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Abstract

This dissertation explores multiple areas of laser matter interactions. It studies four

main topics: multi-photon (few photon) double ionization of He, double photoionization of

He-like systems from level resolved states, single and double photoionization of the diatomic

molecule–Li2, and non-equilibrium modeling of the Fe XVII 3C/3D line intensity ratio for

an intense x-ray free electron laser.

A time-dependent close-coupling (TDCC) method is used to calculate the five-photon

double ionization of He. It is found that the generalized cross section used in the past for two-

photon double ionization of He cannot be extended to five-photon double ionization of He.

Therefore only five-photon double ionization probabilities that depend on specific radiation

field pulses can be calculated. A TDCC method is then used to calculate the multiphoton

double ionization of He using femtosecond laser pulses with linear and circular polarization.

Total double ionization probabilities are calculated for 2, 3, 4, and 5 photon absorption in

the photon energy range from 10 to 60 eV. Single and triple differential probabilities are

calculated for 2, 3, 4, and 5 photon absorption at energies where the total ionization prob-

ability is near a maximum. For circular polarization the total and differential probabilities

are consistently smaller compared to linear polarization as the number of photons absorbed

is increased while keeping the radiation field intensity constant. For linear polarization, the

total and differential probabilities vary substantially as a function of photons absorbed due

to the presence of more absorption pathways.

A semi-relativistic TDCC method is developed. The TDCC(l1j1l2j2J) for He only in-

cludes the spin-orbit interaction, whereas the TDCC(l1j1l2j2J) includes the spin-orbit, mass-

velocity, and Darwin interactions. Double photoionization cross sections of He from the 1s2,
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1s2s, and 1s2p configurations and Ne8+ from the 1s2 configuration are carried out using

both TDCC(l1l2L) and TDCC(l1j1l2j2J).

TDCC methods are used to study the single and double photoionization of Li2. Formu-

lations for both one-active and two-active electron methods make use of Hartree with local

exchange potentials for the core electrons. Both the single and double photoionization cross

sections for Li2 are found to be larger for linear polarization than for circular polarization,

in sharp contrast to that found before for H2. In particular the double photoionization cross

sections for Li2 are found to be approximately five times larger than for H2 and thus more

easily observed by future experiments.

A review is presented for two methods used to model recent LCLS experimental results

for the 3C/3D line intensity ratio of Fe XVII [1], the time-dependent collisional-radiative

method and the density-matrix approach. These are described and applied to a two-level

atomic system excited by an X-ray free electron laser. A range of pulse parameters is explored

and the effects on the predicted Fe XVII 3C and 3D line intensity ratio are calculated. We

reaffirm the conclusions from Oreshkina et al. [2, 3]: the non-linear effects in the density

matrix are important and the reduction in the Fe XVII 3C/3D line intensity ratio is sensitive

to the laser pulse parameters, namely pulse duration, pulse intensity, and laser bandwidth.

It is also shown that for both models the lowering of the 3C/3D line intensity ratio below the

expected time-independent oscillator strength ratio has a significant contribution due to the

emission from the plasma after the laser pulse has left the plasma volume. Laser intensities

above ∼ 1×1012 W/cm2 are required for a reduction in the 3C/3D line intensity ratio below

the expected time independent oscillator strength ratio.
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Chapter 1

Introduction

In this dissertation, the general topic of laser interactions with atoms and molecules is

investigated. This is important as a tool to explore fundamental atomic processes, and the

effects of electron-electron correlation. The time-dependent close-coupling (TDCC) method

has been used with much success in such studies [4, 5]. It has been used to look at electron-

impact ionization of neutral atoms[6, 7], ions [8, 9], and small molecules [10, 11], as well as

photoionization processes [12, 13, 14, 15, 16]. One further system is also investigated in this

dissertation, and the focus being on spectral emission from Fe16+. This ion has important

spectral diagnostic applications for laboratory and astrophysical plasmas [17, 18] providing

an electron temperature diagnostic.

The main focus of this work is to use the TDCC method to study systems where

one might expect strong correlation effects between the electrons involved in the ionization

processes. Probability distributions for multi-photon double ionization of Helium atom are

presented in Chapter 2 and Chapter 3. It still remains a challenge to solve the quantal

three body break up problem, even from the ground state of the Helium. The TDCC

method propagates the two electron wave functions and has been applied to study two photon

double ionization of Helium in the past [14, 19]. With the recent experiment on five-photon

sequential double ionization of He in an intense extreme-ultraviolet (EUV) free-electron-

laser (FEL)[20] and the recent achievement in generating circular polarized ultrashort light

pulses[21], we explore 2,3,4,5 photon double ionization of Helium, and as a result two articles

have been published [22, 23]. The TDCC method is used to probe the double photoionization

process of He-like systems from the level resolved perspective. In Chapter 4 we take a

first step to develop a semi-relativistic TDCC method. For the double photoionization of

1



Helium, only the spin-orbit interaction is employed in the TDCC method. For the double

photoionization of Ne8+, the spin-orbit, Darwin, and mass-velocity interactions are included.

As a result two publications were achieved [24, 25]. The single and double photoionization

process for the Lithium molecule is studied in Chapter 5. Studies of the photoionization of

diatomic molecules are important for the understanding of many astrophysical and laboratory

science phenomena [26]. We use a TDCC-3D (one active electron) approach to study the

single photoionization and TDCC-6D (two active electron) approach to study both the single

and double ionization process of Li2. One article was published under the study of this

chapter [27]. In each of these chapters the theoretical methods are described as they are

needed.

The final project of this dissertation (Chapter 6) is a study of a recent X-ray Free-

Electron Laser (XFEL) experiment at the Linear Coherent Light Source (LCLS). Their

measurement of the Fe XVII 3C/3D line intensity ratio was found to be very different from

any theoretical calculation of the oscillator strength ratio, with the results being published in

a recent Nature article [1]. Chapter 6 contains some results from a recent publication using

the time-dependent collisional-radiative (CR) method [28], and then develops a density-

matrix (DM) method that is also used to analyze the experiment. Time-dependent effects

are found to be very important, and if the laser pulses are sufficiently intense, it can reduce

the 3C/3D line intensity ratio. This work will be submitted for publication.
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Chapter 2

Five Photon Double Ionization of Helium

2.1 Background

Extensive theoretical studies of the two-photon double ionization of He[14, 19, 29, 30,

31, 32, 33, 34, 35, 36, 37] have shown that in the non-sequential photon energy range between

40 eV and 50 eV that a generalized cross section (cm4 sec) may be calculated for a constant

intensity and an arbitrary number of photon energy time periods. In the non-sequential range

the two continuum photoelectons only interact with each other and are strongly correlated.

To test our knowledge of how strongly correlated photoelectrons behave, the fully differential

and total integrated generalized cross sections are compared with experiment. However, once

the photon energy moves above 50 eV near the sequential threshold of 54.4 eV for He+, the

generalized cross section breaks down as the double ionization probability divided by the

total number of photon energy time periods is no longer a constant function.

Recently experimental studies of the five photon sequential double ionization of He were

carried out using the free-electron laser at RIKEN[20]. These studies stimulate the question

as to whether there is a photon energy range in which a generalized cross section might be

calculated so as to explore how strongly correlated photoelectrons behave after absorbing

five photons in a strictly non-sequential manner.

In this chapter we apply the time-dependent close-coupling method[4] to calculate five

photon double ionization probabilities for a range of photon energies using a constant in-

tensity and a range of photon energy time periods. Our main finding is that the TDCC

calculations show no photon energies at which a generalized cross section can be obtained.
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We then carry out furthur TDCC calculations over a range of photon energies using a fem-

tosecond Gaussian pulse to find the photon energy at which the double ionization probability

reaches a peak as a guide for future experiments.
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2.2 Theory

The time-dependent Schrodinger equation for a two electron atom is given by:

i
∂Ψ(~r1, ~r2, t)

∂t
=

2
∑

i=1

(

−1

2
∇2
i −

Z

ri

)

Ψ(~r1, ~r2, t)

+

2
∑

i<j=1

1

|~ri − ~rj|
Ψ(~r1, ~r2, t)

+E(t) cosωt
2

∑

i=1

ri cos θiΨ(~r1, ~r2, t) , (2.1)

where Z is the atomic number, E(t) is the electric field amplitude, and ω is the radiation

field frequency. We choose a linearly polarized field in the ”length” gauge.

For the possible extraction of a generalized cross section, a ”constant intensity” pulse

has:

E(t) = E0 sin
2 (πt/2T ) for t < T

= E0 for T < t < (N − 1)T

= E0 sin
2 (πt/2(N − 1)T ) for (N − 1)T < t < NT , (2.2)

where E0 = (5.336 × 10−9)
√
I, I is the intensity in Watts/cm2, T = 2π/ω is a field period,

and N is the number of field periods.
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Expanding the total wavefunction, Ψ(~r1, ~r2, t), in coupled spherical harmonics for each

LS symmetry and substitution into Eq.(2.1) yields the following time-dependent close-

coupled partial differential equations[4]:

i
∂PLS

l1l2
(r1, r2, t)

∂t
=

2
∑

i=1

Tli(ri)P
LS
l1l2(r1, r2, t)

+
∑

l′
1
,l′
2

2
∑

i<j=1

V L
l1l2,l′1l

′

2

(ri, rj)P
LS
l′
1
l′
2

(r1, r2, t)

+
∑

L′

∑

l′
1
,l′
2

2
∑

i=1

WLL′

l1l2,l′1l
′

2

(ri, t)P
L′S
l′
1
l′
2

(r1, r2, t) , (2.3)

where Tli(ri) is a kinetic and nuclear energy operator, V L
l1l2,l′1l

′

2

(ri, rj) is an electron-electron

interaction energy operator, and WLL′

l1l2,l′1l
′

2

(ri, t) is a time-varying radiation field energy op-

erator. Detailed expressions for the three operators have been given before, the last two

involving products of 3j and 6j symbols[4]. The number of coupled channels for li ≤ lmax

and S = 0 is given by[38]:

Ncc =
(lmax + 1)(lmax + 2)(2lmax + 3)

6
, (2.4)

where L = 2lmax.

The initial condition for the solution of the time-dependent close-coupled equations is

given by:

PLS
l1l2(r1, r2, t = 0) = P̄L0S0

l1l2
(r1, r2, τ → ∞)δL,L0

δS,S0
, (2.5)
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where the radial wavefunction, P̄L0S0

l1l2
(r1, r2, τ → ∞) is obtained by relaxation in imaginary

time:

−
∂P̄L0S0

l1l2
(r1, r2, τ)

∂τ
=

2
∑

i=1

Tli(ri)P̄
L0S0

l1l2
(r1, r2, τ)

+
∑

l′
1
,l′
2

2
∑

i<j=1

V L
l1l2,l′1l

′

2

(ri, rj)P̄
L0S0

l′
1
l′
2

(r1, r2, τ) , (2.6)

and L0 and S0 are the initial term values. The initial condition for the solution of Eq.(2.6)

is given by:

P̄L0S0

l1l2
(r1, r2, τ = 0) = P1s(r1)P1s(r1)δL0,0δS0,0 , (2.7)

where bound, Pnl(r), and continuum, Pkl(r), radial wavefunctions are obtained by diagonal-

ization of Tl(r).

The time-dependent close-coupled equations are solved using standard numerical meth-

ods to obtain a discrete representation of the radial wavefunctions and all operators on a

two dimensional lattice. On a massively parallel computer each ri coordinate is partitioned

over many processors. Following propagation in real time, momentum space probability

amplitudes are calculated using:

KLS
l1l2

(k1, k2) =

∫ ∞

0

dr1

∫ ∞

0

dr2Pk1l1(r1)Pk2l2(r2)P
LS
l1l2

(r1, r2, t→ ∞) . (2.8)

The total probability for double ionization is given by:

Pdouble =
∫ ∞

0

dk1

∫ ∞

0

dk2
∑

LS

∑

l1l2

|KLS
l1l2(k1, k2)|2 . (2.9)

The total generalized cross section for n photon double ionization is given by:

σndouble = (
ω

I
)n

Pdouble
(N − 1)T

. (2.10)
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2.3 Results

2.3.1 Two photon double ionization of He

Two photon double ionization probabilities for He are calculated using the TDCC

method. A lattice of 360 × 360 points is used with a uniform grid spacing of ∆r1 = ∆r2

= 0.20. Relaxation on the lattice using Eq.(2.6) and the 4 L = 0 coupled channels found

in Table 2.1 yields a ground state of He with an energy E = -75.8 eV. Propagation on the

lattice using Eq.(2.3) and the 17 L = 0,1,2 coupled channels found in Table 2.1 yields the to-

tal two-photon double ionization probabilities found in Figure 2.1. The ”constant intensity”

pulse of Eq.(2.2) is used for both N = 10 and N = 20 total field periods with an intensity

of I = 1014 W/cm2.

As shown in Figure 2.1 the total double ionization probabilities using Eq.(2.9) for N

= 20 are approximately a factor of 2 higher than those for N = 10 over the photon energy

range from 40 eV to 50 eV. As shown in Figure 2.2 the total double ionization generalized

cross sections using Eq.(2.10) are thus the same whether N = 10 or N = 20 in the photon

energy range from 40 eV to 50 eV.

In the photon energy range from 50 eV to 55 eV the total two-photon double ionization

probabilities for N = 20 grow to be a factor of 5.3 times higher than those for N = 10

at 54 eV. Therefore, double ionization generalized cross sections can no longer be used

as one approaches the He+ ionization threshold of 54.4 eV, as has been noted by many

theoretical groups[29, 30, 31, 32, 33, 34, 35, 36]. To study the strongly correlated motion

of two continuum electrons in the field of a residual ion, the quantal three-body breakup

problem, one must stay in a photon energy range for which a generalized cross section is

valid. We also note that accurate double ionization generalized cross sections for photon

energies below 50 eV calculated using the TDCC method[14, 19] were made using a lattice

of 720 × 720 points with a lattice grid spacing of ∆r1 = ∆r2 = 0.10.
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2.3.2 Five photon double ionization of He

Five photon double ionization probabilities for He are calculated using the TDCC

method. A lattice of 720 × 720 points is used with a uniform grid spacing of ∆r1 = ∆r2

= 0.10. Relaxation on the lattice using Eq.(2.6) and the 4 L = 0 coupled channels found

in Table 2.1 yields a ground state of He with an energy E = -78.1 eV. Propagation on the

lattice using Eq.(2.3) and the 30 L = 0 - 6 coupled channels found in Table 2.1 yields the to-

tal five-photon double ionization probabilities found in Figure 2.3. The ”constant intensity”

pulse of Eq.(2.2) is used for both N = 10 and N = 20 total field periods with an intensity

of I = 1014 W/cm2.

As shown in Figure 2.3 the total double ionization probabilities using Eq.(2.9) for N =

20 are quite different from those for N = 10 over the entire photon energy range from 15

eV to 19 eV. Therefore, double ionization generalized cross sections cannot be obtained at

any photon energy. We attribute the absence of any non-sequential double ionization photon

energy range to the many different possible combinations of sequential and non-sequential

processes available. The peaks in the double ionization probability shown in Figure 2.3

also appear to be due to the Fourier spectrum of the constant intensity pulse used in these

calculations. Calculations of the double ionization probability in which a Gaussian shaped

pulse was used for the same N = 10 andN = 20 total field periods, did not exhibit oscillations

as a function of photon energy (see Section 3.3).

As a check on the lattice size, we also carried out calculations on a lattice of 1440 ×

1440 points with a uniform grid spacing of ∆r1 = ∆r1 = 0.10 and found no change in the

N = 10 and N = 20 results. Thus, the lattice boundary does not affect the observed double

ionization probabilities. As a check on the number of coupled channels, we also carried out

calculations on a lattice of 720 × 720 points with a uniform grid spacing of ∆r1 = ∆r2

= 0.10 with the 55 L = 0 - 8 coupled channels found in Table 2.2. Very little change is

found in the double ionization probabilities. Decreasing the intensity to I = 1012 W/cm2
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produces a double ionization probability that has the same shape as in Figure 2.3, but with

substantially smaller ionization probability.

2.3.3 Five photon double ionization of He using a femtosecond pulse

Five photon double ionization probabilities for He are calculated using a ”Gaussian”

pulse given by:

E(t) = E0e
−2ln(2)(t−2Tp)/T 2

p , (2.11)

where Tp is the full width at half maximum[39]. TDCC calculations for the five photon

double ionization of He are presented in Figure 2.4 using the 720 × 720 lattice, the 30 L =

0 - 6 coupled channels found in Table 2.2, and photon energies ranging from 18.0 eV to 23.0

eV. The Gaussian pulse of Eq.(2.11) is used with an intensity of I = 1014 W/cm2 and for

both Tp = 5.0π/ω and Tp = 10.0π/ω. Oscillations are not present and a smooth ionization

probability is found as a function of photon energy. The peaks of the double ionization

probabilities are found between 20 eV and 21 eV, and the full widths at half maximum are

Tp = 0.51 fsec amd 1.02 fsec. The double ionization peaks are in reasonable agreement with

an experimentally observed[20] peak of 20.4 eV from five photon double ionization of He

using a free electron laser with a lower intensity (1012 W/cm2) and longer pulse time (100

fsec).
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2.4 Summary

A time-dependent close-coupling method has been used to calculate five photon double

ionization probabilities for He. It is found that a generalized cross section, based on an

ionization probability divided by the total number of photon energy periods, cannot be

obtained due to the presence of mixed non-sequential and sequential processes. This is in

keeping with TDCC calculations for the two photon double ionization of He in which a

generalized cross section cannot be calculated for photon energies above 50 eV. We suspect

that the study of the quantal three-body breakup problem is limited to the one photon and

two photon double ionization of atoms.

