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Abstract 
 

Functional magnetic resonance imaging (fMRI) has been increasingly used for 

understanding the human brain connectome. In this work, we utilized high-resolution fMRI to 

investigate the sensitivity of  layer-specific connectivity methods, including functional 

connectivity (FC) and effective connectivity (EC), to connectional architecture at sub-millimeter 

spatial scale under different human brain states. The human neocortical graymatter contains 

cytoarchitectonically distinct layers, with notable differences in their structural connectivity with 

the rest of the brain. While this has traditionally been done using invasive techniques, recent 

improvements in the spatial resolution of anatomical and functional MRI may enable non-invasive 

investigation of the connectional architecture at the laminar level.  

Before the connectivity analysis, we applied a surface-based laminar analysis pipeline to 

process high-resolution, sub-millimeter MRI data obtained at 7T, and to delineate different layers 

of the human cortex. Because of the inter-subject and spatial variability of the hemodynamic 

response function (HRF), we performed blind deconvolution of vertex-based fMRI data to obtain 

underlying later neural signals from all layers. We demonstrated that the post-deconvolution 

connectivity analysis in the latent neural space aligned more closely with the underlying 

anatomical connections compared to connectivity obtained from original fMRI data. 

Using high-resolution resting state fMRI, we tested general hypotheses. First, given that 

functional connectivity is anchored and constrained by the structural connectome, we hypothesized 

that pathways between different layers, which have been shown to have a structural basis in 
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invasive studies must have higher functional (synchronized and undirected) connectivity inferred 

from layer-resolved fMRI. Second, unidirectional anatomical projections at the layer level, which 

support feedback and feedforward interactions must be inferred using effective (directional, time-

lagged) connectivity derived from layer resolved fMRI.  

We found these specific results in support of the first hypothesis:  1) FC between the entire 

thalamus and cortical layers I and VI was significantly stronger than between the thalamus and 

other layers. Further, FC between somatosensory thalamus (ventral posterolateral nucleus, VPL) 

and layers IV, VI of the primary somatosensory cortex were stronger than with other layers; 2) 

Inter-hemispheric cortico-cortical FC between homologous regions in superficial layers (layer I-

III) was stronger compared to deep layers (layer V-VI). These findings are in agreement with 

structural connections inferred from previous invasive studies. These findings demonstrate for the 

first time that resting state fMRI is sensitive to structural connections between cortical layers, 

specifically in thalamocortical and cortico-cortical networks.  

In order to test the second hypothesis, we propose an experimental and analysis framework, 

which enables noninvasive functional characterization of layer-specific cortical microcircuits. 

Specifically, we illustrate this framework by characterizing layer-specific directional functional 

pathways in the corticogeniculate network of the human visual system by obtaining sub-millimeter 

fMRI at 7T using a task that engages the magnocellular pathway between LGN and the primary 

visual cortex. Our results showed that: (i) center-surround inhibition in magnocellular neurons 

within LGN (lateral geniculate nucleus) is detectable using localized fMRI responses within LGN; 

(ii) feedforward (LGN→ Layers VI/IV, Layer IV→ Layer VI) and feedback (Layer VI→ LGN) 

functional pathways, known to exist from invasive animal studies, can be inferred using dynamic 

directional connectivity models of fMRI and could potentially explain the mechanism underlying 
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center-surround inhibition as well as gain control by Layer-VI in the human visual system. Our 

framework is domain-neutral, and could potentially be employed to investigate the layer-specific 

cortical microcircuits in other systems related to cognition, memory and language.  

In summary, we demonstrate layer-specific connectivity analysis with high-resolution 

functional MRI obtained at 7T is a powerful non-invasive technique to unveil the connectional 

architecture at submillimeter spatial scale in human brain.  
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Chapter 1 Introduction 

 

1.1 Basics of MRI and fMRI 

Magnetic Resonance Imaging (MRI) has become a popular standard tool to map the brain 

structure, since it can provide high-resolution images with very good contrast between different 

types of brain tissues, e.g., gray matter, white matter. The mechanism behind MRI is:  each nucleus 

of a hydrogen nucleus can be treated as a small magnet. When the subject lays inside a strong 

magnetic field of an MRI scanner, all hydrogen nuclei within the body will align with this magnetic 

field, however, with the application of a right radio frequency (RF) magnetic pulse, those nuclei 

will absorb energy and create a weak MR signal, which can be detected by the RF coils in the MRI 

system. MRI is a sensitive tool for detecting anatomical changes in the human brain. Recently, 

ultra-high field MRI has been increasingly demanded since it can provide increased signal noise 

ratio (SNR), and the high resolution shows more anatomical details at submillimeter level.  

Functional magnetic resonance imaging (fMRI) has been widely used for the study of the 

human brain activity. It measures the blood oxygenation level dependent signal (BOLD) in the 

brain, discovered by Ogawa [1], an indirect way to measure the changes in blood flow in response 

to the neural activity. The BOLD is modulated by the local vascular distribution and the activation-

induced hemodynamics changes. When neural activity increases in a specific region, the BOLD 

also increases correspondingly. Because it is a non-invasive safe technique that does not require 

any surgery, injection, or radiation, fMRI is becoming a popular and dominant tool to study the 

neural basis of the human cognition such as emotion, sensation, decision, etc., and help the 

psychiatrists and neurologists to investigate and diagnose related mental diseases.  
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Research over the last decade has established that BOLD contrast depends not only on 

blood oxygenation but also on CBF and CBV, representing a complex response controlled by 

several parameters. Despite this complexity, much progress has been made toward quantitatively 

elucidating various aspects of the BOLD signal and the way it relates to the hemodynamic and 

metabolic changes occurring in response to elevated neuronal activity [2]. The BOLD signal 

increases about 2 sec after the neural activity; it then reaches a plateau at about 5 – 8 sec. It will 

plateau if the neural activity continues. Once the neural activity stops, the signal returns to baseline 

8 to 11 sec later (Figure 1.1). Finally, a transient change referred to as the undershot can be 

observed. Maximal variance is observed between subjects and minimal variance between scans of 

the same subject [3]. The change in the MR signal from neuronal activity is called the 

hemodynamic response. However, within subject variance increases when comparing several areas 

– i.e. the shape of the hemodynamic response is influenced by the vasculature and the task and 

these effects differ from one area to the other. 

The spatial resolution of an fMRI study refers to how well it discriminates between nearby 

locations. It is measured by the size of voxels, as in MRI. A voxel is a three-dimensional 

rectangular cuboid, whose dimensions are set by the slice thickness, the area of a slice, and the 

grid imposed on the slice by the scanning process. Full-brain studies use larger voxels, while those 

that focus on specific regions of interest typically use smaller sizes. Sizes range from 4 to 5 mm to 

1 mm. smaller voxels contain fewer neurons on average, incorporate less blood flow, and hence 

have less signal than larger voxels. Smaller voxels also take longer to scan, since scanning time 

directly rises with the number of voxels per slice and the number of slices. This can lead both to 

discomfort for the subject inside the scanner and to loss of the magnetization signal. A voxel 

typically contains a few million neurons and tens of billions of synapses with the actual number 
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depending on voxel size and the area of the brain being imaged. Temporal resolution is the smallest 

time period of neural activity reliably separated out by fMRI. One element deciding this is the 

sampling time, the TR, such as 1 or 2 seconds. FMRI has a typically poor resolution in general.  

 

Figure 1.1 Canonical Hemodynamic response. 

 

1.2 Columnar Organization of the Cerebral Cortex 

The cerebral cortex is the outer sheer layer of neural tissues in the brain, composed of gray 

matter – the cell bodies and capillaries. Around two-thirds of the cerebral cortex is folded. A fold 

is called gyrus, and a fissure is called a sulcus.  The most recently developed part of cerebral cortex 

is termed neocortex, which can be differentiated into six layers. Those neurons in different layers 

are vertically connected, forming cortical columns. Cortical columns represent a basic unit of 

computation, which consists of a cluster of neurons with similar features spanning from the pial 

surface to the white surface [4]. The Laminar organization in cortical columns is its most prominent 

anatomical characteristics. Physiological and anatomical studies have found that each layer 

FWHM 

Time to Peak 

Peak response height 
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contains different types of cells, and has different connection patterns with other layers under 

dissimilar brain states in cortical columns [4]–[15].  

The thickness of cerebral cortex ranges from about 2 mm to about 4 mm. Functional 

columns extend through the entire depth of the cortex,  and is a fraction of 1 mm in diameter. Layer 

organization shows the following general tendencies. The six layers can be can be classified into 

three categories: superficial layers (layer I-III), middle layer (IV), and deep layers (V-VI).  

The superficial layers consist of layers I to III. The superficial layers are the primary origin 

and termination of intracortical connections, which are either associational (i.e., with other areas 

of the same hemisphere), or commissural (i.e., connections to the opposite hemisphere, primarily 

through the corpus callosum). The superficial portion of the cortex is highly developed in humans 

and permits communication between one portion of the cortex and other regions. The middle layer, 

layer IV, receives thalamocortical connections, especially from the specific thalamic nuclei. This 

is most prominent in the primary sensory cortices.   The deep layers, Layer V and VI, are primary 

connections between cerebral cortex and subcortical regions. The cortical layers are not simply 

stacked one over the other; there exists characteristic connections between different layers and 

neuronal types, which span all the thickness of the cortex. 

Our knowledge about cortical laminar-specific connections is mostly derived from invasive 

studies including histology, anatomical tract tracing, electrophysiology, and lesion methods [5], 

[6], [9], [10], [16], [17], given that non-invasive modalities such as functional magnetic resonance 

imaging (fMRI) have typically lacked the resolution to resolve layer-specific differences. 

It is essential and urgent to explore and investigate the laminar connectional architectures 

for neuronal computations. However, the efficiency of those invasive methods is pretty low. 
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Because those methods restricted to a small region where the cortex is flat. Therefore, only a few 

sites can been simultaneously recorded and investigated in the brain, and it is not possible to study 

the laminar connectional architecture over the folded cortex area. 

 

1.3 Motivation 

Recent developments in high-field MRI have enabled the possibility to investigate fMRI 

signal and functional architecture in human brain at submillimeter resolution [18]–[20]. High-field 

MRI (7T scanner) are capable of achieving higher signal to noise ratio than lower-field scanner, 

e.g., 3T scanner, and higher spatial resolution. Studies have shown that high-resolution fMRI can 

noninvasively map the spatial patterns of orientation columns within visual cortex, indicating the 

specificity of hemodynamic response in cortical columns [21]. Subsequently, the fMRI activation 

was shown to change as a function of laminar depth [22]–[25]. The laminar fMRI analysis can 

improve our understanding of cortical activity at laminar level and how different layers connect in 

cortical columns ,e.g., the top-down activity during the perceptual processing [26], [27]. Moreover, 

The cortical layers can be resolved and constructed as transvers that are perpendicular to each 

other. In addition, reliable methods have been developed to obtain cortical parcellation in the native 

space of individual subjects [28]–[32]. Laminar fMRI can improve our understanding of cortical 

spatial activation in task-fMRI studies [24]–[26], [33]–[36].  

However, to date, layer-specific connectional architecture has not been explored with 

laminar fMRI, since many technical challenges need to be surmounted in order to examine the 

fMRI signal as well as the associated connectional architecture at the laminar level.  
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In this dissertation, our motivation is to investigate whether popular connectivity methods 

for investigating the connectome of the brain, such as functional connectivity and effective 

connectivity, are sensitive to layer-specific connectional architecture using high-resolution laminar 

fMRI.   

 

1.4 Organization of This Dissertation 

 The first chapter gives some introduction about relevant background knowledge about 

MRI, fMRI, the columnar organization of human cerebral cortex, and our motivation for this 

dissertation. In chapter 2, we explained the general methods used commonly in chapter 3 and 

chapter 4 of this dissertation, including procedures of fMRI preprocessing, cortical surface 

reconstruction, and blind deconvolution.  

In chapter 3, we investigated whether resting state functional connectivity (FC) is sensitive 

to layer-specific connectional architecture with high-resolution fMRI.  Previous invasive studies 

indicate that human neocortical graymatter contains cytoarchitectonically distinct layers, with 

notable differences in their structural connectivity with the rest of the brain. Given recent 

improvements in the spatial resolution of anatomical and functional magnetic resonance imaging 

(fMRI), we hypothesize that resting-state functional connectivity (FC) derived from fMRI is 

sensitive to layer-specific connectional architecture. Using sub-millimeter resting-state fMRI data 

obtained at 7T, we found that: 1) FC between the thalamus and cortical layers I and VI was 

significantly stronger than between the thalamus and other layers; 2) Inter-hemispheric cortico-

cortical FC between homologous regions in superficial layers (layer I-III) was stronger compared 

to deep layers (layer V-VI).  These findings are in agreement with structural connections inferred 
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from previous invasive studies. Our results demonstrate for the first time that resting state fMRI is 

sensitive to structural connections between cortical layers, specifically in thalamocortical and 

cortico-cortical networks.  

In chapter 4, we propose an experimental and analysis framework, which enables 

noninvasive functional characterization of layer-specific cortical microcircuits. Specifically, we 

illustrate this framework by characterizing layer-specific functional pathways in the 

corticogeniculate network of the human visual system by obtaining sub-millimeter fMRI at 7T 

using a task that engages the magnocellular pathway between LGN and the primary visual cortex. 

Our results showed that: (i) center-surround inhibition in magnocellular neurons within LGN 

(lateral geniculate nucleus) is detectable using localized fMRI responses within LGN; (ii) 

feedforward (LGN→ Layers VI/IV, Layer IV→ Layer VI) and feedback (Layer-VI→LGN) 

functional pathways, known to exist from invasive animal studies, can be inferred using dynamic 

directional connectivity models of fMRI and could potentially explain the mechanism underlying 

center-surround inhibition as well as gain control by Layer-VI in the human visual system. Our 

framework is domain-neutral, and could potentially be employed to investigate the layer-specific 

cortical microcircuits in other systems related to cognition, memory and language. Chapter 5 

contains concluding remarks.  
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Chapter 2 General Data Analysis Methods 

 

This chapter contains general methods that are used commonly in the next few chapters, 

including some procedures of functional MRI preprocessing, cortical surface reconstructions, and 

deconvolution. 

