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Abstract

The control of sawtooth oscillations is an active area of tokamak research. The sawtooth

oscillation is driven by ohmic heating of the core plasma until the safety factor drops below

one triggering the growth of an m = n = 1 kink-tearing mode. Large sawtooth oscillations

need to be avoided in ITER, since they can trigger neoclassical tearing modes and edge

localized modes resulting in loss of plasma confinement in some cases. However, small

sawtooth oscillations may be beneficial in preventing impurity and helium ash accumulation

in the plasma core.

Sawtooth oscillations are observed in the Compact Toroidal Hybrid (CTH), a current-

carrying stellarator/tokamak hybrid device. CTH has the unique ability to change the rela-

tive amount of applied vacuum rotational transform from stellarator coils to the rotational

transform generated by the plasma current. The vacuum rotational transform is systemati-

cally varied from 0.02 to 0.13 to observe changes in the sawtooth oscillation. Three two-color

soft x-ray cameras were constructed and installed on CTH. Each two-color camera employs

two 20-channel diode arrays to detect the signatures of sawtooth instabilities. The diag-

nostic primarily measures bremsstrahlung radiation which is dependent on temperature, or

thermal kinetic energy, of electrons within the plasma. The sawtooth instability is a periodic

rearrangement of the core plasma thermal energy. Therefore, the bremsstrahlung radiation

is strongly tied to the dynamics of the sawtooth oscillation.

Sawteeth observed within CTH are tokamak-like despite employing a three-dimensional

confining field because: (1) the presence of the m = n = 1 kink-tearing mode, (2) the

monotonically decreasing rotational transform profile is dominated by the plasma current not

the vacuum rotational transform, and (3) the measured scaling of the normalized inversion

surface radius with total rotational edge transform.
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The measured sawtooth period decreases by a factor of two over a vacuum rotational

transform from 0.02 to 0.13. The sawtooth amplitude is observed to decrease with increasing

levels of 3D field, as quantified by the amount of vacuum transform imposed. The measured

crash time of the sawtooth oscillation does not appear to depend of the amount of vacuum

transform applied, indicating that the final reconnection dynamics of the m = 1 and n = 1

mode are not significantly affected by the 3D stellarator fields.

Previous numerical simulations show that the internal kink mode is significantly desta-

bilized with increasing flux surface elongation of the q = 1 surface. The experimental results

indicate that the decrease in sawtooth period and amplitude is correlated to the mean elonga-

tion of the non-axisymmetric plasmas within CTH. This dissertation describes the sawtooth

theory for an axisymmetric plasma, the development of the two-color diagnostic used to

characterize the sawtooth oscillation, and the properties of the sawtooth oscillation observed

in the plasmas within CTH.
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Chapter 1

Introduction

Fusion is a process that takes place naturally within the stars of the universe, such as the

Sun in our solar system, in which two light nuclei collide into each other producing a heavier

nuclei accompanied by the release of energy. The ability to reproduce fusion reactions in a

controlled environment and harvesting the energy released during the process would provide

a clean energy source for years to come.

Reproducing the fusion process of joining two similarly charged nuclei together and

capturing the energy is not without its challenges. To produce a fusion reaction the two

light nuclei must have enough kinetic energy to overcome the mutual Coulomb repulsion

between the nuclei. The excess energy from the fusion reaction needs to be captured and

transferred into electrical energy to be put on the electrical grid efficient enough to have a

net gain in energy. Two of the more promising techniques to produce a fusion reaction are

internal confinement and magnetic confinement fusion. Internal confinement fusion is the

process of rapidly heating a small amount of thermonuclear fuel, usually by compression of

the target through x-rays induced by lasers.1 Magnetic confinement holds a hot plasma with

magnetic fields long enough and at high enough density that the random thermal collisions

between light nuclei will produce fusion. The largest magnetic confinement device is currently

being constructed in France, is known as ITER.2

The plasmas used in magnetic confinement can be created by heating a gas, such as

deuterium, increasing the thermal velocity of the atoms. The deuterium gas is pumped

into a vacuum within a container (called the vacuum vessel) and typically heated up with

electromagnetic waves or by ohmic heating. The hot atoms randomly collide into each-

other and some of those collisions result in the stripping of an electron off of the deuterium
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atom electrically breaking the gas down and forming a plasma. For a fusion reaction, the

plasma must contain the correct nuclei, such as deuterium and tritium, at an even higher

temperature (100 million degrees centigrade).3 At this temperature the nuclei have enough

thermal kinetic energy to overcome the mutual Coulomb repulsion between the nuclei. Since

particles within the plasma have an electrical charge, the plasma can be confined using

magnetic fields through the Lorentz force. The plasma will cool rapidly if it comes into

contact with the vacuum vessel; therefore, the plasma is kept in a magnetic bottle away

from the vacuum vessel.

One of the major challenges of magnetic confinement is not only to contain the plasma

with magnetic fields but to ensure the stability of the system once it is confined. Destabi-

lizing forces within the plasma arise from current or pressure gradients which may drive an

instability and lead to a loss of confinement. One form of a pressure-driven instability which

limits the maximum current that can be driven in the plasma core for a given magnetic field

is the sawtooth instability. The sawtooth instability primarily effects the core of the plasma

and does not lead to a loss of confinement but limits plasma performance and may trigger

other deleterious instabilities. The properties of the sawtooth instability are described in

detail in this thesis as well as how changing a three-dimensional magnetic confining field

alters its characteristics.

1.1 Magnetic confinement of a plasma

The interaction between the magnetic field, ~B, and the charged particles within the

plasma is described by the Lorentz force:

~F = q~v × ~B, (1.1)

where q is the charge of the particle and ~v is the velocity of the particle. A charged particle

with a non-zero component of the velocity perpendicular to the magnetic field will experience
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an attractive force towards the magnetic field line leading to circular gyro-motion about the

field line. In a plasma, the particles follow helical orbits around the field lines due to their

combined parallel and perpendicular motion. The particle will proceed to orbit around the

field line until an external force interacts with the particle such as collisions with other

particles.

To confine a plasma, magnetic field lines are oriented in order for charged particles to

not intersect with the vacuum chamber. This can be accomplished using a solenoid forming a

cylindrical plasma column known as a θ-pinch. However, the charged particles will escape the

cylindrical plasma column at both ends due to their parallel velocity, v‖, along the magnetic

field lines. The parallel linear velocity results in a short confinement time, approximately

equal to the length of the cylinder divided by v‖. Therefore, a cylindrical plasma column is

not a practical approach to magnetic confinement.

The next logical step to confine a plasma would be to connect the ends of the cylinder

together to prevent end-losses, creating a torus. The basic geometry of a torus is shown in

figure 1.1. They are described by two different coordinate systems, the first one is from the

center of the toroid denoted by the red circle. The major radius, R, is given a subscript if it

is in the center of the plasma, R0. The vertical distance above the mid-plane is given by Z

and the toroidal angle, φ, increases counter-clockwise as seen from looking down upon the

torus, the negative ẑ direction. From the center of the plasma, denoted by the blue square

a pseudo-coordinate system is defined by the minor radius, r, measured from the end of the

major radius, R0, and is at a maximum, a, when it is at the edge of the plasma. At any

toroidal location, the poloidal angle, θ, is zero at most outboard side increasing to θ = π
2

at

the topmost portion of the torus, Z > 0, and to θ = π on the inboard of the torus. The

3



Figure 1.1: The toroidal magnetic field geometry illustrating the poloidal direction, θ,
toroidal direction, φ, the distance from the origin, major radius R0, plasma minor radius, a,
and the vertical distance above the mid-plane, Z.

conversion between the coordinate systems is given by,

R =R0 + r cos(θ)

z = r sin(θ)

φ =φ

(1.2)

There are many other magnetic field arrangements to confine a plasma but the configurations

discussed in this thesis are toroidal in shape, a tokamak and a stellarator.

If a toroidal device only employed toroidal magnetic fields the plasma will experience a

net outward drift leading to a loss of confinement. This is due to the effect that Lorentz force

(given by equation 1.1) has on positive and negative charged particles. Similarly charged

particles will group in the either the top or bottom regions of the plasma. This charge

distribution creates and electric field in the ẑ direction. The plasma experience and outward

force in the radial direction due to E×B drift from the vertical electric field. To counter-act

this drift, a poloidal magnetic field is added creating a helical magnetic field configuration,
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similar to the stripes on a barber pole. A charged particle traveling along the helical magnetic

field line still undergoes a drift due to the Lorentz force. However, due to the helical magnetic

field the drift is away from the original particle location half of the time and towards the

original point the other half. The particles will be confined within the plasma since the

net motion as the particle progress along the helical field cancels out. The helicity of the

magnetic fields is characterized by the rotational transform:4

ι- =
ι

2π
=

dϕp

dϕt

. (1.3)

Where ϕp represents the poloidal flux and ϕt is the toroidal flux. The toroidal flux is given

by,4

ϕt =

∫
~B · d ~Aφ (1.4)

and the poloidal flux by,

ϕp =

∫
~B · d ~Aθ. (1.5)

The helical field needed for plasma confinement in a tokamak is generated from a com-

bination of toroidal external magnetic field coils and a poloidal magnetic field produced by

the toroidal plasma current. The toroidal field is established by external magnetic field coils

and the poloidal field is induced by a toroidal current driven through the plasma. This com-

bination of inducing the poloidal fields results in flux surfaces that do not vary with toroidal

angle. Figure 1.3 (a) shows the last closed flux surface of an axisymmetric tokamak. One

of the largest tokamaks currently under construction is ITER in southern France. ITER

is an important stepping stone for experimental tokamaks with the goal of producing more

thermal energy from fusion reactions than supplied from auxiliary heating.2

In contrast to a tokamak, a stellarator does not drive an internal plasma current but

uses external coils to provide both toroidal and poloidal magnetic fields. Stellarators are non-

axisymmetric but exhibit a stellarator symmetry.5,6 Stellarator symmetry has the property

that the observer will see the same flux surfaces looking one way down the torus as the
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opposite direction but will be flipped upside-down relative to the other. Written as functions

defining points on the flux surface, R and Z:

[R(Φ, θ, φ), Z(Φ, θ, φ)] = [R(Φ, θ,−φ),−Z(Φ, θ,−φ)]. (1.6)

R and Z are described in cylindrical coordinates with the poloidal and toroidal angles of θ

and φ. Φ is the radial flux coordinate.

In addition to stellarator symmetry, stellarators also have a field period symmetry mean-

ing that the magnetic structure is identical at discrete toroidal locations. The field periodic

magnetic flux surfaces are related by:

[R(Φ, θ, φ), Z(Φ, θ, φ)] = [R(Φ, θ,
2πn

N
+ φ), Z(Φ, θ,

2πn

N
+ φ)]. (1.7)

The number of field periods is N while n is any integer. Figure 1.3 (b) shows the last closed

flux surface of a plasma having both a stellarator and a ten-fold field periodicity.

The helical fields of a torus shaped plasma form a set of nested flux surfaces which are

also surfaces of constant pressure. The dynamics of the plasma within these magnetic fields

may be described by the theory of ideal magnetohydrodynamics (MHD). An excellent review

of ideal MHD is given by Friedberg.7,8 The relationship between pressure and magnetic flux

surfaces can be shown using the ideal MHD force balance equation:

∇p = ~J× ~B, (1.8)

where ~J is the current density and p is the pressure. By definition, ∇p is perpendicular to

the constant pressure contours. The dot product of the magnetic field with equation 1.8

gives:

~B · ∇p = ~B · (~J× ~B) = 0. (1.9)
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Figure 1.2: (a) The last closed flux surface of an axisymmetric tokamak. (b) The last closed
flux surface of a 10 field period stellarator. The colors indicate magnetic field strength.
Reprinted from Donald A. Spong. 3D toroidal physics: Testing the boundrys of symmetry
breaking. Physics of Plasmas, 22(5), 2015, with the permission of AIP Publishing.
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Therefore, the magnetic field lines given by ~B are perpendicular to ∇p and must lie on the

surfaces of constant pressure. These surfaces of constant pressure lie on the magnetic flux

surfaces. In a confined plasma there are many of these surfaces nested within each other.

Figure 1.3 shows the nested flux surfaces for the plasma confinement machine used in this

thesis, the Compact Toroidal Hybrid (CTH). CTH is a combination of a tokamak and a

five-field periodic stellarator and can vary the amount of rotational transform from a near

axisymmetric tokamak-like equilibrium to a non-axisymmetric stellarator equilibrium. CTH

was designed to investigate the stability limits of current-carrying plasmas while employing

strong three-dimensional magnetic field shaping.

Figure 1.3: Nested magnetic flux surfaces on the Compact Toroidal Hybrid. The color gra-
dient represents the magnetic field strength (blue is low, yellow is high) with some magnetic
field lines in white.
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Figure 1.4: The sawtooth oscillation observed by the SXR diagnostic installed on CTH.
The sawtooth consists of a ramp phase, a trigger of a ideal MHD instability within the
plasma, and a fast collapse phase expelling thermal energy from the core of the plasma.
The oscillation is clearly captured on the central channel signal. The SXR signals outside of
the inversion radius reveal inverted sawteeth due to the sudden increase in thermal energy
outside the core of the plasma during a sawtooth crash.

1.2 The sawtooth instability

One of the major hurdles with magnetic confinement is the stability of the confined

plasma. The stability of the plasma is determined by the growth rate of infinitesimal pertur-

bations that arise within the plasma. One technique to determine the stability of the system

is to start with the ideal MHD equations and add infinitesimal perturbations to the velocity,

magnetic field, electric field, etc. This technique is described in further detail in chapter 5.

The primary conclusion from ideal MHD stability analysis is that the plasma is unstable if

any perturbation makes the change in potential energy negative. The type of stability is

classified from its free-energy source, typically from pressure and current gradients within

the plasma. Instabilities within the plasma need to be avoided or minimized in order to

confine the plasma long enough to produce energy from fusion reactions.

This thesis focuses on a particular tokamak phenomenon, the sawtooth oscillation, which

is a periodic rearrangement of the core plasma temperature and loss of core plasma thermal

confinement due to MHD instability. Sawteeth were first observed though a soft x-ray (SXR)

diagnostic in the ST tokamak in 1974.9 Three two-color SXR cameras10 were constructed and

9



installed on CTH to detect the signatures of sawtooth instabilities. A typical sawtoothing

oscillation observed by the two-color SXR diagnostic on CTH is shown in figure 1.4. The

sawtooth cycle can be divided into three distinct events: (i) the ramp phase; (ii) the initiation

of the m = n = 1 instability; (iii) the crash phase. The central channel signal shown in

figure 1.4 shows the ramp phase and the crash phase, but the m = n = 1 instability is not

clearly evident from these signals. The SXR signals outside of the inversion radius reveal

inverted sawteeth due to the sudden increase in thermal energy outside the core of the

plasma during a sawtooth crash. The expulsion of the thermal energy from the plasma core

during a sawtooth crash has been observed experimentally with two-dimensional images of

the electron temperature.11 An in-depth description of the phenomenology of the sawtooth

oscillation is found in chapter 5.

Depending on the size of the inversion radius and core temperature drop, sawtooth

oscillations are not inherently bad for a confined plasma. Small sawteeth can be beneficial

by flushing impurities and helium ash from the core of the plasma.12,13 Conversely, sawteeth

with a large temperature perturbations and inversion radii have many deleterious effects on

tokamak discharges. Plasmas with large sawteeth are more susceptible to Edge Localized

Modes (ELMs) and may lead to the degradation of core confinement. ELMs occur in short

bursts leading to the relaxation in temperature, pressure, and density gradients at the plasma

edge.14 Long period sawteeth can seed neoclassical tearing modes (NTMs).15 Tearing modes

take the form of magnetic islands which, in the case of NTMs, are long-lived and require a

seed perturbation in order to be driven unstable.16 NTMs are triggered at lower beta (the

ratio of plasma pressure to the magnetic field pressure) as the sawtooth period increases

limiting the efficiency of which the magnetic field confines the plasma.17 However, sawteeth

with core temperature drops of a fraction of a keV and an inversion radius less than 40% of

the plasma radius are thought to be tolerable in ITER.18 Therefore, the control of sawteeth

are an important issue for ITER operation.
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There are many good review articles summarizing different aspects of the sawtooth

oscillation. An excellent, succinct review of the different theoretical models of the sawtooth

oscillation is given by Wesson.3 In contrast, Hastie gives a more complete review of the

sawtooth theory and experimental data up to 1997.19 Migliuolo gives a reivew of the ideal

and resistive m = 1 modes in tokamaks.20 The ITER physics review gives an excellent

summary of the sawtooth oscillation corresponding to high temperature tokamaks and the

effect of alpha particle cooling.18 A book concerning the magnetohydrodynamic stability in

tokamaks was written by Zohm which provides the theoretical derivation behind the ideal

MHD instability.21 Freidberg wrote about the stability analysis out to the fourth order

and contains toroidal corrections to ideal magnetohydrodynamic stability of the sawtooth

oscillation.8 Finally, Chapman wrote about the recent advances in controlling the sawtooth

oscillation.22

1.3 Thesis overview

The remainder of this dissertation discusses the primary diagnostic used to parameterize

the sawtooth oscillations observed in CTH. Chapter 2 is a physical description of the CTH

device and a description of the diagnostics used to characterize the plasmas within CTH.

An example plasma discharge and typical plasma parameters used in this thesis is presented

followed a short description of the equilibrium reconstruction code used to characterize the

rotational transform and other plasma parameters.

Chapter 3 contains a complete discussion of the construction and calibration of the

two-color SXR diagnostic installed on CTH. The chapter begins by describing the hardware

structure of the internal components and the assembled camera. The signal amplifiers as well

as a discussion of the design choices for each main component of the amplifier is presented.

Relative calibration and measurement of the change in poloidal viewing extent of the diodes,

known as the geometric factor, is addressed.

11



Chapter 4 addresses the validity of the two-color measurement. It describes the common

x-ray sources emitted from a CTH plasma and models them using an atomic code database,

ADAS.23 The chapter also presents a comparison between the observed line radiation with

the simulated ionization states using ADAS. The theory of the electron temperature mea-

surement using the continuum radiation emitted from the plasma is presented. At the end

of chapter 4 is an estimation of the electron temperature using the two-color technique.

These measurements are then compared to electron temperature inferred from the soft x-ray

spectrometer and Spitzer’s resistivity.

Chapter 5 presents the observed effect of additional three-dimensional fields have on

sawtooth oscillations. It begins by deriving the ideal MHD stability theory implicating

a m = n = 1 instability as being the primary factor behind the sawtooth crash. The

Kadomtsev and Porcelli models of the sawtooth crash are described with an explanation of

the applicability of these models to the sawteeth observed within CTH. The observational

results of the addition of three-dimensional fields is presented.

Chapter 6 provides a discussion of the two-color diagnostic as well as the sawteeth

observed in CTH as well as suggestions for future work.

Additionally, three appendices are included to explain derivations of some of the pa-

rameters used. Appendix A describes the derivation of the geometric factor. The geomet-

ric factor is not used in this thesis but is important for tomographic reconstructions that

can be preformed with the emissivity or electron temperature data. Appendix B shows

the Computer-Aided Drafting (CAD) drawings of the two-color and bolometer components.

Appendix C gives a brief description of the computer codes written to analyze the data

presented in this thesis.
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Chapter 2

The Compact Toroidal Hybrid

The Compact Toroidal Hybrid (CTH) is a combination of a tokamak and a five-field

period stellarator. CTH is designed to investigate the stability limits of current-carrying

plasmas while employing strong three-dimensional magnetic field shaping. CTH can provide

a stable stellarator equilibrium then may induce a plasma current through an central trans-

former. The CTH external magnetic field coils are discussed in this chapter as well as the

ability to vary the amount of poloidal magnetic field generated by external coils relative to

that from internal plasma current. What follows is an example discharge showing the cre-

ation of a stellarator plasma followed by the induction of a plasma current. The diagnostics

used to measure basic plasma parameters are then discussed. The final section describes the

computational equilibrium reconstructions used to further diagnose the plasma.

2.1 CTH magnet coil set

Figure 2.1 shows the CTH magnetic field coils. The five-field periodicity of the flux

surfaces in CTH is due to a continuously wound Helical Field coil (HF; shown in red). The

HF coil wraps around the vacuum vessel five times in the poloidal direction for every two

transits in the toroidal direction. CTH uses two vertical field coils in order to produce closed

flux surfaces, the Main Vertical Field coil (MVF; shown in red) and the Trim Vertical Field

(TVF; shown in green). The MVF is connected in series with the HF and creates flux

surfaces that are not radially centered within the vacuum vessel. The addition of the TVF

shifts the flux surfaces towards center the vacuum vessel allowing for control of the major

radial position of the plasma. The Shaping Vertical Field coil (SVF; shown in magenta)

controls the elongation of the plasma but was not used for the data presented in this thesis.
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Figure 2.1: Drawing of the magnetic field coils shown in color on CTH. The vacuum vessel
is depicted in grey.

The Radial Field coil (RF; shown in dark blue) limits the vertical position of the plasma to

keep it centered in the vacuum vessel throughout the discharge.

