source can use upto one relay, and each relay

can serve at most one source at a time. LetY be the Objective Function Value (OFV) of problem

P0. If Y ≥ ‖Sj‖, where‖·‖ denotes the cardinality of a set, each SD pair inSj can be served by

a relay; otherwise, there are some SD pairs inSj that cannot have a relay. We have the following

two cases.

When Y ≥ ‖Sj‖

This is the case when each SD pair inSj can have a relay. In this case, our objective is to

minimize theMEDT among all the SD pairs. We thus have the following problem formulation.

P1 : min: maxs∈Si∪j
{gs + us} (5.21)

s.t.(5.8)− (5.14).

Note that whenY ≥ ‖Sj‖, problemP1 must have a solution. Although the constraints are linear,

the objective function is not. Therefore problemP1 is a nonlinear integer programming problem

(NIP), which is generally NP-hard. In the next section, we propose a Decomposition Principle to

solve this problem.
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When Y < ‖Sj‖

In this case, problemP1 is not applicable since a typeSj SD pair may not have a relay to

forward its data, if all relays within range are assigned to other SD pairs. We develop a heuristic

algorithm to address this case in Section 5.5.8.

5.5 Problem Decomposition and Solution

In this section, we present the Decomposition Principle forthe case when each SD pair in

Sj can have a relay, which breaks down problemP1 into a subproblem for link selection and

another subproblem for relay selection. The basic idea is todetermine the link selection for each

relay first, and then determine the relay selection based on the result of link selection. Moreover,

the link selection sub-problem can be further decomposed into three sub-problems, one for link

selection in hop 1, the second for link selection in hop 2, andthe third for direct link selection.

We develop effective algorithms to solve the decomposed problems, and more important, prove

a tight optimality boundfor the decomposition principle solution. In the case that there is no

enough relays for the SD pairs inSj, we develop a heuristic algorithm that can still produce highly

competitive solutions.

5.5.1 Optimal Choice and Greedy Choice

We first define an optimal choice, Optimal Choice 1 (OC1), and a greedy choice, Greedy

Choice 1 (GC1), as follows.

• Optimal Choice 1 (OC1): Given a linklrd(s) in hop 2, choose the hop 1 link as

l∗sr = argmin
lsr∈Lsr

{E(Tlsr) + E(Tlsr,lrd(s))}. (5.22)

That is, choose the hop 1 link that minimizes the EDT froms to d(s) for a given hop 2 link.
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• Greedy Choice 1 (GC1): Given a linklrd(s) in hop 2, choose the hop 1 link as

l+sr = argmin
lsr∈Lsr

E(Tlsr). (5.23)

That is, choose the hop 1 link that minimizes the EDT froms to r for a given hop 2 link.

Obviously, the choice ofl∗sr depends onlrd(s) but that ofl+sr does not. We have the following

theorem for OC1 and GC1.

Theorem 5.1.For a given relayr and a hop 2 link, GC1 can achieve an EDT froms to d(s) via r

that is at most 1 time slot greater than OC1 does.

Proof. Let the hop 2 link bel, and recall thatl+sr and l∗sr are the links chosen by GC1 and OC1,

respectively. For two time slotst1 andt2, denote∆t = t2 − t1, which is an integer.

We consider the following four cases.

1. Case 1:pl + ql ≤ 1 and∆t ≥ 0. From (5.3) and (5.5), we have (5.24) given on top of the

next page. Since0 < (1 − pl − ql)
∆t < 1, then−1 < (1 − pl − ql)

∆t − 1 < 0. And since

−pl ≤ ql − P (Ctl
l )(pl + ql) ≤ ql, we have

−1 ≤ − pl
pl + ql

≤ ql − P (Ctl
l )(pl + ql)

pl + ql
≤ ql

pl + ql
≤ 1.

Since(1− pl − ql)
T+t2−tl < 1, it follows (5.24) that

∣∣E(Tl+sr,l
|Tl+sr

= t1)− E(Tl∗sr,l|Tl∗sr = t2)
∣∣ ≤ 1, (5.26)

where|·| denotes the absolute value.

2. Case 2:pl + ql ≤ 1 and∆t < 0. A similar reasoning as the above yields the following

inequality.

∣∣E(Tl∗sr,l|Tl∗sr = t2)− E(Tl+sr,l
|Tl+sr

= t1)
∣∣ ≤ 1
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E
(
Tl+sr,l
|Tl+sr

= t1
)
−E

(
Tl∗sr,l|Tl∗sr = t2

)
=

P (CT+t2
rd )−P (CT+t1

rd )

plrd(s)

=
(1−P (Ctl

l ))ql−P (Ctl
l )pl

pl + ql
((1−pl−ql)T+t2−tl−(1−pl−ql)T+t1−tl)

=
ql − P (Ctl

l )(pl + ql)

pl + ql
((1− pl − ql)

T+t2−tl)((1− pl − ql)
∆t − 1). (5.24)

∣∣∣∣
ql − P (Ctl

l )(pl + ql)

pl + ql
((1− pl − ql)

T+t2−tl)((1− pl − ql)
∆t − 1)

∣∣∣∣

=

∣∣∣∣
ql − P (Ctl

l )(pl + ql)

pl + ql

∣∣∣∣ ·
∣∣(1− pl − ql)

T+t2−tl
∣∣ ·
∣∣(1− pl − ql)

∆t − 1
∣∣

≤
∣∣ql − P (Ctl

l )(pl + ql)
∣∣ · 1

pl + ql
·
∣∣(1− pl − ql)

T+t2−tl
∣∣ (pl + ql)

=
∣∣ql − P (Ctl

l )(pl + ql)
∣∣ ·
∣∣(1− pl − ql)

T+t2−tl
∣∣ ≤ 1. (5.25)

⇒ Inequality(5.26). (5.27)

3. Case 3:1 < pl + ql ≤ 2 and∆t ≥ 0. It follows that

|(1− pl − ql)
∆t − 1| ≤ |(1− pl − ql)

∆t |+ 1 ≤ 1+

|1− pl − ql| = 1− (1− pl − ql) = pl + ql. (5.28)

Then we have (5.25) as shown on top of the next page, which implies inequality (5.26).

4. Case 4:1 < pl + ql ≤ 2 and∆t < 0. Again, a similar reasoning as the above yields (5.27).

From Cases 1,2,3 and 4, we conclude that for allt1 ≥ 1, t2 ≥ 1, and0 ≤ pl + ql ≤ 2,

inequality (5.26) holds.

According to (5.4), we can computeE(Tl+sr,l
) − E(Tl∗sr,l) as inequality (5.29) on top of the

next page. RecallE(Tl+sr
) = minlsr∈Lsr

E(Tlsr). AssumeE(Tl+sr
) − E(Tl∗sr) = P (CT

l∗sr
)/pl∗sr −

P (CT
l+sr
)/pl+sr = α ≤ 0. By (5.29) we have

−1 + α ≤ E(Tl+sr,l
) + E(Tl+sr

)− E(Tl∗sr,l)− E(Tl∗sr) ≤ 1 + α ≤ 1. (5.30)
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E(Tl+sr,l
)− E(Tl∗sr,l) = E

(
E(Tl+sr,l

− Tl∗sr,l

∣∣Tl+sr
= t1, Tl∗sr = t2)

)

=
∑

t1,t2

E
(
Tl+sr,l

− Tl∗sr,l

∣∣Tl+sr
= t1, Tl∗sr = t2

)
· P
(
Tl+sr

= t1, Tl∗sr = t2
)

=
∑

t1,t2

(
E(Tl+sr,l

∣∣Tl+sr
= t1, Tl∗sr = t2 )− E(Tl∗sr,l

∣∣Tl+sr
= t1, Tl∗sr = t2 )

)
· P
(
Tl+sr

= t1, Tl∗sr = t2
)

=
∑

t1,t2

(
E(Tl+sr,l

∣∣Tl+sr
= t1 )− E(Tl∗sr,l

∣∣Tl∗sr = t2 )
)
· P (Tl+sr

= t1, Tl∗sr = t2)

≤
∑

t1,t2

1 · P (Tl+sr
= t1, Tl∗sr = t2) = 1. (5.29)

Moreover, ifα ≤ −1, then we haveE(Tl+sr,l
) +E(Tl+sr

) −E(Tl∗sr,l)−E(Tl∗sr) ≤ 0. RecallE(Tl∗sr) +

E(Tl∗sr,l) = minlsr∈Lsr
{E(Tlsr)+E(Tlsr,l)}. ThereforeE(Tl+sr,l

)+E(Tl+sr
)− E(Tl∗sr,l)−E(Tl∗sr) = 0,

which means GC1 equals OC1 in terms of EDT froms to d(s).

Thus we conclude that theorem holds true.

In the following, we show how to use GC1 to reduce problemP1 into a simpler problem.

5.5.2 Link Selection in Hop 1

The problem is to minimize the MEDT among the SD pairs while there are plenty of relays.

With GC1, we consider linksl+sr, for all s ∈ Si∪j, r ∈ R(s) in hop 1 of problemP1, as

xl+sr
∈ {0, 1}, xlsr = 0, ∀ lsr 6= l+sr, lsr ∈ Lsr, s ∈ Si∪j , r ∈ R(s). (5.31)

Substitute constraint (5.31) into problemP1and then we have a reduced problem, termed problem

P2, as follows.

