Biological Control Potential of Spore-forming Plant Growth-Promoting Rhizobacteria Suppressing *Meloidogyne incognita* on Cotton and *Heterodera glycines* on Soybean

by

Ni Xiang

A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

> Auburn, Alabama December 10, 2016

Keywords: biological control, Plant Growth-Promoting Rhizobacteria (PGPR), *Meloidogyne incognita*, cotton, *Heterodera glycines*, soybean

Copyright 2016 by Ni Xiang

Approved by

Kathy S. Lawrence, Chair, Professor of Entomology and Plant Pathology Joseph W. Kloepper, Professor of Entomology and Plant Pathology Edward J. Sikora, Professor of Entomology and Plant Pathology David B. Weaver, Professor of Crop, Soil, and Environmental Sciences
Dennis P. Delaney, Extension Specialist of Crop, Soil, and Environmental Sciences

Abstract

The objective of this study was to screen a library of PGPR strains to determine activity to plant-parasitic nematodes with the ultimate goal of identifying new PGPR strains that could be developed into biological nematicide products. Initially a rapid assay was needed to distinguish between live and dead second stage juveniles (J2) of *H. glycines* and *M. incognita*. Once the assay was developed, PGPR strains were evaluated *in vitro* and selected for further evaluation in greenhouse, microplot, and field conditions.

Three sodium solutions, sodium carbonate (Na₂CO₃), sodium bicarbonate (NaHCO₃), and sodium hydroxide (NaOH) were evaluated to distinguish between viable live and dead *H. glycines* and *M. incognita* J2. The sodium solutions applied to the live J2 stimulated the J2 to twist their bodies in a curling shape and increased movement activity. Optimum movement of *H. glycines* was observed with the application of 1 µl of Na₂CO₃ (pH =10) added to the 100 µl suspension. *M. incognita* J2 responded best to 1 µl of NaOH (pH =10) added to the 100 µl suspension. Movement of the nematodes was observed immediately and for up to 30 minutes after application.

The 669 PGPR strains were evaluated for the potential of mortality to *M. incognita* J2 *in vitro* and for nematode management in greenhouse, microplot, and field trials. Results indicated that the mortality of *M. incognita* J2 by the PGPR strains ranged from 0.0% to 100% with an average of 39%. Among the PGPR strains examined, 33.5% caused more than 50% mortality of *M. incognita* J2. In subsequent trials, *B. velezensis* strain Bve2 reduced *M. incognita* eggs per gram of cotton root in the greenhouse trials at 45 days after planting (DAP). *Bacillus mojavensis* strain

Bmo3, *B. velezensis* strain Bve2, *B. subtilis* subsp. *subtilis* strain Bsssu3, and the Mixture 2 (Abamectin + Bve2 + Bal13) suppressed *M. incognita* eggs per gram of root in the microplot at 45 DAP. *Bacillus velezensis* strains Bve2 and Bve12 also increased seed cotton yield in the microplot and field trials. Overall, results indicate that *B. velezensis* strains Bve2 and Bve12, *B. mojavensis* strain Bmo3, and the Mixture 2 have potential to reduce *M. incognita* population density and to enhance growth of cotton when applied as in-furrow spray at planting.

The 670 PGPR strains were evaluated for the mortality of *H. glycines* J2 *in vitro* and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to *H. glycines in vitro* was the genus *Bacillus* that consisted of 91.6% of the total 670 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that *B. velezensis* strain Bve2 consistently reduced *H. glycines* cyst population density at 60 DAP. *Bacillus mojavensis* strain Bmo3 suppressed *H. glycines* cyst and total *H. glycines* population density under greenhouse conditions. *Bacillus safensis* strain Bsa27 and Mixture 1 (Bve2 + Bal13) reduced *H. glycines* cyst population density at 60 DAP in the field trials. *Bacillus subtilis* strains Bsssu2 and Bsssu3, and *B. velezensis* strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. *Bacillus altitudinis* strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials.

Acknowledgments

I would like to extend my gratitude to everyone that helped me complete this journey. I want to express my deepest appreciation to my major professor, Dr. Kathy S. Lawrence, for her guidance and encouragement throughout this project. She continually and convincingly conveyed a spirit of diligence in regard to research and teaching, and passion in regard to life. Without her patience and endless support, this dissertation would not have been possible. I would like to thank Dr. Joseph Kloepper for encouraging me to find my interest in biocontrol of plant-parasitic nematodes and his guidance on the subject. Thanks to my committee members Dr. Edward Sikora, Dr. David Weaver, and Dr. Dennis Delaney for their contribution of time and guidance of this project. Special thanks to Dr. Patricia Donald and Dr. Gary Lawrence, for their help, encouragement, and support throughout the project. Thanks to John McInroy for his technical support. Thank you to the graduate students and undergraduate students, Drew Schrimsher, David Bailey, Amber Smith, Caroline Land, Justin Luangkhot, Stephen Till, William Groover, Daniel Dodge, Meredith Hall, David Dyer, Andrew Sikkens, Presley Townsend, Yangxue Han, Casie Spenser, Bruce Faulk, Magnolia Wilson, and Cole White, for their support that helped make this project possible.

I would also like to extend a special thanks to my husband, Hongyu Chen, and my family for their encouragement and unconditional support during my whole Ph.D. process.

Finally, I want to thank my best friends Ke Liu, Jia Xu, and Eming Lee. I cannot finish my Ph.D. journey without their help and support.

Table of Contents

bstract	.ii
cknowledgments	iv
ist of Tables	vii
ist of Figures	ix
ist of Abbreviations	xi
Chapter I: Literature review: Biological control potential of spore-forming plant growth- promoting rhizobacteria suppressing <i>Meloidogyne incognita</i> on cotton and <i>Heterodera</i> glycines on soybean	
I. Cotton and soybean	.1
II. Meloidogyne incognita on cotton and Heterodera glycines on soybean	.4
III. Current management practices for Meloidogyne incognita and Heterodera glycines	. 8
IV. Plant Growth-Promoting Rhizobacteria (PGPR)	18
V. Conclusion and future prospects	22
VI. References	24
Chapter II: Optimization of <i>in vitro</i> techniques for distinguishing between live and dead second stage juveniles of <i>Heterodera glycines</i> and <i>Meloidogyne incognita</i>	
I. Abstract	41
II. Introduction	42
III. Materials and methods	45
IV. Results	49

V.	Discussion
VI.	References
Chapt	er III: Biological control of <i>Meloidogyne incognita</i> by spore-forming plant growth- promoting rhizobacteria on cotton
I.	Abstract
II.	Introduction
III.	Materials and methods
IV.	Results
V.	Discussion
VI.	References
Chapt	er IV: Biological control of <i>Heterodera glycines</i> by spore-forming plant growth- promoting rhizobacteria on soybean
I.	Abstract
II.	Introduction
III.	Materials and methods
IV.	Results
V.	Discussion
VI.	References
Appen	dix 1119
Appen	dix 2
Appen	dix 3137

List of Tables

Chapter II. Optimization of *in vitro* techniques for distinguishing between live and dead second stage juveniles of *Heterodera glycines* and *Meloidogyne incognita*

Table 1. Percentages of live SCN J2 under different pH values over time in 30 minutes
Table 2. Response of SCN J2 to 1 or 10 μ l of 1N Na ₂ CO ₃ , 1N NaHCO ₃ , and 1N NaOH solutions at pH = 10
Table 3. Response of RKN J2 to different concentrations of 1N NaOH at pH = 1052
Table 4. SCN J2 infection of soybean roots after exposed to 1 µl 1N Na2CO3 live and dead determination
Table 5. RKN J2 infection of soybean roots after 1 μ l 1N NaOH live and dead determination54
Chapter III. Biological control of <i>Meloidogyne incognita</i> by spore-forming plant growth- promoting rhizobacteria on cotton
Table 1. Effect of PGPR strains on <i>M. incognita</i> J2 mortality percentage significantly higher than untreated control
Table 2. Efficacy of nine Bacillus PGPR strains on plant height, biomass, and M. incognitaeggs/g root on cotton under greenhouse conditions at 45 DAP
Table 3. Effect of six PGPR strains and two mixtures on cotton plant height, biomass, M.incognita eggs/gr at 48 DAP, and cotton yield in the microplots at 142 DAP
Table 4. Efficacy of six PGPR strains and two mixtures on plant height, plant biomass, andnematode population density at 40 DAP, and yield of cotton in a field production system at 150DAP
Chapter IV: Biological control of <i>Heterodera glycines</i> by spore-forming plant growth- promoting rhizobacteria on soybean
Table 1. PGPR strains effect on <i>H. glycines</i> J2 with more than 50% mortality percentage as compared to the industry standard biologicals Poncho/Votivo, Clariva, and chemical Temik as

Table 2. Effect of ten PGPR strains on <i>H. glycines</i> cyst numbers and total nematode population density in greenhouse trials at 60 DAP
Table 3. Effect of ten PGPR strains on soybean plant height (PH) and plant biomass (Bio) ingreenhouse trials at 60 DAP114
Table 4. Effect of five PGPR strains and two mixtures of PGPR strains on <i>H. glycines</i> populationdensity on soybean in the microplot at 60 DAP.115
Table 5. Effect of five PGPR strains and two mixtures of PGPR strains on early plant growth at60 DAP and yield on soybean at 160 DAP in the microplot
Table 6. Effects of five PGPR strains and two mixtures of PGPR strains on early soybean plantgrowth at 60 DAP and yield at 160 DAP in the field trials

List of Figures

Chapter I. Biological control potential of spore-forming plant growth-promoting rhizobacteria suppressing *Meloidogyne incognita* on cotton and *Heterodera glycines* on soybean

Figure 1. Life cycle of <i>M. incognita</i> .	5
Figure 2. Life cycle of <i>H. glycines</i>	8
Chapter II. Optimization of in vitro techniques for distinguishing between live and dead second stage juveniles of <i>Heterodera glycines</i> and <i>Meloidogyne incognita</i>	
Figure 1. SCN J2 responded to three sodium chemicals, 1N Na ₂ CO ₃ , 1N NaHCO ₃ , and 1N NaOH at 20 µl application)
Figure 2. RKN J2 responded to three sodium chemicals, 1N Na ₂ CO ₃ , 1N NaHCO ₃ , and 1N NaOH at 20 µl application)
Figure 3. Responses of SCN J2 to test agents at 30 minutes	1
Figure 4. Responses of RKN J2 to water and 1 µl of 1N NaOH at 30 minutes)
Figure 5. Stained SCN J2 in the root tissues from a live SCN treatment at 21 DAI (A) and the stained roots from the dead SCN treatments with no SCN J2 or females (B)	3
Figure 6. Stained RKN female with eggs in the root tissues from a live RKN treatment at 21 DA (A) and the stained root tissues from the dead RKN treatments with no RKN J2 or females (B)	
Chapter III. Biological control of <i>Meloidogyne incognita</i> by spore-forming plant growth- promoting rhizobacteria on cotton	
Figure 1. Cotton roots from greenhouse trials at 45 DAP. Untreated control (Left) and treatment with strain <i>B. velezensis</i> Bve2 (Right)90	
Figure 2. Cotton plant height was increased from greenhouse trials at 45 DAP. Untreated control	L

Figure 2. Cotton plant height was increased from greenhouse trials at 45 DAP. Untreated control (Left) and treatment with strain *B*. subtilis subsp. subtilis Bsssu3 (Right)90

Figure 3. Cotton plants in Plant Breeding Unit (PBU) at 40 DAP. Untreated control (Left) and	
treatment with strain B. velezensis Bve12 (Right)91	

Chapter IV: Biological control of *Heterodera glycines* by spore-forming plant growthpromoting rhizobacteria on soybean

Figure 1. Soybean plants treated with strain B. altitudinis Bal13 (Right) and untreated control (Left) at 60 DAP
Figure 2. Soybean roots treated with strain B. altitudinis Bal13 (Right) and untreated control (Left) at 60 DAP
Figure 3. Soybean treated with Mixture 2 (Right) and untreated control (Left) at 80 DAP118

List of Abbreviations

- PGPR Plant Growth-Promoting Rhizobacteria
- RKN Root-knot Nematode
- SCN Soybean Cyst Nematode
- PSRC Plant Science Research Center
- PBU Planting Breeding Unit
- PRRU Prattville Agricultural Research Unit
- TVRC Tennessee Valley Research Center
- TSA Tryptic Soy Agar

Chapter I. Biological control potential of spore-forming plant growth-promoting rhizobacteria suppressing *Meloidogyne incognita* on cotton and *Heterodera glycines* on

soybean

1. Cotton and soybean

1.1 Cotton

1.1.1 Cotton history and production

Cotton (*Gossypium* spp.) is one of the most important textile fibers in the world and its development has been associated with human activity since before recorded history, with estimations of cotton cultivation at least 3000 years ago (Lee and Fang 2015). According to the evidence of biogeographical distribution of cotton types, four different species of *Gossypium* were independently domesticated in the old world and new world (Lee and Fang 2015). *Gossypium arboretum* L. and *G. herbaceum* L., both diploids (2n = 26), are native to the Old World (Lee and Fang 2015). *Gossypium barbedense* L. and *G. hirsutum* L., both tetraploids (2n = 52), evolved in the New World (Lee and Fang 2015). *Gossypium barbedense* L. and *G. hirsutum* L., both tetraploids (2n = 52), evolved in the New World (Lee and Fang 2015). *Gossypium barbedense*, or extra-long-staple, Egyptian, and Pima cotton, and *G. hirsutum* or Upland cotton, are two species of cotton constitute all the current world fiber production (Lee and Fang 2015).

Currently 75 countries around the globe produce cotton; however, the United States, China, and India together produce nearly two-thirds of the world's cotton (USDA 2016a). In the United States, Upland cotton production was estimated at 12.46 million bales and extra-long staple production at 433,000 bales in 2015, with an average price of \$0.61 / pound (NCC 2016b). In Alabama, Upland cotton production was estimated at 554,000 bales in 2015, which was estimated at a value of \$169 million (NCC 2016b).

1.1.2 Cotton nematodes

The average annual cotton production losses due to plant diseases in the United States across the cotton belt over the last 20 years has been estimated at about 11% (NCC 2014). As the development of technology and improvements in host plant resistance over the last few years, some diseases have decreased, however, some diseases such as plant-parasitic nematodes have steadily increased in economic damage on cotton production (Starr et al. 2007). In 2014, cotton yield losses in the United States due to plant-parasitic nematodes were estimated at 870,000 bales, an estimated 5.5% of the total cotton production. Cotton yield losses due to *Meloidogyne* spp. were estimated at 494,000 bales (3.1% of total losses), *Rotylenchulus reniformis* losses were estimated at 333,000 bales (2.1% of total losses), and other nematode losses were estimated at 39,000 bales (0.2% of total losses) (Lawrence et al. 2015). *Meloidogyne incognita*, the only species in the genus *Meloidogyne* that is documented to parasitize and reproduce on cotton is found across the entire cotton belt in the United States and in many other regions of the world where the crop is grown (NCC 2016a). In Alabama, *M. incognita* and *R. reniformis* are also considered the predominant plant-parasitic nematodes on cotton (NCC 2016a; Gazaway and McLean 2003).

1.2 Soybean

1.2.1 Soybean history and production

Soybean (*Glycine max*), is the dominant oilseed crop in the United States and its domestication dates back to the Zhou Dynasty (1046-256 $_{BCE}$) in the eastern half of northern China (Hymowitz 1990; USDA 2016b). From 2010 to 2014, 86.4% soybean production came from the Americas, 10.6% from Asia, 2.3% from Europe, and 0.7% from Africa (FAOSTAT 2015). Soybean was introduced to North America by Samuel Bowen in 1765 and the primary products are oil and meal (Hymowitz et al. 2015). In the United States, soybeans are planted in 31 states

and the top 10 states for soybean production in 2015 were Iowa, Illinois, Minnesota, North Dakota, Indiana, Nebraska, South Dakota, Ohio, Missouri, and Kansas (NASS 2016a). In Alabama, total soybean production was 20,090,000 bushel in 2015, which was estimated at \$191 million based on an average of \$9.49 per bushel (NASS 2016b).

1.2.2 Soybean nematodes

Soybean is susceptible to many plant-parasitic nematodes. Lewis et al. (1993) surveyed the plant-parasitic nematode distribution on soybean in South Carolina and found 11 different plantparasitic nematode genera. Helicotylenchus and Scutellonema occurred in over 70% of the soybean soil samples, *Pratylenchus* and *Paratrichodorus* in more than 60%, *Meloidogyne* spp. in 27% and Hoplolaimus columbus in 14%, Rotylenchulus reniformis and Belonolaimus spp. in less than 10%, Tylenchorhynchus and Mesocriconema (Criconemella) in over 40%, and Heterodera glycines in 14% (mainly race 14 and race 3) (Lewis et al. 1993). Koenning and Barker (1998) surveyed the plant-parasitic nematodes on soybean in North Carolina from 1994 to 1996 and found six genera of plant-parasitic nematodes. Of those, H. glycines was detected in 71% of the fields, M. incognita was detected in 26% of the fields, *Helicotylenchus* spp. were detected in all fields, Tylenchorhynchus spp. were found in 62%, Paratrichodorus spp. in 56%, and Pratylenchus spp. in 72% of the fields (Koenning and Barker 1998). In the United States, H. glycines is considered the most economically damaging disease on soybean production, followed by *Phytophthora* root and stem rot and seedling diseases (Wrather et al. 2010). Soybean yield losses caused by H. glycines were estimated to be 25% to 38% of yield total losses in 28 U.S. states, which was more than any other soybean disease from 2006 to 2007 (Wrather and Koenning 2009).

2. Meloidogyne incognita on cotton and Heterodera glycines on soybean

2.1 Meloidogyne incognita

Meloidogyne incognita (Kofoid &White) Chitwood, commonly known as the southern root-knot nematode, is a sedentary endoparasitic plant-parasitic nematode and has a wide host range encompassing more than 3000 plant species (Abad et al. 2003). It is distributed in tropical and subtropical areas around the world (Sasser 1980) and *M. incognita* is considered the most damaging crop pathogen in the world (Trudgill and Blok 2001). *Meloidogyne incognita* was first identified on cotton in 1889 in the southern United States (Sasser 1954). The distribution of *M. incognita* has been found in all the cotton-producing states in the US and in many other regions of the world where cotton is grown (NCC 2016a). Based on a set of host differentials, *M. incognita* was differentiated into four races R1, R2, R3, and R4, but only R3 and R4 are able to reproduce on cotton (Taylor and Sasser 1978).

2.1.1 Disease symptom of *Meloidogyne incognita* on cotton

The most characteristic symptom of *M. incognita* on susceptible cotton varieties is the presence of galls on the lateral roots. Cotton plants are stunted or leaves are yellowing when infected by *M. incognita*. Symptoms often occur in patches or as irregular areas within fields. However, the symptom of *M. incognita* infection on cotton varies with the resistance of the cotton varieties. Brodie et al. (1960) found that *M. incognita* resistance in the seedling stage of Auburn 56 and in five breeding lines of cotton was associated with three kinds of host response: root necrosis, retarded gall development, and failure of the majority of nematodes to reach maturity.

2.1.2 Life cycle of *Meloidogyne incognita*

Meloidogyne incognita undergoes the first molt inside the egg (Fig. 1A) to develop from first-stage juveniles (J1) to second-stage juveniles (J2) (Fig. 1B) before hatching (Abad et al.

2009). Hatched, infective J2 then penetrate the host plant roots, usually close to the root tip, by using their stylet and releasing secretions containing cell-wall-degrading enzymes to enable the M. incognita J2 to enter the root cells (Abad et al. 2003). The J2 migrates intercellular and intracellularly through the cortical cells to the root tip where the active meristematic root tissue growth occurs (Abad et al. 2009). After migration, the J2 reaches the developing vascular root tissue. In order to obtain nutrients and sustain their subsequent sedentary parasitic stages, each J2 induces the differentiation of five to seven parenchymatic root cells into a multinucleate and hypertrophied feeding cells often referred to as giant cells (Abad et al. 2009). Giant cells grow very large in size. Root cells neighboring the giant-cells also enlarge and divide rapidly and resulting in gall formation presumably as a results of plant growth regulator diffusion. Meloidogyne incognita J2 feed from these giant cells and molt three additional times to reach the reproductive mature adult stage. Males molt back to the vermiform shape and migrate out of the plant to mate with females. Females (Fig. 1D) become pear-shaped, produce 200-1000 eggs, and release eggs on the root surface in a protective gelatinous matrix (Abad et al. 2009). The life cycle may be completed in as few as 20 days at an optimum temperature of 25 - 30 °C.

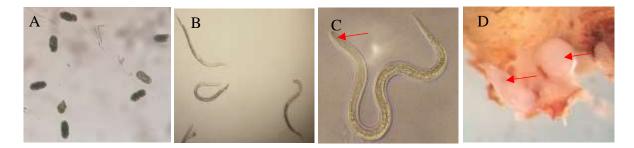


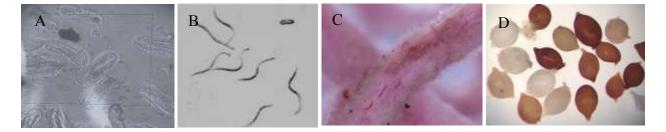
Figure 1. Life cycle of *M. incognita*. (A) *M. incognita* eggs under the microscope (×4); (B) *M. incognita* J2 under the microscope (×4); (C) *M. incognita* stylet of J2 under the microscope (×25);
(D) *M. incognita* females attached to the roots (Photos by Ni Xiang).

2.2 Heterodera glycines

Heterodera glycines Ichinohe, soybean cyst nematode (SCN), is a sedentary endoparasitic plant-parasitic nematode. It was first reported in the United States in North Carolina in 1954 (Winstead et al. 1955) and now has been found in every soybean-producing state in the U.S. except New York and West Virginia probably due to their limited soybean production acreage (NASS 2016a). Most of the hosts of *H. glycines* are legumes such as soybean, adzuki bean, snapbean, and scarlet runner bean (Fujita et al. 1934; Ichinohe 1953; 1959). Anand and Gallo (1984) tested more than 9,000 soybean lines against one or more races of H. glycines and found that all those were hosts. Other legumes, including all cultivars of snapbean, mungbean, green pea, and common lespedeza that have been tested, were hosts (Riggs and Hamblen, 1962; 1966). They also tested representatives of 50 nonleguminous families and found most are not host (Riggs and Hamblen, 1962; 1966). However, 63 species representing 50 genera in 22 families were identified as H. glycines hosts with the Tubiflorae and Rosales families having the most species once tested and poor hosts or nonhosts are existed (Riggs 1992). The major economic host of H. glycines is soybean, although, bean, lespedeza, and tomato are other economically importance hosts (Riggs 1992). Many weed hosts (Venkatesh et al. 2000; Chen et al. 2006; Donald et al. 2007) are important because they may affect control practices for H. glycines. The host range of the plant-parasitic nematode provides important information for management of *H. glycines*.

Due to abundant genetic variability in *H. glycines* virulence, populations of *H. glycines* were characterized into 4 races by a race scheme developed by Golden et al. (1970) and then were expanded to 16 races by Riggs and Schmitt (1988). Modifications of the race test were developed as new virulence phenotypes were observed as new soybean varieties were released. In 2002, Niblack et al. revised the race scheme into 64 HG type test which was designed to contain all

published documents of plant resistance and make the HG scheme more useful to soybean breeders. The HG type scheme described the populations of *H. glycines* based on a set of indicator lines that represent seven sources of resistance (line 1 - PI 548402 (Peking), line 2 - PI 88788, line 3 - PI 90763, line 4 - PI 437654, line 5 - PI 209332, line 6 - PI 89772, and line 7 - PI 548316 (Cloud) which are used in U.S. breeding programs and differentiated according to their genes for resistant or tolerant soybean cultivars (Niblack 2002). Producers and seed companies use the race designation.


2.2.1 Disease symptom of Heterodera glycines on soybean

The classic symptoms associated with damage caused by *H. glycines* are stunting and chlorosis. Fewer seeds per pod and fewer pods per plant also are common symptoms of infected plants (Mueller 1984). Crop losses are a consequence of the interaction between *H. glycines* and soybean plants. Wang et al. (2003) reported that yield losses of approximately 15% can occur in the absence of obvious symptoms. The most important characteristic of the presence of *H. glycines* is the presence of white or yellow females or dark-brown cysts attached to the plant's roots.

2.2.2 Life cycle of Heterodera glycines

The life cycle of *H. glycines* is similar as most plant-parasitic nematodes. Upon fertilization of eggs (Fig. 2A), embryogenesis proceeds to the first-stage juvenile (J1), which molts to form second-stage juvenile (J2) (Fig. 2B) (Lauritis et al. 1983). J2 is exposed to the soil environment during the interval between hatching and penetration of a root. Upon contact with a susceptible host root, the J2 penetrates the root (Fig. 2C) and initiate the formation of a feeding site (syncytium) (Ross 1958). The syncytium consists of large, distinctive, metabolically active cell and is formed by incorporating of neighboring plant cells through cell wall dissolution and cell fusion, from which the J2 obtains nourishment. Postembryonic development continues with three

additional molts before adulthood is reached and reproduction occurs (Lauritis et al. 1983). Sexual differentiation is detectible during the third-stage. By the fourth-stage, males become vermiform and are coiled within the fourth-stage cuticle, while females continue to swell. Males come out of the fourth-stage cuticle, exit the roots, and seek sedentary mature females for reproduction (Koenning 2004). The mature lemon-shape female ruptures the root epidermis with her posterior end, exposing her vulva to rhizosphere to facilitate mating (Raski 1950). The female is white at this time and receptive to copulation. After insemination, females female (Fig. 2D) begin to produce 200 - 500 eggs (Fig. 2A). Some of the eggs are deposited in a gelatinous matrix and others retained inside her body (Niblack and Karr 1994). The female body wall eventually turns tans and becomes the cyst (Fig. 2D). The time to complete the life cycle of a cyst nematode will vary depending on the temperature. At 25 °C, it takes 21 days for *H. glycines* to develop from egg hatch to mature adult (Lauritis et al. 1983).

Figure 2. Life cycle of *Heterodera glycines*. (A) *H. glycines* eggs (×10); (B) *H. glycines* J2 (×4); (C) J2 infecting soybean roots (×4); (D) Young females (white) and soybean cysts (yellow or brown) (Photos by Ni Xiang).

3. Current management practices for Meloidogyne incognita and Heterodera glycines

Chemical control was the mainstay for reducing nematode population density in most economic crops in intensive production systems throughout much the 20th century (Nyczepir et al. 2009). However, environmental and human health concerns reduced the availability of such control options including the use of 1, 2-dibromo-3-chloropropane (DBCP) in 1979 (EPA 2007).

Many other nematicides suffered the similar fate. Some of the chemicals are broad-spectrum with nontarget effects beyond efficacy to the targeted nematodes. The nematicide used across most of the crop acreage was Aldicarb (Temik) (Bayer CropScience, Raleigh, NC), which will be completely banned for use in 2018 by EPA (Cone 2010). Numerous other nematicides have been tested and found to exhibit nematicidal properties (Xiang et al. 2013; Lawrence et al. 2016). The most recent one that has been released on the market is Fluopyram + Imidacloprid (Velum TotalTM) (Bayer Crop Science, Raleigh, NC). Lawrence et al. (2016) evaluated the nematicides Velum TotalTM as in-furrow spray over the seed treatment Aeris (Thiodicarb + Imidacloprid, 0.75 mg ai/seed, Bayer Crop Science, Raleigh, NC) on cotton in the field trials on *M. incognita* and *R. reniformis*. Results indicated that the Velum Total plus Aeris reduced nematode population density similar to that of Temik 15G.

Cultural practices such as crop rotation in place of extended monocropping with annual crops or rotating crops with non-host crops or resistant cultivars is an economical method for nematode management. *Heterodera glycines*, exhibits a high level of specialization and has a host range which allows this nematode to be effectively managed by crop rotation. Niblack (2005) revised the "Rotate (non-host) - Rotate (resistant cultivar 1) - Rotate (resistant cultivar 2)" strategy to reduce *H. glycines* population density. *Meloidogyne incognita*, has a very large and broad host range. In India alone, 232 plant genera have been reported as hosts to *M. incognita* (Krishnappa 1985). When both nematodes *H. glycines* and *M. incognita* are present in the same field, crop rotation options are very limited for their management.

Planting a resistant cultivar is an effective tool for nematode management. Resistant cultivars contain resistance genes that are combined in the host through one or multiple breeding cycles and many of these genes are quantitative. Plant breeders have conducted much research on

host resistance in cotton and soybean nematodes such as M. incognita and H. glycines. Gutiérrez et al. (2010) found SSR (simple sequence repeat) markers closely associated with genes for resistance to *M. incognita* race 3 on chromosomes 11 and 14 of Upland cotton. Jenkins et al. (2012) developed new SSR markers for marker assisted selection of *M. incognita* resistant plants in cotton. This work will help commercial breeders rapidly develop *M. incognita* resistant cultivars by using these markers. Wang et al. (2012) did QTL analysis for transgressive resistance to M. incognita in interspecific cotton progeny derived from susceptible parents and results indicated that high levels of nematode resistance in cotton may be attained by pyramiding positive alleles using a QTL mapping approach. In 1970, a high level of *M. incognita* resistance was developed in the germplasm line Auburn 623 RNR. McPherson et al. (2004) evaluated the mode of inheritance of RKN resistance in M-315 RNR (a line with Auburn 623 RNR source of resistance) and in M78-RNR (a day-neutral version of the race stock line T78). These lines were crossed with M8, an RKN- susceptible cotton line, and results indicated that the Auburn 623 RNR source of RKN resistance should be easily transferable to commercial cultivars. Keim et al. (2013) evaluated five resistant lines with SNP haplotypes for RKN QTLs on A11 (RKN1) and A07 (RKN2) and five susceptible cultivars for RKN eggs/g root at 45 DAP and juveniles/500cc soil at harvest and found that resistant group had 50% less eggs/g root and 63% less juveniles/500cc compared to the susceptible group across all locations. Kadam et al. (2016) analyzed the phylogenetic diversity of the Rhg1 and Rhg4 loci in soybean and developed SNP markers for H. glycines resistant genes and QTL. Shi et al. (2015) identified SNPs and developed marker assay for high-throughput selection of soybean H. glycines nematode resistance. These studies are expected to accelerate H. glycines resistance breeding programs (Kadam et al. 2016; Shi et al. 2015). Cianzio et al. (2016) registered 'AR11SDS' soybean germplasm that is highly resistance to sudden death syndrome death syndrome (SDS) caused by *Fusarium virguliforme*, resistant to *H. glycines* race 3, and moderately resistant to iron deficiency chlorosis (IDC). Carter et al. (2011) developed and released 'N7003CN' soybean with high yield and resistance to *H. glycines* race 2. When both nematodes are present in the same field, soybean cultivars with both *M. incognita* and *H. glycines* resistance genes should be considered.

3.1 Biological control of nematodes

Biological agents have also been used in the management of plant-parasitic nematodes. In recent years, biological control agents for plant-parasitic nematode management has attracted more attention, the market for biopesticides is growing, and the interest in microbial control research is increasing. Some biological control products in the market such as *B. firmus* (Bio-Nem-WP/BioSafe) (Agrogreen, Ashdod, Israel) (Keren-Zur et al. 2000), *B. amyloliquefaciens* strain IN937a and *B. subtilis* strain GB03 (BioYield) (Gusrafson LLC, Plano, TX) (Burkett-Cadena et al. 2008), *B. firmus* GB-126 (VOTIVO) (Bayer CropScience, Raleigh, NC) (Castillo et al. 2013), *Bacillus* spp. (Pathway Consortia) (Pathway Holdings, NY, USA) (Askary 2015) are playing a role in the management of plant-parasitic nematodes.

Biological control (or biocontrol), was described by Eilenger et al. (2001) as the use of living organisms to suppress the population density or impact of a specific pest organism, making it less abundant or less damaging than it would otherwise be. For plant pathologists, biological control is the direct or indirect manipulation of microorganisms for the purpose of reducing the inoculum density or inoculum potential of a plant disease (Nelson et al. 2004). Biological control of nematodes is defined as the reduction of nematode population density through the action of living organisms other than nematode-resistant plant cultivars, which occur naturally or through the manipulation of the environment or the introduction of antagonists (Stirling 1991). Mechanisms of biological control acting through antagonistic microorganisms would have to act directly on the pathogen (antagonism) or through the intermediate agency of the host (Baker 1968). Two main groups of mechanisms can be concluded which are antagonism (antibiosis, competition for nutrients or niche exclusion, and siderophore-mediated suppression) and induced resistance (systemic acquired resistance or SAR and induced systemic resistance or ISR) of biological control of plant pathogens (Park 1960; Baker 1968; Kloepper et al. 1992; Hammerschmidt 1999).

The best stages of plant-parasitic nematodes to manage with biological control are the egg and second-stage juvenile stages. These life stages exist outside of the plant hosts in the water film of the soil particles which allows the antagonistic microorganisms have the opportunity to come in contact, infect, and parasitize the nematodes. If these two stages of the plant-parasitic nematodes are controlled, the life cycle of the nematodes will be terminated and result in reduce population density of the nematode and a successful management.

The main antagonists used for nematode biocontrol are fungi such as nematode-trapping fungi, endoparasitic fungi, cyst and egg parasites, bacteria such as *Pasteuria* as a hyperparasite of nematode, predatory and endomopathogenic nematodes and microarthropods, plant growth-promoting rhizobacteria and endophytes (Stirling 2014). Other antagonists (i.e., viruses, mites, collembola, turbellarians, oligochaetes, and protozoans) may reduce nematode populations but are limited on their efficacy. Two novel RNA viruses distantly related to known nodaviruses were found infecting *Caenorhabditis* (Félix et al. 2011). Bekal et al. (2014) found a novel flavivirus soybean cyst nematode virus 5 (SbCNV-5) in all nematode developmental stages of *H. glycines*.

Bringing a biocontrol product to market and demonstrating that it is effective is a complex process. This process involves innumerable steps beyond identification of the biocontrol agent.

Thus many issues must be addressed during product registration. Stirling (2014) outlines the steps as follows: 1. Identifying the potential useful biocontrol agents such as collecting, identifying large number of isolates, initial *in vitro* screening against target nematodes, and screening the isolates in the greenhouse and microplot with field soil trials. 2. Technical and commercial issues associated with registration addressed such as target market, mass-production of the agents and formulation, technology transfer and protection of intellectual property, and registration. 3. Efficacy of the registered product such as establishment and reproduction or competition in the soil, efficacy demonstrated in different soil types in the field trials, mechanism understood, and use guidelines determined and recommendations made available.

3.1.1 Techniques applied to determine efficacy toward plant-parasitic nematodes during *in vitro* screening of potential biological control agents

Most of the chemical or biological control product development for the management of plant-parasitic nematodes begins with the initial screening of the biological control agents *in vitro*. The *in vitro* screening of large number of samples can save time and money and determine the best candidates for advancement to greenhouse and field trials. However, distinguishing between live and dead plant-parasitic nematodes when they are exposed to the chemicals or biological compounds is a challenge. Multiple methods have been tried to distinguish between live and dead nematode eggs and juveniles. Different stains have been tried on different kinds of nematodes. Shepherd (1961) found that new blue R can stain the body contents of dead *Tylenchida* while live nematodes remain unstained. Chaudhuri et al. (1966) stained dead free-living nematodes with eosin-Y while live nematodes remained unstained. Ogiga and Estey (1974) found that meldola blue and nile blue A are superior and more dependable for distinguishing dead from living nematodes on the specimens of *Dorylaimus*, *Helicotylenchus*, *Mononchus*, *Panagrolaimus*,

Pratylenchus, Rhabditis, Tylenchorhynchus, and Xiphinema species but not Heterodera and Meloidogyne species. Meyer et al. (1988) tested seven different stains on the eggs of H. glycines and found that chrysoidin, eosin-Y, new blue R, and nile blue A were useful in differentiating dead from live eggs while acridine orange, eosin-Y, fluorescein, and fluorescein diacetate differentially stained live and dead eggs when viewed with fluorescence optics. These staining methods are timeconsuming often requiring microscope capability and none of them distinguished between live and dead juveniles of *H. glycines* and *M. incognita*. Bird (1979) found that an enzymatically induced fluorescence method using fluorescein diacetate (FDA) can successfully assess the viability of nematodes under UV light. Sample preparation was lengthy for multiple samples. Schroeder and MacGuidwin (2007) used fluorescein isothiocyanate (FITC) to distinguish live H. glycines and found that nematodes incubated in FITC remained active with fluorescence even after two weeks at room temperature, however, not all the nematodes acquired fluorescence quickly or had uniform response. Grego et al. (2013) found that CellTracker Green labeling (CTG) method was able to distinguish live nematodes from dead anoxia-impacted nematodes. However, all these techniques require lengthy sample preparation and fluorescence microscopes which will not facilitate screening large numbers of samples. Some studies also tried tactile methods. Faske and Starr (2006) distinguished live from dead nematodes by touching each nematode with a small probe when testing the sensitivity of M. incognita and R. reniformis to Abamectin (Syngenta, Greensboro, NC). This method is slow and not feasible if many samples or chemicals need to be tested. Quick techniques for distinguishing between live and dead plant-parasitic nematodes are needed. Xiang and Lawrence (2016) developed a rapid technique that can successfully distinguish between live and dead J2 of *M. incognita* and *H. glycines*. This is a useful technique for high throughput screening.

3.1.2 Fungal antagonists for plant-parasitic nematodes

Fungi and bacteria are the most widely tested microorganisms for biocontrol activity on plant-parasitic nematodes. Chen and Dickson (2004) divided fungal antagonists of nematodes into five groups: 1) trapping (predacious) fungi, 2) endoparasites of vermiform nematodes, 3) parasites of sedentary females and eggs, 4) fungi producing antibiotic substances and 5) vesicular – arbuscular mycorrhizal fungi.

3.1.2.1 Nematode - trapping fungi

Nematode-trapping fungi, are commonly found in agricultural soils and capture nematodes or other microorganisms or microscopic animals with trapping structures such as adhesive networks, adhesive knobs, constricting rings, non-constricting rings, and adhesive branches (Stirling 2014). Stirling (2014) reported that the fungi that use nematodes as a nutrient source are widely distributed across the fungal kingdom. Those are: 1) Ascomycota including Hypocreales (*Drechmeria, Harposporium, Hirsutella, Fusarium, Pochonia, Purpureocillium*) and Orbiliales (*Arthrobotrys, Brachyphoris, Dactylella, Dactylellina, Drechslerella, Duddingtonia, Gamsylella, Monacrosporium, Orbilia*), 2) Basidiomycota including *Nematoctonus* and *Hohenbuehelia*, 3) Blastocladiomycota including *Catenaria*, 4) Zoopagomycotina including *Cystopage, Stylopage,* and *Rhopalomyces*, and 5) Entomophthoromycota including *Meristacrum* (Stirling 2014). For example, *Drechslerella dactyloides* and *D. brochopaga* were evaluated against *Rotylenchulus reniformis in vitro* and in greenhouse conditions (Castillo et al. 2010). Monascrosporium *drechsleri* was reported to attack *H. glycines* J2 (Liu and Chen 2000).

3.1.2.2 Endoparasites of vermiform nematodes

Fungal endoparasites of vermiform nematodes include encysting species, species forming adhesive conidia, species with conidia that may be ingested, and species with gun cells (Chen and Dickson 2004). Stylopage, Catenaria, Nematoctonus, Hohenbuehelia, Pleeurotus, Drechmeria, Harposporium, Hirsutella. Catenaria anguillulae, a saprophytic fungus, is capable of colonizing nematodes, rotifers, and tardigrades (Stirling 2014). The zoospores of C. anguillulae encyst and germ tubes either enter the body through orifices or penetrate directly through the cuticle to initiate a new infection (Stirling 2014). Some studies considered C. anguillulae as a facultative endoparasite of nematodes (Vaish and Singh 2002) and indicated that C. anguillulae regulated the population of M. graminicola on rice (Singh et al. 2007). Catenaria auxiliaris, attacks saccate females of endoparasites rather than vermiform nematodes (Stirling 2014). Tribe (1977) reported that C. auxiliaris completely destroyed young females of H. schachtii. However, its infection occurs at a later stage of development; females were destroyed but eggs were unharmed. Recently, C. auxiliaris was found to parasitize the R. reniformis in Alabama (Castillo and Lawrence 2013). However, C. auxiliaris has never been cultured and is considered to be an obligate parasite. Hirsutella rhossiliensis and Hirsutella minnesotensis were found to parasitize the J2 of H. glycines by Chen and Liu (2005), and H. rhossiliensis was negatively correlated with fungal inoculation level and positively correlated with the final nematode population densities in greenhouse trials.