CTH has a series of ten Toroidal Field coils (TF; shown in yellow). In contrast to a

tokamak, the majority of the toroidal field in CTH is generated by the HF coil. The TF

coils are used to vary the ratio of the toroidal to poloidal field strength. The HF and TF are

independently controlled, allowing a wide range of plasma configurations. CTH is equipped

with a central solenoid coil (OH; shown in teal) used to produce a toroidal loop voltage

inducing a plasma current, Ip, and generate ohmic heating. An extensive discussion of the

magnetic coils on CTH is discussed by Peterson24 and Stevenson.25
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Figure 2.2: Prior to plasma breakdown at 1.6 s, nested flux surfaces are created within CTH.
Gas is then puffed into the machine and ionized by ECRH creating a stellarator plasma,
outlined by the grey box. At 1.62 s, the ohmic transform is discharged producing a toroidal
loop voltage, inducing a plasma current and increasing the electron temperature and density.
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2.2 An example plasma discharge in CTH

Figure 2.2 is an example plasma discharge within CTH. Prior to plasma breakdown at

1.6 s, nested flux surfaces are created in CTH by energizing the magnetic field coils. Gas is

then puffed in, typically hydrogen, and ionized by Electron Cyclotron Resonance Heating

(ECRH) creating a stellarator plasma with an electron temperature ∼ 20 eV and a maximum

density of 4×1018 m−3. The transform of the outermost closed flux surface during this phase

of a discharge is referred to as the edge vacuum rotational transform, ι-vac(a). The edge

vacuum rotational transform is used as a proxy for the amount of 3D shaping, higher values

correspond to more highly shaped plasmas. CTH can vary the vacuum rotational transform

from a near axisymmetric tokamak-like equilibrium, ι-vac(a) = 0.02, to a non-axisymmetric

stellarator equilibrium, ι-vac(a) = 0.35. Figure 2.3a shows the effect that different magnetic

field strengths from the HF and TF coils have on the vacuum rotational transform. To

increase the vacuum rotational transform, the magnitude of the magnetic field from the HF

is increased to keep 〈|B|〉 ≈ 0.53 or 0.64. These values of 〈|B|〉 are important to ensure

that magnetic fields are resonant with the ECRH in order to ionize the gas puffed into the

machine. The direction of the magnetic field produced by the TF coil either adds or subtracts

to the field generated by the HF coil to decrease or increase the transform. The x-axis of

figure 2.3a corresponds to normalized toroidal flux and can be thought of a radial quantity

where a value of one is the Φ enclosed by the last closed flux surface. Figure 2.4a shows the

three-dimensional last closed flux surface for a typical ECRH discharge in CTH. The white

lines trace several field lines while the red and blue color shading indicates the strength of

the magnetic field from stronger to weaker. Flux surfaces as functions of R and Z is shown

in figure 2.4b for the half field period, φ = π
10
± nπ

5
, and in figure 2.4c for the full field period,

φ = nπ
5

.

CTH can operate purely as a stellarator, but for the discharges in this thesis the OH coil

was used to induce a plasma current. The induction of plasma current resistively increases

the electron temperature and further increases the electron density. In figure 2.2 the OH coil
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(a)

(b)

Figure 2.3: (a) Adjusting the ratio of the TF and HF coil currents (magnetic field magnitude)
allows for variation of the vacuum transform. Increasing the magnetic field strength of the
HF coil (orange arrow) increases the vacuum transform. The addition of the magnetic field
from the TF coil (purple arrow) will decrease the vacuum transform and if the magnetic
fields are in the opposite direction the vacuum transform increases (green arrow). (b) The
total rotational transform for a 35 kA discharge shown in black and the green line is the
vacuum transform for this discharge.
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is energized at 1.62 s. The addition of plasma current will increase the poloidal magnetic

field, increasing the poloidal flux.

The poloidal field may be written as a function of the plasma current through Ampère’s

law. For a large aspect-ratio machine with a circular cross-section, the cylindrical approxi-

mation of the rotational transform is defined as:3

ι-plasma(r) =
µ0R0Ip(r)

2πr2Bφ(r)
. (2.1)

The fact that the rotational transform is proportional to the Ip results in a monotonically

decreasing tokamak-like profile, shown in black in figure 2.3b. The rotational transform

produced at the outermost flux surface produced by the plasma and the external coils is

defined as the total rotational transform, ι-tot(a). It is related to the vacuum rotational

transform and the plasma contribution to the rotational transform through:

ι-tot(a) = ι-vac(a) + ι-plasma(a). (2.2)

The rotational transform from the addition of plasma current dominates the total rotational

transform. In some cases for discharges in this thesis it provides up to ∼ 96% of the total

rotational transform. The green line in figure 2.3b is the vacuum rotational transform for

that particular discharge, illustrating ι-vac(a)� ι-plasma(a).

An example of magnetic surfaces with plasma current is shown in figure 2.5a. Flux

surfaces as a function of R and Z are shown in figure 2.5b for the half field period, in

figure 2.5c for the field period. Typical ohmic plasma parameters for discharges used in this

thesis can be found in table 2.1.

2.3 CTH diagnostic suite

CTH has a set of diagnostics to measure basic plasma parameters. These diagnostics

measure fluctuations in the magnetic field, electron density, x-ray emission, plasma current,
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Parameter Definition Value
ne electron density 1− 3× 1019 m−3

Te electron temperature ∼ 150 eV
Ip plasma current 20− 50 kA
a plasma minor radius ∼ 0.17 m
R0 plasma major radius ∼ 0.74 m
〈|B|〉 magnetic field strength ≤ 0.5 T
ι-vac(a) vacuum rotational transform 0.018− 0.13
ι-tot(a) total rotational transform 0.21− 0.58

Table 2.1: Typical parameters for ohmic plasma discharges analyzed in this thesis.

(a)

(b) (c)

Figure 2.4: Magnetic flux surfaces for an ECRH discharge in CTH. (a) Three-dimensional
representation of the last closed flux surface color shaded from red (stronger) to blue (weaker)
representing magnetic field strength of the last closed flux surface. The white lines trace
several individual magnetic field lines. (b) The flux surfaces at the half field period. (c) The
flux surfaces at the field period.
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(a)

(b) (c)

Figure 2.5: Magnetic flux surfaces for a ohmic discharge in CTH. (a) Three-dimensional
representation of the last closed flux surface color shaded from red (stronger) to blue (weaker)
representing magnetic field strength of the last closed flux surface. The white lines trace
several magnetic field lines. (b) The flux surfaces at the half field period. (c) The flux
surfaces at the field period.
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Figure 2.6: Location of the diagnostics on CTH.

total radiated power, and H-alpha emission. The location of diagnostics on CTH is shown

in figure 2.6.

There are 50 magnetic pickup coils mounted inside and outside the vacuum vessel that

measure change in the magnetic flux. A complete description of the magnetic diagnostics

are discussed by Stevenson25 and Ma,26 but a short description will be given. Some of the

magnetic pickup coils, are simple loops wrapped around a cylindrical tube that is then bent

to form a circle which are used to measure the currents they enclose, known as Rogowski coils.

Since Rogowski coils only measure the current enclosed, the coils within the vacuum vessel
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measure only the plasma current. The Rogowski coils outside the vacuum vessel measure the

current in the vacuum vessel, Ivv, as well as the plasma current. The measurements from the

outer and inner Rogowski coils are subtracted to give Ivv. Knowledge of Ivv is important for

the eddy current model of the vacuum vessel used in reconstructions (see section 2.4). Eddy

currents produce large enough magnetic fields to perturb the magnetic field measurements

in the magnetic diagnostics. A discussion of the eddy current model can be found in a paper

by Ma26 or Stevenson.25

Segmented Rogowski coils are used in CTH to give a better spatial representation of

the magnetic fluctuations due to the plasma and are used to reconstruct the plasma current

profile. CTH has two full Rogowski coils at φ = 264 degrees and φ = 342 degrees and two

segmented Rogowski coils located at φ = 96 degrees and φ = 324 degrees. Measurement of

the radial flux is obtained by trapezoidal saddle coils located within the vacuum vessel at

φ = 288 degrees and shown in figure 2.6.

Local measurements of the poloidal and radial magnetic field are performed by six cube

coils located at φ = 108 degrees. The cube coils are two solenoids wrapped orthogonal to

each other around a cube and are symmetric about the mid-plane. The cube coils are used

to determine if the vertical location of the plasma.

A set of seven H-alpha detectors are installed on CTH at the φ = 252 degree port. H-

alpha detectors measure the radiation due to electrons decaying from the third to the second

energy level in hydrogen atom with a wavelength of 656.28 nm.27 The H-alpha detectors

indicate the amount of neutral hydrogen contained in the plasma, a cooler plasma will

generally have a higher H-alpha signals.

A three-channel millimeter wave interferometer is installed on CTH to measure the

line-integrated electron density of the plasma. One of the three chords passes through the

horizontal mid-plane, while the other two are symmetric above and below the mid-plane. A

complete description of the interferometer system is given by ArchMiller.28
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Two visible spectrometers (not shown in figure 2.6) are used to identify plasma impurity

content as well as determine which ionization states are present in the plasma. One spec-

trometer is sensitive to wavelengths between 200 and 600 nm with a ∼ 5 Å resolution. The

other spectrometer is sensitive to wavelengths between 200 and 300 nm with a much higher

∼ 0.7 Å resolution. The spectrometers are used to help quantify the effect of impurities on

the soft x-ray measurements developed for this thesis (see section 4.1.3).

CTH has an extensive collection of emissivity diagnostics consisting of three 20-channel

two-color soft x-ray cameras10 and two 20-channel bolometer cameras. The two-color soft x-

ray cameras are all located at φ = 252 degrees at poloidal angles: θ = 0, 60, and 270 degrees.

The design, construction, and effects of impurities are discussed in much further detail in

chapter 3 and chapter 4. The two bolometer systems are based on the two-color camera

design and are located at φ = 0 degrees, θ = 270 degrees and φ = 36 degrees, θ = 60 degrees

shown in figure 2.6.

A soft x-ray spectrometer by Amptek29 (model X-123SDD), used for central electron

temperature measurements is located at φ = 36 degrees, θ = 0 degrees. The spectrometer

primarily measures free-free bremsstrahlung radiation from electron and hydrogen or impu-

rity ion collisions. Photons from 900 eV up to 12 keV are measured during a typical ohmic

discharge on the CTH. Combining spectrometer data over many discharges is useful in de-

termining high-Z impurities within CTH. The spectrometer also has the capability to time

resolve photons over a eight specific energy ranges.

2.4 Equilibrium reconstructions using V3FIT

Equilibrium reconstruction is the process of determining MHD equilibrium properties

given a set of experimental measurements. Computational reconstruction of the plasma

equilibrium at specific times during the discharge is useful to estimate plasma parameters,

such as the rotational transform, when diagnostics are not available to directly measure a
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specific parameter. All of the reconstructions contained in this thesis use the V3FIT30 recon-

struction code. V3FIT calculates the most probable fit to the plasma current and pressure

profiles of a three-dimensional plasma. The code then minimizes the mismatch between the

experimental measurements and modeled signals based on the calculated equilibrium. The

V3FIT code uses VMEC31,32 as the MHD equilibrium solver. VMEC is an ideal MHD solver

used to calculate three-dimensional nested flux surfaces in non-axisymmetric plasmas.

Only magnetic diagnostics were used in the reconstructions performed for this thesis.

The primary purpose of reconstructions in this thesis is to calculate the vacuum and total

rotational transform. Unfortunately, the outer Rogowski coils are no longer operational and

a proxy model developed by Scott Massidda and Greg Hartwell is used to calculate the

vacuum vessel current:

Ivv = 1423.7Vloop + 0.048446 Ip + 33.3. (2.3)

Where Vloop is the average of four loop voltage measurements.
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Chapter 3

Design of the two-color SXR diagnostic

The measurement of soft x-ray (SXR) emission from laboratory plasmas is a long stand-

ing standard diagnostic for determination of equilibrium emissivity profiles and fluctuations.

Various methods are available for estimation of Te such as x-ray pulse height analysis,33,34

crystal spectrometer systems,35 and multi-foil filter techniques.36 The SXR camera system to

measure the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH) experiment

uses the two-foil method.37,38 Bremsstrahlung radiation is measured by two SXR cameras

viewing the same plasma volume through filters having different thicknesses and hence ef-

fective photon transmission cut-off energies. The ratio of these signals is related to the line

integrated value of Te along the viewing chord of a particular channel of the camera.

The two-foil technique has been used on a number of current-carrying axisymmetric

plasmas including reversed-field pinch,39,40,41 tokamak,42,43 and stellarator plasmas.44 Sim-

ilar systems using multiple (more than two) foils have also been developed recently.45 The

two-foil system developed on CTH has been designed to measure electron temperatures of

order 100 eV Determining the electron temperature from the two-foil system as well as the

effect of impurities on the measurement is discussed in chapter 4.

This chapter focuses on the design and calibration of the two-color SXR system on CTH.

The first section goes into detail about the modular hardware components of the diagnostic

internals. The chordal layout of the cameras is then discussed. Each chord of the two-color

diagnostic was designed to have a minimal toroidal and poloidal sampled volumes so as to

not have a large asymmetric change of flux surface structure over the viewed portion of the

stellarator plasma. What follows is an in depth discussion about the design and selection of

the electronic components and the measurement of attenuation of the signal from the filters.
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A relative diode calibration of each diode was conducted using an integrating sphere to

measure the response of each diode observing an identical surface. This calibration important

for the two-color diagnostic since it compares signals from different diodes to determine a

spatial temperature profile. A measurement of the effect of the apparent change in slit width,

the geometric factor, is then discussed.

3.1 Hardware design

The two-color SXR camera system for CTH is composed of three two-color cameras.

Each 40-channel camera is mounted on a standard 4.5 inch conflat flange R© (CF) with two

25-pin electrical feedthroughs. Figure 3.1a shows an assembled camera. The camera system

is 1.75 inch in length, highlighted by the underlined camera section. An extension of either

6.9 inch or 4.7 inch is used to ensure the camera views the entire plasma depending on which

flange it is mounted on CTH .

Figure 3.1b shows the internal components from the camera section in figure 3.1a Each

two-color camera has the same basic modular design, consisting of three stainless steel plates

that house the essential components. This modular design allows the slits and filters to

be independently changed allowing easy reconfiguration of the viewing solid angles and

photon transmission properties without any major modification to the housing structure.

Stainless steel tubes, machined to length, define the separation between the plates housing

the internal components. A divider is welded to the middle of each tube to ensure optical

isolation between the diode arrays. Dowel pins are used to align the component plates and

the separation tubes, with threaded rods fixing the camera components securely to the CF

flange.

The diode section in figure 3.1b consists of a custom teflon socket that holds two

AXUV20ELG diode arrays purchased from the Opto Diode Corporation.46 The 20-channel

diode arrays are mounted parallel to one another with the diode centers spaced 1.5 cm. The

diodes have a relatively flat responsivity of ∼ 0.27 A/W for photon energies above 260 eV.
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(a)

(b)

Figure 3.1: (a) A picture of an assembled camera (b) exploded view of the internal com-
ponents of the camera (right). The camera is composed of three main sections, with two
machined tubes defining the distance between each section.
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(a) (b) (c)

Figure 3.2: (a) A schematic of the channel layout of the diode. The diode has two grounds
(GND) but one of them is not connected (NC) to prevent a ground loop. (b) The teflon socket
portion of the two-color camera. The custom teflon socket holds 42 gold–plated sockets with
Kapton R© wire connecting each pin to the corresponding pin on the flange. (c) A diagram
of the pin layout for the two-color camera on the air-side of the flange.

Further discussion about the responsivity of the diode array and sensitivity of the two-color

camera is found in section 4.7. Above the schematic of the diode section is an assembled

picture of the diodes housed in the teflon socket with a stainless steel divider in the middle.

The teflon socket is designed to have air gaps around the outside to allow for internal venti-

lation. This ventilation is necessary to not rupture the filters when CTH is brought between

vacuum and atmospheric pressure. The socket houses gold–plated female pins at each diode

pin to hold the diode array and provide an electrical connection. Figure 3.2a shows the

layout of the pins on the socket with the diode array. The pin layout is relative to the gold

dot on the lower right side of the diode array. The diode array has two grounds (GND), one

of them is not connected to prevent a ground loop, discussed further in section 3.3. Solid
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core 26 AWG wire insulted with Kapton R© is soldered to the bottom of the female pins in

the socket shown in figure 3.2b. The wire is crimped to another gold-plated female pin then

connected to the male pin on the flange. The length of the wire was kept to a minimum and

is enclosed in a grounded stainless steel tube to reduce the amount of noise pickup before the

signal from each diode reaches the amplifiers. An diagram of the pin layout on the air-side

of the flange for each two-color camera is shown in figure 3.2a.

The filter/slit section in figure 3.1b holds the filter and the poloidal slit assemblies.

The filters are mounted by the Lebow Company47 onto custom frames. The transmission

properties and filter thicknesses are explored further in section 4.2.1. The filters are screwed

tightly to the filter/slit section plate to ensure light tightness. Above the diagram of the

filter/slit section is a photograph of the bottom assembled section showing the filter plates

with the filters in the center mounted directly to the plate. Each two-color camera uses two

0.2 mm wide poloidal slits. The slits are formed on a single piece of 0.127 mm thick stainless

steel using a laser cutting technique. They rest in a precisely machined recessed portion of

the plate to make certain that they are centered with respect to the diode. Two stainless

steel bars clamp the slits to the mounting plate to ensure that they lie flat. A top (plasma

facing) view of the assembled filter/slit section is shown above the cap section in figure 3.1b.

The length of the stainless steel tube between the filter/slit section and the diode section as

well as the poloidal slit width define the chordal view for each diode array. The chord layout

is further discussed in section 3.2.

The right section in figure 3.1b is the cap section of the camera. The cap section is

0.125 inch thick with two 0.125 inch slits cut vertically defining the toroidal extent of the

camera view. On top of the cap section are the nuts securing the entire assembly by the

threaded rod to the flange.

Each camera is mounted on a rotatable flange to ensure that the camera is viewing a

poloidal slice perpendicular to the mid-plane. To prevent light from reflecting off the flange

back into the bottom of the camera, a teflon sleeve system was machined to fit snugly between
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the camera and the inner diameter of the rotatable flange. A picture of the teflon sleeve on

the camera is shown in figure 3.1a. The sleeve system consists of two identical teflon pieces

with eight thru holes as well as a groove in the bottom of each sleeve. The teflon pieces

are offset by 90 degrees with the grooves facing each other to ensure light-tightness while

allowing proper ventilation when CTH is brought under vacuum or vented to atmospheric

pressure.

3.2 Chord layout of the two-color camera system

Each diode in the diode array has a solid angle geometry defined by the rectangular

poloidal and toroidal slits. The poloidal slits were designed to be large enough in the toroidal

direction as to not limit the toroidal extent. For simplicity, the viewing chord will be broken

up into a poloidal slice and a toroidal extent. The poloidal slice is defined by the width of

each diode and poloidal slit as well as the distance between them. Figure 3.3a shows a close

up of the diode array with the individual diodes in green and the poloidal slit represented

by the thick black line. The chord is defined by two lines, one from each edge of the diode in

the diode array to opposite the edge of the slit. The line from the bottom of the diode will

intersect the top of the slit. The angle subtended by these two lines is the poloidal extent,

Ω, for that diode. Due to the nature of the diode array, as you progress towards the edge

of the diode array the distance between the diode and poloidal slit increases. This increase

decreases the poloidal span from ∼ 3.9 degrees for a central channel, ΩC, to ∼ 2.5 degrees for

an edge channel, ΩE. At a distance from the camera to the center of the vacuum vessel, the

width of the chord decreases from 2.5 to 1.5 cm for the central to the edge channel. The lines

of sight for each two-color camera is shown in figure 3.3b. Each line in figure 3.3a is a line

bisecting the poloidal viewing extent; therefore, there is only one line per diode. The naming

convention for the two-color cameras is: SC(toroidal angle) (poloidal angle)(thin or thick

filter)-(channel). SC252 000 TN-1 refers to channel one on the two-color camera with the

30



(a)

(b)

Figure 3.3: (a) The poloidal angle extent for each diode is given by the two lines, one from
each edge of the diode to the opposite edge of the slit. Due to the nature of the diode
array and slit setup, the poloidal extent from an edge channel, ΩE, is smaller than a central
channel, ΩC. (b) Lines of sight for the three two-color cameras with respect to the CTH
vacuum vessel.
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Figure 3.4: Toroidal overlap, illustrated by the grey region, of the central diode viewing
chords at the mid-plane for the SC252 000 TN and SC252 000 TK cameras.

thin filter at a toroidal angle of 252 degrees and poloidal angle of 0 degrees. SC252 000 TK-1

is the thick filter camera designation at the same poloidal and toroidal angle.

The toroidal angular extent for each diode is defined by a similar procedure as the

poloidal geometry. The 20-channel diode arrays are mounted parallel to one another, with

the slits defined by the cap section of the camera. Since the distance between the toroidal slit

and each diode on the diode array is the same, each diode will have an identical∼ 13.5 degrees

toroidal view of the plasma. This corresponds to a toroidal chordal width at the center of the

vacuum vessel of approximately 8 cm. Figure 3.4 shows the overlap of the toroidal viewing

extent (shaded gray region) for each detector array along with the position of the magnetic

axis of a typical CTH discharge. The diode arrays view essentially the same section of the

plasma, with approximately 83% of their views in common. Due to the helical nature of the

CTH plasmas, there is an excursion of the magnetic axis by 1 mm in the radial direction and

1 cm (not shown) in the vertical direction over the viewing volume of a SXR camera.
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3.3 Two-color electronics

The signal amplifiers are constructed using four layer circuit boards with ground and

power supply planes. Four layer boards are used to reduce noise by minimizing the number

of potential pickup loops and to simplify the layout of electronic components. Figure 3.5

is a photograph of the completed electronics attached to the vacuum vessel. Figure 3.6 is

the circuit diagram of the signal amplifiers for the two-color system. The amplifiers consist

of three separate functional stages: (1) a transimpedance stage, (2) a four pole low-pass

Sallen-Key filter,48 and (3) a voltage gain stage with channel dependent amplification to

allow different gain levels for core and edge channels.