P2: min : max
s∈Si∪j




∑

r∈R(s)

E(Tl+sr
)xl+sr

+
∑

r∈R(s)

xl+sr
×

∑

lrd(s)∈Lrd(s)

E(Tl+sr,lrd(s)
)xlrd(s)+
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∑

lsd(s)∈Lsd(s)

E(Tlsd(s))xlsd(s)



 (5.32)

s.t.
∑

s∈S(r)
xl+sr
≤ 1, ∀ r ∈ R, (5.33)

xl+sr
=

∑

lrd(s)∈Lrd(s)

xlrd(s) , ∀ s ∈ Si∪j , r ∈ R(s), (5.34)

∑

r∈R(s)

x+
lsr

+
∑

lsd(s)∈Lsd(s)

xlsd(s) = 1, ∀ s ∈ Si∪j (5.35)

∑

r∈R(s)

x+
lsr

= 1, ∀ s ∈ Sj (5.36)

xl+sr
= {0, 1}, ∀ s ∈ Si∪j , r ∈ R(s) (5.37)

Constraints(5.9) and(5.10).

The number of decision variables of problemP2 is much less than that of problemP1. We

will prove below that the difference between the OFV of problemP2 and that of problemP1 is at

most 1 time slot. We first introduce a lemma as a basis of the proof. For ease of presentation, let

S1 denote the set of sources that are assigned with relays in theoptimal solution to problemP1,

i.e., zs = E(Tlsr) + E(Tlsr,lrd(s)), for all s ∈ S1, andS2 be the set of sources that are not assigned

with relays and communicate with their destinations using adirect link, i.e.,zs = E(Tlsd(s)), for all

s ∈ S2. Also denoteS1∪2 = S1 ∪ S2. Note thatS1 ∪ S2 = Si ∪ Sj.

Lemma 5.1. Denoteφ∗ = {xl∗sr = 1, xl∗
rd(s)

= 1, ∀ s ∈ S1, and xl∗
sd(s)

= 1, ∀ s ∈ S2} as

the optimal solution to problemP1. For all s ∈ S1, setxl+sr
= 1 and then setxl∗sr = 0. Then

φ = {xl+sr
= 1, xl∗

rd(s)
= 1, ∀ s ∈ S1, andxl∗

sd(s)
= 1, ∀ s ∈ S2} is a feasible solution to problem

P2.

Proof. Comparingφ with φ∗, only the hop 1 link choice is different. Since for alls, we setxl+sr
= 1

and then setxl∗sr = 0, the link choice of hop 1 still satisfies all the constraints in problemP2. Hence

φ is a feasible solution to problemP2.

Theorem 5.2.The OFV of problemP2 is at most 1 time slot greater than that of problemP1.
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Proof. If φ∗ is also the optimal solution to problemP2, denote the corresponding EDT of each SD

pair asz∗s , for all s ∈ S1∪2, and the OFV of problemP1 asz = maxs∈S1∪2{z∗s}. if φ is a feasible

solution to problemP2, denote the corresponding EDT of each SD pair asz+s , for all s ∈ S1∪2.

Then the difference between the OFV of problemP2and that of problemP1can be written as

max
s∈S1∪2

z+s − z = max
s∈S1∪2

{z+s − z}. (5.38)

Since links{l+sr, ∀ s, r ∈ R(s)} are chosen by GC1, it follows Theorem 5.1 thatz+s − z∗s ≤ 1,

for all s ∈ S1. Besides, we havez+s = z∗s = E(Tl∗
sd(s)

), for all s ∈ S2. Thus we have

z+s − z∗s ≤ 1, ∀ s ∈ S1∪2. (5.39)

Sincez≥ z∗s , for all s ∈ S1∪2, we have

z+s ≤ z∗s + 1 ≤ z+ 1⇒ z+s − z≤ 1, ∀s ∈ S1∪2,

⇒ max
s∈S1∪2

{z+s − z} ≤ 1⇒ max
s∈S1∪2

{z+s } − z≤ 1.

Thus we conclude that Theorem 1 holds true.

5.5.3 Link Selection in Hop 2

Lemma 5.1 indicates thatφ = {xl+sr
= 1, xl∗

rd(s)
= 1, ∀ s ∈ S1, andxl∗

sd(s)
= 1, ∀ s ∈ S2} is a

feasible, but not necessary optimal, solution to problemP2. Furthermore,l∗rd(s), ∀ s ∈ S1 is hard

to obtain because it requires computing the EDT of all possible links in hops 1 and 2. To obtain

the optimal solution to problemP2, we first define another greedy choice, termed Greedy Choice

2 (GC2), as follows.
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• Greedy Choice 2 (GC2): Given a linkl+sr obtained by GC1 in hop 1, choose the hop 2 link

l+rd(s) as

l+rd(s) = argmin
lrd(s)∈Lrd(s)

E(Tl+sr,lrd(s)
). (5.40)

That is, choose the hop 2 link that minimizes the EDT fromr to d(s) for given hop 1 link

l+sr.

With GC2, we only consider linksl+rd(s), for all s ∈ Si∪j , r ∈ R(s) in hop 2 for problemP2, which

means

xl+
rd(s)
∈ {0, 1}, xlrd(s) = 0, ∀ lrd(s) 6= l+rd(s), lrd(s) ∈ Lrd(s),

∀ s ∈ Si∪j , r ∈ R(s). (5.41)

Then we have the following claims for the optimal solution toproblemP2.

Lemma 5.2. Denoteφ̂∗ = {xl+sr
= 1, xl∗

rd(s)
= 1, ∀ s ∈ S1, xl∗

sd(s)
= 1, ∀ s ∈ S2} as the optimal

solution to problemP2. For all s ∈ S1, setxl+
rd(s)

= 1 andxl∗
rd(s)

= 0. Thenφ̂ = {xl+sr
= 1, xl+

rd(s)
=

1, ∀ s ∈ S1, xl∗
sd(s)

= 1, ∀ s ∈ S2} is a feasible solution to problemP2.

Proof. Comparingφ̂ with φ̂∗, only the hop 2 link choice is different. Since for alls, we set

xl+
rd(s)

= 1 and then setxl∗
rd(s)

= 0, the link choice of hop 2 still satisfies all the constraints in

problemP2. Henceφ̂ is a feasible solution to problemP2.

Theorem 5.3. In the optimal solution to problemP2, the link selection in hop 2 is{xl+
rd(s)
∈ {0, 1},

xlrd(s) = 0, ∀ lrd(s) 6= l+rd(s), lrd(s) ∈ Lrd(s), ∀ s ∈ S1, r ∈ R(s)}.

Proof. Recallφ̂ is a feasible solution to problemP2. With this solution, definez++
s = E(Tl+sr

) +

E(Tl+sr,l
+
rd(s)

), for all s ∈ S1, andz′s = E(Tl+sr
) + E(Tl+sr,lrd(s)

), for all lrd(s) 6= l+rd(s), lrd(s) ∈ Lrd(s),

for all s ∈ S1.

SinceE(Tl+sr,l
+
rd(s)

) = minlrd(s)∈Lrd(s)
E(Tl+sr,lrd(s)

), we havez++
s ≤ z′s, for all s ∈ S1. We also

havez++
s = z′s = E(Tl∗

sd(s)
), for all s ∈ S2.

113



Let z′ = maxs∈S1∪2{z′s}. It follows that

z++
s ≤ z′s ≤ z′, ∀s ∈ S1∪2. (5.42)

We thus have

max
s∈S1∪2

{z++
s } − max

s∈S1∪2

{z′s} = max
s∈S1∪2

{z++
s } − z′

= max
s∈S1∪2

{z++
s − z′}

Inequality (5.42)

≤ 0

⇒ max
s∈S1∪2

{z++
s } ≤ max

s∈S1∪2

{z′s}.

Note that the objective of problemP2 is to minimize the MEDT among all SD pairs. Sôφ is

optimal to problemP2. The proof is completed.

5.5.4 Link Selection in Direct Path

Link selection when the SD pair communicate directly in the optimal solution to problemP2

can also be obtained with a greedy approach.

For alls ∈ Sj, setE(Tlsd(s)), ∀ lsd(s) ∈ Lsd(s), to an arbitrary constant, because the constraints

will ensure that for alls ∈ Sj, the direct link will not be selected. Define a greedy choice,termed

Greedy Choice 3 (GC3), as follows.

• Greedy Choice 3 (GC3): Choose the link in the direct SD path asl+sd(s) = argminlsd(s)∈Lsd(s)
E(Tlsd(s)).

That is, choose the link in the direct SD path that minimizes the EDT froms to d(s).

Theorem 5.4. In the optimal solution to problemP2, link selection in the direct path is{xl+
sd(s)
∈

{0, 1}, xlsd(s) = 0, ∀ lsd(s) 6= l+sd(s), lsd(s) ∈ Lsd(s), ∀s ∈ Si∪j}.

Proof. Define ẑs = E(Tl+
sd(s)

), for all s ∈ S2, and z̃s = E(Tlsd(s)), for all lsd(s) 6= l+sd(s), lsd(s) ∈

Lsd(s), for all s ∈ S2. Then we havêzs ≤ z̃s. We also havêzs = z̃s, for all s ∈ S1.
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Let z̄ = maxs∈S1∪2{z̃s}. It follows that

ẑs ≤ z̃s ≤ z̄, ∀s ∈ S1∪2. (5.43)

We thus have

max
s∈S1∪2

{ẑs} − max
s∈S1∪2

{z̃s} = max
s∈S1∪2

{ẑs} − z̄

= max
s∈S1∪2

{ẑs − z̄}
Inequality (5.43)

≤ 0

⇒ max
s∈S1∪2

{ẑs} ≤ max
s∈S1∪2

{z̃s}.

Note that the objective of problemP2 is to minimize the MEDT among all SD pairs. Soẑs is

the optimal solution for direct link selection to problemP2. The proof is completed.

5.5.5 Relay Assignment

Now that the hop 1, hop 2, and direct link selection sub-problems having been solve with

GC1, GC2, and GC3, respectively, we next solve the remaining problem of relay assignment.