3.1.2.3 Parasites of sedentary females and eggs

Parasites of sedentary females and eggs are associated with *M. incognita, Heterodera* spp., and *R. reniformis*. About 245 fungal species have been reported associated with females, cysts, and eggs of soybean cyst nematode from Brazil, Canada, China, Colombia, and the USA (Chen 2004). Eight genera of fungi including *Exophiala*, *Fusarium*, *Gliocladium*, *Neocosmospora*, *Paecilomyces*, *Phoma*, *Stagonospora*, *and Pochonia* were commonly found from females and cysts of soybean cyst nematode (Chen 2004). Paecilomyces lilacinus strain 251 was commonly found to be an egg-parasite fungus that can reduce egg numbers of *M. javanica* and *R. reniformis*

on tomato plants (Freitas et al. 1995; Kiewnick and Sikora 2006; Walters and Barker 1994; Castillo et al. 2013).

3.1.2.4 Fungi producing antibiotic substances

Some fungi produce substances toxic to plant-parasitic nematodes or substances that inhibit or suppress egg hatching. *Paecilomyces*, *Pochonia*, *Fusarium*, *Aspergillus*, *Trichoderma*, *Myrothecium*, and *Penicillium* were found to produce toxins to vermiform nematode species and their eggs (Chen and Dickson 2004). More fungal genera were listed for their nematicidal metabolites and nematode-toxic abilities by Li and Zhang (2014). The toxic compounds are mainly from the fungi in Ascomycota and Basidiomycota. These toxic compounds belong to diverse chemical groups including alkaloid, quinone, isoepoxydon, pyran, furan, peptide, macrolide, terpenoid, fatty acid, diketopiperazine, aphthalene and simple aromatics Li and Zhang (2014).

3.1.2.5 Vesicular - arbuscular mycorrhizal fungi

The response of vesicular-arbuscular mycorrhizal (VAM) fungi varies. Some reports indicated that VAM fungi have had little or no effect on population density of *H. glycines* (Chen 2004). However, arbuscular mycorrhizal fungi (AMF) were reported to affect the *Meloidogyne* spp. infection. Vos et al. (2012a) found that the penetration of *M. incognita* J2 was significantly lower in mycorrhizal colonized roots, as well as the numbers of third and fourth-stage juveniles and females accumulated in mycorrhizal colonized roots, than in control roots. They also found that AMF can induce systemic resistance in tomato plants against the sedentary nematode *M. incognita* and the migratory nematode *Pratylenchus penetrans* (Vos et al. 2012b).

3.1.3 Bacterial antagonists of plant-parasitic nematodes

A few bacterial species have been identified by their biocontrol potential on plant-parasitic nematodes. *Pasteuria* spp. and plant-growth promoting rhizobacteria (PGPR) received the most

attention in recent years. *Pasteuria* spp. are a group of obligatory parasitic, endospore- and mycelium-forming bacteria (Chen 2004). Some *Pasteuria* spp. are species specific. The endospores of *Pasteuria penetrans* were found more infective to *Meloidogyne* spp. than any other species (Mankau and Prasad 1977; Slana and Sayre 1981). Later, host specificity of four isolates of *P. penetrans* within 15 *Meloidogyne* spp. were examined by Stirling and specific endospores attachment was observed and the attachment specificity occurred at a sub-species level as well (Stirling 1985). Some species of *Pasteuria* were found to parasitize cyst nematodes (*Heterodera* and *Globodera* spp.). *Pasteuria nishizawae* was reported to reduce *H. glycines* on soybean in Japan (Nishizawa 1987). The attachment tests with the endospore of this isolate of *Pasteuria* indicated that the endospores only attached to *H. glycines*, *H. trifolii*, *G. rostochiensis* and several other unidentified populations of *Heterodera*, but did not attach to root-knot nematodes or other plant-parasitic nematodes (Sayre et al. 1991).

4. Plant growth-promoting rhizobacteria (PGPR)

Plant growth promoting rhizobacteria (PGPR), are a group of beneficial bacteria that increase the nutrient uptake, growth, and yield of plants, and often exhibit biological control activity against plant pathogens (Kloepper and Schroth 1978; Liu 2016). It was first found that the rhizobacteria significantly promoted plant growth as shown by the substantial increases in fresh matter yield obtained with inoculated radishes (Kloepper and Schroch 1978; Antoun 2013). Further information indicated that PGPR are a very small portion of rhizobacteria (2 - 5%) that can promote plant growth directly through as biofertilizers, or as rhizoremediators, or phytostimulators, and stress controllers, or indirectly through as inhibitor of plant pathogens including fungi, bacteria, viruses, and nematodes (Lugtenberg and Kamilova 2009; Antoun 2013).

PGPR are found among both gram-negative and gram-positive bacteria. However, predominantly most are gram-negative bacteria, such as fluorescent and nonfluorescent pseudomonads, *Burkholderia*, *Arthrobacter*, *Serratia*, *Achromobacter*, *Rhizobium* spp. capable of nitrogen fixation, *Azospirillum* spp., *Azotobacter* spp., and Diazotrophs spp. (Antoun 2013).

Fewer gram-positive bacteria are documented. Isolates of *Brevibacterium*, *Corynebacterium*, *Micrococcus*, *Paenibacillus*, *Sarcina*, *Bacillus*, and *Pseudomonas* were reported as PGPR (Antoun 2013; Kloepper et al. 2004). Among all the bacterial genera which were identified as PGPR, *Bacillus* and *Pseudomonas* spp. are two predominant genera investigated (Podile and Kishore 2007).

4.1 PGPR as biocontrol agents

PGPR play a very important role in protection of plant health. The direct effect by PGPR on plant health is promoting plant growth in the absence of plant pathogens through actions such as biofertilizers. Indirect protection occurs through reducing plant diseases caused by pathogens (Lugtenberg and Kamilova 2009; Kumar 2011). The biocontrol mechanisms of PGPR are commonly knowns as antibiosis, lytic enzyme production, and ISR (Kumar 2011).

4.2 Mechanisms of Bacillus PGPR against plant pathogens

Bacillus spp. are one of the intensively studied groups of PGPR. The principal mechanisms of growth promotion of *Bacillus* includes production of growth stimulating phytohormones, solubilization, and mobilization of phosphate, siderophore production, antibiosis, production of antibiotics, inhibition of plant ethylene synthesis, and induction of plant systemic resistance to pathogens (Kloepper et al. 2004; Kumar 2011). Ongena and Jacques (2008) illustrated the mechanisms of *Bacillus* lipopeptides on biological control of plant disease including rhizosphere competence, direct inhibition of phytopathogens, and host plant immunization.

4.2.1 Induced Systemic Resistance (ISR) by *Bacillus* spp.

A few studies of ISR of *Bacillus* spp. on plant parasitic nematodes are found. Kloepper et al. (2004) summarized the ISR by *Bacillus* spp. specifically *B. amyloliquefaciens*, *B. subtilis*, *B. pasteurii*, *B. cereus*, *B. pumilus*, *B. mycoides*, and *B. sphaericus* eliciting significant reductions in the incidence or severity of various diseases on a diversity of hosts. Kempster et al. (2001) investigated the chemical and biological induction of resistance to the clover cyst nematode (*Heterodera trifolii*) in white clover (*Trifolium repens*). They found that *Pseudomonas*-like spp. and *B. cereus* induced a response on white clover as measured by reduced fecundity of the nematodes, increased the proportions of distorted females and of females with fewer eggs compared to water-treated controls, which is similar to that resulting from the chemical induction (Kempster et al. 2001). Schrimsher (2013) found that *B. firmus* strain GB-126 has a systemic effect on *H. glycines* and a decrease in *H. glycines* population density was observed when GB-126 was present in the split-root assay in the greenhouse.

4.2.2 Antagonism by Bacillus PGPR

The mode of action of antagonistic bacteria for the biocontrol of sedentary and migratory endoparasitic nematodes includes obligate parasitism, reduction in penetration, growth inhibition due to competition for nutrients and antibiosis associated with bioactive metabolites (Mendoza, et al. 2008). Mendoza et al. (2008) found that significant rates of paralysis and mortality were detected after incubation of three plant parasitic nematode species *Radopholus similis*, *M. incognita*, and *Ditylenchus dipsaci* in low concentrations of the pure culture filtrates of *Bacillus firmus* following removal of the bacterial cells. The production of bioactive compounds or secondary metabolites by the bacteria was responsible for nematode paralysis and mortality (Mendoza et al. 2008).

4.3 Bacillus PGPR against Meloidogyne incognita and Heterodera glycines

Increasing environment concerns and growing interest in microbial control have led to studies of biological control of *M. incognita* and *H. glycines*. Kloepper et al. (1992) found that the rhizosphere bacteria *B. megaterium*, *B. pumilus*, and *Bacillus* spp. were antagonistic to both *H. glycines* and *M. incognita*. Twelve species of *Bacillus* have been documented for *M. incognita* management, including *B. amyloliquefaciens* (Burkett-Cadena et al. 2008), *B. cereus* (Siddiqui and Mahmood 1999), *B. circulans* (Ambo et al. 2010), *B. coagulans* (Ambo et al. 2010), *B. firmus* (Castillo et al. 2013; Terefe et al. 2009), *B. licheniformis* (Siddiqui and Husain 1991; Siddiqui and Mahmood 1992), *B. megaterium* (Kloepper et al. 1992; Padgham and Sikora 2007; Mendoza et al. 2008), *B. penetrans* (Brown and Smart 1985; Brown et al. 1985), *B. polyinyxa* (Khan and Akram 2000), *B. sphaericus* (Krechel et al. 2002), *B. subtilis* (Raupach and Kloepper 1998; Kavitha et al. 2007), and *B. thuringiensis* (Devidas and Rehberger 1992; Zuckerman et al. 1993; Mohammed et al. 2008). These *Bacillus* strains indicated different mechanisms of antagonistic activity on *M. incognita* including ISR and antagonism.

Some studies reported that specific strains of *Bacillus* spp. can suppress the population of *H. glycines in vitro* and in greenhouse experiments. Sharma (1995) evaluated the efficiency of toxins from pure cultures of *B. sphaericus* (Bs 2362), *B. thuringiensis* var. *israelensis* (Bti-H-14), and *B. thuringiensis* var. *kurstaki* (Btk-HD-1) against *H. glycines* in a greenhouse pot experiment and none of the toxins significantly reduced the final nematode population density in relation to the untreated control. Sharma and Gomes (1996) evaluated the effect of those toxins again on oviposition and juvenile hatching of *H. glycines* race 3 in the greenhouse and found the number of hatched juveniles treated with Bs 2362 was significantly less than the control in one experiment. Tian and Riggs (2000) reported that among the 20 isolates that suppressed (\geq 50%) *H. glycines* in

the initial greenhouse screening test, four were *Pseudomonas* spp., two *Bacillus* spp. (*B. cereus* and *B. pumilus*), three *Paenibacillus* spp., and one *Streptomyces* spp.

4.4 Commercial Bacillus products for plant-parasitic nematodes management

There are some biological control products available on the market for the management of plant-parasitic nematodes. BioYield, a combination of *B. amyloliquefaciens* strain IN937a and *B. subtilis* strain GB03, was developed by Gustafson for management of soil-borne pathogens and suppression of *M. incognita* population density on tomato plants (Kloepper et al. 2004; Burkett-Cadena et al. 2008). BioNem-WP, a *B. firmus* product developed by AgrGreen, was reported effective against *M. incognita*, *M. hapla*, *Heterodera* spp., *Tylenchulus semipenetrans*, *Xiphinema index*, and *Ditylenchus dipsaci* (Keren-Zur et al. 2000). VOTiVO, *Bacillus firmus* GB-126, is marketed by Bayer CropScience for the control of *M. incognita*, *Ditylenchus dipsaci*, *Rotylenchulus reniformis* as seed treatments for corn, cotton, sorghum, soybean, and sugarbeet (Castillo et al. 2013). Pathway Consortia, mixed multiple PGPR strains of *B. subtilis*, *B. licheniformis*, *B. megaterium*, *B. coagulans*, *P. fluorescens*, *Streptomyces* spp., and *Trichoderma* spp., is a biocontrol product formulated in liquid, granular, and thixotropic forms for the management of *Meloidogyne* spp. and *R. reniformis* (Castillo 2012; Askary 2015).

5. Conclusion and future prospects

Over the past decade, we have seen a significantly increasing market for biopesticides and an increase in number of microbial control studies directed at plant-parasitic nematodes. The world's biggest agricultural companies are trying to expand their business in crop protection especially in biological control products. BASF acquired the U.S. crop-technology company specializing in biological products, Becker Underwood; Bayer CropScience acquired the biological companies Agraquest and Prophyta which were the leading supplier of microbial crop protection products; and Syngenta acquired Pasteuria Bioscience which specialized in *Pasteuria* biologicals specifically for nematode management (Wilson and Jackson 2013).

Currently, biological control agents are not replacing nematicides. They are integrated with other management methods such as chemicals, cultural practices, and different organic amendments, or other biological control organisms, and are expected to reduce the dependence on nematicides. Researchers reported that combining multiple biological control practices such as combing the application of a biocontrol agent *Paecilomyces lilacinus* with various practices such as soil solarization or the application of the biological *B. firmus* or the chemical oxamyl (Vydate) (DuPont, Wilmington, DE) are effective for root-knot nematode management (Anastasiadis et al. 2008). Castillo et al. (2013) combined *Bacillus firmus* GB-126 and *Paecilomyces lilacinus* 251 for reniform nematode management in cotton and indicated an effective reduction in reniform population. Biological control agents are expected to play an important role in the market for Integrated Pest Management in the future.

Biological control studies on plant-parasitic nematodes have switched from the survey and empirical tests to quantitative experimentation and basic research on the modes of action, host specificity, and epidemiology of selected organisms in the past 20 years (Kerry 1997). With the development of molecular biology, biotechnology, and bioinformatics, new techniques and more available omics data will be available to explore the mode of actions of the biological control products and study the mechanisms of microbe-nematode interactions (Li et al. 2015). Simple microbe-nematode interaction is important, however, multiple predator-prey interactions should not be ignored while both the nematode and microbes live in the complex soil ecosystem. These new techniques and studies will provide more guidance for the development of more effective strategies for biological control of plant-parasitic nematodes.

6. Reference

- Abad, P., Castagnone-Sereno, P., Rosso, M. N., Engler, J. D. A., and Favery, B. 2009. Invasion, feeding and development. P. 163 - 176. In Root-knot nematode. Eds. Perry, R. N., Moens, M., and Starr, J. L. CAB International. Wallingford, OX, UK.
- Abad, P., Favery, B., Rosso, M. N., and Castagnone-Sereno, P. 2003. Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Molecular Plant Pathology. 4:217 224.
- Ambo, P. B. N., Ethiopia, E. A., Serfoji, P., Rajeshkumar, S., and Selvaraj, T. 2010. Management of root-knot nematode, *Meloidogyne incognita* on tomato cv Pusa Ruby. by using vermicompost, AM fungus, *Glomus aggregatum* and mycorrhiza helper bacterium, *Bacillus coagulans*. Journal of Agricultural Technology. 6:37 - 45.
- Anand, S. C., and Gallo, K. M. 1984. Identification of additional soybean germplasm with resistance to race 3 of soybean cyst nematode. Plant Disease. 68:593 595.
- Anastasiadis, I. A., Giannakou, I. O., Prophetou-Athanasiadou, D. A., and Gowen, S. R. 2008. The combined effect of the application of a biocontrol agent *Paecilomyces lilacinus*, with various practices for the control of root-knot nematodes. Crop Protection. 27:352 - 361.
- Antoun, H. 2013. Plant-growth-promoting rhizobacteria. p. 353 355. In Brenner's Encyclopedia of Genetics, 2nd Edition. Eds. Maloy, S., and Hughes, K. Academic Press, San Diego. Doi:10.1016/B978-0-12-374984-0.01169-4.
- Askary, T. H. 2015. Limitation, research needs, and future prospects. P. 446 454. In Biocontrol agents of phytonematodes. Eds. Askary, T. H., and Martinelli, P. R. P. CAB International. Wallingford, OX, UK.

- Baker, R. 1968. Mechanisms of biological control of soil-borne pathogens. Annual Review of Phytopathology. 6:263 - 294.
- Bekal, S., Domier, L. L., Gonfa, B., McCoppin, N. K., Lambert, K. N., and Bhalerao, K. 2014. A novel flavivirus in the soybean cyst nematode. Journal of General Virology. 95:1272 1280.
- Bird, A. F. 1979. A method of distinguishing between living and dead nematodes by enzymatically induced fluorescence. Journal of Nematology. 11:103 105.
- Brodie, B. B., Brinkerhoff, L. A., and Struble, F. B. 1960. Resistance to root-knot nematode, *Meloidogyne incognita acrita* in up-land cotton seedlings. Phytopathology. 50:673 677.
- Brown, S. M., Kepner, J. L., and Smart, J. G. C. 1985. Increased crop yields following application of *Bacillus penetrans* to field plots infested with *Meloidogyne incognita*. Soil Biology and Biochemistry. 17:483 - 486.
- Brown, S. M., and Smart, J. G. C. 1985. Root penetration by *Meloidogyne incognita* juveniles infected with *Bacillus penetrans*. Journal of Nematology. 17:123 126.
- Burkett-Cadena, M., Kokalis-Burelle, N., Lawrence, K. S., Van Santen, E., and Kloepper, J. W.
 2008. Suppressiveness of root-knot nematodes mediated by rhizobacteria. Biological Control.
 47:55 59.
- Carter, T. E., Koenning, S. R., Burton, J. W., Rzewnicki, P. E., Villagarcia, M. R., Bowman, D. T., and Arelli, P. R. 2011. Registration of 'N7003CN' maturity-group-VII soybean with high yield and resistance to race 2 (HG Type 1.2.5.7-) soybean cyst nematode. Journal of Plant Registrations. 5:309 317.
- Castillo, J. D. 2012. Biocontrol studies of *Rotylenchulus reniformis* in cotton crops in Alabama, Auburn University. PhD Dissertation. <u>https://etd.auburn.edu/handle/10415/3318</u>.

- Castillo, J. D., and Lawrence, K. S. 2013. First report of *Catenaria auxiliaris* parasitizing the reniform nematode *Rotylenchulus reniformis* on cotton in Alabama. Plant Disease. 97:967 976.
- Castillo, J. D., Lawrence, K. S., and Kloepper, J. W. 2013. Biocontrol of the reniform nematode by *Bacillus firmus* GB-126 and *Paecilomyces lilacinus* 251 on cotton. Plant Disease. 97:967 76.
- Castillo, J. D., Lawrence, K. S., Kloepper, J. W., and Santen, E. V. 2010. Evaluation of Drechslerella dactyloides, Drechslerella brochopaga, and Paecilomyces lilacinus for the biocontrol of Rotylenchulus reniformis. Nematropica. 40:71 - 85.
- Chaudhuri, N., Dick, R. I., Engelbrecht, R. S., and Austin, J. H. 1966. Staining of free-living nematodes by eosin-Y dye. Nematologica. 12:337 344.
- Chen, S. Y. 2004. Management with biological methods. P. 207 242. In Biology and management of soybean cyst nematode. 2nd edition. Eds. Schmitt, D. P., Wrather, J. A., and Riggs, R. D. Schmitt & Associates of Marceline. Marceline, Missouri, USA.
- Chen, S. Y., and Dickson, D. W. 2004. Biological control with fungal antagonists. Pp. Nematology: Advances and Perspectives Vol II. Eds. Chen, Z. X., Chen, S. Y., and Dickson, D. W. Tsinghua University Press and CAB International. Beijing, China and Wallingford, OX, UK.
- Chen, S. Y., and Liu, X. Z. 2005. Control of the soybean cyst nematode by the fungi *Hirsutella rhossiliensis* and *Hirsutella minnesotensis* in greenhouse studies. Biological Control. 32:208 219.
- Chen, S. Y, Wyse, D. L., Johnson, G. A., Porter, P. M., Stetina, S. R., Miller, D. R., Betts, K. J., Klossner, L. D., and Harr, M. J. 2006. Effect of cover crops alfalfa, red clover, and perennial

ryegrass on soybean cyst nematode population and soybean and corn yields in Minnesota. Crop Science. 46:1890 - 1897.

- Cianzio, S. R., Lundeen, P., Gebhart, G., Rivera-Velez, N., Bhattacharyya, M. K., and Swaminathan, S. 2016. Registration of AR11SDS soybean germplasm resistant to sudden death syndrome, soybean cyst nematode, and with moderate Iron deficiency chlorosis scores. Journal of Plant Registrations. 10:177 - 188.
- Cone, M. 2010. Insecticide to be banned-three decades after tainted melons sickened 2,000 people. Environmental Health News. Available: http://www.environmentalhealthnews.org/ehs/ news/ aldicarb-phaseout.
- Devidas, P., and Rehberger, L. A. 1992. The effects of exotoxin (thuringiensin) from *Bacillus thuringiensis* on *Meloidogyne incognita* and *Caenorhabditis elegans*. Plant and Soil. 145:115 120.
- Donald, P. A., Hayes, R., and Walker, E. 2007. Potential for soybean cyst nematode reproduction on winter weeds and cover crops in Tennessee. Plant Health Progress. Doi: 10.1094/PHP-2007-0226-01-RS.
- Eilenberg, J., Hajek, A., and Lomer, C. 2001. Suggestions for unifying the terminology in biological control. BioControl. 46:387 400.
- Faske, T. R., and Starr, J. L. 2006. Sensitivity of *Meloidogyne incognita* and *Rotylenchulus* reniformis to Abamectin. Journal of Nematology. 38:240 - 244.
- Félix, M. A., Ashe, A., Piffaretti, J., Wu, G., Nuez, I., Bélicard, T., Jiang, Y. F., Zhao, G. Y., Franz, C. J., Goldstein, L. D., Sanroman, M., Miska, E. A., and Wang, D. 2011. Natural and experimental infection of *Caenorhabditis* nematodes by novel viruses related to nodaviruses. PLoS Biol. 9(1): e1000586.

- Freitas, L. G., Ferraz, S., and Muchovej, J. J. 1995. Effectiveness of different isolates of *Paecilomyces lilacinus* and isolate of *Cylindrocarpon destructans* on the control of *Meloidogyne javanica*. Nematropica. 25:109 - 115.
- Fujita, K., and Miura, O. 1934. On the parasitism of *Heterodera schachtii* Schmidt on beans. Trans. Snapporo Natl. Hist. Soc. 13:359 - 364.
- Gazaway, W. S., and McLean, K. S. 2003. Plant pathology & nematology: a survey of plantparasitic nematodes associated with cotton in Alabama. The Journal of Cotton Science. 7:1 -7.
- Golden, A. M., Epps, J. M., Riggs, R. D., Duclos, L. A., Fox, J. A., and Bernard, R. L. 1970.
 Terminology and identity of infraspecific forms of the soybean cyst nematode (*Heterodera glycines*). Plant Disease Reporter. 54:544 546.
- Grego, M., Stachowitsch, M., Troch, M. D., and Riedel, B. 2013. CellTracker Green labeling vs. rose Bengal staining: CTG wins by points in distinguishing living from dead anoxia-impacted copepods and nematodes. Biogeosciences. 10:4565 4575.
- Gutiérrez, O. A., Jenkins, J. N., McCarty, J. C., Wubben, M. J., Hayes, R. W., and Callahan, F. E. 2010. SSR markers closely associated with genes for resistance to root-knot nematode on chromosomes 11 and 14 of Upland cotton. Theoretical and Applied Genetics. 121:1323 1337.
- Hammerschmidt, R. 1999. Induced disease resistance: how do induced plants stop pathogens? Physiological and Molecular Plant Pathology. 55:77 - 84.
- Hymowitz, T. 1990. Soybeans: the success story. P. 159 163. In Advances in new crops. Eds. Janick, J., and Simon, J. E. Timber Press, Portland, OR, USA.

- Hymowitz, T., Nelson, R. L., Sinclair, J. B., and Hartman, G. L. 2015. P. 1 4. In compendium soybean diseases and pests. Eds. Hartman, G. L., Rupe, J. C., Sikora, E. J., Domier, L. L., Davis, J. A., and Steffey, K. L. The American Phytopathological Society. St. Paul, Minnesota, USA.
- Ichinohe, M. 1953. On the parasitism of soybean cyst nematode, *Heterodera glycines*. Hokkaido Natl. Agric. Exp. Stn. Res. Bull. 64:113 124.
- Ichinohe, M. 1959. Studies on the soybean cyst nematode, *Heterodera glycines* and its injury to soybean plants in Japan. Plant Disease Rep. Suppl. 260:239 248.
- Jenkins, J. N., McCarty, J. C., Wubben, M. J., and Hayes, R. 2012. SSR markers for marker assisted selection of root-knot nematode (*Meloidogyne incognita*) resistant plants in cotton (*Gossypium hirsutum* L). Euphytica. 183:49 - 54.
- Kadam, S., Vuong, T. D., Qiu, D., Meinhardt, C. G., Song, L., Deshmukh, R., Patil, G., Wan, J. R., Valliyodan, B., Scaboo, A. M., Shannon, J. G., and Nyuyen, H. T. 2016. Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding. Plant Science. 242:342 350.
- Kavitha, J., Jonathan, E. I., and Umamaheswari, R. 2007. Field application of *Pseudomonas fluorescens*, *Bacillus subtilis* and *Trichoderma viride* for the control of *Meloidogyne incognita* (Kofoid and White) Chitwood on sugarbeet. Journal of Biological Control. 21:211 215.
- Keim, D.L., and N. Dighe. 2013. Breeding for high levels of root knot nematode resistance in a commercial cotton breeding program. Proceedings of the 2013 Beltwide Cotton Conferences.
 1:407. National Cotton Council of America, Memphis, TN.

- Kempster, V. N., Davies, K. A., and Scott, E. S. 2001. Chemical and biological induction of resistance to the clover cyst nematode (*Heterodera trifolii*) in white clover (*Trifolium repens*). Nematology. 3:35 - 43.
- Keren-Zur, M., Antonov, J., Bercovitz, A., Feldman, K., Husid, A., Kenan, G., Markov, N., and Rebhun, M., 2000. *Bacillus firmus* formulations for the safe control of root-knot nematodes.
 In: Proceedings of the Brighton Crop Protection Conference on Pests and Diseases. Vol. 2A. 47 52.
- Kerry, B. 1997. Biological control of nematodes: prospects and opportunities. Plant nematode problems and their control in the near east region. Rome, Italy: Food and Agriculture Organization of the United Nations: FAO Plant Production and Protection. 144:79 – 92.
- Khan, M. R., and Akram, M. 2000. Effects of certain antagonistic fungi and rhizobacteria on wilt disease complex of tomato caused by *Meloidogyne incognita* and *Fusarium oxysporum* f. sp. *lycopersici*. Nematologia Mediterranea. 28:139 - 144.
- Kiewnick, S., and Sikora, R. A. 2006. Biological control of the root-knot nematode *Meloidogyne incognita* by *Paecilomyces lilacinus* strain 251. Biological Control. 38:179 -187.
- Kloepper, J. W., and Schroth, M. N. 1978. Plant growth-promoting rhizobacteria on radishes. Proceedings of the 4th international conference on plant pathogenic bacteria. 2:879 - 882.
- Kloepper, J. W., Ryu, C. M., and Zhang, S. A. 2004. Induced systemic resistance and promotion of plant growth by *Bacillus* spp. Phytopathology. 94:1259 1266.
- Kloepper, J. W., Rodríguez-Kábana, R., McInroy, J. A., and Young, R. W. 1992. Rhizosphere bacteria antagonistic to soybean cyst (*Heterodera glycines*) and root-knot (*Meloidogyne incognita*) nematodes: identification by fatty acid analysis and frequency of biological control activity. Plant and Soil. 139:75 - 84.

- Koenning, S. R. 2004. Population biology. p.73 88. In Biology and Management of Soybean Cyst
 Nematode. 2nd Edition. Eds. Schmitt, D. P., Wrather, J. A., and Riggs, R. D. Schmitt &
 Associates of Marceline. Marceline, Missouri, USA.
- Koenning, S. R., and Barker, K. R. 1998. Survey of *Heterodera glycines* races and other plantparasitic nematodes on soybean in North Carolina. Journal of Nematology. 30:569 - 576.
- Krechel, A., Faupel, A., Hallmann, J., Ulrich, A., and Berg, G. 2002. Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode *Meloidogyne incognita* (Kofoid & White) Chitwood. Canadian Journal of Microbiology. 48:772 - 786.
- Krishnappa, K. 1985. Nematology in developing countries: India IMP Region VIII. P. 379 398.In An advanced treatise on *Meloidogyne*. Vol. I. Biology and Control. Eds. Sasser, J. N., and Carter, C. C. Raleigh, North Carolina State Graphics.
- Kumar, A., Prakash, A., and Johri, B. N. 2011. P. 37 59. *Bacillus* as PGPR in crop ecosystem. In Bacteria in agrobiology: crop ecosystems. Springer. London.
- Lauritis, J. A., Rebois, R. V., and Graney, L. S. 1983. Development of *Heterodera glycines* Ichinohe on soybean, *Glycine max* (L.) Merr., under gnotobiotic conditions. Journal of Nematology. 15:272 - 281.
- Lawrence, K. S., Lawrence, G. W., Faske, T., Kemerait, B., Overstreet, C., Wheeler, T., Young, H., and Mehl, H. 2016. Beltwide nematode research and education committee 2015 nematode research report cotton varietal and nematicide responses in nematode soils. 1:737 740.
- Lawrence, K., Olsen, M., Faske, T., Hutmacher, R., Muller, J., Mario, J., Kemerait, R., Overstreet, C., Price, P., Sciumbato, G., Lawrence, G., Atwell, S., Thomas, S., Koenning, S., Boman, R., Young, H., Woodward, J., and Mehl, H. 2015. Cotton disease loss estimate committee report,

2014. Proceedings of the 2014 Beltwide Cotton Conference. 1:188 - 190. National Cotton Council of America, Memphis, TN.

- Lee, J. A., and Fang, D. D. 2015. Cotton as a world crop: origin, history, and current status. p. 1 -24. In Cotton. eds. Fang, D. D., and Percy, R. G. Madison, WI, American Society of Agronomy, Inc., Crop Science Society of America, Inc., and Soil Science Society of America, Inc.
- Lewis, S. A., Drye, C. E., Saunders, J. A., Shipe, E. R., and Halbrendt, J. M. 1993. Plant-parasitic nematodes on soybean in South Carolina. Journal of Nematology. 25:890 894.
- Li, G. H., and Zhang, K. Q. 2014. Nematode-toxic fungi and their nematicidal metabolites. P. 313 375. In Nematode-trapping fungi. Eds. Zhang, K. Q. and Hyde, K. D. Springer. London.
- Li, J., Zou, C. G., Xu, J. P., Ji, X. L., Niu, X. M., Yang, J. K., Huang, X. W., and Zhang, K. Q. 2015. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Annual Review of Phytopathology. 53:67 -95.
- Liu, K., Garrett, C., Fadamiro, H., and Kloepper, J. W. 2016. Induction of systemic resistance in Chinese cabbage against black rot by plant growth-promoting rhizobacteria. Biological Control. 99:8 - 13.
- Liu, X. Z., and Chen, S. Y. 2000. Parasitism of *Heterodera glycines* by *Hirsutella* spp. in Minnesota soybean fields. Biological Control. 19:161 166.
- Lugtenberg, B., and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annual Review of Microbiology. 63:541 556.
- Mankau, R., and Prasad, N. 1977. Infectivity of *Bacillus penetrans* in plant-parasitic nematodes. Journal of Nematology. 9:40 - 45.

- McPherson, M. G., Jenkins, J. N., Watson, C. E., and McCarty, Jr., J.C. 2004. Inheritance of root knot nematode resistance in M-315 RNR and M78-RNR cotton. The Journal of Cotton Science. 8:154 - 161.
- Mendoza, A. R., Kiewnick, S., and Sikora, R. A. 2008. In vitro activity of Bacillus firmus against the burrowing nematode Radopholus similis, the root-knot nematode Meloidogyne incognita and the stem nematode Ditylenchus dipsaci. Biocontrol Science and Technology. 18:377 -389.
- Meyer, S. L. F., Sayre, R. M., and Huettel, R. N. 1988. Comparisons of selected stains for distinguishing between live and dead eggs of the plant-parasitic nematode *Heterodera* glycines. Proc. Helminthol. Soc. Wash. 55:132 - 139.
- Mohammed, S. H., El Saedy, M. A., Enan, M. R., Ibrahim, N. E., Ghareeb, A., and Moustafa, S.
 A. 2008. Biocontrol efficiency of *Bacillus thuringiensis* toxins against root-knot nematode, *Meloidogyne incognita*. Journal of Cell and Molecular Biology. 7:57 - 66.
- Mueller, J. D. 1984. The effect of aldicarb and resistance on yield components of soybean and population dynamics of soybean cyst nematode. PhD. Dissertation. University of Illinois.
- NASS. National Agricultural Statistics Service | USDA. 2016a. Crop Production 2015 Summary. 46. <u>http://www.usda.gov/nass/PUBS/TODAYRPT/cropan16.pdf</u>.
- NASS. National Agricultural Statistics Service | USDA. 2016b. Agricultural Prices. Soybean Prices Received by Month, US. https://www.nass.usda.gov/Charts_and_Maps/Agricultural_ Prices/pricesb.php.
- NCC. National Cotton Council. 2014. Disease Database. http://www.cotton.org/search.cfm.
- NCC. National Cotton Council. 2016a. Population Distributions and Densities Maps. http://www.cotton.org/tech/pest/nematode/distributions.cfm.

- NCC. National Cotton Council. 2016b. Economic. Crop Information. Cotton Crop Database. http://www.cotton.org/econ/cropinfo/cropdata/state_data.cfm.
- Nelson, E., Kageyama, K., Dijk, K. V., and Windstam, S. 2004. Biological control of soilborne diseases: important concepts from a model system. In Proc. XXVI IHC – Managing Soil-Borne Pathogens. Ed. Vanachter, A. Acta Hort. 635, ISHS 2004. Can. Int. Dev. Agency (CIDA).
- Niblack, T. L. 2005. Soybean cyst nematode management reconsidered. Plant Disease. 89: 1020 1026.
- Niblack, T. L., and Karr, A. L. 1994. Source of antimicrobial activity in the gelatinous matrix of *Heterodera glycines*. Journal of Nematology. 26:561 (Abstract).
- Niblack, T., Arelli, P., Noel, G. R., Opperman, C. H., Orf, J. H., Schmitt, D. P., Shannon, J. G., and Tylka, G. L. 2002. A revised classification scheme for genetically diverse populations of *Heterodera glycines*. Journal of Nematology. 34:279 - 288.
- Nishizawa, T. 1987. A decline phenomenon in a population of the upland cyst nematode, *Heterodera elachista*, caused by a bacterial parasite, *Pasteuria penetrans*. Journal of Nematology. 19: 546 (Abstract).
- Nyczepir, A. P., and Thomas, S. H. 2009. Current and future management strategies in intensive crop production systems. P. 412 435. In Root-knot nematode. Eds. Perry, R. N., Moens, M., and Starr, J. L. CAB International. Wallingford, OX, UK.
- Ogiga, I. R., and Estey, R. H. 1974. The use of Meldola Blue and Nile Blue A, for distinguishing dead from living nematodes. Nematologica. 20:271 276.
- Ongena, M., and Jacques, P. 2008. *Bacillus* lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology. 16:115 125.

- Padgham, J. L., and Sikora, R. A. 2007. Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Protection. 26:971 - 977.
- Park, D. 1960. Antagonism-the background to soil fungi. P. 148 159. In The ecology of soil fungi. Eds. Parkinson, D., and Waid, J. S. Livepool University Press. UK.
- Podile, A. R., and Kishore, G. K. 2007. Plant growth-promoting rhizobacteria. P. 195 230. In Plant-Associated Bacteria. Ed. Gnanamanickam, S. S. Springer, London.
- Raski, D. J. 1950. The life history and morphology of the sugar-beet nematodes, *Heterodera schachtii* Schmidt. Phytopathology. 40:135 152.
- Raupach, G. S., and Kloepper, J. W. 1998. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology. 88:1158 1164.
- Riggs, R. D. 1992. Host range. P. 107 114. In Biology and management of the soybean cyst nematode. Eds. Riggs, R. D., and Wrather, J. A. The American Phytopathological Society, St. Paul, Minnesota, USA.
- Riggs, R. D., and Hamblen, M. L. 1962. Soybean cyst nematode host studies in the Leguminosae. Ark. Agric. Exp. Stn. Rep. Series 110. Fayetteville, AR. 17p.
- Riggs, R. D., and Hamblen, M. L. 1966. Further studies on the host range of the soybean cyst nematode. Ark. Agric. Exp. Stn. Bull.718. Fayetteville, AR. 19p.
- Riggs, R. D, and Schmitt, D. P. 1988. Complete characterization of the race scheme for *Heterodera glycines*. Journal of Nematology. 20:392 395.
- Ross, J. P. 1958. Host-parasite relationship of the soybean cyst nematode in resistant soybean roots. Phytopathology. 48:578 579.
- Sasser, J. N. 1954. Identification and host-parasite relationships of certain root-knot nematodes (*Meloidogyne* spp.). Bull. *Md agric. Exp. Stn.* A-77:1 30.

Sasser, J. N. 1980. Root-Knot Nematodes: A globe. Plant Disease. 64:36 - 41.

- Sayre, R. M., Wergin, W. P., Schmidt, J. M., and Starr, M. P. 1991. *Pasteuria nishizawae* sp. Nov., a mycelial and endospore-forming bacterium parasitic on cyst nematodes of genera *Heterodera* and *Globodera*. Research in Microbiology. 142:551 - 564.
- Schrimsher, D. W. 2013. The studies of plant host resistance to the reniform nematode in upland cotton and the effects of *Bacillus firmus* GB-126 on plant-parasitic nematodes, Auburn University. M.S. Thesis. http://hdl.handle.net/10415/3562.
- Schroeder, N., and MacGuidwin, A. 2007. Incorporation of a fluorescent compound by live *Heterodera glycines*. Journal of Nematology. 39:43 49.
- Sharma, R. D. 1995. Efficiency of *Bacillus spp.* toxins to control *Heterodera glycines* on soybean. Nematologia Brasileira. 19:72 - 80.
- Sharma, R. D., and Gomes, A. C. 1996. Effect of *Bacillus* spp. toxins on oviposition and juvenile hatching of *Heterodera glycines*. Nematologia Brasileira. 20:53 62.
- Shepherd, A. M. 1961. New Blue R, a stain that differentiates between living and dead nematodes. Nematologica. 8:201 - 208.
- Shi, Z., Liu, S. M., Noe, J., Arelli, P., Meksem, K., and Li, Z. L. 2015. SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. BMC genomics. 16:1.
- Siddiqui, Z. A., and Husain, S. I. 1991. Studies on the biological control of root-knot nematode. Current Nematology. 2:5 - 6.
- Siddiqui, Z. A., and Mahmood, I. 1992. Biological control of root-rot disease complex of chickpea caused by *Meloidogyne incognita* race 3 and *Macrophomina phaseolina*. Nematology Mediterranean. 20:199 202.

- Siddiqui, Z. A, and Mahmood, I. 1999. Role of bacteria in the management of plant parasitic nematodes: a review. Bioresource Technology. 69:167 179.
- Singh, K. P., Jaiswal, R. K., and Kumar, N. 2007. *Catenaria anguillulae* Sorokin: a natural biocontrol agent of *Meloidogyne graminicola* causing root knot disease of rice (*Oryza sativa* L.). World Journal of Microbiology and Biotechnology. 23:291 294.
- Slana, L. J., and Sayre, R. M. 1981. A method for measuring incidence of *Bacillus penetrans* spore attachment to the second-stage-larvae of *Meloidogyne* spp. Journal of Nematology. 13: 461.
- Starr, J. L., Koenning, S. R., Kirkpatrick, T. L., Robinson, A. F., Roberts, P. A., and Nichols, R.L. 2007. The future of nematode management in cotton. Journal of Nematology. 39:283 294.
- Stirling, G. R. 1985. Host specificity of *Pasteuria penetrans* within the genus *Meloidogyne*. Nematologica. 31:203 - 209.
- Stirling, G. R. 1991. Biological control of plant parasitic nematodes. Wallingford. CAB International. Wallingford, OX, UK.
- Stirling, G. R. 2014. Biological control of plant parasitic nematodes, 2nd Edition. Wallingford. CAB International. Wallingford, OX, UK.
- Taylor, A. L., and J. N. Sasser. 1978. Biology, identification and control of root-knot nematodes (*Meloidogyne* species). North Carolina State University Graphics. Raleigh, NC, USA.
- Terefe, M., Tefera, T., and Sakhuja, P. K. 2009. Effect of a formulation of *Bacillus firmus* on rootknot nematode *Meloidogyne incognita* infestation and the growth of tomato plants in the greenhouse and nursery. Journal of Invertebrate Pathology. 100:94 - 99.
- Tian, H., and Riggs, R. D. 2000. Effects of rhizobacteria on soybean cyst nematode, *Heterodera glycines*. Journal of Nematology. 32:377 388.