The transimpedance amplifier is used to convert a current from the photodiode to a

voltage for the digital acquisition device. The digital acquisition, D-tAcq,49 hardware digi-

tizes an analog signal input between ±10 V. Careful consideration was given to this stage,

since any noise will be amplified by the electronics. Ultra low noise voltage regulators, with

a noise level of 16 and 45µVRMS, were used to keep the input voltage to the operational

amplifiers (op-amp) as constant as possible. To further reduce the noise, the length of the

conductive traces on the board before the transimpedance stage as short as possible.

Choosing the op-amp for the circuit was based on two considerations: (1) the slew rate

must be large enough to observe 40 kHz observations and (2) the op-amp needs to have a

high-gain bandwidth and low input impedance. The slew rate is the rate that the output

voltage can change based on the input voltage. The slew rate imposes restrictions on the

high-frequency oscillations that can be observed and is given by:

slew rate ≥ 2πVppfobs (3.1)

Vpp is the peak output voltage, and fobs is the maximum input frequency. The op-amps used

for the two-color system are ADA 4000-2 by Analog Devices50 which have a slew rate of

20 V/µs. The maximum voltage output of the amplifiers is limited to ±10 V by the D-tAcq.
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Figure 3.5: The electronics for the two-color camera system attached to the vacuum vessel.
The vacuum vessel is on the right hand side of the picture with the green four-layer circuit
boards shown in middle. What is shown is one amplifier board for one diode array within
the two-color camera, the amplifier electronics for the other diode array is directly behind
this one. The signal leaves the amplifier board through twisted pair cables to the digital
acquisition device.
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Figure 3.6: Circuit diagram of the transimpedance amplifier. The amplifiers consists of three
separate functional stages: (1) a transimpedance stage (highlighted by the orange line), (2)
a four pole low-pass Sallen-Key filter (purple line), and (3) a voltage gain stage (green line)
with channel dependent amplification to allow different gain levels for core and edge channels.
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Therefore, the largest input frequency the op-amp can properly amplify is ∼ 318 kHz. Since

common experimental signals are less than 40 kHz, the slew rate of the op-amp is more that

sufficient.

The second consideration for selecting an op-amp is having a high gain bandwidth

product (GBW) and low input impedance. These are primarily due to the bandwidth re-

quirements. The bandwidth describes the range of frequencies where a minimal voltage loss

in the signal will occur. This is defined up to the -3 dB point where the signal is attenuated

to 70.7% of the original value. The bandwidth of the transimpedance amplifier is given by:51

bandwidth =

√
GBW

2πRf(Cf + Ci)
(3.2)

Where Rf is the feedback resistance and Cf is the feedback capacitance. The two-color

amplifiers have a GBW of 5 MHz, Rf of 5.1 MΩ ± 1%, and Cf of 0.7 pF ± 0.1 pF. Ci is the

sum of the diode, the common and differential mode impedance of the op-amp, and the stray

capacitance on the circuit board (Ci = 40 pF + 9.5 pF + 0.3 pF = 49.8 pF). Therefore, the

transimpedance amplifiers have a bandwidth of 55.5 kHz.

Transimpedance amplifiers without a feedback capacitor will oscillate if any noise is

introduced in the system. The desired value of the feedback capacitor depends on the

desired gain of the stage, given by Rf, and limits the bandwidth shown in equation 3.2. The

equation to calculate the feedback capacitance is given by:51

Cf =

√
Ci

πRfGBW
(3.3)

Using the values given above, we require a Cf of 0.8 pF. The feedback capacitance value

used in the amplifier boards is 0.7 pF, limited by what was available at the time. This stage

is particularly sensitive to noise and choosing the right values for Cf and Rf while retaining

the bandwidth requirements is difficult. Therefore, once the design of this stage was done,
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the components remain the same for every diode in the two-color camera system. Further

gains for low signal levels may be achieved with the third stage of the circuit.

The second stage of the circuit, shown in figure 3.6, is a four pole low-pass Sallen-Key

filter with a -3 dB cutoff at ∼ 50 kHz. The Sallen-Key topology follows a Butterworth filter52

having a flat voltage attenuation over the passband.

The signal is filtered before the analog to digital conversion of the signal in order to

prevent signal aliasing. Aliasing of the signal occurs for frequencies larger than half of the

acquisition frequency, called the Nyquist frequency. To prevent aliasing the signal must be

attenuated to the signal to noise level of the D-tAcq at the Nyquist frequency. The D-tAcqs

used for the two-color system have a signal to noise level of 86 dB and a Nyquist frequency of

250 kHz. The four pole low-pass Sallen-Key filters used in the two-color amplifiers attenuate

the signal by ∼ 56 dB at 250 kHz. The transimpedance stage acts as another filter; therefore,

the total measured attenuation of the two-color amplifiers at the Nyquist frequency is 80 dB.

Signals with frequency greater than 250 kHz are sufficiently filtered to prevent aliasing. The

measurement of the attenuation and electronic calibration is discussed further in section 3.4

The third stage of the two-color amplifiers is a non-inverting voltage gain stage. This

stage was added to fine tune the output signal of the amplifier to be above 1 mV and less

than 10 V before the D-tAcq. Since the edge channels have a smaller étendue and view a

colder region of the plasma, it is sometimes desired to have a larger voltage gain on the edge

channels compared to the central channels. The voltage gain for this stage is given by:

Vout = Vin(1 +
RGAIN

1 kΩ
) (3.4)

The voltage gain for each channel behind a thin filter is 8.5 while the thick filter channels have

a voltage gain of 21. Matching the impedance across the input of the op-amp is important

to minimize the noise introduced by the third stage. The impedance matching resistor, RZ,

is calculated from:
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1

RZ

=
1

1 kΩ
+

1

RGAIN

(3.5)

The thick and thin filter have a RZ of 1 kΩ or 909 Ω. The calculated RZ values from equa-

tion 3.5 are slightly lower, but were not available for purchase or would not fit on the amplifier

board. Therefore, an overall gain of 4.335 × 107 V/A is used for every channel in the thin

filters and the thick filters have a gain of 1.071× 108 V/A.

An important part in designing the electronics for the two-color system is to ensure

proper grounding of the system while minimizing pickup loops. One of the most common

pickup loops is a ground loop, occurring when two connected parts of the circuit are grounded

separately. When a large change in magnetic flux is introduced to this loop, such as the

OH transformer in CTH, current will be inductively driven in the loop producing noise.

Figure 3.7 shows the grounding setup for the two-color amplifiers. The amplifier electronics

are mounted directly to the vacuum flange to minimize lead length and noise pickup prior to

the first amplifier stage. Isolation from the vacuum vessel as well as powering the electronics

through an isolation transformer reduced the noise in the system from ∼ 340 mV to ∼ 12 mV.

These modifications were confirmed empirically when the magnetic fields were present but

there was not a plasma within CTH.

Each diode array within a two-color camera is independently grounded to its amplifier

board. The boards are then connected to a common ground connected to the power supply

then to Earth ground. Diverging from the amplifier boards are the shielded twisted pair

cables leading to the D-tAcq ACQ196CPCI-96-5049 data acquisition module with a 100 kΩ

input impedance operating at a 500 kHz sampling rate. The twisted pair cables are grounded

to the amplifier boards while the other end at the D-tAcq is an open connection to avoid a

ground loop.
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Figure 3.7: Grounding configuration for the two-color camera system. Through trial and
error, it was found that isolating the camera from the vacuum vessel resulted in the least
amount of noise. Further reduction of noise was accomplished by avoiding potential pickup
loops and shielding the signal path.
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3.4 Electronic attenuation

One of the trade-offs of using a Butterworth filter is that the phase of the signal is shifted

at higher frequencies. In order to compare high frequency features in the SXR signals with

corresponding magnetic signals at lower frequency, the voltage attenuation, and phase shift

of the filter must be corrected for. The attenuation due to the amplifier system is shown

in figure 3.8. The amplifiers for the thick filters shown in black have a nearly identical

phase and voltage attenuation as the amplifiers for the thin filters shown in orange. This is

expected, since the transimpedance stage amplifiers have much higher bandwidth than the

four-pole Butterworth filters. The theoretical curve was calculated using only the low-pass

filter stage and does not include the attenuation due to the transimpedance stage.

Measurement of the attenuation was accomplished by using a function generator cre-

ating a sinusoidal wave with a peak-to-peak voltage of 204 mV. The signal was then put

through a photodiode equivalent circuit to simulate the output and capacitance load from

the photodiodes. The circuit converted the signal to a 204 nA sine wave with a 10 MΩ resistor

and has a 40 pF capacitor between the signal and ground. An oscilloscope then compared the

input signal and output signal of the amplifier system. The output waveforms were averaged

over 100 samples to give an accurate representation of the phase shift and the voltage output.

Each channel was measured in δf intervals of 3 kHz to 50 kHz. One channel for each the

thick and thin filter amplifier boards is measured out to 250 kHz. The relatively flat voltage

attenuation for both amplifier boards shown in figure 3.8a and the phase shift in figure 3.8b.

The difference between the measured voltage attenuation and additional phase shift is due

to the lack of the filtering due transimpedance stage in the theoretical calculation.

3.5 Bolometer system on CTH

CTH has a system of two bolometer cameras which are based on the two-color diagnostic

design. A pair of diode arrays are housed within each of the bolometer system, one having
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(a)

(b)

Figure 3.8: (a) Voltage attenuation for the two-color amplifiers. The orange and black lines
are the measured values of the amplifier boards for the thin and thick filter cameras. The
theoretical voltage attenuation of the butterworth filter, excluding the transimpedance stage,
is shown in teal. (b) Phase shift for the two-color amplifiers. The orange and black lines
are the measured values of the amplifier boards for the thin and thick filter cameras. The
theoretical phase attenuation of the butterworth filter, excluding the transimpedance stage,
is shown in teal.
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a metallic filter to select a photon energy range of interest. The other diode does not have

a filter, therefore measuring the total radiated power. Since the diode arrays are both

mounted within the same housing, a teflon plug as well as a divider between the diodes is

used to ensure light-tightness between the diode arrays. An expanded view of the internal

components of the bolometer systems is found in the appendix B in figure B.1. To minimize

photon reflections off of the stainless steel in the interior of the bolometer cameras, select

components are coated in and anti-reflective material (black matte spray paint). Tests on

the bench showed that the diode array system is light tight and has minimal reflections.

The bolometer systems have a protective cover over the toroidal slits within the vacuum

vessel. This cover is controlled by a rotary motion feedthrough mounted to the flange of

the bolometer system. The cover is rotated out of the view of the diodes prior to plasma

operations within CTH but protects the diode arrays during cleaning of the vacuum vessel.

3.6 Relative brightness calibration

The two-color diagnostic utilizes diodes that are from separate diode arrays. Therefore,

it is important to know if each diode in the diode array produce the same current while

observing the same source. The relative calibration measurement is important in reducing

the error with the two-color measurement as well as if the diode arrays are to be used in

tomography. The output of each diode array was measured using the same amplifier board

and D-tAcq channel to ensure identical voltage gains. A different amplifier board was used

for the bolometer systems since they have different capacitance and shunt resistance than

the two-color diodes. The relative calibration was preformed using a visible light source

and it is assumed that relative calibrations translate to the x-rays observed during normal

operation.

A drawing of the setup for the relative calibration is shown in figure 3.9. The integrating

is sphere illuminated by a white light-emitting diode (LED) provided a Lambertian surface
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Figure 3.9: Schematic of the relative calibration setup.
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for the measurements. A Lambertian surface has the property that the apparent brightness

of the surface is the same, independent of observational direction.

A custom machined fixture mounted to integrating sphere securely held the LED. A

current limiting 330 Ω resistor was in series with the LED. A constant 5.079 V applied across

the LED resistor circuit was monitored with a digital mulitmeter before and after each

relative calibration measurement.

Each camera was assembled in their respective housing leaving the filter/slit and cap

section off. Therefore, only the bare diode array to observe the entire Lambertian surface.

To ensure a translation of the diode array parallel to the face of the integrating sphere,

a coordinate measuring machine was used to measure its position and plane relative to

the diode plane. The camera was translated stopping at several locations to measure the

position of the camera relative to the Lambertian surface. The camera system was adjusted

until there was less than a ∼ 5 mil movement in the y or z-direction over the distance when

the measurement was taken, ∼ 4 in. To make certain that each diode only observed the

Lambertian surface during the calibration, an opaque cloth was draped over the calibration

setup. Each diode array was translated across the Lambertian surface and the resulting

output is shown in figure 3.10a for each diode. A voltage offset due to the circuit was

measured when no light was present and was subtracted from the output. The output for

each diode was then fit with a Gaussian distribution to compute the maximum value of

the voltage output for each diode. Ideally, one would measure the current output from

each diode at the same distance away from the light source. Since each diode array used

the housing for their respective SXR camera, that would be difficult. Therefore, each diode

array was translated with a known distance between the Lambertian surface and diodes. The

distance between the Lambertian surface and diodes was then increased and the measurement

was preformed again. Figure 3.10b shows the measured voltage peaks for each channel in

the SC252 060 TN diode array at several distances away from the integrating sphere. The

resultant peaks from the respective Gaussian fits were then plotted as current vs. the distance
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(a)

(b)

Figure 3.10: (a) Example output of the signal for a diode translating across the Lambertian
surface during the relative calibration setup. The output is then fit to a Gaussian function
(shown in red) to record the peak voltage. (b) The peak voltage measurements for the
SC252 060 TN diode array at several distances away from the Lambertian surface. A linear
fit on the data for each channel was performed as a function of distance.
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and fitted with a linear fit. Since each diode array observed the same surface over the same

solid angle, the slope of the linear fit should be the same for each diode. The differences in

the y-offset (voltage offset) for each diode is the comparable value for the relative calibration.

Each voltage offset was then scaled to a channel ten in the SC252 000 TN camera. A plot

of all of the channels for all of the SXR camera systems is shown in figure 3.11. Every

channel except for channels one and twenty are within ≈ 3% of each other. Channels one

and twenty are right near the edge of the diode array and the effect of producing a larger

signal than every other channel is a product of the manufacturing process. These channels

usually have a very low signal during normal plasma operations that they are not used in

the data analysis.

3.7 Geometric factor measurement

The poloidal viewing angular extent changes for each diode within each SXR camera as

described in section 3.2 and figure 3.3a. This effect is due to the geometry of a flat diode array

and the placement of the slit in the center of the diode array. The edge channels are further

away from the slit than the central channels resulting in an apparent decrease in slit width.

This effect is called the geometric factor and is important to account for when comparing

integrated emissivity measurements such as V3FIT and tomography reconstructions. A

derivation of the geometric factor is given in appendix A with the primary result given by:

fgi =
AdiodeAslit

4πd2
cos4αi. (3.6)

Where Adiode is the area of individual diode, Aslit is the area of the slit, d is the distance be-

tween the diode array and the slit, and α is the angle between a perpendicular line connecting

the diode array and slit with a line intersection the individual ith diode and slit.

The geometric factor was measured by completely assembling one camera system with

the poloidal and toroidal slits and placing it in the same setup as the relative brightness
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Figure 3.11: The relative calibration measurement for the SXR diodes on CTH. Except for
the edge channels, each diode has a relatively equal response if they observe the same surface.
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Figure 3.12: The measured geometric factor (black) and the theoretical values (orange) for
the two-color camera system.

calibration shown in figure 3.9. To reduce internal reflections, the inside of the camera was

painted with black matte spray paint. An identical procedure as the relative calibration

measurement to ensure a parallel translation across the Lambertian surface was used. The

assembled camera was then translated across the Lambertian surface. The output of the

signal was different than the relative calibration setup since the solid angle was decreased

to view only a portion of the Lambertian surface. Therefore, while translating across the

Lambertian surface, the current output from the diodes increased while viewing the surface,

remained flat throughout the Lambertian surface, then decreased to zero when the surface

was out of view. The flat-top portion of each signal was then averaged and had a standard

deviation for the error. Three measurements were then averaged together and corrected for

the relative calibration. Figure 3.12 shows the measured geometric factor normalized to

a central channel, fgi/fg11
, to eliminate Adiode, Aslit, and d from equation 3.6. The large

error bars are due the small signal level output during the measurement, typically on the
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order of double the noise level in the signal. The measured value is in good agreement with

the cos4α dependance. The geometric factor shown in figure 3.12 is from one SXR camera.

The geometric factor for the remaining cameras was then calculated based on the measured

values of α for each camera.
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Chapter 4

Theory, simulations, and electron temperature measurements for the two-color diagnostic

This chapter describes the theory behind the x-ray radiation emitted from a plasma,

the temperature calculated from the two-color SXR diagnostic, and the complications that

arise due to impurities within the plasma. The two-color diagnostic measures the continuum

radiation due to bremsstrahlung radiation while trying to avoid line radiation from impurities

in the plasma. A simulation of the radiation for each major ion species in the plasma and

spectroscopic measurement of the charge states of impurities in the plasma is discussed.

What follows is a description of the theory behind the two-color diagnostic and a calculation

of the sensitive range of the camera. Finally, electron temperature estimations from the

two-color diagnostic, SXR spectrometer, and a Spitzer resistivity calculation are presented.

4.1 Radiation in plasmas

Electromagnetic radiation emitted from plasmas arise from the dynamics of the charged

particles. This includes transitions of electrons between energy levels in an atom, charged

particles orbiting magnetic field lines, and from the collisions of particles. The primary

radiation discussed in this thesis involves the acceleration of charged particles in the presence

of an electric field. Figure 4.1 is an energy level diagram illustrating the common losses in

energy undergone by electrons in a plasma that can result in the emission of an x-ray photon.

The dashed lines represent the energy of the electrons with more energetic electrons at the

top of the figure. A sea of free electrons is at the top of the diagram and an atom with

bound electrons is at the bottom. Bremsstrahlung radiation occurs when a charged particle

is accelerated through the electric field of another charged particle. The accelerated particle

loses kinetic energy in the process which is emitted in the form of a photon. If the final state
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Figure 4.1: Drawing of the energy level transitions for common x-ray radiation from electrons
in a plasma. The dashed line represents atomic energy levels, increasing towards the top.
χi is the ionization potential, En the energy level of the nth state, and E0 is the energy of
the ground state of the atom. For free-free transitions the electron looses some energy in
a interaction with a positive ion. Free-bound transitions occur when an electron becomes
captured by an atom into a quantized bound state. Electrons bound to an atom transitioning
between energy levels emit line radiation.

of the electron is not bound to an atom, the electron is said to be free and the process is known

as free-free (ff) bremsstrahlung radiation. If the electron is captured into a bound state of

an atom the process is free-bound (fb) or radiative recombination radiation. The majority of

the continuum radiation in a plasma is from the acceleration of electrons simply due to their

lighter mass when compared to ions. Recombination and free-free bremsstrahlung radiation

is discussed further in section 4.1.1.

Line radiation is due to transitions of electrons within bound states of an ion. Since the

bound states are quantized in nature, the transitions between these energy levels are distinct.

Therefore, when an electron makes a transition to a lower energy level the photon emitted

in the process will have discrete frequency values. In general, the electrons in the bound
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Figure 4.2: An illustration of the collision of an electron with a positive ion resulting in an
loss of energy due to the acceleration from the Coulomb force of the ion. This process is
known as bremsstrahlung radiation and the loss of energy is emitted as a photon.

states are excited to higher energy levels from collisions with other free electrons. Once the

electrons are in excited states they can spontaneous make a transition to a lower energy

level, emitting photons with discrete energies (line radiation). Line radiation is discussed

further in section 4.1.2.

4.1.1 Bremsstrahlung radiation

A free electron approaching a positive ion will undergo an acceleration due to the

Coulomb force from the ion, Fc = Ze2/4πε0r
2. Where Z is the charge of the ion, e is

the electron charge, ε0 is the permittivity constant, and r is the distance between the ion

and electron. This process can be described as a classical two-body collision problem, shown

in figure 4.2. The electron approaches a positive ion from the left with an initial velocity, v0,

along a trajectory at a distance b away from the ion, known as the impact parameter. The
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path of the electron during the collision is described by:

r =
4πε0mev0

2b2

Ze2(1 + εcosθ)
. (4.1)

Where me is the mass of the electron, θ is described in figure 4.2, and the eccentricity, ε, is

given by:

ε =

√
1 +

(
4πε0mev0

2b

Ze2

)2

. (4.2)

The electron will accelerate towards the positive ion losing kinetic energy that is emitted in

the form of a photon. Conservation of energy yields the relation:

1

2
mev0

2 =
1

2
me(ṙ

2 + (rθ̇)2)− Ze2

4πε0r
. (4.3)

The radiated energy of an accelerating charge is obtained by writing the electric field as a

Fourier integral, applying Parseval’s theorem and integrating over the solid angles of the

radiation:53

dW

dv
=

e2

4πε0

4

3c3

∣∣∣∣ ∫ ∞
−∞
v̇eiωtdt

∣∣∣∣2. (4.4)

Where dW
dv

is the radiated energy for one collision between an electron and an ion of charge

Z. The acceleration, v̇, is found through the substitution of equation 4.1 into equation 4.3.

The electron may undergo many collisions with a random number of ions with density, ni,

at any distance away from an ion, b. To account for this, the radiated energy is multiplied

by niv0 and integrated over all of the possible impact parameters:

dP

dv
= niv0

∫ ∞
0

dW

dv
(v, b)2πbdb. (4.5)

This is known as the power spectrum and the analytical solutions were found by Kramers.54

The total radiation per unit volume per unit frequency is found by multiplying by an electron
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distribution function, f(v), and integrating over the distribution of velocities:

∫
dP

dv
f(v)d3v. (4.6)

If the electron distribution is isotropic and in thermal equilibrium the electron distribution

function is Maxwellian. The power per unit solid angle per unit frequency per unit volume

for free-free bremsstrahlung is given by:53

jff(E) = 1.2161× 10−39neniZ
2

(
T

eV

)−1/2

ḡffe−E/T (4.7)

The temperature, T , is in eV with the conversion from the temperature in Kelvin, Tk, to

eV given by, T = kbTk/e where kb is the Boltzmann constant. Classical derivations of

bremsstrahlung radiation are multiplied by a Gaunt factor,55 ḡff. The Gaunt factor ac-

counts for quantum mechanical corrections to the impact parameter when it is small, such

as the Heisenberg uncertainty principle. The corrections can be ignored for photon energies

much smaller than the initial particle energy, h̄ω � 1
2
mev0

2. Numerical calculations of the

Maxwell-averaged Gaunt factor, were done by Karzas and Latter,56 and a non-relativistic

analysis was done by Sommerfeld.57 The values of the Gaunt factor used in this dissertation

are calculated using the ADAS23 codes.