Substituting the following into problemP2,

xl+
rd(s)

= xl+sr
, xlsr = 0, xlrd(s) = 0, xlsd(s) = 0, ∀ lsr 6= l+sr,

∀ lrd(s) 6= l+rd(s), ∀ lsd(s) 6= l+sd(s), lsr ∈ Lsr, lrd(s) ∈ Lrd(s),

lsd(s) ∈ Lsd(s), ∀ s ∈ Si∪j , r ∈ R(s), (5.44)

we obtain a reduced problem, termedSP2, as follows.

SP2 : min : max
s∈Si∪j




∑

r∈R(s)

(
E(Tl+sr

) + E(Tl+sr,l
+
rd(s)

)
)
xl+sr

+

∑

lsd(s)∈Lsd(s)

E(Tl+
sd(s)

)xl+
rd(s)




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s.t.
∑

r∈R(s)

x+
lsr

+ xl+
sd(s)

= 1, ∀s ∈ Si∪j (5.45)

xl+
sd(s)

= {0, 1}, ∀s ∈ Si∪j (5.46)

Constraints(5.33), (5.36), and(5.37).

Also the OFV of problemSP2equals to that of problemP2. According to Theorem (5.2), we

have Theorem (5.5) as follows.

Theorem 5.5.The OFV of problemSP2is at most 1 time slot greater than that of problemP1.

5.5.6 Decomposition Principle and Problem Reformulation

With analysis in Sections 5.5.1 to 5.5.5, we are now able to present the following theorem on

the Decomposition Principle.

Theorem 5.6. ProblemP1 can be solved with the following four-step procedure, and the OFV of

the solution is at most 1 time slot larger than that of the optimal solution.

• Step 1: Choose the set of links in hop 1, i.e.,{l+sr}, as

l+sr = argminlsr∈Lsr
E(Tlsr), ∀ s ∈ Si∪j , r ∈ R(s).

• Step 2: With{l+sr}, choose the set of links in hop 2, i.e.,{l+rd(s)}, as

l+rd(s) = argminlrd(s)∈Lrd(s)
E(Tl+sr,lrd(s)

), ∀ s ∈ Si∪j , r ∈ R(s).

• Step 3: Choose the set of links in the direct path, i.e.,{l+sd(s)}, as

l+sd(s) = argminlsd(s)∈Lsd(s)
E(Tlsd(s)), ∀ s ∈ Si∪j , r ∈ R(s).

• Step 4: With (5.44) derived, solve problemSP2.

Let the problem in Step 1, Step 2, and Step 3 of Theorem 5.6 be termed SP1. Note that

problemSP2 is not in the general Integer Linear Programming (ILP) form.To solve problem

SP2, we reformulate it into a linear programming (LP) problem. Introducing a new variablew =

116



maxs∈Si∪j
{E(Tl+

sd(s)
)x+

lsd(s)
+
∑

r∈R(s)(E(Tl+sr
) + E(Tl+sr,l

+
rd(s)

))xl+sr
}, we have

w ≥ E(Tl+
sd(s)

)x+
lsd(s)

+
∑

r∈R(s)

(E(Tl+sr
) + E(Tl+sr,l

+
rd(s)

))xl+sr
, ∀ s ∈ Si∪j . (5.47)

ThenSP2can be rewritten as

SP2’: min : w

s.t. Constraints, (5.33), (5.36), (5.37), (5.45), (5.46), and(5.47).

ProblemSP2’ is a mixed integer linear programming problem (MILP) and canbe solved with

an existing effective solver. Once the relay and link selection are completed, the PNC will inform

the nodes to start transmission as scheduled. If and only if at least one of the following events

happens, the PNC will reschedule the link selection and relay assignment for all the SD pairs

based on feedback.

• Case 1: If a source had no traffic in the previous time slot but has traffic in the current time

slot.

• Case 2: Whenever a relay finishes transmission to a destinationand thus becomes available

for source(s).

5.5.7 Complexity Analysis

Since problemSP1 is easy to solve, we just compare the complexity of problemP1 and

problemSP2’ from the following aspects.

• ProblemP1 is an NIP, while problemSP2’ is an MILP. Currently there are existing effi-

cient solvers for MILP, such as the Gorubi MIP solver and the Matlab Intlinprog function

(implementing the Branch and Bound algorithm). Such kind of problems have been solved

effectively in prior works [131,133], especially when solution space is relatively small.
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Algorithm 7: Heuristic Algorithm for Link and Relay Assignment When SomeSj SD Pairs
Do Not Have Relays

1 Solve problemP0 ;
2 if Y ≥ ‖Sj‖ then
3 Apply the Decomposition Principle to solve problemP1 ;
4 else
5 for ∀s ∈ Si do
6 Choose direct linkl+sd(s) to communicate withd(s) ;

7 end
8 Assign relays to typeSj SD pairs according to the solution toP0 ;
9 Denote the set of typeSj SD pairs that have a relay asS ′j ;

10 Find l+sr, l
+
rd(s), for all s ∈ S ′j , r ∈ R(s) ;

11 end

• The number of decision variables of problemP1 is
∑

s∈Si∪j

∑
r∈R(s) ‖Lsr‖+

∑
s∈Si∪j

∑
r∈R(s)

∥∥Lrd(s)

∥∥+
∑

s∈Si

∥∥Lsd(s)

∥∥,

while the number of decision variables ofSP2’ is
∑

s∈Si∪j

∑
r∈R(s) ‖l+sr‖+

∑
s∈Si∪j

∥∥∥l+sd(s)
∥∥∥ =

∑
s∈Si∪j

∑
r∈R(s) 1+

∑
s∈Si∪j

1 =
∑

s∈Si∪j
‖R(s)‖+ ‖Si∪j‖, considerably smaller than that

of problemP1.

5.5.8 WhenY < ‖Sj‖

If a type Sj SD pair cannot be served by a relay, its EDT cannot be defined asin (5.15)

or (5.16). Thus we cannot directly employ the DecompositionPrinciple to solve the link and relay

assignment problem in this case. We then propose a heuristicalgorithm to solve the problem.

The basic idea is to maximize the number of SD pairs that can transmit concurrently by relay

assignment. We let each typeSi SD pair transmit via its direct link, and then assign relays to type

Sj SD pairs to maximize the number ofSj SD pairs that can transmit concurrently. The more

concurrent transmissions, the smaller the MEDT.

The Heuristic algorithm is presented in Algorithm 7.
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5.6 Simulation Study

5.6.1 Simulation Setup

In this section we validate the performance of the proposed Decomposition Principle by Mat-

lab simulations. Unless otherwise specified, the values of simulation parameters are as given in

Table 6.1. Each simulated point in the figures is obtained by repeating the simulation 50 times with

different random seeds, while 95% confidence intervals are computed and plotted as error bars in

the figures.

We compare the performance of the proposed algorithm in Theorem (5.6) (termedProposed)

with two existing schemes designed for mmWave networks. Thefirst one (termedBenchmark 1) is

proposed in [129], where a source tries to maximize its throughput by choosing the optimal Access

Points (APs), and the source-AP channels are modeled as Markov chains. A heuristic algorithm

is used to solve the formulated NP-hard problem in [129]. Thesecond one (termedBenchmark

2) is proposed in [128], where relay paths are determined for multiple SD pairs with a heuristic

to maximize the total throughput under static channel conditions. Throughput fairness among

multiple SD pairs is not considered in this scheme.

The performance metrics to evaluate the proposed algorithmare delay, MEDT among all SD

pairs, and network throughput. The delay of a packet is the time it spends at the source queue

plus the packet delivery time from source to destination. The traffic is generated with a Bernoulli

process [112]. At each time slot, the source generates a number of packets with a predetermined

probability, denoted asPG, and the total volume of bits of the packets generated at eachtime slot

does not exceed the channel capacity.

5.6.2 Simulation Results and Analysis

The performance of the proposed algorithm is demonstrated in Fig. 5.2 by comparing the

OFV of problemSP2’ with that of problemP1 (i.e., theOptimal) under increasing channel tran-

sition probabilityql. ProblemP1 is an NIP whose solution takes a very long time to obtain using
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Table 5.1: Simulation Parameters
Parameter Value

‖Si∪j‖ 10
‖R‖ 10
‖Lsr‖ , ∀s, r random∈ [3, 7]∥∥Lrd(s)

∥∥ , ∀s, r random∈ [3, 7]∥∥Lsd(s)

∥∥ , ∀s random∈ [0, 3]
max{l∈(Lsr∪Lrd(s)∪Lsd(s)),∀s,r} ql 0.9

pl, ∀l ∈ (Lsr ∪ Lrd(s) ∪ Lsd(s)), ∀s, r random∈ [0.3, 0.7]
Chanel capacity 1 Gbps
Time slot duration 1 s

exhaustive search even for a moderately-sized network. Therefore we simulate a relative small

network with 2 SD pairs, 2 relays, 2 links in hop 1, 2 links in hop 2, and 1 link in the direct path,

for each SD pair and relay, to obtain the optimal solution within a reasonable time. From Fig. 5.2,

we fine the difference between the OFV of problemSP2’ and that of problemP1 is strictly within

1 time slot over the entire range ofql. The gap is actually much smaller than 1 time slot, which

suggests that 1 time slot is in fact the worst case upper bound. Furthermore, the gap increases as

ql grows, since a sub-optimal schedule may result in a relatively worse performance when channel

conditions are bad, which means a greater MEDT.
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Figure 5.2:The OFV of the proposed decomposition principle and that of the optimal solution versusminl{ql},
while PG = 0.8.
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Figure 5.3:Delay versus minimum traffic generation probabilityPG, whilemin{l}{eql} = 0.2.
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Figure 5.4:MEDT versusmin{l}{ql}, whilePG = 0.8.

We next compare the delay performance of the proposed schemewith that of the two bench-

mark schemes in Fig. 5.3 under various traffic generation ratePG. AsPG is increased, the average

delays of all the three schemes increase due to the increasedtraffic load, while the average delay

of our proposed algorithm is always considerably lower thanthat of the two benchmark schemes.