- Tribe, H. T. 1977. A parasite of white cysts of *Heterodera*: *Catenaria auxiliaris*. Transactions of the British Mycological Society. 69:367 376.
- Trudgill, D. L., Bala, G., Blok, V. C., Daudi, A., Davies, K. G., Fargette, M., Gowen, S. R., Madulu, J. D., Mateille, T., Mwageni, W., Netscher, C., Phillips, M. S., Abdoussalam, S., Trivino, G. C., and Voyoulallou, E. 2000. The importance of tropical root-knot nematodes (*Meloidogyne* spp.) and factors affecting the utility of *Pasteuria penetrans* as a biocontrol agent. Nematology. 2:823 845.
- Vaish, S. S., and K. Singh, K. P. 2002. Distribution of *Catenaria anguillulae* Sorokin, a facultative endoparasite of nematodes in soils from different locations of India. World Journal of Microbiology and Biotechnology. 18:65 - 67.
- Venkatesh, R., Harrison, S. K., and Riedel, R. M. 2000. Weed hosts of soybean cyst nematode (*Heterodera glycines*) in Ohio. Weed Technology. 14:156 160.
- Vos, C. M., Geerinckx, K., Mkandawire, R., Panis, B., Waele, D. D., and Elsen, A. 2012a. Arbuscular mycorrhizal fungi affect both penetration and further life stage development of root-knot nematodes in tomato. Mycorrhiza. 22:157 - 163.
- Vos, C. M., Tesfahun, A. N. Panis, B., Waele, D. D., and Elsen, A. 2012b. Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode *Meloidogyne incognita* and the migratory nematode *Pratylenchus penetrans*. Applied Soil Ecology. 61:1 6.
- USDA. 2016a. United States Department of Agriculture Economics Research Service: Cotton & Wool. <u>http://www.ers.usda.gov/topics/crops/cotton-wool.aspx</u>.
- USDA. 2016b. United States Department of Agriculture Economics Research Service: Soybeans & Oil Crops. <u>http://www.ers.usda.gov/topics/crops/soybeans-oil-crops/ background.aspx</u>.

- Walters, S. A., and Barker, K. R. 1994. Efficacy of *Paecilomyces lilacinus* in suppressing *Rotylenchulus reniformis* on tomato. Journal of Nematology. 26:600 - 605.
- Wang, J., Niblack, T. L., Tremaine, J. N., Wiebold, W. J., Tylka, G. L., Marrett, C. R., Noel, G. R., Myers, O., and Schmidt, M. E. 2003. The soybean cyst nematode reduces soybean yield without causing obvious symptoms. Plant Disease. 87:623 - 628.
- Wang, C. L., Ulloa, M., Mullens, T. R., Yu, J. Z., and Roberts, P. A. 2012. QTL analysis for transgressive resistance to root-knot nematode in interspecific cotton (*Gossypium* spp.) progeny derived from susceptible parents. PLoS One. 7(4):e34874.
- Wilson, M. J., and Jackson, T. A. 2013. Progress in the commercialization of bionematicides. BioControl. 58:715 - 722.
- Winstead, N. N., Skotland, C. B., and Sasser, J. N. 1955. Soybean cyst nematode in North Carolina. Plant Disease Reporter. 39:9 - 11.
- Wrather, J. A., and Koenning, S. R. 2009. Effects of diseases on soybean yields in the United States 1996 to 2007. Online. Plant Health Progress. Doi:10.1094/PHP-2009-0401-01-RS.
- Wrather, J. A., Shannon, G., Balardin, R., Carregal, L., Escobar, R., Gupta, G. K., Ma, Z., Morel,W., Ploper, D., and Tenuta, A. 2010. Effect of diseases on soybean yield in the top eight producing countries in 2006. Plant Health Progress. Doi: 10.1094/PHP-2010-0125-01-RS.
- Xiang, N., and Lawrence, K. S. 2016. Optimization of *in vitro* techniques for distinguishing between live and dead second stage juveniles of *Heterodera glycines* and *Meloidogyne incognita*. PLoS One. 11(5):e0154818.
- Xiang, N., Lawrence, K. S., Schrimsher, D., and Nightengale, S. 2013. Evaluation of Poncho Votivo, Aeris, Temik, and UFS0 738 on cotton for root knot management in Alabama, 2013.
 Plant Disease Management Report.7: N005. Doi: 10.1094/PDMR07.

Zuckerman, B. M., Dicklow, M. B., and Acosta, N. 1993. A strain of *Bacillus thuringiensis* for the control of plant-parasitic nematodes. Biocontrol Science and Technology. 3:41 - 46.

Chapter II. Optimization of *in vitro* techniques for distinguishing between live and dead second stage juveniles of *Heterodera glycines* and *Meloidogyne incognita*

Abstract

Heterodera glycines (Soybean Cyst nematode, or SCN) and Meloidogyne incognita (Root-Knot nematode, or RKN) are two damaging plant-parasitic nematodes on important field crops. Developing a quick method to distinguish between live and dead SCN and RKN second stage juveniles (J2) is vital for high throughput screening of pesticides or biological compounds against SCN and RKN. The in vitro assays were conducted in 96-well plates to determine the optimum chemical stimulus to distinguish between live and dead SCN and RKN J2. Sodium carbonate (Na₂CO₃), sodium bicarbonate (NaHCO₃), and sodium hydroxide (NaOH) were evaluated to see if these compounds can help distinguish between viable and dead J2. Results indicated that live SCN J2 responded equally ($P \le 0.05$) to 1 µl Na₂CO₃ and 10 µl NaHCO₃ in 100 µl of water at pH = 10. Live SCN J2 responded by twisting their bodies in a curling shape and increasing rate of movements within 2 minutes of exposure. The twisting activity continued for up to 30 minutes. Live RKN J2 responded by increasing activity with the application of 1 µl NaOH in 100 µl of water at pH = 10 also in the 2 minutes to 30 minutes time frame. Furthermore, in growth chamber tests to confirm the infectivity of live SCN. The live SCN as determined by exposure to 1 µl of Na₂CO₃ indicated 60.5% of the SCN J2 were alive and of those, 29.5% were infective and entered the soybean roots. The 1 µl of NaOH stimulus revealed that 75.2% RKN J2 were alive and of those, 14.9% were infective and entered soybean roots. These results confirmed that 1 µl of Na₂CO₃ added to 100 µl suspension of SCN J2 and 1 µl of NaOH added to 100 µl suspension of RKN J2 are the effective stimuli for rapidly distinguishing between live and dead SCN and RKN J2 in vitro. SCN and RKN J2 responded differently to different compounds.

1. Introduction

Soybean Cyst nematode (SCN), Heterodera glycines Ichinohe 1952 and Root-Knot nematode (RKN), Meloidogyne incognita (Kofoid & White, 1919) Chitwood 1949 are two plantparasitic nematodes that cause extensive economic damage to soybean and cotton every year in the U.S. Initial screening of new chemical and biological compounds for management of these pathogens begins with in vitro screening of large numbers of samples to determine the best candidates for advanced screening to greenhouse and field trials. However, distinguishing live from dead J2 with in vitro screening is a challenge. Multiple methods have been tried to distinguish between live and dead nematodes of both eggs and juveniles. Shepherd (1961) found that new blue R can stain the body contents of dead Tylenchida while live nematodes remain unstained. Chaudhuri et al. (1966) stained dead free-living nematode with eosin-Y while live nematodes remained unstained. Ogiga and Estey (1974) found that meldola blue and nile blue A are superior and more dependable for distinguishing dead from living nematodes on the specimens of Rhabditis, Dorylaimus, Helicotylenchus, Mononchus, Panagrolaimus, Pratylenchus, Tylenchorhynchus, and Xiphinema species but not species of Heterodera and Meloidogyne. Meyer et al. (1988) tested seven different stains on the eggs of H. glycines and found that chrysoidin, eosin-Y, new blue R, and nile blue A were useful in differentiating dead from live eggs while acridine orange, eosin-Y, fluorescein, and fluorescein diacetate differentially stained live and dead eggs when with fluorescence optics. These staining methods mentioned previously are timeconsuming and did not work on live juveniles of SCN or RKN. Faske and Starr (2006) tested the sensitivity of *M. incognita* and *Rotylenchulus reniformis* to abamectin with concentrations of 21.5, 2.15, 0.22, 0.022, and 0 µg of abamectin/ml in vitro in BPI (Bureau of Plant Industries) watch dishes. They distinguished live from dead nematodes by touching each nematode with a small

probe (Faske and Starr 2006). This method is too slow and not feasible if multiple samples or chemicals need to be tested. Bird (1979) found that an enzymatically induced fluorescence method using fluorescein diacetate (FDA) can successfully assess the viability of nematodes under UV light, however, preparation was lengthy for multiple samples. Schroeder and MacGuidwin (2007) used fluorescein isothiocyanate (FITC) to distinguish live *H. glycines* and found that nematodes incubated in FITC remained active with fluorescence even after two weeks at room temperature, however, not all the nematodes acquired fluorescence quickly or had uniform response. Grego et al. (2013) found that CellTracker Green labeling (CTG) method was able to distinguish live nematodes from dead anoxia-impacted nematodes. However, all these techniques require expensive florescent microscopes, specialized training, and lengthy sample preparation which will not facilitate screening large numbers of samples.

Many researchers studied the chemoreception and behavior of free living and plant parasitic nematodes. These studies provide a new aspect of using chemical stimuli to distinguish live plant parasitic nematodes from dead individuals based on their physiological characteristics. Lee and Atkinson (1976) reported that nematodes may respond to stimuli or environmental changes through a sense organ or the nervous system. The metabolism of the nematode and the behavioral responses of a nematode may be undirected movement under particular stimulation (kinesis) or directed movement with respect to the source of the stimulation (taxis) (Lee and Atkinson 1976). They also reported that the bacterial feeder *Caenorhabiditis* is attracted to cyclic nucleotides, certain anions and cations, and basic pH, and that the *Caenorhabiditis* is not attracted to acid pH. They observed the response to hydrate carbon dioxide at concentrations normally found in soils is dependent on the buffer that was used (Lee and Atkinson 1976). Sambongi et al. (2000) also proved that *C. elegans* is not attracted to an acidic environment (pH lower that ~4.0) formed

by organic or inorganic acids which was dependent on multiple amphid chemo-sensory neurons, and inhibited by a mutation of capsaicin in receptor homologue, and by the addition of amiloride and ruthenium red (inhibitors of proton-gated Na⁺ channels and capsaicin receptors, respectively). Riddle and Bird (1985) tested the responses of R. reniformis, Anguina agrostis and M. javanica to chemical attractants and found that R. reniformis was attracted to salts and the attractiveness was: $Cl^- > Na^+ > C_2H_3O_2^- > Mg^{2+}$, NH_4^+ , SO_4^{2-} , but *M. javanica* J2 were not attracted to the salts. Perry (1996) indicated that the sensilla amphids are conserved in a wide range of plant parasitic nematodes including J2 and adult males of RKN, SCN, and Globodera rostochiensis, and adults of *Pratylenchus* species, and the chemoreception of nematodes involved with the amphidial secretions in nematode species and amphidial secretions were dissimilar and more specialized in different nematodes. These reports indicated that plant parasitic nematodes may be not attracted to a lower pH environment but may respond to a higher pH environment, hydrate carbon dioxide at certain concentrations, and some chemical stimuli. The chemicals sodium carbonate (Na₂CO₃) and sodium bicarbonate (NaHCO₃) are commonly used as buffers in many research areas at pH's of 9-10 (Kannappan and Palani 2007; Zhai et al. 2014), and Na⁺ were previously found to be an attractant for nematodes (Lee and Atkinson 1976; Riddle and Bird 1985). Chen and Dickson (2000) also found that live juveniles of *H. glycines* were able to respond to sodium hydroxide (NaOH) and sodium hypochlorite (NaOCl) by changing the body shape to curl and forming a hook-shape within 30 seconds, and the curled body shape lasted more than 10 minutes. This response was used to determine live from dead J2 of H. glycines. Chen et al. (2000) used NaOH to detect live *H. glycines* J2 treated with various fungal culture filtrates. Carbon dioxide (CO₂) also plays a possible role in attraction of plant parasitic nematodes beyond root exudates and electric potential (Dropkin 1966). Dropkin (1966) also reported that exposure to high concentrations of CO₂ stopped movement of *Heterodera* spp. in a few minutes, and the nematodes recovered promptly upon restoration of oxygen after six hours of exposure to high CO₂. The literature suggests that pH, Na⁺, and CO₂ or HCO₃⁻ or CO₃²⁻ may play a role in plant parasitic nematode response. The study of the response of plant parasitic nematodes *H. glycines* and *M. incognita* to the chemicals Na₂CO₃, NaHCO₃, and NaOH at various pHs will give detailed information about the potential roles of these stimuli for rapidly detecting live or dead SCN and RKN *in vitro*.

The goal of this research was to develop a method to rapidly determine live and dead J2 of SCN and RKN *in vitro*. The specific objectives were: i) to determine the optimum pH that can stimulate a physical response of SCN and RKN J2; and ii) to evaluate the optimum chemical stimuli that elicit a physical response using 20 μ l of Na₂CO₃, NaHCO₃, and NaOH for SCN and RKN J2; iii) to evaluate the optimum concentration using the optimum chemical stimuli; iv) to confirm the infectivity and viability of J2 after exposure to the optimum stimulus.

2. Materials and Methods

2.1 Nematode and sodium solution

SCN and RKN J2: SCN eggs were obtained by grinding soybean cysts which were extracted from the 60-d-old soybean stock cultures maintained in 500 cm³ polystyrene pots in the greenhouse. Soybean roots were washed through nested 850-µm-pore and 250-µm-pore sieves and cysts were collected from the 250-µm-pore sieve (Riggs and Schmitt 1988). SCN eggs were grinded from the cysts using a pestle and mortar. The standard gravitational sieving followed by sucrose centrifugation (Jenkins 1964) and collected on nested 75-µm-pore over 25 -µm-pore sieves used to obtain the SCN eggs. RKN eggs were extracted from the 45-d-old corn stock cultures maintained in 500 cm³ polystyrene pots in the greenhouse. Corn roots were rinsed free of the soil, immersed in 0.625% NaOCl solution and shaken at 120 rpm on a rotary shaker for 4 minutes

(Hussey and Barker 1973). RKN eggs were cleaned by sucrose centrifugation and collected as described above. SCN and RKN eggs were hatched separately in a modified Baermann funnel which was placed on a Slide Warmer (Model 77) (Marshall Scientific, Brentwood, NH) at 28 °C and 31 °C, respectively (Xiang et al. 2014). Hatching occurred after 4 to 7 days depending on the season. J2 were collected on a 25- μ m-pore sieve, placed in 1.5 ml tubes, centrifuged at 10,000 rpm for 1 minute, washed with distilled sterile water and centrifuged again. Two separate 1.5 ml tubes were prepared with live J2. One tube with live J2 suspension was held at room temperature while the second tube was heated at 65 °C for 5 minutes to kill the J2. Both live and dead J2 suspensions were adjusted to 30 to 40 J2 in 100 μ l of water and pipetted into the 96-well plates for the study.

Sodium solution: Solutions of 1N Na₂CO₃, 1N NaHCO₃, and 1N NaOH (VWR, Suwanee, GA) were prepared individually by dissolving 21.1, 16.8, or 8.0 g of the compounds, respectively in 200 ml of distilled sterile water. The pH values of these sodium solutions were adjusted to 4, 7, and 10, respectively. 1% acetic acid (CH₃COOH) was used for pH 4.

2.2 Experiment 1: Determine the optimum pH of NaHCO₃ for SCN J2 responses

Since pH may be an important factor that causes responses in live nematode J2, thus we tested pH values of 4 with 1% CH₃COOH, and 7, and 10 with 1N NaHCO₃ on SCN J2. The experiment was established in 96-well plates. Ten μ l of either live, dead or a 50/50 mixture of live and dead SCN J2 suspension containing 30 to 40 J2 and 90 μ l of distilled sterile water were pipetted in each well. A 20 μ l of 1% CH₃COOH at pH 4 and NaHCO₃ at pH 7 or 10 were added to the wells. The experiment was arranged in a RCBD with four replications and the trial was repeated twice.

The J2 were observed at 2, 5, 15, and 30 minutes after exposure under a compound microscope (Nikon TS100) to determine the numbers of live and dead SCN J2 and rated using a 1

- 4 scale within 30 minutes of exposure. A rating scale was divided as follows based on the movements and body shapes: 1 - no movement of the J2; 2 - J2 twitched slowly; 3 - J2 moved with normal body shape; 4 - J2 twitched quickly with curling body shape. Only 2 and 30 minutes data were presented in the results. Percentages of live J2 were calculated as (live numbers of J2 / Total number of J2) \times 100. Rating scales were recorded.

2.3 Experiment 2: Select the optimum chemical stimulus for SCN and RKN J2

The *in vitro* test to determine the best stimulus for physical movement of SCN and RKN J2 responses was conducted. The 20 μ l of chemicals 1N Na₂CO₃, 1N NaHCO₃, and 1N NaOH at optimum pH selected in experiment 1 were tested in 96-well plates. Distilled sterile water was used as a control. Each well received a 10 μ l suspension containing 30 to 40 J2 in a total of 100 μ l distilled sterile water. The experiments were arranged in a RCBD with four replications and the trial was repeated twice. Percentages of live J2 were calculated as (live numbers of J2 / Total number of J2) \times 100. The J2 were rated using 1 - 4 scales as described above.

2.4 Experiment 3: Select the optimum concentration for the chemical stimuli

An *in vitro* test to determine the optimum concentration of the optimum chemical stimulus for live and dead SCN and RKN J2 responses was conducted. The concentrations selected were 1 μ l and 10 μ l of the chemical at the optimum pH selected in experiments 1 and 2. The test was conducted in 96-well plates *in vitro* as descried previously. Percentages of live J2 were calculated as (live numbers of J2 / Total number of J2) × 100. The J2 were rated at 1 - 4 scales and recorded. **2.5 Experiment 4: Confirm infectivity and viability after exposure to selected chemical** stimuli

Determination if the live J2 were truly alive and infective and the dead J2 were immobile and not infective was confirmed using soybean plants grown in growth chambers. The selected sodium stimuli 1 μ l 1N Na₂CO₃ and 10 μ l 1N NaHCO₃ in a total of 100 μ l water at pH = 10 tested on SCN and 1 μ l 1N NaOH in 100 μ l of water at pH = 10 tested on RKN were confirmed in growth chamber evaluations using 50 ml conical tubes filled with pasteurized soil. Two seeds of 'Hutcheson' soybean (susceptible to both SCN and RKN) were planted and thinned to one seedling in each tube. Six-day-old plants were inoculated with live or dead SCN or RKN J2. The SCN and RKN J2 treatments were standardized to 1000 J2 / ml and added to the respective tubes. The actual number of live J2 as determined by the sodium stimuli were calculated as (live numbers J2 / total numbers of J2) \times 100. Controls were SCN and RKN live and dead J2 that did not receive sodium stimuli but viability determined by direct observations under the microscope. Plants were incubated at 28 °C for SCN and 30 °C for RKN in the growth chamber with a 12 hour light and dark phase and watered twice daily as needed for 21 days. Soybean roots were removed, weighed, and stained with acid fuchsin at 21 days after inoculation (DAI). The J2 in the roots were enumerated using a dissection microscope (Nikon SMZ800) at 10X. Percentages of J2 enumerated in the roots were calculated as (numbers of J2 in the roots/number of live J2 at inoculation) $\times 100$. The experiments were arranged in a RCBD with five replications and the trial was repeated twice.

2.6 Data analysis

Data on percentages of live J2 increased in *in vitro* tests and percentages of live J2 inoculated and entering the soybean roots were analyzed in SAS 9.4 software (SAS Institute, Cary, NC) using Glimmix procedure. Student panel graphs were generated to test the normality of the residuals for the percentages of live J2 increased in *in vitro* tests and percentages of live J2 inoculated and entered the soybean roots in growth chamber tests. Treatment LS-means were compared by Tukey-Kramer's method at the significant level of $\alpha \leq 0.05$. Data from two repeated

trials were analyzed separately to determine any interactions over time prior to pooling if there was no interaction.

3. Results

3.1 Results of experiment 1: Optimum pH of NaHCO₃ for SCN J2 responses

Live SCN J2 responded differently to the solutions with pH 4 of 1% CH₃COOH and pH 7 and 10 of 1N NaHCO₃. The pH = 4 solution increased the movement of live SCN J2 by 7.8 % at 2 minutes indicating the nematodes were alive ($P \le 0.05$) (Table 1). However, SCN J2 movement decreased significantly ($P \le 0.05$) from the 5 to 30 minute time period. The pH = 7 did not stimulate SCN J2 movement at 2 minutes through the 30 minute time periods (Table 1). The pH = 10 solutions stimulated an increase of the SCN J2 movement by 10.7 % at 2 minutes which was similar to that observed by pH = 4. However, pH = 10 continued to stimulate SCN J2 movement through the 30 minute observation period (Table 1). Dead J2 did not respond to any pH test solutions and remained motionless (Table 1). These results indicated that pH = 10 is the optimum pH value to cause SCN J2 responses such as changing body shape which can determine if individuals were alive or dead. The pH = 10 could be used in the following trials.

pH value	SCN J2	Before exposure	2 mins exposure	30 mins exposure	% live J2	Rating at 2	% live J2 changed at 30 mins	Rating at 30 mins
		Live/Total J2 (%)	Live/Total J2 (%)	Live/Total J2 (%)	changed at 2 mins	mins		
рН =4 1% СН3СООН	Live	21/26 (80.7)	23/26 (88.5)	2/26 (7.7)	7.8 a	4	-73.7 c*	2
	Live/Dead	10/25 (40.0)	11/25 (44.0)	3/25 (12.0)	4.0 a	4	-32.0 b	2
	Dead	0/18 (0.0)	0/18 (0.0)	0/18 (0.0)	0.0 a	1	0.0 a	1
pH =7 1N NaHCO3	Live	20/24 (83.3)	20/24 (83.3)	13/24 (54.2)	0.0 a	3	-29.1 b	2
	Live/Dead	11/24 (45.8)	11/24 (45.8)	11/24 (45.8)	0.0 a	3	0.0 a	3
	Dead	0/21 (0.0)	0/21 (0.0)	0/21 (0.0)	0.0 a	1	0.0 a	1
pH =10 1N NaHCO3	Live	22/28 (78.6)	25/28 (89.3)	25/28 (89.3)	10.7 a	4	10.7 a	4
	Live/Dead	11/29 (37.9)	13/29 (44.8)	13/29 (44.8)	6.9 a	4	6.9 a	4
	Dead	0/20 (0.0)	0/20 (0.0)	0/20 (0.0)	0.0 a	1	0.0 a	1

Numbers in the parentheses are the percentages of live J2 out of total number of J2.

*LS-MEANS with the same letter are not significantly different according to Tukey-Kramer's method ($P \le 0.05$).

3.2 Results of experiment 2: Select the optimum chemical stimulus for SCN and RKN J2

SCN J2: The three chemicals 1N Na₂CO₃, 1N NaHCO₃, and 1N NaOH at pH=10 tested at 20 μ l caused different responses on live SCN J2 at different time points which visibly distinguished live from dead J2. The three chemicals were equally effective ($P \le 0.05$) at distinguishing live from dead SCN J2 from 0 to 2 minutes time period using 20 μ l. With the extending of exposure time, 20 μ l Na₂CO₃ appeared toxic to the SCN J2 and a significant decrease ($P \le 0.05$) in movement of the nematodes was observed at 30 minutes (Fig 1). The 20 μ l NaHCO₃ slightly decreased the movement of the nematode with increase time (Fig 1).

RKN J2: The 1N Na₂CO₃ was highly toxic to RKN J2 which caused a significant decrease in movement ($P \le 0.05$) within 2 minutes exposure to the chemical (Fig 2). The NaHCO₃ and NaOH stimulated the movements of RKN J2 at 2 minutes (Fig 2) with distinctive curling or hooked body shapes. However, the NaHCO₃ caused significant decreasing movement of RKN J2 after 2 minutes exposure ($P \le 0.05$). The NaOH also slightly decreased the movement of RKN J2 from 2 minutes to 15 minutes period of time.

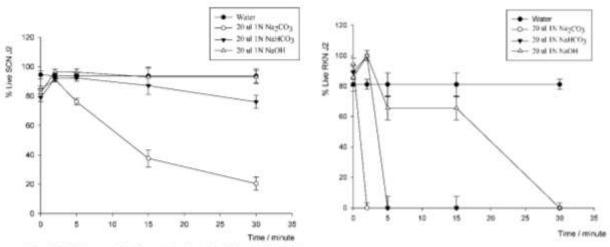


Figure 1. SCN J2 responded to three sodium chemicals, 1N Na₂CD₃, 1N NaHCO₃ and 1N NuOH at 20 µl application.

Figure Z. RKN J2 responded to three sodium chemicals. 1N Na₂CO₃. 1N NaHCO₃ and 1N NaOH at 20 µl application

3.3 Results of experiment 3: Select the optimum concentration for the chemical stimuli

SCN J2: The optimum concentration for SCN J2 tested was from 1 μ l and 10 μ l of 1N Na₂CO₃, 1N NaHCO₃, and 1N NaOH at pH = 10. The 1 μ l of Na₂CO₃, NaHCO₃, and NaOH stimulated movement of SCN J2 within 2 minutes exposure, but only 1 μ l of Na₂CO₃ and 10 μ l NaHCO₃ caused live SCN J2 to rapidly curl and twist into a hook shape (Fig 3A-B) after 2 minutes exposure which easily distinguished live from dead individuals (Table 2, Fig 3C-D). However, the 10 μ l volume caused J2 to float and therefore compounded counting. The NaOH did not cause the live SCN J2 to curl and twist (Fig 3E). The 1 μ l of Na₂CO₃ was optimum for distinguishing between live and dead SCN J2 in 30 minutes and was tested in the growth chamber.

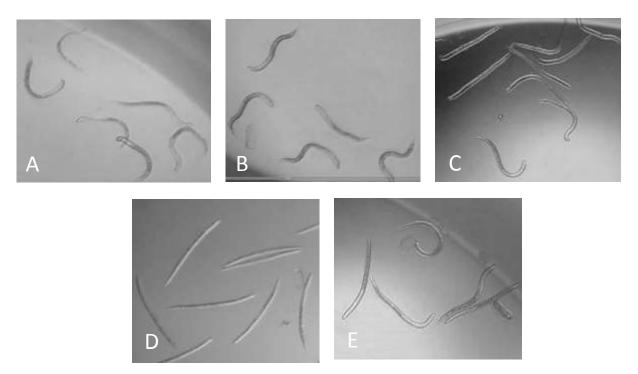


Figure 3 (A, B, C, D, and E). Responses of SCN J2 to test agents at 30 minutes. SCN J2 were exposed to 1 μ l 1N Na₂CO₃ at 30 minutes (A); SCN J2 were exposed to 10 μ l NaHCO₃ at 30minutes (B); SCN J2 in water at 30 minutes (C); Dead SCN J2 didn't response to any test agents (D); SCN J2 were exposed to 10 μ l NaOH at 30 minutes (E).

Sodium stimuli	Volume/µl	Before exposure Live / Total J2 (%)	2 mins exposure Live / Total J2 (%)	30 mins exposure Live / Total J2 (%)	% changed live SCN J2 at 2 mins	Rating scale at 2 mins	% changed live SCN J2 at 30 mins	Rating scale at 30 mins
	10	23/28 (82.1)	26/28 (92.9)	13/28 (46.4)	10.8 ab	4	-35.7 b	1
1N NaHCO3	1	28/36 (77.8)	29/36 (80.6)	28/36 (77.8)	2.8 bc	3	0.0 ab	3
	10	26/30 (86.7)	28/30 (93.3)	29/30 (96.7)	6.6 abc	3	10.0 ab	3
1N NaOH	1	27/34 (79.4)	29/34 (85.3)	24/34 (70.6)	5.9 abc	3	-8.8 b	3
	10	19/24 (79.2)	22/24 (91.7)	22/24 (91.7)	12.5 a	4	12.5 a	2
Water Control		37/39 (94.9)	37/39 (94.9)	37/39 (94.9)	0.0 c	3	0.0 ab	3

Table 2. Response of SCN J2 to 1 or 10 µl of 1N Na₂CO₃, 1N NaHCO₃, and 1N NaOH solutions at pH = 10.

Numbers in the parentheses are the percentages of live number J2 out of total number of J2.

*LS-MEANS with the same letter are not significantly different according to Tukey-Kramer's method ($P \le 0.05$).

RKN J2: The optimum concentration for RKN J2 was selected from 1 µl and 10 µl of 1N NaOH at pH = 10. The 1µl NaOH caused significant increasing movement of RKN J2 at 30 minutes ($P \le 0.05$) with distinctive curled and twisted body shapes (Table 3, Fig 4A-B). The 10 µl of NaOH was toxic to the RKN J2 at 30 minutes and the 10 µl volume caused floating which is not recommended for *in vitro* screening (Table 3). The 1 µl of NaOH was chosen and tested in the growth chamber.

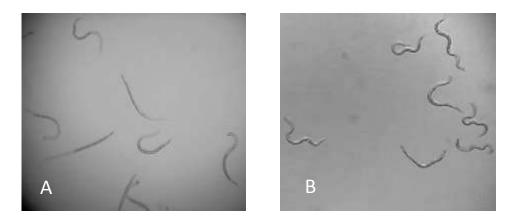


Figure 4. Responses of RKN J2 to water and 1 µl of 1N NaOH at 30 minutes. RKN J2 responded to water with normal annulation at 30 minutes (A); RKN J2 exposed in 1µl of 1N NaOH with curling shape at 30 minutes (B).

Table 3. Response of RKN J2 to different concentrations	Response of RKN J2 to different concentrations of 1N NaOH at $pH = 10$.				
			30		

		Before exposure	2 mins exposure	30 mins exposure	% changed	Rating	%changed live	Rating
Sodium stimuli	Volume/µl	Live / Total J2 (%)	Live / Total J2 (%)	Live /Total J2 (%)	live RKN J2 at 2 mins	scale at 2 mins	RKN J2 at 30 mins	scale at 30 mins
1N NaOH	1	25/32 (78.1)	32/32 (100.0)	32/32 (100.0)	21.9 a	4	21.9 a*	4
	10	25/32 (78.1)	32/32 (100.0)	22/32 (68.2)	21.9 a	2	-9.9 c	2
Water Control		39/50 (78.0)	39/50 (78.1)	39/50 (78.1)	0.0 a	3	0.0 bc	3

Numbers in the parentheses are the percentages of live number J2 out of total number of J2.

*LS-MEANS with the same letter are not significantly different according to Tukey-Kramer's method ($P \le 0.05$).

3.4 Results of experiment 4: Confirm infectivity and viability after exposure to selected chemical stimuli

SCN in soybean

Results indicated that the 1µl 1N Na₂CO₃ in 100 µl of solution at pH=10 indicated that 60.5 % of the SCN J2 were alive and of these 29.5 % entered the soybean roots (Table 4, Fig 5A). All of the SCN J2 which were determined to be dead were not infective as indicated by their inability to enter the roots and thus none were observed within the root tissue (Table 4, Fig 5B). Soybean root fresh weights were similar among all the treatments (Table 4). The 1µl 1N Na₂CO₃ was the best indicator of live SCN J2 and J2 were infective entering soybean roots and beginning their life cycle.

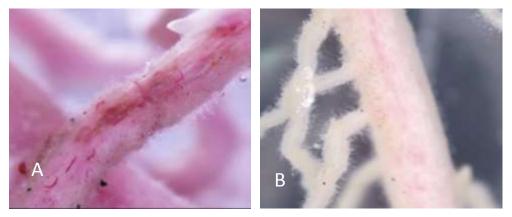


Figure 5. Stained SCN J2 in the root tissues from a live SCN treatment were observed at 21 DAI (A) and the stained root tissues from the dead SCN treatments with no SCN J2 or females (B).

SCN J2	Sodium stimuli	Volume/µl	Percent live J2 inoculated	Percent Females and J2 in roots at 21 DAI	Root fresh weight at 21 DAI/g
Live	1N Na ₂ CO ₃	1	60.5 a	29.5 a	1.5 a*
	Water Control		57.6 a	17.0 ab	1.4 a
Dead	1N Na ₂ CO ₃	1	1.1 b	0.0 b	1.9 a
	Water Control		0.0 b	0.0 b	1.7 a

Percentage of live SCN J2 inoculated with soybean roots and SCN J2 penetrated in the roots at 21 (DAI).

*LS-means with the same letter are not significantly different according to Tukey-Kramer's method ($P \le 0.05$).

RKN in soybean

Growth chamber results indicated that 1µl of 1N NaOH in 100 µl of solution at pH=10 indicated 75.2 % of RKN J2 were alive and 14.9 % J2 entered the roots (Table 5, Fig 6A). RKN J2 and females were recorded at 21DAI. Dead RKN J2 were confirmed dead and were not infective as measured by their absence in the roots (Table 5, Fig 6B). The root fresh weights were similar among all the treatments (Table 5). Thus, 1 µl 1N NaOH at pH = 10 is the best indicator for live RKN J2 and J2 were infective in soybean roots.

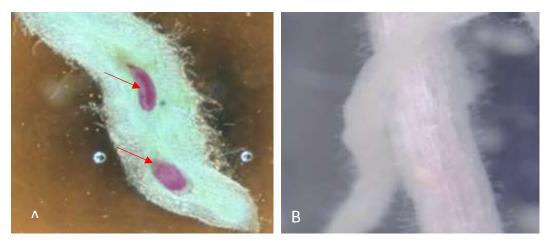


Figure 6. Stained RKN females in the root tissues from live treatment were observed at 21 DAI (A) and the stained root tissues from the dead RKN treatments with no RKN J2 or

RKN J2	Sodium stimuli	Volume/µl	Percent live J2 inoculated	Percent females and J2 in roots at 21 DAI	Root fresh weight at 21 DAI / g
Live	1N NaOH	1	75.2 a	14.9 a	1.4 a*
	Water control		66.5 a	8.0 ab	1.3 a
Dead	1N NaOH	1	1.7 b	0.0 b	1.4 a
	Water Control		1.9 b	0.0 b	1.5 a

Table 5. RKN J2 infection of soybean roots after 1 µl 1N NaOH live and dead determination.

Percentage of live RKN J2 inoculated in the roots and RKN J2 and females penetrated in the roots at 21DAI. *LS-means with the same letter are not significantly different according to Tukey-Kramer's method ($P \le 0.05$).

4. Discussion

The pH test indicated that live SCN J2 responded to higher pH levels. The pH = 10 can successfully distinguish between live and dead SCN J2 in 30 minutes *in vitro*. Chen and Dickson

(2000), previously reported pH about 12.3 effectively stimulated SCN J2 but theorized the response was because of toxic action of NaOH. Sambongi et al. (2000) also proved that *C. elegans* is not attracted to an acidic environment with pH lower than 4.0 formed by organic or inorganic acids. Our experiments demonstrated that high pH=10 effectively stimulated SCN J2, but low pH did not cause a response. The same response has also been found on RKN J2 (data not shown). We showed that SCN and RKN are not attracted to low pH but respond to high pH suggesting that the pH value plays an important role in stimulating nematode.

Results for selecting the optimum stimuli in vitro and in growth chamber revealed that SCN J2 responded to 1 µl 1N Na₂CO₃ and RKN J2 responded to 1 µl 1N NaOH in 100 µl of water at pH=10. These indicated 1 μ l 1N Na₂CO₃ and 1 μ l 1N NaOH in 100 μ l of water at high pH are the best indicators to distinguishing between live and dead SCN and RKN J2 in vitro, respectively. Nehrke and Melvin (2002) found that the NHX-4, one of the nine putative homologs of C. elegans and the ubiquitous nematode Na⁺-H⁺ exchanger, mediates Na⁺-dependent pH recovery after intracellular acidification. In our study, adding Na⁺ and altering the pH of the environment may contribute to the stimulation of SCN and RKN J2 through the Na⁺-H⁺ exchanger, but more research is needed to understand this phenomena. Perry (1996) mentioned the role and functioning of the anterior chemosensory organs of plant parasitic nematode and found that the amphidial secretions were involved in the chemoreception and the behavioral of nematode responses to semiochemicals. In addition, amphids, which are the largest and most complex of the anterior sensilla, is conserved in many plant parasitic nematodes including J2 and adults males of M. incognita and H. glycines (Perry 1996; Baldwin and Hirschmann 1973; Wergin and Endo 1976). This information indicated that the response of SCN and RKN J2 to the high pH and Na₂CO₃ or NaOH are possibly involved with chemosensory organs and amphidial secretions which play an important role in chemoreception (Perry 1996).

Overall, this sodium technique is very accurate at determining live and dead nematodes when applied *in vitro* to test the efficacy of nematicides or biocontrol agents and can be used for high throughput screening. The application of stimuli is a simple screening method not requiring special training for sample preparation, or advanced equipment necessary for FDA, FITC, and CTG labeling methods (Bird 1979; Schroeder and MacGuidwin 2007; Grego et al. 2013). The quick consistent responses of the live nematodes to the sodium stimuli indicates efficacy of the tested agents. Other techniques (Bird 1979; Schroeder and MacGuidwin 2007; Grego et al. 2013) using dyes or labeling materials cannot guarantee all the nematode will be labelled the same in a short time period. Health and safety are also concerns when using fluorescent materials such as FDA, FTIC, and CTG, as well as availability of fluorescence microscopes. The application of 1 µl Na₂CO₃ or NaOH can not only distinguish between live and dead nematodes, but also are relatively safe. Beyond SCN and RKN J2, Lesion nematode J2 and adults also responded to the 1 µl Na₂CO₃ at pH = 10 (data not published).

In summary, results from this research clearly demonstrate that applying 1 μ l 1N Na₂CO₃ in 100 μ l SCN solution at pH = 10 and 1 μ l 1N NaOH in 100 μ l RKN solution at pH = 10 can be practical and economical method for high throughput screening chemical or biological agents of SCN or RKN *in vitro*. Using this method we screened 700 bacterial strains for efficacy to SCN and RKN in three months.

5. Reference

Baldwin, J. G., and Hirschmann, H. 1973. Fine structure of the cephalic sense organs in *Meloidogyne incognita* males. Journal of Nematology. 5:285 - 302.

- Bird, A. F. 1979. A method of distinguishing between living and dead nematodes by enzymatically induced fluorescence. Journal of Nematology. 11:103 105.
- Chaudhuri, N., Dick, R. I., Engelbrecht, R. S., and Austin, J. H. 1966. Staining of free-living nematodes by eosin-Y dye. Nematologica. 12:337 344.
- Chen, S. Y., and Dickson, D. W. 2000. A technique for determining live second-stage juveniles of *Heterodera glycines*. Journal of Nematology. 32:117 121.
- Chen, S. Y., Dickson, D. W., and Mitchell, D. J. 2000. Viability of *Heterodera glycines* exposed to fungal filtrates. Journal of Nematology. 32:190 197.
- Dropkin, V. H. 1996. Physiology of nematodes of the soil. Annals of the New York Academy of Sciences. 139:39 52.
- Faske, T. R., and Starr, J. L. 2006. Sensitivity of *Meloidogyne incognita* and *Rotylenchulus* reniformis to Abamectin. Journal of Nematology. 38:240 - 244.
- Grego, M., Stachowitsch, M., Troch, M. D., and Riedel, B. 2013. CellTracker Green labelling vs. rose Bengal staining: CTG wins by points in distinguishing living from dead anoxia-impacted copepods and nematodes. Biogeosciences. 10:4565 4575.
- Hussey, R. S., and Barker, K. R. 1973. A comparison of methods of collecting inocula of *Meloidogyne* spp., including a new technique. Plant Disease Reporter. 57:1025 1028.
- Jenkins, W. R. 1964. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Disease Reporter. 48:692.
- Kannappan, A., and Palani, R. 2007. Acoustical behaviour of glycerine, dextrose and sucrose in Na₂CO₃ and NaHCO₃ buffer solution. Ind. J. Pure Appl. Phys. 45:573 579.
- Lee, D. L., and Atkinson, H. J. 1976. Physiology of nematodes. 2nd ed. London and Basingstoke: The Macmillan Press LTD;

- Meyer, S. L. F., Sayre, R. M., Huettel, R. N. 1988. Comparisons of selected stains for distinguishing between live and dead eggs of the plant-parasitic nematode *Heterodera* glycines. Proc. Helminthol. Soc. Wash. 55:132 - 139.
- Nehrke, K., and Melvin, J. E. 2002. The NHX family of Na⁺-H⁺ exchangers in *Caenorhabditis elegans*. Journal of Biological Chemistry. 277:29036 29044.
- Ogiga, I. R., and Estey, R. H. 1974. The use of Meldola Blue and Nile Blue A, for distinguishing dead from living nematodes. Nematologica. 20:271 276.
- Perry, R. N. 1996. Chemoreception in plant parasitic nematodes. Annu. Rev. Phytopathol. 34:181 199.
- Riddle, D. L., and Bird, A. F. 1985. Responses of the plant parasitic nematodes *Rotylenchulus reniformis*, *Anguina agrostis* and *Meloidogyne javanica* to chemical attractants. Parasitology. 91:185 195.
- Riggs, R. D., and Schmitt, D. P. 1988. Complete characterization of the race scheme for *Heterodera glycines*. Journal of Nematology. 20:392 395.
- Sambongi, Y., Takeda, K., Wakabayashi, T., Ueda, I., Wada, Y., and Futai, M. 2000. *Caenorhabditis elegans* senses protons through amphid chemosensory neurons: proton signals elicit avoidance behavior. Neuroreport. 11:2229 - 2232.
- Schroeder, N., and MacGuidwin, A. 2007. Incorporation of a fluorescent compound by live *Heterodera glycines*. Journal of Nematology. 39:43 49.
- Shepherd, A. M. 1961. New Blue R, a stain that differentiates between living and dead nematodes. Nematologica. 8:201 - 208.
- Wergin, W. P., Endo, B. Y.1976. Ultrastructure of a neurosensory organ in a root knot nematode.J. Ultrastruct Res. 56:258 276.