Five-photon double ionization probabilities for He were then calculated as a function

of photon energy using femtosecond Gaussian pulses. The double ionization peak energy

was found to be in good agreement with experiment[20] using a free electron laser with a

lower intensity and longer pulse time. In the future we plan to calculate multiphoton double

ionization probabilities for atoms using attosecond to femtosecond Gaussian pulses over a

wide range of intensities in support of free electron laser experiments.
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Table 2.1: Coupled channels for maximum l = 3

channel (l1l2) L channel (l1l2) L channel (l1l2) L

1 ss 0 11 sd 2 21 dp 3
2 pp 0 12 ds 2 22 df 3
3 dd 0 13 pp 2 23 fd 3
4 ff 0 14 pf 2 24 pf 4
5 sp 1 15 fp 2 25 fp 4
6 ps 1 16 dd 2 26 dd 4
7 pd 1 17 ff 2 27 ff 4
8 dp 1 18 sf 3 28 df 5
9 df 1 19 fs 3 29 fd 5
10 fd 1 20 pd 3 30 ff 6

Table 2.2: Coupled channels for maximum l = 4

channel (l1l2) L channel (l1l2) L channel (l1l2) L

1 ss 0 21 gd 2 41 ff 4
2 pp 0 22 ff 2 42 gg 4
3 dd 0 23 gg 2 43 pg 5
4 ff 0 24 sf 3 44 gp 5
5 gg 0 25 fs 3 45 df 5
6 sp 1 26 pd 3 46 fd 5
7 ps 1 27 dp 3 47 fg 5
8 pd 1 28 pg 3 48 gf 5
9 dp 1 29 gp 3 49 ff 6
10 df 1 30 df 3 50 dg 6
11 fd 1 31 fd 3 51 gd 6
12 fg 1 32 fg 3 52 gg 6
13 gf 1 33 gf 3 53 fg 7
14 sd 2 34 sg 4 54 gf 7
15 ds 2 35 gs 4 55 gg 8
16 pp 2 36 pf 4
17 pf 2 37 fp 4
18 fp 2 38 dd 4
19 dd 2 39 dg 4
20 dg 2 40 gd 4

12



40 45 50 55
Photon Energy (eV)

0.0

1.0×10
-4

2.0×10
-4

3.0×10
-4

D
ou

bl
e 

Io
ni

za
tio

n 
Pr

ob
ab

ili
ty

Figure 2.1: Two-photon double ionization of He. Solid line (red) : TDCC for 17 coupled
channels, ∆r = 0.20, and N = 10, dashed line (blue) : TDCC for 17 coupled channels,
∆r = 0.20, and N = 20.
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Figure 2.2: Two-photon double ionization of He. Solid line (red) : TDCC for 17 coupled
channels, ∆r = 0.20, and N = 10, dashed line (blue) : TDCC for 17 coupled channels,
∆r = 0.20, and N = 20 (multiply by 1.90 × 10−50 to convert to cm4 sec).
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Figure 2.3: Five-photon double ionization of He. Solid line (red) : TDCC for 30 coupled
channels, ∆r = 0.10, and N = 10, dashed line (blue) : TDCC for 30 coupled channels,
∆r = 0.10, and N = 20.
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Figure 2.4: Five-photon double ionization of He. Solid line (red) : TDCC for 30 coupled
channels, I = 1014 W/cm2, ∆r = 0.10, and Tp = 5.0π/ω, dashed line (blue): TDCC for 30
coupled channels, I = 1014 W/cm2, ∆r = 0.10, and Tp = 10.0π/ω.

16



Chapter 3

Multiphoton Double Ionization of Helium

using Femtosecond Laser Pulses

3.1 Background

The development of short wavelength free electron lasers at FLASH, LCLS, and SCSS

has enabled high precision studies of multiphoton ionization processes in atoms and molecules[40].

The double ionization process is quite interesting since it can involve the motion of two free

electrons in the field of an atomic or molecular ion core. Even for the ground state of the

He atom, the three body Coulomb breakup problem remains a theoretical challenge. In

the last year, progress has been achieved in the generation of ultrashort circularly polarized

light pulses[21], opening up the study of chiral sensitivity in multiphoton double ionization

processes in atoms and molecules.

The study of the multiphoton double ionization of the ground state of the He atom

begins with 2 photon absorption at a photon energy of 39.5 eV, corresponding to half the

total experimental binding energy of the ground state[41]. Until the photon energy begins to

approach 54.4 eV, corresponding to the single photon ionization of He+, the double ionization

process is completely governed by the three body correlated motion of the two electrons. In

this energy range, the total double ionization probability scales with the pulse duration and

the intensity squared, so that a ”generalized” cross section may be defined. Over the years a

number of non-perturbative theoretical calculations have been made for the 2 photon double

ionization cross sections of He. Some of the calculations employed a numerical lattice, B-

splines, or basis functions to directly solve the time-dependent Schrodinger equation [14, 15,

33, 36, 32, 42, 30].
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When the number of photons absorbed using linear polarized light becomes greater than

2, the double ionization of He becomes dominated by various sequential processes[43, 22].

Thus the correlated motion of the two electrons resulting in strong repulsion at equal energy

sharing breaks down. We note that recently the free electron laser at SCSS was used to

investigate 5 photon double ionization of the He atom in the photon energy range from 20.1

eV to 20.8 eV for a 100 fsec pulse at an intensity of 1.0 × 1012 Watts/cm2[20].

In this chapter we apply the time-dependent close-coupling method[4] to calculate 2,3,4,

and 5 photon double ionization probabilities for the ground state of He using both linearly

and circularly polarized light for femtosecond laser pulses at 1.0 × 1014 Watts/cm2. Total

double ionization probabilities are calculated in the photon energy range from 10 eV to 60 eV.

Single and triple differential probabilities are calculated for 2,3,4, and 5 photon absorption at

the total probability peak energies. Sequential processes are found to dominate the double

ionization probabilities when the number of photons absorbed is greater than 2.

The rest of this chapter is organized as follows. In section 2 we give a brief review

of the theoretical method used to calculate total, single differential, and triple differential

probabilities for the double ionization of the He atom. In section 3 we present double

ionization probabilities for 2,3,4,and 5 photon absorption under both linear and circular

polarized light for He. We conclude with a brief summary and future plans in section 4.

Unless otherwise stated, we will use atomic units.
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3.2 Theory

The time-dependent Schrodinger equation for the He atom is given by:

i
∂Ψ(~r1, ~r2, t)

∂t
=

2
∑

i=1

(

−1

2
∇2
i −

Z

ri

)

Ψ(~r1, ~r2, t)

+

(

1

|~r1 − ~r2|

)

Ψ(~r1, ~r2, t)

+E(t) cosωt

2
∑

i=1

(Qi) Ψ(~r1, ~r2, t) , (3.1)

where Z = 2 and ω is the radiation field frequency. The radiation field amplitude is given

by:

E(t) = E0 exp

{(−2 ln (2)(t− 2T )2

T 2

)}

, (3.2)

where E0 = (5.336 × 10−9)
√
I and I is the intensity in Watts/cm2. The full width at half

maximum for the Gaussian pulse is given by:

T =
Nπ

2ω
, (3.3)

where N is the number of radiation field cycles. As an example, for N = 10 field cycles,

T = 1.03 fsec for ω = 10 eV and T = 0.17 fsec for ω = 60 eV. In the ”length” gauge for

linearly polarized light, Qi = zi, while for circularly polarized light, Qi = (xi + iyi)/
√
2.

Expanding the total wavefunction, Ψ(~r1, ~r2, t), in coupled spherical harmonics for each

L symmetry and substitution into Eq.(3.1) yields the following time-dependent close-coupled
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equations[4]:

i
∂PL

l1l2
(r1, r2, t)

∂t
=

2
∑

i=1

Tli(ri)P
L
l1l2

(r1, r2, t)

+
∑

l′
1
,l′
2

V L
l1l2,l′1l

′

2

(r1, r2)P
L
l′
1
l′
2

(r1, r2, t)

+
∑

L′

∑

l′
1
,l′
2

2
∑

i=1

WLL′

l1l2,l′1l
′

2

(ri, t)P
L′

l′
1
l′
2

(r1, r2, t) . (3.4)

The kinetic and nuclear energy operator is given by:

Tli(ri) = −1

2

d2

dr2i
+
li(li + 1)

2r2i
− Z

ri
. (3.5)

The electron-electron interaction operator is given by:

V L
l1l2,l′1l

′

2

(r1, r2) = (−1)l
′

1
+l2+L

×
√

(2l1 + 1)(2l2 + 1)(2l′1 + 1)(2l′2 + 1)

×
∑

λ

(r1, r2)
λ
<

(r1, r2)
λ+1
>

×







l1 λ l′1

0 0 0













l2 λ l′2

0 0 0

















l1 l2 L

L′ 1 l′1











. (3.6)

The radiation field operator is given by:

WLL′

l1l2,l′1l
′

2

(ri, t) = E(t) cosωt ri(−1)L







L 1 L′

0 0 0







× < (l1, l2)L||C1(i)||(l′1, l′2)L′ > (3.7)
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for linear polarization and

WLL′

l1l2,l′1l
′

2

(ri, t) = −E(t) cosωt ri







L 1 L′

−L 1 L′







× < (l1, l2)L||C1(i)||(l′1, l′2)L′ > (3.8)

for circular polarization. In either case the reduced matrix elements are given by[44]:

< (l1, l2)L||C1(1)||(l′1, l′2)L′ > = δl2,l′2(−1)l2+L
′+1

×
√

(2l1 + 1)(2l′1 + 1)(2L+ 1)(2L′ + 1)

×







l1 1 l′1

0 0 0

















l1 l2 L

L′ 1 l′1











(3.9)

and

< (l1, l2)L||C1(2)||(l′1, l′2)L′ > = δl1,l′1(−1)l1+l2+l
′

2
+L+1

×
√

(2l2 + 1)(2l′2 + 1)(2L+ 1)(2L′ + 1)

×







l2 1 l′2

0 0 0

















l1 l2 L

1 L′ l′2











. (3.10)

The initial condition for the solution of the time-dependent close-coupled equations is

given by:

PL
l1l2

(r1, r2, t = 0) = P̄L0

l1l2
(r1, r2, τ → ∞)δL,L0

, (3.11)

where the radial wavefunction, P̄L0

l1l2
(r1, r2, τ → ∞), is obtained by relaxation in imaginary

time of the time-dependent close-coupled equations of Eq.(3.4) without the radiation field

operator (Eq. (2.6)).
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Following propagation of the time-dependent close-coupled equations, momentum space

amplitudes are calculated using:

KL
l1l2

=

∫ ∞

0

dr1

∫ ∞

0

dr2Pk1l1(r1)Pk2l2(r2)

×PL
l1l2

(r1, r2, t→ ∞) , (3.12)

where Pkl(r) are continuum radial wavefunctions for He+. The total multiphoton double

ionization probability is given by:

Φ =

∫ ∞

0

dk1

∫ ∞

0

dk2
∑

l1l2L

|KL
l1l2(k1, k2)|2 . (3.13)

We note for two photon double ionization using linear polarization that L = 0, 2, while

for circular polarization that L = 2. The single differential multiphoton double ionization

probability in ejected energy, ǫ = k22/2, is given by:

dΦ

dǫ
=

1

k1k2

∫ ∞

0

dk1

∫ ∞

0

dk2δ(tanα− k2
k1

)
∑

l1l2L

|KL
l1l2

(k1, k2)|2 , (3.14)

where α is the hyperspherical angle. The triple differential multiphoton double ionization

probability is given by:

d3Φ

dǫdΩ1dΩ2
=

1

k1k2

∫ ∞

0

dk1

∫ ∞

0

dk2δ(tanα− k2
k1

)

×|
∑

l1l2L

(−i)l1+l2eσl1+σl2KL
l1l2

(k1, k2)Y
L
l1l2

(Ω1,Ω2)|2 , (3.15)

where σl are Coulomb phase shifts for He+ and Y L
l1l2

(Ω1,Ω2) are coupled spherical harmonics.
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3.3 Results

Multiphoton double ionization probabilities for the ground state of the He atom were

calculated using the time-dependent close-coupling (TDCC) method. The TDCC equations

are solved using standard numerical methods to obtain a discrete representation of the

radial wavefunctions and all operators on a two dimensional lattice. Both coordinates are

partitioned over the many processors on a massively parallel computer. The number of

coupled channels for li ≤ lmax is given by[38]:

Ncc =
(lmax + 1)(lmax + 2)(2lmax + 3)

6
, (3.16)

where the largest L value is 2lmax.

3.3.1 Total probabilities

Survey calculations were first made over a wide range of photon energies to obtain

2,3,4,and 5 photon total double ionization probabilities for He using both linear and circular

polarization. The intensity was chosen at 1.0×1014 Watts/cm2, the number of radiation field

cycles was chosen at N = 10, and a lattice of 240 × 240 points was chosen with a uniform

grid spacing of ∆ri = 0.20. The choice of lmax = 5 gives 91 coupled channels ranging from

L = 0 to L = 10.

Multiphoton total double ionization probabilities are presented in Figures 3.1-3.4. Al-

though the total angular momentum L is equal to the number of photons absorbed for

circular polarization, other values of L contribute for linear polarization. For example, 3

photon double ionization involves only the L pathway 0 → 1 → 2 → 3 for circular polar-

ization, while the L pathways 0 → 1 → 2 → 3, 0 → 1 → 2 → 1 and 0 → 1 → 0 → 1 are

available for linear polarization. For 3 photon double ionization the L = 1 contributions are

much larger than the L = 3 contributions. There is also a very large peak in the L = 1

contribution at 20 eV due to single photon excitation of the 1s2p 1P excited state of He.
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Thus to make a clear map of the energy regions for 2,3,4, and 5 photon absorption using

linear polarization, we choose to show only the maximum L contributions in Figures 3.1-3.4.

The 2 photon double ionization probabilities in Figure 3.1 are found over the energy

range from 35 eV to 60 eV with a peak probability at 49 eV. The 3 photon double ionization

probabilities in Figure 3.2 are found over the energy range from 24 eV to 40 eV with a peak

probability at 29 eV. The 4 photon double ionization probabilities in Figure 3.3 are found

over the energy range from 19 eV to 30 eV with a peak probability at 22 eV. Finally the 5

photon double ionization probabilities in Figure 3.4 are found over the energy range from 15

eV to 25 eV with a peak probability at 18 eV.

Peak total multiphoton double ionization probabilities for linear polarization are given

in Table 3.1, while those for circular polarization are given in Table 3.2. The 2 photon

L = 0 + 2 probability for linear polarization is quite close to the L = 2 probability for

circular polarization. The 3 photon L = 1 + 3 probability for linear polarization is a factor

of 2 larger than the L = 3 probability for circular polarization. The 4 photon L = 0+ 2 + 4

probability for linear polarization is almost the same as the L = 4 probability for circular

polarization. Finally the 5 photon L = 1 + 3 + 5 probability for linear polarization is three

and a half orders of magnitude larger than the L = 5 probability for circular polarization.

Selected calculations were made for the number of radiation field cycles set at N = 20.

The photon energies for the peaks of the double ionization probabilities remain the same for

N = 20, only the magnitudes of the probabilities increase.

Selected calculations were made for a choice of lmax = 6 and 140 coupled channels

ranging from L = 0 to L = 12. No changes were found in the magnitudes of the double

ionization probabilities for L = 2, 3, 4, 5 using the 140 coupled channels, although changes

in magnitudes of probabilities were seen for L > 5 as expected.

Selected calculations were made for a lattice of 360 × 360 points with a uniform grid

spacing of ∆ri = 0.20. Only very small changes were found in the magnitudes of the

multiphoton total double ionization probabilities.
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3.3.2 Differential probabilities

Calculations were made at the peak photon energies to obtain multiphoton differential

double ionization probabilities. A lattice of 720 × 720 points with a uniform grid spacing of

∆ri = 0.10 was used to give accurate differential probabilities. Small changes were found in

the magnitudes of the multiphoton total double ionization probabilities, while small shifts in

the peak photon energies were observed: 51 eV for 2 photon, 29 eV for 3 photon, 23 eV for

4 photon, and 19 eV for 5 photon. The small shifts are in keeping with a 3% lowering of the

total energy for He using the finer mesh. We note that a uniform momentum mesh of 100

points at ∆k = 0.02 was used to calculate the momentum space amplitudes of Eq.(3.12).

Peak single differential multiphoton double ionization probabilities for linear polariza-

tion are presented in Figure 3.5, while those for circular polarization are presented in Figure

3.6. Peak triple differential multiphoton double ionization probabilities for linear polariza-

tion are presented in Figure 3.7, while those for circular polarization are presented in Figure

3.8.

The 2 photon single differential probabilities for linear and circular polarization are very

similar in magnitude and shape. The minimum found at equal energy sharing is due to non-

sequential electron repulsion. The 2 photon triple differential probabilities for linear and

circular polarization are also very similar in magnitude and shape. At equal energy sharing

with one electron emitted at 0 degrees, the dominant escape route for the other electron is at

180 degrees. The back to back emission of the two electrons at equal energy sharing for a 51

eV radiation field pulse is in agreement with theoretical calculations[14, 15, 33, 36, 32, 42, 30]

for the 2 photon double ionization cross section in the non-sequential energy range from 40

eV to 52 eV.

The 3 photon single differential probabilities for linear and circular polarization are

somewhat similar in magnitude and shape. We note that the linear polarization case has

large contributions from L = 1 (see Table 3.1). For linear polarization there is a slight

minimum at equal energy sharing, while for circular polarization there is a slight maximum

25



at equal energy sharing. The 3 photon triple differential probabilities for linear and circular

polarization are also somewhat similar in magnitude and shape. At equal energy sharing

with one electron emitted at 0 degrees, the dominant escape route for the other electron is

at 0, 36, 114, 246, and 324 degrees for linear polarization, while the escape routes for the

other electron are at 42, 114, 246, and 318 degrees for circular polarization. The features in

our 3 photon triple differential probabilities are in qualitative agreement with the angular

distributions of Liu and Thumm [43], which were computed at a photon energy of 30 eV.

The 4 photon single differential probabilities for linear and circular polarization are

fairly similar in magnitude and shape. Maximums are found at equal energy sharing. The

4 photon triple differential probabilities for linear and circular polarization are also fairly

similar in magnitude and shape. At equal energy sharing with one electron emitted at 0

degrees, the dominant escape route for the other electron is at 180 degrees. Additional

escape routes are found at 96 and 264 degrees for linear polarization and 90 and 270 degrees

for circular polarization.

The 5 photon single differential probabilities for linear and circular polarization are very

different in magnitude and shape. We note that the linear polarization case is dominated by

contributions for L = 1 (see Table 3.1). For linear polarization there is a maximum at equal

energy sharing, while for circular polarization there is a minimum at equal energy sharing.

The 5 photon triple differential probabilities for linear and circular polarization are also very

different in magnitude and shape. At equal energy sharing with one electron emitted at 0

degrees, the dominant escape route for the other electron is 0 degrees with other small peaks

at 114 and 246 degrees for linear polarization, while the dominant escape routes for the other

electron are at 78, 138, 222, and 282 degrees for circular polarization.

In regard to the multiphoton triple differential double ionization probabilities, we find

that for both the linear and circular polarization cases that absorption of an odd number of

photons leads to a distribution which has a minimum at back-to-back electron emissions (θ1 =

0, θ2 = 180), whereas absorption of an even number of photons leads to a distribution which
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has a maximum at back-to-back emissions. This behavior is consistent with the selection

rules for 3 body break-up as discussed in detail by Maulbetsch and Briggs[45]. Their analysis

shows that the final angular momentum state of the outgoing electron pair strongly influences

the resulting electron angular distribution. They also show that the probability vanishes for

back-to-back emissions (θ1 = 0, θ2 =180), when the final angular momentum state is odd.

For single photon double ionization cross sections of He, such angular distributions have

been studied in detail by many theoretical and experimental groups[5].

Selected calculations were made for a lattice of 1440 × 1440 points with a uniform grid

spacing of ∆ri = 0.10. The calculations were made for N = 10 radiation field cycles followed

by an additional 20 cycles in which the radiation field amplitude is set to zero. Very little

change was seen in the shapes of the single and triple differential probabilities for 5 photon

absorption using linear polarization. At equal energy sharing with one electron emitted at 0

degrees, the dominant escape route for the other electron remains at 0 degrees. This seems

to indicate a strong sequential ionization pathway in which one electron leaves at 0 degrees

followed at a later time by a second electron also at 0 degrees. Thus the electrons follow

each other in time and are not able to interact and push themselves away from each other.
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3.4 Summary

A time-dependent close-coupling method has been used to calculate multiphoton dou-

ble ionization probabilities for He using femtosecond laser pulses. Total double ionization

probabilities were calculated over the energy range from 10 eV to 60 eV to locate those

energy ranges for which 2,3,4, and 5 photon absorption is the dominant process. The energy

ranges are generally from 1.0 to 1.6 times the threshold energy for double ionization. Peak

total double ionization probabilities were identified for the 2,3,4, and 5 photon absorption

for both linear and circularly polarized light. At the total probabilities peak energies single

and triple differential double ionization probabilities were calculated to guide experiments.