2.1 FMRI Data Pre-processing  

Just as a movie shoot outside the stage, requires cutting and editing before the release in 

the cinema, MRI data requires some preprocessing operations before the analysis of the data. A 

few software packages, e.g. Statistical Parametric Mapping (http://www.fil.ion.ucl.ac.uk/spm/) – 

SPM, FMRIB Software Library (FSL)[37], are very popular and used in this dissertation to 

preprocess our resting-state or task fMRI data. In Chapter 3, we used SPM toolbox to preprocess 

fMRI data, and in chapter 4, FSL was used.  Each has its own advantages and limitation.  

First, slice timing correction is generally performed for typical fMRI. MRI uses echo planar 

imaging (EPI), in which a three-dimensional is built up from a series of 2D slices. The slices are 

acquired in an interleaved order in this dissertation (every other slice is acquired sequentially, e.g., 

1, 3, 5, 7…..2, 4, 6, 8…..).  The 2D acquisition represents the data of different parts of image are 

acquired systematically at different time points.  Therefore, it is very common to perform slice 

timing. The popular approach to slice time correction is choosing a reference slice (the middle 

slice usually, but any slice can be used) and then interpolating the fMRI data in all other slices to 

match the timing of the reference one. This can address the timing acquisition mismatch between 

different slices [38], [39].  In chapter 3, we applied this typical slice timing technique to our resting 

state fMRI data because of 3 seconds of TR. But, fast TR with multiband sequences (simultaneous 

http://www.fil.ion.ucl.ac.uk/spm/
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acquisition of multiple slices) reduces the need for slice timing correction since the difference of 

slice acquisition time is much smaller than typical fMRI acquisition time.   In chapter 4, the TR of 

our task fMRI data is 1.5 second with multiband factor 3. Therefore, we chosen not to correct slice 

timing in the preprocessing for task fMRI data [40].  

Second, motion correction (realignment) is always an important step in the preprocessing 

of any fMRI data sets. Subjects always move their head in the scanner (e.g., due to wallowing, or 

task caused movement), and these motions can lead to disruptive effects on fMRI data. The 

standard motion correction techniques are designed to correct those wholesome movements of the 

data, by realigning all other images to a single reference image. Motion correction algorithms, can 

be generally described with a rigid body transformation, which use a within-modality cost function. 

The cost function should be sensitive to the correlation of voxel intensities between a target image 

and the reference image. In SPM, the least-square cost function is used to measure the similarity 

[41], and in FSL, normalized correlation ratio (named MCFLIRT in FSL) is calculated to describe 

the linear relationship between voxel intensities in two different images [37], [42].  

Third, frequencies in fMRI data are generally considered as noise when they are very low 

frequency bands (<0.01Hz). The extremely low frequency bands result from scanner drifts, coin 

interferences or slow metabolic oscillations such as heartbeat. Therefore, those low frequencies 

and slow drifts are needed to remove from every voxel of fMRI data with a high-pass filter.  

To mention here, spatial smoothing and spatial normalization were not performed. Spatial 

smoothing negates the advantages gained by smaller voxels sizes. Also, spatial smoothing is 

employed in traditional general linear model based activation analysis in order to satisfy the 

assumptions of random field theory. We did not perform those kinds of analysis and hence found 

it unnecessary to spatially smooth the data. Also, the Freesurfer analysis pipeline (details in next 
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part of this chapter) enables individual-specific cortical parcellation from which we extracted the 

time series used in the analysis. Therefore, we found that spatially normalizing the data into a 

common space and incurring the costs of blurring and registration errors associated with such a 

procedure was unnecessary and may be counter-productive for the small voxel size we had and the 

type of analysis we planned.  

2.2 Automated Cortical Surface Reconstruction  

To enable the investigation of the connectional architecture at columnar and laminar level 

with MRI technique, an accurate and explicit model of cortical surface in individual subjects is a 

radical factor. In this dissertation, we used FreeSurfer [43] (http://freesurfer.net/), which includes 

a set of tools providing functionality of automated cortical surface reconstruction, and cortical 

parcellation in individual space [44], [45].   

 The cortical surface reconstruction is a very complex procedure, which can be broken into   

thirty-one processing stages for fully automated reconstruction with FreeSurfer pipeline. To be 

simple, we can categorize those steps into three main parts. First, intensity normalization needs to 

be performed to correct image intensity variation of the same tissue, which is caused by the 

corruption of magnetic susceptibility artifacts and field inhomogeneities. Once with intensity-

normalized image, the subsequent step is skull stripping.  The second part is segmenting MRI 

volume into different tissue types, which is based on the geometric structure of gray/white matter 

interface. Finally, a surface tessellation is constructed by using triangles (a triangle is a polygon 

with three edges and three vertices ) to represent the face, which separates voxels classified as 

white matter from other classified voxels, e.g., gray matter, CSF. Additional deformation will 

produce a smoothed version of white/gray matter interface and pial surface. In this dissertation, 

http://freesurfer.net/
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we call the white/gray matter interface as white matter surface. More detailed information can be 

found [31], [44]–[46].  

However, this standard pipeline conforms the MRI data to an isotropic resolution of 1mm3. 

Because our MRI data had an isotropic resolution less than 1mm3 in this dissertation, we applied 

Lüsebrink’s method [47] to process our 0.6mm3 isotropic resolution data.  This method avoids 

downsampling high-resolution MRI data through software modification of FreeSurfer’s standard 

processing pipeline. And eventually, we reconstructed white matter surface and pial surface based 

on original MRI resolution of 0.6mm3.  The surfaces generated by FreeSurfer are represented in 

the form of triangular meshes, and each triangle has three vertices. Each vertex on the surface was 

associated with multiple geometry features: mean curvature of the cortical surface, mean curvature 

of the inflated cortical surface, and average convexity of the cortical surface. Also, a set of 3D 

coordinates of these surfaces gives position of the vertices.  
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Once we obtained the white matter and pial surfaces (Figure 2.1), the laminar profiles were 

delineated within the cortical gray matter. They were constructed at fixed relative distance between 

the white matter and pial surfaces, determined from the thickness map [24]. The position of each 

vertex on intermediate surfaces depends on the position of  the correponding vertex on the white 

matter surface. This method of reconstructing intermediate laminar surfaces is called equidistant 

laminae [24], [25], [48], [49]. We adpoted this method in Chapter 3 and chapter 4 for surface-

based laminar analysis. 

Figure 2.1. (a) White/Gray matter interface(yellow) and Gray/Pial interface(red);(b) thickness 

between two boundaries (c) White matter surface, green represents gyrus and red for sulcus (d) 

Pial surface.  
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Additionally, we need to align the fMRI volumes to those intermediate laminar surfaces in 

order to enable the analysis of laminar fMRI signal. Gray/white matter boundary in the EPI volume 

is easily identified automatically. We employed a method called boundary-based registration 

(BBR) [50] in this dissertation. It identified the interface between gray matter and white matter in 

the EPI data and then calculated a 12 degrees of freedom affine transformation, which registers 

the interface in EPI data to the corresponding surface reconstruction from the anatomical data. 

After the registration, the results were visually inspected  for each subject and manually edited, if 

needed [50].  

2.3 Blind Deconvolution  

After extracting raw BOLD signal, blind deconvolution is performed to recover the truly 

latent neuronal signal, because BOLD signal is not a direct measure of neural activity, instead it 

arises from the interaction of blood flow, blood volume, and blood oxygenation in response to 

changes in neuronal activity. Changes in blood flow are behind the actual timing of neuronal 

activity. Conventionally, BOLD signal can represented as a blurred and delayed version of neural 

signal. BOLD fMRI signal can be modeled as the result of the convolution of latent neural response 

and the Hemodynamic Response Function (HRF). Also, the HRF varies across brain regions as 

well as across individuals [3], [51]. Recent studies have shown the variability of hemodynamic 

response can be a confounding factor for connectivity analysis, since it is difficult to confidently 

infer connectivity from raw BOLD signal [52], [53]. In this dissertation, we feed our fMRI data 

into a certain blind deconvolution model to recover latent neuronal signal before any connectivity 

analysis. In chapter 3, we adopt Wu’s method [54] to perform vertex by vertex blind deconvolution 

for our resting state data. In brief, this method models resting-state fMRI as spontaneous event-
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related signal using point process, and estimate vertex-specific HRF using Weiner deconvolution 

(details in chapter 3). In chapter 4,  We employed a recently validated framework based on the 

Cubature Kalman filter and smoother to invert a nonlinear hemodynamic model [55]. Even though 

this model is highly parameterized, recent research indicates that it does not overfit the data [56].  

2.4 Brain Connectivity  

In this dissertation, we employed different connectivity techniques – functional 

connectivity and effective connectivity, with our laminar fMRI data to investigate and verify those 

well-known layer-specific connections at submillimeter spatial resolution obtained at 7 Tesla MRI 

scanner.  

Brain connectivity refers to the correlation between brain regions, and it can arise from a 

number of reasons (Figure 2.2).  

Figure 2.2. Different ways of brain connectivity between two regions. Either indirect influence 

(left panel), shared influence (middle panel), or direct influence (right panel).  

 

Functional connectivity have been a very popular invasive method to analyze cortical 

circuit based on resting-state fMRI at both region and voxel level. Functional connectivity is 

defined as statistical dependency among different brain regions. However, the correlation may due 
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to various reasons, e.g.,  the correlation may result from stimulus-locked transients evoked by a 

common input or reflect the direct stimulus through synaptic connections, corresponding left and 

middle panel in Figure 2.2 [57], [58]. In chapter 3, we used functional connectivity method, which 

provides evidence regarding how activity covaries across layers or regions. Though the correlation 

does not necessarily imply a direct causal relation between regions, the presence of a correlation 

can definitely imply potential causal relationships.  

In chapter 4, we employed an effective connectivity technique – dynamic granger causality 

(DGC), which corresponds to directed causal inference (Right Panel Figure 2.2). This is crucial to 

resolve the information flow between neuron populations. 
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Chapter 3 Resting State fMRI Connectivity is Sensitive to Layer-

specific Connectional Architecture in Humans 

 

3.1 Introduction 

The most distinct feature of the mammalian cerebral cortex is its laminar structure, 

comprised of cortical columns. A cortical column is a unit of complex information processing. It 

consists of processing chains that overlap, linking multiple inputs to multiple other outputs[4]. A 

single column of cerebral cortical gray matter normally has six layers. Different layers in the 

column have distinct distribution and types of neurons as well as separate connections with other 

cortical and subcortical regions. Our knowledge about cortical laminar-specific connections is 

mostly derived from invasive studies including histology, anatomical tract tracing, 

electrophysiology, and lesion methods[5]–[10], given that non-invasive modalities such as 

magnetic resonance imaging (MRI), both anatomical and functional, have typically lacked the 

resolution to resolve layer-specific differences.  

However, recent developments in ultra high field fMRI makes it feasible to examine the 

blood oxygen level dependent (BOLD) signal from cortical and subcortical regions with sub-

millimeter resolution. With such resolution, cortical layers can be resolved reasonably although 

some amount of partial voluming still exists. In addition, reliable methods have been developed to 

obtain cortical parcellation in the native space of individual subjects[28]–[32]. In the recent past, 

laminar fMRI studies have investigated the spatial sensitivity of high-field fMRI to the neuronal 
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response at the submillimeter level[22], [24]–[26], [34], [36], [59]–[62], primarily using activation 

paradigms[24]–[26], [33]–[36]. The sensitivity of laminar fMRI has enabled us to understand the 

columnar profile of cortical activation at a finer spatial scale in the cerebral cortex. However, these 

investigations were only in the context of laminar fMRI activation (not resting state) within 

specific brain regions for specific stimuli (example: primary visual cortex with visual stimuli), 

most often achieved with partial brain coverage (unlike whole brain coverage used in conventional 

resting state fMRI studies) at ultra-high fields (7T for humans and >7T in case of animal studies).  

One popular noninvasive method of analyzing cortical circuits at the voxel-level is 

functional connectivity based on resting state fMRI [63]. Resting state functional connectivity (FC) 

has been shown to be sensitive to alterations in neural circuits in various mental disorders [64]–

[69] as well as correlated with behavioral performance in healthy individuals [70]–[72]. Recent 

literature employing resting state fMRI based characterization of the human brain’s functional 

connectome suggests that resting state fMRI is grounded in underlying anatomical 

connections[73]–[76]. For example, simulations have shown that spatially distinct functional 

networks emerge in resting state data when they are constrained by the structural connectome[77], 

[78]. The close correspondence between functional and structural connectivity has also been 

confirmed with fMRI and diffusion tensor imaging (DTI) data[79]. This has been further 

confirmed in case reports of deficient inter-hemispheric functional connectivity in subjects with 

complete agenesis of the corpus callosum[80]. However, it is noteworthy that resting state 

functional connectivity can be sensitive to multi-synaptic interactions, and hence, regions that are 

not directly connected structurally could still be functionally connected. These data suggest that if 

two regions have a direct structural connection, then they should also be functionally connected, 

but the opposite may not be true. Consequently, one could expect a strong functional connection 
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between regions that are also directly connected structurally. In this work, our objective is to 

extend this concept from mesoscale connections between brain regions to rather microscale 

connections between different cortical layers in these regions. Attempts to do so have been scarce 

in the literature. Below, we present past few attempts in this direction. Layer-specific connections 

between the primary visual cortex layers II/III and middle temporal area layer IV were detected 

with high-resolution resting-state fMRI through functional connectivity analysis[61]. The default 

mode network under resting state was clearly seen across six layers by seed-based functional 

connectivity analysis after removing depth-dependent physiological noise [81]. Also, a recent 

study showed the existence of temporal correlation of resting state hemodynamic signals derived 

from optical imaging at submillimeter column scale in the visual cortex [82]. These studies suggest 

that functional connectivity could be a potentially useful method to investigate the laminar 

connectional architecture at the functional level.  However, it is yet unclear whether resting-state 

functional connectivity (FC) is in fact stronger along structural pathways that connect different 

layers of brain regions compared to say, other possible connections between layers that do not 

have a direct structural projection between them. In order to test these possibilities, many technical 

challenges need to be surmounted that we discuss below in order to provide motivation for the 

methodological choices we have made.  