- Xiang, N., Lawrence, K. S., Kloepper, J. W., and Mcinroy, J. A. 2014. *In vitro* screening of biological control agents on *Meloidogyne incognita*. Proceedings of the 2014 Beltwide Cotton Conference. 1: 258-260.
- Zhai, L., Xue, Y. F., Song, Y. H., Xian, M. J., Yin, L., Zhong, N.Q., Xia, G. X., and Ma, Y. H. 2014. Overexpression of *Aa*Pal, a peptidoglycan-associated lipoprotein from *Alkalomonas amylolytica*, improves salt and alkaline tolerance of *Escherichia coli* and *Arabidopsis thaliana*. Biotechnology Letters. 36:601 - 607.

Chapter III. Biological control of *Meloidogyne incognita* by spore-forming plant growthpromoting rhizobacteria on cotton

Abstract

In the past decade, increased attention has been placed on biological control of plantparasitic nematodes using various fungi and bacteria. The objectives of this study were to evaluate the potential of 669 plant growth-promoting rhizobacteria (PGPR) strains for mortality to Meloidogyne incognita J2 in vitro and for nematode management in greenhouse, microplot, and field trials. Results indicated that the mortality of *M. incognita* J2 by the PGPR strains ranged from 0.0% to 100% with an average of 39%. Among the PGPR strains examined, 33.5% caused more than 50% mortality of *M. incognita* J2. Of those, 28.1% were *B. simplex*, 11.6% *B. aryabhattai*, 10.7% B. toyonensis, 6.3% B. cereus, 5.8% B. mycoides, 5.8% B. safensis, 4.9% B. altitudinis, 4.9% B. velezensis, 3.1% B. subtilis subsp. inaquosorum, 2.2% B. weihenstephanensis, 2.2% Paenibacillus amylolyticus, 1.8% B. methylotrophicus, 1.8% Brevibacterium epidermidis, 9.8% were multiple other genera. In subsequent trials, B. velezensis strain Bve2 reduced M. incognita eggs per gram of cotton root in the greenhouse trials at 45 days after planting (DAP). Bacillus mojavensis strain Bmo3, B. velezensis strain Bve2, B. subtilis subsp. subtilis strain Bsssu3, and Mixture 2 (Abamectin + Bve2 + Bal13) suppressed M. incognita eggs per gram of root in the microplot at 45 DAP. Bacillus velezensis strains Bve12 and Bve2 also increased seed cotton yield in the microplot and field trials. Overall, results indicate that B. velezensis strains Bve12 and Bve2, B. mojavensis strain Bmo3, and the Mixture 2 (Abamectin + Bve2 + Bal13) have potential to reduce *M. incognita* population density and to enhance growth of cotton when applied as in-furrow spray at planting.

1. Introduction

Meloidogyne incognita (Kofoid & White) Chitwood, the southern root-knot nematode, is one of the most important plant-parasitic nematodes affecting cotton production in the U.S. (Creech et al. 1995; Robinson 2007). In 2015, cotton yield in the U.S. was estimated to be 7.9 million bales, but losses due to *M. incognita* were estimated at 215,500 bales, which was equivalent to 1.35% of total production (Lawrence et al. 2016). Due to environmental and health concerns with the use of chemical nematicides for nematode management, many alternative strategies such as biological agents for plant-parasitic nematode control have been investigated (Burkett-Cadena et al. 2008; Kiewnick and Sikora 2006). Plant growth-promoting rhizobacteria (PGPR) promote plant growth and elicit significant reductions in the incidence or severity of various diseases on a diversity of hosts (Kloepper et al. 2004). Strains of PGPR which also exhibit nematicidal activity and/or elicit induced systemic plant resistance to plant-parasitic nematodes could be potential alternatives to chemical nematicides.

Many studies have reported antagonistic activity of various strains of *Bacillus* spp. against plant-parasitic nematodes. Twelve species of *Bacillus* have been documented for *M. incognita* management, including *B. amyloliquefaciens* (synonymous as *B. velezensis*) (Burkett-Cadena et al. 2008), *B. cereus* (Siddiqui and Mahmood 1999), *B. circulans* (Ambo et al. 2010), *B. coagulans* (Ambo et al. 2010; Serfoji et al. 2010), *B. firmus* (Terefe et al. 2009; Mendoza et al. 2008), *B. licheniformis* (Siddiqui and Husain 1991; Siddiqui and Mahmood 1992), *B. megaterium* (Kloepper et al. 1992), *B. penetrans* (Brown et al. 1985; Brown and Smart 1985), *B. polymyxa* (Khan and Akram 2000), *B. sphaericus* (Krechel et al. 2002), *B. subtilis* (Siddiqui and Mahmood 1999; Kavitha et al. 2007), and *B. thuringiensis* (Devidas and Rehberger 1992; Zuckerman et al. 1993; Mohammed et al. 2008). Among these *Bacillus* species, some have been developed into

commercial products for controlling plant disease and nematodes. BioNem-WP/BioSafe, a *B. firmus* product developed by AgroGreen, was reported effective against *M. incognita*, *M. hapla*, *Heterodera* spp., *Tylenchulus semipenetrans*, *Xiphinema index*, and *Ditylenchus dipsaci* (Keren-Zur et al. 2000). BioYield, a combination of *B. velezensis* strain IN937a and *B. subtilis* strain GB03, was developed by Gustafson in a flowable formulation for management of soil-borne pathogens and suppression of *M. incognita* population density on tomato (Kloepper et al. 2004; Burkett-Cadena et al. 2008). Nemix, a *Bacillus* spp. product developed by AgriLife/Chr. Hansen, was reported for control of root-knot nematodes on vegetables and fruit trees (Hallmann et al. 2009). VOTiVO, *Bacillus firmus* GB-126, is marketed by Bayer CropScience as a seed treatment for the control of plant-parasitic nematodes on corn, cotton, sorghum, soybean, and sugar beet (Wilson and Jackson 2013). Pathway Consortia, a product containing *B. subtilis*, *B. licheniformis*, *B. megaterium*, *B. coagulans*, *Pseudomonas fluorescens*, *Streptomyces* spp., and *Trichoderma* spp. developed by Pathway Holdings, was reported for the management of plant-parasitic nematodes (Askary 2015).

Mode of action for biocontrol of plant-parasitic nematodes of some *Bacillus* strains have been studied. Sayre (1980) and Stirling (1984) reported *B. penetrans* (synonymous as *Pasteuria penetrans*) (Charles et al. 2005) was an obligate parasite of *Meloidogyne* spp. The *P. penetrans* spores attached to the cuticle of the J2 in the soil prior to entering the roots. The germ tube of the spores penetrated the cuticle and reproduced inside the nematode body consuming the nematode (Sayre 1980; Stirling 2014). Mendoza et al. (2008) studied *in vitro* activity of *B. firmus* against burrowing nematode *Radopholus similis*, root-knot nematode *M. incognita*, and stem nematode *Ditylenchus dipsaci* and detected rates of mortality of these nematodes and significant reduction of *M. incognita* hatching after incubation with a low concentration of pure culture filtrates (Mendoza et al. 2008). The mode of action for the observed nematode paralysis and mortality was attributed to secondary metabolites produced by the bacteria (Mendoza et al. 2008).

Induced systemic resistance (ISR) of some *Bacillus* strains has been documented. Sikora (1988) found that *Bacillus subtilis* can induce protection against *M. incognita* in cotton. Kloepper et al. (2004) reported that specific strains of *B. velezensis*, *B. cereus*, *B. mycoides*, *B. pasteurii*, *B. pumilus*, *B. sphaericus*, and *B. subtilis* can elicit significant reductions in the incidence or severity of various diseases on a diversity of hosts through ISR. Schrimsher (2013) studied the ISR of *B. firmus* GB-126 against *Heterodera glycines* and *M. incognita* in split-root experiments in the greenhouse and found that ISR was evident in the *H. glycines* split-root assay but not in the *M. incognita* split-root assay. Collectively, these studies indicate that *Bacillus* spp. are promising candidates for nematode disease management through diverse modes of action.

The overall goal of this research was to investigate selected PGPR strains for their potential biological control of *M. incognita* on cotton. The specific objectives were to assess the potential of PGPR strains for mortality of *M. incognita* J2 *in vitro* and evaluate the efficacy of PGPR strains for reduction of *M. incognita* population density and plant growth promotion on cotton in greenhouse and microplot trials, and in field production systems.

2. Materials and Methods

2.1 PGPR strains

A total of 669 PGPR strains (Appendix 1) were included in *in vitro* studies (Appendix 1). PGPR strains were originally isolated, identified, and stored by J. W. Kloepper at Auburn University, Auburn, AL. Among these strains, 91.8% were *Bacillus* spp. including 208 strains of *B. simplex*, 70 strains of *B. toyonensis*, 53 strains of *B. aryabhattai*, 51 strains of *B. cereus*, 44 strains of *B. mycoides*, 41 strains of *B. velezensis*, 35 strains of *B. safensis*, 21 strains of *B.* altitudinis, 21 strains of *B. weihenstephanensis*, 15 strains of *B. subtilis* subsp. *inaquosorum*, 13 strains of *B. methylotrophicus*, six strains of *B. pumilus*, five strains of *B. psychrosaccharolyticus*, four strains of *B. mojavensis*, four strains of *B. subtilis* subsp. *subtilis*, four strains of *B. thuringiensis*, three strains of *B. siamensis*, three strains of *B. tequilensis*, and 13 strains of other *Bacillus* spp. The remaining 8.2% of the collection, ten strains were *Sporosarcina globispora*, seven strains were *Brevibacterium epidermidis*, nine strains were *Paenibacillus amylolyticus*, four strains were *Paenibacillus lautus*, and 25 strains were from multiple genera. The PGPR strains stored in 30% glycerol at -80 °C were transferred to tryptic soy agar (TSA) (VWR, Radnor, PA) plates, and incubated at 35°C for 24 hours. The 21 strains that had no significant growth on TSA medium were eliminated from the study (Appendix 3). Vegetative cells of each strain were suspended in 5 ml of sterile distilled water in 25 ml glass tubes, the concentration was adjusted to 1×10^7 CFU/ml.

2.2 Nematode inoculum

Meloidogyne incognita, originally isolated from an infested field at the Plant Breeding Unit (PBU) at E.V. Smith Research Center of Auburn University and maintained on corn plants "Mycogen 2H723" (Dow AgroScience, Indianapolis, IN) in 500 cm³ poly styrene pots in the greenhouse, was used as inoculum in the experiments. Eggs were extracted from corn roots by placing the root system in a 0.625 % NaOCl solution for 4 min using a rotary shaker at 120 rpm (Hussey and Barker 1973). Eggs were rinsed with tap water, collected on a 25-µm-pore sieve, then processed by sucrose centrifugation-flotation at 240 g for 1 minute (Jenkins 1964). For *in vitro* tests, *M. incognita* eggs were placed in a modified Baermann funnel (Castillo et al. 2013) on a slide warmer (Model 77) (Marshall Scientific, Brentwood, NH) and incubated at 31°C for 5 to 7 days to obtain second stage juveniles (J2) (Xiang 2014). The J2 were collected on a 25-µm-pore

sieve, transferred to 1.5 ml micro centrifuged tubes, centrifuged at 5,000 g for 1 minute, rinsed with sterile distilled water, and centrifuged at 5,000 g for 1 minute. The J2 suspensions were adjusted to 30 to 40 J2 per 10 μ l of water (Xiang 2014). For trials conducted in the greenhouse and microplot, eggs were enumerated at 40 × magnification using an inverted TS100 Nikon microscope and standardized to 2,000 eggs per cone-tainer or 50,000 eggs per microplot.

2.3 Tests in vitro

Tests *in vitro* were conducted to assess mortality of *M. incognita* J2 by PGPR strains. PGPR vegetative cell suspensions and *M. incognita* J2 inocula were prepared as mentioned previously. Ten μ l nematode suspension containing 30 to 40 *M. incognita* J2 were added in each well of a 100 μ l 96-well plate. Ninety μ l of each PGPR bacterial vegetative cell suspension were transferred into each test well of the 96-well plate. Clothianidin plus *B. firmus* I-1582 (Poncho/VOTiVO) (Bayer CropScience, Raleigh, NC) at 0.7 μ l/well (0.424 mg ai/seed) and 1 granule/well of Aldicarb (Temik 15G) (Bayer CropScience, Raleigh, NC) were used as chemical standards. Sterile distilled water was used as the untreated control. Each plate was sealed with parafilm and incubated at room temperature (22.2 to 25.5 °C) for 48 hours. Numbers of live *M. incognita* J2 were counted and recorded at experiment initiation and 48 hours after exposure to the bacterial strains. Viability of *M. incognita* J2 was determined using the sodium hydroxide technique developed by Xiang and Lawrence (2016). Mortality percentage of *M. incognita* J2 was calculated using the following equation: [(live J2 prior to exposure - live J2 at 48 hours) / live J2 prior to exposure] ×100. Each bacterial treatment was replicated four times and the *in vitro* screening experiment was repeated.

2.4 Plant materials

Cotton (*Gossypium hirsutum*) variety "FM1944 GLB2" (Bayer CropScience, Raleigh, NC) known to be susceptible to *M. incognita* (Lawrence et al. 2015) was used for the greenhouse,

microplot, and field experiments.

2.5 Trials in the greenhouse

Seventy-two PGPR strains were selected from the *in vitro* screening for initial evaluation in the greenhouse for their efficacy to reduce nematode population density and promote cotton plant growth. Confidential agreements were signed during this research study and only nine Bacillus strains were available for further testing. These nine strains included one strain of B. mojavensis (Bmo3), two strains of B. safensis (Bsa25 and Bsa26), two strains of B. subtilis subsp. subtilis (Bsssu2 and Bsssu3), and four strains of B. velezensis (Bve2, Bve12, Bve37, and Bve40). All experiments were conducted at the Plant Science Research Center (PSRC) greenhouse located at Auburn University, Auburn, AL. Experiments were performed in 150 cm³ plastic cone-tainers (Stuewe & Sons Inc., Tangent, Oregon) filled with a soil sand mix (60:40 v/v). The soil was a Kalmia loamy sand (80% sand, 10% silt, and 10% clay) collected from PBU located at E.V. Smith Research Center of Auburn University, located near Tallassee, AL. Soil was steam pasteurized at 180 °C for 90 minutes, cooled for 24 hours, then the steam pasteurizing process was repeated prior to use. Two cotton seeds were planted 1.3 cm deep in each cone-tainer. One ml of bacterial cell suspension $(1 \times 10^7 \text{ CFU/ml})$ was added to each seed at planting. For the nematicide controls, cotton seeds were treated with each compound following agricultural industry recommendations: 0.424 mg ai/seed of Clothianidin plus B. firmus I-1582, or 0.15 mg ai/seed of Abamectin (Syngenta, Greensboro, NC), or 1 granula/seed of Aldicarb was applied at planting. All seeds for Clothianidin plus B. firmus I-1582 treatment were treated with a Gustafson table-top seed treater (Bayer CropScience, Research Triangle Park, NC), mixed for 3 min in the 454-gm stainless steel bucket and allow to air-dry before packaging (Schrimsher et al. 2014). One ml of tap water was added to the untreated control seeds. One ml of water containing 2,000 *M. incognita* eggs was pipetted into each cone-tainer at planting. Experiments were arranged in a randomized complete block design (RCBD). Each treatment had five replications and the experiment was repeated. Cotton seedlings were thinned to one per cone-tainer after emergence. Plants were watered as needed. Supplemental light of 1000 watt halide bulbs producing 110,000 lumens was supplied to maintain day length of 14 hours per day. Greenhouse temperatures ranged from 21°C to 35 °C. Experiments were terminated at 45 days after planting (DAP). Plant and nematode measurements were recorded. Plant measurements included Plant height (PH), biomass (Bio) including shoot and root fresh weights (SFW+RFW). Nematode measurement were *Meloidogyne incognita* eggs per gram of root (Eggs/gr).

2.6 Trials in the microplots

Six PGPR strains and two mixtures of PGPR strains were evaluated for nematode population development, early plant growth promotion, and yield enhancement on cotton. The strains included *B. altitudinis* strain Bal13, *B. mojavensis* strain Bmo3, *B. subtilis* subsp. *subtilis* strains Bsssu2 and Bsssu3, and *B. velezensis* strains Bve2 and Bve2. Mixtures were formed from the best performing strains based on greenhouse studies. The two mixtures were Mixture 1 (Bve2 + Bal13) and Mixture 2 (seeds treated with Abamectin + Bve2 + Bal13). The experiments were conducted at the PSRC. Experiments were established in 26.5 liter pots filled with a Kalmia loamy soil collected from PBU where *M. incognita* and *H. glycine* had not been detected. Experiments were arranged in a RCBD with 6 replications for each treatment and the experiment was repeated. Five cotton seeds were hand-planted at a 1.3 cm depth in a linear pattern to simulate a linear row foot in the field (Schrimsher et al. 2014). One ml bacterial suspension $(1 \times 10^7 \text{ CFU/ml})$ was applied to each seed at planting. Five ml containing 50,000 *M. incognita* eggs as inoculum were pipetted into each pot at planting. Cotton seeds treated with Clothianidin plus *B. firmus* I-1582,

and Abamectin as previously described were used as standards. The untreated control included 1 ml of tap water per seed. Each microplot received 30 ml per minute of water by an automated drip irrigation system adjusted throughout the season to run for 15 - 45 minutes twice a day, for a total of 450 - 1350 ml of water per microplot per day. At 48 DAP, one representative cotton plant from each microplot was removed for PH and Bio measurements. The *M. incognita* eggs were extracted from the root system as previously described and enumerated. At plant maturity, 142 DAP, seed cotton was handpicked, and yield was recorded as grams of seed cotton per microplot.

2.7 Trials in the field

The same strains and mixtures assessed in the microplot trials were evaluated in field trials for their effect on early-season nematode population development, plant growth promotion, and yield enhancement in cotton. The experiments were established at PBU and at Prattville Agricultural Research Unit (PARU) in a Sandy clay loam soil (64% sand, 10% silt, and 26% clay), Prattville, AL. Both fields were naturally infested with *M. incognita* and numbers of J2 were just at the detection level of the extraction technique as previously described. The experiment was arranged in a RCBD with 5 replications for each treatment. The field plots were planted in tworow plots, 7 m long with 0.9 m row spacing. Blocks were separated by a 6 m alley. One hundred cotton seeds were planted in each row with an Almaco plot planter (Almaco, Iowa). The PGPR strains were standardized to 1×10^7 CFU/seed and applied as in-furrow sprays at 32.5 liter per hectare at planting. Two industry standards were used: seeds treated with Clothianidin plus B. firmus I-1582, or Abamectin as described previously. Tap water applied as an in-furrow spray was the untreated control at 32.5 L/ha. At 40 DAP, four random representative cotton plants were removed from each plot. The same plant growth parameters evaluated in the microplots were also evaluated in the field. *Meloidogyne incognita* population density was determined by extracting

eggs from four root systems per plot. Cotton was harvested mechanically with a cotton picker (Deere & Company, Moline, IL) at plant maturity which was near 150 DAP and seed cotton yield was recorded.

2.8 Statistical analysis

Data collected from *in vitro*, greenhouse, microplot, and field trials were analyzed in SAS 9.4 (SAS Institute, Cary, NC) using the PROC GLIMMIX procedure. Dependent variables included J2 mortality, plant height (PH), biomass (Bio), *M. incognita* eggs per gram of root (Eggs/gr), and yield. Fixed effects were PGPR strains or nematicides treatments and the random effects included replication, test repeat, and location. Student panels were generated to determine the normality of the residuals. The data of PH, Bio, or Eggs/gr required a log-normal distribution transformation to satisfy the normal assumptions. LS-means were compared between the treatments, chemical standards Clothianidin plus *B. firmus* I-1582, Abamectin, Aldicarb and the untreated control by Dunnett's method at significant level of $P \le 0.05$ or $P \le 0.10$. The LS-means are presented in the tables and adjusted *P* values are presented for statistical differences.

3. Results

3.1 Tests in vitro

The mortality percentage of *M. incognita* J2 ranged from 0.0% to 100% for the PGPR strains (669) with an average of 39% (Appendix 1). Data presented are results of 216 PGPR strains causing significant higher mortality percentage of *M. incognita* J2 than untreated control (Table 1). Of those 216 strains, 63 strains were *B. simplex*, 26 were *B. aryabhattai*, 24 strains were *B. toyonensis*, 14 were *B. cereus*, 13 were *B. safensis*, 13 were *B. mycoides*, 11 were *B. velezensis*, 11 were *B. altitudinis*, seven were *B. subtilis* subsp. *inaquosorum*, five were *B. weihenstephanensis*, five were *B.amylolyticus*, four were *B. methylotrophicus*, four were *Brevibacterium*

epidermidis, two were *B. mojavensis*, two were *B. pumilus*, two were *B. subtilis* subsp. *subtilis*, and the remaining 18 strains were *Arthrobacter defluvii*, *B. psychrosaccharolyticus*, *B. tequilensis*, *B. thuringiensis*, *Brevibacterium iodinum*, *Fictibacillus solisalsi*, *Lysinibacillus macroides*, *Paenibacillus lautus*, *P. tundrae*, *P. xylanexedens*, *Solibacillus isronensis*, *Sporosarcina globispora*, and indistinguishable species of *Bacillus* spp. Among all PGPR strains, 19.1% produced a significantly greater level of mortality percentage than the biological standard Clothianidin plus *B. firmus* I-1582 ($P \le 0.05$), and 34.5% resulted in statistically similar mortality percentage to Aldicarb ($P \le 0.05$) (Table 1). Among all the strains, *Bacillus* spp., was the major genera initiating greater mortality percentage when compared with the other genera.

3.2 Trials in the greenhouse

In evaluations conducted in the greenhouse, nine *Bacillus* PGPR strains reduced nematode eggs/gr at 45 DAP at levels statistically equivalent to the standard Clothianidin plus *B. firmus* I-1582, which is the biological standard currently available to cotton producers. *Bacillus velezensis* strain Bve2 suppressed *M. incognita* eggs/gr at a level statistically equivalent to the Abamectin control ($P \le 0.1$) (Table 2). None of the tested *Bacillus* strains reduced *M. incognita* eggs/gr similarly to the chemical standard Aldicarb. Strains *B. mojavensis* Bmo3, *B. safensis* Bsa25, *B. subtilis* subsp. *subtilis* Bsssu3, and *B. velezensis* Bve2 (Fig. 1) and Bve40 significantly increased plant biomass compared with the standard Clothianidin plus *B. firmus* I-1582 at 45 DAP ($P \le 0.10$) (Table 2). Strain Bsssu3 (Fig. 2) significantly increased plant height compared to Aldicarb ($P \le 0.10$) (Table 2).

3.3 Trials in microplots

In the microplot studies, *M. incognita* eggs/gr were reduced by *B. mojavensis* strain Bmo3, *B. subtilis* subsp. *subtilis* strain Bsssu3, *B. velezensis* strain Bve2, and Mixture 2 (Abamectin + Bve2 + Bal13) at 48 DAP compared with the untreated control ($P \le 0.10$) (Table 3). The *M*. *incognita* eggs/gr were statically similar to those recovered from Clothianidin plus *B. firmus* I-158 and the Abamectin standards ($P \le 0.05$). At harvest, the *B. velezensis* strain Bve12 treatment resulted in the highest seed cotton yield followed by the Mixture 2 and *B. velezensis* strain Bve2. These yields were statistically similar to the Clothianidin plus *B. firmus* I-158 and the Abamectin standards (Table 3).

3.4 Trials in the field

The *B. mojavensis* strain Bmo3 and Mixture 2 (Abamectin + Bve2 + Bal13) significantly reduced *M. incognita* eggs/gr on cotton at 40 DAP compared with untreated control ($P \le 0.10$) which was similar to Clothianidin plus *B. firmus* I-1582 and Abamectin standards ($P \le 0.10$) (Table 4). The *B. velezensis* strains Bve2 (Fig. 4) and Bve12 (Fig. 3) significantly increased seed cotton yield compared with untreated control which was similar to Abamectin ($P \le 0.10$) (Table 4).

4. Discussion

The results indicated that among all the PGPR strains, 33% caused significantly greater level of mortality of *M. incognita* J2 than the untreated control and 35% caused statistically similar mortality to the level caused by Aldicarb ($P \le 0.05$). *Bacillus* spp. was the primary genera causing mortality of *M. incognita* J2 in the *in vitro* tests. Further greenhouse, microplot, and field trials confirmed that specific strains of the *Bacillus* PGPR suppressed the population density of *M. incognita* in the greenhouse, microplot, and field evaluation systems, and increased seed cotton yield.

In vitro screening of the PGPR strains indicated that *Bacillus* spp. caused greater mortality of *M. incognita* J2 *in vitro* than other genera. Some strains of specific *Bacillus* species were previously reported to have nematicidal activity against plant-parasitic nematodes on different host

plants. Kloepper et al. (1992) reported that B. megaterium strain 1758 and B. pumilus strain 163 significantly reduced galls of *M. incognita* and cysts of *H. glycines* on soybean. Payne (1993) stated in a Bt patent that some strains of B. thuringiensis had nematicidal activity against nematodes including plant-parasitic nematodes *M. incognita* and *Aphelenchus avenae*. Siddiqui et al. (2001) reported that a *B. subtilis* strain isolated from the rhizosphere of *Helianthus annuus* had nematicidal activity on *M. javanica* in mungbean. Burkett-Cadena et al. (2008) found that *B.* subtilis strain GB03 and B. velezensis strain GB99 (BioYield, Gustafson LLC, Plano TX, USA) induced significant reductions in *M. incognita* eggs/gr, juvenile nematodes per cm³ of soil, and galls per plant on tomato. Bacillus firmus, the active ingredient of BioNem-WP (AgroGreen, Israel) was reported to control root-knot nematode on vegetables (Hallmann et al. 2009). In our study, we also found the specific strains of the species B. pumilus, B. thuringiensis, B. subtilis, B. velezensis, and B. firmus had nematicidal activity on M. incognita in our tests. In our trials, 17 different Bacillus species and subspecies including B. altitudinis, B. aryabhattai, B. cereus, B. galliciensis, *B*. lentus. *B*. methylotrophicus, В. mojavensis, *B*. mycoides, *B*. psychrosaccharolyticus, B. safensis, B. siamensis, B. simplex, B. subtilis subsp. inaquosorum, B. subtilis subsp. subtilis, B. tequilensis, B. toyonensis, B. weihenstephanensis, were found to have antagonistic activity against *M. incognita*. This is the first documentation of antagonistic activity by these *Bacillus* species to *M. incognita*.

The results from the greenhouse, microplot, and field experiments indicated that Bve2 (*B. velezensis*), Bmo3 (*B. mojavensis*), and Mixture 2 (Abamectin + Bve2 + Bal13) were relatively consistent in reduction of *M. incognita* eggs/gr, and *B. velezensis* strains Bve2 and Bve12 increased early plant growth and enhanced cotton yield. Many reports have shown that specific strains of PGPR or mixture of PGPR strains can promote plant growth, reduce plant disease, and enhance

yield with multiple hosts under greenhouse, microplot, or field conditions (Wei et al. 1996; Raupach and Kloepper 1998; Jetiyanon and Kloepper 2002; Yan et al. 2002; Castillo et al. 2013; Liu et al. 2016). Castillo et al. (2013) evaluated PGPR *B. firmus* GB-126 combined with *Paecilomyces lilacinus* 251 in commercial formulations in the greenhouse, microplot, and field trials for the management of *Rotylenchulus reniformis* in cotton and reported that *R. reniformis* population density was decreased when exposed to *B. firmus* and *P. lilacinus* in the greenhouse, in the microplot at mid-season, and in the field at harvest. Liu et al. (2016) found that specific PGPR strains Bve12 and Bve15 (*B. velezensis*), and Bmo3 (*B. mojavensis*), strain mixture-1 (Bve12 + Bmo3 + *Lysinibacillus macrolides* strain Lma1 + Bve15) and mixture-2 (mixture-1 + *B. safensis* strain Bsa27 + *B. pumilus* strain Bpu6 + *B. velezensis* strain Bve40) used in our studies also reduced black rot on Chinese cabbage caused by *Xanthomonas campestris* pv. *campestris* and increased marketable yield. Our studies provided additional information to their studies that PGPR strains and mixture of PGPR strains can promote early-season plant growth, increased yield, and reduce nematode numbers.

Mode of action of some PGPR strains have been studied. Mendoza et al. (2008) reported that mortality of sedentary and migratory endoparasitic nematodes *M. incognita, Radopholus similis*, and *Ditylenchus dipsaci* by *B. firmus* in *in vitro* test were closely associated with the production of bioactive secondary metabolites by the bacteria. Huang et al. (2010) demonstrated that PGPR strain *B. megaterium* YMF 3.25 significantly inhibited hatching of nematode eggs and reduced infection of *M. incognita* through production of nematicidal volatiles. They also confirmed that the nematicidal volatiles produced by the bacterium were mainly benzeneacetaldehyde, 2-nonanone, decanal, 2-undecanone, and dimethyl disulphide, which were active against juveniles and eggs at the concentration of 0.5 mmol, and that six other compounds

also contributed to the nematicidal efficacy (Huang et al. 2010). Peng et al. (2011) tested three *B. thuringiensis* nematicidal crystal proteins Cry6Aa, Cry5Ba, and Cry55Aa against *M. incognita* and found that the combination of Cry6Aa and Cry55Aa caused significant synergistic toxicity against *M. incognita*. These reports indicated that the mode of action of the *Bacillus* PGPR strains with nematicidal activity is likely related to the production of bioactive secondary metabolites. Further research is needed to address the mode of actions of the PGPR strains with nematicidal activity on *M. incognita*.

ISR elicited by *Bacillus* spp. against plant-parasitic nematodes is another important mode of action. Kloepper et al. (2004) summarized the published results and reported that specific strains of the species *B. velezensis*, *B. subtilis*, *B. pasteurii*, *B. cereus*, *B. pumilus*, *B. mycoides*, and *B. sphaericus* elicit significant reductions in the incidence or severity of various diseases including root-knot nematode. The bacterial strains *B. sphaericus* B43 and *Rhizobium etli* G12 were reported to induce systemic resistance (ISR) towards *M. incognita* on tomato as expressed in reduced juvenile penetration in the responder roots (Hauschild et al. 2000; Schäfer et al. 2006; Sikora et al. 2007). *Bacillus mojavensis* strain Bmo3 and *B. velezensis* strain Bve12 which were previously found to induce systemic resistance to black rot disease on Chinese cabbage and increased yield (Liu et al. 2016), were also found to reduce *M. incognita* population density and increase yield on cotton in our study. It is possible that the reduced *M. incognita* population density observed in our cotton trials could have resulted from induction of ISR by the PGPR strains Bmo3, Bve2, and Mixture 2 (Abamectin + Bve2 + Bal13), but further work is needed to test this.

In summary, *B. mojavensis* strain Bmo3, *B. velezensis* strains Bve2 and Bve12, and Mixture 2 (Abamectin +Bve2 +Bal13) are promising biological control agents which should be further evaluated for potential use against plant-parasitic nematodes. These biological strains could

potentially be alternatives to chemical nematicides or combined with chemical nematicides for the management of *M. incognita*. Future studies need to investigate biocontrol mechanisms of these strains on *M. incognita* in cotton.

5. Reference

- Ambo, P. B. N., Ethiopia, E. A., Serfoji, P., Rajeshkumar, S., and Selvaraj, T. 2010.
 Management of root-knot nematode, *Meloidogyne incognita* on tomato cv Pusa Ruby. by using vermicompost, AM fungus, *Glomus aggregatum* and mycorrhiza helper bacterium, *Bacillus coagulans*. Journal of Agricultural Technology. 6:37 45.
- Askary, T. H. 2015. Biocontrol agents of phytonematodes: limitation, research needs and future prospects. p. 450. In Biocontrol agents of phytonematodes. Eds. Askary, T. H., and Martinelli, P. R. P. CAB International. Wallingford.
- Brown, S. M., Kepner, J. L., and Smart Jr, G. C. 1985. Increased crop yields following application of *Bacillus penetrans* to field plots infested with *Meloidogyne incognita*. Soil Biology and Biochemistry. 17:483 - 486.
- Brown, S. M., and Smart Jr., G. C. 1985. Root penetration by *Meloidogyne incognita* juveniles infected with *Bacillus penetrans*. Journal of Nematology. 17:123 126.
- Burkett-Cadena, M., Kokalis-Burelle, N., Lawrence, K. S., Van Santen, E., and Kloepper, J. W.
 2008. Suppressiveness of root-knot nematodes mediated by rhizobacteria. Biological
 Control. 47:55 59.
- Castillo, J. D., Lawrence, K. S., and Kloepper, J. W. 2013. Biocontrol of the reniform nematode by *Bacillus firmus* GB-126 and *Paecilomyces lilacinus* 251 on cotton. Plant Disease. 97:967 976.

- Charles, L., Carbonne, I., Davies, K. G., Bird, D., Burke, M., Kerry, B. R. and Opperman, C. H. 2005. Phylogenetic analysis of *Pasteuria penetrans* using multiple genetic loci. Journal of Bacteriology. 187:5700 - 5708.
- Creech, R. G., Jenkins, J. N., Tang, B., Lawrence, G. W., and McCarty, J. C. 1995. Cotton resistance to root-knot nematode: I. Penetration and reproduction. Crop Science. 35:365 -368.
- Devidas, P., and Rehberger, L. A. 1992. The effects of exotoxin (thuringiensin) from *Bacillus thuringiensis* on *Meloidogyne incognita* and *Caenorhabditis elegans*. Plant and Soil. 145:115 120.
- Hallmann, J., Davies, K. G., and Sikora, R. A. 2009. Biological control using microbial pathogens, endophytes and antagonists. p. 380 411. In Root-knot nematode. Eds. Perry, R. N., Moens, M., and Starr, J. L. CAB International. Wallingford.
- Hauschild, R., Hallmann, J., and Sikora, R. A. 2000. *Fusarium oxysporum* and *Meloidogyne incognita* on tomato can be controlled by antagonistic rhizobacteria. Communications in Agricultural and Applied Biological Science. 65:527 - 528.
- Huang, Y., Xu, C. K., Ma, L., Zhang, K. Q., Duan, C. Q., and Mo, M. H. 2010. Characterization of volatiles produced from *Bacillus megaterium* YFM3.25 and their nematicidal activity against *Meloidogyne incognita*. European Journal of Plant Pathology. 126:417 - 422.
- Hussey, R. S., and Barker, K. R. 1973. A comparison of methods of collecting inocula of *Meloidogyne* spp., including a new technique. Plant Disease Reporter. 57:1025 - 1028.
- Jenkins, W. 1964. A rapid centrifugal-floatition technique for separating nematodes from soil. Plant Disease Report. 48:692.

- Jetiyanon, K., and Kloepper, J. W. 2002. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biological Control. 24:285 -291.
- Kavitha, J., Jonathan, E. I., and Umamaheswari, R. 2007. Field application of *Pseudomonas fluorescens*, *Bacillus subtilis* and *Trichoderma viride* for the control of *Meloidogyne incognita* (Kofoid and White) Chitwood on sugarbeet. Journal of Biological Control. 21:211 215.
- Keren-Zur, M., Antonov, J., Bercovitz, A., Feldman, K., Husid, A., Kenan, G., Markov, N., and Rebhun, M., 2000. *Bacillus firmus* formulations for the safe control of root-knot nematodes.
 In: Proceedings of the Brighton Crop Protection Conference on Pests and Diseases. Vol. 2A. 47 - 52.
- Khan, M. R., and Akram, M. 2000. Effects of certain antagonistic fungi and rhizobacteria on wilt disease complex of tomato caused by *Meloidogyne incognita* and *Fusarium oxysporum* f. sp. *lycopersici*. Nematologia Mediterranea. 28:139 144.
- Kiewnick, S., and Sikora, R. A. 2006. Biological control of the root-knot nematode *Meloidogyne incognita* by *Paecilomyces lilacinus* strain 251. Biological Control. 38:179 - 187.
- Kloepper, J. W., Rodríguez-Kábana, R., McInroy, J. A., and Young, R. W. 1992. Rhizosphere bacteria antagonistic to soybean cyst (*Heterodera glycines*) and root-knot (*Meloidogyne incognita*) nematodes: identification by fatty acid analysis and frequency of biological control activity. Plant and Soil. 139:75 - 84.
- Kloepper, J. W., Ryu, C. M., and Zhang, S. A. 2004. Induced systemic resistance and promotion of plant growth by *Bacillus* spp. Phytopathology. 94:1259 1266.

- Krechel, A., Faupel, A., Hallmann, J., Ulrich, A., and Berg, G. 2002. Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode *Meloidogyne incognita* (Kofoid & White) Chitwood. Canadian Journal of Microbiology. 48:772 - 786.
- Lawrence, K. S., Lawrence, G. W., Faske, T., Overstreet, C., Wheeler, T., Young, H., Kemerait, B., and Mehl, H. 2016. Beltwide nematode research and education committee 2015 nematode research report cotton varietal and nematicide responses in nematode soils. 2016 Beltwide Cotton Conferences. Vol 1:113 115. National Cotton Council of America, New Orleans, LA.
- Lawrence, K., Olsen, M., Faske, T., Hutmacher, R., Muller, J., Mario, J., Kemerait, R.,
 Overstreet, C., Price, P., Sciumbato, G., Lawrence, G., Atwell, S., Thomas, S., Koenning, S.,
 Boman, R., Young, H., Woodward, J., and Mehl, H. 2015. Cotton disease loss estimate
 committee report. Proceedings of the 2014 Beltwide Cotton Conference. Vol 1: 188 190.
 National Cotton Council of America, Memphis, TN.
- Liu, K., Garrett, C., Fadamiro, H., and Kloepper, J. W. 2016. Induction of systemic resistance in Chinese cabbage against black rot by plant growth-promoting rhizobacteria. Biological Control. 99:8 - 13.
- Mendoza, A. R., Kiewnick, S., and Sikora, R. A. 2008. *In vitro* activity of *Bacillus firmus* against the burrowing nematode *Radopholus similis*, the root-knot nematode *Meloidogyne incognita* and the stem nematode *Ditylenchus dipsaci*. Biocontrol Science and Technology. 18:377 -389.

- Mohammed, S. H., El Saedy, M. A., Enan, M. R., Ibrahim, N. E., Ghareeb, A., and Moustafa, S.
 A. 2008. Biocontrol efficiency of *Bacillus thuringiensis* toxins against root-knot nematode, *Meloidogyne incognita*. Journal of Cell and Molecular Biology. 7:57 - 66.
- Payne, J. M. 1993. Isolates of *Bacillus thuringiensis* that are active against nematodes. U. S. Pat. No. 5,151,363. Dec 14, 1993.
- Peng, D. H., Chai, L. J., Wang, F. S., Zhang, F. J., Ruan, L. F., and Sun, M. 2011. Synergistic activity between *Bacillus thuringiensis* Cry6Aa and Cry55Aa toxins against *Meloidogyne incognita*. Microbial Biotechnology. 4:794 - 798.
- Raupach, G. S., and Kloepper, J. W. 1998. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology. 88:1158 -1164.
- Robinson, A. F. 2007. Reniform in US cotton: when, where, why, and some remedies 1. Annual Review Phytopathology. 45:263 288.
- Sayre, R. M. 1980. Biocontrol: *Bacillus penetrans* and related parasites of nematodes. Journal of Nematology. 12:260.
- Schäfer, K., Silva Fabry, C., and Sikora, R. A. 2006. Molecular investigations of rhizobacteriainduced systemic resistance towards the root-knot nematode *Meloidogyne incognita* in tomato. Multitrophic interactions in soil. *IOBC/WPRS* Bulletin. 29:135 - 140.
- Schrimsher, D. W. 2013. The studies of plant host resistance to the reniform nematode in upland cotton and the effects of *Bacillus firmus* GB-126 on plant-parasitic nematode. Auburn University. M.S. Thesis. <u>http://hdl.handle.net/10415/3562</u>.