For circular polarization the total, single differential, and triple differential double ionization

probabilities drop in a steady manner as the number of photons absorbed is increased. How-

ever, for linear polarization the total, single differential, and triple differential probabilities

do not drop in a steady manner. For example, the 5 photon double ionization probabilities

are much larger than the 4 photon double ionization probabilities.

We hope these survey calculations will stimulate experimental studies for 2,3,4, and 5

photon double ionization of He using femtosecond laser pulses. The time-dependent close-

coupling method can be easily applied to the ground and metastable excited states of many

atoms and their ions for which two electrons are found above a closed shell atomic core.
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Table 3.1: Total multiphoton double ionization probabilities for linear polarization

photons energy L probability

2 49 eV 0 1.5 × 10−6

2 3.5 × 10−6

0+2 5.0 × 10−6

3 29 eV 1 1.0 × 10−6

3 2.7 × 10−7

1+3 1.3 × 10−6

4 22 eV 0 2.5 × 10−9

2 5.7 × 10−9

4 2.8 × 10−9

0+2+4 1.1 × 10−8

5 18 eV 1 2.6 × 10−6

3 2.0 × 10−10

5 4.8 × 10−11

1+3+5 2.6 × 10−6

Table 3.2: Total multiphoton double ionization probabilities for circular polarization

photons energy L probability

2 49 eV 2 5.3 × 10−6

3 29 eV 3 6.9 × 10−7

4 22 eV 4 1.3 × 10−8

5 18 eV 5 4.1 × 10−10
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Figure 3.1: (color online) Two photon double ionization probability for L = 2. Solid line
(red) : linear polarization, dashed line (blue) : circular polarization
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Figure 3.2: (color online) Three photon double ionization probability for L = 3. Solid line
(red) : linear polarization, dashed line (blue) : circular polarization

31



10 20 30 40 50 60
Photon Energy (eV)

0.0

5.0×10
-9

1.0×10
-8

1.5×10
-8

2.0×10
-8

D
ou

bl
e 

Io
ni

za
tio

n 
Pr

ob
ab

ili
ty

Figure 3.3: (color online) Four photon double ionization probability for L = 4. Solid line
(red) : linear polarization, dashed line (blue) : circular polarization
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Figure 3.4: (color online) Five photon double ionization probability for L = 5. Solid line
(red) : linear polarization, dashed line (blue) : circular polarization
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Figure 3.5: (color online) Single differential probabilities using linear polarization. Solid line
(red) : two photons at 51 eV, dashed line (green): three photons at 29 eV, dot dashed line
(blue): four photons at 23 eV, dot double dashed line (violet): five photons at 19 eV
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Figure 3.6: (color online) Single differential probabilities using circular polarization. Solid
line (red) : two photons at 51 eV, dashed line (green): three photons at 29 eV, dot dashed
line (blue): four photons at 23 eV, dot double dashed line (violet): five photons at 19 eV
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Figure 3.7: (color online) Triple differential probabilities using linear polarization. Equal
energy sharing for ejected electrons, θ1 = φ1 = φ2 = 0 degrees. Solid line (red) : two
photons at 51 eV, dashed line (green): three photons at 29 eV, dot dashed line (blue): four
photons at 23 eV, dot double dashed line (violet): five photons at 19 eV
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Figure 3.8: (color online) Triple differential probabilities using circular polarization. Equal
energy sharing for ejected electrons, θ1 = φ1 = φ2 = 0 degrees. Solid line (red) : two photons
at 51 eV, dashed line (green): three photons at 29 eV, dot dashed line (blue): four photons
at 23 eV, dot double dashed line (violet): five photons at 19 eV
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Chapter 4

Double Photoionization of Helium and Ne8+ from

Level Resolved Ground and Excited States

4.1 Background

The double photoionization of atoms has been of long interest due to the difficulty in

accurately describing the emission of two electrons at low photon energies. The two contin-

uum electrons are strongly correlated and difficult to describe using many-body perturbation

theory.

Good agreement was found early on between experimental measurements[46, 47] for the

ratio of double photoionization to single photoionization for He(1s2) and non-perturbative

theoretical calculations made using the eigenchannel R-matrix method[48], the converged

close-coupling method[49], the R-matrix with pseudo-states method[50], the time-dependent

close-coupling method[51], and the hyperspherical close-coupling method[52]. Non-perturbative

theoretical calculations for the double photoionization of He(1s2s 1,3S) were also made using

the eigenchannel R-matrix method[53], the converged close-coupling method[54], and the

time-dependent close-coupling method[55].

With the continued development of free electron lasers, the double photoionization of

atomic ions has now become of interest. For example, the double photoionization of Li+ in

ground and excited states has been calculated using the converged close-coupling method[56],

the B-spline based R-matrix method[57], and the time-dependent close-coupling method[58].

For more highly charged atomic ions, all methods must include semi-relativistic effects, like

the spin-orbit interaction.

In this chapter we take the first step in developing a semi-relativistic time-dependent

close-coupling (TDCC) method for the double photoionization of atomic ions by exploring
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the inclusion of the spin-orbit interaction, the Darwin, and the mass-velocity contributions.

The new TDCC method uses a l1j1l2j2J coupling scheme instead of the l1l2L coupling

scheme employed by the non-relativistic TDCC method. For the He case, only the spin-

orbit interaction is included in the level resolved calculations. Double photoionization cross

sections for the He atom are calculated using the TDCC(l1l2L) method for the 1s2 1S,

1s2s 3S, and 1s2p 3P terms and compared with the TDCC(l1j2l2j2J) method for the 1s2 1S0,

1s2s 3S1, and 1s2p 3P0,1,2 levels. We find that the total double photoionization cross sections

for the 1s2p 3P0,1,2 levels differ and all of their peak values are larger than the 1s2p 3P term

peak value, with the 1s2p 3P0 level having the largest peak cross section. The differences in

the total cross sections for the 1s2p 3P0,1,2 levels are attributed to two electron continuum

correlation effects. We find that both coupling schemes give a same double photoionization

cross sections for the 1s2p configuration once we average over the 3P and 1P terms and the

3P0,1,2 and
1P1 levels. Double photoionization cross sections for the Ne8+ atomic ion are also

calculated using the non-relativistic TDCC(l1l2L) method for the 1s2 1S term and compared

with semi-relativistic TDCC(l1j2l2j2J) method for the 1s2 1S0 level.
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4.2 Theory

The time-dependent close-coupling method was developed for the double photoioniza-

tion of atoms using a l1l2L coupling scheme[4]. The time-dependent close-coupling method

will now be developed for the double photoionization of atoms using a l1j1l2j2J coupling

scheme.

The time-dependent Schrodinger equation for a two-electron atom, including spin-orbit,

mass-velocity, and Darwin interactions, in a time-varying electromagnetic field is given by:

i
∂Ψ(~r1, ~r2, t)

∂t
=

2
∑

i=1

(

−1

2
∇2
i + V (ri)

)

Ψ(~r1, ~r2, t)

+

2
∑

i=1

(

1

2c2
1

ri

∂V (ri)

∂ri
~li · ~si

)

Ψ(~r1, ~r2, t)

+

2
∑

i=1

(

− 1

2c2
(Ei − V (ri))

2

)

Ψ(~r1, ~r2, t)

+
2

∑

i=1

(

− 1

4c2
∂V (ri)

∂ri

∂

∂ri

)

Ψ(~r1, ~r2, t)

+
1

|~r1 − ~r2|
Ψ(~r1, ~r, t)

+E(t) cosωt (r1 cos θ1 + r2 cos θ2)Ψ(~r1, ~r2, t) , (4.1)

where V (ri) = −Z
ri
, Z is the atomic number, ~li is the orbital angular momentum, ~si is the

spin angular momentum, and c is the speed of light. We choose a linearly polarized radiation

field in the ”length” gauge, where E(t) is the electric field amplitude and ω is the radiation

field frequency. For the Helium case, only the spin-orbit interaction is included.

4.2.1 TDCC(l1l2L) Method

Expanding the total wavefunction, Ψ(~r1, ~r2, t), in coupled spherical harmonics for each L

symmetry and substitution into Eq.(4.1), ignoring the spin-orbit, mass-velocity, and Darwin
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interactions, yields the following time-dependent close-coupled partial differential equations:

i
∂PL

l1l2
(r1, r2, t)

∂t
=

2
∑

i=1

Tli(ri)P
L
l1l2

(r1, r2, t)

+
∑

l′
1
l′
2

V L
l1l2,l′1l

′

2

(r1, r2)P
L
l′
1
l′
2

(r1, r2, t)

+
∑

l′
1
l′
2
L′

WLL′

l1l2,l′1l
′

2

(r1, t)P
L′

l′
1
l′
2

(r1, r2, t)

+
∑

l′
1
l′
2
L′

WLL′

l1l2,l′1l
′

2

(r2, t)P
L′

l′
1
l′
2

(r1, r2, t) . (4.2)

The kinetic and nuclear energy operator is given by:

Tli(ri) = −1

2

d2

dr2i
+
li(li + 1)

2r2i
− Z

ri
. (4.3)

The electron-electron interaction energy operator, derived using expressions for the scalar

product of two tensor operators and uncoupling formulae for reduced matrix elements[44],

is given by:

V L
l1l2,l′1l

′

2

(r1, r2) = (−1)l
′

1
+l2+L

×
√

(2l1 + 1)(2l2 + 1)(2l′1 + 1)(2l′2 + 1)

×
∑

λ
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λ
<
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λ+1
>







l1 λ l′1

0 0 0
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
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
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

×




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



l1 l2 L

l′2 l′1 λ











. (4.4)
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The radiation field energy operators, derived using the Wigner-Eckart theorem and uncou-

pling formulae for reduced matrix elements[44], are given by:

WLL′

l1l2,l′1l
′

2

(r1, t) = E(t) cosωt r1 δl2,l′2

×(−1)l2+L+L
′−M+1
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×
√
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×
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L 1 L′
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
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×











l1 l2 L

L′ 1 l′1











(4.5)

and

WLL′

l1l2,l′1l
′

2

(r2, t) = E(t) cosωt r2 δl1,l′1

×(−1)l1+l2+l
′

2
−M+1

√

(2L+ 1)(2L′ + 1)

×
√

(2l2 + 1)(2l′2 + 1)

×







l2 1 l′2

0 0 0













L 1 L′

−M 0 M ′







×











l1 l2 L

1 L′ l′2











. (4.6)

We assume M = M ′ = 0 in Eqs.(4.5) and (4.6).

42



The close-coupling partial differential equations for relaxation in imaginary time of a

two-electron atom are given by:

−
∂P̄L0

l1l2
(r1, r2, τ)

∂τ
=

2
∑

i=1

Tli(ri)P̄
L0

l1l2
(r1, r2, τ)

+
∑

l′
1
l′
2

V L0

l1l2,l′1l
′

2

(r1, r2)P̄
L0

l′
1
l′
2

(r1, r2, τ) . (4.7)

The initial conditions for the solution of Eq.(4.7) are given by:

P̄L0

ss (r1, r2, τ = 0) = P1s(r1)P1s(r2) (4.8)

for the 1s2 1S term,

P̄L0

ss (r1, r2, τ = 0) =

√

1

2
P1s(r1)P2s(r2)−

√

1

2
P2s(r1)P1s(r2) (4.9)

for the 1s2s 3S term, and

P̄L0

sp (r1, r2, τ = 0) = +

√

1

2
P1s(r1)P2p(r2)

P̄L0

ps (r1, r2, τ = 0) = −
√

1

2
P2p(r1)P1s(r2) (4.10)

for the 1s2p 3P term. The bound radial wavefunctions, Pnl(r), are obtained by diagonaliza-

tion of the Hamiltonian, Tl(r), of Eq.(4.3).

The initial condition for the solution of the time-dependent close-coupled equations of

Eq.(4.2) is given by:

PL
l1l2

(r1, r2, t = 0) = P̄L0

l1l2
(r1, r2, τ → ∞)δL,L0

. (4.11)
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Following propagation in real time, momentum space amplitudes are calculated using:

KL
l1l2

(k1, k2) =

∫ ∞

0

dr1

∫ ∞

0

dr2Pk1l1(r1)Pk2l2(r2)

×PL
l1l2

(r1, r2, t→ ∞) , (4.12)

where the continuum radial wavefunctions, Pkl(r), are obtained by a distorted-wave solution

of the radial Schrodinger equation using Tl(r) of Eq.(4.3). The total double photoionization

cross section is given by:

σ2 =
ω

IT

∫ ∞

0

dk1

∫ ∞

0

dk2
∑

l1l2L

|KL
l1l2(k1, k2)|2 , (4.13)

where T is the total time for the propagation.

4.2.2 TDCC(l1j1l2j2J) Method

Expanding the total wavefunction, Ψ(~r1, ~r2, t), in coupled spin-orbit eigenfunctions for

each J symmetry and substitution into Eq.(4.1), including the spin-orbit mass-velocity, and

Darwin interactions, yields the following time-dependent close-coupled partial differential

equations:

i
∂P J

l1j1l2j2
(r1, r2, t)

∂t
=

2
∑

i=1

Tliji(ri)P
J
l1j1l2j2(r1, r2, t)

+
∑

l′
1
j′
1
l′
2
j′
2

V J
l1j1l2j2,l′1j

′

1
l′
2
j′
2

(r1, r2)P
J
l′
1
j′
1
l′
2
j′
2

(r1, r2, t)

+
∑

l′
1
j′
1
l′
2
j′
2
J ′

W JJ ′

l1j1l2j2,l′1j
′

1
l′
2
j′
2

(r1, t)P
J ′

l′
1
j′
1
l′
2
j′
2

(r1, r2, t)

+
∑

l′
1
j′
1
l′
2
j′
2
J ′

W JJ ′

l1j1l2j2,l′1j
′

1
l′
2
j′
2

(r2, t)P
J ′

l′
1
j′
1
l′
2
j′
2

(r1, r2, t) . (4.14)
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For the He case, the kinetic, nuclear, and spin-orbit energy operator is given by:

Tliji(ri) = −1

2

d2

dr2i
+
li(li + 1)

2r2i
− Z

ri

+
Z

4c2r3i
[ji(ji + 1)− li(li + 1)− 3

4
] . (4.15)

For the Ne8+ case, kinetic, nuclear, spin-orbit, mass-velocity, and Darwin operator is given

by:

Tliji(ri) = −1

2

∂2

∂r2i
+
li(li + 1)

2r2i
+ V (ri)

+
1

4c2
[ji(ji + 1)− li(li + 1)− 3

4
]

ri

∂V (ri)

∂ri

− 1

2c2
[ǫi − V (ri)]

2 − 1

4c2
∂V (ri)

∂ri
[
∂

∂ri
+
κi
ri
] , (4.16)

where κi = −(li + 1) for ji = li +
1
2
and κi = +li for ji = li − 1

2
. The electron-electron

interaction energy operator, derived using expressions for the scalar product of two tensor

operators and uncoupling formulae for reduced matrix elements[44], is given by:

V J
l1j1l2j2,l′1j

′

1
l′
2
j′
2

(r1, r2) = (−1)2j
′

1
+j2+j′2+J+1

×
√

(2l1 + 1)(2l2 + 1)(2l′1 + 1)(2l′2 + 1)

×
√

(2j1 + 1)(2j2 + 1)(2j′1 + 1)(2j′2 + 1)

×
∑

λ

(r1, r2)
λ
<

(r1, r2)
λ+1
>







l1 λ l′1

0 0 0













l2 λ l′2

0 0 0







×











l1
1
2

j1

j′1 λ l′1





















l2
1
2

j2

j′2 λ l′2











×











j1 j2 J

j′2 j′1 λ











. (4.17)
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The radiation field energy operators, derived using the Wigner-Eckart theorem and uncou-

pling formulae for reduced matrix elements[44], are given by:

W JJ ′

l1j1l2j2,l′1j
′

1
l′
2
j′
2

(r1, t) = E(t) cosωt r1 δl2,l′2δj2,j′2

×(−1)j1+j
′

1
+j2+J+J ′−M+ 1

2

√

(2J + 1)(2J ′ + 1)

×
√

(2l1 + 1)(2l′1 + 1)(2j1 + 1)(2j′1 + 1)

×







l1 1 l′1

0 0 0













J 1 J ′

−M 0 M ′







×











j1 j2 J

J ′ 1 j′1





















l1
1
2

j1

j′1 1 l′1











(4.18)

and

W JJ ′

l1j1l2j2,l′1j
′

1
l′
2
j′
2

(r2, t) = E(t) cosωt r2 δl1,l′1δj1,j′1

×(−1)j1+2j′
2
+2J−M+ 1

2

√

(2J + 1)(2J ′ + 1)

×
√

(2l2 + 1)(2l′2 + 1)(2j2 + 1)(2j′2 + 1)

×







l2 1 l′2

0 0 0













J 1 J ′

−M 0 M ′







×











j1 j2 J

1 J ′ j′2





















l2
1
2

j2

j′2 1 l′2











. (4.19)

We assume M = M ′ = 0 in Eqs.(4.18) and (4.19).
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The close-coupling partial differential equations for relaxation in imaginary time of a

two-electron atom are given by:

−
∂P̄ J0

l1j1l2j2
(r1, r2, τ)

∂τ
=

2
∑

i=1

Tliji(ri)P̄
J0
l1j1l2j2

(r1, r2, τ)

+
∑

l′
1
j′
1
l′
2
j′
2

V J0
l1j1l2j2,l′1j

′

1
l′
2
j′
2

(r1, r2)P̄
J0
l′
1
j′
1
l′
2
j′
2

(r1, r2, τ) . (4.20)

The initial conditions for the solution of Eq.(4.20) are given by:

P̄ J0
s 1

2
s 1

2

(r1, r2, τ = 0) = P1s 1

2

(r1)P1s 1

2

(r2) (4.21)

for the 1s2 1S0 level,

P̄ J0
s 1

2
s 1

2

(r1, r2, τ = 0) =

√

1

2
P1s 1

2

(r1)P2s 1

2

(r2)−
√

1

2
P2s 1

2

(r1)P1s 1

2

(r2) (4.22)

for the 1s2s 3S1 level,

P̄ J0
s 1

2
p 1

2

(r1, r2, τ = 0) = +

√

1

2
P1s 1

2

(r1)P2p 1

2

(r2)

P̄ J0
p 1

2
s 1

2

(r1, r2, τ = 0) = +

√

1

2
P2p 1

2

(r1)P1s 1

2

(r2) (4.23)

for the 1s2p 3P0 level,

P̄ J0
s 1

2
p 1

2

(r1, r2, τ = 0) = +

√

1

4
P1s 1

2

(r1)P2p 1

2

(r2)

P̄ J0
p 1

2
s 1

2

(r1, r2, τ = 0) = +

√

1

4
P2p 1

2

(r1)P1s 1

2

(r2)

P̄ J0
s 1

2
p 3

2

(r1, r2, τ = 0) = +

√

1

4
P1s 1

2

(r1)P2p 3

2

(r2)

P̄ J0
p 3

2
s 1

2

(r1, r2, τ = 0) = +

√

1

4
P2p 3

2

(r1)P1s 1

2

(r2) (4.24)
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for the 1s2p 3P1 level, and

P̄ J0
s 1

2
p 3

2

(r1, r2, τ = 0) = +

√

1

2
P1s 1

2

(r1)P2p 3

2

(r2)

P̄ J0
p 3

2
s 1

2

(r1, r2, τ = 0) = −
√

1

2
P2p 3

2

(r1)P1s 1

2

(r2) (4.25)

for the 1s2p 3P2 level. The bound radial wavefunctions, Pnlj(r), are obtained by diagonaliza-

tion of the Hamiltonian, Tlj(r), of Eq.(4.15). For the Ne
8+ case, all the bound and continuum

energies and wavefunctions are then corrected in first order perturbation theory using:

Vmv(r) = − 1

2c2
(ǫ− V (r))2 (4.26)

for the mass-velocity interaction[44] and

VD(r) = − 1

4c2
∂V (r)

∂r
(
∂

∂r
+
κ

r
)δκ,−1 (4.27)

for the Darwin interaction[44].