Benchmark 1 does not consider coordinating the concurrent transmissions among SD pairs. There-

fore different SD pairs may select the same relay and thus collision happens, resulting in an in-

creased delivery time. Benchmark 2 does not consider channeldynamics and thus its schedules

may be sub-optimal. This comparison also demonstrates thattraffic collision has a serious negative

effect on delay performance.
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Figure 5.4 shows the MEDT among all SD pairs under changing channel state transition

probabilityql. The proposed scheme achieves the lowest MEDT among the three. The confidence

interval of Benchmark 1 is greater than that of the other two schemes, indicating Benchmark 1

is less stable in terms of the number of trails until the first successful transmission is achieved.

Benchmark 2 considers the channel conditions as static and itlacks adaptation to the channel

dynamics, which certainly has an effect on the instantaneous scheduling decision for the current

time slot.

The throughput performance achieved by the three schemes ispresented in Fig. 5.5. The

network throughput is defined as the total number of bits delivered for all the SD pairs per time slot,

i.e., per second. As channel condition degrades, the numberof links available for transmission is

decreased at each time slot. So the number of bits that can be delivered at each time slot is reduced.

For Benchmark 1, due to the possible collisions, the number ofbits successfully delivered per time

slot is less than that of the proposed algorithm. For Benchmark 2, due to lack of consideration of

channel dynamics, although it tends to maximize the total expected throughput of all SD pairs, it

still makes sub-optimal scheduling decisions under dynamic channel conditions, thus achieving a

lower throughput.
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Figure 5.5:Throughput versusmin{l}{ql}, whilePG = 0.8.

In Fig. 5.6, we compare the MEDT of the Heuristic link and relay selection algorithm de-

scribed in Algorithm (7) (termedHeuristic) with that of the two benchmarks under the condition
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Figure 5.6:MEDT versusmin{l}{ql} for the proposed Heuristic algorithm, whilePG = 0.8 and the number of
relays is 6.

0.2 0.3 0.4 0.5 0.6 0.7
1

1.5

2

2.5

3

3.5

4

Min Transition Prob. from Unblocked to Blocked

T
hr

ou
gp

ut
 (

G
b/

s)

 

 

Heuristic
Benchmark 1
Benchmark 2

Figure 5.7:Throughput vsmin{l}{ql} for the proposed Heuristic algorithm, whilePG = 0.8 and the number of
relays is 6.
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Figure 5.8: Fairness performance versus minimum traffic generation probability, for Proposed
Scheme, whilemin{l}{ql} = 0.2 andPG ≤ 0.8.
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Figure 5.9: Fairness performance versus minimum traffic generation probability, for Heuristic
Scheme, whilemin{l}{ql} = 0.2 andPG ≤ 0.8.

that there is an insufficient number of relays to serve all theSD pairs. Here we set the number of

relays equals to 6, while other parameters are as given in Table 6.1. Comparing to the results in

Fig. 5.4, the MEDT of Heuristic is slightly higher, due to theinsufficient number of realys to serve

the 10 SD pairs. For example, whenmin{l}{ql} = 0.2, the MEDT is increased from 2 to 2.7881.

However, it can be observed that Heuristic still outperforms both benchmark schemes with consid-

erable gains. This result makes sense since letting typeSi SD pairs to communicate using direct

links, instead of using a relay, will save more relaying opportunity to TypeSj SD pairs, so these

SD pairs may need less time to successfully delivery their packets. A similar reasoning can be ap-

plied to the comparison of throughput performance of Heuristic with that of the two benchmarks,

as shown in Fig. 5.7.

Finally, we compare the fairness performance of the three schemes, in terms of average delay

of the SD pairs. Fig. 5.8 shows the fairness performance comparison between the proposed scheme

and the benchmark schemes. We adopt Jain’s fairness index asin [112]: f(e1, e2, . . . , eN) =
(∑N

n=1 en

)2
/
(
N
∑N

n=1 e
2
n

)
, whereen is the average delay of SD pairn, n = 1, 2, . . . , N . The

fairness index ranges from 0 (worst) to 1 (best). We can see that our proposed algorithm consis-

tently achieves a higher fairness index than the other two schemes do, due to theminimaxapproach

adopted in the problem formulation.
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The fairness performance comparison between the heuristicscheme and the benchmark schemes

are shown in Fig. 5.9. We can see that the fairness performance of the heuristic scheme is also con-

sistently better than that of the benchmark schemes.

5.7 Conclusion

We developed a Decomposition Principle for the problem of link and relay selection in cen-

tralized dual-hop mm Wave networks. The objective was to minimize the MEDT, and the main

idea was to decompose the original problem into a sub-problem for link selection, and the other for

relay selection. When there are a sufficient amount of relays,we proved that the two sub-problems

together can provide a sub-optimal solution to the originalproblem with an optimality gap bounded

by 1 time slot, with greatly reduced complexity. We also developed a heuristic scheme to handle

the case when there is not enough relays to serve the SD pairs.Through simulations, we showed

that both proposed schemes outperformed two mm Wave networkscheduling schemes with con-

siderable gains.
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Chapter 6

On Link Scheduling under Blockage and Interference in mmWaveAd Hoc Networks

6.1 Introduction

Before one can deploy the mmWave networks, many challenges need to be addressed. Wire-

less signal attenuation in mmWave (e.g., 60GHz) channels isa serious issue, much more than in

the case of 5GHz or 2.5GHz channels [145], thereby making beamforming indispensable. Be-

cause of the small wavelength, large antenna arrays are feasible. The authors in [146] show that

the highly directional links, especially in the outdoor environment, can be regarded as “pseu-

dowired” with negligible collision probabilities. Although this characteristic is very attractive for

spatial reuse, network coordination and scheduling becomeextremely challenging with such nar-

row beamwidths [147]. In the indoor environment, as mentioned above, the beamwidth is usually

wider and thus the interference among neighboring links should be considered since the pseu-

dowired assumption may not hold in this case.

Furthermore, mmWave signals usually do not diffract aroundor penetrate obstacles. A line-

of-sight (LOS) path between the transmitter and receiver isrequired for successful transmission.

However, in practical networks, a LOS path may not always exist; besides, it is possible that a LOS

path can be blocked (e.g., by a human body) from time to time. In that case, relay nodes would be

needed to forward data to a distant or blocked receiver [148], by setting up a LOS path between

the transmitter and relay, and then between the relay and receiver. Second, the blockage between

two nodes may appear or disappear intermittently due to the movement of objects between them or

the movement of the nodes themselves [150, 151]. A realisticmmWave network protocol should

consider the multi-hop path model and dynamic blockages between nodes.

In this chapter, we investigate the problem of link scheduling in mmWave Ad Hoc networks.

We consider the case where each device (DEV) schedules its own transmission based on the traffic
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demand (e.g., the amount of packets backlogged in its bufferfor other DEVs, or the amount of

traffic requested by the DEVs for the next scheduling period)and the status of the mmWave links.

We adopt a directional link model from the literature, whichincorporates the beamwidths as well

as the beam directions to allow flexibly modeling interference among the directional links. Such

a model is known as “directional beamforming,” in contrast to today’s cellular use of the term

beamforming that merely looks to null out interfering userswithout maximizing gain in a particular

direction [152]. We also model blockage of the LOS path with adiscrete-time Markov chain model.

A successful transmission requires an unblocked LOS path aswell as a good Signal to Interference

plus Noise Ratio (SINR). By tuning the parameters of the interference and blockage models, both

indoor and outdoor mmWave links can be modeled.

We first consider the single-hop network case withN DEVs, where all the data transmissions

are through one-hop, single links. That is, any pair of DEVs can communicate with each other

directly. We formulate the link scheduling problem as a constrained Binary Integer Programming

(BIP) problem, aiming to determine the minimum time length schedule, i.e., to minimize the time

duration needed to satisfy the traffic demand of all the links. We develop a greedy algorithm (GA)

to maximize the instantaneous throughput of each time slot to solve the formulated BIP problem

heuristically.

We then consider the multi-hop case forN DEVs, where some DEVs are not within one-

hop distance with each other, e.g., if their distance is longer than the transmission range or if

the LOS path between them is blocked. In this case, intermediate DEVs are needed to relay

the traffic for DEVs that are not within one-hop distance of each other. A multi-hop minimum

time length scheduling problem is formulated incorporating routing and the flow conservation

constraint. We then propose an effective algorithm to solvethis problem. The performance of the

proposed algorithms are validated with simulation and comparison with a benchmark scheme.

The remainder of this chapter is organized as follows. Related work is reviewed in Section 6.2.

The system model and problem formulation for the single-hopnetwork scenario are presented

in Section 6.3. The proposed solution algorithms for the single-hop scenario are presented in
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Section 6.4. The problem formulation for the multi-hope network case is described in Section 6.5

and the solution algorithm is presented in Section 6.6. The proposed algorithms are evaluated in

Section 6.7. Section 6.8 concludes the paper.

6.2 Related Work

There have been considerable work on link scheduling in wireless networks. However, most

of the prior work do not consider the specific properties of mmWave channels and thus may not

be applied for mmWave networks. In [158, 160], the authors solve the problem of spatial TDMA

scheduling in ad hoc networks, where each link has its trafficdemand and the objective is to find

the optimal scheduling of the links to minimize the time length needed to satisfy the traffic demand

of all links. However, the channel state of each link is assumed to be static during the entire period,

which may not be a valid assumption for mmWave networks wherethe channel state may change

dramatically due to blockage of the LOS path.

The uncertainty of channel availability in Cognitive Radio Networks is considered in [161].