- Schrimsher, D. W., Lawrence, K. S., Sikkens, R. B., and Weaver, D. B. 2014. Nematicides enhance growth and yield of *Rotylenchulus reniformis* resistant cotton genotypes. Journal of Nematology. 46: 365 - 375.
- Serfoji, P., Rajeshkumar, S., and Selvaraj, T. 2010. Management of root-knot nematode, *Meloidogyne incognita* on tomato cv Pusa Ruby. by using vermicompost, AM fungus, *Glomus aggregatum* and mycorrhiza helper bacterium, *Bacillus coagulans*. Journal of Agricultural Technology. 6: 37 - 45.
- Siddiqui, A. I., Ehetshamul-Haque, S., and Shahid Shaukat, S. 2001. Use of rhizobacteria in the control of root rot-root knot disease complex of mungbean. Journal of Phytopathology. 149:337-346.
- Siddiqui, Z. A., and Husain, S. I., 1991. Studies on the biological control of root-knot nematode. Current Nematology. 2: 5 - 6.
- Siddiqui, Z.A., and Mahmood, I., 1992. Biological control of root-rot disease complex of chickpea caused by *Meloidogyne incognita* race 3 and *Macrophomina phaseolina*.
 Nematology Mediterranean. 20: 199 202.
- Siddiqui, Z. A., and Mahmood, I. 1999. Role of bacteria in the management of plant parasitic nematodes: a review. Bioresource Technology. 69: 167 179.
- Sikora, R. A. 1988. Interrelationship between plant health promoting rhizobacteria, plant parasitic nematodes and soil microorganisms. Communications in Agricultural and Applied Biological Sciences. 53:867 - 878.
- Sikora, R. A., Schäfer, K., and Dababat, A. A. 2007. Modes of action associated with microbially induced *in planta* suppression of plant-parasitic nematodes. Australasian Plant Pathology.
 36: 124 134.

- Stirling, G. R. 1984. Biological control of *Meloidogyne javanica* with *Bacillus penetrans*. Phytopathology. 74: 55 - 60.
- Stirling, G. R. 2014. Obligate parasites of nematodes: viruses and bacteria in the genus *Pasteuria*. p. 196 - 198. In Biological control of plant-parasitic nematodes. 2nd ed. Ed. Stirling, G. R. CAB International, Wallingford.
- Terefe, M., Tefera, T., and Sakhuja, P. K. 2009. Effect of a formulation of *Bacillus firmus* on root-knot nematode *Meloidogyne incognita* infestation and the growth of tomato plants in the greenhouse and nursery. Journal of Invertebrate Pathology. 100:94 - 99.
- Wei, G., Kloepper, J. W., and Tuzun, S. 1996. Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology. 86:221 - 224.
- Wilson, M. J., and Jackson, T. A. 2013. Progress in the commercialization of bionematicides. BioControl. 58:715 - 722.
- Xiang, N., Lawrence, K. S., Kloepper, J. W., and Mcinroy, J. A. 2014. *In vitro* screening of biological control agents on *Meloidogyne incognita*. Proceedings of the 2014 Beltwide Cotton Conference. Vol 1:258-260. National Cotton Council of America, Memphis, TN.
- Xiang, N., and Lawrence, K. S. 2016. Optimization of *in vitro* techniques for distinguishing between live and dead second stage juveniles of *Heterodera glycines* and *Meloidogyne incognita*. Plos One. 11: e0154818.
- Yan, Z. N., Reddy, M. S., Ryu, C. M., McInroy, J. A., Wilson, M., and Kloepper, J. W. 2002. Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology. 92:1329 - 1333.

Zuckerman, B. M., Dicklow, M. B., and Acosta, N. 1993. A strain of *Bacillus thuringiensis* for the control of plant-parasitic nematodes. Biocontrol Science and Technology. 3:41 - 46.

G 1		Meloidogyne incognita	Dunnett's P vs ^c ($P \le 0.05$)				
Code	Scientific name	J2 mortality (%) ^b	Clothianidin + B. firmus	Aldicarb ^d	Water 0.0150		
Ad1	Arthrobacter defluvii	53.5	0.8886	0.0681			
Bal2	Bacillus altitudinis	71.1	0.0535	0.9365	<.000		
Bal3	Bacillus altitudinis	96.4	<.0001	1.0000	<.000		
Bal4	Bacillus altitudinis	97.4	<.0001	1.0000	<.000		
Bal5	Bacillus altitudinis	100.0	<.0001	1.0000	<.000		
Bal11	Bacillus altitudinis	59.7	0.9047	0.6812	0.048		
Bal12	Bacillus altitudinis	52.5	0.9375	0.0531	0.020		
Bal13	Bacillus altitudinis	75.9	0.1480	1.0000	0.000		
al14	Bacillus altitudinis	87.7	0.0003	1.0000	<.000		
al15	Bacillus altitudinis	94.5	<.0001	1.0000	<.000		
al16	Bacillus altitudinis	61.3	0.3699	0.3157	0.001		
al17	Bacillus altitudinis	84.4	0.0010	1.0000	<.000		
ar6	Bacillus aryabhattai	78.2	0.0077	1.0000	<.000		
ar7	Bacillus aryabhattai	75.1	0.0193	0.9992	<.000		
ar8	Bacillus aryabhattai	88.1	0.0003	1.0000	<.000		
ar9	Bacillus aryabhattai	79.4	0.0054	1.0000	<.000		
ar14	Bacillus aryabhattai	63.3	0.2694	0.4263	0.000		
ar15	Bacillus aryabhattai	64.6	0.2131	0.5124	0.000		
ar16	Bacillus aryabhattai	67.8	0.4568	0.9930	0.00		
ar17	Bacillus aryabhattai	60.3	0.4294	0.2671	0.00		
Bar19	Bacillus aryabhattai	87.6	0.0003	1.0000	<.00		
Bar20	Bacillus aryabhattai	86.8	0.0004	1.0000	<.00		
Bar21	Bacillus aryabhattai	90.8	<.0001	1.0000	<.00		
ar22	Bacillus aryabhattai	88.3	0.0002	1.0000	<.00		
	2						
Bar24	Bacillus aryabhattai	55.8	0.7464	0.1116	0.00		
Bar25	Bacillus aryabhattai	54.1	0.8589	0.0768	0.012		
Bar27	Bacillus aryabhattai	100.0	<.0001	1.0000	<.00		
ar28	Bacillus aryabhattai	95.4	<.0001	1.0000	<.00		
ar29	Bacillus aryabhattai	96.7	<.0001	1.0000	<.00		
ar31	Bacillus aryabhattai	68.5	0.0971	0.7917	<.00		
ar32	Bacillus aryabhattai	62.8	0.2907	0.3990	0.00		
Bar33	Bacillus aryabhattai	83.5	0.0014	1.0000	<.00		
ar41	Bacillus aryabhattai	97.6	0.0011	1.0000	<.00		
Bar46	Bacillus aryabhattai	84.2	0.0315	1.0000	<.00		
Bar47	Bacillus aryabhattai	57.8	0.5981	0.1692	0.004		
ar49	Bacillus aryabhattai	66.7	0.1423	0.6615	0.00		
3ce4	Bacillus cereus	71.1	0.0538	0.9355	<.000		
Bce6	Bacillus cereus	73.7	0.0275	0.9940	<.000		
Bce7	Bacillus cereus	56.8	0.6688	0.1395	0.005		
sce8	Bacillus cereus	94.3	<.0001	1.0000	<.00		
sce14	Bacillus cereus	79.3	0.0056	1.0000	<.00		
ce15	Bacillus cereus	64.6	0.2121	0.5141	0.000		
ce37	Bacillus cereus	51.0	0.9798	0.0369	0.02		
sce38	Bacillus cereus	61.7	0.3489	0.3354	0.02		
ce41	Bacillus cereus Bacillus cereus	73.3	0.0312	0.9895	<.00		
ce42	Bacillus cereus Bacillus cereus	73.3 94.2	<.0001	1.0000	<.00		
ce44	Bacillus cereus	79.1	0.0059	1.0000	<.00		
ce45	Bacillus cereus	70.9	0.0564	0.9272	<.00		
ce46	Bacillus cereus	94.3	<.0001	1.0000	<.00		
sce47	Bacillus cereus	50.3	0.9898	0.0310	0.03		
smt2	Bacillus methylotrophicus	76.7	0.0120	1.0000	<.00		
smt5	Bacillus methylotrophicus	90.7	<.0001	1.0000	<.00		
smt7	Bacillus methylotrophicus	82.3	0.0021	1.0000	<.00		
mt9	Bacillus methylotrophicus	68.1	0.1058	0.7640	<.00		
mo2	Bacillus mojavensis	49.9	0.9940	0.0275	0.03		
mo3	Bacillus mojavensis	70.6	0.3255	0.9998	0.003		
mo4	Bacillus mojavensis	66.8	0.1402	0.6670	0.000		
3my1	Bacillus mycoides	75.9	0.0154	0.9998	<.000		
3my16	Bacillus mycoides	55.3	0.7762	0.1019	0.008		
3my17	Bacillus mycoides	71.1	0.0531	0.9375	<.00		
3my18	Bacillus mycoides	85.4	0.0007	1.0000	<.000		
3my20	Bacillus mycoides	67.8	0.1122	0.7446	0.000		
3my25	Bacillus mycoides	54.4	0.8406	0.0822	0.011		
3my26	Bacillus mycoides	70.0	0.0693	0.8845	<.000		
· , = ~	Bacillus mycoides Bacillus mycoides	94.9	<.0001	1.0000	<.000		

Table 1. Effect of 216 PGPR strains on *Meloidogyne incognita* J2 mortality percentage significantly higher than untreated control^a.

Bmy34	Bacillus mycoides	54.3	0.8453	0.0808	0.0121
•	2	58.9	0.5226	0.2073	0.0029
Bmy36	Bacillus mycoides				
Bps4	Bacillus psychrosaccharolyticus	75.1	0.0193	0.9992	<.0001
Bpu5	Bacillus pumilus	79.1	0.0059	1.0000	<.0001
Bpu6	Bacillus pumilus	60.0	0.8922	0.6990	0.0454
-			<.0001		
Bsa1	Bacillus safensis	96.8		1.0000	<.0001
Bsa4	Bacillus safensis	66.0	0.1643	0.6089	0.0002
Bsa6	Bacillus safensis	92.9	<.0001	1.0000	<.0001
Bsa7	Bacillus safensis	87.9	0.0003	1.0000	<.0001
	0				
Bsa8	Bacillus safensis	100.0	<.0001	1.0000	<.0001
Bsa9	Bacillus safensis	53.7	0.8804	0.0705	0.0144
Bsa12	Bacillus safensis	90.2	0.0001	1.0000	<.0001
Bsa26	Bacillus safensis	64.6	0.6376	0.9319	0.0167
Bsa28	Bacillus safensis	56.9	0.6651	0.1409	0.0055
Bsa31	Bacillus safensis	64.9	0.2007	0.5346	0.0003
Bsa34	Bacillus safensis	64.4	0.2220	0.4972	0.0004
	•				
Bsa35	Bacillus safensis	96.5	<.0001	1.0000	<.0001
Bsp2	Bacillus simplex	82.0	0.0023	1.0000	<.0001
Bsp13	Bacillus simplex	65.1	0.1942	0.5468	0.0003
Bsp24	Bacillus simplex	76.2	0.0139	0.9999	<.0001
	1				
Bsp32	Bacillus simplex	75.7	0.0161	0.9998	<.0001
Bsp33	Bacillus simplex	65.5	0.1801	0.5749	0.0003
Bsp35	Bacillus simplex	81.6	0.0027	1.0000	<.0001
Bsp36	Bacillus simplex	68.4	0.0986	0.7865	<.0001
Bsp42	Bacillus simplex	79.0	0.0061	1.0000	<.0001
Bsp44	Bacillus simplex	66.0	0.1643	0.6089	0.0002
Bsp45	Bacillus simplex	58.0	0.5856	0.1750	0.0039
-	1				
Bsp46	Bacillus simplex	55.8	0.7429	0.1128	0.0077
Bsp47	Bacillus simplex	74.9	0.0199	0.9990	<.0001
Bsp48	Bacillus simplex	71.0	0.0172	0.7796	<.0001
Bsp50	Bacillus simplex	83.0	0.0017	1.0000	<.0001
1	•				
Bsp51	Bacillus simplex	75.5	0.0170	0.9996	<.0001
Bsp52	Bacillus simplex	76.9	0.0116	1.0000	<.0001
Bsp53	Bacillus simplex	82.7	0.0426	1.0000	0.0001
Bsp54	Bacillus simplex	83.1	0.0016	1.0000	<.0001
Bsp55	Bacillus simplex	81.1	0.0031	1.0000	<.0001
Bsp56	Bacillus simplex	75.3	0.0179	0.9995	<.0001
Bsp57	Bacillus simplex	83.2	0.0016	1.0000	<.0001
Bsp58	Bacillus simplex	88.3	0.0002	1.0000	<.0001
Bsp59	Bacillus simplex	83.7	0.0013	1.0000	<.0001
Bsp60	Bacillus simplex	64.3	0.2240	0.4939	0.0004
Bsp61	Bacillus simplex	84.8	0.0009	1.0000	<.0001
	1				
Bsp62	Bacillus simplex	69.5	0.0773	0.8574	<.0001
Bsp63	Bacillus simplex	76.4	0.0132	1.0000	<.0001
Bsp64	Bacillus simplex	89.2	<.0001	1.0000	<.0001
Bsp66	Bacillus simplex	70.9	0.0568	0.9261	<.0001
Bsp69	Bacillus simplex	51.2	0.9764	0.0385	0.0285
Bsp79	Bacillus simplex	76.8	0.0117	1.0000	<.0001
Bsp81	Bacillus simplex	86.1	0.0006	1.0000	<.0001
Bsp82	Bacillus simplex	73.5	0.0292	0.9921	<.0001
Bsp84	Bacillus simplex	99.6	0.0006	1.0000	<.0001
Bsp87	Bacillus simplex	81.3	0.0568	1.0000	0.0002
Bsp88	Bacillus simplex	91.5	<.0001	1.0000	<.0001
Bsp89	Bacillus simplex	84.3	0.0010	1.0000	<.0001
Bsp91	Bacillus simplex	64.4	0.2220	0.4972	0.0004
Bsp92	Bacillus simplex	90.2	0.0001	1.0000	<.0001
Bsp93	Bacillus simplex	56.1	0.7196	0.1208	0.0070
Bsp94	Bacillus simplex	81.3	0.0029	1.0000	<.0001
Bsp96	Bacillus simplex	95.5	<.0001	1.0000	<.0001
Bsp101	Bacillus simplex	98.0	0.0010	1.0000	<.0001
Bsp114	Bacillus simplex	99.9	0.0006	1.0000	<.0001
Bsp115	Bacillus simplex	99.9	0.0006	1.0000	<.0001
Bsp116	Bacillus simplex	99.1	0.0007	1.0000	<.0001
Bsp118	Bacillus simplex	69.3	0.0818	0.8422	<.0001
Bsp123	Bacillus simplex	83.7	0.0350	1.0000	<.0001
	Bacillus simplex	67.5	0.1195	0.7232	0.0001
Bsp124					
Bsp126	Bacillus simplex	76.2	0.0142	0.9999	<.0001
Bsp131	Bacillus simplex	88.2	0.0003	1.0000	<.0001
Bsp134	Bacillus simplex	62.9	0.2847	0.4064	0.0007
Bsp135	Bacillus simplex	71.4	0.0497	0.9477	<.0001
Cordson	Buchuus simplex	/ 1.4	0.0497	0.74//	<.0001

Bsp143	Bacillus simplex	98.2	0.0009	1.0000	<.0001
Bsp154	Bacillus simplex	99.9	0.0006	1.0000	<.0001
	1				0.0001
Bsp187	Bacillus simplex	67.7	0.1146	0.7375	
Bsp195	Bacillus simplex	90.0	0.0001	1.0000	<.0001
Bsp197	Bacillus simplex	64.3	0.2240	0.4939	0.0004
Bsp198	Bacillus simplex	80.6	0.0037	1.0000	<.0001
Bsp199	Bacillus simplex	52.8	0.9251	0.0571	0.0185
	-	71.9	0.0437		
Bsp200	Bacillus simplex			0.9643	<.0001
Bssin8	Bacillus subtilis subsp. inaquosorum	88.4	0.0002	1.0000	<.0001
Bssin9	Bacillus subtilis subsp. inaquosorum	94.6	<.0001	1.0000	<.0001
Bssin10	Bacillus subtilis subsp. inaquosorum	94.6	<.0001	1.0000	<.0001
Bssin11	Bacillus subtilis subsp. inaquosorum	54.1	0.8544	0.0781	0.0126
		94.3	<.0001	1.0000	<.0001
Bssin12	Bacillus subtilis subsp. inaquosorum				
Bssin14	Bacillus subtilis subsp. inaquosorum	94.5	<.0001	1.0000	<.0001
Bssin15	Bacillus subtilis subsp. inaquosorum	90.6	<.0001	1.0000	<.0001
Bsssu2	Bacillus subtilis subsp. subtilis	84.4	0.0302	1.0000	<.0001
Bsssu3	Bacillus subtilis subsp. subtilis	82.4	0.0457	1.0000	0.0001
Bte2	Bacillus tequilensis	93.5	<.0001	1.0000	<.0001
Bth2	Bacillus thuringiensis	58.8	0.5312	0.2026	0.0030
Bto18	Bacillus toyonensis	87.5	0.0003	1.0000	<.0001
Bto21	Bacillus toyonensis	63.5	0.2603	0.4387	0.0006
Bto22	Bacillus toyonensis	82.9	0.0017	1.0000	<.0001
Bto22 Bto23	Bacillus toyonensis	73.3	0.0310	0.9898	<.0001
	-				
Bto24	Bacillus toyonensis	76.8	0.0118	1.0000	<.0001
Bto34	Bacillus toyonensis	74.0	0.0258	0.9957	<.0001
Bto36	Bacillus toyonensis	93.1	<.0001	1.0000	<.0001
Bto40	Bacillus toyonensis	98.5	<.0001	1.0000	<.0001
Bto45	Bacillus toyonensis	82.1	0.0022	1.0000	<.0001
Bto46	Bacillus toyonensis	64.2	0.2271	0.4889	0.0004
Bto49	Bacillus toyonensis	66.2	0.1572	0.6252	0.0002
Bto51	Bacillus toyonensis	87.2	0.0004	1.0000	<.0001
Bto52	Bacillus toyonensis	89.4	0.0002	1.0000	<.0001
Bto53	Bacillus toyonensis	75.6	0.0167	0.9997	<.0001
Bto54	Bacillus toyonensis	81.3	0.0029	1.0000	<.0001
Bto55	Bacillus toyonensis	91.3	<.0001	1.0000	<.0001
Bto57	Bacillus toyonensis	87.0	0.0004	1.0000	<.0001
Bto58	Bacillus toyonensis	81.0	0.0032	1.0000	<.0001
Bto59	Bacillus toyonensis	68.3	0.1019	0.7762	<.0001
Bto61	Bacillus toyonensis	91.3	<.0001	1.0000	<.0001
		84.5			
Bto63	Bacillus toyonensis		0.0010	1.0000	<.0001
Bto64	Bacillus toyonensis	66.6	0.1445	0.6560	0.0002
Bto65	Bacillus toyonensis	86.6	0.0004	1.0000	<.0001
Bto66	Bacillus toyonensis	72.3	0.0398	0.9737	<.0001
Bve2	Bacillus velezensis	72.8	0.2386	1.0000	0.0021
Bve4	Bacillus velezensis	54.1	0.8559	0.0777	0.0127
Bve5	Bacillus velezensis	54.7	0.8216	0.0879	0.0108
Bve12	Bacillus velezensis	81.1	0.0591	1.0000	0.0002
Bve13	Bacillus velezensis	61.9	0.7951	0.8106	0.0303
Bve14	Bacillus velezensis	89.3	0.0099	1.0000	<.0001
Bve21	Bacillus velezensis	52.4	0.9423	0.0516	0.0208
	-				
Bve28	Bacillus velezensis	60.9	0.3960	0.2932	0.0015
Bve34	Bacillus velezensis	58.9	0.7050	0.3464	0.0108
Bve37	Bacillus velezensis	76.5	0.1352	1.0000	0.0007
Bve40	Bacillus velezensis	76.5	0.1341	1.0000	0.0007
Bwe2	Bacillus weihenstephanensis	83.6	0.0013	1.0000	<.0001
	1				
Bwe5	Bacillus weihenstephanensis	57.8	0.5999	0.1684	0.0042
Bwe10	Bacillus weihenstephanensis	94.3	<.0001	1.0000	<.0001
Bwe15	Bacillus weihenstephanensis	75.4	0.0174	0.9996	<.0001
Bwe16	Bacillus weihenstephanensis	81.8	0.0025	1.0000	<.0001
Brep1	Brevibacterium epidermidis	83.8	0.0013	1.0000	<.0001
1	Brevibacterium epidermidis Brevibacterium epidermidis	54.9	0.8084	0.0919	0.0102
Brep5					
Brep6	Brevibacterium epidermidis	67.8	0.1122	0.7446	0.0001
Brep7	Brevibacterium epidermidis	52.2	0.9486	0.0494	0.0218
Brio1	Brevibacterium iodinum	87.8	0.0003	1.0000	<.0001
Fso1	Fictibacillus solisalsi	70.3	0.3385	0.9997	0.0042
Lmal	Lysinibacillus macroides	64.8	0.6287	0.9368	0.0161
	2				
Paam2	Paenibacillus amylolyticus	58.0	0.5838	0.1758	0.0039
Paam3	Paenibacillus amylolyticus	58.3	0.5608	0.1871	0.0035
Paam6	Paenibacillus amylolyticus	70.8	0.0574	0.9240	<.0001
Paam7	Paenibacillus amylolyticus	82.8	0.0018	1.0000	<.0001

Paam8	Paenibacillus amylolyticus	95.2	<.0001	1.0000	<.0001
Pala4	Paenibacillus lautus	70.4	0.0628	0.9065	<.0001
Patu1	Paenibacillus tundrae	79.6	0.0050	1.0000	<.0001
Paxy2	Paenibacillus xylanexedens	90.4	0.0001	1.0000	<.0001
Spg8	Sporosarcina globispora	84.4	0.0010	1.0000	<.0001
Uid4	Bacillus aerophilus/stratosphericus ^e	89.1	0.0002	1.0000	<.0001
Uid6	Bacillus aerophilus/stratosphericus ^e	88.2	0.0002	1.0000	<.0001
Uid7	Bacillus aerophilus/stratosphericus ^e	54.8	0.8134	0.0904	0.0104
Uid8	Bacillus altitudinis/stratosphericus/aerophilus ^e	98.9	<.0001	1.0000	<.0001
Uid9	Bacillus altitudinis/stratosphericus/aerophilus ^e	96.2	<.0001	1.0000	<.0001
Uid10	Bacillus altitudinis/stratosphericus/aerophilus ^e	96.8	<.0001	1.0000	<.0001
Control	Active ingredient ^d				
Poncho/Votivo	Clothianidin and B. firmus I-1582	24.4		<.0001	1.0000
Temik	Aldicarb	99.2	<.0001		<.0001
Untreated control	Sterile distilled water	2.0	1.0000	<.0001	

^a*In vitro* tests were performed in 96-well plates. Data of 216 PGPR strains indicating significant higher mortality on *Meloidogyne incognita* J2 than untreated control were presented in the table. All the PGPR strains had 4 replications and controls were based on 17 repeats. Data collected were analyzed in SAS 9.4 using PROC GLIMMIX procedure at significant level of $\alpha \le 0.05$. *P* value less than 0.05 indicate a significant effect. LS-means and adjusted *P* values were presented in the table.

^bMortality percentage was determined by the following equation: [(live J2 prior to exposure - live J2 at 48 hours) / live J2 prior to exposure] ×100. ^cDunnett's option was used in the LS-means statement to assess the differences between bacterial strains and the Poncho/Votivo, Temik, and the untreated control.

^dActive ingredients for Poncho/Votivo are Clothianidin plus *B. firmus* I-1582, Temik is Aldicarb, and untreated control is sterile distilled water. ^eIndistinguishable species and unidentified strains.

				45 DAP ^b					45 DAP			45 DAP					
Treatment			Dunnett's <i>P</i> vs. $(P \le 0.10)$					Du	innett's P vs. ($(P \le 0.10)$			Dunnett's <i>P</i> vs. ($P \le 0.10$)				
Treatment	Scientific name	PH ^c	Clothianidin + B. firmus	Abamectin	Aldicarb	Water	Bio ^d	Clothianidin + B. firmus	Abamectin	Aldicarb	Water	Eggs/gr ^e	Clothianidin + B. firmus	Abamectin	Aldicarb	Water	
Bmo3	B. mojavensis	11.5	0.1391	0.0327	0.2625	0.9944	4.5	0.0854	0.9656	0.9929	0.9995	15791	0.8793	0.0178	<.0001	0.9316	
Bsa25	B. safensis	9.6	0.0055	0.0009	1.0000	0.9506	6.3	0.0212	0.4940	0.6013	0.7049	14311	0.6254	0.0127	0.0001	1.0000	
Bsa26	B. safensis	10.6	0.0165	0.0024	0.8205	1.0000	4.4	0.1320	0.9945	0.9996	1.0000	14789	0.6830	0.0087	<.0001	0.9978	
Bsssu2	B. subtilis subsp. subtilis	11.4	0.1168	0.0262	0.3030	0.9982	3.4	0.6943	1.0000	0.9998	0.9903	14821	0.8849	0.0183	<.0001	0.9268	
Bsssu3	B. subtilis subsp. subtilis	12.4	0.5813	0.2230	0.0413	0.5017	4.5	0.0523	0.8865	0.9573	0.9905	18163	0.8353	0.0145	<.0001	0.9605	
Bve12	B. velezensis	11.5	0.1404	0.0331	0.2603	0.9940	4.2	0.1542	0.9979	0.9999	1.0000	15474	0.9701	0.0323	0.0002	0.7773	
Bve37	B. velezensis	9.0	0.0010	0.0001	1.0000	0.6093	3.9	0.4968	1.0000	1.0000	1.0000	21514	0.9613	0.0545	0.0009	0.9733	
Bve40	B. velezensis	10.8	0.0731	0.0185	0.8411	1.0000	5.8	0.0190	0.4675	0.5729	0.6718	27339	0.2840	0.0026	<.0001	1.0000	
Bve2	B. velezensis	11.5	0.1252	0.0286	0.2865	0.9971	4.5	0.0737	0.9470	0.9864	0.9986	7825	1.0000	0.2167	0.0043	0.1225	
Control	Active ingredient																
Poncho/Votivo	Clothianidin +	14.1		0.9996	0.0023	0.0405	2.3		0.6274	0.5187	0.3105	9702		0.3217	0.0181	0.3400	
	B. firmus I-1582																
Avicta	Abamectin	14.7	0.9996		0.0004	0.0070	3.2	0.6274		1.0000	1.0000	1815	0.3517		0.8740	0.0013	
Temik	Aldicarb	9.3	0.0023	0.0004		0.8122	4.0	0.5187	1.0000		1.0000	456	0.0181	0.8401		<.0001	
Untreated control	Water	10.8	0.0341	0.0061	0.7270		3.8	0.2441	1.0000	1.0000		15254	0.2687	0.0011	<.0001		

Table 2. Efficacy of nine Bacillus PGPR strains on plant height, biomass, and M. incognita eggs/gr on cotton under greenhouse conditions at 45 DAPa.

^a Greenhouse trials were performed in plastic cone-tainers with mixed pasteurized soil and sand (60:40, v/v) for 45 days. Data collected were repeated twice and analyzed in SAS 9.4 using PROC GLIMMIX procedure at significant level of $\alpha \leq 0.10$. Adjusted *P* values less than 0.10 indicated a significant effect. Adjusted *P* values were obtained by analyzing the data according to Dunnett's method. LS-means and adjusted *P* values were presented in the table.

^b DAP = days after planting.

^c PH = plant height (cm) at 45 DAP.

^d Bio =cotton plant biomass including shoot fresh weight (g) and root fresh weight (g) at 45 DAP.

^e Eggs/gr = M. *incognita* eggs per gram of root at 45 DAP.

				48 DAP ^b				48 DAP				48 DAP				+ B. firmus Abamectin Water 0.9994 1.0000 1.0000 1.0000 0.9980 0.9971 0.9949 1.0000 1.0000 0.9999 0.9999 0.9999 0.9992 0.7555 0.7432 1.0000 0.9494 0.9433 1.0000 0.9991 0.9981 0.9997 0.7915 0.7795		
Treatment	Scientific name		Dunnet	t's P vs. ($P \leq 0$.05)		Dunnet	t's P vs. ($P \leq 0$.05)		Dunnett	's P vs. $(P \leq 0.0)$)5)		Dunnett	's P vs. ($P \leq 0$.05)	
		PH ^c	Clothianidin + B. firmus	Clothianidin Abamectin Water Bio ^d	Bio ^d	Clothianidin + B. firmus	Abamectin	Water	Eggs/gr ^e	Clothianidin + B. firmus	Abamectin	Water	Yield ^f	Clothianidin + B. firmus	Abamectin	Water		
Bal13	B. altitudinis	46.5	1.0000	0.9932	0.9874	95.1	1.0000	1.0000	0.9965	872	0.9933	0.1524	0.5332	185	0.9994	1.0000	1.0000	
Bmo3	B. mojavensis	51.2	0.9988	0.6473	0.5630	108.0	0.8148	0.8738	0.6335	212	0.9983	0.8894	0.0459	199	1.0000	0.9980	0.9975	
Bsssu2	B. subtilis subsp. subtilis	38.7	0.6070	0.9974	1.0000	58.5	1.0000	0.9997	1.0000	409	1.0000	0.4690	0.1835	178	0.9949	1.0000	1.0000	
Bsssu3	B. subtilis subsp. subtilis	42.5	0.9646	1.0000	1.0000	65.3	0.9978	0.9928	1.0000	299	0.9730	0.9779	0.0231	190	0.9999	0.9999	0.9999	
Bve12	B. velezensis	43.0	0.9810	1.0000	1.0000	67.4	1.0000	0.9999	1.0000	1357	0.7459	0.0354	0.9340	231	0.9992	0.7555	0.7434	
Bve2	B. velezensis	48.5	1.0000	0.9196	0.7918	85.4	0.9977	0.9995	0.9700	163	0.9928	0.9398	0.0340	215	1.0000	0.9494	0.9438	
Mixture 1g		43.8	0.9950	1.0000	0.9996	72.5	0.9996	0.9981	1.0000	913	1.0000	0.3256	0.2837	197	1.0000	0.9991	0.9988	
Mixture 2 ^g		46.3	1.0000	0.9950	0.9687	65.9	1.0000	0.9999	1.0000	361	0.9884	0.9549	0.0301	229	0.9997	0.7915	0.7799	
Control	Active ingredient																	
Poncho/Votivo	Clothianidin +	47.8		0.9575	0.9003	66.9		1.0000	1.0000	436		0.5022	0.1667	208		0.9829	0.9802	
	B. firmus I-1582																	
Avicta	Abamectin	42.3	0.9575		1.0000	81.3	1.0000		1.0000	69	0.5022		0.0022	173	0.9829		1.0000	
Untreated control	Water	42.2	0.9494	1.0000		93.3	1.0000	1.0000		1551	0.1667	0.0022		172	0.9802	1.0000		

Table 3. Effect of six PGPR strains and two mixtures on cotton plant height, biomass, Meloidogyne incognita eggs/gr at 48 DAP, and cotton yield in the microplots at 142 DAPa.

^a Microplot trials were performed in 26.5 liter pots with a kalmia loamy sand soil. The microplot trial was repeated and analyzed in SAS 9.4 using PROC GLIMMIX procedure at a significant level of 0.05.

Adjusted P values less than 0.05 indicated a significant effect. Adjusted P values were obtained by analyzing data according to Dunnett's method. LS-means and adjusted P values were presented in the table.

^b DAP = days after planting.

^c PH = plant height (cm) at 48 DAP.

^d Bio = cotton plant biomass including shoot fresh weight (g) and root fresh weight (g) at 48 DAP. ^e Eggs/gr = *M. incognita* eggs per gram of root at 48 DAP.

^f Yield = grams of seed cotton yield handpicked at harvest. ^gMixture 1 = strain Bve2+ strain Bal13; Mixture 2 = Abamectin + strain Bve2 + strain Bal13.

				40 DAP ^b			40 DAP				40 DAP				150 DAP		
Treatment	Scientific name	PH ^c	Dunnett's <i>P</i> vs. $(P \le 0.05)$		Bio ^d	Dunnett's <i>P</i> vs. $(P \le 0.05)$			Eggs/gr ^e	Dunnett's <i>P</i> vs. $(P \le 0.05)$			Yield ^f	Dunnett's <i>P</i> vs. $(P \le 0.10)$			
			Clothianidin + B. firmus	Abamectin	Water		Clothianidin + B. firmus	Abamectin	Water		Clothianidin + B. firmus	Abamectin	Water	_	Clothianidin + B. firmus	Abamectin	Water
Bal13	B. altitudinis	19.9	0.8818	0.9129	0.9793	58.9	0.9973	0.9999	1.0000	1747	0.9961	0.9998	0.6523	3902	1.0000	0.5795	0.4826
Bmo3	B. mojavensis	25.4	0.9997	0.9992	0.9879	81.8	0.9997	0.9952	0.9853	349	0.1023	0.6717	0.0126	4235	0.9974	0.9823	0.1278
Bsssu2	B. subtilis subsp. subtilis	22.6	1.0000	1.0000	1.0000	60.3	0.9989	1.0000	1.0000	1358	0.8676	1.0000	0.3360	4089	1.0000	0.8462	0.2211
Bsssu3	B. subtilis subsp. subtilis	23.6	1.0000	1.0000	1.0000	67.0	1.0000	1.0000	1.0000	2569	0.9998	0.5922	1.0000	4204	0.9993	0.9622	0.1313
Bve12	B. velezensis	20.7	0.9681	0.9807	0.9983	50.0	0.9152	0.9749	0.9905	2805	0.9867	0.3755	1.0000	4396	0.9398	0.9999	0.0499
Bve2	B. velezensis	23.0	1.0000	1.0000	1.0000	65.5	1.0000	1.0000	1.0000	1416	0.8906	1.0000	0.3486	4415	0.9096	1.0000	0.0528
Mixture 1g		20.5	0.9507	0.9681	0.9960	51.1	0.9351	0.9833	0.9944	2191	1.0000	0.9172	0.9706	4091	1.0000	0.8702	0.2403
Mixture 2 ^g		23.0	1.0000	1.0000	1.0000	77.9	1.0000	0.9997	0.9981	699	0.9364	0.9438	0.0454	3582	0.9337	0.1532	0.9356
Control	Active ingredient																
Poncho/Votivo	Clothianidin +	23.8		1.0000	1.0000	71.9		1.0000	1.0000	2232		0.8926	0.9807	3993		0.7291	0.3523
	B. firmus I-1582																
Avicta	Abamectin	23.5	1.0000		1.0000	67.8	1.0000		1.0000	1419	0.8926		0.3509	4563	0.7276		0.0199
Untreated																	
control	Water	22.7	1.0000	1.0000		65.4	1.0000	1.0000		2889	0.9809	0.3521		3186	0.3503	0.0198	

Table 4. Efficacy of six PGPR strains and two mixtures on plant height, plant biomass, and nematode population density at 40 DAP, and yield of cotton in a field production system at 150 DAPa.

^a Field trials were performed in two naturally infested fields in AL. Data were combined and analyzed in SAS 9.4 using PROC GLIMMIX procedure at significant level of $\alpha \le 0.05$ for PH, Bio, and Eggs/gr and at a significant level of $\alpha \le 0.10$ for cotton yield. Adjusted P values less than 0.05 or 0.10 indicated a significant effect. Adjusted P values were obtained by analyzing data according to Dunnett's method. LS-means and adjusted P values were presented in the table.

 b DAP = days after planting.

^c PH = plant height (cm) at 40 DAP.

^dBio = cotton plant biomass including shoot fresh weight (g) + root fresh weight (g) at 40 DAP.

⁶ Eggs/gr = *M. incognita* eggs per gram of rot at 40 DAP.
 ^f Cotton yield = seed cotton yield in kilogram/hectare at 150 DAP.
 ^gMixture 1= strain Bve2 + strain Bal13; Mixture 2 = Abamectin + strain Bve2 + strain Bal13.

Figure 1. Cotton roots from greenhouse trials at 45 DAP. Untreated control (Left) and treatment with strain *B. velezensis* Bve2

Figure 2. Cotton plant height was increased from greenhouse trials at 45 DAP. Untreated control (Left) and treatment with strain *B*. subtilis subsp. subtilis Bsssu3 (Right).

Figure 3. Cotton plants in Plant Breeding Unit (PBU) at 40 DAP. Untreated control (Left) and treatment with strain *B. velezensis* Bve12 (Right).

Figure 4. Cotton plants in PBU at 90 DAP. Untreated control (Left) and treatment with strain *B. velezensis* Bve2 (Right).

Chapter IV. Biological control of *Heterodera glycines* by spore-forming plant growthpromoting rhizobacteria on soybean

Abstract

Heterodera glycines, the soybean cyst nematode, is the most economically important plantparasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR) strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 91.6% of the total 670 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13) reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bye12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. *Bacillus altitudinis* strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13) increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield on soybean.

1. Introduction

Heterodera glycines Ichinohe, the soybean cyst nematode, was first reported in the United States in North Carolina in 1954 (Winstead et al. 1955). Now *H. glycines* has been found in every soybean-producing state in the U.S. except New York and West Virginia, due to their small soybean acreage and limited soybean production (NASS 2016). In the United States, *H. glycines* was the most important disease in soybean production, followed by *Phytophthora* root and stem rot and seedling diseases over the past 10 years (Wrather and Koenning 2009). Soybean yield losses caused by *H. glycines* were estimated to be 25% to 38% of total yield losses in 28 U.S. states, which is more than any other disease from 2006 to 2009 (Wrather et al. 2010).

The removal of chemical nematicides such as Aldicarb (Temik) (Bayer CropScience, Raleigh, NC) has driven the investigation of alternative strategies for integrated pest management of plant-parasitic nematodes. Biological control agents previously assessed for the management of *H. glycines* were nematophagous fungi, endoparasitic fungi, female and egg-parasitic fungi, fungi producing antibiotic substances, vesicular-arbuscular mycorrhizal (VAM) fungi, *Pasteuria* spp., chitinolytic bacteria, and plant-growth-regulatory bacteria (Chen 2004). *Monacrosporium drechsleri*, an example of nematophagous fungi, has been found to attack J2 of *H. glycines* (Liu and Chen 2000). *Hirsutella rhossiliensis* and *H. minnesotensis* are two endoparasitic fungi found to parasitize vermiform stages of *H. glycines* (Liu and Chen 2000), and both were found highly effective against *H. glycines* through paratisizing J2 in the soil when applied at planting or two weeks prior to planting in the greenhouse (Chen and Liu 2005). The fungal genera *Exophiala*, *Fusarium*, *Gliocladium*, *Neocosmospora*, *Paecilomyces*, *Phoma*, *Stagonospora*, and *Pochonia* were commonly recovered from females and cysts of *H. glycines* (Chen 2004). Isolates from those fungi could be female and/or egg-parasitic fungi. Some fungi were found to produce antibiotic substances which inhibit eggs hatch or juvenile mobility. For example, an isolate of the fungus *Chaetomium globosum*, was found to produce a low molecular weight compound, flavipin, which inhibited *in vitro* egg hatch and juvenile mobility of *Meloidogyne incognita* and hatch of *H. glycines* (Nitao et al. 2002). VAM fungi were also reported to decrease numbers of *H. glycines*. Tylka et al. (1991) found that numbers of *H. glycines* in roots and soil were decreased by VAM fungi by as much as 73% at the highest *H. glycines* inoculum level through 49 days after planting in the greenhouse experiments.