Since a plasma contains electrons in a continuum of energy levels, the photons emitted

are continuous in nature. Figure 4.3 shows three bremsstrahlung radiation calculations as a

function of photon energy for a pure hydrogen plasma at a temperature of 100 eV and a den-

sity of 1.0×1019 m−3. The teal curve represents the exponential decay of bremsstrahlung radi-

ation, setting the free-free Gaunt factor to one. The red curve is the free-free bremsstrahlung

radiation with the Gaunt factor calculated by ADAS. At this temperature the inclusion of

the Gaunt factor is important if measuring photons with energies less than 100 eV. The black

curve in figure 4.3 is the free-free bremsstrahlung radiation plus the free-bound contribution
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Figure 4.3: The spectral power for various bremsstrahlung radiation processes for a 100 eV
and 1.0×1019 m−3 pure hydrogen plasma. The teal line assumes the classical bremsstrahlung
process while the red line adds the quantum mechanical correction to the classical derivation,
the free-free Gaunt factor. The black line adds the free-bound recombination contribution to
the free-free bremsstrahlung. A scaled bremsstrahlung emission, j(E) × 1%, for an oxygen
plasma is shown in purple.

for H+ calculated by ADAS. The purple curve is the scaled spectral power, j(E) × 1%, for

a pure oxygen plasma at the same density and temperature.

Free-bound radiation is the process in which a free electron undergoes a transition from

an initial positive energy state to a bound state of an atom. The final bound state must

have discrete energies, known as recombinations edges:

En =
Z2Ry

n2
. (4.8)

Where Ry is the Rydberg energy and n is the principle quantum number. The emission is

continuous but has finite jumps corresponding to the binding energy states of the nucleus.
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The emission also involves the decay of excited electrons to another bound state, discussed

further in section 4.1.2. H+ has one large recombination edge for n = 1 at 13.6 eV and much

smaller edges at n = 2, 3, etc. More complicated ions such as oxygen shown in the purple

line in figure 4.3, have numerous large edges.

The free-bound bremsstrahlung radiation is given by:53

jfb(E) = 1.2161× 10−39neniZ
2

(
T

eV

)−1/2

e−E/T
[
Ḡn

Z2Ry

T

2

n3
eZ

2Ry/n2T

]
(4.9)

Determination of the strength of the recombination radiation compared to free-free ra-

diation is achieved by evaluating the exponent in the multiplication of the exponentials,

e−E/T eZ
2Ry/n2T ,

1

T

(
Z2Ry

n2
− E

)
=
Z2Ry

T

(
1

n2
− E

Z2Ry

)
. (4.10)

Free-bound bremsstrahlung radiation does not take place for E < Z2Ry/n
2; therefore, equa-

tion 4.10 will always be negative and will have an exponential decay for increasing photon

energies. For E � Z2Ry only very high n states will contribute in order for equation 4.10

to be negative. However, due to the n−3 dependance in equation 4.9 the recombination

radiation becomes negligible. Conversely for E ≥ Z2Ry, any n state is allowed.

To find the total radiation for a given atom within a sea of free electrons we need to

add the free-free bremsstrahlung given by equation 4.7 with the free-bound bremsstrahlung

given by equation 4.9. Since the Gaunt factors are on the order of one and assuming that

n is low, it can be seen that if Z2Ry ≥ T the recombination radiation will dominate. CTH

plasmas typically have an electron temperature of ∼ 100 eV. For recombination radiation

to dominate, Z would have to be greater than ∼ 3.3. This is a particularly low value and

ionized states as high as O4+ (Z = 4) have been observed by spectrometers in CTH.

The total continuum radiation is the sum of the free-free and free-bound contributions

for all of the species present within the plasma, jtotal =
∑

i

ji. When the recombination term

is negligible, the only factor that differs with the sum of equation 4.7 over each species is Z.
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Therefore, the total emission is proportional to:

∑
i

neniZi
2 = ne

2Zeff. (4.11)

Where it was assumed that the electron and ion density are equal. Therefore, the sum of the

bremsstrahlung radiation may be written as equation 4.7 multiplied by an effective charge,

Zeff. The effective charge is the amount the bremsstrahlung with the additional ions exceeds

the hydrogen bremsstrahlung.

4.1.2 Line radiation

Line radiation is produced when an electron changes energy levels within the bound

state of an atom. Since the energy levels are quantized, the emitted photon in the process

has discrete energies. Therefore, the observed spectra has peaks at specific wavelengths.

Line radiation may occur with the excitation of an electron through a collision with

another particle or a photon. One of these processes is free-bound bremsstrahlung where

the free electron can be captured by the means of radiative recombination or dielectric

recombination. This process leaves the electron in an excited bound state, which can decay

to a lower bound state and emit line radiation. Radiative recombination occurs when the

free electron is captured to one of the bound quantum states with a simultaneous emission

of a photon from the excess energy of the original electron. This process is given by:

e− +X++ → hν +X+. (4.12)

Where e− is the electron, X++ is a doubly ionized state, X+ is singly ionized, and the photon

of energy is hν. This photon emitted has a continuous spectra with discrete jumps at the

recombination edge where free electrons captured in the next energy level contribute to the

spectra. Line radiation from radiative recombination may occur if the captured electron

decays to a bound state with lower energy.
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For dielectric recombination the free electron excites an electron in one bound state to

a higher energy state leaving the ion in a doubly excited state, (X+)∗∗. The excited electron

decays to a lower state producing a photon in the process:

e− +X++ → (X+)∗∗ → hν +X+. (4.13)

The photon emitted in this process has a discrete spectra because the excited electron tran-

sitions between bound states within the atom. The total dielectric contribution to the total

line radiation is generally a few orders of magnitude less than the bremsstrahlung for tem-

perature ranges in this thesis.

Finding the exact energy of these transitions involves solving Schrödinger’s equation

to get the structure of the atom which becomes a many-body problem for complex ions.

Analytic solutions only exist for hydrogen, but the excitation, ionization, and dielectric

recombination transitions are well known for helium. All of the line radiation transitions in

this thesis were calculated using the ADAS codes and database.

4.1.3 Impurities present in CTH

CTH is kept under a vacuum with typical base pressures on the order of 10−8 Torr to

ensure the hydrogen plasma discharges are as pure as possible. Nevertheless, impurities do

exist and can be the dominate source of radiation despite consisting of less than 0.1% of the

total plasma density. The main impurities expected within a typical discharge in this thesis

include water coming off the walls of the vacuum vessel, residual He from glow discharge

cleaning, and impurities sputtered from the carbon (C) and molybdenum (Mo) limiters.

Measurements from a residual gas analyzer show elements representative of the background

base pressure, oxygen (O), nitrogen (N), and argon (Ar).

Spectra between 200 to 600 nm including the ionization states of several impurities

from an ohmic discharge on CTH is shown in figure 4.4. The spectra are observed from
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Figure 4.4: Spectroscopic measurement of the line radiation of an ohmic hydrogen discharge
indicating the presence of impurities in CTH plasmas. The measurements were taken at
different toroidal locations on the vacuum vessel, red at φ = 180 degrees and blue at φ =
252 degrees. Spectral lines corresponding to N+ to N3+, C+ to C5+, and O+ to O4+ are
observed. Image courtesy of Curtis Johnson. The blue line is from shot 15052048 and the
red line is from shot 15052049.
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two different toroidal locations, both viewing limiters during the discharge. The spectrum

observed from φ = 180 degrees is shown in red (shot: 15052049) and the spectrum shown

in blue line (shot: 15052048) is from the same toroidal location as the two-color diagnostic,

252 degrees. The ionization state for each ion identified in figure 4.4 are denoted by roman

numerals. Where, I is neutral, II is singly ionized (e.g. C+), III is doubly ionized (e.g.

N2+), etc. Ionization states ranging from N+ to N3+, C+ to C4+, and O+ to O4+ are observed.

The spectra were acquired by Curtis Johnson and the lines were identified by Curtis Johnson,

Dr. Stuart Loch, and Dr. David Ennis.

4.1.4 Simulated ionization states of impurities in CTH

To estimate the ionization states for impurities present within CTH plasmas, the relative

concentration of each ionization state is determined using a steady-state ionization balance

model where density dependent effects of ionization from excited states were also taken into

account.58 The steady-state ionization balance uses ionization, S, and recombination rate

coefficients, R, to find the fraction of the total population of the ion in each ionization state.

The ionization coefficient for a transition from an ionization stage, α, to a stage with an

additional electron missing, β, contains the sum of the ionization rates from each energy

level within the α ionization stage multiplied by the population fraction of electrons in that

energy level with respect to the ground state. The fraction of electrons in each energy level

is dependent on the electron temperature and density. For low densities, < 1018 m−3, it is

safe to assume that the electrons are overwhelmingly in the ground state which gives rise to

the coronal equilibrium model.59 As the density approaches ∼ 1019 m−3 the excited states

have larger populations and can contribute to the effective ionization, in this case the coronal

model is no longer valid.60

Calculation of the population of each ionization stage can be done if the ionization and

recombination rates are known. Consider an element with three ionizations stages (α, β, and
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γ), the bare nucleus. The population density for ions in each state may be written as,

dNα

dt
= −(Sα→β + Sα→γ)NαNe +Rβ→αNβNe +Rγ→αNγNe

dNβ

dt
= Sα→βNαNe − (Rβ→α + Sβ→γ)NβNe +Rγ→βNγNe

dNγ

dt
= Sα→γNαNe + Sβ→γNβNe − (Rγ→β +Rγ→α)NγNe

(4.14)

Where Ne is the density of electrons and the subscripts of the ionization and recombination

rate coefficients signify the transition between the respective ionization stages. Recombina-

tions and ionization coefficients for the transitions skipping a state are much smaller than

the single ion stage coefficients. Therefore, Sα→γ and Rγ→α are usually set to zero.

In the equilibrium steady-state approximation the particle density in each state is un-

changed, i.e. dN/dt = 0. The fractional abundances are then calculated using pre-generated

ionization and recombination rates at specific temperatures and enforcing conservation of

the total number of particles, Ntotal = Nα+Nβ +Nγ. Figure 4.5a is a steady-state ionization

balance plot for oxygen generated by ADAS which included density dependent effects on

the rate coefficients. For a CTH plasma, with electron temperatures of 100 eV to 200 eV, it

is evident that fully stripped, H-like (O7+), and He-like oxygen (O6+) would be present in

ionization equilibrium. The equilibrium ionization balance model overestimates the relative

charge states of the impurity ions in the plasma in favor of highly ionized states due to two

effects. Firstly, temperature profile effects are neglected, using a constant electron tempera-

ture over the entire plasma, and secondly, the effects of impurity ion transport and effective

residence time in the plasma have been neglected. Time-dependent ionization balance calcu-

lations were done to simulate the effect that the effective impurity residence time has on the

population of the ionized states. Figure 4.5b shows the time-dependent, dN/dt 6= 0, ioniza-

tion balance calculations for oxygen. The time-dependent ionization balance was calculated

using a electron temperature of 100 eV and density of 1019 m−3. At approximately 100 sec
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the oxygen plasma reaches the same fractional abundances as the equilibrium ionization bal-

ance shown in figure 4.5a. For a typical impurity confinement time in a tokamak plasma,3

10−3 sec, the highest charge states of the O impurity will be the He-like ion states instead of

the H-like states predicted by the equilibrium model. Therefore, in the equilibrium model

more highly ionized impurities are predicted than are likely present in CTH plasmas.

4.2 Modeled signals of the two-color diagnostic

Two-color SXR cameras attempt to measure the high energy tail of the bremsstrahlung

continuum radiation produced by the plasma. This section discusses the modeling of the

measured signal based solely on the bremsstrahlung radiation. For temperatures of order

100 eV, line radiation from impurities can also be a significant component of the measured

SXR signal. The effects that impurities have on the two-color diagnostic measurements is

discussed further in section 4.3.

A SXR signal is produced with a photon with energy E from the plasma passes through

a light blocking filter colliding with the photodiode producing an electrical signal. For a

given diode, the observed signal, S(Te, d), depends upon the responsivity of the diode, A(E),

the transmission function of the filter material of thickness d, TBe(E, d), the bremsstrahlung

and line radiation j(E, Te) emitted by the plasma, and the geometric factor,37

S(Te, d) =

∫ ∞
0

dE

∫
V

j(E, Te)A(E)T (E, d)
dΩ

4π
dV

' fg

∫ ∞
0

dE

∫
l

j(E, Te)A(E)T (E, d)dl.

(4.15)

The bremsstrahlung continuum radiation is composed of free-free and free-bound transitions

modified by the the Gaunt factor due to the H+ main plasma component calculated by ADAS

as discussed in section 4.1.1. The filter transmission and diode absorption contributions are

discussed in the following subsections.
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(a)

(b)

Figure 4.5: (a) Equilibrium ionization balance plot for oxygen with an electron density of
1019 m−3. (b) Time dependent ionization balance plot for oxygen with an electron density
of 1019 m−3 and temperature of 100 eV. For a CTH plasma, with an electron temperature
of 100 eV, it is evident that H-like (O7+) and He-like oxygen (O6+) would be present in
ionization equilibrium. However, using typical impurity confinement times, 10−3 sec, the
time dependent ionization calculation reveals that the equilibrium balance calculation over
estimates the ionization states showing the highest charge state will be He-like oxygen.
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4.2.1 Modeling filter transmission for the two-color diagnostic

An accurate model of the filter transmission reduces the error in the temperature es-

timation. Despite the filter being 99.8% pure beryllium, the transmission of the filter is

decreased by the abundance of heavy element impurities.61 The calculation of the filter

transmission as a function of energy begins by expressing the scattering of a photon by an

atom. The primary interactions a low energy x-ray has with matter are scattering and pho-

toabsorption. For long wavelengths these interactions may be expressed through an atomic

scattering factor,62 f1 + ıf2. The scattering factor, f1, is significant for Z < 10 and high

energy photons > 10 keV. Beryllium is the primary filter component (Z = 4) but the high

energy photons travel through the detector, see section 4.2.3. The absorption coefficients,

f2, have been calculated for x-rays from 0.5 to 30 keV for atomic elements from Z = 1 to

92.62 The probability of the photon being absorbed into a specific atom is given by the

photoabsorption cross section,

µa(E) = 2 r0 λ f2(E)/ma. (4.16)

Where r0 is the classical electron radius, λ is the photon wavelength, and ma is the atomic

mass of the element divided by Avrogando’s number. The photoabsorption cross section

is calculated for the elements present in the Beryllium filters described in table 4.1. The

concentrations quoted are the typical impurity manufactured specifications and the maxi-

mum allowed tolerance. An effective photoabsorption cross section is found by using the

atomic mass of the atom, Ai and a calculated value of the fractional abundance by weight,

xw, through:

µeff =

∑
i

xi µi Ai∑
i

xi Ai

. (4.17)
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The energy dependance on the filter transmission is then calculated using an attenuation

function,

T = e−ρµeff d. (4.18)

Where ρ is the average density of the material with filter thickness, d. The transmission

functions for the two beryllium filters used in the two-color diagnostic, 1.8µm and 3.0µm,

is shown in figure 4.6. For the thinner Be foils employed on CTH, a low energy (50 −

110 eV) transmission window is seen on the pure beryllium filter (black line). The low energy

transmission window significantly alters the ratio of the modeled SXR signals by passing

impurity line radiation. Combining the assumed impurities in the Be filter eliminated this

low energy transmission window and shifted the transmission of filter significantly. The filter

transmissions with a typical impurity (orange-red line) and the maximum allowed (teal line)

content is shown in figure 4.6 for the 1.8µm filter. The purple line is the transmission of a

3.0µm beryllium filter with typical rolled impurity levels.

The two-color diagnostic on CTH initially had beryllium filters until it was discovered

that carbon coated the filters in May 2015. It was found that the coating on the filters was due

to the movable carbon limiters near the two-color diagnostic. During normal operation, the

amount of carbon sputtered on the two-color diagnostic is minimal but a series of experiments

was done in May in which the limiters were moved into the plasma significantly increasing

the amount of carbon sputtered onto the two-color diagnostic. Carbon coating two-color

diagnostics is not a new phenomena and has been observed on MST.63 Since the thickness

of the carbon coating was not uniform and not known, the filters were replaced. Simulations

were performed to find a suitable replacement for the beryllium filters that would produce

a greater edge channel signal while avoiding line radiation. Compound filters with a 0.5µm

carbon layer and either a 1.0µm or 3.0µm aluminum layer were selected. Unfortunately,

the signal levels from the carbon aluminum filters were an order of magnitude lower than

expected. The primary cause of this could be due to additional impurities in the filters,

incorrect thickness levels of the materials, or an aluminum oxide growth while the filter was
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Maximum Allowed Typical
Element PPM xw PPM xw

Be - 99.22 - 99.55
BeO 300 0.083 130 0.036
Fe 300 0.18 130 0.080
C 300 0.040 200 0.027
Ni 200 0.13 50 0.032
Ca 200 0.088 200 0.089
Al 100 0.030 50 0.015
Si 100 0.031 70 0.022
Zn 100 0.072 100 0.072
Mg 60 0.016 30 0.0081
Cu 50 0.035 40 0.028
Mn 30 0.018 5 0.0030
Cr 25 0.014 10 0.0057
Co 7 0.0045 5.6 0.0036
Pb 7 0.016 5.6 0.012
Mo 7 0.0074 5.6 0.0059
Ag 7 0.0083 5.6 0.0067
Ti 7 0.0037 5.6 0.0030

Table 4.1: Impurity concentrations quoted by the manufacture of the Beryllium filters used in
the two-color system on CTH specified as the maximum allowed and typical concentrations.
For each specification, the parts per million (ppm) and a calculated value of the fraction
abundance, xw, by weight are reported. The factional abundance by weight for the typical
rolled specifications is used for the calculation of the filter transmission curve.
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Figure 4.6: The transmission function of a 1.8µm beryllium filter with and without heavy
atom impurities. The black line is pure beryllium while the teal and orange lines include the
typical and maximum allowed impurities from table 4.1. The teal line is the transmission of
a 3.0µm beryllium filter with typical impurity levels.
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not in vacuum (not specified by the manufacture). The unexpected decrease in the signal

levels using the carbon and aluminum filters made the temperature measurement for the

non-central channel prohibitively challenging.

4.2.2 Diode absorption

Calculating the absorption of the diode is similar to calculating the transmission of a

filter explained in section 4.2.1. Since the diodes have an internal 100% quantum efficiency

for photons and lack a surface dead region, the calculation of the absorption is one minus the

transmission. Equation 4.18 is used to calculate the transmission of silicon with a thickness

of 35µm. Figure 4.7 shows the transmission (black line) and absorption (maroon line) of a

diode in the diode array. The responsivity of a diode, is found by64

A(E) =
0.98ASi(E)

W
. (4.19)

The 0.98 factor takes into account reabsorbance of fluorescent photons from the silicon

detector.46 ASi(E) is the absorption of the silicon layer and W is the average energy for

electron-hole pair creation in silicon,65 3.66 eV. The calculated absorption, shown in green,

is in good agreement with the data provided by the manufacture, shown in light blue, in

figure 4.7. The diodes have a flat responsivity ∼ 0.27 A/W for photons up to ∼ 4 keV.

Photons above ∼ 4 keV have enough energy to pass through the detector.

4.2.3 X-ray energy range recorded by the two-color SXR cameras

The effective energy range of the detector is found by multiplying the transmission

function of the filter by the absorption function of the diode. This function, T (E)A(E), is

the fraction of photons that will be detected by the diagnostic. Figure 4.8 shows the effective

range of the diode arrays behind beryllium filters of thicknesses 1.8 and 3.0µm There is a

clear deviation in the fraction of absorbed photons between the two filters for photons less
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Figure 4.7: The absorption (maroon line), transmission (black line), and calculated absorp-
tion (green line) of a diode used in the two-color camera system. The calculated absorption
lines is in good agreement with the data provided by the manufacture (blue line).
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Figure 4.8: The filter transmission multiplied by the diode absorption, illustrating the region
of the x-ray spectrum the diodes with different Be filter thicknesses detect.

than ∼ 4 keV. It is this difference that is used to estimate the electron temperature given

in section 4.2. It is important that the bremsstrahlung over this energy range have minimal

impurity and free-bound radiation contributions.