The initial condition for the solution of the time-dependent close-coupled equations of

Eq.(4.14) is given by:

P J
l1j1l2j2(r1, r2, t = 0) = P̄ J0

l1j1l2j2
(r1, r2, τ → ∞)δJ,J0 . (4.28)

Following propagation in real time, momentum space amplitudes are calculated using:

KJ
l1j1l2j2

(k1, k2) =

∫ ∞

0

dr1

∫ ∞

0

dr2Pk1l1j1(r1)Pk2l2j2(r2)

×P J
l1j1l2j2

(r1, r2, t→ ∞) , (4.29)

where the continuum radial wavefunctions, Pklj(r), are obtained by a distorted-wave solution

of the radial Schrodinger equation using Tlj(r) of Eq.(4.15) for the He case. For the Ne8+

48



case, the continuum radial wavefunctions, Pklj(r), are obtained by diagonalization of the

hamiltonian below:

H(r) = −1

2

∂2

∂r2
+
l(l + 1)

2r2
+ V (r) + Vso(r) , (4.30)

where

Vso(r) =
1

4c2
(j(j + 1)− l(l + 1)− 3

4
)

r

∂V (r)

∂r
(4.31)

and the application of lowest order perturbation theory using Eqs.(4.26) and (4.27). The

total double photoionization cross section is given by:

σ2 =
ω

IT

∫ ∞

0

dk1

∫ ∞

0

dk2
∑

l1j1l2j2J

|KJ
l1j1l2j2

(k1, k2)|2 , (4.32)

where T is again the total time for the propagation.
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4.3 Results

Double photoionization cross sections for ground and excited states of He are calculated

using the TDCC(l1l2L) and TDCC(l1j1l2j2J) methods. A lattice of 360 × 360 points is used

with a uniform grid spacing of ∆r1 = ∆r2 = 0.20 and including up to l ≤ 3 (see Tables

4.1-4.2) or lj ≤ 37
2
(see Tables 4.3-4.7) angular momenta. For more accurate cross sections

a lattice of 720 × 720 points is used with a uniform grid spacing of ∆r1 = ∆r2 = 0.10 and

including up to l ≤ 5 or lj ≤ 511
2
angular momenta.

4.3.1 1s2 ground configuration of He

Double photoionization cross sections for the 1s2 1S term of He are calculated using

the TDCC(l1l2L) method. Relaxation on the lattice using Eq.(4.7), the initial condition of

Eq.(4.8), and the 4 L = 0 coupled channels found in Table 4.1 yields a ground state of He

with an energy of E = -75.8 eV for the 360 × 360 lattice. Propagation on the lattice using

Eq.(4.2) with the 10 L = 0,1 coupled channels found in Table 4.1 yields the total double

photoionization cross sections using Eq.(4.13) found in Figure 4.1. At a photon energy of

100 eV the cross section is found to peak at a value of 8.86 kb. Relaxation on the lattice

with 6 L = 0 coupled channels yields a ground state of He with an energy of E = -78.2 eV

for the 720 × 720 lattice. Propagation on the lattice with 16 L = 0,1 coupled channels yields

the total double photoionization cross sections found in Figure 4.1. At a photon energy of

105 eV the cross section is found to peak at a value of 8.73 kb. We note that experimental

measurements[59] find a peak cross section of 8.81 ± 0.4 kb at a photon energy of 102 eV.

Double photoionization cross sections for the 1s2 1S0 level of He are calculated using the

TDCC(l1j1l2j2J) method. Relaxation on the lattice using Eq.(4.20), the initial condition of

Eq.(4.21), and the 7 J = 0 coupled channels found in Table 4.3 yields a ground state of He

with an energy of E = -75.8 eV for the 360 × 360 lattice. Propagation on the lattice using

Eq.(4.14) with the 23 J = 0,1 coupled channels found in Table 4.3 yields the total double

photoionization cross sections using Eq.(4.32) found in Figure 4.1. The cross sections at the
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3 photon energies are in good agreement with the TDCC(l1l2L) results for the 360 × 360

lattice. Relaxation on the lattice with 11 J = 0 coupled channels yields a ground state of He

with an energy of E = -78.2 eV for the 720 × 720 lattice. Propagation on the lattice with

39 J = 0,1 coupled channels yields the total double photoionization cross sections found

in Figure 4.1. The cross sections at the 3 photon energies are in good agreement with the

TDCC(l1l2L) results for the 720 × 720 lattice.

4.3.2 1s2s excited configuration of He

Double photoionization cross sections for the 1s2s 3S term of He are calculated using

the TDCC(l1l2L) method. Relaxation on the lattice using Eq.(4.7), the initial condition of

Eq.(4.9), and the 4 L = 0 coupled channels found in Table 4.1 yields an excited state of He

with an energy E = -57.1 eV for the 360 × 360 lattice. Propagation on the lattice using

Eq.(4.2) with the 10 L = 0,1 coupled channels found in Table 4.1 yields the total double

photoionization cross sections using Eq.(4.13) found in Figure 4.2. At a photon energy of 70

eV the cross section is found to peak at a value of 1.95 kb. Relaxation on the lattice with

6 L = 0 coupled channels yields an excited state of He with an energy of E = -58.6 eV for

the 720 × 720 lattice. Propagation on the lattice with 16 L = 0,1 coupled channels yields

the total double photoionization cross sections found in Figure 4.2. At a photon energy of

75 eV the cross section is found to peak at a value of 2.47 kb.

Double photoionization cross sections for the 1s2s 3S1 level of He are calculated using

the TDCC(l1j1l2j2J) method. Relaxation on the lattice using Eq.(4.20), the initial condition

of Eq.(4.22), and the 17 J = 1 coupled channels found in Table 4.4 yields an excited state

of He with an energy of E = -57.1 eV for the 360 × 360 lattice. Propagation on the lattice

using Eq.(4.14) with the 43 J = 1,0,2 coupled channels found in Table 4.4 yields the total

double photoionization cross sections using Eq.(4.32) found in Figure 4.2. The cross sections

at the 3 photon energies are in good agreement with the TDCC l1l2L results for the 360 ×

360 lattice. Relaxation on the lattice with 29 J = 1 coupled channels yields an excited state
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of He with an energy of E = -58.6 eV for the 720 × 720 lattice. Propagation on the lattice

with 79 J = 1,0,2 coupled channels yields the total double photoionization cross sections

found in Figure 4.2. The cross sections at the 3 photon energies are in good agreement with

the TDCC(l1l2L) results for the 720 × 720 lattice.

4.3.3 1s2p excited configuration of He

Double photoionization cross sections for the 1s2p 3P term of He are calculated using

the TDCC(l1l2L) method. Relaxation on the lattice using Eq.(4.7), the initial condition of

Eq.(4.10), and the 6 L = 1 coupled channels found in Table 4.2 yields an excited state of

He with an energy E = -56.1 eV for the 360 × 360 lattice. Propagation on the lattice using

Eq.(4.2) with the 17 L = 1,0,2 coupled channels found in Table 4.2 yields the total double

photoionization cross sections using Eq.(4.13) found in Figure 4.3. At a photon energy of 75

eV the cross section is found to peak at a value of 2.38 kb. Relaxation on the lattice with 10

L = 1 coupled channels yields an excited state of He with an energy E = -57.5 eV for the

720 × 720 lattice. Propagation on the lattice with 29 L = 1,0,2 coupled channels yields the

total double photoionization cross sections found in Figure 4.4. At a photon energy of 75.0

eV the cross section is found to peak at 3.59 kb.

Double photoionization cross sections for the 1s2p 3P0 level of He are calculated using

the TDCC(l1j1l2j2J) method. Relaxation on the lattice using Eq.(4.20), the initial condition

of Eq.(4.23), and the 6 J = 0 coupled channels found in Table 4.5 yields an excited state of

He with an energy E = -56.1 eV for the 360 × 360 lattice. Propagation on the lattice using

Eq.(4.14) with the 23 J = 0,1 coupled channels found in Table 4.5 yields the total double

photoionization cross sections using Eq.(4.32) found in Figure 4.3 The cross sections at the 9

photon energies are above the TDCC(l1l2L) results at the lower photon energies for the 360

× 360 lattice. At a photon energy of 65.0 eV the cross section is found to peak at a value of

3.66 kb. Relaxation on the lattice with 10 J = 0 coupled channels yields an excited state of

He with an energy E = -57.5 eV for the 720 × 720 lattice. Propagation on the lattice with
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39 J = 0,1 coupled channels yields the total double photoionization cross sections found in

Figure 4.4. The cross sections at the 9 photon energies are above the TDCC(l1l2L) results

at the lower photon energies for the 720 × 720 lattice. At a photon energy of 70.0 eV the

cross section is found to peak at a value of 4.55 kb.

Double photoionization cross sections for the 1s2p 3P1 level of He are calculated using

the TDCC(l1j1l2j2J) method. Relaxation on the lattice using Eq.(4.20), the initial condition

of Eq.(4.24), and the 16 J = 1 coupled channels found in Table 4.6 yields an excited state

with an energy E = -56.1 eV for the 360 × 360 lattice. Propagation on the lattice using

Eq.(4.14) with the 44 J = 1,0,2 coupled channels found in Table 4.6 yields the double

photoionization cross sections using Eq.(4.32) found in Figure 4.3. The cross sections at the

9 photon energies are above the TDCC(l1l2L) results at the lower photon energies for the

360 × 360 lattice. At a photon energy of 70.0 eV the cross section is found to peak at a value

of 3.31 kb. Relaxation on the lattice with 28 J = 1 coupled channels yields an excited state

of He with an energy E = -57.5 eV for the 720 × 720 lattice. Propagation on the lattice

with 80 J = 1,0,2 coupled channels yields the total photoionization cross sections found in

Figure 4.4. The cross sections at the 9 photon energies are above the TDCC(l1l2L) results

at the lower photon energies for the 720 × 720 lattice. At a photon energy of 70.0 eV the

cross section is found to peak at a value of 4.45 kb.

Double photoionization cross sections for the 1s2p 3P2 level of He are calculated using

the TDCC(l1j1l2j2J) method. Relaxation on the lattice using Eq.(4.20), the initial condition

of Eq.(4.25), and the 20 J = 2 coupled channels found in Table 4.7 yields an excited state of

He with an energy E = -56.1 eV for the 360 × 360 lattice. Propagation on the lattice using

Eq.(4.14) with the 56 J = 2,1,3 coupled channels found in Table 4.7 yields the total double

photoionization cross sections using Eq.(4.32) found in Figure 4.3. The cross sections at the

9 photon energies are above the TDCC(l1l2L) results at the lower photon energies for the

360 × 360 lattice. At a photon energy of 70.0 eV the cross section is found to peak at a value

of 2.99 kb. Relaxation on the lattice with 40 J = 2 coupled channels yields an excited state
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of He with an energy E = -57.5 eV for the 720 × 720 lattice. Propagation on the lattice

with 116 J = 2,1,3 coupled channels yields the total double photoionization cross sections

found in Figure 4.4. The cross sections at the 9 photon energies are above the TDCC(l1l2L)

results at the lower photon energies for the 720 × 720 lattice. At a photon energy of 75.0

eV the cross section is found to peak at a value of 3.96 kb.

4.3.4 Averages over terms and levels for He

Since for the 1s2 ground configuration there is only one 1S term and 1S0 level, we find

the double photoionization cross sections to be the same for both the ∆ri = 0.20 and ∆ri =

0.10 lattices, as shown in Figure 4.1.

For the 1s2s excited configuration there are two 3S and 1S terms, as well as two 3S1

and 1S0 levels. Since the 3S term and the 3S1 level pair off exactly, we find the double

photoionization cross sections to be the same for both the ∆ri = 0.20 and ∆ri = 0.10

lattices, as shown in Figure 4.2.

For the 1s2p excited configuration there are two 3P and 1P terms, as well as four 3P0,

3P1,
3P2, and

1P1 levels. Additional TDCC(l1l2L) calculations for the 1P term of He and

TDCC(l1j1l2j2J) calculations for the 1P1 level of He were made on the 360 × 360 lattice.

Average term cross sections are given by:

σavgterm =
3

4
σ(3P ) +

1

4
σ(1P ) , (4.33)

while average level cross sections are given by:

σavglevel =
1

12
σ(3P0) +

3

12
σ(3P1) +

5

12
σ(3P2) +

3

12
σ(1P1) . (4.34)

The average double photoionization cross sections for the 1s2p excited configuration are

found to be in good agreement, as shown in Figure 4.5.
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4.3.5 1s2 ground configuration of Ne8+

Double photoionization cross sections for the ground state of Ne8+ are calculated using

the non-relativistic and semi-relativistic TDCC methods. A lattice of 720 × 720 points is

used with a uniform grid spacing of ∆r1 = ∆r2 = 0.01 and including up to l ≤ 5 or lj ≤ 511
2

coupled channel angular momenta.

Double photoionization cross sections for the 1s2 1S term of Ne8+ are calculated using

the non-relativistic TDCC method. Relaxation on the lattice with the 6 L = 0 coupled

channels found in Table 4.8 yields a ground state of Ne8+ with an energy of E = -2549 eV.

Propagation on the lattice with the 16 L = 0,1 coupled channels found in Table 4.8 yields

the total double photoionization cross sections found in Figure 4.6. At a photon energy of

3500 eV the cross section is found to peak at a value of 12.4 b.

Double photoionization cross sections for the 1s2 1S0 level of Ne8+ are calculated using

the semi-relativistic TDCC method. Relaxation on the lattice with the 11 J = 0 coupled

channels found in Table 4.9 yields a ground state of Ne8+ with an energy of E = -2559 eV,

in good agreement with the NIST recommended value of E = -2558 eV [41]. Propagation on

the lattice with the 39 J = 0,1 coupled channels found in Table 4.9 yields the total double

photoionization cross sections found in Figure 4.6. The cross sections at the 6 photon energies

are slightly above the non-relativistic TDCC results.
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4.4 Summary

A time-dependent close-coupling method was developed that includes the spin-orbit

interaction through the use of a l1j1l2j2J coupling scheme. Double photoionization cross

sections for the He atom were then calculated for the 1s2 1S0, 1s2s
3S1, and 1s2p 3P0,1,2 levels.

Lattices with 360 × 360 points, a uniform grid spacing of ∆ri = 0.20, and lj ≤ 37
2
angular

momenta, and with 720 × 720 points, a uniform grid spacing of ∆ri = 0.10, and lj ≤ 511
2

angular momenta were both used. Good agreement was found between the TDCC(l1j1l2j2J)

calculations for the 1s2 1S0 level and the TDCC(l1l2L) calculations for the 1s2 1S term, as

well as between the TDCC(l1j1l2j2J) calculations for the 1s2s
3S1 level and the TDCC(l1l2L)

calculations for the 1s2s 3S term. The TDCC(l1j1l2j2j) calculations for the 1s2p
3P0,1,2 levels

were all found to peak higher than the TDCC(l1l2L) calculations for the 1s2p
3P term, with

the 1s2p 3P0 level having the highest peak cross section on both the 360 × 360 point and

the 720 × 720 point lattices. However, good agreement was found between the TDCC(l1l2L)

results for the average of the 1s2p 3P and 1s2p 1P terms and the TDCC(l1j1l2j2J) results

for the average of the 1s2p 3P0,1,2 and 1s2p 1P1 levels on the 360 × 360 point lattice.

A semi-relativistic time-dependent close-coupling method was developed that includes

the spin-orbit, mass-velocity, and Darwin interactions through the use of a l1j1l2j2J coupling

scheme. Double photoionization cross sections for the Ne8+ atomic ion were calculated for

the 1s2 1S0 level. A lattice with 720 × 720 points, a uniform grid spacing of ∆ri = 0.01,

and lj ≤ 511
2

coupled channel angular momenta was used. The semi-relativistic TDCC

calculations for the 1s2 1S0 level were found to be slightly above the non-relativistic TDCC

calculations for the 1s2 1S term.