The major limitation of fMRI is that it is an indirect measure of neural activity because it 

measures changes in blood oxygenation level that is modulated by the local vascular distribution 

(vessel size) and the activation-induced hemodynamics changes [24]. BOLD fMRI signal can be 

modeled as the result of the convolution of a latent neural response and the Hemodynamic 

Response Function (HRF). At the voxel-level, the HRF varies across brain regions as well as across 

individuals [3], [51]. Some animal and human MRI studies at high-field have shown that the 
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response height and time-to-peak (TTP) of the HRF varies with cortical depth [25], [83]–[87]. It 

was shown that the deep layers have faster and narrower hemodynamic response compared to the 

superficial layers.  Also, at the laminar level, gradient-echo BOLD signal has relatively poor 

laminar specificity, because it is more sensitive to larger vessels [88]. However, a recent 

investigation of the spatial point spread function (PSF) for the BOLD response showed that the 

laminar PSF of the gradient-echo BOLD signal had a “flat-tail” characteristic across layers, with 

the tail running to the pial surface [89]. This indicates that lower layers contribute signal to any 

given layer in gradient-echo BOLD. While spin echo BOLD may provide better spatial laminar 

specificity, one may lose sensitivity to the BOLD effect when using a spin echo. Investigations 

into the laminar specificity of BOLD as well as HRF variability across cortical layers have 

invariably used task-based paradigms and cannot be readily generalized to resting state given that 

neurovascular coupling likely operates under a different regime in resting state (see extension of 

Buxton’s balloon model to resting state conditions in [90]). 

Many studies have characterized the effect of HRF variability across regions and subjects 

[3], [91], as well as the impact of HRF variability across layers [25], [83]–[87]. However, all of 

these studies investigated the impact of HRF variability in the context of detecting activation (and 

not in the context of characterizing functional connectivity). And, inter-subject and spatial 

variability of the HRF could potentially give rise to a scenario wherein the BOLD fMRI time series 

from any given two regions are synchronized while the underlying neural response is not, thus 

giving high correlation while the true correlation between latent neural variables is low. The 

opposite scenario, wherein the underlying neuronal variables are synchronized while the BOLD 

fMRI time series are not, is also equally possible (see supplementary Figure S1 for illustration of 

these scenarios). Therefore, we need to extract the underlying latent neural response to get reliable 
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estimates of FC between layers of different regions. The readers are referred to Rangaprakash et 

al for more details on the effects of HRF variability on functional connectivity[92]. 

In this study, we applied a surface-based laminar analysis pipeline available in FreeSurfer 

(https://surfer.nmr.mgh.harvard.edu/) to process high-resolution anatomical data with a 0.6mm 

isotropic resolution and to delineate the six layers of the cortex [45], [47]. To investigate whether 

FC is sensitive to layer-specific connectional architecture, we examined this aspect with high-

resolution resting state fMRI data (voxels with 0.85mm in-plane resolution) obtained at 7T. A 

simple blind deconvolution technique [93] was used to obtain the latent neural signals for each 

layer. Specifically, we tested the following hypotheses thalamocortical and cortico-cortical layer-

specific microcircuits derived from previous invasive anatomical studies (Figure. 3.1): 1) FC 

between the entire thalamus and cortical layers I and VI must be significantly greater than between 

the whole thalamus and other layers. This follows from evidence in rat brain tracing studies that 

show that regions across the cortex receive inputs to layer I from M-type thalamic neurons 

distributed in most thalamic nuclei [94]–[99]. Pyramidal neurons in layer-VI are known to target 

all thalamic nuclei. Further, FC between somatosensory thalamus (ventral posterolateral nucleus, 

VPL) and layer IV, VI of the primary somatosensory cortex (S1), must be stronger than other 

layers. This follows from the well-known C-type thalamic neurons in VPL that primarily target 

layer IV in the primary somatosensory cortex, and then corticothalamic pyramidal neurons in layer 

VI project back to C-type thalamic neurons in VPL [100], [101]; 2) Inter-hemispheric cortico-

cortical FC (i.e. between the left and right brain regions of the same area) in superficial layers 

(layer I-III) must be higher compared to deep layers (layer V-VI).  This follows from evidence in 

rodents that 80% of the cell bodies of those callosal projecting neurons are distributed in layer II 

and layer III, with only 20% in layers V and VI [102], [103]. Other studies have claimed that layers 

https://surfer.nmr.mgh.harvard.edu/
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I through III are the main target of interhemispheric cortico-cortical afferents, while some suggest 

that layer III is the main source of cortico-cortical efferents [104]–[106]. Taken together, it makes 

sense to hypothesize higher cortico-cortical FC in superficial layers compared to deeper layers.  

We found that resting state functional connectivity at the laminar level, to a great extent, 

were in sync with the hypotheses stated above. To the best of our knowledge, we are the first to 

show that fine-grained layer-specific thalamocortical and corticocortical anatomical connections 

between cortical layers are reflected by stronger resting state functional connectivity in these 

pathways.   
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Figure 3.1 An illustration of our functional hypotheses that were motivated by previous invasive 

anatomical tract tracing studies. The width of the lines represent the strength of the connections. 

(a)Thalamocortical hypotheses: We hypothesized that FC between the entire thalamus and cortical 

layers I and VI will be significantly stronger than between the thalamus and other layers (blue, 

left panel). Further, FC between somatosensory thalamus (ventral posterolateral nucleus, VPL) 

and layers IV, VI of the primary somatosensory cortex (S1) will be stronger than with other layers 

(yellow, right panel). (b) Cortico-cortical hypothesis: Inter-hemispheric cortico-cortical FC 

between homologous regions in superficial layers (layer I-III) will be stronger compared to that 

in deeper layers (layer V-VI). (c) 6 surfaces plus white matter and pial surface overlayed on 

anatomical MRI (white matter surface: yellow, layer VI surface: brown, layer V: green, layer IV: 

lime, layer III: blue, layer II:, cyan, layer I: purple, and pial surface: red ; the white dots are the 

vertices on these surfaces). (d) An illustration of the relative distance of 6 intermediate surfaces 

to white matter surface. 
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3.2 Methods 

3.2.1 Data Acquisition 

All subjects were provided informed consent, and the experimental protocols were 

approved by the Auburn University Institutional Review Board. High resolution resting state fMRI 

data was obtained from twenty healthy individuals using an EPI sequence with the following 

parameters: 37 slices acquired parallel to the AC-PC line, 0.85 mm× 0.85 mm× 1.5 mm voxels, 

TR/TE: 3,000/28ms, 70º flip angle, base/phase resolution 234/100, A→P phase encode direction, 

iPAT GRAPPA acceleration factor=3, interleaved acquisition, 100 time points. Data were acquired 

on a Siemens 7T MAGNETOM outfitted with a 32-channel head coil by Nova Medical 

(Wilmington, MA). 

A whole-brain high-resolution three-dimensional (3D) MPRAGE sequence (256 slices, 0.6 

mm × 0.6 mm × 0.6 mm, TR/TE: 2,200/2.8, 7º flip angle, base/phase resolution 384/100%, 

collected in an ascending fashion, acquisition time=14:06) was used to acquire anatomical data.  

 

3.2.2 Functional MRI data preprocessing  

Slicing time correction was applied, and all functional MRI data were motion corrected 

using rigid body registration using SPM software (http://www.fil.ion.ucl.ac.uk/spm/). Next, linear 

trends were removed from each voxel time series. We also removed the nuisance variance in the 

data, comprised of mean time series from ventricular CSF, white matter, as well as six motion 

parameters. Importantly, spatial smoothing and spatial normalization were not performed. Spatial 

http://www.fil.ion.ucl.ac.uk/spm/
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smoothing negates the advantages gained by smaller voxels sizes. Also, spatial smoothing is 

employed in traditional general linear model based activation analysis in order to satisfy the 

assumptions of random field theory. We did not perform those kinds of analysis and hence found 

it unnecessary to spatially smooth the data. Next, the Freesurfer analysis pipeline enables 

individual-specific cortical parcellation from which we extracted the time series used in the 

analysis. Therefore, we found that spatially normalizing the data into a common space and 

incurring the costs of blurring and registration errors associated with such a procedure was 

unnecessary and may be counter-productive for the small voxel size we had and the type of analysis 

we planned.   

 

3.2.3 Surface-based MRI analysis 

Cortical surface reconstruction of the cerebral cortex from magnetic resonance images is a 

major step in the quantitative analysis of the human brain structure. Cortical reconstruction 

approaches with Freesurfer are optimized for standard resolution (~1mm) data. However, in this 

work, we applied Lüsebrink’s method to preprocess high-resolution anatomical MRI data with our 

original 0.6mm isotropic resolution using FreeSurfer 6 beta version [107].  The white/gray and 

gray/CSF interfaces, as well as cortical thickness maps were automatically generated with 

FreeSurfer (Figure 3.1). The surfaces generated by Freesurfer are represented in the form of 

triangular meshes, and each triangle has three vertices. Also, a set of 3D coordinates of these 

surfaces gives position of the vertices.  

Once we obtained the white matter and pial surfaces, the laminar profiles were delineated 

within the cortical gray matter. They were constructed at fixed relative distance between the white 
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matter and pial surfaces, determined from cortical thickness [24]. The position of each vertex on 

intermediate surfaces depends on the position of  the correponding vertex on the white matter 

surface (Figure 3.1). The first intermediate surface was located at 16% of cortical thickness away 

from the white matter surface, then at 32%,48%, 64%, 80%, and 96% depths, giving us a total of 

6 layers (Figure 3.1). Additionally, cortical regions defined on the inflated surface were 

automatically obtained from the Desikan-Killiany (DK) Atlas [29]. The thalamus was identified 

in MRI volume data using automatic subcortical segmentation proposed by Fischl et al [46]. 

 

3.2.4 Registration of functional MRI to anatomical MRI 

To enable the analysis of laminar fMRI, we need to align the fMRI volumes to those 

intermediate laminar surfaces. Apparently, Gray/white matter boundary in the EPI volume is easily 

identified automatically.  We employed a method called boundary-based registration (BBR) [50]. 

It identified the interface between gray matter and white matter in the EPI data and then calculated 

a 12 degrees of freedom affine transformation, which registers the interface in EPI data to the 

corresponding surface reconstruction from the anatomical data (Figure 3.2). After the registration, 

the results were visually inspected  for each subject and manually edited, if needed [50].  

 

3.2.5 Extraction of functional MRI data from different layers  

The preprocessed fMRI volume data were then transformed onto the six laminar surface 

reconstructions using the transformation matrix obtained in the previous step above. An average 

time series was extracted from the whole thalamus. This was done because our first hypothesis 

involved the M-type thalamus cells distributed in each nucleus of thalamus [94]–[99]. Next,  time 
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series from each vertex in 34 lateral cortical ROIs in the DK atlas [29] were extracted, separately 

for left and right hemispheres in each subject. The 68 ROIs’ whole time series corresponding to 

the cortical ROIs were extracted for each of the 6 layers (Figure 3.2).  

3.2.6 Blind Deconvolution 

After the time series in the preprocessed functional data were transformed onto the six 

laminar surface reconstructions, we performed vertex by vertex (a vertex is a point on a triangle 

surface as explained before, see Figure 3.1 (b)  blind deconvolution [93] to get each vertex’s latent 

neural response and HRF.  

Hemodynamic deconvolution of the BOLD signal is under the assumption that the 

relationship between a latent neural signal and the BOLD response can be modeled as a linear and 

time invariant system, which can be described as follows: 

 
𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡)⨂ℎ(𝑡𝑡) + 𝑒𝑒(𝑡𝑡)                (1) 

 
 
Where 𝑦𝑦(𝑡𝑡) denotes the observed BOLD signal, 𝑥𝑥(𝑡𝑡) donates the underlying latent neural 

signal and ℎ(𝑡𝑡) and 𝑒𝑒(𝑡𝑡) represent the HRF and the noise term in the measurement, respectively. 

Since the three terms in right side are unobservable quantities, we consider the neuron activity 

term 𝑥𝑥(𝑡𝑡) as a simple on-off model with series of delta functions 𝑥𝑥�(𝑡𝑡) as: 

 
𝑥𝑥�(𝑡𝑡) = ∑ 𝛿𝛿(𝑡𝑡 − 𝜏𝜏)∞

𝜏𝜏=0                       (2) 
 

 
Note that the delta functions modeling the events exist at random times, which essentially 

amounts to modeling the resting state data as an event-related paradigm with randomly occurring 

events. Then the HRF ℎ(𝑡𝑡) is fitted by using a canonical HRF (two gamma functions) and two 
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derivatives (temporal derivative and dispersion derivative). The parameters of ℎ(𝑡𝑡) are allowed to 

vary to for each time series. The approximation 𝑥𝑥�(𝑡𝑡)of the latent neural signal can be obtained 

from the observed data using a Wiener filter as described below: 

 

 
𝑥𝑥�(𝑡𝑡) = 𝑑𝑑(𝑡𝑡)⨂𝑦𝑦(𝑡𝑡)                 (3) 

 
 
Where ⨂ denotes convolution. Applying Fourier transforms to ℎ(𝑡𝑡), 𝑦𝑦(𝑡𝑡), 𝑒𝑒(𝑡𝑡), and 𝑑𝑑(𝑡𝑡), 

respectively, we get 𝐻𝐻(𝜔𝜔), 𝑌𝑌(𝜔𝜔), 𝐸𝐸(𝜔𝜔), and 𝐷𝐷(𝜔𝜔). 𝐷𝐷(𝜔𝜔) can be expressed as follows 

 
𝐷𝐷(𝜔𝜔)=  𝐻𝐻∗(𝜔𝜔)

|𝐻𝐻(𝜔𝜔)|2+|𝐸𝐸(𝜔𝜔)|2                       (4) 
 

 
Where ∗ denotes complex conjugate. The estimate 𝑥𝑥�(𝑡𝑡) of the latent neural signals 𝑥𝑥(𝑡𝑡) is 

then given by 

 
𝑥𝑥�(𝑡𝑡) = ℱ−1{𝐷𝐷(𝜔𝜔)𝑌𝑌(𝜔𝜔)} = ℱ−1 � 𝐻𝐻∗(𝜔𝜔)𝑌𝑌(𝜔𝜔)

|𝐻𝐻(𝜔𝜔)|2+|𝐸𝐸(𝜔𝜔)|2�   (5) 
 

 
In Equation 5,  ℱ−1 is the inverse Fourier transform operator. Since the measurement noise 

𝑒𝑒(𝑡𝑡) is assumed to be white, the covariance of the noise term must be 0. For task-related fMRI, the 

stimulus function provides the prior information about neural activity and a generative model 

whose inversion corresponds to deconvolution. Here, resting state fMRI is considered as a 

spontaneous event-related signal, and these events can be reflected by relatively large amplitude 

BOLD signal peaks [93], [108]. Therefore, the time series from each vertex was evaluated against 

a given amplitude threshold around the local maximum (threshold was set to 1 since the input time 
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series were normalized) to obtain a set of estimated onsets (the timing of delta functions) for these 

pseudo-events. In order to get the delay  𝜏𝜏 (the delay between the peak of fMRI and the peak of 

neural signal), we searched all integers between [0 8] based on a previous study that reported 4-8 

second latencies in the gray matter [109]. Then the optimal integer was chosen as 𝜏𝜏 for which the 

covariance of noise 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦(𝑡𝑡) − 𝑥𝑥�(𝑡𝑡)⨂ℎ(𝑡𝑡))  was smallest, to obtain the set of onsets. 