Photons above ∼ 4 keV are equally detected through both filter thicknesses, due to the

similar filter transmission functions. The decrease in the number of photons detected is due

to the photons passing through the detector. From this plot, it is clear that the two-color

camera system observes photons from ∼ 0.6 keV to ∼ 20 keV.

4.2.4 Calculation of the electron temperature with the two-color diagnostic

Calculation of the electron temperature begins by modeling the signals from each diode

with equation 4.15. For modeling purposes it is assumed that the electron temperature can
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Figure 4.9: Plots of the ratio of the simulated signals from a diode observing the same
solid angle of the plasma but through filters of different thickness. The red line represents
pure 1.8µm and 3.0µm thick beryllium. The teal and black lines have the typical impurity
levels expected in the beryllium filters but the observed plasmas have a peaked or broad
temperature profile. The purple line is the ratio of the aluminum and carbon filters.

be approximated using a two-power profile with radial dependence,

T (r) = T0

(
1−

(
r

a

)α)β
. (4.20)

The free parameters α and β control the shape of the two-power profile. The α parameter

determines the width of the profile while β determines how fast the profile drops off.

The expected signal levels, S(Te, d), are then calculated for temperatures ranging from

10 − 200 eV for each filter thickness. If the detectors share the same line of sight, the line

integral in equation 4.15 is identical. The signal ratio, R(Te), is taken to cancel out the

unknown quantities such as the effective atomic number of the plasma, Zeff, and density, ne,i,
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leaving only a functional dependence on the effective cut-off energies of the filters and the

electron temperature.

R(Te) =
S(Te, d1)

S(Te, d2)
(4.21)

The line integrated electron temperature is determined by comparing the measured ratio

to the ratio of the simulated signal. If the filter transmission is approximated as a step

function, an exact form of equation 4.21 can be used.37,66,67 Figure 4.9 shows the ratios

of the simulated signal as a function of electron temperature for four filter combinations.

The effect of the low energy transmission window for the pure beryllium filters is clearly

evident shown by the red curve as compared to the other curves. The robustness of this

measurement derives from the fact that the ratio is weakly dependent on the temperature

profile. The signal ratio using the beryllium filters using a typical impurity content within

the filter and a peaked temperature profile with α = 2, β = 6, is shown in black. The teal

line uses the same filter transmission functions, but has a broader temperature profile with

α = 4, β = 6. The differences between ratios the of peak and broad profiles, δTe/Te (not

shown), is between 6% and 7% for temperatures ranging from 60 to 160 eV. The signal ratio

for the aluminum and carbon filters used for some of the data in this thesis is shown in

purple. The thicknesses of the aluminum and carbon filter was chosen to have a dynamic

ratio change over the expected temperatures for CTH plasmas.

4.3 Line radiation effect on the two-color diagnostic

Impurity radiation in the energy range where the filter transmissions are different

(430 eV to 4 keV for the filters used on CTH) will lead to errors in the simple interpre-

tation of the temperature ratio. To understand and estimate the effects of the impurity line

radiation and the sensitivity of these initial two-color estimates of the electron temperature,

the total bremsstrahlung and line radiation is calculated using ADAS.
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Figure 4.10: Calculated line radiation for each ionization state and the total bremsstrahlung
power using ADAS for oxygen. The dashed lines are the total power for each ionization state
and bremsstrahlung radiation (black line). The solid lines are the power multiplied by the
transmission of the filter and diode absorption functions.
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Figure 4.10 shows the total power from the line radiation and bremsstrahlung for one

impurity, oxygen. Bremsstrahlung radiation is calculated for each ionization state as a

function of electron temperature. The emissivity is then multiplied by the transmission

function of the filter and the absorption function of the diode and integrated over the photon

energies to give the total power. The power of the bremsstrahlung radiation was then

multiplied by the fractional abundance for each ionization state explained in section 4.5. Each

value is then added together to give the total bremsstrahlung due to oxygen, represented by

the solid black line in figure 4.10. The total unfiltered bremsstrahlung power for oxygen is

shown by the dashed black line.

In order to compare the bremsstrahlung radiation with the line radiation, the strongest

50 radiative transitions for each ionization state at a given temperature are calculated using

ADAS. ADAS is also used to calculate the photon emissivity coefficient of the corresponding

transition within the atom. The photon emissivity coefficient is then multiplied by the value

of the transmission of the filter and diode absorption at the wavelength of the transition. All

of the filtered transitions are then added together and shown as the solid lines on figure 4.10

for each ionization state. The emissivity for the ionizations states below O4+ are filtered

sufficiently that they do not show up in this figure. The unfiltered cases are shown by the

dashed lines.

For reference, the bremsstrahlung radiation due to hydrogen at 100 eV is on the order of

10−35 Acm3. From this, it is clear that the line radiation will dominate the x-ray region for

the two-color diagnostic using the filters described in section 4.2.1. However, as discussed

in section 4.5, the ionization balance model overestimates the relative charge states of the

impurity ions in the plasma in favor of highly ionized states. The highest oxygen ionization

state measured by spectroscopic measurements is 4+ which typically radiates at energies less

than 50 eV. The filter transmission for photon energies less than 200 eV is less than 1.0×10−6;

therefore, the line radiation should be sufficiently filtered out. Higher values of the effective

ion charge can certainly not be ruled out and would lead to a substantial fraction of the
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measured SXR signal resulting from line radiation and would require detailed knowledge of

the plasma impurity content to correct the measured signal. For higher temperature plasmas,

Te > 1 keV, thicker filters68,69,66 can be used that avoid many of the issues.

4.4 Electron temperature measurements in CTH

The estimated electron temperature from the two-color diagnostic is shown in the bot-

tom panel in figure 4.11 (shot: 14110709). The top panel is the plasma current for the

discharge reaching a peak of ∼ 40 kA and the middle panel is the line integrated estimated

electron density. Since the two-color diagnostic is very sensitive to the impurity radiation, it

is usually cross calibrated with another electron temperature measurement such as Thom-

son scattering.70 A Thomson scattering diagnostic only provides a few temperature mea-

surements at distinct spatial locations during the discharge. The strength of the two-color

diagnostic is that it will provide a fast time resolution, 50 kHz, of the electron tempera-

ture per chord, allowing tomographic reconstructions of the electron temperature profile. A

Thompson scattering diagnostic is due to be installed on CTH; therefore, the electron tem-

perature measurements presented rely on theoretical calculations. The results are consistent

with those predicted by Spitzer resistivity and the SXR spectrometer as shown in the bottom

panel of figure 4.11. The following sections describe how the electron temperature estimates

were derived from the SXR spectrometer and Spitzer resistivity.

4.4.1 Estimation of plasma temperature from the SXR spectrometer

The SXR spectrometer, described in section 2.3, measures photons from 0.503 to 1.3 keV

over eight channels each spanning 100 eV. An electron temperature estimate can be found

by taking the logarithm of the ratio free-free bremsstrahlung,

kTe =
E1 − E0

ln I0g1

I1g0

. (4.22)
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Figure 4.11: Electron temperature estimations for a plasma discharge in CTH (shot
14110709). The top panel shows the plasma current and the middle panel is the line in-
tegrated electron density. The bottom panel shows the three temperature estimates from
Spitzer resistivity (red line), the SXR spectrometer (magenta diamonds), and the two-color
diagnostic (black line).
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Where, E is the average energy of the specific channel, I is the number of counts observed,

and g0 and g1 are the Gaunt factors. The spectrometer observes the bremsstrahlung radiation

from the core of the plasma during a ohmic discharge in CTH. Every detection observed in

each channel is recorded as a square pulse and counted using an algorithm. The number

of counts observed are then corrected for the attenuation of the filter by dividing by the

transmission of the filter at the average energy. The number of counts are binned into

10 ms intervals before an iterative algorithm is applied to find the electron temperature. The

algorithm finds the temperature based on the ratio between every channel, e.g. channel 1

and 2, channel 1 and 3, channel 3 and 4, etc. All of the temperatures calculated from each

ratio during the time segment are averaged together to find the final electron temperature.

Currently, for the discharge presented in figure 4.11 (shot 14110709), these measurements

indicate the plasma core is approximately 100 eV.

4.4.2 Spitzer resistivity electron temperature estimation

An estimation of the electron temperature can be made from the plasma current and

loop voltage. The caveats of this temperature estimation are that the loop voltage assumed

to be constant across the plasma and the plasma is toroidally symmetric and with a circular

cross-section, neither of which are true in CTH. From these assumptions Ohm’s law can be

written as:

J =
Ip

πa2
=
E

η
. (4.23)

Where J is the current density and the resitivity, η = Zeffηs. The electric field may be

written in terms of the loop voltage:

E =
Vloop

2πR0

. (4.24)
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Spitzer’s resistivity is given by:3

ηs = 1.65× 10−9lnΛ/T 3/2
e . (4.25)

Where Λ is the Coulomb logarithm, and the electron temperature has units of keV. Com-

bining the three equations and solving for the electron temperature gives:

Te = 2.2165× 10−6

(
R0 Zeff Ip lnΛ

a2Vloop

) 2
3

[keV]. (4.26)

The electron temperature estimate from Ohm’s law and Spitzer’s resistivity is strongly de-

pendent on the plasma current as evident by similarity of the red line in figure 4.11 to the

plasma current trace. For the discharge presented, the Coulomb logarithm is approximated

to be equal to 15 and Zeff is set to 1.5.
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Chapter 5

Sawtooth oscillations in the CTH

This chapter discusses the observed behavior of the sawtooth instability in CTH. The

sawtooth instability has been the interest of many studies since it was discovered but its

properties are still not fully understood. The beginning of this chapter presents an overview

of basic sawtooth physics. Then an ideal MHD model is discussed to characterize the main

instability responsible for the occurrence of sawteeth and goes into detail about MHD sta-

bility providing a more comprehensive picture of the sawtooth instability is presented. The

dynamics and two theoretical models describing the onset of the sawtooth crash and the cur-

rent active area of sawtooth control schemes is then discussed. What follows are the main

observational results of the thesis; the effects of varying three-dimensional fields on sawtooth

oscillation behavior. These observational results have been reproduced by resistive MHD

simulations using NIMROD.71 Finally, the results are discussed with possible correlations to

certain sawtooth theoretical models in order to explain the observed behavior.

5.1 Sawtooth oscillations

Sawteeth are periodic relaxations of the plasma temperature and sometimes plasma

density and were first observed in the ST tokamak in 1974.9 They are primarily a core phe-

nomenon consisting of three functional stages: (i) the ramp phase, (ii) the precursor phase,

and (iii) the crash phase. The top black line in figure 5.1b is a characteristic sawtooth

oscillation observed by a SXR emissivity diagnostic looking through the core of a plasma

denoted by the light blue color in figure 5.1a. The ramp phase of the sawtooth oscillation

begins when the core of the plasma is ohmically heated. Eventually, the increasing core

temperature peaks the current profile (due to reduced resistivity) which lowers the central
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(a)

(b)

Figure 5.1: (a) A schematic of a plasma column cross section to illustrate some of the
key parameters of a sawtooth oscillation. (b) A basic sawtooth oscillation as observed by
several SXR emissivity measurements at different radii. A core chord (black line) has the
characteristic sawtooth oscillation while the chord outside the inversion radius (magenta
line) displays inverted sawteeth. Further out the in the plasma, the effect of the sawtooth
oscillation is smaller in amplitude and delayed in time, indicating heat pulse propagation as
seen by the blue line.

safety factor enough to trigger a MHD instability within the plasma core, initiating the pre-

cursor phase. The instability grows large enough to cause a rapid crash and re-organization

of flux in the core of the plasma. The crash time, tcrash, is on the order of 100µs for the

sawteeth observed in CTH while the rise time, trise, is typically about four times longer.

The sawtooth crash is illustrated by the gold line in figure 5.1b. The thermal energy from

the core of the plasma is deposited outside the inversion radius, rinv, during the sawtooth

crash. This sudden increase in thermal energy increases the temperature of the surrounding

region, increasing the SXR signal, leading to the inverted sawtooth behavior illustrated by

the magenta line. The process then repeats itself as essentially nested magnetic flux surfaces

are restored in the core of the plasma after the crash phase.

Sawtooth oscillations are primarily a core phenomena and do not, by themselves, lead

to a termination of plasma confinement. The deposition of thermal energy from the core

during a sawtooth crash increases the temperature out to the mixing radius. SXR emissivity
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measurements observe a slight increase in signal right outside the inversion radius shown as

the light blue line in figure 5.1b as thermal energy propagates outward. The mixing radius

is typically 25-50% of the plasma minor radius in a typical tokamak plasma.18

5.2 Ideal MHD stability

The sawtooth instability plays an important role in determining the plasma profiles

and possibly prevents impurity accumulation in the plasma core, but may be detrimental

if they are too large. Therefore, there has been much work to understand what drives

the instability and methods of controlling the oscillation. The most common technique to

investigate stability is to introduce a small perturbation to a plasma that is in equilibrium. A

plasma is in equilibrium if there is no net force acting on any volume element. For a plasma in

a potential V (x), this corresponds to dV /dx = 0. Introducing a small perturbation produces

a set of perturbed forces within the plasma and the direction of these forces determine the

stability. If the forces restore the plasma back to its original state, the plasma is stable. If

the forces continue to seed the growth of the initial perturbation, the plasma is unstable.

Linear stability analysis can predict if the perturbation will be unstable and grow ex-

ponentially. The analysis starts with the ideal MHD equations:

Mass conservation:
∂ρ

∂t
+∇ · (ρv) = 0

Momentum conservation: ρ
dv

dt
= J×B−∇p

Energy conservation:
d

dt

(
p

ργ

)
= 0

Ohm’s law: E + v×B = 0

Maxwell: ∇× E = −∂B

∂t

∇×B = µ0J

∇ ·B = 0

(5.1)
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A small perturbation is introduced about a zeroth-order equilibrium in terms of a Taylor

expansion around f(r0):

f(r, t) = f0(r) + εf̃1(r, t) + ε2f̃2(r, t) + · · · . (5.2)

Linear stability analysis keeps the zeroth and first order terms, f0(r) and εf̃1(r, t). The non-

linear terms are important to analyze the stability of the sawtooth oscillation but are ignored

for now. The expansion is applied to each variable in equation 5.1 with the assumption that

the product of two perturbations is negligible. Since the equilibrium quantities, f0(r), are

time independent a Fourier decomposition of the perturbed quantities can be written as:

f̃1(r, t) = f1(r)e−iωt. (5.3)

This will replace the time derivatives in the Taylor series expansion with multiplicative

factors, −iω. In general ω can be written as a sum of real, ωr, and imaginary, ωi, parts:

e−iωt = e−iωrt+ωit = e−iωrteωit. (5.4)

If ω is imaginary the perturbation given by equation 5.3 will have an exponentially growing

or decaying solution. Due to the existence of the exponentially growing solution, the system

is unstable. Real ω leads to oscillatory solutions about the equilibrium and the system is

stable.

It is convenient to write the first-order perturbation of the system in terms of a dis-

placement vector, ξ(r, t):

v1 =
dξ

dt
. (5.5)

A convenient choice of initial conditions for the displacement, magnetic field, pressure, and

mass density at t = 0 is to set them to zero. It is assumed that ṽ1(r, t = 0) 6= 0; therefore,

the plasma is in equilibrium but is moving at a small velocity. Each term in equations 5.1
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is then linearized applying the Fourier decomposition discussed. Substitution of terms into

the momentum equation yields an eigenvalue equation gives:

− ω2ρ0ξ = F(ξ) (5.6)

where, the righthand side is the ideal MHD force operator and is given by:

F(ξ) =
1

µ0

(∇×B0)×B1 +
1

µ0

(∇×B1)×B0 +∇(ξ⊥ · ∇p0 + γp0∇ · ξ). (5.7)

The subscript ⊥ refers to the direction perpendicular to the equilibrium magnetic field while

the 0 and 1 subscripts correspond to the zeroth and first order pertubations. The force

operator, F(ξ), has the property that it is self-adjoint.8 The eigenvalues, ω2, of a self-adjoint

operator are real;72 hence if ω2 > 0, ω is real and the system is stable. If ω2 < 0, then ω

is imaginary with both an exponentially growing and decaying solution. The exponentially

growing solution yields the instability.

Taking the dot product of equation 5.6 with the complex conjugate of the displacement

vector, multiplying it by 1/2, and integrating over the volume gives:

ω2

2

∫
ρ0|ξ|2dV = −1

2

∫
ξ∗F(ξ)dV . (5.8)

The factor of 1/2 was multiplied by equation 5.8 in order to make the left hand side propor-

tional to the kinetic energy of the plasma, K(ξ∗, ξ) multiplied by ω2. The right hand side is

the perturbed potential energy of the plasma, δW (ξ∗, ξ). Solving for ω2 yields:

ω2 =
δW (ξ∗, ξ)

K(ξ∗, ξ)
. (5.9)

Since an arbitrary displacement vector was multiplied by the eigenvalue given by equation 5.6

to derive equation 5.9, ω2 is no longer an eigenvalue. It can be shown by decomposing ξ into
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eigenfunctions that ω2 is the weighted sum of the eigenvalues of the system.21 Therefore, the

stability conditions that if ω2 > 0 the system is stable and if ω2 < 0 the system is unstable

are still valid. Since the kinetic energy is always positive it follows that the system is ideal

MHD stable if δW (ξ∗, ξ) > 0 and unstable if δW (ξ∗, ξ) < 0.

The MHD equations have been eloquently combined into a potential energy equation

which determines the MHD stability of the system. Due to the complexity of δW (ξ∗, ξ), it

is usually analyzed numerically to determine plasma stability. However, an intuitive form

has been derived assuming the plasma is surrounded by a vacuum region bounded by a

conducting wall. After re-arranging the terms in the potential energy equation accordingly,

it may be written as the sum of three physically distinct contributions:

δW = δWV + δWF + δWS. (5.10)

Where V refers to the vacuum, S is the surface, and F is the fluid potential energy. This

is known as the “intuitive” form of the energy principle.73 The full expansions of each of

the surface and vacuum potential energies can be found in Freidberg’s book.8 The vacuum

potential energy is always positive and is therefore always stabilizing. Since we are concerned

with the instabilities in the core of the plasma, such as sawtooth oscillations, we can assume

there are no surface currents; therefore, δWS = 0.

The fluid term is given by:8

δWf (ξ
∗, ξ) =

1

2µ0

∫
P

[
|Q⊥|2 + B2|∇ · ξ⊥ + 2ξ⊥ · κ|2 + µ0γp|∇ · ξ|2

− µ0[(ξ⊥ · ∇p)(ξ∗⊥ · κ) + (ξ∗⊥ · ∇p)(ξ⊥ · κ)]

− (µ0J||/2)[ξ∗⊥ × b ·Q⊥ + ξ⊥ × b ·Q∗⊥]

]
dr.

(5.11)

Where the integrand is over the plasma volume, Q⊥ = ∇ × (ξ × B), b = B/B, and the

curvature vector is given by κ = b ·∇b. The terms in the first line are all positive; therefore,

they are stabilizing. Physically, they represent the shear and compressional Alfvèn waves
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and sound waves within the plasma. The second and third lines are negative and are the two

possible sources of a MHD instability. Pressure-driven instabilities occur if the second line

is dominate. If the curvature vector and ∇p are parallel to each other, referred to as bad

curvature, the term is negative and destabilizing. Interchange instabilities and ballooning

modes are two common types of pressure-driven instabilities.

Current-driven modes occur when the dominate destabilizing term is proportional to the

parallel current, J||, in the third line in equation 5.11. Current-driven modes are commonly

known as kink modes because they lead to kinking of the magnetic surfaces. They are further

subdivided by whether the unstable displacement perturbs the plasma surface (external

kink modes) or remans internal (internal kink modes). The sawtooth oscillation occurs

when an internal kink mode is driven unstable. To understand what drives the sawtooth

oscillation we need to apply equation 5.11 to tokamak geometry. The first reduction of the

fluid term is accomplished by assuming the plasma is a straight cylinder of length 2πR0.

This configuration is known as the straight tokamak and it is convenient to express the

displacement vector as a Fourier decomposition:

ξ(r, θ, φ) = ξ(r)ei(mθ−nφ). (5.12)

Where m(= 1, 2, ...) is the poloidal mode number and n(= 1, 2, ...) is the toroidal mode

number. The mode numbers are related to the periodicity of the mode. An n = 5,m = 2

mode would repeat itself five times in one poloidal circumference and two times in one

toroidal circumference. The reduction of δW yields an expansion of the form δW = δW0 +

δW2 + δW4 + · · · . Each term scales as δWi ∼ εiδW0 where δW0 ∼ B2
0R0ξ

2/µ0. Assuming

internal modes, ξ(a) = 0 the first non-vanishing term is of second order:74

δW2

ε2W0

=

∫ a

0

(
n

m
− 1

q

)2[
r2ξ′2 + (m2 − 1)ξ2

]
rdr. (5.13)
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(a)
(b)

Figure 5.2: (a) A trial function for the m = 1, n = 1 internal kink mode that causes δW2 → 0
in a straight tokamak. (b) Top, before the q=1 surface is in the plasma. Bottom: the q=1
displacement.