The problem of deciding which channel to sense and access in order to maximize the throughput

of the secondary user is formulated as a Partially Observable Markov Decision Process (POMDP),

and a separation principle is proposed to reveal the optimality of myopic spectrum sensing and

accessing strategies. However, this chapter only considers the case where only one channel can be

sensed and accessed at each time slot, and the interference between links of concurrent transmis-

sions is not considered, which is obviously not the case whenspatial reuse is considered.

There are also several interesting prior works on link scheduling and interference modeling

in mmWave networks. For example, the authors in [146] find that the interference between links

of concurrent transmission can be ignored in outdoor mmWavenetworks because of high attenu-

ation of mmWave channel and the extremely small beamwidths of the directional transmissions.

Motivated by this observation, a Graph Coloring method is proposed in [162,163] as a scheduling

algorithm to compute a schedule for given traffic demands, such that the total transmission time is

128



minimized for the mmWave network. These papers consider “pseudowired” mmWave links and

do not take the potential co-channel interference (CCI) [51] into consideration.

On the other hand, some prior work rely on a low-rate omni-directional transmission to over-

come the deafness problem [164, 165]. The authors of [166] propose the concept ofexclusive

regions, which is described by the relative geo-location and the antenna angle between the trans-

mitter and receiver, to exclude certain concurrent transmissions in the mmWave network. To pro-

vide a more accurate attenuation model for the mmWave channel, the authors of [147] conduct

extensive urban cellular and peer-to-peer RF wideband channel measurements and find that there

are very few unique antenna angles for creating a link, i.e.,a directional link is hard to find in

mmWave networks. Motivated by the prior works, in this chapter we consider a more general

interference and blockage model compared with the previousliterature as described in Section 6.3

and develop effective link scheduling algorithms. In our previous work [167], we propose a link

scheduling algorithm to minimize the required time length to serve a given data demand for all the

nodes. However, the algorithms can only apply to single-hopcentralized mmWave downlink net-

works where a PNC (Piconet coordinator) is required to coordinate the traffic and only downlink

transmissions are considered.

6.3 System Model and Problem formulation: The Single-hop Case

6.3.1 System Model

We first consider a mmWave Ad Hoc network consisting ofN DEVs with directional trans-

missions, where all DEVs are within one-hop distance with each other. We assume slotted time

with unit length time slots and a common control channel (e.g., a WiFi channel) through which

each DEV can broadcast its traffic demands and link statistics to other DEVs. Alternatively, some

control time slots can be reserved for the DEVs to exchange traffic demand and link statistics with

their neighbors through directional transmissions. A times lot consists of a data transmission phase

and an acknowledgement (ACK) phase. Each DEV then executes a link scheduling algorithm to

compute the link transmission schedule based on the common information. Finally, the DEVs
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point to each other to transmit data according to the transmission schedule. Following the data

transmission, the receiving DEV will send feedback (i.e., ACKs) to the sender in the ACK phase.

From the feedback, the transmitting DEV can learn the state of the directional link by end of the

current time slot and update the remaining traffic demands. The DEV will remain transmitting until

it has reached its allocated time slot limit (which is assumed to be sufficiently large in this chapter)

or until it has successfully transmitted its traffic demand.Any new traffic that arrives during the

current transmission period will be saved in the DEV buffers. When the current traffic demands are

all served, the buffer backlogs will be used as new traffic demand for the next scheduling phase,

which will be served with a new link schedule during that phase, and so forth.

Denote the set of all links within the one-hop distance asA. Link lij ∈ A is the LOS link

from DEV i to DEV j, 1 ≤ i, j ≤ N andi 6= j. We assume 2D beam pattern for indoor or low

antenna heights in this chapter, although this approach could be generalized to the 3D case. We

use the directional antenna gain model|hij|2Γ(θ), where|hij|2 is the maximum gain,θ is the angle

offset from the peak gain direction, andΓ(θ) is a non-negative, non-increasing function ofθ in

[0,1] with Γ(0) = 1. With the directional antenna gain model, the received signal power oflij is

Pt|hij|2Γ2(0) = Pt|hij|2, wherePt is the transmit power. The interference from transmitteri∗ of

link li∗j∗ to receiverj of link lij is Pt|hi∗j|2Γ(θ(li∗j, li∗j∗))Γ(θ(lji∗ , lji)), whereθ(li∗j, li∗j∗) is the

angle between linkli∗j∗ and link li∗j, as shown in Fig. 6.1, and similar forθ(lji∗ , lji). Let Ω(i)

denote the set of DEVs within one hop distance to nodei, 1 ≤ i ≤ N , excluding nodei itself, and

assume thatj ∈ Ω(i) in the following. Note thatj ∈ Ω(i) implies i ∈ Ω(j). Transmission on an

unblocked linklij will be successful if and only if the SINR at receiverj exceeds a fixed threshold

γ, which can be expressed as

|hij|2Pt∑
li∗j∗ 6=lij

|hi∗j|2Γ(θ(li∗j, li∗j∗))Γ(θ(lji∗ , lji))Pt + σ2
≥ γ,

for all lij ∈ A. (6.1)

whereσ2 is the noise power.
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θ(lji*, lji)

θ(lj*i, lj*i*)

Figure 6.1: Interference between two directional links

We also model the dynamic blockage ((also called shadowing)) of a mmWave link with a

discrete-time two-state Markov chain. For linklij, letG denote the good state (unblocked) andB

denote the bad state (blocked);Pr(g|b)lij andPr(b|g)lij are the transition probabilities fromG to

B and fromB to G, respectively;Pr(g|g)lij = 1− Pr(g|b)lij andPr(b|b)lij = 1− Pr(b|g)lij .

6.3.2 Problem Formulation

Define the link state variablesij as

sij =





1, link lij is in the good state

0, otherwise,
∀ lij. (6.2)

In the ACK phase of each time slot, the receiver DEV returns an ACK to the transmitter DEV

if the transmission is successful. Define index variablea as

a =





1, an ACK is received

0, otherwise.
(6.3)
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Let Um(a|sij) be the probability that when linklij is activated at time slotm, the ACK status isa

conditioned on that the state of linklij is sij. Assuming error-free ACKs, we have





Um(1|sij) = sij

Um(0|sij) = 1− Um(1|sij) = 1− sij,
∀ m. (6.4)

It can be easily seen thatUm(a|sij) is either 1 (i.e., ACK received) or 0 (ACK missing).

Define scheduling index variablesxm
ij as

xm
ij =





1, link lij is activated in time slotm

0, otherwise,
∀ lij ,m. (6.5)

If a DEV works in the Half-Duplex (HD) mode, it can only eithertransmit or receive at each

time slot. We have the following capability constraint for aDEV.

∑

i∈Ω(j)

xm
ij +

∑

z∈Ω(j)

xm
jz ≤ 1, ∀ j,m. (6.6)

Since many antenna beam pointing positions are available, it is also possible to configure the

DEV to work in the same-channel Full-Duplex (FD) mode [153],where the DEV can transmit

to one direction and receive from another direction on the same channel simultaneously [154].

Assuming effective self-interference cancellation and negligible residual self-interference, we have

the following capability constraint that holds true for a relay DEV.

∑

i∈Ω(j)

xm
ij ≤ 1;

∑

z∈Ω(j)

xm
jz ≤ 1, ∀ j,m. (6.7)

The probability that the state of linklij is sij at time slot(m + 1), denoted asλm+1
sij

, can be

derived as

λm+1
sij

= xm+1
ij (1− a− sij + 2asij)
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+ (1− xm+1
ij )

1∑

s′ij=0

λm
sij

Pr(sij|s′ij), (6.8)

wherePr(sij|s′ij) is the channel state transition probability. We set the channel state at time slot 0

according to the steady state distribution, as

λ0
sij

=





Pr(b|g)lij
Pr(b|g)lij+Pr(g|b)lij

, sij = 1

Pr(g|b)lij
Pr(b|g)lij+Pr(g|b)lij

, sij = 0,
(6.9)

Define channel utilization index variabletm for all time slotsm as

tm =





1, one or more links activated at timem

0, otherwise.
(6.10)

Recall that there areN DEVs and letM be a sufficiently large integer indicating a future time slot

when all the traffic demands will be certainly transmitted. Let V m
ij (λ

m
sij
) be the expected amount

of traffic delivered by linklij from time slotm to the future time slotM . We then have

V m
ij (λ

m
sij
) =

1∑

sij=0

λm
sij

1∑

a=0

Um(a|sij)[arijtm+

V m+1
ij (λm+1

sij
)], ∀ 1 ≤ m ≤M − 1, (6.11)

whererij is the number of packets delivered by linklij if the transmission on linklij is successful,

i.e., the SINR of linklij is higher than a threshold and the link is not blocked.

Let cmij be the expected amount of traffic delivered by linklij. Recall thatxm
ij indicates if link

lij is activated or not in time slotm. The expected amount of traffic delivered by linklij from time

slot 1 to time slotM can be derived as

V 1
ij(λ

1
sij
) =

M∑

m=1

cmijx
m
ij , ∀ lij , (6.12)
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wherecmij can be derived from the link states and feedbacks from time slot 1 to time slotm as

cmij =
1∑

sij=0

λ1
sij

1∑

a=0

U1(a|sij)




1∑

sij=0

λ2
sij

1∑

a=0

U2(a|sij) · · ·

. . .