Subsequently, the vertex-by-vertex HRF was fitted and extracted with these pseudo-events. The 

readers are referred to Tagliazucchi et al., 2012 and Wu et al., 2013 for further details on the 

deconvolution method. 
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Figure 3.2 A schematic illustrating the laminar analysis pipeline for extracting mean time series 

from the six cortical layers for all 68 brain regions in the Desikan-Killiany atlas [29].  
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3.3 Results 

3.3.1 Functional connectivity across cortical regions between layers 

The mean correlation between deconvolved time series in a given layer with those in all 

layers (for every pair of regions) did not show any significant difference between layers (Figure 

3.3). This demonstrates that global connectivity differences between layers were absent.  

 

Figure 3.3 Top: An illustration of the method for calculating FC between all layers across all 

cortical regions in order to investigate global trends (i, j represents layer number; m, n represents 

regions, and Cij represents the mean Pearson’s correlation between two given layers calculated 

across all cortical regions). Bottom: The mean Pearson correlation values between a given layer 

and all layers across all cortical regions in the Desikan-Killiany [29] atlas. No significant 

differences were found. 21 pairs are included. The error bar indicates the calculated standard 

error. 
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3.3.2 Hypotheses testing before deconvolution 

In order to test the thalamocotical hypothesis, we computed the Pearson’s correlation 

between the mean time series extracted from 68 ROIs in each layer with the mean time series 

extracted from the entire thalamus. For testing the specific VPL↔S1 connectivity hypothesis, the 

Pearson’s correlation between the mean time series from primary somatosensory cortex (S1) and 

the VPL. For testing the cortico-cortical hypothesis, we estimated the mean interhemispheric 

correlations only between homologous regions in each layer. The functional connectivity pattern 

for thalamocortical connections showed that the mean Pearson’s correlation between layer I and 

the entire thalamus was strongest across the cortex (Figure 3.4(a)), and was significantly (FDR 

corrected p<0.05) greater than the correlation between the thalamus and layers II-VI. Although 

layer IV showed a trend to be more strongly connected to the thalamus, it did not reach significance. 

In contrast, VPL↔S1 connectivity was significantly stronger in layer IV than in layers I, V, and 

VI (Figure 3.4(b)). Then we examined the interhemispheric corticocortical connections for all 68 

cortical regions for each layer (i.e. between the left and right brain regions of the same area). We 

found that the interhemispheric corticocortical mean correlation for layer III was significantly 

greater than layer VI ((Figure 3.4 (c)). 

 



32 
 

Figure 3.4 (a) Mean thalamocortical FC values between the entire thalamus and all cortical layers 

estimated before blind deconvolution; (b) The mean FC between the somatosensory thalamus 

(VPL) and six different layers of primary somatosensory cortex before blind deconvolution; (c) 

The mean interhemispheric cortico-cortical laminar FC values estimated before blind 

deconvolution. The * indicates significant difference with p (corrected) <0.05, the error bar 

indicates the estimated standard deviation. 
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3.3.3 Laminar HRF differences 

The hemodynamic response could be different between regions across subjects and it has 

been previously shown that this might impact the estimates of connectivity obtained between such 

regions [51], [91]. To assess the laminar variability of HRF and recover the neural response, we 

performed blind deconvolution before functional connectivity analysis. To assess the effect of 

deconvolution, we compared the shape of region-specific HRFs across six layers (Figure 3.5). 

Three parameters of region-specific HRFs we examined were response height, time-to-peak, and 

full-width at half-max (FWHM). The means and standard deviations of the three parameters were 

calculated separately for each layer across all subjects. As an illustration, we show the region-

specific HRF results for left orbitofrontal cortex (Figure 3.5 (a)-(d)) and primary somatosensory 

cortex (Figure 3.5 (e)-(h)), which are two of the 68 parcellation regions.  

After one-way analysis of variance (ANOVA) for response height (p=0.0469), time-to-

peak (p=0.0026), and FWHM (p=0.0268) of region-specific HRF separately, we found response 

height as well as time to peak and FWHM were significantly different across the layers (p<0.05 

FDR corrected) for left orbitofrontal cortex. In addition, the three parameters were distinct across 

layers for left primary somatosensory cortex as well (p=0.0035 for response height, p=0.0014 for 

time-to-peak, and p=0.0312 for FWHM). Furthermore, multiple comparison of means in one-way 

ANOVA was employed for each parameter. Here, for the left orbitofrontal cortex, we found that 

the response height and FWHM of layer I was significantly (p<0.05 corrected) larger than for layer 

VI, and time to peak of layers I, II, and III was significantly (p<0.05 corrected) larger than layer 

VI. For primary somatosensory cortex, we found that the response height and time to peak of layer 

I were significantly (p<0.05 corrected) larger than for layer III-VI, and at the same time, the 
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response height and time to peak of layer VI were significantly smaller (p<0.05 corrected) than 

layer II. Moreover, FWHM of layer I was significantly (p<0.05 corrected) wider than layer VI. 

Figure 3.5 Region-specific HRF plot and multiple comparisons across the layers for left 

orbitofrontal cortex (OFC) (panel (a)-(d)) and left primary somatosensory cortex (S1) (panel (e)-

(f)).  The mean left OFC (a) and left S1 (e) HRF plot for six layers separately. Layer VI (red), layer 

V (yellow), layer IV (green), layer III (cyan), layer II (blue), and layer I (purple); multiple 

comparisons across the layers of left OFC (b) and left S1(f) for response height; time to peak 

multiple comparisons across layers of left OFC (c) and left S1 (g); FWHM multiple comparisons 

across the layers of left OFC (d) and left S1 (h). The * indicates significant difference with p 

(corrected) <0.05. The error bar indicates the calculated standard deviation. 
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To investigate whether this is a general fact for all region-specific laminar HRFs, we 

performed similar analyses for all other 66 regions and summarized the results in Figure 3.6. 66 

out of 68 regions had significant difference (p<0.05 corrected) across the layers for the response 

height, 62 out of 68 regions for time to peak, and 36 regions for FWHM. In summary, the HRF 

varies across cortical layers in many brain regions and it is necessary to recover the latent neural 

signal at each layer before performing connectivity analysis.    

 

 

 

Figure 3.6 Summary of one-way ANOVA analysis performed on HRF parameters (response height, 

time to peak, and FWHM) for 68 regions. 66 out of 68 region had significant difference across the 

layers for the response height, 62 out of 68 regions for time to peak, and 36 regions for FWHM at 

p<0.05. 
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3.3.4 Individual-level FC difference before and after deconvolution 

We estimated individual-level mean connectivity values of all possible connectivity paths 

between the 68 ROIs and the results for all 20 subjects, obtained with both deconvolved and non-

deconvolved data, are shown in Figure 3.7. The differences in connectivity due to deconvolution 

are plotted at the bottom part of Figure 3.7, showing the magnitude of change caused by HRF 

variability in each subject. The group average non-deconvolved FC value was 0.033 higher than 

deconvolved FC value. A paired t-test between non-deconvolved FC and deconvolved FC returned 

a high statistical significance for all paths (p=0.0012).  

 

Figure 3.7 The comparison of the individual-level average FC values before and after 

deconvolution for all paths. Blue represents FC values with non-deconvolved data, and red for FC 

values after deconvolution. 
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3.3.5 Hypotheses testing after deconvolution 

Results obtained after deconvolution, i.e. those estimated from latent neural signals, were 

more in sync with our hypotheses. As we can see from Figure 3.8 (a), FC between the entire 

thalamus and Layer I across the cortex was significantly greater than the FC between the entire 

thalamus and layers II-VI (FDR corrected p<0.05). Also, FC between the entire thalamus and Layer 

VI was significantly higher than FC between the entire thalamus and layers II, III, and V. In 

contrast, the FC between sensory core thalamus (VPL) and layers IV, VI of S1 was significantly 

stronger than between VPL and layers I, II, III, and V (Figure 3.8 (b)).  

Finally, we examined the interhemispheric corticocortical FCs for each layer (i.e. between 

the left and right brain regions of the same area) and compared the FC results before deconvolution 

(Figure 3.4 (c)) with FC results after deconvolution (Figure 3.8 (c)). Before deconvolution, only 

the interhemispheric corticocortical FCs for layer III were significantly greater than layer VI 

(Figure 3.4 (c)). But after deconvolution, FCs between homologous regions in layers I-III were 

significantly greater than in layers IV-VI (Figure 3.8 (c)). Generally speaking, the inter-

hemispheric mean correlations in superficial layers were higher compared to those deeper layers 

[106].  
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Figure 3.8  (a) The mean thalamocortical FC values between the entire thalamus and cortical 

layers after blind deconvolution; (b) The mean FC between sensory core thalamus (VPL) and six 

different layers of primary somatosensory cortex after blind deconvolution; (c) The mean 

interhemispheric cortico-cortical laminar FC values after blind deconvolution. The * indicates 

significant difference with p (corrected)<0.05. The error bar indicates the calculated standard 

deviation. 
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 3.4 Discussion 

In this study, we tested hypotheses involving thalamocortical and cortio-cortical layers 

specific circuits derived from previous invasive anatomical studies. The thalamocortical 

hypothesis is that FC between the entire thalamus and cortical layers I and VI must be significantly 

greater than that between the thalamus and other layers based on the fact that the regions across 

the cortex receive inputs to layer I from M-type thalamic neurons distributed in most nuclei of 

thalamus and receive corti-thalamic radiations from layer VI of the cortex [94]–[99]. Accordingly, 

we found that FC (estimated from latent neural variables) between the entire thalamus and layer I 

was indeed significantly greater than between the thalamus and layer II-VI, and FC between 

thalamus and layer VI was higher than between the thalamus and layers II, III, and V. Also, we 

found the FC between sensory core thalamus (i.e. VPL) and layer IV, VI of the primary 

somatosensory cortex, were higher than other layers. This follows from the fact that C-type 

thalamic neurons in VPL primarily target layer IV in the primary somatosensory cortex, and then 

corticothalamic pyramidal neurons in layer VI project back to C-type thalamic neurons in VPL 

[100], [101]. To a large extent, the results confirmed our hypotheses. The cortico-cortical 

hypothesis is that inter-hemispheric cortico-cortical FC in superficial layers (layer I-III) must be 

higher compared to deep layers (layer V-VI) following evidence in rodents that 80% of the cell 

bodies of those callosal projecting neurons are distributed in layer II and layer III, with only 20% 

in layers V and VI [102], [103]; [104]–[106]. Our results suggested that the interhemispheric FC 

was significantly higher in superficial layers than deeper layers. To our knowledge, this is the very 

first study to investigate the sensitivity of resting state fMRI connectivity at submillimeter spatial 

scale to the connectional architecture at the laminar level. 
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One common concern in laminar fMRI studies is the large signal amplitude on the pial 

surface, which could be potentially affected and contaminated by large veins on the cortical surface, 

or partial volume effects from large voxel sizes.  Different methods have been employed to resolve 

the large vein problem.  Simply avoiding the first layer compartment is the easiest way [24]. Indeed, 

if we did consider parts of our hypothesis by excluding the first layer, they would be confirmed by 

our results. Another alternative approach is restricting the laminar analysis to strongly activated 

clusters in each subject [25].  A novel pial vein pattern analysis by optical imaging was suggested 

by Chen et al to remove voxels associated with large veins, and the vein-free fMRI exhibited clear 

laminar specificity [36]. However, around 40% of activated voxels in the primary visual cortex 

was excluded for this study. Also, optical imaging technique used by Chen et al was invasive, and 

hence is not suitable for human studies. In this study, we approached this issue in terms of HRF 

differences across layers. We reasoned that any differences between BOLD signals across layers 

that have a vascular origin, must be reduced or eliminated if voxel (or vertex-specific) HRF was 

deconvolved from the BOLD data and connectivity estimation was performed in the latent neural 

space.   

To investigate the variability of HRF across layers, we employed a simple but powerful 

blind deconvolution technique to recover the latent neural signal at each vertex. Our results showed 

that all three parameters of region-specific laminar HRF (response height, time-to-peak, and 

FWHM) varied in reference to cortical depths, and were significantly greater in superficial layers 

than deeper layers. This finding matches findings from previous HRF studies on animals. Tian et 

al found both the onset of BOLD response and the initial dip rely on cortical depth, and the fastest 

response was in deep layer within the rat primary somatosensory cortex [86]. Also,  Yu et al 

showed the onsets at different layers coincided with the neural inputs with line-scanning fMRI 
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both in rat somatosensory cortex and motor cortex [84]. But importantly, we demonstrated that 

this is a general fact for almost all cortical regions. The comparison of functional connectivity 

before and after deconvolution showed the importance and necessity of recovering latent neural 

signals before any resting-state functional connectivity analysis is performed at the laminar level. 

The functional connectivity post-deconvolution in the latent neural space aligned more closely 

with the underlying anatomical connections compared to FC obtained on BOLD data. 