In the future, we plan to continue the application of TDCC method based on a l1j1l2j2J

coupling scheme. Although experimental observation of differences in double photoionization

cross sections for the 1s2p 3P0,1,2 excited levels of He are difficult due to the extremely small

fine structure splitting, the possibilities of comparing theory with experiment could be greater

for the 1s22s22p2 3P0,1,2 ground state levels of Carbon or heavier systems. We note that for
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more highly charged atomic ions, like Kr34+, that the semi-relativistic TDCC method fails

and one must use a fully-relativistic TDCC method[60]. Thus, we plan to apply the semi-

relativistic TDCC method to the outer subshells of alkaline atoms and their low charged ions

in the calculation of total and differential cross sections for single photon and two-photon

double ionization to compare with new experimental measurements.
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Table 4.1: TDCC l1l2L coupled channels for the 1s2 1S and the 1s2s 3S terms of He

channel (l1, l2) L channel (l1, l2) L

1 s, s 0 1 s, p 1
2 p, p 0 2 p, s 1
3 d, d 0 3 p, d 1
4 f, f 0 4 d, p 1

5 d, f 1
6 f, d 1

Table 4.2: TDCC l1l2L coupled channels for the 1s2p 3P term of He

channel (l1, l2) L channel (l1, l2) L channel (l1, l2) L

1 s, p 1 1 s, s 0 1 s, d 2
2 p, s 1 2 p, p 0 2 d, s 2
3 p, d 1 3 d, d 0 3 p, p 2
4 d, p 1 4 f, f 0 4 p, f 2
5 d, f 1 5 f, p 2
6 f, d 1 6 d, d 2

7 f, f 2
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Table 4.3: TDCC l1j1l2j2J coupled channels for the 1s2 1S0 level of He

channel (l1j1, l2j2) J channel (l1j1, l2j2) J

1 s1
2
, s1

2
0 1 s1

2
, p1

2
1

2 p1
2
, p1

2
0 2 p1

2
, s1

2
1

3 p3
2
, p3

2
0 3 s1

2
, p3

2
1

4 d3
2
, d3

2
0 4 p3

2
, s1

2
1

5 d5
2
, d5

2
0 5 p1

2
, d3

2
1

6 f 5
2
, f 5

2
0 6 d3

2
, p1

2
1

7 f 7
2
, f 7

2
0 7 p3

2
, d3

2
1

8 d3
2
, p3

2
1

9 p3
2
, d5

2
1

10 d5
2
, p3

2
1

11 d3
2
, f 5

2
1

12 f 5
2
, d3

2
1

13 d5
2
, f 5

2
1

14 f 5
2
, d5

2
1

15 d5
2
, f 7

2
1

16 f 7
2
, d5

2
1
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Table 4.4: TDCC l1j1l2j2J coupled channels for the 1s2s 3S1 level of He

channel (l1j1, l2j2) J channel (l1j1, l2j2) J channel (l1j1, l2j2) J

1 s1
2
, s1

2
1 1 s1

2
, p1

2
0 1 s1

2
, p3

2
2

2 s1
2
, d3

2
1 2 p1

2
, s1

2
0 2 p3

2
, s1

2
2

3 d3
2
, s1

2
1 3 p3

2
, d3

2
0 3 s1

2
, f 5

2
2

4 p1
2
, p1

2
1 4 d3

2
, p3

2
0 4 f 5

2
, s1

2
2

5 p1
2
, p3

2
1 5 d5

2
, f 5

2
0 5 p1

2
, d3

2
2

6 p3
2
, p1

2
1 6 f 5

2
, d5

2
0 6 d3

2
, p1

2
2

7 p3
2
, p3

2
1 7 p1

2
, d5

2
2

8 p3
2
, f 5

2
1 8 d5

2
, p1

2
2

9 f 5
2
, p3

2
1 9 p3

2
, d3

2
2

10 d3
2
, d3

2
1 10 d3

2
, p3

2
2

11 d3
2
, d5

2
1 11 p3

2
, d5

2
2

12 d5
2
, d3

2
1 12 d5

2
, p3

2
2

13 d5
2
, d5

2
1 13 d3

2
, f 5

2
2

14 f 5
2
, f 5

2
1 14 f 5

2
, d3

2
2

15 f 5
2
, f 7

2
1 15 d3

2
, f 7

2
2

16 f 7
2
, f 5

2
1 16 f 7

2
, d3

2
2

17 f 7
2
, f 7

2
1 17 d5

2
, f 5

2
2

18 f 5
2
, d5

2
2

19 d5
2
, f 7

2
2

20 f 7
2
, d5

2
2
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Table 4.5: TDCC l1j1l2j2J coupled channels for the 1s2p 3P0 level of He

channel (l1j1, l2j2) J channel (l1j1, l2j2) J

1 s1
2
, p1

2
0 1 s1

2
, s1

2
1

2 p1
2
, s1

2
0 2 s1

2
, d3

2
1

3 p3
2
, d3

2
0 3 d3

2
, s1

2
1

4 d3
2
, p3

2
0 4 p1

2
, p1

2
1

5 d5
2
, f 5

2
0 5 p1

2
, p3

2
1

6 f 5
2
, d5

2
0 6 p3

2
, p1

2
1

7 p3
2
, p3

2
1

8 p3
2
, f 5

2
1

9 f 5
2
, p3

2
1

10 d3
2
, d3

2
1

11 d3
2
, d5

2
1

12 d5
2
, d3

2
1

13 d5
2
, d5

2
1

14 f 5
2
, f 5

2
1

15 f 5
2
, f 7

2
1

16 f 7
2
, f 5

2
1

17 f 7
2
, f 7

2
1
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Table 4.6: TDCC l1j1l2j2J coupled channels for the 1s2p 3P1 level of He

channel (l1j1, l2j2) J channel (l1j1, l2j2) J channel (l1j1, l2j2) J

1 s1
2
, p1

2
1 1 s1

2
, s1

2
0 1 s1

2
, d3

2
2

2 p1
2
, s1

2
1 2 p1

2
, p1

2
0 2 d3

2
, s1

2
2

3 s1
2
, p3

2
1 3 p3

2
, p3

2
0 3 s1

2
, d5

2
2

4 p3
2
, s1

2
1 4 d3

2
, d3

2
0 4 d5

2
, s1

2
2

5 p1
2
, d3

2
1 5 d5

2
, d5

2
0 5 p1

2
, p3

2
2

6 d3
2
, p1

2
1 6 f 5

2
, f 5

2
0 6 p3

2
, p1

2
2

7 p3
2
, d3

2
1 7 f 7

2
, f 7

2
0 7 p1

2
, f 5

2
2

8 d3
2
, p3

2
1 8 f 5

2
, p1

2
2

9 p3
2
, d5

2
1 9 p3

2
, p3

2
2

10 d5
2
, p3

2
1 10 p3

2
, f 5

2
2

11 d3
2
, f 5

2
1 11 f 5

2
, p3

2
2

12 f 5
2
, d3

2
1 12 p3

2
, f 7

2
2

13 d5
2
, f 5

2
1 13 f 7

2
, p3

2
2

14 f 5
2
, d5

2
1 14 d3

2
, d3

2
2

15 d5
2
, f 7

2
1 15 d3

2
, d5

2
2

16 f 7
2
, d5

2
1 16 d5

2
, d3

2
2

17 d5
2
, d5

2
2

18 f 5
2
, f 5

2
2

19 f 5
2
, f 7

2
2

20 f 7
2
, f 5

2
2

21 f 7
2
, f 7

2
2
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Table 4.7: TDCC l1j1l2j2J coupled channels for the 1s2p 3P2 level of He

channel (l1j1, l2j2) J channel (l1j1, l2j2) J channel (l1j1, l2j2) J

1 s1
2
, p3

2
2 1 s1

2
, s1

2
1 1 s1

2
, d5

2
3

2 p3
2
, s1

2
2 2 s1

2
, d3

2
1 2 d5

2
, s1

2
3

3 s1
2
, f 5

2
2 3 d3

2
, s1

2
1 3 p1

2
, f 5

2
3

4 f 5
2
, s1

2
2 4 p1

2
, p1

2
1 4 f 5

2
, p1

2
3

5 p1
2
, d3

2
2 5 p1

2
, p3

2
1 5 p1

2
, f 7

2
3

6 d3
2
, p1

2
2 6 p3

2
, p1

2
1 6 f 7

2
, p1

2
3

7 p1
2
, d5

2
2 7 p3

2
, p3

2
1 7 p3

2
, p3

2
3

8 d5
2
, p1

2
2 8 p3

2
, f 5

2
1 8 p3

2
, f 5

2
3

9 p3
2
, d3

2
2 9 f 5

2
, p3

2
1 9 f 5

2
, p3

2
3

10 d3
2
, p3

2
2 10 d3

2
, d3

2
1 10 p3

2
, f 7

2
3

11 p3
2
, d5

2
2 11 d3

2
, d5

2
1 11 f 7

2
, p3

2
3

12 d5
2
, p3

2
2 12 d5

2
, d3

2
1 12 d3

2
, d3

2
3

13 d3
2
, f 5

2
2 13 d5

2
, d5

2
1 13 d3

2
, d5

2
3

14 f 5
2
, d3

2
2 14 f 5

2
, f 5

2
1 14 d5

2
, d3

2
3

15 d3
2
, f 7

2
2 15 f 5

2
, f 7

2
1 15 d5

2
, d5

2
3

16 f 7
2
, d3

2
2 16 f 7

2
, f 5

2
1 16 f 5

2
, f 5

2
3

17 d5
2
, f 5

2
2 17 f 7

2
, f 7

2
1 17 f 5

2
, f 7

2
3

18 f 5
2
, d5

2
2 18 f 7

2
, f 5

2
3

19 d5
2
, f 7

2
2 19 f 7

2
, f 7

2
3

20 f 7
2
, d5

2
2

Table 4.8: TDCC l1l2L coupled channels for the 1s2 1S term

channel (l1, l2) L channel (l1, l2) L

1 s, s 0 1 s, p 1
2 p, p 0 2 p, s 1
3 d, d 0 3 p, d 1
4 f, f 0 4 d, p 1
5 g, g 0 5 d, f 1
6 h, h 0 6 f, d 1

7 f, g 1
8 g, f 1
9 g, h 1
10 h, g 1
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Table 4.9: TDCC l1j1l2j2J coupled channels for the 1s2 1S0 level

channel (l1j1, l2j2) J channel (l1j1, l2j2) J

1 s1
2
, s1

2
0 1 s1

2
, p1

2
1

2 p1
2
, p1

2
0 2 p1

2
, s1

2
1

3 p3
2
, p3

2
0 3 s1

2
, p3

2
1

4 d3
2
, d3

2
0 4 p3

2
, s1

2
1

5 d5
2
, d5

2
0 5 p1

2
, d3

2
1

6 f 5
2
, f 5

2
0 6 d3

2
, p1

2
1

7 f 7
2
, f 7

2
0 7 p3

2
, d3

2
1

8 g 7
2
, g 7

2
0 8 d3

2
, p3

2
1

9 g 9
2
, g 9

2
0 9 p3

2
, d5

2
1

10 h9
2
, h9

2
0 10 d5

2
, p3

2
1

11 h11
2
, h11

2
0 11 d3

2
, f5

2
1

12 f 5
2
, d3

2
1

13 d5
2
, f 5

2
1

14 f 5
2
, d5

2
1

15 d5
2
, f 7

2
1

16 f 7
2
, d5

2
1

17 f 5
2
, g 7

2
1

18 g 7
2
, f 5

2
1

19 f 7
2
, g 7

2
1

20 g 7
2
, f 7

2
1

21 f 7
2
, g 9

2
1

22 g 9
2
, f 7

2
1

23 g 7
2
, h9

2
1

24 h9
2
, g 7

2
1

25 g 9
2
, h9

2
1

26 h9
2
, g 9

2
1

27 g 9
2
, h11

2
1

28 h11
2
, g 9

2
1
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Figure 4.1: (color online) Double photoionization of the 1s2 ground configuration.
Dashed line (red): TDCC(l1l2L) (∆ri = 0.20) for the 1S term, dashed squares (blue):
TDCC(l1j1l2j2J) (∆ri = 0.20) for the 1S0 level, solid line (red): TDCC(l1l2L) (∆ri = 0.10)
for the 1S term, solid squares (blue): TDCC(l1j1l2j2J) (∆ri = 0.10) for the 1S0 level (1.0
kb = 1.0 × 10−21 cm2).
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Figure 4.2: (color online) Double photoionization of the 1s2s excited configuration.
Dashed line (red): TDCC(l1l2L) (∆ri = 0.20) for the 3S term, dashed squares (blue):
TDCC(l1j1l2j2J) (∆ri = 0.20) for the 3S0 level, solid line (red): TDCC(l1l2L) (∆ri = 0.10)
for the 3S term, solid squares (blue): TDCC(l1j1l2j2J) (∆ri = 0.10) for the 3S0 level (1.0
kb = 1.0 × 10−21 cm2).
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Figure 4.3: (color online) Double photoionization of the 1s2p excited configuration. Dashed
line (red): TDCC(l1l2L) (∆ri = 0.20) for the 3P term, upper dashed squares (violet):
TDCC(l1j1l2j2J) (∆ri = 0.20) for 3P0 level, middle dashed squares (green): TDCC(l1j1l2j2J)
(∆ri = 0.20) for 3P1 level, lower dashed squares (blue): TDCC(l1j1l2j2J) (∆ri = 0.20) for
3P2 level (1.0 kb = 1.0 × 10−21 cm2).
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Figure 4.4: (color online) Double photoionization of the 1s2p excited configuration. Solid
line (red): TDCC(l1l2L) (∆ri = 0.10) for the 3P term, upper solid squares (violet):
TDCC(l1j1l2j2J) (∆ri = 0.10) for 3P0 level, middle solid squares (green): TDCC(l1j1l2j2J)
(∆ri = 0.10) for 3P1 level, lower solid squares (blue): TDCC(l1j1l2j2J) (∆ri = 0.10) for 3P2

level (1.0 kb = 1.0 × 10−21 cm2).
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Figure 4.5: (color online) Average double photoionization of the 1s2p excited configuration.
Dashed line (red): TDCC(l1l2L) (∆ri = 0.20) for 3

4
3P + 1

4
1P terms, dashed squares (blue):

TDCC(l1j1l2j2J) (∆ri = 0.20) for 1
12

3P0 +
3
12

3P1 + 5
12

3P2 +
3
12

1P1 levels (1.0 kb = 1.0 ×
10−21 cm2).
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Figure 4.6: (color online) Double photoionization of the 1s2 ground configuration of Ne8+.
Solid line (red): non-relativistic TDCC for the 1S term, squares (blue): semi-relativistic
TDCC for the 1S0 level (1.0 b = 1.0 × 10−24 cm2).
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Chapter 5

Single and Double Photoionization of Li2

5.1 Background

Studies of the photoionization of diatomic molecules are important for the understanding

of many astrophysical and laboratory science phenomena[26]. Single photoionization with

excitation and double photoionization processes involve the quantal dynamics of two active

electrons in the non-spherical Coulomb field of the residual molecular ion. Non-perturbative

solutions to the Schrodinger equation have been applied to study the two-electron motion

found in the photoionization of H2. Total cross section calculations[61, 62] for the dou-

ble photoionization of H2 were found to be in good agreement with experiment[63, 64].

Subsequently energy and angle differential cross section calculations[65, 16] for the double

photoionization of H2 were found to be in good agreement with experiment[66]. Joint theo-

retical and experimental efforts have also examined the kinetic energy release effect[67] and

new fragmentation patterns[68] in the double photoionization of H2.

The Li2 molecule is an ideal target in the exploration of two-electron motion in a non-

spherical Coulomb field since it’s dominant 1sσ22pσ22sσ2 ground configuration consists of

two tightly bound closed inner subshells and one loosely bound closed outer subshell. We

note that the double ionization potential of Li2 is approximately a factor of 2.5 smaller

that that of H2. Previously only the single photoionization cross section for Li2 has been

calculated, using perturbation theory for the the scattering matrix element and both the

distorted-wave approximation[69] and the random phase approximation[70] for the ejected

electron continuum.
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5.2 Theory

5.2.1 3D Time-Dependent Close-Coupling Method

In previous work the time-dependent close-coupling method was developed for the pho-

toionization of H+
2 [71]. We present a brief review of the extension to any one active electron

diatomic molecule.

For photoionization of an N electron diatomic molecule with one active electron, the

total electronic wavefunction may be expanded in rotational functions:

Ψ(~r, t) =
∑

m

Pm(r, θ, t)

r
√
sin θ

eimφ√
2π

. (5.1)

Upon substitution into the time-dependent Schrodinger equation, we obtain the time-dependent

close-coupling equations given by:

i
∂Pm(r, θ, t)

∂t
= Tm(r, θ)Pm(r, θ, t)

+
∑

m′

Wm,m′(r, θ, t)Pm′(r, θ, t) . (5.2)

The kinetic, nuclear, and molecular core operator is given by:

Tm(r, θ) = K(r) + K̄(r, θ) +
m2

2r2(sin θ)2

−
∑

±

Zt
√

r2 + 1
4
R2
t ± rRt cos θ

+ V N−1
core (r, θ) , (5.3)

where the internuclear axis is located along the z axis, K(r) and K̄(r, θ) are kinetic en-

ergy operators, Zt is the target nuclear charge, Rt is the target internuclear distance, and

V N−1
core (r, θ) is a Hartree with local exchange potential for the remaining (N-1) electrons, thus

for H+
2 we have V N−1

core (r, θ) = 0. The radiation field operator for linear polarization, where
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the field is perpendicular to the internuclear axis, is given by:

Wm,m′(r, θ, t) = E(t) cosωt

×r cos θ < m|m′ > , (5.4)

while the radiation field operator for circular polarization, where the field is parallel to the

internuclear axis, is given by:

Wm,m′(r, θ, t) =

√

1

2
E(t) cosωt

×r sin θ < m|eiφ|m′ > , (5.5)

where E(t) is the electric field amplitude, ω is the radiation field amplitude, and the length

gauge is chosen.

A complete set of bound, Pnl|m|(r, θ), and continuum, Pkl|m|(r, θ), radial and angular

orbitals are determined by the diagonalization of the Hamiltonian of Eq.(5.3). The initial

condition for the solution of Eq.(5.2) is given by:

Pm(r, θ, t = 0) = Pn0l0|m0|(r, θ)δm,m0
. (5.6)

The total cross section for single photoionization leaving the molecular ion in the initial

state is given by:

σsingle(n0l0m0) =
ω

I

Psingle(n0l0m0)

T , (5.7)

where I is the radiation field intensity and T is the integral of the electromagnetic field pulse

shape with respect to propagation time. The single photoionization probability is given by:

Psingle(n0l0m0) =

∫ ∞

0

dr

∫ π

0

dθ|Pm(r, θ, t)Pm(r, θ, t)|2

−
∑

n,l

|
∫ ∞

0

dr

∫ π

0

dθPm(r, θ, t)Pnl|m|(r, θ)|2 , (5.8)
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where m = m0 for linear polarization and m = m0±1 for circular polarization. We note that

the ionization probabilities and cross sections may only be calculated after the wavefunction,

Pm(r, θ, t), has evolved to sufficiently long times.

5.2.2 6D Time-Dependent Close-Coupling Method

In previous work the time-dependent close-coupling method was developed for the pho-

toionization of H2[61]. We present a brief review of the extension to any two active electron

diatomic molecule.