1∑

sij=0

λm
sij

1∑

a=0

Um(a|sij)arij




 . (6.13)

Denote the series of packet transmissions, i.e., a session,from DEV i to DEV j aswij. The

total amount of packets to be transmitted is this session from DEV i to DEV j is Dij. We aim to

minimize the total amount of time slots, and thus the minimumamount of time, used to serve all

the traffic demands under SINR and blockage constraints. Theproblem, denoted asP1, to solve

the minimum time used (i.e., the smallest number of time slots) to serve all the traffic demands

assuming the 2D directional antenna interference model andthe dynamic link blockage model is

formulated as

(P1) min : τ =
M∑

m=1

tm (6.14)

s.t. V 1
ij(λ

1
sij
) ≥ Dij, ∀ lij (6.15)

tm ≥ tm+1, ∀ m (6.16)

xm
ij ∈ {0, 1}, ∀ lij ,m. (6.17)

With this formulation, the traffic demands will be served in acertain amount ofconsecutive

time slots (for whichtm = 1); when the traffic demands are all cleared, we havetm = 0 for all the

future time slots, as given in constraints (6.10) and (6.16). Note that the SINR constraint (6.1) is

implicitly expressed in the formulated problem in that the expected number of packets transmitted

in time slotm, i.e.,cmij ’s, are generated by the feasiblexm
ij set, for alllij andm that satisfy the SINR

constraint. Furthermore, the feasiblexm
ij set should also satisfy the capability constraint (6.6). Note

thatM can be set to a sufficiently large value so that there is alwaysa feasible solution (i.e., all

the traffic demands can certainly be served withinM time slots). As we will show later, with the
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proposed algorithms, the value ofM does not affect the solution and objective value as long as it

is sufficiently large.

To formulate the problem when the DEVs can operate in the FD mode, we only need to

replace constraint (6.6) (which is implicitly expressed inproblemP1) with constraint (6.7), which

will give us the problem formulation for the FD case, denotedas problemP2.

6.4 Solution Algorithms: The Single-hop Case

ProblemP1 is a Binary Integer Programming (BIP) problem. The coefficients of the constraint

matrix all take on continuous values between[0, a], which indicate that the BIP does not satisfy

the property ofunimodularity[155]. Thus the BIP cannot be reduced into a Linear Programming

(LP) problem. It is, in fact, NP-hard [156].

Furthermore, it is infeasible to list all the columns of the constraint matrix for constraints (6.15)

and (6.16)), since the number of all feasible columns in the constraint matrix is as large asM . An

exhaustive search to construct the constraint matrix is impractical. Even if it is possible, a huge

memory may be needed to store the constraint matrix. In this section, we introduce two effective

algorithms to solve the BIP problem with greatly reduced complexity.

6.4.1 Greedy Algorithm

We first propose to solve the BIP problem with an iterative greedy algorithm (GA). The main

idea is rather than to minimizeτ =
∑M

m=1 t
m, we instead maximize the instant throughput of the

current time slot.

DenoteHm as the set of links whose traffic demands have not yet been served at them-th

iteration (i.e., time slotm).
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∑

li∗j∗ 6=lij

|hi∗j|2Γ(θ(li∗j, li∗j∗))Γ(θ(lji∗ , lji))Ptx
m
i∗j∗

+


 ∑

li∗j∗ 6=lij

|hi∗j|2Γ(θ(li∗j, li∗j∗))Γ(θ(lji∗ , lji))Pt + σ2 − γ−1|hij|2Pt


 xm

ij

≤
∑

li∗j∗ 6=lij

|hi∗j|2Γ(θ(li∗j, li∗j∗))Γ(θ(lji∗ , lji))Pt, ∀ lij ∈ A. (6.20)

HD Case

The problem to be solved at them-th iteration, denoted asPHm, can be formulated as

(PHm) max :
∑

lij∈Hm

cmijx
m
ij (6.18)

s.t. constraints(6.6) and(6.20)

xm
ij ∈ {0, 1} , ∀ lij ∈ Hm, (6.19)

where constraint (6.20) (given subsequently) ensures thatthe SINR requirement is satisfied on

all of the active links. This problem can be solved with the Branch-and-Bound technique [157],

which, for example, is implemented in theBintprog function in Matlab.

Once thexm
ij ’s are obtained, transmissions are scheduled for the current time slotm according

to thexm
ij ’s. With feedback from DEVj, DEV i will know λm+1

ij andcm+1
ij , for all lij, with which

it can solvePHm+1 to obtainxm+1
ij for the next time slot(m + 1), for all lij, until Hm becomes

empty orPHM is solved.

The iterative greedy algorithm is presented above as in Algorithm 8, which is executed at

each DEV. Denote the most recently completed time slot asmij in which link lij was activated. In

line 11 of Algorithm 8,cmij is updated as

cmij =
1∑

sij=0

λmij
sij

1∑

a=0

Umij(a|sij)




1∑

sij=0

λmij+1
sij
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1∑

a=0

Umij+1(a|sij)
1∑

a=0

Umij+1(a|sij)

. . .




1∑

sij=0

λm
sij

1∑

a=0

Um(a|sij)arij




 , ∀ lij. (6.21)

Algorithm 8: Greedy Algorithm for Problem P1
1 m = 1 ;
2 while Hm 6= ∅ do
3 SolvePHm to obtainxmij , for all lij ;
4 Schedule transmission according toxmij , for all lij ;
5 m← m+ 1 ;
6 UpdateHm andDij ’s according to feedback ;
7 for lij ∈ A do
8 for sij = 0 : 1 do
9 Updateλm

sij ;

10 end
11 Updatecmij as in (6.21) ;
12 end
13 end

FD Case

For the FD case, we need to replace constraint (6.6) with constraint (6.7) in problemPHm,

which will give us a new problem for the FD case, denoted asPFm. ProblemPFm can be solved

with a similar algorithm as in Algorithm 8.

6.5 System Model and Problem Formulation: The Multi-hop Case

We now consider the case where there may not be an LOS path between any pair of DEVs

in the network. Thus intermediate DEVs may be needed to relaytraffic for a source DEV to its

destination DEV. For a DEVi, recall that the set of DEVs that are within one-hop distanceis

denoted byΩ(i). AS before, we denote the session from DEVy to DEV z aswyz and the set of

all sessions asW, wherewyz ∈ W. Without loss of generality, we allow a source DEV to transmit

multiple sessions, each to a different destination DEV, anda destination DEV to receive multiple
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sessions, each from a different source DEV. We need to redefine the scheduling index variables for

the multi-hop case. For sessionwyz, define scheduling index variablesxm,wyz

ij as

x
m,wyz

ij =





1, link lij is activated to transmit session

wyz in time slotm

0, otherwise.

∀ lij , wyz. (6.22)

From the definitions ofxm,wyz

ij andtm (which is the same as that in the single-hop case), we

have thattm = 1 if
∑

wyz

∑
lij
x
m,wyz

ij ≥ 1; tm = 0 if
∑

wyz

∑
lij
x
m,wyz

ij = 0.

The probability that the state of linklij is sij at time slot(m + 1), i.e., λm+1
sij

, can now be

derived as

λm+1
sij

=


∑

wyz

x
m+1,wyz

ij


 (1− a− sij + 2asij)+


1−

∑

wyz

x
m+1,wyz

ij




1∑

s′ij=0

λm
s′ij

Pr(sij|s′ij), (6.23)

Let V m,wyz

ij (λm
sij
) be the expected amount of traffic of sessionwyz delivered by linklij from

time slotm to a future time slotM . We have

V
m,wyz

ij (λm
sij
) =

1∑

sij=0

λm
sij

1∑

a=0

Um(a|sij)
[
arijx

m,wyz

ij +

V
(m+1),wyz

ij (λm+1
sij

)
]
, for 1 ≤ m ≤M − 1. (6.24)

The expected amount of traffic delivered by linklij for sessionwyz from time slot 1 toM can be

derived as

V
1,wyz

ij (λ1
sij
) =

M∑

m=1

cmijx
m,wyz

ij , (6.25)
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wherecmij is the same as that in the single-hop case.

Recall that DEVy is the source of sessionwyz andΩ(y) is the set of one hop neighbors of

nodey. For DEVy we have

M∑

m=1

∑

j∈Ω(y)

cmyjx
m,wyz

yj ≥ Dyz, ∀ 1 ≤ y, z ≤ N, y 6= z. (6.26)

If DEV j relays traffic for sessionwyz andm′ is a time slot, then we have

m′∑

m=1

∑

i∈Ω(j)

cmijx
m,wyz

ij ≥
m′∑

m=1

∑

k∈Ω(j)

cmjkx
m,wyz

jk ,

∀ wyz, 1 ≤ j ≤ N, j 6= z, 1 ≤ m′ ≤M, (6.27)

which means that the traffic received by a DEV should be no lessthan the traffic it forwards for a

flow.

In the HD mode, the following capability constraint holds for any DEV.

∑

i∈Ω(j)

∑

wyz

x
m,wyz

ij +
∑

k∈Ω(j)

∑

wyz

x
m,wyz

jk ≤ 1,

∀ 1 ≤ j ≤ N. (6.28)

In the FD mode, we have the following capability constraint holds for any DEV.

∑

i∈Ω(j)

∑

wyz

x
m,wyz

ij ≤ 1;
∑

k∈Ω(j)

∑

wyz

x
m,wyz

jk ≤ 1,

∀ 1 ≤ j ≤ N. (6.29)

DEV z is the destination of sessionwyz. We have

M∑

m=1

∑

j∈Ω(z)

cmjzx
m,wyz

jz ≥ Dyz, ∀ wyz. (6.30)
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∑

wyz

∑

li∗j∗ 6=lij

|hi∗j|2Γ(θ(li∗j, li∗j∗))Γ(θ(lji∗ , lji))Ptx
m,wyz

i∗j∗

+
∑

wyz


 ∑

li∗j∗ 6=lij

|hi∗j|2Γ(θ(li∗j, li∗j∗))Γ(θ(lji∗ , lji))Pt + σ2 − γ−1|hij|2Pt


 x

m,wyz

ij

≤
∑

wyz

∑

li∗j∗ 6=lij

|hi∗j|2Γ(θ(li∗j, li∗j∗))Γ(θ(lji∗ , lji))Pt, ∀ lij ∈ A. (6.31)

The SINR constraint (6.1) can be rewritten as (6.31) on top ofthe next page, which guarantees

that the SINR of each activated link at each time slot be abovethe SINR threshold.