Limitations and Future Work. There are a few limitations of present study, which need to be 

addressed in future layer-specific fMRI connectivity related research. First, different methods exist 

for identifying different cortical lamina from MRI data. The method we employed was to construct 

laminar profiles, which keeps a relatively fixed distance to the cortical boundaries (Figure 3. 1), 

the so-called equidistant laminae [25], [48], [49]. An alternate approach is the equipotentials 

method, wherein the equipotentials are computed between the inner white matter surface and pial 

surface with the Laplace equation, and then the cortical profiles can be constructed along the 

gradients [110]. However, the drawback with this approach is that the Laplacian equation may not 

match the anatomical layers observed from high-resolution MRI [111]. Recently a new model 

called equal-volume model for identifying cortical laminae was proposed by Waehnert and 

colleagues [111], and they claimed that it provides a better fit to observed cortical layering. In 

future, studies must compare the three different models for how well functional connectivity 

derived from layers constructed by them match the underlying anatomical predictions.  

Second, the spatial laminar point spread function (SL-PSF) of the BOLD response presents 

a fundamental stumbling block for gaining laminar specificity in fMRI data. Lower layers always 

contribute signal to the upper layers, because the intracortical veins (ICV) are perpendicular to the 

surface, and the drain blood flows along the ICV into pial veins on the pial surface [89]. The 
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interpolation-averaging method, wherein the fMRI volume is interpolated at certain cortical depth 

and the surface profiles are averaged, has been proposed for addressing this issue [24], [25], [33], 

but a more precise method to extract laminar signal is needed. As we briefly mentioned in the 

introduction, this is especially true for gradient echo EPI based fMRI, which has a flatter PSF 

compared to spin-echo based EPI. Therefore, future studies may investigate whether spin echo EPI 

may be better for FC studies at the laminar level, even with the loss of sensitivity in spin echo 

compared to gradient echo. Recently, an extension of the Friston-Buxton hemodynamic model, 

which accounts for blood draining effects by coupling local hemodynamics across layers in 

dynamic causal models of fMRI during visual activation, was reported [59]. But, priors about two 

parameters controlling blood draining effects (the delay τd between the lower and upper layers, and 

λd that represents the strength of the blood draining effect from the lower to the upper layers) need 

further experimental validation in human resting state studies. Investigations into the laminar 

specificity of BOLD have invariably used task-based paradigms and cannot be readily generally 

to resting state given that neurovascular coupling likely operates under a different regime in resting 

state (see extension of Buxton’s balloon model to resting state conditions in [90]. Therefore, 

further modeling and experimental work is needed in this area, which could potentially lead us to 

a reliable and accurate laminar time series that will allow a more fine-grained investigation of 

resting state FC at the laminar level.  

Third, the hypotheses we chose to test provide only an initial demonstration of the 

sensitivity of resting state fMRI functional connectivity to layer-specific functional microcircuits 

in the human brain. However, further fine-grained investigations are possible. This could involve 

specific thalamocortical pathways from other thalamic nuclei, specifically in systems that are 

unique in humans and for which we do not have reliable homologues in animals, and hence are 
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not amenable to invasive investigations. For example, two parallel layer-specific pathways connect 

language-related thalamic nuclei to layer I and middle layers of Broca’s area. The cortico-thalamic 

radiations from Broca’s area in turn originate from cortical layers V and VI. Dysfunction in these 

pathways are important in aphasic patients with damage to the thalamic nuclei [112]. Our study 

opens the possibility of characterizing such layer-specific microcircuits, both in healthy and 

clinical populations, using ultra high field fMRI in the future.  

Fourth, it is well recognized that functional connectivity cannot decipher the direction of 

information flow between regions where as many anatomical projections that we have based our 

hypothesis on, are in fact directional in nature. Therefore, the next logical steps would be to test 

whether directional connectivity models of fMRI such as dynamic causal modeling (DCM) [113] 

and Granger causality (GC) [114]–[117] are sensitive to directional-specific anatomical 

projections at the layer-level.   

Finally, we employed a gradient echo EPI sequence optimized for SNR and spatial 

resolution. The sequence used for data acquisition for testing FC-related hypotheses at the laminar 

level could well be optimized in other ways. This includes using a spin echo sequence and trading 

sensitivity for a narrow SL-PSF, as well as using a multiband EPI sequence to obtain a shorter TR, 

possibly at the cost of SNR (but not spatial resolution). One way of increasing the spatial resolution 

further would be to restrict coverage to regions specifically relevant to the hypothesis being tested, 

but this would require a custom processing pipeline (other than the one in FreeSurfer) that does 

not require whole brain coverage. In summary, our seminal study offers a lot of possibilities for 

investigating the brain’s functional connectome at a more fine-grained laminar spatial scale.    
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 3.5 Supplementary Materials 

 

 

Figure S1 The importance of performing hemodynamic deconvolution illustrated for two possible 

scenarios. (a) The fMRI signals are highly correlated (the bottom left panel), whereas the latent 

neural signals are not (the top left panel); (b) the underlying latent neural signals are highly 

synchronized (the top right panel), however, the correlation between fMRI signals are low (the 

bottom right panel). Both scenarios result from the fact that the HRFs corresponding to the two 

signals are not the same and have a delay between them. Therefore, when convolved with the latent 

neural signals, they can introduce or nullify the shifts in the resulting BOLD signal. The (a) 

scenario can cause false positives, and (b) scenario lead to false negatives.  
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Chapter 4 A Framework for Investigating the Brain’s Connectome  

at the Laminar Level using 7T fMRI: Illustration using   

Corticogeniculate Feedback Mechanism in the Human Visual 

System 

 

4.1 Introduction 

The lateral geniculate nucleus (LGN), a small subcortical structure that is part of the 

thalamus, is a very important relay center in the visual system. There is a dense network of 

feedforward and feedback projections between the LGN of the thalamus and primary visual cortex. 

In the feedforward pathway, three distinct classes of neurons in LGN – magnocellular, 

parvocellular and koniocellular neurons, receive signals from the retina and transmit them (in 

parallel) to layer IV and layer VI of the primary visual cortex. In the feedback pathway, the  

corticogeniculate neurons in layer VI of the primary visual cortex exert influence on those three 

classes of neurons within the LGN in parallel [118]–[124]. These feedforward and feedback 

parallel processing streams are recognized ubiquitously in the primate visual system, and are most 

prominent in the LGN, where three types of neurons (magnocellular, parvocellular and 

koniocellular neurons) are segregated into distinct strata. Previous studies about the physiology of 

magnocellular and parvocellular LGN have shown they have different spatial, temporal, luminance, 

and chromatic stimulus preference [125]–[129]. The magnocellular neurons respond well for 

monochromatic, low spatial frequency, high temporal frequency and high contrast visual stimuli 

with motion, compared with parvocellular neurons, which have a preference for color, high spatial 
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frequency, low temporal frequency, and low contrast. Consequently, the magnocellular pathway 

is useful for the perception of “where” information and is processed in the dorsal visual stream 

while the parvocellular pathway is useful for the perception of “what” information and is processed 

in the ventral visual stream (It is to be noted here that the segregation of magnocellular and 

parvocellular pathways and their preference for processing specific types of visual information is 

not mutually exclusive and a significant amount of cross-talk exists. See Merigan et al [130] for 

details. However, we only assume that the magnocellular pathway is recruited more than the 

parvocellular pathway for monochromatic, low spatial frequency, high temporal frequency and 

high contrast visual stimuli with motion. We do not intend to imply that the magnocellular pathway 

does not process other types of visual information). Our focus in this report is on the parts of the 

magnocellular pathway between LGN and the primary visual cortex. 

The corticogeniculate neurons in layer VI of primary visual cortex are sensitive to visual 

stimulus orientation and direction of motion. Therefore, the dynamic influence of the feedback to 

the magnocellular neurons in LGN will depend on how the visual input drives the receptive fields 

of neurons in layer VI of the primary visual cortex [131]. Although magnocellular neurons in LGN 

are not selective for orientation or direction, they have circular concentric center-surround 

receptive fields in which responses from the stimulation of the central receptive field are 

antagonized by simultaneous stimulation of the surround receptive field [132]–[135]. In particular, 

the feedback from corticogeniculate neurons in layer VI of the primary visual cortex modulates 

the strength of this center-surround interaction for moving stimuli. Feedback can make this 

surround antagonism for moving stimuli stronger and reduce the response further [136]. The 

magnocellular neurons in LGN seem to be inhibited by projections from neurons in the primary 
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visual cortex via inhibitory neurons in the thalamus, while neurons that project from the LGN to 

the primary visual cortex are excitatory; in other words, this feedback loop is negative.   

To date, most findings about feedforward and feedback pathways come from anaesthetized 

animals with invasive methods such as single electrodes recordings [119], [120], [137]–[141]. 

Though these studies have certainly increased our knowledge of corticogeniculate feedback 

mechanism, it is imperative that they be confirmed in conscious humans. Therefore, we propose 

an experimental paradigm employing non-invasive imaging methods such as high resolution 

functional magnetic resonance imaging (fMRI) at ultra-high fields (7T) coupled with an analysis 

framework which could potentially be generalized to investigate laminar-level circuitry in any part 

of the human brain. Recent non-invasive studies have successfully employed high-resolution fMRI 

to investigate the top-down feedback effects on laminar fMRI response in primary visual cortex 

[26], [34]. However, they infer the effects of feedback and feedforward pathways by clever 

manipulation of the experimental design by masking some of the effects to indirectly infer these 

mechanisms. In contrast, we propose a framework where in these effects can be directly tested 

using standard fMRI paradigms and use of advanced brain connectivity models. To the best of our 

knowledge, none of previous fMRI studies have directly investigated laminar-level feedback or 

feedforward pathways in the human brain. Here we pick the example of the magnocellular pathway 

between LGN and the primary visual cortex (layer IV and layer VI) in the human brain – the 

feedback from Layer VI to LGN, and the feedforward from LGN to layers VI and IV of the primary 

visual cortex as well as from layer IV to layer VI within the primary visual cortex – since the visual 

system in general and the lower level circuit involving the LGN and the primary visual cortex in 

specific, are largely similar in humans and animals [142]–[144]. This allows us to form hypotheses 

based on invasive animal literature that can be tested in humans. However, the proposed 



48 
 

framework in itself is generally applicable to any other brain system. This is important given the 

fact that the similarities between animal and human brains begin to diminish beyond sensory 

systems and hence, once our method is established in the visual system, it will pave the way for a 

fine-grained mechanistic understanding of the brain’s laminar-level functional connectome in 

more complex domains such as cognition and language. 

Our objective for this study is to investigate the magnocellular pathway between LGN and 

the primary visual cortex – the feedback path from corticogeniculate neurons in layer VI of primary 

visual cortex to magnocellular neurons in LGN, and the feedforward paths from LGN to layer VI 

and  layer IV of the primary visual cortex, as well as from layer IV to layer VI within the primary 

visual cortex. We hypothesize that these functional pathways, known from invasive animal studies, 

can be inferred by employing the proposed analysis pipeline on data acquired noninvasively using 

functional magnetic resonance imaging (fMRI) in humans engaging in a visual motion task. In 

order to test this, we had to overcome three challenges. First, it is difficult to localize human 

magnocellular neurons of LGN (magnocellular LGN) because of the small size and deep location 

within the brain. In order to address this, we designed specific visual stimuli to evoke 

magnocellular LGN maximally. We used the typical building block of the visual stimulus in the 

field of visual neuroscience – Gabor Patch, which can efficiently activate and match the shape of 

receptive fields in the visual cortex, and therefore help detect the center-surround inhibition effects 

[145]–[149]. The choice of the Gabor patch sizes for center-surround inhibition effects is in 

reference to Murphy’s work [133]. The Gabor patch in this study was specifically designed with 

characteristics, e.g., monochrome, high contrast, low spatial frequency, and high temporal 

frequency, in order to maximally activate magnocellular neurons within LGN and the 

corresponding corticogeniculate neurons in layer VI within the primary visual cortex [120], [150]–



49 
 

[157]. We then performed the functional mapping of magnocellular LGN sub-region in the human 

brain using high resolution anatomical and functional MRI data acquired ultra-high field (7T). 

Second, we needed high-resolution imaging and advanced imaging processing techniques to 

resolve cortical layers. Recent advances in high-field functional MRI make it feasible to measure 

the blood oxygen level dependent (BOLD) signals with sub-millimeter resolution [25], [33], [158], 

[159]. Also, several models to construct laminar profiles have been proposed, including equidistant 

laminae model [24], equipotential method with Laplacian equation [110], and equal-volume model 

[111]. In this study, we adopted the equidistant laminae model, which keeps a relatively fixed 

distance to the cortical boundaries, because equidistant stratification contains a broad isocontour 

that follows the stria of Gennari everywhere in the cortex [24]. The drawback of equipotential 

model is that the Laplacian equation does not match the anatomical layers observed from high-

resolution MRI. As regards the equal-volume model, it does not provide improvement over the 

equidistant model because of its weak estimation of curvature [111]. Third, we had to use a 

dynamic effective connectivity model to unveil the directional influences between layers in 

primary visual cortex and LGN. We used a state-of-the-art dynamic Granger causality [55], [114], 

[160]–[162] method to quantify dynamic feedforward and feedback pathways between 

magnocellular  LGN and primary visual cortex.  

Our results demonstrated that: (1) functional localization of magnocellular cells in LGN 

with high-resolution MRI is a feasible method; (2) the “enhanced center surround inhibition” effect 

on magnocellular cells within human LGN is salient and detectable using non-invasive high 

resolution functional MRI at 7T; (3) the feedforward and corticogeniculate feedback functional 

pathways can be inferred using dynamic directional connectivity models of fMRI and could 

potentially explain the mechanism underlying center-surround inhibition in the human visual 
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system; (4) our framework is domain-neutral and could potentially be employed to investigate the 

human brain’s connectome at the laminar level in other systems related to cognition, memory and 

language. 

 

4.2 Materials and Methods 

4.2.1 Subjects 

 20 adult subjects (10 males, 10 females; 24.5±3.3 years of age) participated in this study. 

All subjects had normal eyesight or corrected-to-normal visual goggles. All subjects were provided 

informed consent, and the experimental protocols were approved by the Auburn University 

Institutional Review Board. All subjects were scanned in multiple sessions on a 7 Tesla Siemens 

MAGNETOM MRI scanner.  