For photoionization of an N electron diatomic molecule with two active electrons, the

total electronic wavefunction may be expanded in products of rotational functions for each

M = m1 +m2 symmetry:

Ψ(~r1, ~r2, t) =
∑

m1,m2

PM
m1m2

(r1, θ1, r2, θ2, t)

r1r2
√
sin θ1

√
sin θ2

Φm1
(φ1)Φm2

(φ2) . (5.9)

Upon substitution into the time-dependent Schrodinger equation in the weak field pertur-

bative limit, we obtain the time-dependent close-coupling equations given by:

i
∂PM

m1m2
(r1, θ1, r2, θ2, t)

∂t
=

∑

i=1,2

(Tmi
(ri, θi))P

M
m1m2

(r1, θ1, r2, θ2, t)

+
∑

m′

1
,m′

2

V M
m1m2,m′

1
m′

2

(r1, θ1, r2, θ2)

×PM
m′

1
m′

2

(r1, θ1, r2, θ2, t)

+
∑

m′′

1
,m′′

2

WMM0

m1m2,m′′

1
m′′

2

(r1, θ1, r2, θ2, t)

×PM0

m′′

1
m′′

2

(r1, θ1, r2, θ2)e
−iE0t . (5.10)
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The kinetic, nuclear, and molecular core operator is given by:

Tm(r, θ) = K(r) + K̄(r, θ) +
m2

2r2(sin θ)2

−
∑

±

Zt
√

r2 + 1
4
R2
t ± rRt cos θ

+ V N−2
core (r, θ) , (5.11)

where V N−2
core (r, θ) is a Hartree with local exchange potential for the remaining (N-2) electrons,

thus for H2 we have V N−2
core (r, θ) = 0. The Coulomb repulsion operator is given by:

V M
m1m2,m′

1
m′

2

(r1, θ1, r2, θ2) =
∑

λ

rλ<
rλ+1
>

∑

q

(λ− |q|)!
(λ+ |q|)!P

|q|
λ (cos θ1)P

|q|
λ (cos θ2)

× < m1m2|eiq(φ2−φ1)|m′
1m

′
2 > , (5.12)

where P
|q|
λ (cos θ) is an associated Legendre function. The radiation field operator for linear

polarization is given by:

WMM0

m1m2,m′′

1
m′′

2

(r1, θ1, r2, θ2) = E(t) cosωt

×(r1 cos θ1 < m1m2|m′′
1m

′′
2 >

+r2 cos θ2 < m1m2|m′′
1m

′′
2 >) , (5.13)

while the radiation field operator for circular polarization is given by:

WMM0

m1m2,m′′

1
m′′

2

(r1, θ1, r2, θ2) =

√

1

2
E(t) cosωt

×(r1 sin θ1 < m1m2|eiφ1 |m′′
1m

′′
2 >

+r2 sin θ2 < m1m2|eiφ2|m′′
1m

′′
2 >) . (5.14)

A complete set of bound, Pnl|m|(r, θ), and continuum, Pkl|m|(r, θ), radial and angular

orbitals are determined by the diagonalization of the Hamiltonian of Eq.(5.11). The function

PM0

m1m2
(r1, θ1, r2, θ2) and energy E0 in Eq.(5.10) are obtained by relaxation of Eq.(5.10) in
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imaginary time without the radiation field operator. The initial condition for the solution

of Eq.(5.10) is given by:

PM
m1m2

(r1, θ1, r2, θ2, t = 0) = 0 (5.15)

The total cross section for single photoionization leaving the molecular ion in a specific

bound state is given by:

σsingle(nlm) =
ω

I

∂Psingle(nlm)

∂t
. (5.16)

The total cross section for single photoionization is given by:

σsingle =
∑

nlm

σsingle(nlm) . (5.17)

The single ionization probability is given by:

Psingle(nlm) =
∑

m′

∫

d1

∣

∣

∣

∣

∫

d2PM
m′m(1, 2, t)Pnl|m|(2)

∣

∣

∣

∣

2

−
∑

n′,l′,m′

∣

∣

∣

∣

∫

d1

∫

d2PM
m′m(1, 2, t)Pn′l′|m′|(1)Pnl|m|(2)

∣

∣

∣

∣

2

+
∑

m′

∫

d2

∣

∣

∣

∣

∫

d1PM
m′m(1, 2, t)Pnl|m|(1)

∣

∣

∣

∣

2

−
∑

n′,l′,m′

∣

∣

∣

∣

∫

d1

∫

d2PM
m′m(1, 2, t)Pnl|m|(1)Pn′l′|m′|(2)

∣

∣

∣

∣

2

. (5.18)

The total cross section for double photoionization is given by:

σdouble =
ω

I

∂Pdouble
∂t

. (5.19)
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The double ionization probability is given by:

Pdouble =
∑

m′,m

∫

d1

∫

d2
∣

∣PM
m′m(1, 2, t)

∣

∣

2

−
∑

nlm

Psingle(nlm)

−
∑

n,l,m

∑

n′,l′,m′

∣

∣

∣

∣

∫

d1

∫

d2PM
mm′(1, 2, t)Pnl|m|(1)Pn′l′|m′|(2)

∣

∣

∣

∣

2

. (5.20)

In both Eqs.(5.18) and (5.20):

PM
m′m(1, 2, t) = PM

m′m(r1, θ1, r2, θ2, t)

and

∫

dN =

∫ ∞

0

drN

∫ π

0

dθN ,

where M = M0 for linear polarization and M = M0 ± 1 for circular polarization. We

note that the ionization probabilities and cross sections may only be calculated after the

wavefunction, PM
m′m(1, 2, t), has evolved to sufficiently long times.
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5.3 Calculations and Results

5.3.1 3D Time-Dependent Close-Coupling Method

The 3D time-dependent close-coupling (TDCC-3D) method is used to calculate single

photoionization cross sections for Li2 at incident energies above the single ionization energy

threshold.

A single configuration self-consistent field method based on a linear combination of

Slater-type orbitals[72] is first used to calculate the 1sσ22pσ22sσ ground configuration of

Li+2 at the equilibrium internuclear distance of Rt = 5.0 for Li2. The molecular bound

orbitals are then transformed[73] onto various two-dimensional numerical lattices with a

uniform radial mesh spacing ∆r and a uniform angular mesh spacing ∆θ. For V 1
core(r, θ) in

Eq.(5.3), we choose the Hartree with local exchange potential given by:

VHX(r, θ) =
∑

k=0

∫ ∞

0

dr′
∫ π

0

dθ′
rk<
rk+1
>

P k
0 (cos θ)P

k
0 (cos θ

′)

×
[

2P 2
1sσ(r

′, θ′) + 2P 2
2pσ(r

′, θ′) + P 2
2sσ(r

′, θ′)
]

−α
2

[

24ρ(r, θ)

π

]
1

3

, (5.21)

where

ρ(r, θ) =
2P 2

1sσ(r, θ) + 2P 2
2pσ(r, θ) + P 2

2sσ(r, θ)

2πr2 sin θ
. (5.22)

Diagonalization of the Hamiltonian of Eq.(5.3) was used to obtain all of the Li2 bound

states for m = 0, 1 on various two-dimensional lattices. The parameter α of Eq.(5.21) was

adjusted for each lattice, as given in Table 5.1, so that the ionization potential of Li2 was in

agreement with the NIST[74] value of 5.1 eV.

Time-dependent close-coupling calculations were then carried out for Li2 using various

two-dimensional lattices. An implicit method[71] was used to solve the close-coupled equa-

tions for propagation in real time. Propagation of Eq.(5.2) was made for ten radiation field

periods, for photon energies ranging from ω = 6.0 eV to ω = 40.0 eV, and for a radiation
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field intensity of I = 1012 W/cm2. Changing the intensity to I = 1013 W/cm2 yielded very

little change in the final photoionization cross sections. The TDCC-3D equations given by

Eq.(5.3) for the ionization of the 2sσ orbital reduces to one m = 0 coupled channel for linear

polarization and two m = 0, 1 coupled channels for circular polarization.

To prevent collapse of the outer subshell wavefunctions, Pm(r, θ, t), into closed subshells

during propagation of the close-coupled equations, we use a standard core orthogonalization

method. Thus the P0(r, θ, t) coupled channel is orthogonalized at each time step according

to:

P0(r, θ, t) = P0(r, θ, t)

−P1sσ(r, θ)

∫ ∞

0

dr′
∫ π

0

dθ′P1sσ(r
′, θ′)P0(r

′, θ′, t)

−P2pσ(r, θ)

∫ ∞

0

dr′
∫ π

0

dθ′P2pσ(r
′, θ′)P0(r

′, θ′, t) . (5.23)

Single ionization probabilities, Psingle(n0l0m0), from Eq.(5.8) are obtained at the end of the

ten radiation field periods.

Single photoionization cross sections calculated using the TDCC-3D method are pre-

sented in Table 5.2. To compare with previous distorted-wave[69] and random-phase approxi-

mation [70] calculations, we calculate a ”total” photoionization cross section found by adding

the linear polarization cross section and twice the circular polarization cross section together,

where the factor of two comes from the assumption that right circular polarization results

(m = 0 → m = 1) are equal to left circular polarization results (m = 0 → m = −1). We

note that comparisons with experiment generally use an ”average” photoionization cross sec-

tion found by dividing the ”total” cross section by three. As found in Table 5.2 the previous

distorted-wave[69] and random-phase approximation[70] peak cross sections are in reasonable

agreement with TDCC-3D cross sections using a 2D lattice with either (∆r = 0.10,∆θ = π
32
)

and (∆r = 0.05,∆θ = π
32
), but not with (∆r = 0.20,∆θ = π

32
). For photon energies near

threshold a radial box size of R = 96.0 was needed to obtain a cross section that varies
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smoothly with photon energy, while at higher photon energies (ω ≥ 20.0 eV) a radial box

size of R = 48.0 is sufficient. We also tried a 2D lattice with (∆r = 0.10,∆θ = π
64
) and

found only a small change in the cross sections at the peak and no change in the cross sec-

tions at the higher photon energies when compared to the results from the 2D lattice with

(∆r = 0.10,∆θ = π
32
).

Single photoionization cross sections calculated using the TDCC-3D method using a 2D

lattice with (∆r = 0.10,∆θ = π
32
) are presented in Figure 5.1. Both the linear and circular

polarization cross sections peak around 13 eV with the linear results about 3.8 times higher

than the circular results. We note that at the higher photon energies (ω ≥ 30 eV) that the

linear and circular cross sections have similar values.

5.3.2 6D Time-Dependent Close-Coupling Method

The 6D time-dependent close-coupling (TDCC-6D) method is used to calculate sin-

gle and double photoionization cross sections for Li2 at incident energies above the double

ionization energy threshold. Based on our preceeding TDCC-3D calculations using differ-

ent 2D lattices, we elected to carry out TDCC-6D calculations using a 4D lattice with

(∆r1 = ∆r2 = 0.10,∆θ1 = ∆θ2 = π
32
) and an overall box size of R1 = R2 = 48.0. It is

computationally much less expensive to make lattice choices using the TDCC-3D method

than the TDCC-6D method.

A single configuration self-consistent field method based on a linear combination of

Slater-type orbitals[72] is first used to calculate the 1sσ22pσ2 ground configuration of Li++
2

at the equilibrium internuclear distance of Rt = 5.0 for Li2. The molecular bound orbitals

are then transformed[73] onto a two-dimensional numerical lattice with a uniform radial

mesh spacing of ∆r = 0.10 and a uniform angular mesh spacing of ∆θ = π
32
. For V 2

core(r, θ)
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in Eq.(5.11), we choose the Hartree with local exchange potential given by:

VHX(r, θ) =
∑

k=0

∫ ∞

0

dr′
∫ π

0

dθ′
rk<
rk+1
>

P k
0 (cos θ)P

k
0 (cos θ

′)

×
[

2P 2
1sσ(r

′, θ′) + 2P 2
2pσ(r

′, θ′)
]

−α
2

[

24ρ(r, θ)

π

]
1

3

, (5.24)

where

ρ(r, θ) =
2P 2

1sσ(r, θ) + 2P 2
2pσ(r, θ)

2πr2 sin θ
. (5.25)

We then made calculations using GAUSSIAN 2009 [75] and various basis set extrap-

olation methods[76] to find the ionization potential for Li+2 at the equilibrium internuclear

distance of Rt = 5.0 for Li2. For Li+2 we obtained an ionization potential of 12.0 eV. Diag-

onalization of the Hamiltonian of Eq.(5.11) was used to obtain all of the Li+2 bound states

for m = 0, 1, 2 on a 2D lattice with (∆r = 0.10,∆θ = π
32
). The choice for the parameter α

in Eq.(5.24) of 1.21 was found to given an ionization potential of Li+2 in agreement with the

GAUSSIAN 2009 [75] value of 12.0 eV.

Time-dependent close-coupling calculations were then carried out for Li2 using a 4D

lattice with (∆r1 = ∆r2 = 0.10,∆θ1 = ∆θ2 =
π
32
). An implicit method[61] was used to solve

the close-coupled equations for both relaxation in imaginary time and propagation in real

time. Using a uniform mesh spacing of ∆τ = 0.01, relaxation of Eq.(5.10) for 2000 time

steps yielded two electron outer subshell wavefunctions:

PM0

m1m2
(r1, θ1, r2, θ2) = PM0

m1m2
(r1, θ1, r2, θ2, τ → ∞) , (5.26)

where M0 = 0 and (m1, m2) covers 5 coupled channels:

(0, 0), (1,−1), (−1, 1), (2,−2), (−2, 2) . (5.27)
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The two electron outer subshell energy was found to be E0 = −17.1 eV.

To prevent collapse of the outer subshell wavefunctions, PM
m1m2

(1, 2, τ), into closed inner

subshells during relaxation of the close-coupled equations, we use a standard core orthogo-

nalization method. Thus the P 0
00(1, 2, τ) coupled channel is orthogonalized at each time step

according to :

P 0
00(1, 2, τ) = P 0

00(1, 2, τ)

−P1sσ(1)

∫

d1′P1sσ(1
′)P 0

00(1
′, 2, τ)

−P2pσ(1)

∫

d1′P2pσ(1
′)P 0

00(1
′, 2, τ)

−P1sσ(2)

∫

d2′P1sσ(2
′)P 0

00(1, 2
′, τ)

−P2pσ(2)

∫

d2′P2pσ(2
′)P 0

00(1, 2
′, τ)

+P1sσ(1)P1sσ(2)

∫

d1′
∫

d2′P1sσ(1
′)P1sσ(2

′)P 0
00(1, 2, τ)

+P1sσ(1)P2pσ(2)

∫

d1′
∫

d2′P1sσ(1
′)P2pσ(2

′)P 0
00(1, 2, τ)

+P2pσ(1)P1sσ(2)

∫

d1′
∫

d2′P2pσ(1
′)P1sσ(2

′)P 0
00(1, 2, τ)

+P2pσ(1)P2pσ(2)

∫

d1′
∫

d2′P2pσ(1
′)P2pσ(2

′)P 0
00(1, 2, τ) . (5.28)

The wavefunctions for the other 4 coupled channels do not need to be orthogonalized.

Using a uniform mesh spacing of ∆t = 0.005, propagation of Eq.(5.10) was made for

ten radiation field periods, for photon energies ranging from ω = 20.0 eV to 40.0 eV, and for

a radiation field intensity of I = 1015 W/cm2. Changing the intensity to I = 1014 W/cm2

yielded very little change in the final photoionization cross sections. For linear polarization

M = 0 and (m1, m2) covers the 5 coupled channels of Eq.(5.27), while for circular polarization

M = 1 and (m1, m2) covers 6 coupled channels:

(0, 1), (1, 0), (−1, 2), (2,−1), (−2, 3), (3,−2) . (5.29)
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Including the additional coupled channels (3,−3) and (−3, 3) for linear polarization, or

(−3, 4) and (4,−3) for circular polarization, made very little change in the cross sections.

To prevent collapse of the outer subshell wavefunctions, PM
m1m2

(1, 2, t), into closed sub-

shells during propagation of the close-coupled equations, we use the core orthogonalization

method presented above for relaxation of the close-coupled equations. For linear polarization

Eq.(5.28) is used with τ → t. For circular polarization, the P 1
01(1, 2, t) coupled channel is

orthogonalized at each time step according to:

P 1
01(1, 2, t) = P 1

01(1, 2, t)

−P1sσ(1)

∫

d1′P1sσ(1
′)P 1

01(1
′, 2, t)

−P2pσ(1)

∫

d1′P2pσ(1
′)P 1

01(1
′, 2, t) , (5.30)

and the P 1
10(1, 2, t) coupled channel is orthogonalized at each time step according to:

P 1
10(1, 2, t) = P 1

10(1, 2, t)

−P1sσ(2)

∫

d2′P1sσ(2
′)P 1

10(1, 2
′, t)

−P2pσ(2)

∫

d2′P2pσ(2
′)P 1

10(1, 2
′, t) . (5.31)

The wavefunctions for the other 4 coupled channels do not need to be orthogonalized. Sin-

gle ionization probabilities, Psingle(nlm), and double ionization probabilities, Pdouble, from

Eqs.(5.18) and (5.20) are obtained at the end of the ten radiation field periods.

Single and double photoionization cross sections calculated using the TDCC-6D method

on a 4D lattice with (∆r1 = ∆r2 = 0.10,∆θ1 = ∆θ2 = π
32
) are presented in Table 5.3. For

linear polarization at 20.0 eV, the results for total single ionization are approximately 55%

above the results for single ionization leaving Li+2 in the 2sσ bound state. For circular

polarization at 20.0 eV, the results for total single ionization are approximately 67% above

the results for single ionization leaving Li+2 in the 2sσ bound state. We note that the ratio
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of double ionization to total single ionization is 0.023 for linear polarization and 0.018 for

circular polarization at a photon energy of 25.0 eV.

Single photoionization cross sections leaving Li+2 in the 2sσ bound state calculated

using the TDCC-6D method on a 4D lattice with (∆r1 = ∆r2 = 0.10,∆θ1 = ∆θ2 =
π
32
) are

presented in Figure 5.1. For photon energies greater than 20.0 eV, the TDCC-3D results

are somewhat higher than the TDCC-6D results for linear polarization, while the TDCC-

3D and TDCC-6D results are in close agreement for circular polarization. The TDCC-6D

results should be more accurate than the TDCC-3D results due to the use of the correlated

two-electron outer subshell wavefunction found in Eq.(5.26).

Double photoionization cross sections calculated using the TDCC-6D method on a 4D

lattice with (∆r1 = ∆r2 = 0.10,∆θ1 = ∆θ2 =
π
32
) are presented in Figure 5.2. The TDCC-

6D results for linear polarization are found to be larger than for circular polarization for all

incident photon energies. The peak cross sections for Li2 at around a photon energy of 25.0

eV are found to be 0.0160 Mb for linear polarization and 0.0100 Mb for circular polarization.

On the other hand we note that for H2, TDCC-6D calculations[61] found the peak double

ionization cross sections at around a photon energy of 70.0 eV to be 0.0003 Mb for linear

polarization and 0.0033 Mb for circular polarization.

84



5.4 Summary

Time-dependent close-coupling methods have been used to calculate single and double

photoionization cross sections for Li2. With four tightly bound inner subshell electrons and

two loosely bound outer subshell electrons, diatomic Lithium is an ideal target for the study

of two-electron continuum correlation effects in a non-spherical Coulomb field. The TDCC-

3D method is used to calculate single photoionization cross sections and to find the optimal

lattice spacings for use by the TDCC-6D method. The TDCC-6D calculations for single and

double photoionization of Li2 were made for photon energies above the double ionization

threshold of 17.1 eV. In contrast to previous TDCC-6D calculations for H2[61], the linear

polarization cross sections are larger than the circular polarization cross sections and overall

found to be approximately five times larger. We hope that our theoretical work will stimulate

future experimental studies of the double photoionization of Li2.
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Table 5.1: Local Exchange Parameter for the Li+2 Core Potential

∆r ∆θ α

0.20 π
32

1.10
0.10 π

32
0.86

0.05 π
32

0.72

Table 5.2: Single Photoionization Peak Cross Sections (1.0 Mb = 1.0 × 10−18 cm2)

Method Photon Energy (eV) Cross Section (Mb)

DW[69] 11 eV 2.3 Mb
RPA[70] 11 eV 2.6 Mb

TDCC-3D (0.20, π
32
) 16 eV 1.8 Mb

TDCC-3D (0.10, π
32
) 13 eV 2.6 Mb

TDCC-3D (0.05, π
32
) 13 eV 2.7 Mb

Table 5.3: Photoionization Cross Sections (1.0 Mb = 1.0 × 10−18 cm2)

E(eV) σsingle(2sσ) σsingle σdouble σsingle(2sσ) σsingle σdouble
linear linear linear circular circular circular

20.0 0.82 1.27 0.0147 0.39 0.65 0.0064
22.5 0.61 0.90 0.0168 0.38 0.60 0.0087
25.0 0.49 0.71 0.0160 0.35 0.55 0.0100
27.5 0.41 0.58 0.0140 0.34 0.51 0.0099
30.0 0.34 0.48 0.0123 0.32 0.47 0.0094
35.0 0.24 0.35 0.0101 0.27 0.39 0.0078
40.0 0.19 0.28 0.0088 0.22 0.31 0.0063
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Figure 5.1: (color online) Single photoionization of Li2. Solid line with circles (blue): linear
TDCC-3D, dashed line with circles (blue): circular TDCC-3D, solid line with squares (red):
linear TDCC-6D, dashed line with squares (red): circular TDCC-6D (1.0 Mb = 1.0 × 10−18

cm2).
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Figure 5.2: (color online) Double photoionization of Li2. Solid line with squares (red): linear
TDCC-6D, dashed line with squares (red): circular TDCC-6D (1.0 Mb = 1.0 × 10−18 cm2).