Where q is the inverse of the rotational transform and increases monotonically with r in CTH

(and a tokamak). For m ≥ 2 each term in the integrand is positive and non-zero; therefore,

all of the internal modes are ideal MHD stable. For the case where m = 1, if a q = 1 surface

exists within the plasma, then a trial function can be constructed which causes δW2 → 0.

Figure 5.2a shows an example trial function of ξ(r) that is rigid or constant within the q = 1

surface and decreases to zero over a width of δ where q = 1. Since the trial function is flat

for q < 1, equation 5.13 will be zero for m = n = 1 as δ → 0.

Since it is possible for the δW2 → 0 this implies that the plasma would be only marginally

stable if a q = 1 surface exists within the plasma. The next lowest order contribution to the

stability is of order ε4 and given by:75

δŴ4 =
δW4

ε4W0

= ξ2
0

∫ r1

0

[
rβ′ +

r2

R0

(
1− 1

q

)(
3 +

1

q

)]
rdr. (5.14)

The ratio of the plasma pressure to the magnetic pressure is defined by β. Given that

pressure profiles typically decrease monotonically to the edge of the plasma, β′ is negative.
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When q < 1 both terms in the integrand of equation 5.14 are negative and the plasma is

unstable. Therefore, where q(r) < 1 an m = n = 1 internal kink mode can exist and is

predicted to be unstable in a straight tokamak. The instability takes the form of an internal

kink as shown in figure 5.2b. The top plot shows an unperturbed flux surface in the plasma

core outlined in blue. For surfaces with q < 1, the instability shifts the core toroidally and

poloidally as shown in the bottom plot. Since the m = n = 1 mode stability is determined

by fourth order terms in ideal MHD, non-ideal effects such as finite electrical resistivity will

play an important role in the sawtooth oscillation.

Derivation of the potential energy terms for a toroidal tokamak system assuming a large

aspect ratio, R0/a, low β, and circular cross section were completed by Bussac et al.76 Using

the same trail function as shown in figure 5.2a, they found that δŴ2 can still be zero but

the fourth order ideal term is modified by toroidal effects. They derived an expression that

can be written in terms of the cylindrical contribution from equation 5.14 plus a toroidal

modification:

δWf

W0

= ε4
[(

1− 1

n2

)
δŴ4C +

1

n2
δŴ4T

]
. (5.15)

Where Ŵ4C is the cylindrical contribution discussed previously and Ŵ4T is the toroidal

correction. In the limit where n = 1 the cylindrical contribution vanishes and the stability

is only dependent on the toroidal contribution:8

δŴ4 ≈
3n2r4

1

R0

(1− q0)

(
13

144
− β2

p

)
. (5.16)

For tokamak plasmas, the primary term that drives the plasma unstable is the poloidal beta,

βp. Many tokamak plasmas have shown experimental evidence correlating the m = n = 1

kink mode and its nonlinear development with the sawtooth oscillation.77
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(a)

(b) (c)

Figure 5.3: An illustration of SXR signals during a sawtoothing oscillation (a). The start of
the oscillation begins at t0 (green line). The current profile peaks at t1 (red line) triggering
an m = n = 1 instability followed by the sawtooth crash at t2 (black line). The temperature
profile (b) peaks as the SXR emission rises which increases the current profile leading to a
decrease in the safety factor shown inside the inversion radius (c).
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5.3 Phenomenology of the sawtooth oscillation

The sawtooth oscillation is a periodic rearrangement of the core plasma temperature

and loss of core plasma thermal confinement due to an m = n = 1 instability. Figure 5.3a

depicts a typical sawtoothing SXR signal measuring the bremsstrahlung radiation given by

equation 4.7. The bremsstrahlung radiation is a function of electron density and temperature;

however, for the sawtooth oscillations observed in CTH the line integrated density does

not exhibit a sawtoothing pattern; hence, the SXR emissivity measurements primarily vary

due to temperature fluctuations. Figure 5.3b shows the temperature profile based on a

normalized radial distance from the plasma core, r/a. Figure 5.3c is the q profile, the inverse

of the rotational transform, as a function of the normalized radial distance. The start of the

sawtooth oscillation, t0, is depicted by the green line in each of the plots in figure 5.3, with

a flat electron temperature and q profile for r < rmix. Ohmic heating of the plasma core

will increase the core temperature profile at a later time, t1, increasing the bremsstrahlung

radiation measured by the SXR diagnostic. The current density is related to the electron

temperature, J ≈ E0/ηs ∝ T
3/2
e ; therefore, an increase of the core temperature profile

increases the core current density. The safety factor, q(r), is related to the current density

by:

q(r) =
2B(r)

µ0R0J(r)
. (5.17)

As the core current density increases the value of q decreases as shown by the red line in

figure 5.3c. At some point the safety factor drops below one and triggers an m = n = 1

MHD mode as described by the linear analysis in section 5.2.

The amplitude of the internal kink mode grows large enough that during the last stages

of its nonlinear evolution, core flux surfaces begin to reconnect leading to the rapid transport

of thermal energy out of the core. The rapid loss of thermal energy is observed in the SXR

emissivity measurements after t2 lowering the core safety factor (q) and temperature. The

temperature remains constant at the inversion radius which is also the q = 1 surface. The
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thermal energy from the core of the plasma heats the surrounding plasma outside of the

inversion radius, rinv, propagating out as far as the mixing radius, rmix. The sawtooth

instability thus limits the plasma current density profile in the core of the plasma.

5.3.1 Sawtooth crash models

The exact mechanism to determine when the m = n = 1 mode will trigger a sawtooth

crash and the arrangement of the flux surfaces after a sawtooth crash is still not completely

understood. Sawtooth behavior is currently thought to depend on non-ideal effects such

as energetic particles and alpha heating. The first accurate prediction of the sawtooth

crash time in small axisymmetric plasmas was the Kadmotsev model.78 There are two main

assumptions in the Kadmotsev model, magnetic surfaces with equal and opposite helical flux

reconnect and the toroidal flux is conserved during the process. The helical flux is given by:

dϕ∗(r)

dr
= Bθ − (r/R0)Bφ = Bθ(1− q). (5.18)

Since q > 0 in a tokamak, it is evident that the helical flux is at a maximum when q =

1 and will it be positive when q < 1 and negative when q > 1. A qualitative picture

outlining the reconnection process is found in figure 5.4 showing the evolving flux surfaces at

a poloidal cross section. Initially, the plasma is heated with a set of nested flux surfaces and

a q = 1 surface appears within the plasma as discussed in section 5.3 and shown in green

in figure 5.4a. The flux surfaces inside and outside have field lines that twist in opposite

directions with respect to the q = 1 flux surface. These surfaces are represented by the

flux surfaces labeled as 1 and 2. Once the safety factor is below one within the plasma an

internal helical kink mode develops that tilts and displaces the flux surfaces within the q = 1

surface. The displacement leads to the formation of an x-point shown in figure 5.4b. The

helical magnetic flux surfaces of equal and opposite helical flux reconnect at this location

expelling the hot plasma core through the poloidally localized x-point. The mixing of the
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(a) (b)

(c) (d)

Figure 5.4: Images of the flux surfaces at a poloidal cross section illustrating the Kadmotsev
model of a sawtooth crash. The formation of a q = 1 surface represented by the green line
in (a) triggers the m = n = 1 instability within the plasma. The flux surfaces 1 and 2
have equal and opposite helical flux due to field lines that twist in opposite directions with
respect to the q = 1 surface. The m = n = 1 instability displaces the core of the plasma
in (b) forming an X-point and starting the reconnection process. The reconnection process
continues in (c) with surfaces with equal and opposite magnetic flux until all of the initial
surfaces with q < 1 are annihilated and a set a nested flux surfaces form in (d).
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hot plasma core near the magnetic axis with the cooler plasma results in a flattening of

the temperature profile up to the mixing radius. The reconnection process continues in

figure 5.4c until the flux near the original q = 1 surface has moved to the center of the

plasma. After the process is done, the initial q = 1 surface becomes the final plasma axis,

due to the toroidal flux conservation assumption. All of the flux surfaces initially inside of

the q = 1 surface are gone and the flux surfaces return to the normal nested configuration

shown in figure 5.4d. The reconnection time scale of the Kadomtsev model is derived from

the magnetic pressure driving the outflow of the plasma into the new flux surfaces, given

by the Bernoulli equation, and the speed at which the plasma flows into the x-point, given

by Ohm’s law. The estimation of the reconnection time scale or crash time of the sawtooth

oscillation is approximately:

τcrash ≈
√
τresτA (5.19)

Where the Alfvèn time scale is τA = r1
√
µ0ρ/B0 and the resistive time is τres = µ0r

2
1/η. For

a CTH plasma with an electron temperature of 150 eV and density of 1019 m−3: ρ = 1.67×

10−8 kg/m3, r1 ≈ 0.05 m, assuming Spitzer’s resistivity (equation 4.25) ηs = 4.26× 10−7 Ωm,

B0 ≈ 0.5 T. Combining the values gives an approximate crash time predicted by Kadomtsev’s

model of 10µs. Typical crash times observed in CTH are on the order of 100µs. The

Kadomtsev model was able to accurately predict the sawtooth crash time in small sized

tokamaks but is off by a factor of ten for the three-dimensional fields in CTH. Numerical

simulations using resistive MHD equations in a cylindrical equilibrium confirm the basic

dynamics of the Kadmotsev model in an axisymmetric plasma.79,80,81,82 It was found that

for larger tokamaks such as JET, the Kadmostev model predicated the crash time to be on

the order of 10 ms but the observed crash time was 100µs.83 There is also experimental

evidence that the flattening of the q profile does not always occur, and in some cases it

stays below 1 for the entire sawtooth cycle.84,85,86,87,88 Mapping of the q = 1 magnetic

surfaces by measuring the SXR emission suggested that a secondary instability interrupted

the reconnection process.89 There have also been observations of sawteeth that partially
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collapse,90,91,92 sawteeth that only develop the m = n = 1 mode right before the crash,93

and sawteeth where the m = n = 1 mode is present throughout the sawtooth cycle.89,94

A more comprehensive model of the sawtooth crash phase including non-ideal effects

applicable to hotter tokamaks was developed by Porcelli et al .95 Their model included

a criterion for the sawtooth crash trigger and the profile relaxation after. The trigger is

based on a modified model of the potential energy which includes MHD effects and plasma

shaping, along with kinetic effects like trapped thermal particles and collision-less fast ions.

The trapped thermal particles (Kruskal-Oberman correction96) and fast ion contributions

are stabilizing if they are inside and near the q = 1 surface. The normalized potential energy

in the Porcelli model is defined as:

δŴ ≡ − 4δW

s1ξ2ε21RB
2

(5.20)

Where the subscript denotes the quantities are evaluated at the q = 1 surface, ε1 = r̄1/R, the

shear is given by s1 = r̄1q
′(r̄1) where r̄1 ≈ r1

√
κ1 is the average radius. The elongation κ is

defined as the ratio of the horizontal and vertical axes, b/a of the q = 1 surface. The model

has three conditions, that if any are met, lead to a sawtooth crash. The three conditions

include high-energy trapped particles, the diamagnetic rotation being insufficient to stabilize

the mode, and a term depending on the energy drive. Two of the conditions depend on the

shear of the q profile, which can be written in terms of a critical shear, scrit, for the instability:

s1 > scrit = α(S1/3ρ̂)1/2(βi1R
2/r̄2

1)7/12(r̄1/rn)(r̄1/rp)1/6 ≈ α(S1/3ρi)
1/2(βi1R

2)7/12

κ1/4
√
r1rnr

1/6
p

(5.21)

Where S is the magnetic Lundquist number, ρ̂1 = ρi/r̄1, ρi is the thermal ion Larmor radius,

βi1 is the ion toroidal beta, rp is the pressure scale length, rn is the density scale length,

α = 1.5c
−7/6
∗ [τ/(1 + τ)]7/12 where c∗ is a numerical factor on order of unity, and τ is the ratio

of electron to ion temperatures, Te/Ti.
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During a sawtooth oscillation the shear of the q profile increases with time as the current

density profile peaks. Once the shear reaches a critical value, given by equation 5.21, the

m = n = 1 mode is triggered, grows rapidly inducing a sawtooth crash. Pointing out some

specific variables, this theory predicts that the critical value of the shear can be lowered if

the electron temperature is decreased, by increasing the elongation, or increasing the size of

the q = 1 surface. The Porcelli model has been compared to experimental values in the JET

tokamak with the simulated sawtooth period found to be within ∼ 20% of the measured

values.97 It should be noted that although the trigger for the sawtooth crash is somewhat

understood, the nonlinear dynamics of the crash phase and how the profiles change after

the sawtooth crash are still an active area of research. This model was also derived for an

axisymmetric tokamak and does not take three-dimensional magnetic surface shaping into

account.

5.4 Control of the sawtooth oscillation

Sawteeth can be favorable for the plasma confinement applications by providing some

level of central impurity control but are typically detrimental if the energy loss is too large due

to large amplitude sawteeth. As tokamaks have increased in size and electron temperatures

progresse towards the goal of thermonuclear fusion, sawtooth oscillations within the tokamak

have increased in amplitude and are more prone to trigger Edge Localized Modes (ELMs)

and Neoclassical Tearing Mode (NTM) instabilities. Therefore, it is beneficial to either avoid

sawteeth oscillations all together by keeping q > 1 or to have smaller, more frequent sawteeth

to decrease the energy loss in the core of the plasma.

Modifying the dynamics of the sawtooth oscillation, such as the period and ampli-

tude, can be achieved by varying the shear of the q profile,22 changing the toroidal flow,98 or

heating the ions in the plasma.99 Heating the electrons of the plasma through steerable Elec-

tron Cyclotron Resonance Heating (ECRH) or Electron Cyclotron Current Drive (ECCD)
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can be used to control the current profile; hence, controlling the q profile through equa-

tion 5.17.100,101 However, since the q profile evolves over the corse of a discharge, controlling

the sawtooth oscillation in this manner requires real-time calculations of the q profile with

active control of the ECRH launch angle during a discharge.

The sawtooth period has been observed to also increase as the toroidal rotation is in-

creased. The toroidal rotation can be decreased when counter-NBI (Neutral Beam Injection)

is used for example, which can be interpreted as the torque from counter-NBI inducing a

toroidal flow which balances the intrinsic ion diamagnetic rotation of the plasma.98

In addition, the sawtooth period has been observed to increase as the electron temper-

ature increases.102 This can be explained by equation 5.21 of the Porcelli model, increasing

the electron temperature increases α, increasing the critical shear.

The shape of the core flux surfaces has been found to significantly modify the saw-

tooth amplitude and period. Prior to the Porcelli model, numerical studies revealed that the

internal kink is significantly destabilized by elongation.103 Typically, higher elongation desta-

bilizes the m = n = 1 mode leading to smaller sawteeth103 while increasing the triangularity

stabilizes the instability.104 A derivation of the potential energy term including the plasma

elongation found the elongation to be the dominating destabilizing term if ∆q = 1 − q0 is

sufficiently small.105 Sawteeth were eliminated completely above a elongation (κ) of 2.2 to

2.6 depending on the current profile and are replaced with a continuous oscillation in an

axisymmetric tokamak.106 A comparison of bean and oval shaped plasmas on the DIII-D

tokamak showed the sawtooth period for bean shaped plasmas is approximately twice the

oval case.107

5.5 Sawtooth observations while changing the amount of 3D field

Currently, the theoretical computations and observations of the sawtooth stability have

been completely only for axisymmetric plasmas. This thesis explores, the effects of three-

dimensional shaping on the sawtooth oscillation. Sawteeth and sawtooth-like behavior have
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Figure 5.5: An example discharge showing the plasma current (top panel), line integrated
electron density (middle panel), and the SXR signal (bottom panel). The SXR signal from
the central channel exhibits clear sawtooth behavior while a signal observing the plasma
right outside the inversion radius shows inverted sawteeth.

96



been observed on non-axisymmetric machines such as the Large Helical Device,108 Compact

Helical System,109 and Heliotron E.110 The sawteeth observed in these machines are either

associated with the q = 2 rational surface, n = 1, m = 2 mode, or with q profiles having a

value of 1 at multiple radial locations.

Sawtoothing plasmas are observed during ohmic discharges in CTH. These plasmas

in CTH are tokamak-like, with a monotonically decreasing rotational transform as shown

previously in figure 2.3. Figure 5.5 shows an example CTH sawtoothing discharge. The top

panel is the plasma current peaking at approximately 30 kA in the middle of the discharge.

The middle panel shows the electron density to be relatively constant during the discharge at

about 2× 1019 m−3. The bottom panel shows two SXR signals from the SC252 000 TN two-

color camera. The central channel is a chord observing the center of the plasma exhibiting

clear sawtoothing behavior. The other chord is the signal from right outside the inversion

radius demonstrating inverted sawteeth.

Due to the changing values of the density, plasma current, and their radial profiles during

the discharge, the analysis of the sawteeth was divided into time segments containing three

to five sawteeth. To further filter the sawteeth only time segments near the peak plasma

current were selected for the database. Therefore, the scatter plots presented contain data

from 144 discharges in CTH each containing three to five sawtooth oscillations. The density

for all of the oscillations near peak plasma current ranges from 0.6−3.5×1019 m−3. Each line

integrated density measurement,
∫
nedl, was divided by the reconstructed path length to find

the estimated electron density. The plasma current was systematically varied from 15.7 kA to

60.8 kA to scan a range of total rotational transform values. The vacuum rotational transform

was varied to study the effects of three-dimensional shaping on the sawtooth oscillation. For

the data presented in this thesis, the vacuum rotational transform is used as a proxy for

the three-dimensionality of the magnetic configuration. The higher the vacuum rotational

transform the more shaped the plasma. Figure 5.6 shows the variety of different rotational

and total transforms in the sawtoothing database with each dot representing a different
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Figure 5.6: The amount of 3D field ( ι-(a)) as a function of edge rotational transform ( ι-vac(a)).
144 discharges were analyzed in this thesis with each dot representing a single discharge.

discharge. The edge rotational transform values are found using V3FIT reconstructions.

The edge vacuum rotational transform, ι-vac(a), is found during the ECRH phase of the

discharge (see figure 2.2) while the ι-(a) is during the center of the sawtoothing window

selected for each discharge.

A brief summary of the major observations of this thesis are the following:

1. The observed sawtooth period and amplitude decrease with increasing 3D field.

2. There is no strong correlation between the sawtooth crash time and an increasing 3D

field.

3. A decreasing sawtooth period and amplitude are correlated with increasing mean elon-

gation.
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4. The 1/1 mode observed through analysis of SXR signals does not disappear after saw-

tooth reconnection events, continues on throughout the cycle, and spikes in amplitude

during a sawtooth crash.

5. NIMROD resistive MHD simulations capture a similar decreasing trend of the sawtooth

cycle period with an increasing 3D field as in experiment.

Further clarification of these results follow in the subsequent sections.

5.5.1 Analysis of sawtooth parameters using CTH SXR emission

The two-color SXR cameras are used to characterize sawtooth oscillations. The ampli-

tude, rise, and crash time for each sawtooth oscillation is calculated from the central chord

for each of the three two-color SXR cameras using the thin filter because they have the high-

est signal levels. The amplitude, rise, and crash times is extracted from the SXR signal by

determining the time of the sawtooth crash from the first derivative of the SXR signal. The

amplitude, crash, and rise time were averaged together throughout the sawtoothing window

for each SXR camera. The final sawtooth amplitude, rise, and crash times were found by

averaging the values from the three SXR cameras together. The value of the sawtooth pe-

riod is defined as the sum of the sawtooth rise and crash times. Each two-color SXR camera

calculated the estimated electron temperature during the sawtoothing window, which was

then averaged over the observational window. The temperature is primarily used in the

estimation of the plasma resistivity through Spitzer’s formula discussed in section 4.4.2.

The inversion radius is calculated by performing a singular value decomposition (SVD)

with the central SXR camera, SC252 000 TN. The central camera was chosen for this cal-

culation due to the up-down symmetry of the flux surfaces at this toroidal location. SVD

separates a spatio-temporal signal, such as a matrix consisting of the signals from a multi-

channel SXR diagnostic, into orthogonal temporal modes and orthogonal spatial modes.111

Fourier decomposition can be used to identify MHD modes for cylindrical plasma geome-

tries;53 however, SVD analysis is used due to the three-dimensional nature of CTH plasmas.
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Each spatial mode corresponds to a unique temporal mode allowing one to distinguish coher-

ent structures and phenomena. Consider a spatio-temporal function, f(x, t), the expansion

into two functions dependent on space or time is given by:112

f(x, t) =
∑
n

Anvn(x)un(t) (5.22)

where, the spatial components, vn(x), and the temporal components, un(t), have the prop-

erty:

vi(x) · vj(x) = δij, (5.23)

ui(t) · uj(t) = δij. (5.24)

Here δij is the Kronecker delta function. The weight, An, is a measure of the total contribution

of each spatial and temporal function relative to the overall signal. High values of An

correspond to the modes that are well correlated in time while random patterns in the

data will have a small weight.113 This allows the rejection of uncorrelated noise within

the data while keeping physical relevant phenomena. To perform SVD on multiple SXR

signals, a matrix of the observational channels is constructed, Fij = f(xi, tj), with f(xi, tj)

representing the signal from a single channel. The spatial and temporal modes are extracted

through, F = VAU∗, where U∗ is the complex conjugate of the temporal mode. The vectors

V = [v1(x), v2(x), . . . ] and U = [u1(t), u2(t), . . . ] are composed of the spatial and temporal

modes given by equation 5.22.