Bacteria are another large group that offered potential in reducing H. glycines population density. Pasteuria spp. was first reported to attack H. elachista in Japan in 1987 (Nishizawa 1987) and was later found to attack H. glycines in North America in 1994 (Noel and Stanger 1994). Four chitinolytic bacterial strains were found to reduce numbers of *H. glycines* through the interaction with the chitin substrate mixed in the soil in the greenhouse (Tian et al. 2000). Thirty-six of 201 rhizobacteria strains were also found to reduce numbers of soybean cysts, eggs, and J2 in the initial greenhouse tests (Tian and Riggs 2000). Among 20 strains that suppressed (\geq 50%) H. glycines in the initial greenhouse screening test, four were Pseudomonas spp., two Bacillus spp. (B. cereus and B. pumilus), three Paenibacillus spp., and one Streptomyces spp. (Tian and Riggs 2000). Plantgrowth-regulatory bacteria, especially plant-growth promoting rhizobacteria (PGPR), were found to have potential for the control of H. glycines. Kloepper et al. (1992) found that B. megaterium, B. pumilus, and Bacillus spp. were antagonistic to H. glycines and M. incognita. Sharma (1995) evaluated the efficiency of toxins from pure cultures of B. sphaericus (Bs 2362), B. thuringiensis var. israelensis (Bti-H-14), and B. thuringiensis var. kurstaki (Btk-HD-1) against H. glycines in a greenhouse pot experiment. However, none of the toxins significantly reduced the final nematode population density in relation to the untreated control. Sharma and Gomes (1996) evaluated the

effect of those toxins again on oviposition and J2 hatching of *H. glycines* race 3 in the greenhouse and found the number of hatched J2 treated with Bs 2362 was significantly less than the control in one experiment.

Among these antagonists, rhizobacteria, especially *Bacillus* PGPR, can promote plant growth and elicit significant reductions in the incidence or severity of various diseases on a diversity of hosts (Kloepper et al. 2004), and also elicit nematicidal activity or induced systemic resistance to plant-parasitic nematodes. Many of these species produce endospores which help the bacteria survive in a wide range of environmental conditions and have long-shelf life giving them an advantage as a commercial product. Some *Bacillus* strains have been developed into commercial products for plant disease and plant-parasitic nematode management, such as BioNem-WP/BioSafe (*B. firmus*) (AgroGreen, Israel) (Keren-Zur et al. 2000), BioYield (combination of *B. amyloliquefaciens* strain IN937a and *B. subtilis* strain GB03) (Gustafson LLC, USA) (Kloepper et al. 2004; Burkett-Cadena et al. 2008), Nemix (*Bacillus* spp.) (AgriLife/Chr Hansen, Brazil) (Hallmann et al. 2009), VOTiVO (*B. firmus* GB-126) (Bayer CropScience, Germany) (Wilson and Jackson 2013), and Pathway Consortia (mixture of *B. subtilis, B. licheniformis, B. megaterium, B. coagulans, Pseudomonas fluorescens, Streptomyces* spp., and *Trichoderma* spp.) (Pathway Holdings, USA) (Askary 2015).

More research on beneficial PGPR strains as biocontrol agents for plant-parasitic nematodes management is needed. The overall objective of this project was to evaluate PGPR strains for biological control potential of *H. glycines* on soybean. The specific objectives were to assess the potential of PGPR strains for *H. glycines* J2 mortality percentage *in vitro* using high throughput screening and select strains to further test for *H. glycines* population density reduction and enhanced plant growth in the greenhouse, microplot, and field production systems.

95

2. Materials and Methods

2.1 PGPR strains

A total of 670 PGPR strains (Appendix 2) were included in an *in vitro* study. These strains were originally isolated, identified, and maintained by J. W. Kloepper at Auburn University, Auburn, AL. Among these strains, 91.6% were Bacillus spp. including 208 strains of B. simplex, 70 strains of B. toyonensis, 53 strains of B. aryabhattai, 51 strains of B. cereus, 44 strains of B. mycoides, 41 strains of B. velezensis, 35 strains of B. safensis, 21 strains of B. altitudinis, 21 strains of B. weihenstephanensis, 15 strains of B. subtilis subsp. inaquosorum, 13 strains of B. methylotrophicus, six strains of B. pumilus, five strains of B. psychrosaccharolyticus, four strains of each B. mojavensis, B. subtilis subsp. subtilis, and B. thuringiensis, three strains of B. siamensis and B. tequilensis, and 13 strains of other Bacillus spp. For the remaining 8.4% of the collection of the strains, ten were Sporosarcina globispora, nine were Paenibacillus amylolyticus, seven were Brevibacterium epidermidis, four were Paenibacillus lautus, three were unknown species, and 23 were from multiple other genera. The PGPR strains, stored in 30% glycerol at -80 °C, were transferred to tryptic soy agar (TSA) (VWR, Radnor, PA) plates, and incubated at 35°C for 24 hours. The 21 strains that had no significant growth on TSA plates were eliminated from the study (Appendix 3). Vegetative cells of each strain were suspended in 5 ml of sterile distilled water in glass tubes. The concentration of bacterial vegetative cell suspensions was adjusted to 1×10^7 CFU/ml.

2.2 Nematode inoculum

The *H. glycines* used as inoculum *in vitro*, in the greenhouse and microplot experiments were from a culture maintained in the greenhouse since 2000. Eggs for the experiments were extracted from a 60-day-old soybean ("Asgrow 5935", Monsanto, St. Louis, MO) stock culture

maintained in 500 cm³ polystyrene pots. Soil was gently washed from the soybean roots and cysts and females were dislodged from the roots (Riggs and Schmitt 1991). Water with the cyst and female suspension was poured through nested 850-µm-pore and 250-µm-pore sieves to separate trash from cysts and females (Riggs and Schmitt 1991). Cysts and females were ground with a mortar and pestle to release the eggs. Eggs were washed with water and collected on a 25-um-pore sieve and the suspension was centrifuged at 240 g for 1 minute using the sucrose centrifugationflotation method (Jenkins 1964). For in vitro tests, H. glycines eggs were placed in a modified Baermann funnel (Castillo et al. 2013) on a Slide Warmer (Model 77) (Marshall Scientific, Brentwood, NH) and incubated at 31°C for 5 to 7 days to obtain the J2 (Xiang et al. 2014). The J2 were collected on a 25-µm-pore sieve, transferred to 1.5 ml micro centrifuge tubes, centrifuged at 5,000 g for 1 minute, rinsed with sterile distilled water, and centrifuged at 5,000 g for 1 minute. The J2 suspensions were adjusted to 30 to 40 J2 per 10 μ l of water (Xiang et al. 2014). For greenhouse and microplot trials, eggs were enumerated at \times 40 magnification with an inverted TS100 Nikon microscope and standardized to 2,000 eggs per cone-tainer for tests in the greenhouse or 50,000 eggs per pot for tests in the microplot.

2.3 Tests in vitro

In vitro tests were conducted to assess mortality percentage of *H. glycines* J2 by PGPR strains. The PGPR vegetative cell suspensions and *H. glycines* J2 inocula were prepared as described previously. Ten μ l of nematode suspension containing 30 to 40 *H. glycines* J2 were added in each well of a 100 μ l 96-well plate. Ninety μ l of each PGPR vegetative cell suspension was transferred into each test well of the 96-well plate. Clothianidin plus *B. firmus* I-1582 (Poncho/Votivo) (Bayer CropScience, Raleigh, NC) at a 0.7 μ l / well (0.424 mg ai/seed), 100 million international unit (MIU) /well of *Pasteuria nishizawae* (Clariva) (Syngenta Greensboro,

NC), and 1 granule/well of Aldicarb (Temik 15G) (Bayer CropScience, Raleigh, NC) were used as industry standards, and sterile distilled water was the untreated control. Each plate was sealed with parafilm (VWR, Radnor, PA) and incubated at room temperature for 48 hours. Numbers of live *H. glycines* J2 were enumerated and recorded at experiment initiation and 48 hours after exposure to the treatments. Viability of *H. glycines* J2 was determined using the sodium technique developed by Xiang and Lawrence (2016) for high throughput screening of biological or chemical agents on plant-parasitic nematodes. Mortality percentage of *H. glycines* J2 were calculated as the following equation: [(live J2 prior to exposure - live J2 at 48 hours) / live J2 prior to exposure] × 100. Each bacterial treatment had four replications and the experiment was repeated.

2.4 Plant material

The soybean (*Glycine max*) variety "Asgrow 5935" (Monsanto, St. Louis, MO) as reported by Monsanto to be susceptible to *H. glycines* was used for all the experiments.

2.5 Trials in the greenhouse

Seventy two PGPR strains from the *in vitro* screenings with high J2 mortality were selected for initial evaluation in the greenhouse for their efficacy to reduce nematode population density and promote soybean plant growth. Confidential agreements were signed during this research study and only ten PGPR strains were available for further testing. These included *B. altitudinis* strains Bal11 and Bal13, *B. mojavensis* strain Bmo3, *B. safensis* strains Bsa26 and Bsa27, *B. subtilis* subsp. *subtilis* strains Bsssu2 and Bsssu3, *B. velezensis* strains Bve2 and Bve12, and *Fictibacillus solisalsi* strain Fso1. All the tests were conducted in the Plant Science Research Center (PSRC) greenhouse at Auburn University, Auburn, AL. Experiments were performed in 150 cm³ plastic cone-tainers (Stuewe & Sons Inc., Tangent, Oregon) filled with a soil : sand mix (60:40 v/v). The soil was a Kalmia loamy sand (80% sand, 10% silt, and 10% clay) collected from

Plant Breeding Unit (PBU) located at E.V. Smith Research Center of Auburn University near Tallassee, AL. Soil was steam pasteurized at 180 °C for 60 minutes to 120 minutes and cooled for 24 hours. Steam pasteurizing process was repeated prior to use. Two soybean seeds were planted 2.5 cm deep in each cone-tainer. One ml of bacterial cell suspension $(1 \times 10^7 \text{ CFU/ml})$ was inoculated on each seed at planting. For the nematicide controls, soybean seeds were treated with each compound following industrial recommendations: 0.13 mg a.i./seed of Clothianidin plus B. firmus I-1582 (Poncho/Votivo), or 0.15 mg a.i./seed of Abamectin (Avicta) (Syngenta, Greensboro, NC), or 10,000 million international unit (MIU) /ml of Pasteuria nishizawae (Clariva) (Syngenta Greensboro, NC) prior to planting. All seeds were treated with a Gustafson table-top seed treater (Bayer CropScience, Research Triangle Park, NC), mixed for 3 min in the 454-gm stainless steel bucket and allow to air dry before packaging (Schrimsher et al. 2014). One ml of tap water added to the seeds was used as the untreated control. One ml containing 2,000 H. glycines eggs was pipetted into each cone-tainer at planting. Experiments were arranged in a randomized complete block design (RCBD). Each treatment had five replications and the entire experiment was repeated twice. Soybean seedlings were thinned to one per cone-tainer after emergence. Plants were watered as needed. Supplemental light of 1000 watts halide bulbs producing 110,000 lumens was supplied to maintain the day length of 14 hours per day. Greenhouse temperature was ranged from 21°C to 35 °C. Experiments were terminated at 60 DAP. Plant and nematode measurements were recorded. Plant measurements included Plant height (PH) and Biomass including shoot and root fresh weights (SFW/RFW). Heterodera glycines cyst and vermiform stage numbers were recorded. The *H. glycines* cysts were extracted from the soybean roots as described previously in inoculum preparation. Water suspension containing 150 cm³ of soil from cone-tainers was poured through nested 75-µm and 25-µm-pore sieve to extract vermiform stages (juveniles and males).

Vermiform stages were collected on the 75-µm-pore sieve and centrifuged using sucrose centrifugation-flotation method (Jenkins 1964).

2.6 Trials in the microplots

The performance of five strains and two strain mixtures were evaluated for nematode population density, early growth promotion, and yield enhancement of soybean in the microplots. The strains included a strain of B. altitudinis (Bal13), a strain of B. safensis (Bsa27), a strain of B. subtilis subsp. subtilis (Bsssu2), two strains of B. velezensis (Bve12 and Bve2), and two mixtures Mixture 1 (Bve2 + Bal13) and Mixture 2 (seeds treated with Abamectin + Bve2 + Bal13). Mixtures were formed from the best performing strains based on greenhouse studies. The experiments were conducted at the PSRC. Experiments were established in 26.5 liter pots filled with a Kalmia loamy sand (80% sand, 10% silt, and 10% clay) collected from PBU. Nematodes were extracted from the non-pasteurized soil and H. glycines population density was below the detection level of the extraction method as previously described. Experiments were arranged in a RCBD with 6 replications for each treatment and the experiment was repeated twice. Ten soybean seeds were hand-planted at 2.5 cm in depth in a linear pattern to simulate a linear row foot in the field (Schrimsher et al. 2014). One ml bacterial suspension (1×10^7 CFU/ml) was applied to each seed at planting. Five ml containing 50,000 H. glycines eggs were pipetted randomly in each pot at planting. Soybean seeds treated with Clothianidin plus B. firmus I-1582, Abamectin, and P. nishizawae as previously described were used as standards. The untreated control received 1 ml of tap water per seed. Each microplot received 30 ml per minute of water by an automatic drip irrigation system adjusted throughout the season to run for 15 - 45 minutes twice a day, for a total of 450 - 1350 ml of water per microplot per day. At 60 DAP, one representative soybean plant was dug from each microplot for PH and Biomass (SFW + RFW) measurements and nematode

extraction as previously described. Cysts were extracted from the roots. Vermiform stages were extracted from 100 cm³ of soil surrounding the roots. Total nematode numbers including cysts and vermiforms were recorded. At plant maturity, approximately 160 DAP, soybeans were harvested and yield was recorded as grams of soybean seed per plot.

2.7 Trials in the field

The same strains and mixtures assessed in the microplot trials were evaluated in field trials for their effect on early-season nematode population density, plant growth promotion, and yield enhancement in soybean. The experiments were established at the research stations of E.V. Smith in a Wickham fine sandy loam soil (70% sand, 16% silt, and 18% clay), Tallassee, AL and Tennessee Valley Research and Extension Center (TVREC) in a Decatur silt loam soil (24% sand, 49% silt, and 28% clay), Belle Mina, AL. Both were artificially infested fields with soybean cysts added every year since 2011. The experiments were arranged in a RCBD with 5 replications for each treatment. The field trials were arranged in two-row plots that were 7 m long with 0.9 m row spacing. Blocks were separated by a 6 m alley. One hundred and seventy five soybean seeds were planted in each row with an Almaco plot planter (Almaco, Iowa). The PGPR treatments were applied as in-furrow spray standardized to 1×10^7 CFU/seed and applied at 32.5 liter per hectare at planting. Seeds treated with Clothianidin plus B. firmus I-1582, Abamectin, and P. nishizawae as previously described were included as industry standard controls. Tap water applied in-furrow was used as untreated control. At 60 DAP, four random soybean plants were removed from each plot. The same plant growth parameters evaluated in the microplots were evaluated in the field. Heterodera glycines population density was determined by extracting soybean cysts and females from the roots, and vermiform stages from the soil as described previously. Soybeans were

harvested mechanically with a Almaco plot harvester (Almaco, Iowa) at plant maturity approximately 160 DAP and yield recorded and adjusted to 13% moisture content.

2.8 Statistical analysis

Data collected from *in vitro*, greenhouse, microplot, and field trials were analyzed in SAS 9.4 (SAS Institute, Cary, NC) using the PROC GLIMMIX procedure. Dependent variables included J2 mortality, plant height (PH), biomass (Bio), cyst, vermiform stage (VS), total SCN, and yield. Fixed effects were PGPR strains or nematicides treatments and the random effects included replication, repeat in time, and location. Student panels were generated to determine the normality of the residuals. A log-normal distribution transformation was required for the PH, Bio, cyst, VS, total SCN, and yield data to satisfy the normal assumptions. LS-means were compared between the treatments, chemical standards Clothianidin plus *B. firmus* I-1582, Abamectin, *P. nishizawae* and the untreated control by Dunnett's method at significant level of $P \le 0.05$ or $P \le 0.10$. The LS-means are presented in the tables with adjusted *P* values for statistical differences.

3. Results

3.1 Test in vitro

The mortality percentage of *H. glycines* J2 ranged from 0.0% to 99.9% with the PGPR strains tested with an average of 16.0% (Appendix 2). Data presented were results of LS-means greater than 50% mortality percentage of *H. glycines* J2 (Table 1). Among the 670 PGPR strains tested, 7.9% of the strains caused greater than 50.0% mortality percentage of *H. glycines* J2. Of those 7.9%, 24 were *B. simplex*, five were *B. altitudinis*, five were *B. toyonensis*, three were *B. aryabhattai*, three were *B. safensis*, two were *B. mycoides*, two were *B. subtilis subsp. subtilis*, and the remaining were *B. lentus*, *B. methylotrophicus*, *B. mojavensis*, *B. pumilus*, *B. weihenstephanensis*, *Fictibacillus solisalsi*, *Paenibacillus taichungensis*, and *P. xylanexedens*.

Among all the PGPR strains tested, 6.7% caused significantly greater level of mortality percentage than the biological standard Clothianidin plus *B. firmus* I-1582 ($P \le 0.05$); 7.8% caused significantly greater level of mortality percentage than the level caused by *P. nishizawae* ($P \le$ 0.05); 5.5% caused statistically similar mortality percentage to the level caused by Aldicarb ($P \le$ 0.05); and 13.1% caused significantly greater mortality percentage than the level caused by untreated control ($P \le 0.05$) (Table 1). Among all the strains, 91.6% were *Bacillus* spp. strains, which was the major genera with greater mortality percentage than any other single genera.

3.2 Greenhouse trial

In the greenhouse trials, strains *B. mojavensis* Bmo3 and *B. velezensis* Bve2 suppressed *H. glycines* cyst population density at 60 DAP at levels statistically equivalent to Abamectin ($P \le 0.10$) (Table 2). Strains *B. mojavensis* Bmo3, *B. subtilis* subsp. *subtilis* Bsssu2, *B. velezensis* Bve2, and *Fictibacillus solisalsi* Fso1 suppressed total *H. glycines* including cysts and vermiform stages at 60 DAP at levels statistically equivalent to Abamectin ($P \le 0.10$) (Table 2). All ten *Bacillus* PGPR strains significantly increased the soybean plant height compared to the standard Clothianidin plus *B. firmus* I-1582 at 60 DAP ($P \le 0.05$) (Table 3). Strains *B. altitudinis* Bal13 (Fig. 1-2), *B. subtilis* subsp. *subtilis* Bsssu2 and Bsssu3, and *B. velezensis* Bve12 significantly increased plant biomass (SFW + RFW) compared to the standard Clothianidin plus *B. firmus* I-1582 at 60 DAP ($P \le 0.05$) (Table 3).

3.3 Microplot trial

Five *Bacillus* PGPR strains and two mixtures were evaluated in the microplot for early plant growth promotion, reduction of *H. glycines* population density, and yield enhancement. Results indicated that the *B. velezensis* strain Bve2 significantly reduced *H. glycines* cyst numbers compared to the biological standard *P. nishizawae* at 60 DAP ($P \le 0.10$) (Table 4). *Bacillus* *altitudinis* strain Bal13 and Mixture 2 significantly increased plant height compared to all the industrial standards ($P \le 0.10$) (Table 5). *Bacillus altitudinis* strain Bal13, *B. safensis* strain Bsa27, and Mixture 2 significantly increased plant biomass (SFW + RFW) compared to the untreated control at 60 DAP ($P \le 0.10$) (Table 5). Number of *H. glycines* vermiform stage (data not show) at 60 DAP and soybean yield (Table 5) at harvest were similar among all the PGPR strains and the industrial standards.

3.4 Field trial

In the field trials, strains *B. safensis* Bsa27, *B. velezensis* Bve2, and Mixture 1 significantly reduced *H. glycines* cyst numbers compared to untreated control at 60 DAP ($P \le 0.10$) (Table 6). Strain Mixture 2 (Fig. 3) significantly increased soybean yield compared to the untreated control at 160 DAP ($P \le 0.10$) (Table 6). Plant height, biomass, *H. glycines* vermiform stages, and total *H. glycines* were similar among all the PGPR strains and industrial standards (data not show).

4. Discussion

In vitro screening of the 670 PGPR strains indicated that 13 Bacillus species including B. altitudinis, B. aryabhattai, B. lentus, B. methylotrophicus, B. mojavensis, B. mycoides, B. pumilus, B. safensis, B. simplex, B. subtilis subsp. subtilis, B. toyonensis, B. velezensis, B. weihenstephanensis, and species of Fictibacillus and Paenibacillus caused greater than 50% mortality of H. glycines J2 in vitro. Strains of B. altitudinis, B. aryabhattai, B. lentus, B. methylotrophicus, B. mojavensis, B. mycoides, B. safensis, B. simplex, B. lentus, B. methylotrophicus, B. mojavensis, B. mycoides, B. safensis, B. simplex, B. toyonensis, B. velezensis, B. methylotrophicus, B. mojavensis, B. mycoides, B. safensis, B. simplex, B. toyonensis, B. velezensis, B. weihenstephanensis, and strains of Fictibacillus were first documented in this study for antagonistic activity against H. glycines. Previously, some bacterial species have been documented to be antagonistic to H. glycines. Bacillus megaterium (Kloepper et al. 1992), B. pumilus (Kloepper et al. 1992; Tian and Riggs 2000), B. sphaericus (Sharma 1995; Sharma and Gomes 1996), B.

cereus (Tian and Riggs 2000), *Paenibacillus* spp. (Tian and Riggs 2000) were reported for their nematicidal activity on reduction of *H. glycines* population density in greenhouse trials. None of these studies has done the high throughput *in vitro* screening of biological agents to *H. glycines*. Our study is the first documentation of high throughput *in vitro* screening of biological control agents on efficacy to *H. glycines*.

Bacillus velezensis strain Bve2 consistently reduced H. glycines cyst numbers at 60 DAP in the greenhouse, microplot, and field trials. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13) reduced H. glycines cyst numbers at 60 DAP in the field trials. Individual strains of Bmo3 and Bve2 and Mixture 2 (Abamectin + Bve2 + Bal13) were previously found to reduce *M. incognita* eggs/g root on cotton plants in the greenhouse, microplot, and field studies (Ni Xiang, data unpublished). This study expanded the documented nematicidal activity of the strains Bmo3 and Bve2 on H. glycines. Some studies have documented individual or mixtures of PGPR strains and/or nematicides or other agents on reduction of plantparasitic nematode population density. Burkett-Cadena et al. (2008) reported that the combination of B. amyloliquefaciens (sym. B. velezensis) strain GB99 and B. subtilis strain GB03 (BioYield, Gustafson LLC, USA) significantly reduced *Meloidogyne* spp. eggs per gram root, juvenile nematodes per cm³ of soil, and galls per plant on tomato. Castillo et al. (2013) found that individuals strains of B. firmus GB-126 (Votivo, Bayer CropScience, Germany) and Paecilomyces lilacinus 251 (PL 251, Biological Control Products, South African), or the combination of B. firmus GB-126 and P. lilacinus reduced Rotylenchulus reniformis population density in the greenhouse, microplot, and field trials. Our results are in agreement with their studies that individual PGPR strains and mixtures have biological control potential on plant-parasitic nematodes.

Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13) increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. Some studies have reported that individual or mixtures of PGPR strains can promote plant growth and increase yield on multiple plant hosts. Raupach and Kloepper (2000) found seven PGPR seed treatments including single-strain treatments and mixtures of *B. pumilus* strain INR7, Curtobacterium flaccumfaciens strain ME1, and B. subtilis strain GB03 significantly promoted plant growth on cucumber in the field studies when methyl bromide was absent. The individual B. subtilis strain GB03 and mixture of B. pumilus strain INR7 plus C. flaccumfaciens strain ME1 promoted growth significantly on cucumber (Raupach and Kloepper 2000). Liu et al. (2016) found individual PGPR strains Bsa27 (AP7) and Bpu6 (AP18) promoted plant growth on Chinese cabbage and one strain mixture containing PGPR strains Bve12 (AP136) (B. velezensis), Bmo3 (AP209) (B. mojavensis), Lma1 (AP282) (Lysinibacillus macroides), Bve15 (AP305) (B. velezensis), Bsa27 (AP7) (B. safensis), Bpu6 (AP18) (B. pumilus), and Bve40 (AP218) (B. velezensis) increased shoot and root dry weights in the greenhouse test. They found that those individual strains and mixtures increased marketable yield of Chinese cabbage in the field (Liu et al. 2016). Our study is in an agreement with previous research that individual or mixtures of PGPR strains can promote plant growth under greenhouse or field conditions and that some PGPR strains can reduce plant-parasitic nematode population density.

Overall, this study indicated that *B. velezensis* strain Bve2, *B. mojavensis* strain Bmo3, and Mixture 1 (Bve2 + Bal13) have the potential to manage *H. glycines* on soybean. *Bacillus altitudinis* strain Bal13 and Mixture 2 (Abamectin +Bve2 + Bal13) have the ability to enhance soybean yield under field conditions. In the future, the formulation of these effective PGPR strains and mixtures should be further evaluated for the integrated management of *H. glycines* on soybean.

5. References

- Askary, T. H. 2015. Limitation, research needs, and future prospects. p. 446 454. In Biocontrol agents of phytonematodes. Eds. Askary, T. H., and Martinelli, P. R. P. CAB International. Wallingford, OX, UK.
- Burkett-Cadena, M., Kokalis-Burelle, N., Lawrence, K. S., Van Santen, E., and Kloepper, J. W.
 2008. Suppressiveness of root-knot nematodes mediated by rhizobacteria. Biological Control.
 47:55 59.
- Castillo, J. D., Lawrence, K. S., and Kloepper, J. W. 2013. Biocontrol of the reniform nematode by *Bacillus firmus* GB-126 and *Paecilomyces lilacinus* 251 on cotton. Plant Disease. 97:967 976.
- Chen, S. Y. 2004. Management with biological methods. p. 207 242. In Biology and management of soybean cyst nematode. 2nd Edition. Eds. Schmitt, D. P., Wrather, J. A., and Riggs, R. D. Schmitt & Associates of Marceline. Marceline, Missouri, USA.
- Chen, S. Y., and Liu, X. Z. 2005. Control of the soybean cyst nematode by the fungi *Hirsutella rhossiliensis* and *Hirsutella minnesotensis* in greenhouse studies. Biological Control. 32:208 219.

- Hallmann, J., Davies, K. G., and Sikora, R. A. 2009. Biological control using microbial pathogens, endophytes and antagonists. p. 380 411. In Root-knot nematode. Eds. Perry, R. N., Moens, M., and Starr, J. L. CAB International. Wallingford, UK.
- Jenkins, W. 1964. A rapid centrifugal-floatition technique for separating nematodes from soil. Plant Disease Report. 48: 692.
- Keren-Zur, M., Antonov, J., Bercovitz, A., Feldman, K., Husid, A., Kenan, G., Markov, N., and Rebhun, M., 2000. *Bacillus firmus* formulations for the safe control of root-knot nematodes.
 In: Proceedings of the Brighton Crop Protection Conference on Pests and Diseases. Vol. 2A. 47 52.
- Kloepper, J. W., Rodríguez-Kábana, R., McInroy, J. A., and Young, R. W. 1992. Rhizosphere bacteria antagonistic to soybean cyst (*Heterodera glycines*) and root-knot (*Meloidogyne incognita*) nematodes: identification by fatty acid analysis and frequency of biological control activity. Plant and Soil. 139:75 - 84.
- Kloepper, J. W., Ryu, C. M., and Zhang, S. A. 2004. Induced systemic resistance and promotion of plant growth by *Bacillus* spp. Phytopathology. 94:1259 1266.
- Liu, K., Garrett, C., Fadamiro, H., and Kloepper, J. W. 2016. Induction of systemic resistance in Chinese cabbage against black rot by plant growth-promoting rhizobacteria. Biological Control. 99:8 - 13.
- Liu, X. Z., and Chen, S. Y. 2000. Parasitism of *Heterodera glycines* by *Hirsutella* spp. in Minnesota soybean fields. Biological Control.19:161 166.
- NASS. National Agricultural Statistics Service | USDA. 2016. Crop Production 2015 Summary. 46. <u>http://www.usda.gov/nass/PUBS/TODAYRPT/cropan16.pdf</u>.

- Nishizawa, T. 1987. A decline phenomenon in a population of upland rice cyst nematode, *Heterodera elachista*, caused by bacterial parasite, *Pasteuria penetrans*. Journal of Nematology.19:546.
- Nitao, J. K., Meyer, S. L. F., Oliver, J. E., Schmidt, W. F., and Chitwood, D. J. 2002. Isolation of flavipin, a fungus compound antagonistic to plant-parasitic nematodes. Nematology. 4:55 -63.
- Noel, G. R., and Stanger, B. A. 1994. First report of *Pasteuria* sp. attacking *Heterodera glycines* in North America. Journal of Nematology. 26:612 615.
- Raupach, G. S., and Kloepper, J. W. 2000. Biocontrol of cucumber diseases in the field by plant growth-promoting rhizobacteria with and without methyl bromide fumigation. Plant Disease. 84:1073 - 1075.
- Riggs, R. D., and Schmitt, D. P. 1991. Optimization of the *Heterodera glycines* race test procedure. Journal of Nematology. 23:149 - 154.
- Schrimsher, D. W., Lawrence, K. S., Sikkens, R. B., and Weaver, D. B. 2014. Nematicides enhance growth and yield of *Rotylenchulus reniformis* resistant cotton genotypes. Journal of Nematology. 46: 365 - 375.
- Sharma, R. D. 1995. Efficiency of *Bacillus* spp. toxins to control *Heterodera glycines* on soybean. Nematologia Brasileira. 19:72 - 80.
- Sharma, R. D., and Gomes, A. C. 1996. Effect of *Bacillus* spp. toxins on oviposition and juvenile hatching of *Heterodera glycines*. Nematologia Brasileira. 20:53 62.
- Tian, H., and Riggs, R. D. 2000. Effects of rhizobacteria on soybean cyst nematode, *Heterodera glycines*. Journal of Nematology. 32:377 388.

- Tian, H. L., Riggs, R. D., and Crippen, D. L. 2000. Control of soybean cyst nematode by chitinolytic bacteria with chitin substrate. Journal of Nematology. 32:370 376.
- Tylka, G. L., Hussey, R. S., and Roncadori, R. W. 1991. Interactions of vesicular-arbuscular mycorrhizal fungi, phosphorus, and *Heterodera glycines* on soybean. Journal of Nematology. 23:122 - 133.
- Wilson, M. J., and Jackson, T. A. 2013. Progress in the commercialization of bionematicides. BioControl. 58:715 - 722.
- Winstead, N. N., Skotland, C. B., and Sasser, J. N. 1955. Soybean cyst nematode in North Carolina. Plant Disease Reporter. 39:9 - 11.
- Wrather, A., Shannon, G., Balardin, R., Carregal, L., Escobar, R., Gupta, G. K., Ma, Z., Morel, W., Ploper, D., and Tenuta, A. 2010. Effect of diseases on soybean yield in the top eight producing countries in 2006. Plant Health Progress. Doi: 10.1094/PHP-2010-0125-01-RS.
- Wrather, J. A., and Koenning, S. R. 2009. Effects of diseases on soybean yields in the United States 1996 to 2007. Online. Plant Health Progress. Doi:10.1094/PHP-2009-0401-01-RS.
- Xiang, N., and Lawrence, K. S. 2016. Optimization of *in vitro* techniques for distinguishing between live and dead second stage juveniles of *Heterodera glycines* and *Meloidogyne incognita*. Plos One. 11: e0154818.
- Xiang, N., Lawrence, K. S., Kloepper, J. W., and Mcinroy, J. A. 2014. *In vitro* screening of biological control agents on *Meloidogyne incognita*. Proceedings of the 2014 Beltwide Cotton Conference. Vol 1:258-260. National Cotton Council of America, Memphis, TN.

		Heterodera glycines		nnett's <i>P</i> vs ^d	$(P \le 0.05)$	
Code	Scientific name	J2 mortality (%) ^b	Clothianidin + B. firmus ^c	P. nishizawae	Aldicarb	Wate
Bal9	Bacillus altitudinis	51.7	0.1099	0.0206	<.0001	<.000
Bal11	Bacillus altitudinis	64.0	0.0236	0.0045	0.1725	<.000
Bal12	Bacillus altitudinis	54.7	0.0408	0.0059	0.0002	<.000
Bal13	Bacillus altitudinis	81.2	<.0001	<.0001	1.0000	<.000
Bal20	Bacillus altitudinis	55.1	0.0353	0.0050	0.0003	<.000
Bar15	Bacillus aryabhattai	90.5	<.0001	<.0001	1.0000	<.000
Bar16	Bacillus aryabhattai	64.9	0.0180	0.0033	0.2079	<.000
Bar21	Bacillus aryabhattai	57.5	0.0136	0.0016	0.0011	<.000
Ble1	Bacillus lentus	74.2	<.0001	<.0001	0.4208	<.000
Bmo3	Bacillus mojavensis	54.5	0.2720	0.0907	0.0117	0.001
Bmt10	Bacillus methylotrophicus	51.4	0.4749	0.1896	0.0039	0.003
Bmy19	Bacillus mycoides	66.9	0.0092	0.0015	0.3115	<.000
Bmy32	Bacillus mycoides	77.7	0.0001	<.0001	0.9947	<.000
Bpu6	Bacillus pumilus	78.4	<.0001	<.0001	0.9982	<.000
Bsa25	Bacillus safensis	62.5	0.0378	0.0079	0.1200	<.000
Bsa26	Bacillus safensis	74.1	0.0006	<.0001	0.8614	<.000
Bsa27	Bacillus safensis	79.2	<.0001	<.0001	0.9997	<.000
Bsp2	Bacillus simplex	60.2	0.0044	0.0004	0.0038	<.000
Bsp2 Bsp3	Bacillus simplex	62.0	0.0437	0.0095	0.1061	<.000
Bsp4	Bacillus simplex	93.9	<.0001	<.0001	1.0000	<.000
Bsp8	Bacillus simplex	55.9	0.2035	0.0626	0.0186	0.000
Bsp26	Bacillus simplex Bacillus simplex	64.5	0.0201	0.0020	0.1927	<.000
Bsp53	Bacillus simplex Bacillus simplex	81.9	<.0001	<.0001	1.0000	<.000
Bsp68	Bacillus simplex Bacillus simplex	87.1	<.0001	<.0001	1.0000	<.000
Bsp90	Bacillus simplex	52.2	0.0340	0.0038	<.0001	<.000
Bsp113	Bacillus simplex Bacillus simplex	63.3	0.0010	<.0001	0.0144	<.000
Bsp123	Bacillus simplex Bacillus simplex	74.2	0.0005	<.0001	0.0144	<.000
		99.9	<.0001	<.0001	1.0000	<.000
Bsp129	Bacillus simplex					
Bsp130	Bacillus simplex	61.6	0.0490	0.0109	0.0960	<.000
Bsp133	Bacillus simplex	73.7	0.0007	<.0001	0.8329	<.000
Bsp139	Bacillus simplex	67.6	0.0072	0.0011	0.3548	<.000
Bsp141	Bacillus simplex	99.9 70.0	<.0001	<.0001	1.0000	<.000
Bsp146	Bacillus simplex	70.9	0.0021	0.0003	0.6075	<.000
Bsp149	Bacillus simplex	64.7	0.0189	0.0035	0.2013	<.000
Bsp153	Bacillus simplex	89.7	<.0001	<.0001	1.0000	<.000
Bsp159	Bacillus simplex	56.8	0.1650	0.0480	0.0251	0.000
Bsp165	Bacillus simplex	71.4	<.0001	<.0001	0.2188	<.000
Bsp168	Bacillus simplex	69.1	0.0042	0.0006	0.4596	<.000
Bsp171	Bacillus simplex	67.3	0.0079	0.0013	0.3390	<.000
Bsp188	Bacillus simplex	73.0	0.0009	0.0001	0.7829	<.000
Bsp196	Bacillus simplex	95.1	<.0001	<.0001	1.0000	<.000
Bsssu2	Bacillus subtilis subsp. subtilis	74.8	0.0004	<.0001	0.9084	<.000
Bsssu3	Bacillus subtilis subsp. subtilis	74.2	0.0005	<.0001	0.8715	<.000
Bto10	Bacillus toyonensis	64.7	0.0005	<.0001	0.0250	<.000
Bto11	Bacillus toyonensis	62.7	0.0013	0.0001	0.0114	<.000
Bto22	Bacillus toyonensis	64.8	0.0004	<.0001	0.0265	<.000
Bto23	Bacillus toyonensis	51.1	0.1304	0.0258	<.0001	<.000
Bto51	Bacillus toyonensis	67.6	<.0001	<.0001	0.0718	<.000
Bve2	Bacillus velezensis	54.7	0.2613	0.0861	0.0125	0.000
Bwe6	Bacillus weihenstephanensis	93.3	<.0001	<.0001	1.0000	<.000
Fso1	Fictibacillus solisalsi	59.6	0.0834	0.0206	0.0572	0.000
Pata1	Paenibacillus taichungensis	64.4	0.0211	0.0040	0.1865	<.000
Paxy1	Paenibacillus xylanexedens	74.8	<.0001	<.0001	0.4681	<.000
Control	Active ingredient ^c	74.0			0.1001	
Control Poncho/Votivo	5	21.1		1 0000	< 0001	0.000
	Clothianidin and <i>B. firmus</i> I-1582	21.1	1.0000	1.0000	<.0001	0.988
Clariva	Pasteuria nishizawae	16.3			<.0001	0.000
Temik	Aldicarb	99.6	<.0001	<.0001		<.000
Untreated control	Sterile distilled water	2.8	0.9885	1.0000	<.0001	

Table 1. Effect of 53 PGPR strains on <i>Heterodera glycines</i> J2 LS-means were more than 50% mortality as compared to the industry standard biologicals
Poncho/Votivo, Clariva, and chemical Temik as well as an untreated control ^a .

^aIn vitro tests were performed in 96-well plates. Data collected were analyzed in SAS 9.4 using PROC GLIMMIX procedure at significant level of $\alpha \le 0.05$. *P* value less than 0.05 indicate a significant effect. Adjusted *P* values were obtained according to Dunnett's method. The LS-means are presented in the tables with adjusted *P* values for statistical differences.

^bMortality was determined by calculating as the following equation: [(live J2 prior to exposure - live J2 at 48 hours) / live J2 prior to exposure] \times 100.

Active ingredients for the nematicides Poncho/Votivo are Clothianidin plus B. firmus I-1582, Clariva is Pasteuria nishizawae, Temik

is Aldicarb, and untreated control is sterile distilled water.

^dDunnett's option was used in the LSMEANS statement to assess the differences between bacterial strains and the Poncho/Votivo, Clariva, Temik, and the untreated control.

				60 DAP					60 DA	P	
				Dunnett's P vs. ($P \le 0.10)$				Dunnett's P vs.	(<i>P</i> ≤ 0.10)	
Treatment	Scientific Name	Cyst ^b	Clothianidin + B. firmus ^c	P. nishizawae	Abamectin	Water	Total H. glycines ^d	Clothianidin + B. firmus	P. nishizawae	Abamectin ^d	Water
Bal11	B. altitudinis	2458	0.9599	1.0000	0.0400	1.0000	2897	1.0000	1.0000	0.0876	1.0000
Bal13	B. altitudinis	2154	0.9860	1.0000	0.0556	1.0000	3817	0.9781	0.9939	0.0187	1.0000
Bmo3	B. mojavensis	1665	1.0000	0.9931	0.2698	0.9678	2319	1.0000	1.0000	0.2928	0.9900
Bsa26	B. safensis	2934	0.6536	0.9993	0.0092	1.0000	3781	0.9840	0.9960	0.0206	1.0000
Bsa27	B. safensis	2754	0.9449	1.0000	0.0353	1.0000	3132	1.0000	1.0000	0.0893	1.0000
Bsssu2	B. subtilis subsp. subtilis	2140	0.9940	1.0000	0.0759	1.0000	2474	1.0000	1.0000	0.1558	1.0000
Bsssu3	B. subtilis subsp. subtilis	2064	0.8248	1.0000	0.0184	1.0000	2780	0.9966	0.9995	0.0306	1.0000
Bve2	B. velezensis	1583	1.0000	0.9780	0.3331	0.9282	1822	0.9966	0.9859	0.5600	0.8386
Bve12	B. velezensis	3527	0.3012	0.9062	0.0018	0.9644	4197	0.7629	0.8500	0.0047	0.9865
Fso1	Fictibacillus solisalsi	1733	0.9991	1.0000	0.0944	1.0000	2326	1.0000	1.0000	0.1187	1.0000
Control	Active ingredient ^c										
Poncho/Votivo	Clothianidin + B. firmus I-1582	1745		0.9832	0.3554	0.9424	2386		1.0000	0.1875	0.9999
Clariva	Pasteuria nishizawae	2245	0.9832		0.0594	1.0000	2562	1.0000		0.1446	1.0000
Avicta	Abamectin	1116	0.3715	0.0620		0.0352	1789	0.1963	0.1513		0.0562
Untreated control	Water	2304	0.9343	1.0000	0.0327		3274	0.9999	1.0000	0.0520	

Table 2. Effect of ten PGPR strains on Heterodera glycines cyst numbers and total nematode population density in greenhouse trials at 60 DAP^a.

^a Greenhouse trials were performed in plastic cone-tainers with mixed pasteurized soil and sand (60:40, v/v) for 45 days. Data collected were repeated twice and analyzed in SAS 9.4 using PROC GLIMMIX procedure at significant level of $\alpha \le 0.10$. Adjusted P values less than 0.10 indicated a significant effect. Adjusted P values were obtained by analyzing data according to Dunnett's method. The LS-means and adjusted P values are presented in the tables.