88



Chapter 6

Non-Equilibrium Modeling of the Fe XVII 3C/3D ratio

for an Intense X-ray Free Electron Laser

6.1 Background

Spectral emission from Fe XVII can be used as a valuable plasma diagnostic for both

laboratory and astrophysical plasmas [17, 18]. The ratio of the 3C line intensity (transition

2p5 3d (1P1) → 2p6 (1S0)) to the 3D line intensity (transition 2p5 3d (3D1) → 2p6 (1S0)) is

sensitive to the plasma electron temperature and has been the focus of much attention in

the literature. During the history of disagreement between theory and observation for this

line ratio, a number of underlying effects were found to be important, including blending

with an inner shell satellite line of Fe XVI [77] and radiative cascades [78, 79]. In addition,

Gu [80] explored the possibility that insufficient configuration-interaction was included in the

atomic structure calculations leading to unconverged oscillator strengths. He then used an

approximate method to account for this lack of convergence to modify the atomic collision

data used in Fe XVII spectral modeling. A full discussion of the comparison of theory and

experiment for this line ratio is outside of the scope of this chapter. Brown [81] presents a

review of measurement results and Brown and Beiersdorfer [82] show a useful summary of

the discrepancies and the effects that have been investigated. The focus of this chapter is on

the analysis of a recent experiment using an X-ray Free Electron Laser (XFEL) that sought

to identify the source of the aforementioned discrepancies [1].

Bernitt et al. [1] used an intense XFEL at the Linac Coherent Light Source (LCLS),

employing the laser to excite Fe16+ ions in an Electron Beam Ion Trap (EBIT). The laser

has a narrow bandwidth and was tuned to just populate the upper level of either the 3C
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or the 3D transition. In this two-level setup, the observed 3C/3D line intensity ratio was

expected to be the same as the 3C/3D oscillator strength ratio, and any differences could be

interpreted that the theoretical work was not accurately determining the atomic structure

of Fe16+. The experiment resulted in a much lower 3C/3D line intensity ratio (2.61 ± 0.13)

than the previously calculated oscillator strength ratios, ∼ 3.5 or higher. It was also pointed

out that the 3C/3D oscillator strength ratio is only slowly converging with the increased size

of the configuration-interaction expansion included in the theoretical calculations. The most

complete theoretical calculations all produced oscillator strength ratios (3.5 [80], 3.54 [79]

3.42 [83], and 3.49 [1]) significantly larger than the observed line intensity ratio from the

LCLS experiment.

To investigate the unexpectedly low 3C/3D line intensity ratio observed from the XFEL

experiment, two approaches were adopted. A density-matrix (DM) approach first employed

by Oreshkina et al. [2, 3] and reproduced in this chapter, showed that the 3C/3D line intensity

ratio can be reduced below the expected oscillator strength ratio for sufficiently intense laser

pulses and that the reduction is sensitive to certain laser pulse parameters (intensity, duration

and bandwidth). Alternatively, Loch et al. [28] used a collisional-radiative (CR) method and

showed that the spectral emission from the plasma after the laser pulse has left the plasma

volume makes a strong contribution to the lowering of the 3C/3D line intensity ratio.

In this chapter both the CR and the DM approaches are summarized. The DM method

is preferred for intense laser fields, due to the possible non-linear response of the excited

populations with laser intensity and the phase of the electric field. In Section 6.2 both

theoretical methods are described, in Section 6.3 the results using each method are shown,

and in Section 6.4 some discussion and possible future directions are presented.
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6.2 Theory

6.2.1 Collisional-Radiative Method

The CR method is used widely in laboratory and astrophysical plasma modeling. This

approach takes into account all of the atomic process in a rate matrix, from which the

steady-state and time-dependent populations can be evaluated. The laser bandwidth in

the LCLS experiment was sufficiently narrow to ensure that only one transition in Fe16+

could be excited at a time, thus this could be treated as a two-level system. For both the

3C and 3D lines, the only populating mechanism for the excited state is photo-absorption

from the ground level and the only associated depopulating mechanisms are stimulated

emission (sometimes referred to as the interacting process) and spontaneous emission (the

non-interacting process). The time-dependent population density for the excited state Ne

and ground state Ng can be evaluated from:

dNe

dt
= Ng(t)ρ(ω0, t)Bg→e −Ne(t)(Ae→g + ρ(ω0, t)Be→g) (6.1)

dNg

dt
= −Ng(t)ρ(ω0, t)Bg→e +Ne(t)(Ae→g + ρ(ω0, t)Be→g) (6.2)

where Bg→e, Be→g, Ae→g are the Einstein photo-absorption, stimulated emission and spon-

taneous emission coefficients, respectively. ω0 is the angular frequency for the transition

between the two levels. These can be evaluated from atomic structure calculations. ρ is the

radiation field density (J/m3/Hz) and can be determined from the laser parameters. In the

DM approach the laser intensity I (W/cm2) is used, so it is beneficial to be able to convert

between the two representations via ρ = I/(c · δν). Here c is the speed of light and δν is

the bandwidth of the laser (e.g. I = 1010 W/cm2 → ρ = 1.10× 10−9 J/m3/Hz). In order to

solve the time-dependent Eqs. (6.1) and (6.2), the matrix form is used:
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





dNg/dt

dNe/dt






=







−ρ(ω0, t)Bg→e Ae→g + ρ(ω0, t)Be→g

ρ(ω0, t)Bg→e −(Ae→g + ρ(ω0, t)Be→g)













Ng

Ne






. (6.3)

Initially, one hundred percent of the population is fixed to be in the ground state. Thus,

the initial normalized population vector is

[

1 0

]

T , where the superscript T indicates the

transpose. The excited state population Ne(t) is evaulated for a given ρ(t) using Eq. (6.3).

This can then be used to determine the photon emission for the time during which the

laser pulse is in the plasma volume. Note that while stimulated emission is included in the

modeling of the excited population density (see Eq. (6.3)), these photons are not counted in

the predicted line intensity (see Eq. (6.4)) since the stimulated emission photons are emitted

in the direction of the laser beam and not towards the detector. After the laser pulse has

left the plasma volume, there will be a number of electrons left in the excited state. All of

these will decay via spontaneous emission before the next laser pulse. Thus, there is a second

contribution to the line emission with each of these excited state electrons producing one

photon. That is, the total photon energy detected in the spectral line will be proportional

to:

Iphotone→g = h̄ω0Ae→g

∫ T

0

Ne(t)dt+ h̄ω0Ne(T ). (6.4)

The first term on the right hand side represents the emission during the time, indicated

by T , that the laser pulse is interacting with the EBIT plasma and the second term represents

the contribution to the emission from the plasma after the laser pulse has passed. Clearly

the laser pulse temporal profile is a key factor in evaluating the time-dependent excited

populations. Various envelopes for ρ(t) have been considered.

6.2.2 Density-Matrix Method

The DM approach is a different formalism. For a two-level system in a stationary state,

the ground and excited levels have eigenvalues h̄ωg and h̄ωe, and wave functions Ψg(~r) and
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Ψe(~r) in the Heisenberg picture. The total wave function of the system can be expressed as:

Ψ(~r, t) = Cg(t)Ψg(~r) + Ce(t)Ψe(~r). (6.5)

The density operator is defined as ρ=|Ψ〉 〈Ψ|, which has the form

ρ =







〈g| ρ |g〉 〈g| ρ |e〉

〈e| ρ |g〉 〈e| ρ |e〉






=







Ng

Ng+Ne
CgC

∗
e

CeC
∗
g

Ne

Ng+Ne






(6.6)

where Ng

Ng+Ne
and Ne

Ng+Ne
are referred to as the populations and the products CgC

∗
e and CeC

∗
g

are referred to as the coherence terms. For systems interacting with a laser, the Hamiltonian

of the system can be written as:

H = HS +HI , (6.7)

where the first term represents the stationary Hamiltonian given by

HS = h̄ωg |Ψg〉 〈Ψg|+ h̄ωe |Ψe〉 〈Ψe| (6.8)

and the second term represents the interaction Hamiltonian

HI = −~D · ~E, (6.9)

where ~D is the dipole moment and ~E is the radiation field. For a linearly polarized electric

field along the z-axis, it can be written as ~E = E0(t) cos(ωLt+ ψ(t))~z, where E0(t) is the

electric field amplitude. E0(t) can be determined from the radiation field intensity I via

I = 1
2
cǫ0nE0, where c is the speed of the light, ǫ is the electric permittivity of free space, and

n is the refractive index of the medium. ωL is the angular frequency of the laser and ψ(t) is

the time-dependent phase of the laser field. Using the rotating-wave-pproximation (RWA),
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the interaction Hamiltonian can be further expanded as

HI = − h̄Ω
∗

2
|e〉 〈g| e−iωLt − h̄Ω

2
|g〉 〈e| eiωLt, (6.10)

where Ω is the Rabi-frequency given by Ω = E0(t)Dege
iψ(t)/h̄, with Deg = e 〈e| ẑ |g〉 being

the eletric dipole matrix element. The density operator ρ is governed by the equation:

dρ

dt
=

1

ih̄
[H, ρ] + Λρ (6.11)

where Λ is the decay term due to spontaneous emission. From Eq. (6.11), one can show that:

dρgg
dt

= Γρee −
iΩ∗

2
e−iωLtρge +

iΩ

2
eiωLtρeg (6.12a)

dρee
dt

= −Γρee +
iΩ∗

2
e−iωLtρge −

iΩ

2
eiωLtρeg (6.12b)

dρeg
dt

=
iΩ∗

2
e−iωLtρgg −

iΩ∗

2
eiωLtρee − (iω0 +

Γ

2
)ρeg. (6.12c)

By using ρge = ρ∗ge, it is straightforward to get the expression for dρge
dt

. By defining a new

variable ρ̃ = eiωLtρ and a detuning parameter ∆ = ωL − ω0, Eqs. (6.12a) to (6.12c) can be

rewritten as follows:

dρgg
dt

= Γρee −
iΩ∗

2
ρ̃ge +

iΩ

2
ρ̃eg (6.13a)

dρee
dt

= −Γρee +
iΩ∗

2
ρ̃ge −

iΩ

2
ρ̃eg (6.13b)

dρ̃eg
dt

=
iΩ∗

2
ρgg −

iΩ∗

2
ρee(i∆− Γ

2
)ρ̃eg. (6.13c)
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From Eqs. (6.13a) to (6.13c) one can produce the Optical-Bloch equation



















dρgg/dt

dρee/dt
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




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=
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2
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2

0 −Γ iΩ∗

2
− iΩ

2
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2
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2
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2
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2
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2
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2
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




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
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
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ρgg

ρee

ρ̃ge

ρ̃eg



















. (6.14)

The electric field amplitude E0(t) should be a profile consistent with the laser pulse of the

experiment. Oreshkina et al. [2, 3] use a Gaussian envelope with a constant phase, and a

Gaussian envelope with a random phase (evaluated with the partial coherent method (PCM)

[84, 85]). These two cases are considered here, in addition to the case of the homogeneous

envelope.

To solve Eq. (6.14), it is assumed that initially one hundred percent of the population is

in the ground state (i.e., one starts with

[

1 0 0 0

]

T for the density vector). The energy

detected from the line emission can be expressed as a function of the detuning parameter

E(∆) ∝ Γω0

∫ +∞

−∞

ρee(t)dt, (6.15)

with ρee(t) being evaluated from Eq. (6.14). The line intensity is then evaluated from an

integral over the detuning parameter:

L =

∫

E(∆)d∆. (6.16)

Note that the laser pulse parameters are included in the DM approach via the the

electric field ( ~E), with the pulse envelope imposed on E0(t) and the time dependence of the

phase of the electric field included in ψ(t). The CR approach includes the intensity profile of

the laser via the radiation field density (ρ(t)) but does not include the phase of the electric

field. The Einstein A and B coefficients are related via the detailed balance relationships

95



and thus the CR method can be thought of as the limiting case for a perfectly incoherent

field.

As part of this work, codes were developed for both the CR and DM methods. The

CR results have been presented in the literature [28]. Here we show the DM results for the

same conditions as those of Oreshkina et al. [2, 3], to test their conclusions. Also, in the

following section CR results will be shown which use identical Einstein A-coefficients as the

DM calculations and the radiation field densities will also be converted to the equivalent

laser intensities. Note that the two methods should not be expected to produce equivalent

results, even for low radiation field densities, as they treat the coherence effects differently.

It is nevertheless interesting to show the results from both approaches, which are presented

in the next section.

6.3 Results

6.3.1 LCLS parameter estimation

The LCLS XFEL parameters for the experiment are described by Bernitt et al. [1] and

on the LCLS web page 1. The modeling results require the radiation field density parameters

(for the CR results) and the laser intensity parameters (for the DM results). From Bernitt

et al. [1], the laser pulses vary in duration from 200 to 2000 fs, but mostly within the range

of 200–500 fs (G.V. Brown, private communication). The total energy per laser pulse in the

experiment has an upper limit of 3 mJ. However the filtering and optical losses after the soft

X-ray (SXR) monochromator are expected to reduce the total energy per shot to 0.0013–

0.39 mJ [28]. The LCLS XFEL focal diameter has a range of 3–10 µm [86]. A value of 10 µm

was chosen for the modeling to make the beam weakly focused. Note that the possibility

that the beam had a much larger diameter will be considered later in this chapter. These

parameters result in a radiation field density (ρ) of 4.62 × 10−7 – 3.46 × 10−4 J/m3/Hz, and

using a laser bandwidth of 1.0 eV the corresponding laser intensity would be in the range

1https://portal.slac.stanford.edu/sites/lcls public/Instruments/SXR/Pages/Specifications.asp
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4.18 × 1012 – 3.14 × 1015 W/cm2. Oreshkina et al. [2, 3] estimated the laser intensity to

be in the range 1011 – 1014 W/cm2. They used a larger focal diameter than the one given

above and also a larger energy per pulse (3 mJ).

The other important characteristic about the LCLS XFEL pulses is their stochastic

nature. Each pulse consists of many short spikes a few fs in duration, with gaps between the

spikes also being a few fs long. The phase during each of the spikes is in general not coherent

with the previous spikes. Thus, both the intensity and the phase are stochastic in nature

for each pulse. In the case-studies presented below we first consider the line intensity ratio

for individual homogeneous pulses to illustrate the mechanism for the lowering of the line

intensity ratio. We then introduce stochastic pulses and evaluate the line ratio for a large

number of stochastic pulses to simulate the experimental conditions as closely as possible.

6.3.2 CR model

The CR results for these LCLS laser parameters using a number of pulse profiles for

ρ(t) are considered first. Einstein A-coefficients of 2.22 × 1013 s−1 and 6.02 × 1012 s−1 for

the 3C and 3D A-values were used, taken from the largest calculation shown in [2, 3]. The

purpose here is to demonstrate the mechanism for the reduction in the 3C/3D line intensity

ratio, with the conclusions being independent of the precise values chosen for the A-values.

Smooth homogeneous pulse

Considering first a pulse with a radiation field density that is homogeneous in time,

the time-dependent populations can be solved using Eq. (6.3) and the 3C/3D line intensity

ratio determined using Eq. (6.4). Fig. 6.1 shows the excited states population for the upper

levels of the 3C and 3D transitions for a range of pulse intensities. Both excited state

populations increase towards a constant (steady-state) value during the homogeneous pulse.

However, due to the different Einstein A coefficients for the 3C and 3D transitions, the two

excited states converge onto this value at different rates. The excited state population for
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Figure 6.1: Excited state fractional population (Ne/(Ne + Ng)) as a function of time for
a homogenous radiation field density using the CR method. The solid lines shows the
upper level populations for the 3C transition and the dashed lines show the upper level
populations for the 3D transition. Results are shown for laser intensities of 1015 W/cm2

(purple), 1014 W/cm2 (green), 1013 W/cm2 (red), 1012 W/cm2 (yellow), and 1011 W/cm2

(blue).

the upper level of the 3C line reaches steady-state in a shorter time than the corresponding

3D population. For low radiation field densities the steady-state population value depends

linearly on the radiation field density and results in an excited state population fraction

that is less than 0.5. As the radiation field density increases, the excited states reach their

steady-state value in a much shorter time and the steady-state value is no longer directly

proportional to the radiation field density. It can also be seen that the maximum value for

the steady-state excited population fraction is 0.5, the high radiation field density limit for

the excited population in the CR method. In this case, the populating and depopulating of

the excited states happen simultaneously, in other words the process is always incoherent,

which leads to steady and non-oscillating excited state populations.

The 3C/3D line intensity ratio for a homogenous radiation field density is shown in

Fig. 6.2. For laser intensities above approximately 1 × 1012 W/cm2 there is a reduction
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Figure 6.2: The 3C/3D line intensity ratio as a function of pulse duration for a homogenous
radiation field density using the CR method. Results are shown for laser intensities of
1015 W/cm2 (solid purple line), 1014 W/cm2 (solid green line), 1013 W/cm2 (solid red line),
1012 W/cm2 (solid yellow line), 1011 W/cm2 (solid blue line).

in the line intensity ratio below the oscillator strength ratio value. The reduction was

shown previously [28] to be primarily due to contributions to the emission during the XFEL

interaction with the plasma being different from the contribution after the pulse has left the

plasma volume. For the intense pulses, the 3D intensity always has a larger fraction of its

emission coming from this ’after the pulse’ component than the 3C intensity. This results in

a reduction in the line intensity ratio below the oscillator strength ratio value.

Stochastic pulse

Consider next the CR results for a stochastic profile of the pulse. We generate a random

set of Gaussian profiles, each with 0.2 fs standard deviation and remove a random number

of Gaussians to produce a pulse profile similar to that shown on the LCLS web page, see

Fig. 4 of Loch et al. [28]. We normalize the stochastic pulse profile so that the integrated
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intensity is equivalent to a homogeneous radiation field density. We then use this value to

label the stochastic pulse, which allows us to compare the two sets of results.

Fig. 6.3 shows the comparison of line ratio using the CR method with both the homo-

geneous and stochastic pulses. The stochastic features of the pulse profiles do not change

the overall trend of the line ratio using the CR model. This is because the stochastic laser

intensity spikes have only small (i.e., a few fs) gaps between them. Thus, for intense pulses

the excited populations are still driven close to their steady-state values and do not have

time to decay significantly during the gap between the spikes. In the stochastic simulations

we use different pulses for the 3C and 3D transitions, and have many pulses for each set of

pulse parameters. Each point in Fig. 6.3 was generated using 80 stochastic pulse profiles for

the 3C and 80 pulses for the 3D. Note the stochastic pulse simulations produce a similar

reduction in the line ratio to that obtained from the homogeneous pulse calculations, i.e.

the 3C/3D line ratios are lower for shorter and intense pulses. Note that the experiment

would have involved a large number of pulses of different intensities and pulse durations. If

the distribution of pulse conditions was known, then it would be possible to compare with a

simulated line ratio for the same set of pulse distributions. Such a simulation could be used

to explore the sensitivity to the A-values employed in the model, resulting in a recommended

range of values on the A-value ratio. While the experimental distribution of pulse conditions

is not currently known well enough to perform such a comparison, it should be pointed out

that the CR model implies that pulse intensities above 1012 W/cm2 are required to produce

a reduction in the line ratio.