 

4.2.2 Visual Stimuli and Task 

In this study, we designed specific visual stimuli—six different sizes of rightward moving 

sine wave gratings (Gabor patches), which can maximally elicit the BOLD response of 

magnocellular LGN and corticogeniculate neurons in layer VI of the primary visual cortex. Gabor 

patches can efficiently match the shape of receptive fields in the visual cortex and optimally show 

the enhanced center-surround inhibition effects on magnocellular LGN. The choice of the Gabor 

patch sizes for center-surround inhibition effects is in reference to the work by Murphy and 

colleagues[133]. 
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The stimuli were generated on a Windows computer with MATLAB (The MathWorks Inc.). 

Then using E-prime (Psychology Software tools, Inc., https://www.pstnet.com/eprime.cfm) 

software, the stimuli were embedded into and event-related fMRI paradigm and displayed through 

an MR-compatible Avotec LCD projection system. The projector was located at the rear of the 

scanner room, and it projected the images onto a translucent screen attached to the inside of the 

bore. The subjects viewed the projected images via a mirror mounted over the subjects’ eyes, with 

a total viewing distance of 113 to 115cm. Since the screen position inside the scanner was fixed, 

the possible variability was the distance from the mirror to the subjects’ eyes. We measured the 

distance from the mirror to the center between eyes for each subject, and the estimated mean total 

viewing distance across all subjects was approximately 114cm. The up-down range (height) of the 

screen subtended 10.5º of visual angle, and the screen width subtended 13º of visual angle. The 

stimuli consisted of six different sizes of rightward drifting gratings and a white cross fixation. Six 

varying sizes of moving sine wave gratings (Gabor patch) [146] over the receptive field were used 

to localize magnocellular  LGN cells and evaluate the feedback effects on magnocellular  LGN 

cells. The drifting Gabor patch stimuli were 50% luminance contrast, vertical black and white 

sinusoid grating with a spatial frequency of 1 cpd (cycle per degree). To maintain the comparability, 

60 Hz display refresh rate, 25 Hz frame rate, a constant stimulus horizontal velocity of 2.1º s-1 and 

constant screen brightness were used for all subjects. The outer borders of the patches faded into 

gray to avoid sharp edge effects. In order to get center-surround interaction, we had six varying 

sizes of patches corresponding to 0.25º, 0.5º, 0.75º, 1º, 2º, 3º of visual angle (illustration shown in 

Figure 4.1). A centered white cross fixation was used between the patch stimuli, and it subtended 

0.1º of visual angle.  The background was a gray screen. For each run, the display sequence of the 

six patches were randomized, and each patch size was repeated 6 times and shown for 5 seconds. 

https://www.pstnet.com/eprime.cfm
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The interval time for fixation between patches was randomized between 9 and 12 seconds (Figure 

4.1). A video of the stimulus is included as a supplementary file. In summary, for each subject, 

there were two runs, and 36 stimuli were shown in each run lasting around 10 minutes.  

Figure 4.1 An illustration of the experimental design. The visual stimuli consisted of six varying 

sizes of rightward drifting Gabor patches (θ = 0.25º, 0.5º, 0.75º, 1º, 2º, 3º) and a white cross 

fixation. Each Gabor patch was displayed for 5 seconds and the intervals were randomized to 

9~12 seconds.  

 

4.2.3 MRI Data Acquisition  

 High-resolution whole-brain anatomical images were acquired on a 7T Siemens 

MAGNETOM scanner with a 32-channel head coil by Nova Medical. The whole-brain high 

resolution three-dimensional (3D) MPRAGE sequence used the following parameters: 256 slices, 

voxel size: 0.6mm×0.6mm×0.6mm, TR/TE: 2200/2.8ms, 7º flip angle, base/phase resolution: 

384/100%, in-plane phase-encode acceleration factor (iPAT) GRAPPA acceleration factor of 2, 

FOV read/ phase: 240mm/100%, bandwidth: 270Hz/Px, ascending acquisition.  
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 Two separate high-resolution BOLD runs were obtained with a T2* weighted single-shot 

multiband gradient-echo echo planar imaging (EPI) sequence with the following parameters: 45 

slices acquired parallel to the AC-PC line, voxel size: 0.7 mm× 0.7 mm× 1.5 mm , TR/TE: 

1500/31ms, 70º flip angle, FOV read 220mm, base/phase resolution of 260/100%, the anterior-to-

posterior phase encoding direction, in-plane phase-encode acceleration factor (iPAT) GRAPPA 

acceleration factor of 3, multiband (MB) slice acceleration factor of 3, partial Fourier of  6/8, echo 

spacing of 1ms, interleaved acquisition, 366 measurements.   

Before entering the scanner, the subjects were instructed to pay attention to the drifting of 

the Gabor patch.  Inside the scanner, subjects laid their head in supine position with foam padding 

around the head to reduce head motion. To reduce fatigue effects, we gave the subjects 5 minutes 

rest with eyes closed inside the scanner between two fMRI runs. No data was acquired during this 

resting period. 

 

4.2.4 Laminar surface reconstruction using high-resolution anatomical MRI 

 To extract laminar functional MRI data, we need to first obtain cortical laminar profiles 

from anatomical MRI since it could provide better brain structural information. A very popular 

way to reconstruct cortical surface is using FreeSurfer’s (http://freesurfer.net/) automatic 

reconstruction pipeline [43]. However, this pipeline conforms the data to an isotropic resolution 

of 1mm3. Because our MRI data had an isotropic resolution of 0.6mm3, we applied Lüsebrink’s 

method [47] to process our 0.6mm3 isotropic resolution data.  This method avoids downsampling 

high-resolution MRI data (<1mm3) through software modification of FreeSurfer’s standard 

processing pipeline. We then reconstructed white matter surface and pial surface based on original 

http://freesurfer.net/
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MRI resolution of 0.6mm3. Laminar profiles were then extracted within the cortical gray matter 

surface. They were constructed at fixed relative distance between the white and pial surfaces, 

determined from cortical thickness [24]. Two intermediate laminar surfaces were located at 10% 

and 50% of cortical thickness away from the white matter surface (Figure 4.2(a)(b)), corresponding 

to layer VI and layer IV separately. The primary visual cortex was automatically identified with 

the FreeSurfer high-resolution data analysis pipeline [163]. The location of the primary visual 

cortex was predicted by the cortical folds in a surface coordinate system.  

 

4.2.5 Functional MRI analysis 

The pre-processing steps for fMRI data followed standard procedures routinely employed 

for task fMRI data. All functional volumes from each run were aligned to the first volume to correct 

head motion using FSL software’s MCFLIRT functionality [37], [164]. Brain Extraction Tool 

(BET) was also used to remove non-brain tissues of functional images [165]. Then the time series 

from each voxel was detrended to remove low-frequency noise and slow drift using a high-pass 

temporal filtering (Gaussian-weighted least-squares straight line fitting, with sigma=45s).  

The statistical analysis to detect activated brain regions was carried out using FILM 

(FMRIB's Improved Linear Model) functionality with local autocorrelation correction in FSL 

software [166]. The general linear modeling (GLM) method was used to estimate the response of 

each voxel to six different visual stimuli separately with a double-gamma HRF assumption for 

each single session. Z statistic images were thresholded using clusters determined by Z>2.3 and a 

(corrected) cluster significance threshold of p<0.05. The single-session first-level Z statistic maps 

were in each individual subject’s coordinate space.  
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Since there were two separate task runs for each subject, we performed between-session 

higher-level analysis to estimate each subject’s mean response. The estimated responses of each 

voxel in each subject’s brain to the six different sizes of drifting Gabor patches corresponded to 

six distinct beta activation images (parameter estimate or PE images), respectively. The between-

session mean PE maps for each subject is in standard MNI 1 mm3 space. These between-session 

PE maps would only be used later to localize magnocellular neurons in LGN. Once the 

magnocellular LGN were localized, they were transformed to individual space and all further 

analysis was carried out in individual subject space.  

 

4.2.6 Laminar functional data analysis in the primary visual cortex 

To enable time series extraction or statistical analysis from these intermediate surfaces, it 

is essential to align the EPI volume to these surfaces. Here we employed boundary-based 

registration (BBR) method [50] in order to achieve this. It identified the boundary interface 

between gray matter and white matter from EPI volumes and then calculated a 12 degrees of 

freedom affine transformation, which registered the boundary interface in EPI to the corresponding 

white matter surface, reconstructed from high-resolution anatomical MRI data. Careful manual 

inspections were carried out to check the accuracy of the registration, and were manually edited 

when necessary.  

The single-session thresholded Z statistic images obtained from all the six conditions were 

then transformed onto two intermediate reconstructed surfaces (they were located at 10% and 50% 

of the cortical thickness away from the white matter surface, corresponding to layers VI and IV, 

respectively) separately with the transformation matrix calculated above. Two corresponded z 
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statistic surfaces were then masked with the primary visual cortex region (Figure 4.2(c) ), which 

was obtained from FreeSurfer [163].  

For each session of each subject,  two patches of cortical surface containing significantly 

activated clusters within the left or right primary visual cortex were identified and extracted from 

each intermediate surface, and flattened using a near-isometric flattening algorithm (Figure 4.2 (d) 

(e)) [167]. Then we were able to extract and analyze time series from each flat patch ROI on each 

intermediate surface within the primary visual cortex. In summary, we extracted time series from 

activated regions of left and right primary visual cortex separately for layer IV and layer VI. This 

analysis was performed in native subject space.  
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Figure 4.2 Illustration of surface-based laminar analysis. (a) Four laminar profiles overlaid on 

the original volume: white matter surface (red contour), layer VI surface of primary visual cortex 

(blue contour), layer IV surface (green contour), pial surface (yellow contour). (b) A zoomed 

version of (b) illustrating the layers and their relative distances: the distance between white matter 

surface to other laminar surfaces was as follows – 0.21mm (from white matter to layer VI, 10% of 

the thickness), 1.04mm (from white matter to layer IV, 50% of the thickness), and 2.22mm (from 

white matter to pial surface, 100% of the thickness). (c) Significant activation (Z>2.3 and a 

corrected cluster significance threshold of p<0.05) overlaid on inflated surface. The white line 

shows the contour for left the primary visual cortex. (d) A flat patch consisting of significantly 

activated clusters (Z>2.3, threshold at corrected p<0.05) on layer VI within left primary visual 

cortex.  (e) A flat patch consisting of significantly activated clusters (Z>2.3, threshold at corrected 

p<0.05) on layer IV within left primary visual cortex.  
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4.2.7 LGN ROI definition and analysis 

To investigate corticogeniculate feedback, localizing the LGN region of interest (ROI) is 

very important. This is not trivial since LGN is a very small subcortical region. We first defined 

an LGN mask based on the Juelich Histological Atlas in MNI152_T1_1mm_brain coordinate 

space, thresholded at 60% [168].  Because human histological studies have found that the 

magnocellular layers account for approximately 20% of LGN volumes on average [169] we 

defined the top 20% of activated voxels with the 1°visual angle stimulus condition to be our left 

or right magnocellular  LGN ROI for each subject separately (Figure 4.4(a) (b)).  This specific 

stimulus condition was chosen because previous invasive studies in animals have shown that the 

response for 1° is expected to be highest compared with stimuli subtending other angles as it 

corresponds to the size of the central receptive field for the magnocellular  LGN neurons [133], 

[134], [141], [156], [170]–[173]. To assess the reliability of magnocellular  LGN ROIs defined 

this way, the center coordinate of the left and right magnocellular  LGN ROI for each subject was 

calculated in each spatial dimension (left-right, anterior-posterior, ventral-dorsal). These centers 

were in MNI152_T1_1mm_brain coordinate space. The relative spatial center (defined as Dx/Mx 

and Dy/My; please refer to Figure 4.4 (b) for a visual illustration of what these quantities mean), 

was then calculated and plotted as a proportion of the extent away from the center of the LGN 

mask for left and right brain separately (Figure 4.4 (c)). In principle, the magnocellular LGN center 

is expected to be close to the ventral direction. If the spatial center is more ventral, we could say 

the LGN ROI is more likely to be magnocellular LGN.  

After the definition of our magnocellular  LGN ROIs for each subject, we converted the 

activation beta (PE) values to percentage change in order to help interpret the results, and then 
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extracted the mean percentage changes corresponding to each visual stimulus condition (0.25°, 

0.5°, 0.75°, 1°, 2° and 3°) from the defined magnocellular  LGN ROIs for each subject. At 

last, the mean time series from magnocellular LGN ROIs was extracted.  

 

4.2.8 Dynamic Granger causality analysis  

Granger Causality is a technique used to quantify directional influences between brain 

regions [115], [174], [175]. The underlying principle is that directional causal influence from 

region A to region B can be inferred if past values of region A help predict the present and future 

values of region B [176]. One form of Granger Causality uses multivariate autoregressive models 

(MVAR) to characterize the predictive relationship between time series [117], [177]–[183]. In the 

“classical” form of Granger causality used in these previous studies, the model coefficients are 

independent of time, and hence, the model is “static”. Consequently, it does not capture 

nonstationarities in fMRI time series [184], or the spatiotemporal dynamics of different layers 

under spontaneous cortical activity and evoked activity [13]. In addition, with static models, it is 

difficult to delineate the contributions of spontaneous and evoked activity towards the estimated 

connectivity value. Therefore, we employed a variation of the MVAR model wherein the model 

coefficients are a function of time[185]–[187]. This allowed us to calculate dynamic Granger 

causality (DGC) [188], [189]. Specifically, in DGC, coefficients 𝐴𝐴(𝑝𝑝) of the MVAR model are 

allowed to vary over time[190]–[192], therefore, giving 𝐴𝐴(𝑝𝑝, 𝑡𝑡) in the model as: 

𝑌𝑌(𝑡𝑡) = 𝐴𝐴(0, 𝑡𝑡)𝑌𝑌(𝑡𝑡) + 𝐴𝐴(1, 𝑡𝑡)𝑌𝑌(𝑡𝑡 − 1) + ⋯+ 𝐴𝐴(𝑝𝑝, 𝑡𝑡)𝑌𝑌(𝑡𝑡 − 𝑝𝑝) + 𝐸𝐸(𝑡𝑡) 
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Where Y(t) is a matrix containing the k different time series, p is the model order, t is time 

and E(t) is the model error. The diagonal elements 𝐴𝐴(0, 𝑡𝑡) are set to zero while the non-diagonal 

elements model the instantaneous influences between time series to compensate for zero-lag cross 

correlation effects [53]. The dynamic coefficients are estimated in a Kalman filter framework using 

variable parameter regression [193], [194]. The DGC is then estimated as [161], [162]: 

 

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖(𝑡𝑡) = �𝑎𝑎𝑖𝑖𝑖𝑖′ (𝑛𝑛, 𝑡𝑡)
𝑝𝑝

𝑛𝑛=1

 

  

Where 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖(𝑡𝑡) is the effective connectivity value from ROI i to ROI j at a given time point t. 𝑎𝑎𝑖𝑖𝑖𝑖′  

are the elements of matrix 𝐴𝐴.  