 ${}^{b}Cyst = cysts$ and white females at 60 DAP.

^cActive ingredients for the nematicides Poncho/Votivo are Clothianidin plus *B. firmus* I-1582, Clariva is *Pasteuria nishizawae*, Avicta is Abamectin, and untreated control is water.

^dTotal *H. glycines* = total numbers of soybean cysts, white females, and juveniles at 60 DAP.

				60 DAP					60 DA	P	
			D	unnett's P vs. (I	$P \le 0.05$)				Dunnett's P vs.	(<i>P</i> ≤ 0.05)	
Treatment	Scientific Name	PH ^b	Clothianidin + B. firmus °	P. nishizawae	Abamectin	Water	Bio ^d	Clothianidin + <i>B. firmus</i>	P. nishizawae	Abamectin	Water
Bal11	B. altitudinis	35.3	0.0164	1.0000	0.9971	1.0000	4.9	0.1865	0.9910	0.9971	0.9845
Bal13	B. altitudinis	35.1	0.0154	1.0000	0.9962	1.0000	5.4	0.0116	1.0000	1.0000	1.0000
Bmo3	B. mojavensis	40.8	0.0002	0.6444	0.3767	0.9827	4.6	0.1871	0.9909	0.9970	0.9842
Bsa26	B. safensis	38.9	0.0014	0.9352	0.6983	1.0000	4.8	0.0566	1.0000	1.0000	1.0000
Bsa27	B. safensis	35.4	0.0109	1.0000	0.9870	1.0000	4.8	0.0766	1.0000	1.0000	1.0000
Bsssu2	B. subtilis subsp. subtilis	41.4	0.0002	0.4976	0.2746	0.9227	5.4	0.0319	1.0000	1.0000	1.0000
Bsssu3	B. subtilis subsp. subtilis	34.9	0.0255	1.0000	0.9997	0.9999	5.2	0.0399	1.0000	1.0000	1.0000
Bve2	B. velezensis	34.7	0.0279	1.0000	0.9998	0.9998	5.3	0.0771	1.0000	1.0000	1.0000
Bve12	B. velezensis	37.9	0.0020	0.9654	0.7667	1.0000	6.1	0.0028	0.9972	0.9921	0.9986
Fso1	Fictibacillus solisalsi	35.0	0.0187	1.0000	0.9984	1.0000	4.3	0.1577	0.9963	0.9990	0.9930
Control	Active ingredient ^c										
Poncho/Votivo	Clothianidin + B. firmus I-1582	27.1		0.0477	0.1414	0.0058	2.8		0.0319	0.0495	0.0227
Clariva	Pasteuria nishizawae	34.2	0.0477		1.0000	0.9990	5.0	0.0319		1.0000	1.0000
Avicta	Abamectin	33.7	0.1481	1.0000		0.9546	5.2	0.0517	1.0000		1.0000
Untreated control	Water	37.6	0.0056	0.9988	0.9385		5.3	0.022	1.0000	1.0000	

Table 3. Effect of ten PGPR strains on soybean plant height (PH) and plant biomass (Bio) in greenhouse trials at 60 DAP^a.

^a Greenhouse trials were performed in plastic cone-tainers with mixed pasteurized soil and sand (60:40, v/v) for 60 days. Data collected were repeated twice and analyzed in SAS 9.4 using Proc Glimmix procedure at significant level of 0.05. Adjusted *P* values less than 0.05 indicated a significant effect. Adjusted *P* values were obtained by analyzing data according to Dunnett's method. The LS-means are presented in the tables with adjusted *P* values for statistical differences.

 ${}^{b}PH = plant height (cm) at 60 DAP.$

^cActive ingredients for the nematicides Poncho/Votivo are Clothianidin plus B. firmus I-1582, Clariva is Pasteuria nishizawae, Avicta is Abamectin, and untreated control is water.

^dBio = soybean plant biomass including shoot fresh weight (g) and root fresh weight (g) at 60 DAP.

				60 DA	Р				60 DAP)	
Treatment	Scientific Name	Crust		Dunnett's P vs.	$(P \le 0.10)$		Total H.		Dunnett's P vs.	$(P \le 0.10)$	
Treatment	Scientific Name	Cyst ^b	Clothianidin	P. nishizawae	Abamectin	Water	<i>glycines</i> ^d	Clothianidin	P. nishizawae	Abamectin	Water
			+ B. firmus ^c					+ B. firmus			
Bal13	B. altitudinis	1123	0.0449	0.6546	0.0611	0.1065	1224	0.0791	0.8444	0.1114	0.2987
Bsa27	B. safensis	472	0.9998	0.3982	0.9986	0.9833	609	1.0000	0.7686	1.0000	0.9995
Bsssu2	B. subtilis subsp. subtilis	774	0.7977	1.0000	0.8814	0.9752	984	0.3261	1.0000	0.4340	0.8383
Bve12	B. velezensis	439	0.9899	0.1373	0.9678	0.8624	448	0.9960	0.1455	0.9793	0.7078
Bve2	B. velezensis	384	0.9042	0.0627	0.8277	0.6375	425	0.9875	0.1131	0.9543	0.6243
Mixture 1 ^e		465	0.9996	0.3750	0.9977	0.9776	471	0.9998	0.3643	0.9980	0.9041
Mixture 2 ^e		930	0.4621	0.9997	0.4589	0.6263	968	0.5817	1.0000	0.6898	0.9537
Control	Active ingredient ^c										
Poncho/Votivo	Clothianidin +	563		0.5400	1.0000	0.9999	584		0.4944	1.0000	0.9914
	B. firmus I-1582										
Clariva	Pasteuria nishizawae	832	0.5400		0.6467	0.7878	931	0.4944		0.6216	0.9537
Avicta	Abamectin	587	1.0000	0.6467		1.0000	620	1.0000	0.6216		0.9989
Untreated control	Water	632	0.9999	0.8361	1.0000		736	0.9914	0.9539	0.9989	

Table 4. Effect of five PGPR strains and two mixtures of PGPR strains on Heterodera glycines population density on soybean in the microplot at 60 DAP^a.

^a Microplot trials were performed in 26.5 liter pot. Data collected were repeated and analyzed in SAS 9.4 using Proc Glimmix procedure at significant level of $\alpha \leq 0.10$. Adjusted P values less than 0.10 indicated a significant effect. Adjusted P values were obtained by analyzing data according to Dunnett's method.

The LS-means are presented in the tables with adjusted *P* values for statistical differences. ${}^{b}Cyst = cysts$ and white females from 100 cm³ of soil at 60 DAP.

^eActive ingredients for the nematicides Poncho/Votivo are Clothianidin plus B. firmus I-1582, Clariva is Pasteuria nishizawae, Avicta is Abamectin, and untreated control is water.

^dTotal *H. glycines* = total numbers of soybean cysts, white females, and vermiform stages per 100 cm³ of soil at 60 DAP.

^eMixture 1 = strain Bve2 + strain Bal13; Mixture 2 = Abamectin + strain Bve2 + strain Bal13.

Table 5. Effect of five PGPR strains and two mixtures	of PGPR strains on early plant growth	at 60 DAP and yield on soybean at 160 F	OAP in the microplot ^a .

				60 DAP					60 DAI	•				160 DA	P	
Treatment	Scientific Name	PH ^b		Dunnett's P vs.	$(P \le 0.10)$		Diad		Dunnett's P vs.	(<i>P</i> ≤ 0.10)		Yield ^e		Dunnett's P vs.	$(P \le 0.10)$ Abamectin V 0.9748 0 0.7707 1 1.0000 0 0.9999 0 1.0000 0 0.3279 0 0.9925 0 0.9718 0 0.8163 1	
Treatment	Scientific Name	m	Clothianidin + B. firmus ^c	P. nishizawae	Abamectin	Water	BIO	Clothianidin + B. firmus	P. nishizawae	Abamectin	Water	1 ICIU	Clothianidin + B. firmus	P. nishizawae	Abamectin	Water
Bal13	B. altitudinis	43.8	0.0476	0.0689	0.0938	0.0389	95.7	0.1523	0.1388	0.4995	0.0184	192.2	1.0000	0.9999	0.9748	0.9974
Bsa27	B. safensis	41.7	0.1396	0.1903	0.2450	0.1176	94.7	0.1308	0.1189	0.4508	0.0150	175.3	0.9998	1.0000	0.7707	1.0000
Bsssu2	B. subtilis subsp. subtilis	36.1	0.9462	0.9842	0.9965	0.9120	73.6	0.7390	0.7027	0.9986	0.1484	193.2	0.9996	0.9708	1.0000	0.8941
Bve12	B. velezensis	38.4	0.4498	0.5745	0.6872	0.3893	66.0	0.9773	0.9672	1.0000	0.3954	203.0	0.9997	0.9758	0.9999	0.9056
Bve2	B. velezensis	36.7	0.7664	0.8727	0.9388	0.7015	76.7	0.7185	0.6818	0.9979	0.1394	219.1	0.9782	0.8365	1.0000	0.6875
Mixture 1 ^f		39.8	0.3309	0.4216	0.5098	0.2884	74.4	0.7053	0.6742	0.9898	0.1880	156.3	0.8853	0.9900	0.3279	0.9994
Mixture 2 ^f		43.8	0.0478	0.0691	0.0940	0.0390	88.5	0.4328	0.4048	0.8835	0.0812	185.4	1.0000	0.9993		0.9885
Control	Active ingredient ^c															
Poncho/Votivo	Clothianidin + B. firmus I-1582	33.3		1.0000	1.0000	1.0000	57.4		1.0000	0.9880	0.9435	181.6		1.0000	0.9718	0.9979
Clariva	Pasteuria nishizawae	33.6	1.0000		1.0000	1.0000	53.4	1.0000		0.9815	0.9585	178.9	1.0000		0.8163	1.0000
Avicta	Abamectin	34.2	1.0000	1.0000		0.9999	66.5	0.9880	0.9815		0.4460	204.6	0.9718	0.8163		0.6634
Untreated control	Water	32.9	1.0000	1.0000	0.9999		48.9	0.9435	0.9585	0.4460		160.8	0.9979	1.0000	0.6634	

⁶Activie ingredients for the nematicides Poncho/Votivo are Clothianidin plus *B. firmus* I-1582, Clariva is *Pasteuria nishizawae*, Avicta is Abamectin, and untreated control is water.
 ⁶Bio = plant biomass including shoot fresh weight and root fresh weight (g) at 60 DAP.
 ⁶Yield = soybean yield (g) obtained at 160 DAP and adjusted to 13% moisture content per pot.
 ⁶Mixture 1 = strain Bve2 + strain Bal13; Mixture 2 = Abamectin + strain Bve2 + strain Bal13.

				60 DA	P				60 DAP					160 DA	Р	
Tucotmont	Scientific Name	Bio ^b	E	Dunnett's P vs.	$(P \le 0.10)$		Cructd		Dunnett's P vs. ($P \leq 0.10$)		- Yield ^e		Dunnett's P vs.	$(P \leq 0.10)$	
Treatment	Scientific Name	DIO	Clothianidin +B. firmus ^c	P. nishizawae	Abamectin	Water	Cyst ^a	Clothianidin +B. firmus	P. nishizawae	Abamectin	Water	1 leia	Clothianidin + <i>B. firmus</i>	P. nishizawae	Abamectin	Water
Bal13	B. altitudinis	70.1	1.0000	0.9993	1.0000	1.0000	136	0.9632	1.0000	0.9997	0.3704	4140.2	0.3705	0.9997	0.4113	0.9980
Bsa27	B. safensis	64.9	0.9970	1.0000	0.9572	1.0000	85	1.0000	0.9740	0.9972	0.0297	4273.3	0.9543	0.9998	0.9708	0.5994
Bsssu2	B. subtilis subsp. subtilis	66.8	0.9999	1.0000	0.9915	1.0000	163	0.3678	0.9160	0.7477	0.5509	4393.5	1.0000	0.7683	1.0000	0.1419
Bve12	B. velezensis	84.3	0.9783	0.6804	0.9992	0.8711	163	0.3678	0.9160	0.7477	0.5509	4373.8	1.0000	0.8552	1.0000	0.1886
Bve2	B. velezensis	78.2	0.9983	0.7980	1.0000	0.9553	118	0.9968	1.0000	1.0000	0.0448	4366.9	1.0000	0.8815	1.0000	0.2077
Mixture 1 ^f		71.8	1.0000	1.0000	0.9979	1.0000	85	1.0000	0.9732	0.9971	0.0294	4296.1	0.9864	0.9975	0.9928	0.4842
Mixture 2 ^f		77.5	1.0000	0.9700	1.0000	0.9987	169	0.5460	0.9500	0.8465	0.8607	4466.7	0.9999	0.4036	0.9996	0.0422
Control	Active ingredient ^c															
Poncho/Votivo	Clothianidin B. firmus I-1582	74.0		0.9966	1.0000	1.0000	95		0.9816	1.0000	0.0071	4405.6		0.7082	1.0000	0.1179
Clariva	Pasteuria nishizawae	64.3	0.9955		0.9373	1.0000	125	0.9816		1	0.0700	4208.9	0.7082		0.7547	0.8979
Avicta	Abamectin	75.1	1.0000	0.9477		0.9961	151	0.9993	1.0000		0.0330	4396.3	1.0000	0.7547		0.1360
Untreated control	Water	68.7	1.0000	1.0000	0.9961		222	0.0071	0.0700	0.033		4055.5	0.1179	0.8979	0.1360	

Table 6. Effects of five PGPR strains and two mixtures of PGPR strains on early soybean plant growth at 60 DAP and yield at 160 DAP in the field trials^a.

^aField trials were performed in E.V Smith and Tennessee Valley Research and Extension Center in 2015. Data collected were repeated and analyzed in SAS 9.4 using Proc Glimmix procedure at significant level of 0.10. Adjusted P

values less than 0.10 indicated a significant effect. Adjusted *P* values were obtained by analyzing data according to Dunnett's method. The LS-means are presented in the tables with adjusted *P* values to determine statistical differences. ^bBio = plant biomass including shoot fresh weight and root fresh weight (g) at 60 DAP.

^cActivie ingredients for the nematicides Poncho/Votivo are Clothianidin plus B. firmus I-1582, Clariva is Pasteuria nishizawae, Avicta is Abamectin, and untreated control is water.

 d Cyst = cysts and white females in 100 cm³ of soil at 60 DAP.

"Yield = soybean yield (kg/ha) obtained at 160 DAP and adjusted to 13% moisture content.

^fMixture 1 = strain Bve2 + strain Bal13; Mixture 2 = Abamectin + strain Bve2 + strain Bal13.

Figure 1. Soybean plants treated with strain *B. altitudinis* Bal13 (Right) and untreated control (Left) at 60 DAP.

Figure 2. Soybean roots treated with strain *B. altitudinis* Bal13 (Right) and untreated control (Left) at 60 DAP.

Figure 3. Soybean treated with Mixture 2 (Right) and untreated control (Left) at 80 DAP.

		Meloidogyne incognita	Dunnett'	s P vs ^c $(P \leq 0)$.05)
Code	Scientific name	J2 mortality (%) ^d	Clothianidin + <i>B. firmus</i> ^b	Aldicarb ^b	Wate
Ad1	Arthrobacter defluvii	53.5	0.8886	0.0681	0.015
Ae1	Arthrobacter equi	21.4	1.0000	<.0001	1.000
al1	Bacillus altitudinis	10.3	1.0000	<.0001	1.000
al2	Bacillus altitudinis	71.1	0.0535	0.9365	<.000
al3	Bacillus altitudinis	96.4	<.0001	1.0000	<.000
al4	Bacillus altitudinis	97.4	<.0001	1.0000	<.000
al5	Bacillus altitudinis	100.0	<.0001	1.0000	<.000
al6	Bacillus altitudinis	8.0	1.0000	<.0001	1.000
al7	Bacillus altitudinis	33.3	1.0000	0.0001	0.746
al8	Bacillus altitudinis	0.0	0.9987	<.0001	1.000
		2.2			
a19	Bacillus altitudinis		1.0000	<.0001	1.000
al10	Bacillus altitudinis	4.0	1.0000	<.0001	1.000
al11	Bacillus altitudinis	59.7	0.9047	0.6812	0.048
al12	Bacillus altitudinis	52.5	0.9375	0.0531	0.020
al13	Bacillus altitudinis	75.9	0.1480	1.0000	0.000
al14	Bacillus altitudinis	87.7	0.0003	1.0000	<.000
al15	Bacillus altitudinis	94.5	<.0001	1.0000	<.000
al16	Bacillus altitudinis	61.3	0.3699	0.3157	0.001
al17	Bacillus altitudinis	84.4	0.0010	1.0000	<.000
al18	Bacillus altitudinis	36.7	1.0000	0.0004	0.505
al19	Bacillus altitudinis	48.2	0.9996	0.0174	0.060
al20	Bacillus altitudinis	41.2	1.0000	0.0020	0.254
al21	Bacillus altitudinis	16.8	1.0000	<.0001	1.000
ar1	Bacillus aryabhattai	6.5	1.0000	<.0001	1.000
ar2	Bacillus aryabhattai	15.9	1.0000	<.0001	1.000
ar3	Bacillus aryabhattai	56.3	1.0000	<.0001	1.000
ar4	Bacillus aryabhattai	25.9	1.0000	<.0001	0.999
		14.1	1.0000		
ar5	Bacillus aryabhattai			<.0001	1.000
ar6	Bacillus aryabhattai	78.2	0.0077	1.0000	<.000
ar7	Bacillus aryabhattai	75.1	0.0193	0.9992	<.000
ar8	Bacillus aryabhattai	88.1	0.0003	1.0000	<.000
ar9	Bacillus aryabhattai	79.4	0.0054	1.0000	<.000
ar10	Bacillus aryabhattai	45.6	1.0000	0.0082	0.107
ar11	Bacillus aryabhattai	33.3	1.0000	<.0001	0.533
ar12	Bacillus aryabhattai	15.9	1.0000	<.0001	1.000
ar13	Bacillus aryabhattai	37.0	1.0000	0.0005	0.485
		63.3			
ar14	Bacillus aryabhattai		0.2694	0.4263	0.000
ar15	Bacillus aryabhattai	64.6	0.2131	0.5124	0.000
ar16	Bacillus aryabhattai	67.8	0.4568	0.9930	0.007
ar17	Bacillus aryabhattai	60.3	0.4294	0.2671	0.001
ar18	Bacillus aryabhattai	40.1	1.0000	0.0014	0.304
ar19	Bacillus aryabhattai	87.6	0.0003	1.0000	<.000
ar20	Bacillus aryabhattai	86.8	0.0004	1.0000	<.000
ar21	Bacillus aryabhattai	90.8	<.0001	1.0000	<.000
ar22	Bacillus aryabhattai	88.3	0.0002	1.0000	<.000
ar23	Bacillus aryabhattai	33.3	1.0000	<.0001	0.533
ar24	Bacillus aryabhattai	55.8	0.7464	0.1116	0.007
ar25	Bacillus aryabhattai	54.1	0.8589	0.0768	0.012
ar26	Bacillus aryabhattai	12.9	1.0000	<.0001	1.000
ar27	Bacillus aryabhattai	100.0	<.0001	1.0000	<.000
ar28	Bacillus aryabhattai	95.4	<.0001	1.0000	<.000
ar29	Bacillus aryabhattai	96.7	<.0001	1.0000	<.000
ar30	Bacillus aryabhattai	45.6	1.0000	0.0082	0.102
	Bacillus aryabhattai				
ar31		68.5	0.0971	0.7917	<.000
ar32	Bacillus aryabhattai	62.8	0.2907	0.3990	0.00
ar33	Bacillus aryabhattai	83.5	0.0014	1.0000	<.00
ar34	Bacillus aryabhattai	28.9	1.0000	<.0001	0.972
ar35	Bacillus aryabhattai	27.5	1.0000	<.0001	0.993
ar36	Bacillus aryabhattai	17.8	1.0000	<.0001	1.000
ar37	Bacillus aryabhattai	5.3	1.0000	<.0001	1.000
ar38	Bacillus aryabhattai	11.1	1.0000	<.0001	1.000
ar39	Bacillus aryabhattai	7.2	1.0000	<.0001	1.000
ar40	Bacillus aryabhattai	4.1	1.0000	<.0001	1.000
ar41	Bacillus aryabhattai	97.6	0.0011	1.0000	<.00
ar42	Bacillus aryabhattai	1.7	1.0000	<.0001	1.000
ar43	Bacillus aryabhattai	4.8	1.0000	<.0001	1.000
ar44	Bacillus aryabhattai	3.5	1.0000	<.0001	1.000
ar45	Bacillus aryabhattai	34.5	1.0000	<.0001	0.444
ar46	Bacillus aryabhattai	84.2	0.0315	1.0000	
					<.000
ar47	Bacillus aryabhattai	57.8	0.5981	0.1692	0.004
ar48	Bacillus aryabhattai	20.6	1.0000	<.0001	1.000
ar49	Bacillus aryabhattai	66.7	0.1423	0.6615	0.000
ar50	Bacillus aryabhattai	1.1	0.9998	<.0001	1.000
	Bacillus aryabhattai	54.4	0.9984	0.3906	0.127
ar51	<i>Βα</i> ειιίας <i>αι</i> γαρπατιαί				

Appendix 1. Effect of 669 PGPR strains on *Meloidogyne incognita* J2 mortality as compared to the commercial nematicides Clothianidin plus *B. firmus* I-1582 and Aldicarb as well as an untreated control^a.

Bar53	Bacillus aryabhattai	7.1	1.0000	<.0001	1.0000
Bce1	Bacillus cereus	15.1	1.0000	<.0001	1.0000
Bce2	Bacillus cereus	14.1	1.0000	<.0001	1.0000
Bce3	Bacillus cereus	29.2	1.0000	<.0001	0.9670
Bce4	Bacillus cereus	71.1	0.0538	0.9355	<.0001
Bce5	Bacillus cereus	8.1	1.0000	<.0001	1.0000
Bce6	Bacillus cereus	73.7	0.0275	0.9940	<.0001
Bce7	Bacillus cereus	56.8	0.6688	0.1395	0.0056
Bce8	Bacillus cereus	94.3	<.0001	1.0000	<.0001
Bce9	Bacillus cereus	39.7	1.0000	0.0012	0.3235
Bce10	Bacillus cereus	13.4	1.0000	<.0001	1.0000
Bce10 Bce11	Bacillus cereus	24.9	1.0000	<.0001	0.9999
Bce12	Bacillus cereus	13.9	1.0000	<.0001	1.0000
Bce13	Bacillus cereus	22.5	1.0000	<.0001	1.0000
Bce14	Bacillus cereus	79.3	0.0056	1.0000	<.0001
Bce15	Bacillus cereus	64.6	0.2121	0.5141	0.0004
Bce16	Bacillus cereus	31.3	1.0000	<.0001	0.8804
Bce17	Bacillus cereus	28.8	1.0000	<.0001	0.9753
Bce18	Bacillus cereus	16.7	1.0000	<.0001	1.0000
Bce19	Bacillus cereus	40.8	1.0000	0.0017	0.2729
Bce20	Bacillus cereus	40.7	1.0000	0.0017	0.2776
Bce21	Bacillus cereus	32.5	1.0000	<.0001	0.8051
Bce22	Bacillus cereus	27.4	1.0000	<.0001	0.9947
Bce23	Bacillus cereus	20.8	1.0000	<.0001	1.0000
Bce24	Bacillus cereus	33.3	1.0000	0.0001	0.7464
Bce25	Bacillus cereus	4.3	1.0000	<.0001	1.0000
Bce26	Bacillus cereus	22.4	1.0000	<.0001	1.0000
Bce27	Bacillus cereus	41.2	1.0000	0.0020	0.2547
Bce28	Bacillus cereus	16.1	1.0000	<.0001	1.0000
Bce29	Bacillus cereus	3.8	1.0000	<.0001	1.0000
Bce30	Bacillus cereus	18.2	1.0000	<.0001	1.0000
Bce31	Bacillus cereus	4.1	1.0000	<.0001	1.0000
Bce32	Bacillus cereus	5.1	1.0000	<.0001	1.0000
Bce33	Bacillus cereus	2.8			
			1.0000	<.0001	1.0000
Bce34	Bacillus cereus	4.9	1.0000	<.0001	1.0000
Bce35	Bacillus cereus	9.8	1.0000	<.0001	1.0000
Bce36	Bacillus cereus	47.8	0.9998	0.0157	0.0654
Bce37	Bacillus cereus	51.0	0.9798	0.0369	0.0298
Bce38	Bacillus cereus	61.7	0.3489	0.3354	0.0011
Bce39	Bacillus cereus	40.6	1.0000	0.0017	0.2788
Bce40	Bacillus cereus	14.7	1.0000	<.0001	1.0000
		73.3			
Bce41	Bacillus cereus		0.0312	0.9895	<.0001
Bce42	Bacillus cereus	94.2	<.0001	1.0000	<.0001
Bce43	Bacillus cereus	22.5	1.0000	<.0001	1.0000
Bce44	Bacillus cereus	79.1	0.0059	1.0000	<.0001
Bce45	Bacillus cereus	70.9	0.0564	0.9272	<.0001
Bce46	Bacillus cereus	94.3	<.0001	1.0000	<.0001
Bce47	Bacillus cereus	50.3	0.9898	0.0310	0.0355
Bce48	Bacillus cereus	9.7	1.0000	<.0001	1.0000
Bce49	Bacillus cereus	10.0	1.0000	<.0001	1.0000
Bce50	Bacillus cereus	29.1	1.0000	<.0001	0.9695
Bce51	Bacillus cereus	12.0	1.0000	<.0001	1.0000
Bfi1	Bacillus firmus	34.5	1.0000	0.0002	0.6633
Bga1	Bacillus galliciensis	11.4	1.0000	<.0001	1.0000
Ble1	Bacillus lentus	6.2	1.0000	<.0001	1.0000
Bmt1	Bacillus methylotrophicus	25.2	1.0000	<.0001	0.9999
Bmt2	Bacillus methylotrophicus	76.7	0.0120	1.0000	<.0001
Bmt3	Bacillus methylotrophicus	31.7	1.0000	<.0001	0.8574
Bmt4	Bacillus methylotrophicus	6.2	1.0000	<.0001	1.0000
Bmt5	Bacillus methylotrophicus	90.7	<.0001	1.0000	<.0001
Bmt6	Bacillus methylotrophicus	12.6	1.0000	<.0001	1.0000
Bmt7	Bacillus methylotrophicus	82.3	0.0021	1.0000	<.0001
Bmt8	Bacillus methylotrophicus	3.3	1.0000	<.0001	1.0000
Bmt9	Bacillus methylotrophicus	68.1	0.1058	0.7640	<.0001
Bmt10	Bacillus methylotrophicus	45.5	1.0000	0.1034	0.4502
				0.1034	
Bmt11	Bacillus methylotrophicus	42.3	1.0000		0.2092
Bmt12	Bacillus methylotrophicus	43.1	1.0000	0.0038	0.1775
Bmt13	Bacillus methylotrophicus	27.6	1.0000	<.0001	0.9930
Bmo1	Bacillus mojavensis	2.6	1.0000	<.0001	1.0000
Bmo2	Bacillus mojavensis	49.9	0.9940	0.0275	0.0398
Bmo3	Bacillus mojavensis	70.6	0.3255	0.9998	0.0039
Bmo4	Bacillus mojavensis	66.8	0.1402	0.6670	0.0002
Bmy1	Bacillus mycoides	75.9	0.0154	0.9998	<.0001
Bmy2	Bacillus mycoides	2.5	1.0000	<.0001	1.0000
Bmy3	Bacillus mycoides	1.0	0.9998	<.0001	1.0000
Bmy4	Bacillus mycoides	1.4	0.9999	<.0001	1.0000
Bmy5	Bacillus mycoides	1.8	1.0000	<.0001	1.0000
Bmy6	Bacillus mycoides	4.1	1.0000	<.0001	1.0000
Bmy7	Bacillus mycoides	39.8	1.0000	0.0341	0.7798
Bmy8	Bacillus mycoides	0.0	0.9987	<.0001	1.0000
, ~		0.0	0.7707		1.0000

Bmy9	Bacillus mycoides	16.8	1.0000	<.0001	1.0000
Bmy10	Bacillus mycoides	21.8	1.0000	<.0001	1.0000
Bmy11	Bacillus mycoides	18.8	1.0000	<.0001	1.0000
Bmy12	Bacillus mycoides	56.1	0.9899	0.4771	0.0945
Bmy13	Bacillus mycoides	13.4	1.0000	<.0001	1.0000
Bmy14	Bacillus mycoides	25.7	1.0000	<.0001	0.9996
Bmy15	Bacillus mycoides	46.0	1.0000	0.1118	0.4272
Bmy16	Bacillus mycoides	55.3	0.7762	0.1019	0.0089
		71.1	0.0531		
Bmy17	Bacillus mycoides			0.9375	<.0001
Bmy18	Bacillus mycoides	85.4	0.0007	1.0000	<.0001
Bmy19	Bacillus mycoides	37.1	1.0000	0.0190	0.9116
Bmy20	Bacillus mycoides	67.8	0.1122	0.7446	0.0001
Bmy21	Bacillus mycoides	48.7	0.9990	0.0198	0.0538
Bmy22	Bacillus mycoides	36.7	1.0000	0.0173	0.9264
Bmy23	Bacillus mycoides	32.0	1.0000	0.0056	0.9985
Bmy24	Bacillus mycoides	37.9	1.0000	0.0006	0.4263
Bmy25	Bacillus mycoides	54.4	0.8406	0.0822	0.0118
Bmy26	Bacillus mycoides	70.0	0.0693	0.8845	<.0001
Bmy27	Bacillus mycoides	3.3	1.0000	<.0001	1.0000
Bmy28	Bacillus mycoides	4.2	1.0000	<.0001	1.0000
Bmy29	Bacillus mycoides	4.5	1.0000	<.0001	1.0000
•		94.9			
Bmy30	Bacillus mycoides		<.0001	1.0000	<.0001
Bmy31	Bacillus mycoides	50.7	1.0000	0.2363	0.2292
Bmy32	Bacillus mycoides	52.5	0.9999	0.3039	0.1744
Bmy33	Bacillus mycoides	0.0	0.9987	<.0001	1.0000
Bmy34	Bacillus mycoides	54.3	0.8453	0.0808	0.0121
Bmy35	Bacillus mycoides	25.6	1.0000	<.0001	0.9997
Bmy36	Bacillus mycoides	58.9	0.5226	0.2073	0.0029
Bmy37	Bacillus mycoides	47.1	1.0000	0.0129	0.0768
Bmy38	Bacillus mycoides	18.5	1.0000	<.0001	1.0000
Bmy39	Bacillus mycoides	33.1	1.0000	<.0001	0.7640
Bmy40	Bacillus mycoides	18.8	1.0000	<.0001	1.0000
•	Bacillus mycoides	8.3	1.0000	<.0001	1.0000
Bmy41					
Bmy42	Bacillus mycoides	44.8	1.0000	0.0905	0.4901
Bmy43	Bacillus mycoides	32.9	1.0000	<.0001	0.7762
Bmy44	Bacillus mycoides	2.5	1.0000	<.0001	1.0000
Bps1	Bacillus psychrosaccharolyticus	26.8	1.0000	<.0001	0.9976
Bps2	Bacillus psychrosaccharolyticus	15.1	1.0000	<.0001	1.0000
Bps3	Bacillus psychrosaccharolyticus	12.1	1.0000	<.0001	1.0000
Bps4	Bacillus psychrosaccharolyticus	75.1	0.0193	0.9992	<.0001
Bps5	Bacillus psychrosaccharolyticus	39.2	1.0000	0.0010	0.3544
Bpu1	Bacillus pumilus	14.7	1.0000	<.0001	1.0000
Bpu2	Bacillus pumilus	20.4	1.0000	<.0001	1.0000
Bpu3	Bacillus pumilus	43.7	1.0000	0.0045	0.1603
Bpu4	Bacillus pumilus	25.3	1.0000	<.0001	0.9999
Bpu5	Bacillus pumilus	79.1	0.0059	1.0000	
	•				<.0001
Bpu6	Bacillus pumilus	60.0	0.8922	0.6990	0.0454
Bsa1	Bacillus safensis	96.8	<.0001	1.0000	<.0001
Bsa2	Bacillus safensis	34.5	1.0000	0.0002	0.6651
Bsa3	Bacillus safensis	45.5	1.0000	0.0079	0.1110
Bsa4	Bacillus safensis	66.0	0.1643	0.6089	0.0002
Bsa5	Bacillus safensis	40.0	1.0000	0.0013	0.3081
Bsa6	Bacillus safensis	92.9	<.0001	1.0000	<.0001
Bsa7	Bacillus safensis	87.9	0.0003	1.0000	<.0001
Bsa8	Bacillus safensis	100.0	<.0001	1.0000	<.0001
Bsa9	Bacillus safensis	53.7	0.8804	0.0705	0.0144
Bsa10	Bacillus safensis	3.5	1.0000	<.0001	1.0000
Bsa11	Bacillus safensis	12.9	1.0000	<.0001	1.0000
Bsa12	Bacillus safensis	90.2	0.0001	1.0000	<.0001
Bsa12 Bsa13	Bacillus safensis	8.1	1.0000	<.0001	1.0000
Bsa14	Bacillus safensis	2.8	1.0000	<.0001	1.0000
	Bacillus safensis				
Bsa15 Boa16		5.4	1.0000	<.0001	1.0000
Bsa16 Bsa17	Bacillus safensis	2.6	1.0000	<.0001	1.0000
Bsa17	Bacillus safensis	21.1	1.0000	<.0001	1.0000
Bsa18	Bacillus safensis	5.1	1.0000	<.0001	1.0000
Bsa19	Bacillus safensis	14.8	1.0000	<.0001	1.0000
Bsa20	Bacillus safensis	11.7	1.0000	<.0001	1.0000
Bsa21	Bacillus safensis	9.9	1.0000	<.0001	1.0000
Bsa22	Bacillus safensis	19.2	1.0000	<.0001	1.0000
Bsa23	Bacillus safensis	43.7	1.0000	0.0046	0.1588
Bsa24	Bacillus safensis	40.1	1.0000	0.0014	0.3056
Bsa25	Bacillus safensis	52.6	0.9999	0.3080	0.1717
Bsa26	Bacillus safensis	64.6	0.6376	0.9319	0.0167
Bsa20 Bsa27	Bacillus safensis	46.7	1.0000	0.1271	0.3902
Bsa28	Bacillus safensis	56.9	0.6651	0.1271	0.0055
Bsa29	Bacillus safensis	24.1	1.0000	<.0001	1.0000
Bsa30	Bacillus safensis	30.2	1.0000	<.0001	0.9335
Bsa31	Bacillus safensis	64.9	0.2007	0.5346	0.0003
Bsa32	Bacillus safensis	48.7	0.9989	0.0202	0.0528
Bsa33	Bacillus safensis	26.1	1.0000	<.0001	0.9992

Bsa34	Bacillus safensis	64.4	0.2220	0.4972	0.0004
Bsa35	Bacillus safensis	96.5	<.0001	1.0000	<.0001
Bsi1	Bacillus siamensis	18.2	0.9880	0.4879	0.0912
Bsi2	Bacillus siamensis	40.0	1.0000	0.0013	0.3094
Bsi3	Bacillus siamensis	4.0	1.0000	<.0001	1.0000
Bsp1	Bacillus simplex	18.3	1.0000	<.0001	1.0000
Bsp2	Bacillus simplex	82.0	0.0023	1.0000	<.0001
Bsp3	Bacillus simplex	47.3	1.0000	0.1405	0.3621
Bsp4	Bacillus simplex	37.6	1.0000	0.0215	0.8889
Bsp5	Bacillus simplex	21.2	1.0000	<.0001	1.0000
Bsp6	Bacillus simplex	13.4	1.0000	<.0001	1.0000
Bsp7	Bacillus simplex	29.1	1.0000	<.0001	0.9695
Bsp8	Bacillus simplex	44.8	1.0000	0.0913	0.4874
Bsp9	Bacillus simplex	25.5	1.0000	<.0001	0.9997
Bsp10	Bacillus simplex Bacillus simplex	1.4	0.9999	<.0001	1.0000
	Bacillus simplex Bacillus simplex	1.7	1.0000	<.0001	1.0000
Bsp11 Bsp12		32.7			
Bsp12	Bacillus simplex		1.0000	0.0066	0.9966
Bsp13	Bacillus simplex	65.1	0.1942	0.5468	0.0003
Bsp14	Bacillus simplex	22.2	1.0000	<.0001	1.0000
Bsp15	Bacillus simplex	19.8	1.0000	<.0001	1.0000
Bsp16	Bacillus simplex	19.3	1.0000	<.0001	1.0000
Bsp17	Bacillus simplex	25.3	1.0000	<.0001	0.9998
Bsp18	Bacillus simplex	10.7	1.0000	<.0001	1.0000
Bsp19	Bacillus simplex	38.8	1.0000	0.0009	0.3770
Bsp20	Bacillus simplex	33.8	1.0000	0.0001	0.7142
Bsp21	Bacillus simplex	38.5	1.0000	0.0008	0.3930
Bsp22	Bacillus simplex	34.3	1.0000	0.0002	0.6797
Bsp23	Bacillus simplex	30.2	1.0000	<.0001	0.9335
Bsp24	Bacillus simplex	76.2	0.0139	0.9999	<.0001
Bsp25	Bacillus simplex	0.0	0.9961	0.4276	0.1117
Bsp26	Bacillus simplex	55.2	0.9987	<.0001	1.0000
Bsp20 Bsp27	Bacillus simplex	3.3	1.0000	<.0001	1.0000
Bsp28	Bacillus simplex	22.7	1.0000	<.0001	1.0000
Bsp29	Bacillus simplex Bacillus simplex	33.1	1.0000	0.0001	0.7605
	Bacillus simplex Bacillus simplex				
Bsp30	1	27.0	1.0000	<.0001	0.9966
Bsp31	Bacillus simplex	5.7	1.0000	<.0001	1.0000
Bsp32	Bacillus simplex	75.7	0.0161	0.9998	<.0001
Bsp33	Bacillus simplex	65.5	0.1801	0.5749	0.0003
Bsp34	Bacillus simplex	37.0	1.0000	0.0004	0.4872
Bsp35	Bacillus simplex	81.6	0.0027	1.0000	<.0001
Bsp36	Bacillus simplex	68.4	0.0986	0.7865	<.0001
Bsp37	Bacillus simplex	17.0	1.0000	<.0001	1.0000
Bsp38	Bacillus simplex	29.8	1.0000	<.0001	0.9460
Bsp39	Bacillus simplex	16.3	1.0000	<.0001	1.0000
Bsp40	Bacillus simplex	11.6	1.0000	<.0001	1.0000
Bsp41	Bacillus simplex	24.3	1.0000	<.0001	1.0000
Bsp42	Bacillus simplex	79.0	0.0061	1.0000	<.0001
Bsp43	Bacillus simplex	10.0	1.0000	<.0001	1.0000
Bsp44	Bacillus simplex	66.0	0.1643	0.6089	0.0002
Bsp45	Bacillus simplex	58.0	0.5856	0.1750	0.0039
Bsp46	Bacillus simplex	55.8	0.7429	0.1128	0.0077
Bsp47	Bacillus simplex	74.9	0.0199	0.9990	<.0001
Bsp48	Bacillus simplex	71.0	0.0172	0.7796	<.0001
Bsp49	Bacillus simplex	37.3	1.0000	0.0005	0.4675
Bsp50	Bacillus simplex	83.0	0.0017	1.0000	<.0001
•					
Bsp51 Bsp52	Bacillus simplex	75.5 76.9	0.0170	0.9996	<.0001
Bsp52 Bop53	Bacillus simplex	76.9 82.7	0.0116	1.0000	<.0001
Bsp53	Bacillus simplex	82.7	0.0426	1.0000	0.0001
Bsp54	Bacillus simplex	83.1	0.0016	1.0000	<.0001
Bsp55	Bacillus simplex	81.1	0.0031	1.0000	<.0001
Bsp56	Bacillus simplex	75.3	0.0179	0.9995	<.0001
Bsp57	Bacillus simplex	83.2	0.0016	1.0000	<.0001
Bsp58	Bacillus simplex	88.3	0.0002	1.0000	<.0001
Bsp59	Bacillus simplex	83.7	0.0013	1.0000	<.0001
Bsp60	Bacillus simplex	64.3	0.2240	0.4939	0.0004
Bsp61	Bacillus simplex	84.8	0.0009	1.0000	<.0001
Bsp62	Bacillus simplex	69.5	0.0773	0.8574	<.0001
Bsp63	Bacillus simplex	76.4	0.0132	1.0000	<.0001
Bsp64	Bacillus simplex	89.2	<.0001	1.0000	<.0001
Bsp65	Bacillus simplex	26.8	1.0000	<.0001	0.9974
Bsp66	Bacillus simplex	70.9	0.0568	0.9261	<.0001
Bsp67	Bacillus simplex	43.4	1.0000	0.0041	0.1692
Bsp68	Bacillus simplex	18.0	1.0000	<.0001	1.0000
Bsp69	Bacillus simplex Bacillus simplex	51.2	0.9764	0.0385	0.0285
Bsp70	Bacillus simplex	31.2	1.0000	<.0001	0.8832
Bsp70 Bsp71	Bacillus simplex Bacillus simplex	47.2	1.0000	0.0132	0.8832
Bsp72 Bsp73	Bacillus simplex	46.8	1.0000	0.0117	0.0827
Bsp73	Bacillus simplex	48.7	0.9989	0.0201	0.0531
Bsp74	Bacillus simplex	33.7	1.0000	0.0001	0.7232
Bsp75	Bacillus simplex	33.6	1.0000	0.0001	0.7268