6.3.3 DM model

We next consider the DM approach for different pulse envelopes. The same laser band-

width (1.0 eV) and A-values are used as those chosen by Oreshkina et al. [2, 3], to allow a

direct comparison to be made with their results. As in the discussion of the CR section, the
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Figure 6.3: The 3C/3D line intensity ratio as a function of pulse duration. The stochastic
results take an average of 80 stochastic pulses for each data point. The homogeneous results
are the same as those shown in Fig. 6.2. The solid lines show the stochastic results and the
dashed lines show the homogeneous data. Results are shown for intensities of 1015 W/cm2

(purple), 1014 W/cm2 (green), 1013 W/cm2 (red), 1012 W/cm2 (yellow), 1011 W/cm2 (blue).
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conclusions that are drawn here will be general and not dependent upon the specific values

chosen for the A-values for Fe16+.

Smooth homogeneous pulse

In the DM approach, the level populating and depopulating mechanisms are slightly

different from the CR model, as the process involves an intermediate step which contains

two polarization states, ρge and ρeg. This characrteristic enables the Rabi-oscillation of the

populations and is required for intense radiation fields and coherent systems.

We consider first a homogeneous pulse, that is E0(t) is a constant in time, with the

value determined from the laser intensity. Eq. (6.14) is used to evaluate the time-dependent

populations and Eq. (6.16) is used to evaluate the Fe XVII 3C/3D line intensity ratio.

Fig. 6.4 shows the excited state populations as a function of time using the DM approach

for a range of homogeneous pulse intensities. For low intensities the populations increase

smoothly to a steady-state value, with a similar shape to the CR results. There is, however,

a noticeable difference: the steady-state value can be different for the two transitions. It

can also be seen that the 3C excited population reaches steady-state in a shorter time than

the 3D excited population. At higher intensities (∼ 1011 W/cm2 and above), Rabi-flopping

starts to become apparent in both the 3C and 3D populations. Thus, the duration of the

pulse can make a large difference in the relative emission for the two lines. One pulse could

result in a 3C excited population that is greater than the 3D excited population, while a

slightly longer pulse could lead to the opposite. It can also be seen that for the DM method

for coherent pulses, the 3C/3D line ratio could be higher than or smaller than the oscillator

strength ratio, depending upon the relative populations of the two excited states. This will

be shown in more detail in the next section.
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Coherent Gaussian pulse

Oreshkina et al. [2, 3] modeled the Fe XVII experiment using a DM approach with

a Gaussian profile as the pulse envelope. We consider the same case here, to allow us to

compare our DM results with theirs. We start with pulses possessing a coherent phase for the

duration of the pulse (ψ(t) = 0). Fig. 6.5 shows the time evolution of the excited population

fractions for a pulse with intensity of 1× 1013 W/cm2 and two different pulse durations (100 fs

and 200 fs), showing characteristic Rabi-flopping. The Rabi-frequency of the 3C populations

is more rapid than the 3D, due to the larger A-value for the 3C transition. This difference

in Rabi-frequency can result in quite different excited populations at the end of the laser

pulse interaction with the plasma. Considering these two pulse durations as an illustrative

example: for the 100 fs case, the 3D transition has a much larger excited population at the

end of the pulse than the 3C excited population, while for the 200 fs case the two have

almost the same population fraction. This behavior drives the 3C/3D line intensity ratio

for the 100 fs case to be much smaller than the oscillator strength value. Clearly one would

not expect the line intensity ratio produced from these populations to be equivalent to the

oscillator strength ratio. Furthermore, the contribution to the emission from the time after

the laser pulse has left the plasma volume is quite sensitive to the population in the excited

state at the end of the laser pulse. Again one has the scenario where the emission from the

‘after-the-pulse’ component will be quite different in the two cases, producing quite different

line ratio values for these two pulses.

Fig. 6.6 shows the 3C/3D line ratio as a function of pulse duration for coherent Gaussian

pulses. We obtain very similar line ratio results to those of Oreshkina et al. [2, 3]. It is useful

to consider the two pulse durations shown in Fig. 6.5. The 3C/3D line ratios for the two

scenarios shown in Fig. 6.5 are shown by the purple and green square in Fig. 6.6. For the

100-fs pulse (where the 3D population fraction is greater than the 3C value at the end of the

pulse), the line ratio is 1.55 which is much smaller than the 3C/3D oscillator strength ratio,

as one might expect from the populations. For the 200-fs pulse (where the 3D population
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fraction is about the same as the 3C at the end of the pulse), the ratio is 5.38. Fig. 6.6 also

shows that for coherent pulses a change in the line ratio from the oscillator strength ratio

requires pulse intensities above about 1 × 1011 W/cm2.

Stochastic Gaussian pulse

To model the LCLS pulse parameters more accurately, the stochastic features of the

pulse need to be included. We use the PCM [84, 85] to model the stochastic nature of the

pulse intensity and phase. Fig. 6.7 shows a stochastic pulse intensity generated using the

PCM. Note that it still has a Gaussian envelope, but there are now many stochastic spikes

of intensity throughout the pulse. Note also that the electric field strength and the phase

are both stochastic and complex. These stochastic pulses can now be modeled using the

DM formalism to produce a 3C/3D line intensity ratio. Fig. 6.8 shows the comparison of the

calculated 3C/3D line intensity ratio with the results of Oreshkina et al. [2, 3]. The line ratio

results are calculated from an average of 80 pulses using a bandwidth of eV, and the results

are in good agreement with Oreshkina el al. [2, 3]. We were, however, not able to achieve

convergence within 10 or 20 pulses as stated in their paper; in general it took more runs to

achieve convergence on the average line ratio value. The calculated line ratios are all below

the oscillator strength ratio for intensities above ∼ 1012 W/cm2. The bandwidth of the pulse

also affects the coherence of the pulse and the duration of the spikes in the intensity, thus it

strongly affects the line ratio. If the bandwidth is very small, then the pulse profile becomes

much more coherent and the spikes in intensity are wide. In this limit the stochastic pulses

produce line ratio values very close to the coherent Gaussian pulses from Fig. 6.6.

It should also be noted that the emission from the plasma after the pulse has left the

plasma volume is still a strong factor in lowering the line intensity ratio below the oscillator

strength value. Fig. 6.9 shows the 3C/3D line ratio if only the emission during the pulse

interaction with the plasma is included. The results of Oreshkina [2, 3] are also shown for

comparison to highlight the effect of the ‘after-the-pulse’ contribution to the line emission.
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The ratio values are all significantly increased, producing values above the oscillator strength

ratio value. Thus, the contribution from the emission after the pulse is an important factor

in producing a 3C/3D line intensity ratio that is lower than the oscillator strength value for

both the CR and DM approaches.

As a final illustration of the results using the DM approach, a simulation was carried

out for a distribution of pulse intensities and pulse durations. Using a laser bandwidth of

1.0 eV, a distribution of pulse intensities, with 10 evenly spaced points per decade from 1011 to

1014 W/cm2, and a distribution of linearly spaced pulse durations ranging from 200 to 500 fs,

a total line intensity for the 3C and 3D lines was produced. The two total line intensities were

then used to produce a 3C/3D line intensity ratio, giving a value of 2.71. It should be noted

that the pulse parameters and distributions are not well known from the experiment, so this

type of investigation should not be considered to be a true simulation of the experiment, but

an illustration that pulse parameters in this range of intensities and durations can produce

a line intensity ratio close to the value that was measured. For the A-values chosen for this

simulation, some pulse intensities at (or above) 1013 W/cm2 are required to produce line

ratios in the range measured by the experiment. It would clearly be very useful to be able

to use the observed line intensity ratio, and knowledge of the pulse parameters, to determine

what the 3C/3D A-value ratio would need to be to produce agreement with the experiment

(i.e., to make no assumption about the A-values for either line, but to determine the ratio

from the experiment). However, without more accurate knowledge of the pulse parameters,

this does not currently appear to be possible. The next section explores this in more detail.

Photon counts

If the laser intensity is significantly below 1011 W/cm2, one would expect the line in-

tensity ratio to be close to the oscillator strength ratio. In recent discussion with the ex-

perimentalists, it was pointed out to us that the defocusing of the laser would produce a

beam much more weakly focused than we assumed in our model. While we had assumed
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a beam radius of 5 µm, it was likely to be closer to 0.5 mm (FWHM), i.e. a factor of 100

times wider. This change would produce intensities a factor of 104 weaker, so the range of

pulse intensities would be 4.18 × 108 – 3.14 × 1011 W/cm2. In this range, the measured line

intensity ratio would be expected to be the same as the oscillator strength ratio.

It is instructive to consider the photon counts produced from each pulse, remembering

that the LCLS experiment consisted of a large number of individual pulses, with the final

line intensity being the result from all of the pulses combined. Fig. 6.10 shows the photon

emission as a function of pulse intensity. The weak pulses produce only a few photons, and the

number of photons produced increases linearly with pulse intensity until about 1012 W/cm2.

Thus, the more intense pulses produce more photons from the plasma. For the line intensity

ratio to be dominated by the pulse intensities in the 4.18 × 108 – 3.14 × 1011 W/cm2 range, it

would be very important that no pulses had intensities above this range. It would only take

a few pulses above 1013 W/cm2 for those pulses to dominate the line intensities, and hence

the line ratio. This topic will be explored in future work. It would also be of great benefit

if an experiment could be performed where no pulses with intensities above ∼ 1012 W/cm2

were allowed to interact with the plasma. In such an experiment, the observed line intensity

ratio is expected to be a good indication of the 3C/3D oscillator strength ratio.

6.4 Summary

A review has been presented of two time-dependent methods that have been used to

model the Fe XVII 3C/3D line intensity ratio for an intense laser field, the CR and DM

approaches. Both methods show a reduction in the line intensity ratio below the oscillator

strength ratio for pulses with intensities above ∼ 1012 W/cm2. A significant factor in lowering

the line ratio for both methods is the contribution to the emission from the plasma after the

laser pulse has left the plasma volume. We confirm the importance of the effects previously

reported by Oreshkina et al. [2, 3]: the non-linear effects in the DMmethod and the stochastic

nature of the laser pulses. Further knowledge of the distribution of laser pulse parameters, or
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future experiments with no pulse intensities above ∼ 1012 W/cm2, would allow an accurate

evaluation of the 3C/3D oscillator strength ratio.
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Figure 6.4: Excited state fractional populations as a function of time under a continuous flat
pulse using the DM approach. The solid purple lines show the excited 3C populations and
the dashed green lines show the excited 3D populations. Results are shown for 109?W/cm2

(row 1, column 1), 3C at 1010 W/cm2 (row 1, column 2), 3C at 1011 W/cm2 (row 1, column
2), 3C at 1012 W/cm2 (row 2, column 2), 3C at 1013 W/cm2 (row 3, column 1), 3C at
1014 W/cm2 (row 3 column 2).
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Figure 6.5: Excited state fractional populations as a function of time for a Gaussian pulse
with intensity 1013 W/cm2 using the DM Model. The left panel displays the 100-fs results:
the solid (purple) line indicates the 3C population and the dashed (purple) line indicates the
3D population. The right panel displays the 200-fs results: the solid (green) line indicates
the 3C population and the dashed (green)line indicates the 3D population.
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Figure 6.6: 3C/3D line intensity ratio as a function of radiation field intensity under a
Gaussian pulse using the DM Model compared with Oreshkina el al. [2, 3]. In all cases the
symbols show the results from the work of this chapter and the lines show the results of
Oreshkina et al. [3]. Results are shown for 100 fs (purple), 200 fs (green), 400 fs (blue),
600 fs (yellow), 1200 fs (dark blue), and 2000 fs (red).
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Figure 6.7: A sample stochastic pulse with Gaussian envelope for a 200 fs pulse duration.
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Figure 6.8: The 3C/3D line intensity ratio as a function of radiation field intensity for a
stochastic Gaussian pulse using the DM model. The symbols show the current results and
the lines show the results of Oreshkina et al. [2]. Results are shown for 100 fs (purple), 200 fs
(green), 400 fs (blue), and 600 fs (yellow).
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Figure 6.9: The 3C/3D Line intensity ratio as a function of radiation field intensity with no
contribution to the emission from the time after the laser has left the plasma volume. The
symbols show the current results and the lines show the results of Oreshkina et al. [2]. Note
that the Oreshkina et al. [2] results include the contribution to the line intensity ratio due
to the emission after the laser pulse has left the plasma volume. Results are shown for 100 fs
(purple), 200 fs (green), 400 fs (blue), and 600 fs (yellow).
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Figure 6.10: Averaged photon counts for the 3C line as a function of radiation field intensity
for stochastic Gaussian pulses using the DM model. Results are shown for 200 fs (solid
purple line), 300 fs (dashed green line), 400 fs (dotted blue line), and 500 fs (dot-dashed
yellow line).
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Chapter 7

Summary and Future Work

Results have been presented using the time-dependent close-coupling method for photon

interactions with a number of systems. A TDCC method has been used to calculate 5

photon double ionization of Helium atom. It is found that due to the presence of mixed

non-sequential and sequential channels, a generalized cross section based on an ionization

probability divided by the total number of photon periods cannot be obtained. The is in

keeping with the 2 photon double ionization of He, where the generalized cross section cannot

be obtained once the energy is in the sequential regime. Calculations for five-photon double

ionization probabilities for He are then carried out as a function of photon energy using

femtosecond Gaussian pulses. Results were found to be in good agreement with the recent

free electron laser experiment [20]. The TDCC method has then been used to calculate 2, 3,

4, and 5 photon double ionization of He using femtosecond Gaussian pulses for both linear

and circular polarizations. Total double ionization probabilities were calculated in the energy

range from 10 to 60 eV where the 2, 3, 4, and 5 photon absorption dominate the process.

Peak total double ionization probabilities are identified for both linear and circular polarized

light. At energy around the peak total double ionization probabilities, single and triple

differential double ionization probabilities are calculated to guide experiment. For circular

polarization the total, single differential, and the triple differential probabilities drop in a

steady manner as the number of photons absorbed is increased. We hope these survey

calculations will stimulate experimental studies for 2, 3, 4, and 5 photon double ionization

of He using femtosecond laser pulses.

Another time-dependent close-coupling method has been developed that includes the

spin-orbit interaction through the use of a l1j1l2j2J coupling scheme. Double photoionization
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cross sections for the He atom were then calculated for the 1s2 1S0, 1s2s
3S1, and 1s2p 3P0,1,2

levels. Lattices with 360 × 360 points, a uniform grid spacing of ∆ri = 0.20, and lj ≤

37
2
angular momenta, and with 720 × 720 points, a uniform grid spacing of ∆ri = 0.10,

and lj ≤ 511
2

angular momenta were both used. Good agreement was found between the

TDCC(l1j1l2j2J) calculations for the 1s
2 1S0 level and the TDCC(l1l2L) calculations for the

1s2 1S term, as well as between the TDCC(l1j1l2j2J) calculations for the 1s2s 3S1 level

and the TDCC(l1l2L) calculations for the 1s2s 3S term. The TDCC(l1j1l2j2j) calculations

for the 1s2p 3P0,1,2 levels were all found to peak higher than the TDCC(l1l2L) calculations

for the 1s2p 3P term, with the 1s2p 3P0 level having the highest peak cross section on

both the 360 × 360 point and the 720 × 720 point lattices. However, good agreement was

found between the TDCC(l1l2L) results for the average of the 1s2p 3P and 1s2p 1P terms

and the TDCC(l1j1l2j2J) results for the average of the 1s2p 3P0,1,2 and 1s2p 1P1 levels on

the 360 × 360 point lattice. By including two the mass-velocity, and Darwin interactions,

a semi-relativistic time-dependent close-coupling method has then been developed through

the use of a l1j1l2j2J coupling scheme. Double photoionization cross sections for the Ne8+

atomic ion were calculated for the 1s2 1S0 level. A lattice with 720 × 720 points, a uniform

grid spacing of ∆ri = 0.01, and lj ≤ 511
2
coupled channel angular momenta was used. The

semi-relativistic TDCC calculations for the 1s2 1S0 level were found to be slightly above the

non-relativistic TDCC calculations for the 1s2 1S term. In the future, we plan to continue the

application of TDCC method based on a l1j1l2j2J coupling scheme. Although experimental

observation of differences in double photoionization cross sections for the 1s2p 3P0,1,2 excited

levels of He are difficult due to the extremely small fine structure splitting, the possibilities

of comparing theory with experiment could be greater for the 1s22s22p2 3P0,1,2 ground state

levels of Carbon or heavier systems. We note that for more highly charged atomic ions, like

Kr34+, that the semi-relativistic TDCC method fails and one must use a fully-relativistic

TDCC method[60]. Thus, we plan to apply the semi-relativistic TDCC method to the

outer subshells of alkaline atoms and their low charged ions in the calculation of total and
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differential cross sections for single photon and two-photon double ionization to compare

with new experimental measurements.

TDCC methods have then been used to calculate single and double photoionization cross

sections for Li2. TDCC-3D method is used to calculate single photoionization cross sections

and to find the optimal lattice spacings for use by the TDCC-6D methods. The TDCC-6D

method is then used to calculate the single and double photoionization cross sections for

Li2. In contrast to the previous TDCC-6D calculations for H2 [61], the linear polarization

cross sections are larger than the circular polarization cross sections and overall found to

be approximately five times larger. We hope that our theoretical work will stimulate future

experimental studies of the double photoionization of Li2.

It has also been shown that the reduction in the Fe XVII 3C/3D line intensity ratio in

the X-ray free electron laser at the LCLS facility [1] is likely due to non-equilibrium effects

in the intense laser environment. It was shown that the short duration of the laser pulses

results in a significant fraction of the detected photon originating from the plasma after the

laser pulse has left the plasma volume. If the laser intensity is above ∼ 1 × 1012 W/cm2,

this has the effect of reducing the observed line intensity ratio below the oscillator strength

ratio value. It was also shown that the non-linear effects included in the DM approach can

also be important and have an effect on the expected line intensity ratio. Overall, it appears

that the laser intensities above ∼ 1 × 1012 W/cm2 are required for a reduction in the line

intensity ratio. It was also shown that even if the experiment consisted of mostly weak

pulses, it would only take a small number of intense pulses for them to dominate the line

emission. Furthermore, without more precise knowledge of the XFEL pulse parameters and

the distribution of pulse intensities and durations, it is not currently possible to extract an

oscillator strength ratio from the experimental measurements. However, if the experiment

was repeated with mechanisms put in place to eliminate the likelihood of even a small number

of intense pulses, then the measurement values should be a good indication of the 3C/3D

oscillator strength ratio.
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Hájková, Stefan Hau-Riege, Michael Holmes, Libor Juha, Nicholas Kelez, Jan Lüning,
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