Recent studies have shown that the variability of hemodynamic response across brain 

regions can be a confounding factor for Granger causality analysis using raw fMRI time series 

[52], [53].  Therefore, we performed blind hemodynamic deconvolution of raw BOLD time series 

to obtain latent neural signals and used them in DGC estimation. This approach has been employed 

and validated in multiple previous studies[52], [195]–[198]. We employed a recently validated 

framework based on the Cubature Kalman filter and smoother to invert a nonlinear hemodynamic 

model [55]. Even though this model is highly parameterized, recent research indicates that it does 

not overfit the data [56].  
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In this study, we had six ROIs including layer IV and layer VI of bilateral primary visual 

cortex, magnocellular LGN ROI for left and right brain separately. After the extraction of average 

time series from these 6 ROIs, they were deconvolved as mentioned above and input into the DGC 

model. We obtained a 6×6×366 connectivity matrix (366 time points) for every run of every 

subject by employing DGC. Finally, DGC values corresponding to specific conditions of interest 

were  populated into different samples, e.g. we grouped all DGC values for 18 time points 

corresponding to 1º garbor patch condition (6×6×18 matrix) for each run. According to our data, 

40 runs were included into our analysis. Therefore, we obtained a 6×6×18×40 connectivity matrix 

for each experimental condition.  

 

The corticogeniculate feedback pathway from layer VI of primary visual cortex to lateral 

geniculate nucleus is our primary interest. Therefore, we extracted 720 (18×40) effective 

connectivity values for each condition. One sample t-test was carried out for each condition. Here 

we showed the pipeline of the data processing (Figure 4.3). 
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Figure 4.3 An illustration of the data processing pipeline.  First, we performed surface-based 

laminar analysis including laminar surface reconstruction and the registration of functional MRI 

data to the laminar surfaces. Second, we extracted mean time series from activated vertexes within 

each laminar surface and the magnocellular LGN ROIs. Third, blind deconvolution was performed 

to get latent neuronal time series. Fourth, we utilized the dynamic MVAR model to get dynamic 

effective connectivity (one directional connectivity matrix for each time point; the connectivity 

direction is from row to column). Fifth, separation of condition-specific effective connectivity 

(18×40 EC values for each condition) for a particular path. An example is shown for the path from 

layer VI to LGN. Finally, we performed one sample T test to determine paths whose strengths 

significantly differed from zero (red * indicates significant at corrected p<0.05).   
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4.3 Results 

4.3.1 The validity of the spatial localization of magnocellular neurons in LGN 

To assess the reliability of functional location for magnocellular cells within LGN, we 

calculated the spatial center of magnocellular LGN ROIs in each spatial dimension (left-right, 

anterior-posterior, ventral-dorsal). These centers were in MNI152 coordinate space. The spatial 

center was then plotted as a proportion of the extent away from the center of the whole LGN mask 

(left-right, ventral-dorsal) for left and right brain of each subject separately.   

As we can see from  Figure 4.4 (c), the group averaged spatial center of activated 

magnocellular  LGN cluster (green cross) is prone to be more ventral for both right and left brain, 

which is consistent with histological studies. To some extent, this means those activated neurons 

within LGN are more likely to be magnocellular neurons. So functional localization of 

magnocellular neurons in LGN with MRI is a feasible method since it matches histological 

findings obtained from the human LGN [120].  
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Figure 4.4 LGN definition and spatial analysis of top 20% activated voxels in LGN. (a) LGN mask 

from Juelich Histological Atlas (thresholded at 60%) overlaid onto MNI brain template. (b) The 

top 20% of activated voxels obtained with the 1° visual angle stimulus overlaid on the left LGN 

mask (the white region in (b) corresponds to the LGN mask shown in (a)) for one subject. The 

relative position of activated voxels is calculated as Dx/Mx and Dy/My where these quantities are 

depicted in (b). (c)The top panel plots the relative position of Left and Right magnocellular  LGN 

identified in (b) with respect to the center for 20 subjects (red star) and the associated group 

average (green cross); the bottom panel shows the histological coronal sections of human LGN, 

the red layers represents magnocellular LGN and blue parts for parvocellular LGN (referred and 

modified from [120]. 
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4.3.2 The enhanced center-surround inhibition effect on LGN  

In our study, we found enhanced center-surround inhibition effect within human 

magnocellular LGN. The BOLD response in magnocellular LGN increased with the size of 

rightward moving Gabor patches until the stimulus tended a 1° angle and then decreased with 

subsequent increase in the size of the Gabor patch. Here it is noteworthy that a 1° stimulus 

corresponds to the size of the central receptive field for the magnocellular  LGN neurons [133], 

[134], [173], [199], [200], and hence increasing the size of the patch beyond that meant that it 

breached in the surrounding receptive field. Consequently, if center-surround inhibition was in 

place, then increasing the size of the Gabor patch beyond 1 degree should decrease the BOLD 

response due to surround inhibition. As shown in Figure 4.5 (b) (d), this is exactly what we found.  

Statistical comparison of the BOLD response elicited from each condition is shown in Table 4.1 

(we only show comparisons for p<0.05). The results showed that the responses within 

magnocellular LGN under both 0.75° and 1° visual stimuli were significantly greater than the 

responses under other conditions (Table 4.1).  The maximum center-surround suppression (defined 

as the difference in BOLD response between 1°, and 2° or 3°, whichever is higher, as in previous 

studies [133], [134], [201] ) at the individual subject level reached up to 59.67% for left 

magnocellular  LGN (subject 4, shown in Figure 4.5(a) and Figure S2) and 78.42% for right 

magnocellular  LGN (subject 13, Figure 4.5(c) and Figure S2). From Figure S2, more than 20% 

center-surround inhibition (the bigger difference between 1° and 2° or 3° condition) in both left 

and right magnocellular LGN was found from 13 out of 20 subjects. Previous invasive studies in 

animals found center-surround inhibition of approximately 20% in magnocellular neurons within 

the LGN in the absence of negative feedback from the primary visual cortex [157]. Therefore, 20% 

inhibition represents a null benchmark against which we could compare % inhibition obtained by 
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us. Though individual differences exist, by and large at the group level, the enhanced center-

surround inhibition effect on magnocellular neurons within human LGN is salient and detectable 

using non-invasive methods such as functional MRI.  To our knowledge, this is the first study to 

detect the enhanced center-surround inhibition in human LGN non-invasively using fMRI.  

 

Figure 4.5 The BOLD response in magnocellular LGN for Gabor patch stimuli. (a)-(b) correspond 

to left magnocellular  LGN, and (c)-(d) right magnocellular  LGN. (a, c) the responses of each 

subject for each visual stimuli (0.25º dark blue, 0.5º blue, 0.75º cyan, 1º yellow, 2º red, 3º dark 

red), x axis is subject number, and y axis is the response (the percentage of signal change); (b, d) 

the plot of the mean response over all subjects vs stimulus degree (red line), 95% confidence 

interval (red shade).  
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Table 4.1 Paired t test between the BOLD responses obtained from different conditions (condition 

A< condition B) for left (a) and right (b) magnocellular LGN, shown here only for comparisons 

for which corrected p<0.05. The results showed that the BOLD response within magnocellular 

LGN for 0.75° and 1° visual stimuli was significantly greater than the responses under other 

conditions.   
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4.3.3 Center-surround inhibition effects in different layers of primary visual cortex  

We also found center-surround inhibition in primary visual cortical neurons as shown in 

Figure 4.6(a) (c) and Table 4.2. The maximum center-surround inhibition (the larger of the 

difference in responses (1°-2°) or (1°- 3°)), reached up to 54.86% for layer IV, and 53.62 % for 

layer IV of left primary visual cortex (Figure 4.6 (b), subject 10), 29.92% for layer IV, and 27.84% 

for layer VI of right primary visual cortex (Figure 4.6(d), subject 11). More than 20% center-

surround inhibition was found in 14 subjects within left primary visual cortex (Figure 4.6(b)), and 

in 10 subjects within right primary visual cortex (Figure 4.6(d)).  A comparison of the BOLD 

response due to different stimulus conditions for layer VI (shown in Tables 4.2(a) and 4.3(a) for 

left and right primary visual cortex, respectively) and layer IV (shown in Tables 4.2(b) and 4.3(b) 

for left and right primary visual cortex, respectively) within primary visual cortex showed that the 

responses for 0.5°, 0.75°, and 1° conditions were significantly greater than the response for 0.25°, 

2°, and 3° stimuli.  Moreover, the fMRI response in layer IV was stronger than layer VI during the 

display of six different types of stimuli targeted at the magnocellular visual pathway (Table 4.2 (c) 

and Table 4.3(c)). In addition, with two-way ANOVA, we assessed the main effects of two 

different factors—visual stimuli and layer. We found the main effects are both significant, but the 

interaction between them is not (Table 4.4).  
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Figure 4.6 Center-surround inhibition in different layers of the primary visual cortex. Panel (a) 

shows the results for left primary visual cortex and panel (c) for the right primary visual cortex. 

In both these panels, mean BOLD response across all subjects (dash line) is plotted on the y-axis 

and the stimulus degree on the x-axis. The 95% confidence interval is shown as the shadow around 

the dash line. Red represents layer IV, and blue represent layer VI. Panels (b) and (d) show the 

center-surround inhibition (the larger of the difference in responses (1°-2°) or (1°- 3°)) in each 

subject for left and right primary visual cortex, respectively. Here, the red * represents layer IV, 

and blue * for layer VI.  
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Table 4.2  Paired t test between the BOLD responses (corrected p<0.05) obtained from different 

conditions (condition A< condition B) for layer VI (a) and layer IV (b) within left primary visual 

cortex. (c) Paired t test of the BOLD responses obtained from layers IV and VI under each stimulus 

condition, within the left primary visual cortex. P-values correspond to paired t-tests conducted to 

test the following contrast: layer IV>VI at corrected p<0.05. 

 

 

 



71 
 

 

Table 4.3 Paired t test between the BOLD (corrected p<0.05) responses obtained from different 

conditions for layer VI (a) and layer IV (b) within right primary visual cortex. (c) Paired t test of 

the BOLD responses obtained from layers IV and VI under each stimulus condition, within the 

right primary visual cortex. P-values correspond to paired t-tests conducted to test the following 

contrast: layer IV>VI at corrected p<0.05. 
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Table 4.4.  Two-way ANOVA F test results (P value) for left and right primary visual cortex 
separately. The two main factors— visual stimuli, layer, are both significant, but the interaction 
between them is not.  

 

 

 

4.3.4 Dynamic effective connectivity  

The major goal of this study was to determine whether the effective connectivity 

determined from layer-resolved fMRI in humans is sensitive to the negative feedback from layer 

VI of primary visual cortex to magnocellular LGN. This negative feedback has been previously 

indicated by invasive animal studies [133], [134], [173], [202], and is known to cause enhanced 

center-surround inhibition effect on magnocellular  LGN (demonstrated in the previous section). 

Additionally, we also wanted to investigate the feedforward pathway from magnocellular LGN to 

layers IV and VI in the primary visual cortex as well as that from layer IV to layer VI within the 

primary visual cortex (shown in Figure 4.6). Therefore, we investigated whether these pathways 

can be inferred by employing dynamic effective connectivity modeling of layer-resolved human 

fMRI data.  
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As described in the methods section, we obtained 720 (18×40, 18 time points for each run, 

40 runs) different effective connectivity values for each pathway under each condition. We 

specifically extracted all effective connectivity values for corticogeniculate feedback pathway and 

the three feedforward pathways under six conditions only in subjects who showed center-surround 

inhibition in their BOLD response above 20%.  First, primary visual cortex layer VI to 

magnocellular LGN corticogeniculate feedback pathway was investigated under six different 

conditions. One sample t-tests (stimulus > rest) were conducted for all six conditions, however, 

we found this feedback pathway to be significantly negative only for the 2º and 3º conditions 

(Figure 4.7 (c)). Under 2º condition, mean connectivity was -0.155, t (719) =−3.2142, p= 0.0014; 

and under 3º condition, mean connectivity of -0.154, t (719) =−2.6536, p= 0.0083 were observed. 

This demonstrates that this negative feedback pathway is significantly enhanced when the 

receptive field of the visual stimuli exceed its center (which happens when the Gabor path tends 

an angle of 2º or more), and corroborates the sharp drop in BOLD response observed in 

magnocellular LGN (Figure 4.5).  
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Figure 4.7 Dynamic effective connectivity results. (a) One example of the connectivity matrix at a 

given time point, the direction is from row to column, e.g., the left corticogeniculate feedback 

pathway from layer VI to LGN corresponds to first row/third column, and the left feedforward 

pathway from layer VI to IV corresponds to first row/second column. (b) An illustration of the 

neuronal circuits involving LGN and primary visual cortex: the black round shape represents 

inhibitory interneuron, the red triangle is a neuron in layer VI of primary visual cortex, and the 

green star is a neuron in layer IV. The blue dotted line represents the negative feedback pathway, 

and the red dotted lines are the feedforward pathways (LGN→IV, LGN→VI, and IV→VI). (c) 

Mean/standard errors of effective connectivity values vs stimulus degree for corticogeniculate 

feedback pathway from layer VI to LGN. This pathway is only significantly smaller than zero under 

2º and 3º conditions. The red star indicated significance at corrected p<0.05.  
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Figure 4.8 Mean/standard errors of effective connectivity values vs stimulus degree for 

feedforward pathway from LGN to layer IV in the primary visual cortex (a), LGN to layer VI (b), 

and layer IV to VI (c).  
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Subsequently, we performed a similar one sample t-test for the feedforward pathways –

from LGN to layers IV and VI in the primary visual cortex, and from layer IV to VI within the 

primary visual cortex (Figure 4.8). We found these positive feedforward pathways to be 

significantly greater than zero for all conditions except 0.25º condition. This pattern mimicked that 

of the BOLD response within the magnocellular LGN and the primary visual cortex wherein the 

connectivity increased from 0.25 º condition onwards, peaking at 1 º condition and then decreasing.  