The sawtooth oscillation is driven by ohmic heating of the core plasma peaking the

temperature profile driving q < 1 which triggers an m = n = 1 instability leading to a

sawtooth crash and a flattening of the temperature profile. The dynamics of the temperature

profile and the m = n = 1 internal kink are captured by SVD analysis. Figure 5.7a shows the

largest three modes of the SVD analysis for a single discharge (shot: 14081312). The spatial

components are on the left and the temporal modes corresponding to the spatial modes are on

the right with subscripts refering to the mode number. The three modes were selected based
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(a)

(b)

Figure 5.7: (a) Singular value decomposition of a sawtoothing segment observed in CTH
(shot: 14081312, time window: 1.6494 s to 1.6519 s). The spatial modes (left side) and the
temporal modes (right side) of the singular value decomposition from the central SXR camera
during a sawtoothing interval. The temporal modes have a clear rise and crash phase of the
sawtooth oscillation. The third spatial mode shows the m = 1 oscillation is correlated with
the sawtooth instability. (b) The weights of the spatial and temporal modes from SVD.
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on the weight of modes as shown in figure 5.7b. The largest weight W1 = 373 captures the

spatial temporal pair (v1, u1) illustrating the time evolution of the sawtooth rise and crash.

The addition of the second spatial mode, v2, to the first spatial mode captures the effect of

the sawtooth oscillation on the overall emissivity profile. Prior to the addition of the spatial

modes, the value of the temporal mode at a given time is multiplied by the spatial mode

mapping these components back into the space-time domain, through equation 5.22. At the

peak of a sawtooth oscillation, indicated by the red line in figure 5.7a the value of the first

temporal mode, u1(tcrash) is positive while the second temporal mode, u2(tcrash), is negative.

Therefore, the addition of the first two spatial modes can be written as v1 + (−1) × v2

leading the core of the profile to peak. The second spatial profile, v2, changes sign outside

of channels eight and thirteen relative to the central channels. Therefore, the second spatial

mode will subtract from the edge of the profile further peaking the emissivity profile at the

peak of the sawtooth oscillation. Since the emissivity profile is related to the temperature,

this describes the peaking of the electron temperature profile prior to a sawtooth crash as

described in section 5.3

After the crash, denoted by the blue line in figure 5.7a, the value of the first and second

temporal modes are both positive. The addition of the first and second modes, v1 + v2,

results in a flattened emissivity profile. From the clearly inverted sawtooth behavior in the

temporal modes of the second mode and the effect the spatial mode has on the first spatial

mode it is clear that the inversion radius can be interpolated from this mode. The inversion

radius is located where the second spatial mode crosses zero. SVD analysis was preformed

on each of the sawtoothing intervals for each discharge in this thesis to find the inversion

radius. This is further reinforced by the reconstruction using only the first and second modes

of singular value decomposition. Figure 5.8 is a contour plot of the reconstructed signal with

a linear fit subtracted from each channel to suppress the overall SXR emissivity increase

during the course of the discharge. The channel number of the SXR diagnostic is on the

y-axis and time is on the x-axis. The figure shows an increase in the core emissivity, until a
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Figure 5.8: A contour plot of the SXR signal reconstructed from the first two modes of SVD
(shot: 14081312, time window: 1.6494 s to 1.6519 s, camera: SC252 000 TN).

sawtooth crash where the thermal energy is deposited outside the inversion radius increasing

the signal measured by the SXR diagnostic outside of the inversion radius while decreasing

the the plasma core. The inversion radius calculated from the second spatial mode is denoted

by the dashed white lines.

The third spatial mode in figure 5.7a reveals the m = 1 radial fluctuation. The temporal

mode component shows the m = 1 mode oscillating in time prior to reaching its maximum

amplitude after the sawtooth crash. The m = 1 observed for sawteeth in CTH plasmas is

discussed further in section 5.5.3.

5.5.2 Characterization of sawtooth behavior in CTH

Sawtooth oscillations observed in CTH exhibit behavior similar to those in axisymmetric

tokamaks. In tokamaks, the normalized inversion radius (inversion radius divided by the

minor plasma radius) is proportional to the rotational transform.114 Figure 5.9a shows the

normalized inversion radius of the sawtooth discharges presented in this thesis as a function
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of the total edge rotational transform. It is evident that the amount of core plasma effected

by the sawtooth oscillation scales with the total rotational transform, similar to the behavior

observed in tokamaks. However, the observed inversion surface radius does not scale strongly

with the amount of 3D shaping, shown in figure 5.9b

5.5.3 Effects of three-dimensional magnetic fields on sawtooth behavior

The sawtooth oscillation can be modified through active means including heating of the

electrons near the q = 1 surface, modifying the shear of the q profile, changing the toroidal

flow, or heating ions in the plasma, as discussed in section 5.4. Currently, a few studies

have been preformed to study the effects of plasma shaping on the sawtooth oscillation. The

existing studies focus on increasing the elongation or the triangularity of the q = 1 flux

surface in an axisymmetric plasma. Typically, higher elongation destabilizes the m = n = 1

mode leading to smaller sawteeth. This thesis explores the effect of increasing levels of

3D magnetic field from external coils, as quantified by the amount of vacuum rotational

transform imposed, on the sawtooth oscillation.

Three discharges were selected to highlight the overall results of the entire sawtooth

database presented in section 5.5. The three dischages have similar line integrated electron

density, peak plasma current, and central SXR signal levels. Figure 5.10a shows the three

discharges with vacuum transforms of 0.023 (black; shot: 16050455), 0.056 (orange; shot:

15102760), and 0.116 (teal; shot: 15100556). The top panel displays the plasma current of

each discharge sharply increasing during the initial firing of the OH bank at 0 ms followed by

a smooth increase after about 10 ms reaching approximately 23 kA for each discharge then

decreasing to zero. The middle panel is the line integrated electron density for each discharge

which is calculated using the plasma width determined by V3FIT reconstructions during the

middle of each interval of three to five sawteeth. The bottom panel displays a central SXR

chord (SC252 000 TN-10) observing the core of the plasma from the camera at the mid-plane.

To examine the SXR signals in more detail, figure 5.10b shows a zoomed view of the sawteeth
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(a)

(b)

Figure 5.9: (a) A plot of the normalized inversion radius on the y-axis and the total rotational
transform on the x-axis. The normalized inversion radius for sawtoothing plasmas in CTH
scales with the total rotational transform. This behavior is also observed in tokamaks.
(b) The normalized inversion radius plotted vs. the vacuum rotational transform. The
normalized inversion radius appears to be unaffected by changes in the vacuum rotational
transform.
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for each case. Since the sawteeth dynamics change as the plasma current and density evolves,

the signals shown are 3 ms after the start of sawteeth for each discharge illustrated by the

green line. A linear fit was subtracted for each case to subtract the equilibrium and were

also shifted in time to line up the first sawtooth oscillation for each discharge. Each of the

SXR signals in figure 5.10b have a diamond after the crash of the sixth sawtooth oscillation.

It is clear that the time required for six sawtooth oscillations is longest for the low vacuum

transform case and increasing ι-vac(a) decreases the sawtooth period. Additionally, with the

lowest ι-vac(a) applied, the amplitude of the sawtooth oscillation is approximately 13 nA in

contrast to the 8 nA amplitude for the high vacuum transform discharge.

Since the dynamics of the plasma current, resistivity, density, and flux surface shape

evolve over the course of a discharge the sawtoothing parameters also vary. For the saw-

toothing discharges observed in CTH the period and amplitude tend to increase as the shot

evolves with time. To illustrate how the sawtooth parameters evolve with time, a running

average consisting of eight sawtooth periods for the shots displayed in figure 5.10 is shown in

figure 5.11a. The running average for the low (black line) and medium (orange line) vacuum

transform cases was preformed until the plasma current started to decrease after reaching

approximately 23 kA. The running average for the high vacuum transform case (teal line)

ceased at the 22 ms mark in figure 5.10 due to a noticeable hesitation in the sawtooth oscilla-

tion. It is clear that the sawtooth period for each plasma discharge increases with time, while

the highest vacuum transform case increases in sawtooth period only to decrease after 4 ms.

The effect of the additional three-dimensional fields on the sawtooth period is also apparent,

it is clear that the increase of vacuum transform decreases the sawtoothing period.

Figure 5.11b shows a running average plot of eight sawtooth amplitudes for the three

discharges. The average sawtooth amplitude increases with time for each of the three dis-

charges, similar to the trend in the sawtooth period. The sawtooth amplitude in the high

vacuum transform case appears to flatten at the same time the period of the oscillation

starts to decrease. The exact mechanism behind this is not known but a similar behavior is
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(a)

(b)

Figure 5.10: (a) The plasma current (top plot), line integrated electron density (middle plot),
and central SXR channel for three discharges with different vacuum rotational transform.
(b) A magnified portion of the SXR signals 3 ms after the onset of sawteeth for each vac-
uum rotational transform. Notice as the fractional transform increases the frequency of the
sawtooth oscillation increases along with a decrease in the sawtooth amplitude.
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observed in other high vacuum transform discharges in CTH. From the plots shown in fig-

ure 5.11 it is evident that increasing the vacuum transform leads to smaller, more frequent

sawteeth.

The decrease of the sawtooth period as a function of vacuum rotational transform is

observed throughout the entire sawtooth database as shown in figure 5.12a. It is observed

that the sawtooth period decreased by a factor of 2 as the edge vacuum rotational transform

increased from 0.02 to 0.14. From the dynamics of the sawtooth over the course of the

discharge shown in figure 5.11a it is clear that the sawtooth period is dependent on the

time chosen during the discharge. Even though the sawtoothing portion analyzed for each

discharge was taken during a sawtoothing interval nearest to the peak plasma current of

the discharge, scatter in the data is still expected. The sawtooth period is the sum of the

linear rise time due to the ohmic heating of the core of the plasma and the crash time

due to the nonlinear reconnection dynamics of the m = n = 1 kink-tearing instability. A

decrease in sawtooth period is either due to a decrease in the rise time, the crash time,

or some combination of the rise and crash time. Figure 5.12b shows the crash time for

the sawtoothing discharges presented in this thesis. The sawtooth crash time appears to be

unaffected by the amount of three-dimensional shaping. Therefore, it appears that the linear

growth rate of the m = n = 1 mode could be changed by the amount of three-dimensional

fields imposed on the plasma.

In axisymmetric tokmaks, increasing the mean elongation was found to destablize the

m = n = 1 mode leading to smaller, more frequent sawteeth.103 Plasmas within CTH

are non-axisymmetric having the elongation, κ, vary depending on the amount of vacuum

transform imposed. The elongation typically varied from 1.76 to 1.15 for the full and half field

periods at low vacuum transform, ι-vac < 0.03, while at high vacuum transform, ι-vac > 0.10

the elongation would vary between 2.4 at the full field period and 1.32 at the half field period.

Therefore, a mean elongation, κ̄ of the outer most flux surface is used to compare the 3D

shaping to the axisymmetric tokamak plasmas. It is assumed that the mean elongation at
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(a)

(b)

Figure 5.11: (a) A running average of eight sawtooth periods for three sawtoothing dis-
charges. The increase of three-dimensional field decreases the overall sawtooth period. For
the 0.023 and 0.056 vacuum transform cases, the sawtooth period increases with time but
plateaus as the plasma current peaks. (b) A running average of eight sawtooth periods for
three sawtoothing discharges. The increase of three-dimensional field decrease the overall
amplitude.
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(a)

(b)

Figure 5.12: (a) Sawtooth period systematically decreases with three-dimensional magnetic
shaping. Each dot is the averaged sawtooth period for three to five sequential sawtooth
oscillations during a discharge. A similar behavior is seen in the high vacuum transform case
before the period decreases further. (b) The sawtooth crash time appears to be unaffected
by the amount of three-dimensional shaping.
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the outermost flux surface directly translates to the elongation at the q = 1 surface. The

mean elongation was calculated at the last closed flux surface with V3FIT reconstructions

using the volume of the plasma, toroidally averaged cross-sectional area, and the surface area

of the plasma.115 Figure 5.13a shows the period as a function of vacuum rotational transform

color coated with ranges of mean elongation. Shorter period sawteeth are observed at higher

levels of mean elongation. Throughout the database, the large amplitude sawteeth are not

observed with high levels of three-dimensional magnetic shaping. The decreasing sawtooth

amplitude is also correlated with increasing mean elongation as shown in figure 5.13b.

The entire database of sawtoothing discharges presented in this thesis have an average

plasma current from 15.7 to 60.8 kA while also varying the line integrated electron density

from 0.6 to 3.5×1019 m−3. The rotational transform is dominated by the contribution due to

the plasma current which may have a profound effect on the sawtooth period and amplitude.

Figure 5.14a is the sawtooth period and figure 5.14b is the sawtooth amplitude versus edge

vacuum rotational transform with ranges of plasma current binned into three ranges (the

distributions are not equal in range because of the low number of discharges at high plasma

current). Despite having a large distribution of plasma currents throughout the database,

the effect on sawtooth period and amplitude observed with edge vacuum rotational transform

is independent of the amount of plasma current. If you single out a range of plasma current

they all exhibit the a decrease in sawtooth period with increasing edge vacuum rotational

transform. The density is known to have a weak effect on the sawtooth period.104 Therefore,

the sawtooth period and amplitude are plotted versus edge vacuum rotational transform in

figure 5.15 with the data points color coated based on the measured line integrated electron

density. It is clear in figure 5.15a that for edge vacuum rotational transforms less than 0.05

there is a small density dependance on the sawtooth period. The higher density points are at

a higher sawtooth period (greater than 0.5 ms) while the lower electron densities (less than

1.5×1019 m−3) have a range of sawtooth period from 0.3 to 0.55 ms. However, as the vacuum

rotational transform increases the scatter of sawtooth period decreases and converges down
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to approximately 0.35 ms. From the plots shown in figure 5.14 and figure 5.15 it is clear

that the change in electron density or plasma current have little or no effect on the sawtooth

period and amplitude. Therefore, it is clear that the edge vacuum rotational transform is

the dominate contribution to the change sawtooth dynamics observed within CTH.

The dynamics of the m = 1 mode during sawtooth oscillations are different for the

3D shaped plasmas compared to axisymmetric tokamaks. In axisymmetric tokamaks, the

m = 1 mode exhibits a growing sinusoidal-like oscillation reaching the maximum amplitude

prior to the crash. The mode is then quenched following a sawtooth crash event. However,

for the discharge presented in figure 5.7a, the m = 1 mode was present during the entire

sawtoothing portion and did not exhibit a clear growing sinusoidal pattern. A lack of a

growing sinusoidal-like oscillation of the m = 1 mode is observed the three discharges present

in figure 5.10. Figure 5.16 shows the third temporal mode of SVD analysis, u3, illustrating

the m = 1 oscillation with time. Above the third temporal mode for each discharge is the

corresponding central SXR signal. The magnitude of the m = 1 mode peaks during each

sawtooth crash event and is present throughout the entire cycle for each of the discharges.

A Fourier transform of the u3 mode reveals the dominate frequency of the m = 1 mode

is identical to the sawtoothing frequency. The temporal mode is not equal to zero for an

extended amount of time; therefore, the m = 1 oscillation is always present during the plasma

discharge suggesting that a full Kadomtsev-like reconnection does not take place during the

sawtooth crash events.

Section 5.3 explains how the linear growth during the sawtooth rise is dependent on

the ohmic heating rate of the plasma core. The decrease in rise time with increasing levels

of three-dimensional fields could simply be explained by a systematic increase in the ohmic

heating within the q = 1 surface as ι-vac(a) also increased. An estimate of the ohmic heating

rate inside the q = 1 surface can be made with experimentally measured values. The

q = 1 surface in CTH discharges can be indentified by summing the vacuum rotational

transform and rotational transform due to the plasma current, ι-vac + ι-p = 1. The ι-p can be
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(a)

(b)

Figure 5.13: (a) Increasing the vacuum rotational transform inherently increases the mean
elongation of the flux surfaces. Shorter period sawteeth are observed at higher levels of mean
elongation. (b) Large amplitude sawteeth are not observed at high levels of mean elongation
or vacuum transform.
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(a)

(b)

Figure 5.14: (a) The sawtooth period plotted with varying levels of edge vacuum rotational
transform binned into discrete ranges of plasma current. (b) The sawtooth period amplitude
with varying levels of edge vacuum rotational transform binned into discrete ranges of plasma
current.
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(a)

(b)

Figure 5.15: (a) The sawtooth period plotted with varying levels of edge vacuum rotational
transform binned into discrete ranges of line integrated electron density. (b) The sawtooth
period amplitude with varying levels of edge vacuum rotational transform binned into discrete
ranges of line integrated electron density.
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Figure 5.16: The oscillation of the m = 1 instability extracted by the third temporal mode, u3

of SVD for three discharges at different levels of edge vacuum rotational transform. Above
each of the third temporal modes is the central SXR signal to illustrate the peaking in
magnitude of the m = 1 oscillation during a sawtooth crash. The m = 1 mode is present
throughout the entire discharge for each case.
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approximated by a straight cylindrical approximation:

ι-p =
R0Bθ(r)

rBφ(r)
= 1− ι-vac. (5.25)

The poloidal magnetic field, Bθ, can be found from Ampère’s law, 2πrBθ = µ0Ip. The

toroidal magnetic field, Bφ, is found by averaging the reconstructed toroidal magnetic field

on the flux surface closest to the inversion surface determined by singular value decomposition

of the SXR signals discussed earlier. Combining equation 5.25 with the poloidal magnetic

field written in terms of the plasma current gives:

1− ι-vac =
µ0IpR0

2πr2Bφ

. (5.26)

Therefore, the average current density inside the ι- = 1 surface is given by:

2Bφ

µ0R0

(1− ι-vac) =
Ip

πr2
= Jz1. (5.27)

Using this estimate of the central current density, the ohmic heating rate inside the

q = 1 surface is estimated by POH = ηsJ
2
z1, where the Spitzer resistivity is calculated from

the estimated electron temperature measured by the two-color measurement. Figure 5.17a

shows the estimated ohmic heating power within the q = 1 surface for the entire database. It

appears that there is no strong correlation with the estimated ohmic heating inside the q = 1

surface and the vacuum transform. Therefore, the decrease in sawtooth period is most likely

an effect due to increasing the three-dimensional fields and not decreasing the ohmic heating

rate within the q = 1 surface. The estimation of the ohmic heating rate within the q = 1

surface can also be found by calculating the sawtooth ramp rate multiplied by the density

and relating it to the ohmic heating power. The heating rate of a sawtooth oscillation is

related to the ramp rate through the one-dimensional electron heat balance equation from
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Jahns et al.116

3

2

∂

∂t
neTe =

1

r

∂

∂r
rχe

∂

∂r
Te + ηJ2

z −Qei −QR (5.28)

Where χe is the electron thermal conductivity perpendicular to the magnetic field, ηJ2
z is

the ohmic heating rate with Jz as the toroidal current density and η the resistivity, Qei

is the electron-ion energy transfer rate, and QR is the impurity radiation loss rate. The

time-rate of change of the electron temperature is assumed to be related to the amplitude

of the sawtooth oscillation observed by the SXR diagnostic divided by the rise time of the

sawtooth oscillation. The assumption is derived from the concept that the SXR diagnostic

measures bremsstrahlung radiation which depends on the electron temperature and density.

The change in the measured SXR signal is due to variations in the electron temperature

because the measured line averaged electron density during a sawtoothing discharge in CTH

does not change. Therefore, the left-hand side can be written as (3ne/2)(∂Te/∂t).

Due to the flattening of the temperature profile after a sawtooth crash, the transport

term, ∂Te/∂r, is small and is ignored. While the electron-ion energy transfer rate, Qei, is

small if the ion and electron temperatures are equal (which is not true for CTH plasmas)

and QR is difficult to determine without a calibrated bolometer; therefore, they are both

neglected for simplicity. The ramp rate in our simplified theory is then directly correlated

to the ohmic heating power by (3ne/2)(∂Te/∂t) = ηJ2
z . Figure 5.17b shows the ramp rate

calculated from the observed SXR signal multiplied by the line integrated electron density

over the edge vacuum rotational transform. From the estimation of the ohmic heating power

using equation 5.27 and by the observed ramp rates, there is no strong correlation with the

amount of vacuum transform and the ohmic heating rate within the q = 1 surface. Therefore,

the observed sawtooth period and amplitude decrease with increasing vacuum transform is

most likely not due to an increased heating rate.

The Porcelli model suggests that the linear rise portion of the sawtooth oscillation

increases the shear at the q = 1 surface until it reaches a critical value, given by equation 5.21,

followed by a rapid re-organization of the flux (magnetic reconnection). The critical value
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(a)

(b)

Figure 5.17: (a) An estimated ohmic heating power within the q = 1 surface. Note that the
heating power does not have a clear correlation with increasing vacuum transform. (b) The
calculated ramp rate from the two-color SXR data multiplied by the line averaged electron
density.
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Figure 5.18: The change in critical shears dependence from Porcelli’s model with the average
elongation and inversion radius as the vacuum transform increases.

of the shear can be lowered if the elongation or inversion radius decreases. This suggests

that if the linear rise or ramp rate of the m = n = 1 instability is kept the same between

a low and and high vacuum transform case, the case with the lowest critical shear value

would crash more rapidly. As the vacuum transform increases in CTH, the inversion radius

decreases and it was shown that the mean elongation increases in figure 5.13. Figure 5.18

shows that there is no strong correlation with the critical shear using the calculated values of

κ̄ at the inversion surface and the inversion radius. This simplified expression of the critical

shear neglected unknown variables due to ion effects such at the ion toroidal beta, thermal

ion Larmor radius, pressure and density scale lengths. The observed decrease in sawtooth

period and amplitude appears to be correlated with increasing ι-vac(a) (similarly κ̄) rather

than to core equilibrium changes or changes in the central ohmic heating rate.
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5.6 Resistive MHD simulations of CTH plasmas

Simulations of sawtoothing CTH plasmas to study the effects of 3D shaping were com-

pleted by Nick Roberds.117 The work used a three-dimensional single fluid MHD code NIM-

ROD71 to model plasmas. The simulations first modeled a pure axisymmetric plasma to

ensure the simulations could exhibit sawtoothing behavior with a clear m = n = 1 mode.