We aim to minimize the total amount of time slots used to servethe traffic demands under

SINR and blockage constraints in the multi-hop network. Theproblem can be formulated as

(P3) min : τ =
M∑

m=1

tm (6.32)

s.t. Constraints (6.26), (6.27), (6.28), (6.30), (6.31)

tm





= 1, if
∑

wyz

∑
lij
x
m,wyz

ij ≥ 1

= 0, otherwise,
∀ m (6.33)

tm ≥ tm+1, ∀ m (6.34)

x
m,wyz

ij ∈ {0, 1} , ∀ lij , wyz,m. (6.35)

To formulate the problem when the DEVs can operate in the FD mode, we only need to

replace constraint (6.28) with constraint (6.29) in Problem P3. The new multi-hop problem for the

FD case is denoted as problemP4.

6.6 Solution Algorithms: The Multi-hop Case

The formulated problemP3 of the multi-hop case is much more complicated than the single-

hop problemP1. Therefore we develop a heuristic algorithm to solve problem P3. The basic idea

is: first, it determines the optimal transmission path for each data flow based on a certain reliability
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criterion; next, it maximizes the overall throughput of allthe data flows by deciding the set of links

to be activated at the current time slot based on the estimated link states and interference.

6.6.1 Path Selection Algorithm

To simplify our problem, we restrict that each data flow should be carried by one and only one

path. Denote a path for sessionwyz asP(yz) and the set of directional links that belong toP(yz)

asL(P(yz)). We define the reliability ofP(yz) as the joint reliability probability of all the links

alongP(yz), i.e.,

π(GP(yz)) =
∏

lij∈L(P(yz))

π(Glij) =
∏

lij∈L(P(yz))

Pr(g|b)lij
Pr(g|b)lij + Pr(b|g)lij

.

Naturally, if we define the link weight (for those valid linkslij) asωij = − log(π(Glij)), then

a shortest path routing algorithm will find the pathP(yz) with the largestπ(GP(yz)), i.e., the most

reliable path. In this chapter, we adoptDijkstra’s Algorithmto find the shortest path between the

source and destination DEV in the network, which has the largest reliability probability among all

possible paths.

6.6.2 Link Scheduling Algorithm

After determining the path for each data flow, we decide whichlinks to activate at each time

slot. Let the current time slot bem′, and denote asHm′

the set of sessions whose traffic demands

have not been satisfied yet at time slotm′. For a sessionwyz ∈ Hm′

, denote the number of its

packets that linklij has delivered at time slotm asfm,wyz

ij , 1 ≤ m ≤ m′. LetL(P(yz)) be the set

of links lij such that is along pathP(yz) and the traffic it has carried for the session up to time slot

m′ is less than the demandDyz. Also denote the set of relay nodes along pathP(yz) asR(P(yz)).
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∑

wyz∈Hm′

∑

li∗j∗∈L(Q(yz)),li∗j∗ 6=lij

|hli∗j |2G2
0Γ(θ(lij, li∗j∗))Γ(θ(lji∗ , lji))Ptx

m′,wyz

li∗j∗

+
∑

wyz∈Hm′


 ∑

li∗j∗∈L(Q(yz)),li∗j∗ 6=lij

|hli∗j |2G2
0Γ(θ(lij, li∗j∗))Γ(θ(lji∗ , lji))Pt + σ2 − γ−1|hlij |2G2

0Pt


 x

m′,wyz

lij

≤
∑

wyz∈Hm′

∑

li∗j∗∈L(Q(yz)),li∗j∗ 6=lij

|hli∗j |2G2
0Γ(θ(lij, li∗j∗))Γ(θ(lji∗ , lji))Pt, for all lij ∈ L(Q(yz)).

(6.40)

For the HD case, we aim at maximizing the instant overall throughput of links inL(P(yz)),

for all wyz ∈ Hm′

at time slotm′, by solving ProblemLSm′

h defined as follows.

LSm′

h min :
∑

wyz∈Hm′

∑

lij∈L(P(yz))

cm
′

ij x
m′,wyz

ij (6.36)

s.t. SINR Constraint(6.40) (at top of the next page)

m′−1∑

m=1

f
m,wyz

ij + cm
′

ij x
m′,wyz

ij ≤
m′−1∑

m=1

f
m,wyz

jk , ∀ lij ,

ljk ∈ L(P(yz)), j ∈ R(P(yz)), wyz ∈ Hm′

(6.37)
∑

wyz∈Hm′

∑

lij∈L(P(yz))

x
m′,wyz

ij +
∑

wyz∈Hm′

∑

ljk∈L(P(yz))

x
m′,wyz

jk

≤ 1, ∀ j ∈ R(P(yz)), wyz ∈ Hm′

(6.38)

x
m,wyz

ij ∈ {0, 1} , ∀ lij ∈ L(P(yz)), wyz ∈ Hm′

. (6.39)

Constraint (6.37) indicates the flow conservation conditionfor each relay node, i.e., the vol-

ume of transmitted data must not exceed the volume of received data. Constraint (6.38) corre-

sponds to the HD constraint (6.28) in ProblemP3. ProblemLSm′

h can be solved using theBinary

Integer Programmingtechnique [155]. The greedy algorithm for solving problemP3 is given

in Algorithm 9.
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Algorithm 9: Greedy Algorithm for Problem P3
1 Set link weights to− log(π(Glij )) for all valid link lij ;
2 Use Dijkstra’s Algorithm to find the shortest pathP(yz) for each sessionwyz ;
3 m′ = 1 ;
4 while Hm′ 6= ∅ do

5 SolveLSm′

h to obtainxm
′,wyz

ij , for all lij ;

6 Schedule link transmissions according tox
m′,wyz

ij ’s, for all lij ;

7 m′ = m′ + 1 ;
8 UpdatesHm′

andL(P(yz)), for all wyz ∈ Hm′

;
9 for lij ∈ L(P(yz)), ∀ wyz ∈ Hm′

do
10 for sij = 0 : 1 do
11 Updateλm′

sij ;

12 end
13 Updatecm

′

ij ;
14 end
15 end

In the FD case, the flow conservation constraint for a relay nodej ∈ R(P(yz)) becomes

m′−1∑

m=1

f
m,wyz

ij + cm
′z

ij x
m′,wyz

ij ≤
m′−1∑

m=1

f
m,wyz

jk + c
m′,wyz

jk x
m′,wyz

jk ,

∀ lij, ljk ∈ L(P(yz)), j ∈ R(P(yz)), wyz ∈ Hm′

. (6.41)

The capability constraint for relay nodej ∈ R(P(yz)) becomes

∑

z∈H(m′)

∑

lij∈L(P(yz))

x
m′,wyz

ij ≤ 1, ∀j ∈ R(P(yz)), wyz ∈ Hm′

(6.42)

∑

z∈H(m′)

∑

ljk∈L(P(yz))

x
m′,wyz

jk ≤ 1, ∀j ∈ R(P(yz)), wyz ∈ Hm′

. (6.43)

Replacing constraints (6.37) and (6.38) inLSm′

h with constraints (6.41)–(6.42) yields the in-

stant throughput maximization problem for the FD case for the multi-hop scenario, denoted as

problemLSm′

f . The FD problemLSm′

f can be solved with a similar algorithm as in Algorithm 9.
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Table 6.1: Simulation Parameters
Parameter Value Parameter Value

Pt 1 watt |hlij |2θ(li∗j, li∗j∗) [0, 1], ∀lij
σ2 0.1 watt rij 10 pkts/slot,∀lij
N 10 Dz [50, 60] pkts,∀z

6.7 Simulation Study

6.7.1 Simulation Setup

In this section we use Matlab simulations to validate the performance of the proposed algo-

rithms. Unless otherwise specified, the values of simulation parameters are set as shown in Ta-

ble 6.1. Each simulated point in the figures is obtained by repeating the simulation 50 times with

different random seeds, and 95% confidence intervals are computed and plotted in the figures as

error bars to guarantee credible results. We compare the performance of our proposed algorithms

with that of a benchmark scheme proposed in [158]. The benchmark scheme does not consider link

blockages when making routing selection and solving the subproblems with the greedy method.

With the benchmark scheme,cmij = 1, for all lij, andπ(Glij) = 1, for all lij, in routing selection. It

randomly selects a route. Note that the capacity of a link is affected by the noise plus interference

level in the benchmark scheme. We set the total number of sessions in the network equals toN
2

,

whereN is the total number of DEVs. We allow a DEV to have multiple sessions.

6.7.2 Simulation Results and Analysis

The performance of the proposed algorithms under differentSINR thresholdsγ is shown

in Fig. 6.2 and Fig. 6.3 for the HD mode single-hop and multi-hop case, respectively. All the

algorithms have degraded performance whenγ is increased. The reason is that a largerγ means

that for a specific link, given a fixed channel gain and transmission power, a lower interference

can be tolerated. Fewer concurrent transmissions can be accommodated in the system to leverage
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Figure 6.2: Number of time slots to serve the traffic demand under various SINR thresholdγ: HD
and single-hop case (Pr(g|b)lij = Pr(b|g)lij = [0.3, 0.6], for all lij).
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Figure 6.3: Number of time slots to serve the traffic demand under various SINR thresholdγ: HD
and multi-hop case (Pr(g|b)lij = Pr(b|g)lij = [0.4, 0.7], for all lij).

spatial reuse and the throughput of each time slot is reduced. Therefore, the number of time slots

needed to satisfy the traffic demand is increased asγ grows.