 

4.4 Discussion 

The results presented in the previous section point to the following conclusions that we 

will discuss here: (1) functional localization of magnocellular neurons in LGN with high-

resolution (<1mm) fMRI has been demonstrated to be a feasible method; (2) the enhanced center-

surround inhibition effect on magnocellular neurons within human LGN is salient and detectable 

using BOLD responses within the magnocellular  LGN to moving Gabor patch stimuli of different 

sizes, being shown here for the first time in literature; (3) with high-resolution, layer-specific fMRI 

at ultra-high fields, the effective connectivity determined from laminar fMRI is sensitive to the 

corticogeniculate negative feedback pathway from layer VI of primary visual cortex to 

magnocellular  LGN, and the feedforward positive pathways from magnocellular  LGN to layers 

IV and VI of the primary visual cortex as well as from layer IV to layer VI within the primary 

visual cortex. To our knowledge, this is the first study to investigate whether fMRI-based effective 

connectivity can be used to investigate the directional information flow between regions at 

submillimeter spatial scale (and more specifically in the corticogeniculate pathway).   



77 
 

Many previous studies have tried to use noninvasive methods such as fMRI to functionally 

localize small subcortical regions such as the LGN in the human brain [152], [203]–[209]. 

However, only few of those studies have been successful in identifying the magnocellular part of 

LGN [152], [208], [210]. These studies attempted to classify the magnocellular and parvocellular 

voxels in LGN based on the contrast sensitivity difference – magnocellular LGN response saturates 

under monochrome, high luminance contrast visual stimuli, and parvocellular LGN is more suited 

for visual stimuli with high color contrast and low luminance contrast [127]. Besides, the voxel 

size used in these studies was around 2 mm3, which is pretty large compared to the size of M-type 

and P-type parcels within LGN. In this project, we designed specific visual stimuli, which could 

maximally activate, and help localize the magnocellular voxels in LGN with our whole-brain 

submillimeter fMRI data. We validated the location of magnocellular  LGN using expected spatial 

position obtained from previous from histological findings [169].  

Noticeably, this is the first study to detect enhanced center-surround inhibition effect in 

magnocellular neurons within human LGN using fMRI. The maximum center-surround inhibition 

could reach up to 59.67% for left magnocellular LGN and 78.42% for right magnocellular LGN 

in individual subject; however, the group mean center-surround suppression was only up to 

26.52%. It did not reach up to 70% suppression observed in previous invasive animal studies [133], 

[211], in which single-unit recording was used to measure the inhibition from multiple neurons. 

In contrast, with ultra-high resolution fMRI, the inhibition is estimated from a small cluster, which 

may contain thousands of neurons. Therefore, the inability to accurately localize magnocellular 

neurons with fMRI (which is not surprising given that even the smallest voxel size achievable with 

fMRI is an order of magnitude larger than that needed to accurately localize magnocellular neurons) 

may have played a part in the magnitude of center-surround inhibition we observed. However, it 
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is still very impressive that we were able to observe enhanced center-surround inhibition in human 

magnocellular LGN using fMRI.  

Previous invasive studies have found a dense network of feedforward and feedback 

projections between LGN and primary visual cortex [118]–[124], [137]–[141]. After neurons in 

LGN receive the visual input, feedforward pathways would relay it to layers IV and VI of the 

primary visual cortex. The feedback pathway consists of corticogeniculate neurons in layer VI 

projecting onto the magnocellular neurons in the LGN via inhibitory interneurons. In this work, 

we employed a dynamic effective connectivity model to reveal the directional information flow 

for the feedforward and feedback pathways, with high-resolution, layer-specific fMRI data. We 

found negative corticogeniculate feedback pathway from layer VI to magnocellular LGN (Figure 

4.7) when the angle subtended by the Gabor patch stimulus was larger than the central visual field, 

thereby facilitating center-surround inhibition. This might explain the sharp drop in the BOLD 

response we observed in magnocellular LGN for larger Gabor patches (Figure 4.5).   

We also found positive feedforward pathways from magnocellular LGN to layers IV and 

VI of the primary visual cortex as well as from layer IV to layer VI within the primary visual 

cortex (Figure 4.8). It is interesting to note that those feedforward pathways mimicked the center-

surround pattern of BOLD response observed in LGN. Therefore, we speculate that this might be 

a mechanistic explanation for how the response in one brain region is propagated to another, 

specifically from LGN to primary visual cortex in our case.  

These findings indicate that layer VI of the primary visual cortex has a crucial role in 

controlling the gain of brain activity involved with vision. The tuning of gain in the 

corticogeniculate control system is achieved by both feedback and feedforward pathways anchored 

by layer VI in the primary visual cortex. Similar conclusions about gain control by layer VI were 



79 
 

reached by Olsen et al by performing invasive electrical recordings in mice by using a technique 

that can selectively label neurons in layer VI [141]. It is very encouraging that it is now possible 

to derive mechanistic insights about cortical micro-circuits using fMRI that agree with the gold 

standard in neuroscience, viz. invasive single unit recordings.  

Our framework is domain-neutral, i.e. the cortical laminar separation and subcortical 

segmentation are based on the whole brain for each individual. Further, the connectivity model 

was agnostic about the context in which it was applied and was not fine-tuned in any way to suit 

the network we were trying to characterize. The only part of the analysis pipeline that was not 

domain-neutral was the experimental and analysis paradigm used to localize magnocellular 

neurons in the LGN. Therefore, our framework could potentially be used investigate the laminar 

connectional architecture anywhere in the human brain as long as an experimental paradigm is 

developed to localize the regions/layers of interest using high resolution fMRI. For example, future 

studies could potentially investigate the laminar connections between Broca’s area to language-

related thalamic nuclei. Broca’s area and language-related thalamic nuclei are connected in two 

parallel layer-specific pathways: one thalamic pathway targets the middle cortical layers in Broca’s 

area, and the other project to cortical layer I. The feedback pathway from Broca’s area to thalamic 

nuclei originate from cortical layers V and VI. Neuroimaging studies could investigate these 

pathways from aphasic patients with damage to the thalamic nuclei [112]. The language function 

is unique to humans (like many other social and cognitive functions), and therefore, it is not 

possible to investigate such layer-specific functional microcircuits with invasive studies in animals.  
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Limitations and Future Work 

 Laminar effective connectivity may provide novel insights into cortical microcircuits in 

the human brain connectome, however, a few limitations of this study need to be addressed in 

future laminar fMRI effective connectivity related research. First, different methods to 

differentiate cortical lamina from MRI exist. We can construct laminar surfaces by a method called 

equidistant laminae, which keeps a relatively fixed distance to cortical boundaries [25], [48], [49]. 

In this study, we employed this method. Laminar surfaces can also be constructed along 

equipotentials, which are computed between the inner white matter surface and pial surface with 

Laplace equation [110]. Moreover, a new model called equal-volume model for identifying 

cortical laminae was proposed by Waehnert and colleagues [111]. In future, studies must compare 

the three different models for how well connectivity derived from layers constructed by them 

match the underlying anatomical predictions.  

Second, the spatial point spread function (PSF) of the BOLD response at different layers 

presents poor laminar specificity since the draining blood flows along the intracortical veins (ICV) 

(ICVs are perpendicular to the surface) into pial veins on the pial surface [89]. This shows that the 

lower layers always contribute signal to the upper layers. The traditional method to resolve this 

issue is to interpolate fMRI signal at certain cortical depth, and then average the surface profiles 

[24], [25], [33]. The fact that we performed hemodynamic deconvolution before connectivity 

analysis also helps in removing some of the contributions of vasculature. But we need to come up 

a better model to extract laminar signals to increase the spatial specificity of fMRI. Future studies 

may employ spin echo sequences to investigate whether it is better for laminar fMRI analysis since 

the PSF for spin-echo EPI is more localized than gradient-echo EPI [89]. While one may lose 
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sensitivity by using spin echo, the tradeoff between the sensitivity lost by spin echo and the spatial 

precision gained by its sharper PSF must be investigated. 

Third, despite of the small size of LGN, the spatial organization of the magnocellular 

neurons in LGN in our study exhibited expected distribution from previous histological studies, 

i.e. the spatial center was distributed towards the ventral direction [169]. Previous studies have 

investigated the ability of fMRI to localize magnocellular regions within human LGN[152], [208], 

however, the spatial resolution of these fMRI studies was pretty coarse (>1mm). In this study, we 

acquired fMRI data with 0.7mm2 in plane resolution, and validated the reliability of magnocellular 

LGN distribution across 20 subjects. Still, there are some aspects that could be improved.  Since 

our voxel size was not isotropic, the partial volume effects could be one confounding factor, i.e. a 

single voxel could potentially contain both magnocellular neurons and parvocellular/koniocellular 

neurons. In such a scenario, the response from one single voxel could be a mixture of signals from 

different types of neurons. Future studies need to use higher spatial resolution to reduce partial 

volume effects at 7T.  This could potentially be done using approaches which restrict the field of 

view to include just the LGN and the primary visual cortex (more generally, just the structures of 

interest in the pathways being investigated). We did not use this approach because the FreeSurfer 

analysis pipeline for surface-based analysis requires whole brain coverage. However, it should be 

possible in principle to implement this pipeline using data with limited coverage and field of view. 

Also, we defined top 20% of activated voxels as our magnocellular neurons in this study. While 

this choice was indeed conservative, the proportion has been shown to vary across individuals 

[169], [212].  Therefore, future studies could potentially use multiple alternative MR contrasts 

such as susceptibility, proton density and myelination in order to fine-tune the functionally defined 

magnocellular LGN region.  
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Fourth, effective connectivity analysis using dynamic granger causality (DGC) suffers 

from the poor temporal resolution of fMRI. Although we performed hemodynamic deconvolution 

to recover the latent neuronal signals before applying Granger causality, it is still hard to infer 

neuronal latency from fMRI data, which is sampled coarsely in time. In future work, simultaneous 

EEG and fast laminar fMRI may be fused together to improve temporal precision of fMRI at the 

layer level. Recent studies have shown that it is possible to obtain EEG simultaneously with fMRI 

sampled at 600 ms using the multiband EPI sequence [213]. With higher acceleration factors, one 

could potentially acquire fMRI with sampling periods less than half a second and this will likely 

improve the performance of DGC [114] for inferring directional interactions within the human 

brain at the laminar level.  
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4.5 Supplementary Materials 

 

 

Figure S2 The maximum center-surround inhibition of left (*) and right (◊) magnocellular LGN 

for each subject. More than 20% center-surround inhibition (the bigger difference between 1° and 

2° or between 1°and 3º condition) in both left and right magnocellular LGN was found in 13 out 

of 20 subjects.  
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Chapter 5 Conclusions 

 

The purpose of this dissertation is to employ high-resolution fMRI to investigate the 

sensitivity of layer-specific connectivity methods to connectional architecture at sub-millimeter 

spatial scale under different brain states in human. We employed two different connectivity 

methods– functional connectivity and effective connectivity, to successfully uphold the fact that 

layer-specific connectivity analysis with high-resolution functional MRI can be a potential and 

powerful technique to unveil the connectional architecuture in human brain at laminar level.  

For layer-specific functional connectivity analysis under resting state, we applied a surface-

based laminar analysis pipeline available in FreeSurfer to process high-resolution anatomical data 

with a 0.6mm isotropic resolution and to delineate the six layers of the cortex. To investigate 

whether FC is sensitive to layer-specific connectional architecture, we examined this aspect with 

high-resolution resting state fMRI data (voxels with 0.85mm in-plane resolution) obtained at 7T. 

A simple blind deconvolution technique was used to obtain the latent neural signals for each vertex 

from each layer. Specifically, we tested two hypotheses derived from previous invasive anatomical 

studies: 1) FC between the entire thalamus and cortical layers I and VI was significantly stronger 

than between the thalamus and other layers. Further, FC between somatosensory thalamus (ventral 

posterolateral nucleus, VPL) and layers IV, VI of the primary somatosensory cortex were stronger 

than with other layers; 2) Inter-hemispheric cortico-cortical FC (i.e. between the left and right 

brain regions of the same area) in superficial layers (layer I-III) must be higher compared to deep 

layers (layer V-VI). We found that resting state functional connectivity at the laminar level, to a 

great extent, were in sync with the hypotheses stated above. To our knowledge, this is the very 
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first study to successfully investigate the sensitivity of resting state fMRI connectivity at 

submillimeter spatial scale to the connectional architecture at the laminar level. 

For layer-specific effective connectivity analysis under different visual conditions, we 

proposed an experimental and analysis framework, which enables noninvasive functional 

characterization of layer-specific cortical microcircuits. Specifically, we illustrate this framework 

by characterizing layer-specific functional pathways in the corticogeniculate network of the human 

visual system by obtaining sub-millimeter fMRI at 7T using a task that engages the magnocellular 

pathway between LGN and the primary visual cortex. Our results showed that: (1) functional 

localization of magnocellular neurons in LGN with high-resolution (<1mm) fMRI has been 

demonstrated to be a feasible method; (2) the enhanced center-surround inhibition effect on 

magnocellular neurons within human LGN is salient and detectable using BOLD responses within 

the magnocellular  LGN to moving Gabor patch stimuli of different sizes, being shown here for 

the first time in literature; (3) with high-resolution, layer-specific fMRI at ultra-high fields, the 

effective connectivity determined from laminar fMRI is sensitive to the corticogeniculate negative 

feedback pathway from layer VI of primary visual cortex to magnocellular  LGN, and the 

feedforward positive pathways from magnocellular  LGN to layers IV and VI of the primary visual 

cortex as well as from layer IV to layer VI within the primary visual cortex. To our knowledge, 

this is the first study to investigate whether fMRI-based effective connectivity can be used to 

investigate the directional information flow between regions at submillimeter spatial scale (and 

more specifically in the corticogeniculate pathway).   
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