The values of density and electron temperature in the simulation were close to the experi-

mental values, but other values were adjusted to achieve numerical convergence. Using a set

of extended resistive MHD equations the calculations demonstrated a clear m = n = 1 mode

in axisymmetric CTH-like plasmas with a period of ∼ 0.52 ms and the n = 1 tearing mode

acting as the primary factor in the sawtooth crash. The vacuum transform was increased

by introducing a current in the helical field coil to study the effects of 3D shaping on the

sawteeth. It was found that the as the vacuum transform increased, the sawtooth period

decreased, consistent with the experimental results. The addition of vacuum transform,

produced a helical deformation of the island and the core of the plasma compared to the

axisymmetric case. The simulations also found that a complete magnetic reconnection took

place, indicating that q > 1 everywhere after the sawtooth crash. This is not consistent

with the observations in CTH because a complete reconnection implies that the m = n = 1

mode disappears which disagrees with the singular value decomposition analysis presented

in section 5.5.1.
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Chapter 6

Discussion

One of the primary results of the sawtooth studies shown in this thesis is that the saw-

tooth period decreases with increasing vacuum rotational transform. To study the dynamics

of the sawtooth oscillation three two-color SXR cameras were constructed. These cameras

are designed to determine the electron temperature by measuring the bremsstrahlung radia-

tion within the plasma. This is challenging for low temperature plasmas because the filters

are required to be thin in order to provide sufficient output signal but thick enough to avoid

line radiation. Chapter 4 is entirely dedicated to the theory and simulations of radiation

within the plasma using the ADAS codes. It is shown in figure 4.10 that bremsstrahlung

radiation from an oxygen impurity is approximately three orders of magnitude greater than

the bremsstrahlung radiation from ionized hydrogen. Even if the impurity content consists

of 1% of the entire plasma it will be the majority of the bremsstrahlung radiation detected by

the two-color diagnostic. Measuring the impurity bremsstrahlung still results in an accurate

temperature measurement due to the exponential dependance on the electron temperature.

However, the problem due to using thin filters arises with the line radiation. The signal

for the thin filter cameras will allow more radiation through than the thicker filters. This

introduces an error within the two-color measurement that is difficult to eliminate without

an accurate model of the impurity concentration within the plasma. However, recent simu-

lations show that the ionization state of the impurity ions may not be high enough to effect

the measurement. Nevertheless, the temperature measurement presented within this thesis

are assume approximate until the diagnostic is cross-calibrated with a Thomson scattering

diagnostic. The estimated electron temperatures derived from the two-color diagnostic agree
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with two other electron temperature estimates discussed in section 4.4 Unfortunately, the

Thomson scattering diagnostic is not online at the time of writing this thesis.

The primary use for the two-color diagnostic is to utilize the thin filter in each of the

cameras as an emissivity diagnostic measuring sawteeth within CTH. The sawtooth oscilla-

tion is a periodic relaxation event driven by ohmic heating of the plasma core. It consists of

three functional stages: (i) the ramp phase; (ii) the precursor phase; and (iii) the crash phase.

During the ramp phase the core of the plasma is heated through ohmic means resulting in

a linear increase in the temperature and a peaking of the radial temperature profile. The

precursor phase is shown through ideal MHD stability analysis for an axisymmetric tokamak

to begin when q drops below 1 triggering an m = n = 1 internal-kink instability. The crash

phase is a rapid re-organization of magnetic flux (reconnection) and crash of the core electron

temperature and occasionally the electron density. The properties of sawtooth oscillations

are characterized using a two-color SXR emissivity diagnostic measuring the bremsstrahlung

radiation. The bremsstrahlung radiation is a function of electron density and temperature;

however, for the sawtooth oscillations observed in CTH the line integrated electron density

does not exhibit a sawtoothing pattern. Hence, the SXR emissivity measurements primarily

vary due to electron temperature fluctuations.

Since the discovery of the sawtooth oscillation in the mid 1970s the physics underlying

the growth of the m = n = 1 mode and the final flux surface arrangement following a saw-

tooth crash is still not completely understood. Two sawtooth crash models are discussed in

this thesis, the Kadomtsev model and the Porcelli model. The Kadomtsev model had initial

success with low temperature axisymmetric tokamaks but phenomena such as q remaining

less than 1 and observations of partial sawteeth demonstrated that the model doesn’t pro-

vide a complete picture. The Porcelli model included non-ideal effects applicable to hotter

tokamaks and has been successful at predicting the sawtooth period.

Modifying the period and amplitude of the sawtooth instability, can be achieved by

varying the shear of the q profile. However, since the q profile evolves over the course
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of a CTH discharge, controlling the sawtooth oscillation in this manner requires real-time

calculations of the q profile with active control of the ECRH launch angle during a discharge.

The properties of the sawtooth oscillation also depend on the shape of the flux surfaces at

the q = 1 surface. Typically for an axisymmetric plasma, higher elongation destabilizes the

m = n = 1 mode leading to smaller more frequent sawteeth.

This thesis explores the effects of three-dimensional shaping on the sawtooth oscillation.

The plasmas in CTH are tokamak-like, with a monotonically decreasing rotational transform

profile. The sawteeth observed in CTH are also tokamak-like; the amount of core plasma

effected by the oscillation scales with the total rotational transform and the m = n = 1

internal kink mode as the primary mechanism behind the sawtooth crash.

The measured sawtooth period and amplitude are observed to decrease by a factor of 2

with increasing levels of 3D magnetic field from the external coils. The measured crash time

of the sawtooth oscillation is not correlated with the amount of vacuum transform applied,

indicating that the nonlinear reconnection dynamics of the MHD kink-tearing instability

are not affected. Since the crash time is not substantially changed by the amount of 3D

magnetic field applied, the observed decrease in the sawtooth period is concluded to result

from a decrease in the rise time of the oscillation. The observed decrease in both sawtooth

period and amplitude is correlated with an estimate of the mean elongation of the last closed

flux surface, rather than to core equilibrium changes causing a change in the central ohmic

heating rate estimated using the two-color diagnostic. Given that the kink-tearing mode is

well known to be destabilized by elongation in tokamak plasmas, this observation supports an

interpretation of the reduced sawtooth period resulting from a change in the linear stability

threshold for the kink-tearing mode responsible for the crash.

6.1 Future work

The decrease in period and amplitude of the sawtooth oscillation with increasing three-

dimensional magnetic fields is an interesting observation. Ideally, to thoroughly understand

124



the physics, one would need to derive the MHD formulation, which is extremely difficult if

not impossible analytically. The results in this thesis point to the increasing mean elongation

as one of the primary factors behind the changes in the sawtooth oscillation. However, there

could be more complicated phenomenon effecting the sawtooth oscillation that the present

diagnostics installed on CTH cannot quantify such as modifying the shear of the rotational

transform near the q = 1 surface.

The two-color diagnostic primarily measures the temperature characteristics of the saw-

tooth oscillation and doesn’t provide much information about the rotational transform profile

other than the location of the q = 1 surface. The location of the q = 1 surface is an im-

portant result, and has already been incorporated into V3FIT reconstructions26 to improve

the reconstruction parameters. Using the raw SXR signals and the location of the q = 1

surface could give more information about the rotational transform profile, providing insight

to the shear at the q = 1 surface. Since V3FIT is an equilibrium solver and the sawtooth

oscillation is a non-linear phenomena, one should be careful about using the reconstructed

profiles. Simulations using a set of extended resistive MHD equations in NIMROD were

discussed in section 5.6. The simulations reproduce sawteeth that are consistent with the

experimental results. Extending this work to include plasmas with parameters closer to ex-

perimental values could explain what happens to the rotational transform profile, shear, and

linear growth rate of the m = n = 1 mode.

Improvements can be made to the exsisting two-color diagnostic to further understand

the sawtooth oscillation in CTH. The first priority should be to install thinner filters (prob-

ably Be) that avoids line radiation but has a strong signal in the edge channels. By doing so,

one could measure the heat pulse propagation during sawtooth crash events. Tomography of

the SXR signals and of the line integrated temperature measurement is a clear next step for

the SXR diagnostic system on CTH. Using bi-orthogonal decomposition on the spatial emis-

sivity profile derived from tomography would provide actual information about the shape

of the q = 1 resonant surface. The ability to quantify the shape of the surface while not
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relying on the outer flux surface and to detect the dynamics of the sawtooth crash would

be beneficial. Tomography could also reveal information about the poloidal rotation of the

plasma which has been linked to changing the sawtooth period.

Currently, a new ECRH system is being installed on CTH. There have been previous

experiments sweeping the ECRH across the q = 1 surface to suppress the sawtooth oscilla-

tion100,101 which would be interesting to repeat on CTH and to determine if the increase in

vacuum transform effects this in any way.

CTH is equipped with a Shaping Vertical Field (SVF) which is designed to change

the shape of the flux surfaces. Decoupling the mean elongation from the increasing three-

dimensional fields is a clear next step to determine if the sawtooth dynamics are primarily

effected by three-dimensional fields or a two-dimensional flux surface shape.

Finally, for the data presented within this thesis, it was difficult to get sawtoothing

oscillations for very high vacuum transforms. Recently, deuterium is being used instead of

hydrogen as the primary gas puffed into CTH. Preliminary results are promising, it seems

that it is easier to get higher densities and plasma currents at higher vacuum transforms than

ever before. Therefore, it would be useful to use deuterium to study the sawtooth oscillation

at higher transforms, above 0.13.

Occasionally at high vacuum rotational transforms, the amplitude of the sawteeth would

decrease for several oscillations (and increase in frequency). The amplitude of the sawtooth

oscillation would proceed increase in amplitude for several more sawtooth oscillations and

follow a periodic pattern of small then large sawteeth. This phenomena occurred throughout

the course of the discharge for some discharges when the vacuum rotational transform was

greater than 0.1 (sample discharges where this occurs: 15100556, 15100561, and 15102747).
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Appendix A

Derivation of the geometric factor

The derivation of the geometric factor begins with the equation to calculate the sim-

ulated signal of a diode behind a filter. This was first shown as eqn. 4.15, but is repeated

here:

S(t) =

∫ ∞
0

dE

∫
V

j(E, Te)A(E)TBe(E, t)
dΩD

4π
dVplasma. (A.1)

The geometric factor relates dΩD

4π
dVplasma to the line integral, fgdl If the distance between

the diode and slit is much larger than the width of the slit, the solid angle of the plasma as

viewed by the individual diode may be written as:

dΩD

4π
=
w′s hs

4πd′2
. (A.2)

Where d′ is distance between the individual diode and slit, w′s is the apparent width of

the slit, hs is the height of the slit, and Aslit is the area of the slit. The distance between

the individual diode and slit, d′, can be written in terms of the distance the diode array is

from the slit, d. Using the geometry is shown in figure A.1, the distance between the diode

and slit can be written as d′ = d/cos(α). Where α is the angle between the normal of the

individual and a line intersecting the center of the individual diode and the center of the slit.

Since the diode is at an angle α with respect to the normal of the slit, the apparent width

of the slit is related to the slit width by w′s = ws cos(α) shown in figure A.2. Substituting w′s

and d′ into equation yields:

dΩD

4π
=
Aslit cos3(α)

4πd2
, (A.3)

where the area of the slit is given by, Aslit = hsws.
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Figure A.1: The geometry for the individual diode and the slit. The distance from the
individual diode, d′, can be written in terms of d and cos(α).

Figure A.2: The geometry relating the slit width as seen by the diode at an angle α with
respect to the normal of the slit. The apparent slit width, ws’ is related to the actual slit
width by w′s = ws cos(α).
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The volume of the plasma that views the diode is given by:

dVplasma = l2dl(
w′d hd

l2
) = Adiode cos(α) dl. (A.4)

Where l is distance between the infinitesimally small plasma volume and diode, w′d is the

apparent width of the diode, hd is the height of the diode. The apparent width of the diode

can be related to the actual width of the diode is given by w′d = wd cos(α) through the

geometry in figure A.2. The width and height of the diode has been combined to the area

of the diode, Adiode. Combining equations A.3 and A.4 gives:

dΩD

4π
dVplasma =

AslitAdiode cos4(α)

4πd2
dl

= fgdl.

(A.5)

Finally, the geometric factor is given by:

fg =
AdiodeAslit

4πd2
cos4α. (A.6)
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Appendix B

CAD Drawings of the two-color diagnostic

This appendix contains all of the computer assisted design (CAD) drawings for the two-

color system and the additional light-blocking dividers between the didoes for the bolometer.

An expanded view of the bolometer system is shown in figure B.1 labeling each of the parts.

There are five items not pictured in figure B.1, the flange, the bottom tube, the teflon sleeve,

the slit bracket, and the teflon gasket. The bottom tube attaches to the left of the bottom

plate and length is dependent on the camera. The cameras located at SC252 060, SC252 300,

and SC036 060 have a bottom tube length of 4.7 in. The camera located at SC252 000 has

a bottom tube length of 6.9 in. The camera located at SC000 270 has a bottom tube length

of 8.41 in. All of the other parts are identical between the cameras.
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Figure B.1: An expanded view of the bolometer camera with labels for the individual parts
according to the CAD drawing.
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Figure B.2: The flanges for the two-color SXR cameras.
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Figure B.3: The custom flange for the bolometer system at SC036 060. The other bolometer
system uses a 50-pin flange.
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Figure B.4: The teflon gaskets used to isolate the SXR cameras from the vacuum vessel.
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Figure B.5: The teflon sleeves used to block the light from reflecting off of the flange into
the bottom of the camera.
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Figure B.6: The bottom tube for the SXR cameras.
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Figure B.7: The bottom plate for the SXR cameras.
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Figure B.8: The teflon socket for the SXR cameras.
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Figure B.9: The diode sleeve that prevents the light from the bolometer from interfering with
the filtered signal on the adjacent diode. This piece is specific to the bolometer cameras and
the two-color diagnostic does not use the diode sleeve.
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Figure B.10: The middle tube for the SXR cameras.
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Figure B.11: The filter plates for the SXR cameras.
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Figure B.12: The middle plate for the SXR cameras.
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Figure B.13: The poloidal slits for the SXR cameras.

159



Figure B.14: The slit brackets for the SXR cameras. These are placed on top of the slits to
ensure they lie flat.
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Figure B.15: The top tube for the SXR cameras. The groove in the side of the tube is unique
for the bolometer cameras and not present in the two-color cameras.
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Figure B.16: The top divider that prevents the light from the bolometer from interfering
with the filtered signal on the adjacent diode. This piece is specific to the bolometer cameras
and the two-color diagnostic does not use the diode sleeve.
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Figure B.17: The top plate for the SXR cameras.
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Appendix C

Codes Used

This appendix describes the codes that I wrote to analyze, grab, or filter the data

presented in this thesis. The codes are located on CTH group’s hard drive known as ‘bonnie’

under one of the following directories:

1. IDLsubroutines/diagnostics/sxr/

2. Users/herfindal/idl programs

3. Users/herfindal/IDL Subroutines

4. Users/herfindal/SXR IDL

5. Users/herfindal/adas idl programs

The programs were written using IDL version 8.3.0. Each camera has information such

as the physical position on the vacuum vessel is stored on the tree for each CTH shot. This

information needs to be updated each time the camera is taken off of the vaccuum vessel or

some internal components are changed. To change this information you need to call programs

in directory 4. First you need to call removesxrcamerafromtree.pro, this program will delete

the camera from the tree. Secondly, you need to call addsxrcameratotree.pro. You need

to specify the shot to -1 to save to the model tree and the program will call the function

cameraSpecs define. The cameraSpecs define function will read a text file containing only

a list of numbers with the rows defined as:

name name of camera

create date date file is created
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diode sn The serial number of the diode array

filtercomp filter material, e.g. Be or Al

dtacq dtacq board number

dtacq ch the dtacq channel array

nchords number of chords in camera

c ref the position of the center of the camera, typically the center of the back

of the flange in machine coordinates (m)

c ijk normal vector i,j,k pointing from cref to the diodes in machine coordinates

d diode distance from c ref to diode plane

d p slit distance from c ref to poloidal slit plane

d t slit distance from c ref to toroidal slit plane

diode t off distance diodes are offset from c ref. Positive is more in the toroidal

direction

diode off distance the diodes are offset towards the top or bottom of the camera.

Positive is to the top (the direction that poloidal theta increases)

diode length length of diode element (m). In the toroidal direction

diode width width of diode element (m). In the poloidal direction

diode sep separation between diode elements (m)

slit width length of slit in the poloidal direction (m)

slit thick thickness of the slit (m)
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tor slit wid width of toroidal slit (m)

tor slt t of distance the toroidal slit are offset from c ref, Positive is more in the

toroidal direction

rotation rotation of diode array from vertical

chordDir direction of chord creation (1 or -1)

relative cal The relative calibration values

The codes used to grab the data from the tree store it in a structure, hereafter scstruc

(Soft x-ray Camera structure), designated by the user. After the user uses getsc to grab

the data from the tree, the other programs accept scstruc and either modify data within or

add elements to the structure. The codes used to grab the data from the tree and general

processing of the data are:

getscinfo This program will grab the camera information stored in the tree defined

by the list above and stores it into a structure.

getscdata This program grabs the data from the cth tree.

getsc This program is the user friendly way to grab the SXR camera data from

the tree. It calls getscinfo and getscdata and stores it in scstruc. This is

the program that the end user should use to grab the data. To plot the

data, use the command /plot data in the call line.

getscchords This program will calculate the chordal information based on the diode

position and slit width in the tree and add it to the structure created from

the getscprogram. The program is fairly complicated.

phase correct This program corrects for the voltage attenuation and phase delay due to

the signal amplifiers.
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filterscdata This program takes a scstruc and will filter the data in every channel using

a fourth order Butterworth filter at a cut-off frequency designated by the

user.

The program used to draw the camera chords and to quickly plot the data of each

channel are:

draw sxr chords

This is a function that will accept the scstruc. Usually you call the drawc-

thvv program prior to using this function.

plotscdata This program will produce a contour plot the data within a scstruc.

The programs used for general analysis of the data are:

scbd This program accepts an scstruc and preforms bi-orthogonal decomposi-

tion on the data set.

The primary programs to analyze the sawtoothing discharges used grabbed information

from a sawtooth database spreadsheet. The sawtooth database spreadsheets contain the

shot number and starting and ending times of the sawtoothing portion while the rest of

the spreadsheet is filled in using programs within the run sawtooth program. The programs

primarly used run sawtooth program are:

run sawtooth This is the automated program that calls different programs to analyze a

sawtooth database spreadsheet.

ave ipne This program calculates the average line integrated density and plasma

current.

grab mag info This program will grab the current settings for the HF, TVF, and TF

coils. It also grabs the value the voltage the ohmic bank fired at.
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plasma center This program calculates the center in meters of the plasma based on the

fractional channel information given by scbd.

run bd This program calls scbd twice and plasma center once. It is used to accu-

rately find the inversion radius and the center of the plasma.

saw database impact

This program takes any channel, e.g. 10.23, and calculates the impact

parameter based on the center of the plasma specified by the user.

cthcheckrecon jeff2

This program will check the reconstruction files and read information from

them.

sawtooth parameters

This program will use the strongest sawtoothing channel to calculate the

rise, crash, and amplitude of the sawtooth oscillations. It also calculates

the error in the analysis.

saw info This program is not used by run sawtooth. This program will read a

structre that contains the information about the rise, crash, and ampli-

tude of the sawtooth oscillations from SC252 000 TN, SC252 060 TN, and

SC252 300 TN and find the average sawtooth period, rise and crash time,

amplitude, ramp rate, current density, and resistivity.

The programs used to calculate the estimated temperature of the two-color diagnostic

are:

calc axuv responsivity

This program calculates the responsivity of the diode arrays.
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calc filter transmission multiple

This program will calculate the filter transmission for filters consisting of

boron, aluminum, carbon, and aluminum oxide.

calc filter transmission

This program calculates the transmission of the beryllium filters with the

impurities stated by the manufacture.

chord emissivity

This program will calculate the expected signal output from the diodes

assuming the bremsstrahlung radiation is purely exponential. To derive

the temperature ratio you need to run this program using the two different

filter transmission functions then just divide the output of this program

together.

two color temp

This program takes the thin and thick filter data, calculates the ratio, and

interpolates the temperature based on the ratio curve. You will need to

manually adjust the current limit variable if you change the filters within

the diagnostic. Any values of current less than the current limit parameter

are ignored and the temperature is set to zero.

Programs that utilize the adas database:

cth bremss This program calls the continu.pro program to calculate the free-free and

free-bound bremsstrahlung radiation including the Gaunt factor.

filter spectrum This program will calculate the line radiation and bremsstrahlung radia-

tion multiplied by a filter function. It is used to determine how much the

line radiation effects the two-color diagnostic. Usually the filter function

is a multiplication of the filter and the diode absorption function.
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