It would also be helpful to examine constraint (6.20) of problemPHm in Section 6.4. It can be

seen that ifγ is increased, the value of the left hand side (LHS) of (6.20) will also increase, which

means that constraint (6.20) will become tighter. Therefore, PHm will have a smaller solution

space and its optimal objective value may be reduced. The system throughput in each time slot

may be reduced as a result and the time length needed to schedule all the traffic will be prolonged.
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Figure 6.4: Number of time slots to serve the traffic demand under various transition probabilities
for the mmWave channels,Pr(g|g)lij : HD single-hop case (Pr(g|b)lij = [0.2, 0.4], andγ = 0.4).

A similar observation can be obtained for the multi-hop caseif we check the SINR constraint in

the subproblemLSm′

h .

The performance gap on scheduling time between our proposedscheme and the benchmark

scheme under different minimum link state transition probabilities minlij{Pr(g|g)lij} is shown in

Figs. 6.4 and 6.5 for the HD single-hop case and HD multi-hop case, respectively. It can be seen

from (6.9) that as Pr(g|g)lij = 1 − Pr(b|g)lij is increased, the stationary probability of linklij in

the good state is increased. Thus more links may have successful concurrent transmissions at each

time slot, which improves the network throughput. It may take less time slots for a DEV to deliver

the requested packets to its neighboring DEVs; for the DEVs,the transmission delay between two

adjacent DEVs on a path will be shortened due to a greater probability of successful transmissions.

These two factors are the main reasons for the shortened scheduling time when minlij{Pr(g|g)lij}

is increased.

However, the decrement cannot go indefinitely and the time length needed will converge to

a certain threshold, regardless of the increase of minlij{Pr(g|g)lij} once it goes beyond a specific

value. The main reason is that since a certain level of SINR must be satisfied for a successful

transmission, the maximum number of links that can transmitconcurrently is limited. Even if

π(Glij) is large for alllij, i.e., each link has a high probability of being in good state, the maximum
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Figure 6.5: Number of time slots to serve the traffic demand under various transition probabilities
for the mmWave channels,Pr(g|g)lij : HD multi-hop case (Pr(g|b)lij = [0.3, 0.7], andγ = 0.4).

number of concurrent transmission links is still limited. Therefore we have a bounded network

throughput at each time slot and thus a lower bound on the minimum time length to schedule the

traffic demand of all the links.

Figures 6.6 and 6.7 present the performance comparison of the proposed and the benchmark

algorithm under different SINR thresholdsγ for the FD single-hop case and FD multi-hop case, re-

spectively. We can see that for all the algorithms, FD achieves a better performance than HD does.

The main reason is that FD allows more concurrent transmissions. The FD network is expected to

achieve a higher throughput than the HD network, which leadsto a lower scheduling time. The

proposed scheme outperforms the benchmark in both FD and HD modes, since it considers the

dynamic link states and always chooses the best set of links in each time slot.

Examining constraints (6.6) and (6.7) for the single-hop case will also help us to better under-

stand the advantage of FD over HD. The HD constraint (6.6) is asubset of the FD constraint (6.7).

The feasible solution region for the FD case is larger than that of the HD case. Thus a better so-

lution may be found and the optimal objective value can be increased, which translates to a higher

network throughput for FD. Similar observations can be madefor the multi-hop case by checking

constraints (6.38), (6.42), and (6.43).

The performance gap between the proposed algorithms and thebenchmark under different link

state transition probabilities minlij{Pr(g|g)lij} for the FD single-hop case and FD multi-hop case
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Figure 6.6: Number of time slots to serve the traffic demand under various SINR thresholdγ: FD
single-hop case (Pr(g|b)lij = Pr(b|g)lij = [0.3, 0.6], for all lij).
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Figure 6.7: Number of time slots to serve the traffic demand under various SINR thresholdγ: FD
multi-hop case (Pr(g|b)lij = Pr(b|g)lij = [0.4, 0.7], for all lij).

is shown in Figs. 6.8 and 6.9, respectively. The previous explanation for the changingγ scenario

at the FD mode is also applicable for the simulation results of the changing minlij{Pr(g|g)lij}

scenario.

6.8 Conclusion

In this chapter, we investigated the problem of minimum timelength scheduling in mmWave

Ad Hoc networks under both traffic demand and SINR constraints. We considered both single-

hop and multi-hop ad hoc networks and HD and FD transmission scenarios. We formulated the
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Figure 6.8: Number of time slots to serve the traffic demand under various transition probabilities
for the mmWave channelsPr(g|g)lij : FD single-hop case (Pr(g|b)lij = [0.2, 0.4], andγ = 0.4).
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Figure 6.9: Number of time slots to serve the traffic demand under various transition probabilities
for the mmWave channelsPr(g|g)lij : FD multi-hop case (Pr(g|b)lij = [0.3, 0.7], andγ = 0.4).

minimum time length scheduling problems adopting a generaldirectional interference model and a

dynamic channel blocking model, and developed effective solution algorithms. Simulation results

validated the performance of our proposed algorithms by comparison with a benchmark scheme.
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Chapter 7

Conclusions

In this dissertation work, we investigate the problem of QoS/QoE provision in emerging wire-

less networks such as mmWave and networks. mmWave technology and CR technology was re-

cently proposed to enhance the wireless network capacity, but both are suffered from channel

condition uncertainty, therefore there are many technicalchallenges for incorporating these tech-

niques to existing wireless networks. For instance, how to adjust the coding schemes to adapt to

the changing channel conditions, how to coordinate the transmissions of the PUs and that of the

CUs, and how to optimally assign radio resources and adopt transmission power for users, and how

to optimally coordinate the concurrent transmissions of neighboring links, are crucial issues for the

performance improvement of mmWave and CR networks. To address these challenges motivates

this dissertation work.

In chapter 2, the problem of streaming uncompressed HD videoover mmWave wireless net-

works is investigated. The objective is to minimize the expected mean square error of the recon-

structed video quality. An MD-FEC coding scheme that partitions the pixel bits is proposed so that

more important bits have higher level of protection thus have a higher probability of recovery at

the receiver, an interleaving based transmission strategyto avoid busty errors in transmission. We

formulated an Nonlinear Integer Programming problem for the optimal partition of the pixel bits

and interleaving of packets, which is NP-hard, and derived asub-optimal solution for this prob-

lem with much lower computational complexity. The performance of the proposed scheme was

evaluated with simulations.

In chapter 3, the problem of video streaming over CRNs is investigated, aiming at maximizing

the CU Quality of Experience (QoE) by optimal designs of spectrum sensing and access policies.
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Due to the non-linearity of the QoE model, we solve the spectrum sensing problem and the spec-

trum accessing problem separately. The CUs chosen to sense a channel is optimized such that the

false alarm probability of the channel is minimized , and theCUs allowed to access a channel is

optimized such that the network throughput is maximized. For the case where each CU can sense

and access at most one channel at a time, we derive simple algorithms to solve the channel sensing

and accessing problem and prove its optimaility. For the case where each CU can sense multiple

channels but access only one channel, we presented a more general, integrated formulation. Based

on an assumption on the spectrum sensor configuration, we developed a two-step approach to solve

the integrated problem and proved its optimality. The proposed schemes were shown to outperform

several alternative schemes in the simulation study.

In chapter 4, the problem of video streaming over CRNs is investigated, aiming at maximiz-

ing the CU Quality of Service (QoS) by optimal designs of spectrum sensing, access and power

allocation. Different with the previous work which solves the spectrum sensing problem and ac-

cessing problem separately, in this chapter the spectrum sensing, channel assignment, and power

allocation strategies are jointly optimized to maximize the QoS for the CUs. What’s more, in this

chapter each CU can sense and access multiple channels at a timeWe show that the formulated

Mixed Integer NonLinear Programming problem can be decomposed into two sub-problems: SP1

for the optimal spectrum sensing strategy, and SP2 for the optimal channel assignment and power

allocation, without sacrificing optimality. We show that SP1 can be optimally solved under cer-

tain conditions and develop an algorithm to solve SP2 iteratively in a distributed manner. We also

develop a heuristic algorithm for spectrum sensing with greatly reduced requirement on CU hard-

ware, while still achieving a highly competitive sensing performance. We analyze the proposed

algorithms with respect to complexity and time efficiency, and derive a performance upper bound.

The proposed algorithms are validated with simulations.

In chapter 5, the relay and link selection problem in a dual-hop mmWave network is studied.

The objective is to minimize the Maximum Expected Delivery Time among all Tx-Rx pairs by

jointly optimizing relay and link selection, while exploiting reflected mmWave transmissions and
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considering link blockage dynamics. We develop a Decomposition Principle to transform this

problem into two sub-problems, one for link selection and the other for relay assignment when

there is enough replays. We prove that the proposed scheme can achieve an optimality gap of just

1 time slot at greatly reduced complexity. We also develop a heuristic scheme to handle the case

when there is no enough relays. The proposed schemes are validated with simulations with their

superior performance observed.

In chapter 6, the problem of minimizing the scheduling time length to serve users traffic de-

mand by user scheduling in one hop and multi-hop mmWave wireless networks is studied. Differ-

ent with the previous chapter which considers the outdoor transmission environment and assumes

the links arepsudo-wired, in this chapter we consider the indoor transmission environment and

there are interference between neighboring links and thus the psudo-wiredassumption doesn’t

hold. Channel conditions change overtime, and at each time slot, the PNC decides which users

should access the channel based on the possible channel state at current slot, aiming at maximizing

the long term utility of the whole network. The formulated problem incorporates a flexible interfer-

ence model for directional transmissions and a Markov chainbased blockage model. We propose

efficient algorithms with greatly reduced complexity to solve the one-hop problem and multi-hop

problem, respectively. For the one-hop problem, the instant network throughput is maximized at

each time slot; for the multi-hop problem, we first fix the optimal routing path for a long term and

then maximizes the instant network throughput. In this way,we achieve a balance between long

term utility and short term utility. The performance of the heuristic algorithm is validated with

simulations.
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