Bsp76	Bacillus simplex	45.0	1.0000	0.0068	0.1227
Bsp77	Bacillus simplex	40.8	1.0000	0.0018	0.2706
Bsp78	Bacillus simplex	28.3	1.0000	<.0001	0.9841
Bsp79	Bacillus simplex	76.8	0.0117	1.0000	<.0001
Bsp80	Bacillus simplex	13.7	1.0000	<.0001	1.0000
Bsp81	Bacillus simplex	86.1	0.0006	1.0000	<.0001
Bsp82	Bacillus simplex	73.5	0.0292	0.9921	<.0001
Bsp83	Bacillus simplex	14.2	1.0000	<.0001	1.0000
Bsp84	Bacillus simplex	99.6	0.0006	1.0000	<.0001
Bsp85	Bacillus simplex	8.1	1.0000	<.0001	1.0000
	Bacillus simplex	32.6	1.0000	<.0001	0.7984
Bsp86					
Bsp87	Bacillus simplex	81.3	0.0568	1.0000	0.0002
Bsp88	Bacillus simplex	91.5	<.0001	1.0000	<.0001
Bsp89	Bacillus simplex	84.3	0.0010	1.0000	<.0001
Bsp90	Bacillus simplex	17.6	1.0000	<.0001	1.0000
Bsp91	Bacillus simplex	64.4	0.2220	0.4972	0.0004
Bsp92	Bacillus simplex	90.2	0.0001	1.0000	<.0001
Bsp93	Bacillus simplex	56.1	0.7196	0.1208	0.0070
Bsp94	Bacillus simplex	81.3	0.0029	1.0000	<.0001
Bsp95	Bacillus simplex	25.6	1.0000	<.0001	0.9997
Bsp96	Bacillus simplex	95.5	<.0001	1.0000	<.0001
Bsp97	Bacillus simplex	20.3	1.0000	<.0001	1.0000
Bsp98	Bacillus simplex	27.8	1.0000	<.0001	0.9914
Bsp99	Bacillus simplex	9.1	1.0000	<.0001	1.0000
Bsp100	Bacillus simplex	2.4	1.0000	<.0001	1.0000
Bsp101	Bacillus simplex	98.0	0.0010	1.0000	<.0001
Bsp102	Bacillus simplex	5.2	1.0000	<.0001	1.0000
Bsp103	Bacillus simplex	8.1	1.0000	<.0001	1.0000
Bsp104	Bacillus simplex	19.8	1.0000	<.0001	1.0000
Bsp105	Bacillus simplex	7.6	1.0000	<.0001	1.0000
Bsp106	Bacillus simplex	5.6	1.0000	<.0001	1.0000
Bsp107	Bacillus simplex	6.2	1.0000	<.0001	1.0000
Bsp108		20.4	1.0000	<.0001	1.0000
•	Bacillus simplex				
Bsp109	Bacillus simplex	46.1	1.0000	0.0095	0.0971
Bsp110	Bacillus simplex	10.4	1.0000	<.0001	1.0000
Bsp111	Bacillus simplex	14.3	1.0000	<.0001	1.0000
Bsp112	Bacillus simplex	2.2	1.0000	<.0001	1.0000
Bsp112 Bsp113	Bacillus simplex	3.5	1.0000	<.0001	1.0000
Bsp114	Bacillus simplex	99.9	0.0006	1.0000	<.0001
Bsp115	Bacillus simplex	99.9	0.0006	1.0000	<.0001
Bsp116	Bacillus simplex	99.1	0.0007	1.0000	<.0001
Bsp117	Bacillus simplex	18.3	1.0000	<.0001	1.0000
Bsp118	Bacillus simplex	69.3	0.0818	0.8422	<.0001
Bsp119	Bacillus simplex	13.1	1.0000	<.0001	1.0000
Bsp120	Bacillus simplex	1.6	1.0000	<.0001	1.0000
Bsp121	Bacillus simplex	2.9	1.0000	<.0001	1.0000
Bsp122	Bacillus simplex	39.6	1.0000	0.0011	0.3327
Bsp123	Bacillus simplex	83.7	0.0350	1.0000	<.0001
Bsp124	Bacillus simplex	67.5	0.1195	0.7232	0.0001
Bsp125	Bacillus simplex	6.8	1.0000	<.0001	1.0000
Bsp126	Bacillus simplex	76.2	0.0142	0.9999	<.0001
Bsp127	Bacillus simplex	15.4	1.0000	<.0001	1.0000
Bsp128	Bacillus simplex	13.6	1.0000	<.0001	1.0000
Bsp129	Bacillus simplex	58.8	0.9358	0.6307	0.0571
Bsp130	Bacillus simplex	44.5	1.0000	0.0865	0.5038
		88.2	0.0003	1.0000	<.0001
Bsp131 Bsp132	Bacillus simplex				
Bsp132	Bacillus simplex	11.7	1.0000	<.0001	1.0000
Bsp133	Bacillus simplex	42.7	1.0000	0.0618	0.6066
Bsp134	Bacillus simplex	62.9	0.2847	0.4064	0.0007
Bsp135	Bacillus simplex	71.4	0.0497	0.9477	<.0001
Bsp136	Bacillus simplex	12.3	1.0000	<.0001	1.0000
Bsp130 Bsp137	Bacillus simplex	24.7	1.0000	<.0001	1.0000
Bsp138	Bacillus simplex	1.6	1.0000	<.0001	1.0000
Bsp139	Bacillus simplex	39.6	1.0000	0.0331	0.7882
Bsp140	Bacillus simplex	13.9	1.0000	<.0001	1.0000
Bsp141	Bacillus simplex	35.9	1.0000	0.0146	0.9501
Bsp142	Bacillus simplex	6.0	1.0000	<.0001	1.0000
Bsp142 Bsp143	Bacillus simplex Bacillus simplex	98.2	0.0009	1.0000	<.0001
Bsp143 Bsp144	Bacillus simplex Bacillus simplex				
1	1	5.6	1.0000	<.0001	1.0000
Bsp145	Bacillus simplex	3.1	1.0000	<.0001	1.0000
Bsp146	Bacillus simplex	41.1	1.0000	0.0451	0.7014
Bsp147	Bacillus simplex	7.5	1.0000	<.0001	1.0000
Bsp148	Bacillus simplex	12.0	1.0000	<.0001	1.0000
Bsp149		38.8	1.0000	0.0276	0.8339
	Bacillus simplex				
Bsp150	Bacillus simplex	9.2	1.0000	<.0001	1.0000
Bsp151	Bacillus simplex	1.3	0.9999	<.0001	1.0000
Bsp152	Bacillus simplex	3.3	1.0000	<.0001	1.0000
Bsp153	Bacillus simplex	31.8	1.0000	0.0054	0.9988
Bsp154	Bacillus simplex	99.9	0.0006	1.0000	<.0001
Bsp155	Bacillus simplex	37.6	1.0000	0.0006	0.4466

Bsp156	Bacillus simplex	9.0	1.0000	<.0001	1.0000
Bsp157	Bacillus simplex	7.0	1.0000	<.0001	1.0000
Bsp158	Bacillus simplex	33.9	1.0000	0.0175	0.9247
Bsp159	Bacillus simplex	36.7	1.0000	0.0001	0.7033
Bsp160	Bacillus simplex	0.8	0.9997	<.0001	1.0000
Bsp161	Bacillus simplex	13.9	1.0000	<.0001	1.0000
-	-				
Bsp162	Bacillus simplex	31.1	1.0000	<.0001	0.8912
Bsp163	Bacillus simplex	26.6	1.0000	<.0001	0.9983
Bsp164	Bacillus simplex	23.9	1.0000	<.0001	1.0000
	-				
Bsp165	Bacillus simplex	1.9	1.0000	<.0001	1.0000
Bsp166	Bacillus simplex	17.3	1.0000	<.0001	1.0000
Bsp167	Bacillus simplex	5.9	1.0000	<.0001	1.0000
Bsp168	Bacillus simplex	45.8	1.0000	0.1090	0.4348
Bsp169	Bacillus simplex	17.1	1.0000	<.0001	1.0000
Bsp170	Bacillus simplex	41.1	1.0000	0.0019	0.2581
Bsp171	Bacillus simplex	40.2	1.0000	0.0375	0.7541
	-				
Bsp172	Bacillus simplex	19.7	1.0000	<.0001	1.0000
Bsp173	Bacillus simplex	31.0	1.0000	<.0001	0.8938
Bsp174	Bacillus simplex	24.3	1.0000	<.0001	1.0000
-					
Bsp175	Bacillus simplex	19.4	1.0000	<.0001	1.0000
Bsp176	Bacillus simplex	4.7	1.0000	<.0001	1.0000
Bsp177	Bacillus simplex	28.6	1.0000	<.0001	0.9789
	-	18.2			
Bsp178	Bacillus simplex		1.0000	<.0001	1.0000
Bsp179	Bacillus simplex	25.3	1.0000	<.0001	0.9998
Bsp180	Bacillus simplex	24.7	1.0000	<.0001	1.0000
Bsp181	Bacillus simplex	30.4	1.0000	<.0001	0.9217
Bsp182	Bacillus simplex	12.1	1.0000	<.0001	1.0000
Bsp183	Bacillus simplex	26.0	1.0000	<.0001	0.9993
Bsp184	Bacillus simplex	25.9	1.0000	<.0001	0.9994
Bsp185	Bacillus simplex	31.0	1.0000	<.0001	0.8938
Bsp186	Bacillus simplex	35.2	1.0000	0.0002	0.6143
Bsp187	Bacillus simplex	67.7	0.1146	0.7375	0.0001
•					
Bsp188	Bacillus simplex	41.7	1.0000	0.0503	0.6688
Bsp189	Bacillus simplex	10.7	1.0000	<.0001	1.0000
Bsp190	Bacillus simplex	22.5	1.0000	<.0001	1.0000
	-	8.3			
Bsp191	Bacillus simplex		1.0000	<.0001	1.0000
Bsp192	Bacillus simplex	16.9	1.0000	<.0001	1.0000
Bsp193	Bacillus simplex	17.0	1.0000	<.0001	1.0000
	Bacillus simplex	15.7			1.0000
Bsp194	-		1.0000	<.0001	
Bsp195	Bacillus simplex	90.0	0.0001	1.0000	<.0001
Bsp196	Bacillus simplex	40.8	1.0000	0.0420	0.7221
Bsp197	Bacillus simplex	64.3	0.2240	0.4939	0.0004
Bsp198	Bacillus simplex	80.6	0.0037	1.0000	<.0001
Bsp199	Bacillus simplex	52.8	0.9251	0.0571	0.0185
Bsp200	Bacillus simplex	71.9	0.0437	0.9643	<.0001
Bsp201	Bacillus simplex	7.4	1.0000	<.0001	1.0000
Bsp202	Bacillus simplex	42.8	1.0000	0.0005	0.0843
Bsp203	Bacillus simplex	10.0	1.0000	<.0001	1.0000
Bsp204	Bacillus simplex	20.9	1.0000	<.0001	1.0000
•					
Bsp205	Bacillus simplex	39.8	1.0000	0.0012	0.3222
Bsp206	Bacillus simplex	23.0	1.0000	<.0001	1.0000
Bsp207	Bacillus simplex	36.5	1.0000	0.0004	0.5192
	Bacillus simplex Bacillus simplex	29.1	1.0000	<.0001	0.9676
Bsp208	•				
Bssin1	Bacillus subtilis subsp. inaquosorum	0.0	0.9987	<.0001	1.0000
Bssin2	Bacillus subtilis subsp. inaquosorum	3.3	1.0000	<.0001	1.0000
Bssin3	Bacillus subtilis subsp. inaquosorum	3.2	1.0000	<.0001	1.0000
Bssin4	Bacillus subtilis subsp. inaquosorum	12.9	1.0000	<.0001	1.0000
Bssin5	Bacillus subtilis subsp. inaquosorum	24.9	1.0000	<.0001	0.9999
Bssin6	Bacillus subtilis subsp. inaquosorum	4.4	1.0000	<.0001	1.0000
Bssin7	Bacillus subtilis subsp. inaquosorum	24.3	1.0000	<.0001	1.0000
Bssin8	Bacillus subtilis subsp. inaquosorum	88.4	0.0002	1.0000	<.0001
Bssin9	Bacillus subtilis subsp. inaquosorum	94.6	<.0001	1.0000	<.0001
Bssin10	Bacillus subtilis subsp. inaquosorum	94.6	<.0001	1.0000	<.0001
Bssin11	Bacillus subtilis subsp. inaquosorum	54.1	0.8544	0.0781	0.0126
Bssin12	Bacillus subtilis subsp. inaquosorum	94.3	<.0001	1.0000	<.0001
Bssin13	Bacillus subtilis subsp. inaquosorum	29.4	1.0000	<.0001	0.9599
Bssin14	Bacillus subtilis subsp. inaquosorum	94.5	<.0001	1.0000	<.0001
Bssin15	Bacillus subtilis subsp. inaquosorum	90.6	<.0001	1.0000	<.0001
Bsssu1	Bacillus subtilis subsp. subtilis	23.6	1.0000	<.0001	1.0000
Bsssu2	Bacillus subtilis subsp. subtilis	84.4	0.0302	1.0000	<.0001
Bsssu3	Bacillus subtilis subsp. subtilis	82.4	0.0457	1.0000	0.0001
Bsssu4	Bacillus subtilis subsp. subtilis	1.2	0.9999	<.0001	1.0000
Bte1	Bacillus tequilensis	36.6	1.0000	0.0004	0.5158
Bte2	Bacillus tequilensis	93.5	<.0001	1.0000	<.0001
Bte3		1.4	0.9999	<.0001	1.0000
	Bacillus tequilensis				
Bth1	Bacillus thuringiensis	0.0	0.9987	<.0001	1.0000
Bth2	Bacillus thuringiensis	58.8	0.5312	0.2026	0.0030
Bth3	Bacillus thuringiensis	0.0	0.9987	<.0001	1.0000
Bth4	Bacillus thuringiensis	9.2	1.0000	<.0001	1.0000
Bto1	Bacillus toyonensis	2.1	1.0000	<.0001	1.0000

Bto2	Bacillus toyonensis	6.1	1.0000	<.0001	1.0000
Bto3	Bacillus toyonensis	7.1	1.0000	<.0001	1.0000
Bto4	Bacillus toyonensis	6.6	1.0000	<.0001	1.0000
Bto5	Bacillus toyonensis	11.5	1.0000	<.0001	1.0000
Bto6	Bacillus toyonensis	6.8	1.0000	<.0001	1.0000
		9.4			
Bto7	Bacillus toyonensis		1.0000	<.0001	1.0000
Bto8	Bacillus toyonensis	12.1	1.0000	<.0001	1.0000
Bto9	Bacillus toyonensis	16.8	1.0000	<.0001	1.0000
Bto10	Bacillus toyonensis	0.0	0.9987	<.0001	1.0000
Bto11	Bacillus toyonensis	20.2	1.0000	<.0001	1.0000
Bto12	Bacillus toyonensis	13.1	1.0000	<.0001	1.0000
Bto13	Bacillus toyonensis	23.9	1.0000	<.0001	1.0000
Bto14	Bacillus toyonensis	8.9	1.0000	<.0001	1.0000
Bto15	Bacillus toyonensis	0.0	0.9987	<.0001	1.0000
Bto15 Bto16		0.0			1.0000
	Bacillus toyonensis		0.9987	<.0001	
Bto17	Bacillus toyonensis	1.6	0.9999	<.0001	1.0000
Bto18	Bacillus toyonensis	87.5	0.0003	1.0000	<.0001
Bto19	Bacillus toyonensis	0.0	0.9987	<.0001	1.0000
Bto20	Bacillus toyonensis	0.0	0.9987	<.0001	1.0000
Bto21	Bacillus toyonensis	63.5	0.2603	0.4387	0.0006
Bto22	Bacillus toyonensis	82.9	0.0017	1.0000	<.0001
Bto23	Bacillus toyonensis	73.3	0.0310	0.9898	<.0001
Bto24		76.8	0.0118	1.0000	<.0001
	Bacillus toyonensis				
Bto25	Bacillus toyonensis	0.0	0.9987	<.0001	1.0000
Bto26	Bacillus toyonensis	6.3	1.0000	<.0001	1.0000
Bto27	Bacillus toyonensis	31.1	1.0000	<.0001	0.8912
Bto28	Bacillus toyonensis	0.0	0.9987	<.0001	1.0000
Bto29	Bacillus toyonensis	0.0	0.9987	<.0001	1.0000
Bto30	Bacillus toyonensis	0.0	0.9987	<.0001	1.0000
Bto31	Bacillus toyonensis	0.0	0.9987	<.0001	1.0000
Bto32	Bacillus toyonensis	0.0	1.0000	<.0001	1.0000
Bto33	Bacillus toyonensis	2.6	1.0000	<.0001	1.0000
Bto34	Bacillus toyonensis	74.0	0.0258	0.9957	<.0001
Bto35	Bacillus toyonensis	12.4	1.0000	<.0001	1.0000
Bto36	Bacillus toyonensis	93.1	<.0001	1.0000	<.0001
Bto37	Bacillus toyonensis	34.1	1.0000	0.0001	0.6924
Bto38	Bacillus toyonensis	26.2	1.0000	<.0001	0.9991
Bto39	Bacillus toyonensis	42.3	1.0000	0.0029	0.2083
Bto40	Bacillus toyonensis	98.5	<.0001	1.0000	<.0001
Bto40 Bto41		1.1	0.9999	<.0001	1.0000
	Bacillus toyonensis				
Bto42	Bacillus toyonensis	4.3	1.0000	<.0001	1.0000
Bto43	Bacillus toyonensis	28.1	1.0000	<.0001	0.9870
Bto44	Bacillus toyonensis	9.0	1.0000	<.0001	1.0000
Bto45	Bacillus toyonensis	82.1	0.0022	1.0000	<.0001
Bto46	Bacillus toyonensis	64.2	0.2271	0.4889	0.0004
Bto47	Bacillus toyonensis	2.0	1.0000	<.0001	1.0000
Bto48	Bacillus toyonensis	1.0	0.9998	<.0001	1.0000
Bto49		66.2	0.1572	0.6252	0.0002
	Bacillus toyonensis				
Bto50	Bacillus toyonensis	37.1	1.0000	0.0005	0.4773
Bto51	Bacillus toyonensis	87.2	0.0004	1.0000	<.0001
Bto52	Bacillus toyonensis	89.4	0.0002	1.0000	<.0001
Bto53	Bacillus toyonensis	75.6	0.0167	0.9997	<.0001
Bto54	Bacillus toyonensis	81.3	0.0029	1.0000	<.0001
Bto55	Bacillus toyonensis	91.3	<.0001	1.0000	<.0001
Bto56	Bacillus toyonensis	5.9	1.0000	<.0001	1.0000
Bto57	Bacillus toyonensis	87.0	0.0004	1.0000	<.0001
Bto58	Bacillus toyonensis	81.0	0.0032	1.0000	<.0001
Bto59	Bacillus toyonensis	68.3	0.1019	0.7762	<.0001
			1.0000		
Bto60	Bacillus toyonensis	19.9		<.0001	1.0000
Bto61	Bacillus toyonensis	91.3	<.0001	1.0000	<.0001
Bto62	Bacillus toyonensis	4.8	1.0000	<.0001	1.0000
Bto63	Bacillus toyonensis	84.5	0.0010	1.0000	<.0001
Bto64	Bacillus toyonensis	66.6	0.1445	0.6560	0.0002
Bto65	Bacillus toyonensis	86.6	0.0004	1.0000	<.0001
Bto66	Bacillus toyonensis	72.3	0.0398	0.9737	<.0001
Bto67	Bacillus toyonensis	24.8	1.0000	<.0001	0.9999
Bto68	Bacillus toyonensis	17.8	1.0000	<.0001	1.0000
Bto69	Bacillus toyonensis	16.6	1.0000	<.0001	1.0000
Bto70	Bacillus toyonensis	0.0	0.9987	<.0001	1.0000
Bve1	Bacillus velezensis	8.5	1.0000	<.0001	1.0000
Bve2	Bacillus velezensis	72.8	0.2386	1.0000	0.0021
Bve3	Bacillus velezensis	11.6	1.0000	<.0001	1.0000
Bve4	Bacillus velezensis	54.1	0.8559	0.0777	0.0127
Bve5	Bacillus velezensis	54.7	0.8216	0.0879	0.0108
Bve6	Bacillus velezensis	42.8	1.0000	0.0034	0.1888
Bve7	Bacillus velezensis	23.3	1.0000	<.0001	1.0000
Bve8	Bacillus velezensis			<.0001	1.0000
		6.6	1.0000		
Bve9 Bve10	Bacillus velezensis	0.0	0.9987	<.0001	1.0000
Bve10	Bacillus velezensis	9.8	1.0000	<.0001	1.0000
Bve11	Bacillus velezensis	1.1	0.9999	<.0001	1.0000

Bve12	Bacillus velezensis	81.1	0.0591	1.0000	0.0002
Bve13	Bacillus velezensis	61.9	0.7951	0.8106	0.0303
Bve14	Bacillus velezensis	89.3	0.0099	1.0000	<.0001
Bve15	Bacillus velezensis	28.7	1.0000	0.0024	1.0000
Bve16	Bacillus velezensis	1.0	0.9998	<.0001	1.0000
Bve17	Bacillus velezensis	7.6	1.0000	<.0001	1.0000
Bve18	Bacillus velezensis	10.5	1.0000	<.0001	1.0000
Bve19	Bacillus velezensis	11.6	1.0000	<.0001	1.0000
Bve20	Bacillus velezensis	2.3	1.0000	<.0001	1.0000
Bve21	Bacillus velezensis	52.4	0.9423	0.0516	0.0208
Bve22	Bacillus velezensis	5.3	1.0000	<.0001	1.0000
Bve23	Bacillus velezensis	40.0	1.0000	0.0013	0.3081
Bve24	Bacillus velezensis	0.0	0.9987	<.0001	1.0000
Bve25	Bacillus velezensis	13.8	1.0000	<.0001	1.0000
Bve26	Bacillus velezensis	12.3	1.0000	<.0001	1.0000
		11.0			1.0000
Bve27	Bacillus velezensis		1.0000	<.0001	
Bve28	Bacillus velezensis	60.9	0.3960	0.2932	0.0015
Bve29	Bacillus velezensis	21.8	1.0000	<.0001	1.0000
Bve30	Bacillus velezensis	9.1	1.0000	<.0001	1.0000
Bve31	Bacillus velezensis	6.0	1.0000	<.0001	1.0000
Bve32	Bacillus velezensis	21.6	1.0000	<.0001	1.0000
Bve33	Bacillus velezensis	39.8	1.0000	0.0012	0.3209
Bve34	Bacillus velezensis	58.9	0.7050	0.3464	0.0108
Bve35	Bacillus velezensis	44.6	1.0000	0.0061	0.1319
Bve36	Bacillus velezensis	36.7	1.0000	0.0004	0.5090
Bve37	Bacillus velezensis	76.5	0.1352	1.0000	0.0007
Bve38	Bacillus velezensis	22.9	1.0000	<.0001	1.0000
Bve39	Bacillus velezensis	39.2	1.0000	0.0010	0.3544
Bve40	Bacillus velezensis	76.5	0.1341	1.0000	0.0007
Bve41	Bacillus velezensis	45.9	1.0000	0.0091	0.1003
Bwe1	Bacillus weihenstephanensis	23.4	1.0000	<.0001	1.0000
Bwe2	Bacillus weihenstephanensis	83.6	0.0013	1.0000	<.0001
Bwe3	Bacillus weihenstephanensis	31.1	1.0000	<.0001	0.8886
Bwe4	Bacillus weihenstephanensis	15.2	1.0000	<.0001	1.0000
Bwe5	Bacillus weihenstephanensis	57.8	0.5999	0.1684	0.0042
Bwe6	Bacillus weihenstephanensis	8.2	1.0000	<.0001	1.0000
Bwe7	Bacillus weihenstephanensis	0.0	0.9987	<.0001	1.0000
Bwe8	Bacillus weihenstephanensis	7.9	1.0000	<.0001	1.0000
Bwe9	Bacillus weihenstephanensis	13.0	1.0000	<.0001	1.0000
	1	94.3			
Bwe10	Bacillus weihenstephanensis		<.0001	1.0000	<.0001
Bwe11	Bacillus weihenstephanensis	0.8	0.9997	<.0001	1.0000
Bwe12	Bacillus weihenstephanensis	39.1	1.0000	0.0010	0.3600
Bwe13		43.3			
	Bacillus weihenstephanensis		1.0000	0.0040	0.1725
Bwe14	Bacillus weihenstephanensis	31.8	1.0000	<.0001	0.8468
Bwe15	Bacillus weihenstephanensis	75.4	0.0174	0.9996	<.0001
Bwe16	Bacillus weihenstephanensis	81.8	0.0025	1.0000	<.0001
Bwe17	Bacillus weihenstephanensis	46.1	1.0000	0.0096	0.0965
Bwe18	Bacillus weihenstephanensis	27.3	1.0000	<.0001	0.9950
Bwe19	Bacillus weihenstephanensis	41.2	1.0000	0.0020	0.2514
Bwe20	Bacillus weihenstephanensis	3.5	1.0000	<.0001	1.0000
Bwe21	Bacillus weihenstephanensis	18.3	1.0000	<.0001	1.0000
Brep1	Brevibacterium epidermidis	83.8	0.0013	1.0000	<.0001
Brep2	Brevibacterium epidermidis	42.3	1.0000	0.0029	0.2092
-	-	44.2		0.0054	
Brep3	Brevibacterium epidermidis		1.0000		0.1430
Brep4	Brevibacterium epidermidis	29.2	1.0000	<.0001	0.9663
Brep5	Brevibacterium epidermidis	54.9	0.8084	0.0919	0.0102
Brep6	Brevibacterium epidermidis	67.8	0.1122	0.7446	0.0001
Brep7	Brevibacterium epidermidis	52.2	0.9486	0.0494	0.0218
Brio1	Brevibacterium iodinum	87.8	0.0003	1.0000	<.0001
Enx1	Enterobacter xiangfangensis	36.9	1.0000	0.0004	0.4955
Exs1	Exiguobacterium sibiricum	0.0	0.9987	<.0001	1.0000
	0			0.9997	
Fso1	Fictibacillus solisalsi	70.3	0.3385		0.0042
Lma1	Lysinibacillus macroides	64.8	0.6287	0.9368	0.0161
Lpa1	Lysinibacillus parviboronicapiens	0.7	0.9997	<.0001	1.0000
Paam1	Paenibacillus amylolyticus	17.7	1.0000	<.0001	1.0000
Paam2	Paenibacillus amylolyticus	58.0	0.5838	0.1758	0.0039
Paam3	Paenibacillus amylolyticus	58.3	0.5608	0.1871	0.0035
Paam4	Paenibacillus amylolyticus	25.4	1.0000	<.0001	0.9998
Paam5	Paenibacillus amylolyticus	47.6	0.9999	0.0148	0.0689
	2 2				
Paam6	Paenibacillus amylolyticus	70.8	0.0574	0.9240	<.0001
Paam7	Paenibacillus amylolyticus	82.8	0.0018	1.0000	<.0001
Paam8	Paenibacillus amylolyticus	95.2	<.0001	1.0000	<.0001
Paam9		29.4			
	Paenibacillus amylolyticus		1.0000	<.0001	0.9599
Paba1	Paenibacillus barcinonensis	22.4	1.0000	<.0001	1.0000
Pagl1	Paenibacillus glycanilyticus	7.7	1.0000	<.0001	1.0000
Pail1	Paenibacillus illinoisensis	32.9	1.0000	<.0001	0.7745
Pala1	Paenibacillus lautus	0.0	0.9987	<.0001	1.0000
Pala2	Paenibacillus lautus	7.6	1.0000	<.0001	1.0000
Pala3	Paenibacillus lautus	13.8	1.0000	<.0001	1.0000
Pala4	Paenibacillus lautus	70.4	0.0628	0.9065	<.0001
		70.7	0.0020	0.2002	

Pamd1 Paenibacillus macquariensis subsp. defensor 3.3 1.0000 <.0001	1 8
5	8
Fata = Fuentiouchungensis = 52.0 = 1.000 = 0.009 = 0.995	
Path Pachia Paenibacillus hiaminolyticus 4.0 1.0000 <.0001 1.000	
Patul Paenibacillus indiminifyricus 4.0 1.0000 <.0001 1.0000 Patul Paenibacillus tundrae 79.6 0.0050 1.0000 <.0001	
Paul Paenibacilius iniarae 79.0 0.0050 1.0000 <.000 Pava1 Paenibacilius validus 11.4 1.0000 <.0001	
Paval Paenibacillus valaaus 11.4 1.0000 <001 1.000 Paxy1 Paenibacillus xylanexedens 45.2 1.0000 0.0073 0.117/	
Rhoq1 Rhodococcus qingshengii 2.8 1.0000 <.0001 1.000 Guida 72.5 <td< td=""><td></td></td<>	
Soil Solibacillus isronensis 53.5 0.9996 0.3466 0.148 Soil	
Spg1 Sporosarcina globispora 27.6 1.0000 <.0001 0.993 0.0001 0.0002 0.0001	
Spg2 Sporosarcina globispora 0.0 0.9987 <.0001 1.000 0.0 0.9987 0.00 0.000	
Spg3 Sporosarcina globispora 39.6 1.0000 0.0012 0.328	
Spg4 Sporosarcina globispora 44.6 1.0000 0.0061 0.132	
Spg5 Sporosarcina globispora 29.3 1.0000 <.0001 0.962	
Spg6 Sporosarcina globispora 4.7 1.000 <.001 1.000	
Spg7 Sporosarcina globispora 1.9 1.000 <.001 1.000	
Spg8 Sporosarcina globispora 84.4 0.0010 1.0000 <.000	
Spg9 Sporosarcina globispora 27.4 1.0000 <.0001 0.994	
Spg10 Sporosarcina globispora 6.2 1.0000 <.0001 1.0000	
Uid1 Bacillus aerophilus/stratosphaericus* 43.0 1.0000 0.0654 0.5890	
Uid2 Bacillus aerophilus/stratosphericus* 28.7 1.0000 <.0001 0.977	
Uid3 Bacillus aerophilus/stratosphericus* 7.7 1.0000 <.0001 1.0000	
Uid4 Bacillus aerophilus/stratosphericus* 89.1 0.0002 1.0000 <.000	
Uid5 Bacillus aerophilus/stratosphericus* 2.7 1.0000 <.0001 1.0000	
Uid6 Bacillus aerophilus/stratosphericus* 88.2 0.0002 1.0000 <.000	
Uid7Bacillus aerophilus/stratosphericus*54.80.81340.09040.010	
Uid8Bacillus altitudinis/stratosphericus/aerophilus*98.9<.00011.0000<.000	
Uid9Bacillus altitudinis/stratosphericus/aerophilus*96.2<.00011.0000<.000	
Uid10Bacillus altitudinis/stratosphericus/aerophilus*96.8<.00011.0000<.000	1
Uid11 Unidentified species* 0.0 0.9987 <.0001 1.000	0
Uid12 Unidentified species* 5.3 1.0000 <.0001 1.0000	0
Control Active ingredient ^b	
Poncho/Votivo Clothianidin and B. firmus I-1582 24.4 <.0001 1.000	0
Temik Aldicarb 99.2 <.0001 <.000	1
Untreated control Sterile distilled water 2.0 1.0000 <.0001	

^aIn vitro tests were performed in 96-well plates. All the PGPR strains had 4 replications and controls were based on 17 repeats. Data collected were analyzed in SAS 9.4 using PROC GLIMMIX procedure at significant level of $\alpha \le 0.05$. *P* value less than 0.05 indicate a significant effect. Adjusted *P* values were obtained according to Dunnett's method. LS-means and adjusted *P* values were presented in the table. ^bActive ingredients for Poncho/Votivo are Clothianidin plus *B. firmus* I-1582, Temik is Aldicarb, and untreated control is sterile distilled water. ^c Dunnett's option was used in the LS-means statement to assess the differences between bacterial isolates and the Poncho/Votivo, Temik, and the untreated control

^aMortality was determined by the following equation: [(live J2 prior to exposure - live J2 at 48 hours) / live J2 prior to exposure] ×100.

*Indistinguishable species and unidentified strains.

		Heterodera glycines		Dunnett's P vsd	(<i>P</i> ≤ 0.05)	
Code	Scientific name	J2 mortality (%) ^b	Clothianidin + B. firmus ^c	P. nishizawae	Aldicarb	Water
d1	Arthrobacter defluvii	7.9	1.0000	1.0000	<.0001	1.0000
e1	Arthrobacter equi	6.3	1.0000	1.0000	<.0001	1.0000
all	Bacillus altitudinis	24.0	1.0000	1.0000	<.0001	0.9982
al2	Bacillus altitudinis	5.7	1.0000	1.0000	<.0001	1.0000
al3	Bacillus altitudinis	33.5	1.0000	0.9985	<.0001	0.1058
al4	Bacillus altitudinis	5.3	1.0000	1.0000	<.0001	1.0000
Bal5	Bacillus altitudinis	2.9	0.9897	1.0000	<.0001	1.0000
Sal6	Bacillus altitudinis	14.4	1.0000	1.0000	<.0001	1.0000
Bal7	Bacillus altitudinis	8.4	1.0000	1.0000	<.0001	1.0000
al8	Bacillus altitudinis	11.1	1.0000	1.0000	<.0001	1.0000
al9	Bacillus altitudinis	51.7 24.1	0.1099	0.0206	<.0001	<.0001
a110 a111	Bacillus altitudinis Bacillus altitudinis	24.1 64.0	1.0000 0.0236	1.0000 0.0045	<.0001 0.1725	0.8203 <.0001
all1 Ball2	Bacillus altitudinis	54.7	0.0230	0.0045	0.1723	<.0001
all2 Ball3	Bacillus altitudinis	81.2	<.0001	<.0001	1.00002	<.0001
all4	Bacillus altitudinis	3.8	0.9982	1.0000	<.0001	1.0000
Bal15	Bacillus altitudinis	3.4	0.9959	1.0000	<.0001	1.0000
all6	Bacillus altitudinis	2.8	0.9885	1.0000	<.0001	1.0000
al17	Bacillus altitudinis	1.3	0.9322	1.0000	<.0001	1.0000
al18	Bacillus altitudinis	15.7	1.0000	1.0000	<.0001	1.0000
Bal19	Bacillus altitudinis	13.4	1.0000	1.0000	<.0001	1.0000
Bal20	Bacillus altitudinis	55.1	0.0353	0.0050	0.0003	<.0001
al20 Bal21	Bacillus altitudinis	41.2	0.9150	0.4566	<.0001	0.0059
Barl	Bacillus aryabhattai	0.0	0.8384	0.9999	<.0001	1.0000
Bar2	Bacillus aryabhattai	17.8	1.0000	1.0000	<.0001	1.0000
Bar3	Bacillus aryabhattai	24.5	1.0000	1.0000	<.0001	1.0000
3ar4	Bacillus aryabhattai	6.4	1.0000	1.0000	<.0001	1.0000
Bar5	Bacillus aryabhattai	8.8	1.0000	1.0000	<.0001	1.0000
Bar6	Bacillus aryabhattai	5.3	1.0000	1.0000	<.0001	1.0000
Bar7	Bacillus aryabhattai	8.8	1.0000	1.0000	<.0001	1.0000
Bar8	Bacillus aryabhattai	8.3	1.0000	1.0000	<.0001	1.0000
Bar9	Bacillus aryabhattai	38.1	0.9991	0.7674	<.0001	0.0215
Bar10	Bacillus aryabhattai	3.3	0.9950	1.0000	<.0001	1.0000
Bar11	Bacillus aryabhattai	22.2	1.0000	1.0000	<.0001	0.8195
Bar12	Bacillus aryabhattai	9.3	1.0000	1.0000	<.0001	1.0000
Bar13	Bacillus aryabhattai	19.4	1.0000	1.0000	<.0001	0.9996
Bar14	Bacillus aryabhattai	20.3	1.0000	1.0000	<.0001	0.9969
Bar15	Bacillus aryabhattai	90.5	<.0001	<.0001	1.0000	<.0001
Bar16	Bacillus aryabhattai	64.9	0.0180	0.0033	0.2079	<.0001
Bar17	Bacillus aryabhattai	14.8	1.0000	1.0000	<.0001	1.0000
Bar18	Bacillus aryabhattai	27.5	1.0000	1.0000	<.0001	0.4728
Bar19	Bacillus aryabhattai	8.1	1.0000	1.0000	<.0001	1.0000
Bar20	Bacillus aryabhattai	27.0	1.0000	1.0000	<.0001	0.5278
Bar21	Bacillus aryabhattai	57.5	0.0136	0.0016	0.0011	<.0001
ar22	Bacillus aryabhattai	28.9	1.0000	1.0000	<.0001	0.3562
ar23	Bacillus aryabhattai	25.9	1.0000	1.0000	<.0001	0.4167
Bar24	Bacillus aryabhattai	17.6	1.0000	1.0000	<.0001	1.0000
Bar25	Bacillus aryabhattai	34.1	1.0000	0.9943	<.0001	0.0864
ar26	Bacillus aryabhattai	23.0	1.0000	1.0000	<.0001	0.9065
Bar27	Bacillus aryabhattai	49.4	0.2090	0.0478	<.0001	<.0001
ar28	Bacillus aryabhattai	46.7	0.3950	0.1141	<.0001	0.0004
ar29	Bacillus aryabhattai	4.7	0.9998	1.0000	<.0001	1.0000
ar30	Bacillus aryabhattai	7.3	1.0000	1.0000	<.0001	1.0000
ar31	Bacillus aryabhattai	43.6	0.6961	0.2660	<.0001	0.0019
ar32	Bacillus aryabhattai	4.2	0.9994	1.0000	<.0001	1.0000
lar33	Bacillus aryabhattai	2.6	0.9845	1.0000	<.0001	1.0000
Bar34	Bacillus aryabhattai	0.0	0.8384	0.9999	<.0001	1.0000
ar35	Bacillus aryabhattai	15.8	1.0000	1.0000	<.0001	1.0000
ar36	Bacillus aryabhattai	19.3	1.0000	1.0000	<.0001	0.9998
ar37	Bacillus aryabhattai	11.8	1.0000	1.0000	<.0001	1.0000
ar38	Bacillus aryabhattai	5.5	1.0000	1.0000	<.0001	1.0000
ar39	Bacillus aryabhattai	10.0	1.0000	1.0000	<.0001	1.0000
ar40	Bacillus aryabhattai	1.5	0.9446	1.0000	<.0001	1.0000
ar41	Bacillus aryabhattai	5.3	1.0000	1.0000	<.0001	1.0000
ar42	Bacillus aryabhattai	7.5	1.0000	1.0000	<.0001	1.0000
ar43	Bacillus aryabhattai	2.1	0.9705	1.0000	<.0001	1.0000
ar44	Bacillus aryabhattai	1.1	0.9246	1.0000	<.0001	1.0000
ar45	Bacillus aryabhattai	10.3	1.0000	1.0000	<.0001	1.0000
ar46	Bacillus aryabhattai	33.1	1.0000	1.0000	<.0001	0.4749
Bar47	Bacillus aryabhattai	0.7	0.8939	1.0000	<.0001	1.0000
Bar48	Bacillus aryabhattai	21.7	1.0000	1.0000	<.0001	0.9746
ar49	Bacillus aryabhattai	10.8	1.0000	1.0000	<.0001	1.0000
ar50	Bacillus aryabhattai	2.7	0.9871	1.0000	<.0001	1.0000
Bar51	Bacillus aryabhattai	47.0	0.8294	0.4394	0.0007	0.0155
	Bacillus aryabhattai		1.0000	1.0000	<.0001	1.0000

Appendix 2. 670 PGPR isolates effect on Heterodera glycinesJ2 mortality as comp	pared to the industry standard biologicals Poncho/Votivo, Clariva, and
chemical Temik as well as an untreated control ^a .	

Bar53	Bacillus aryabhattai	27.1	1.0000	1.0000	<.0001	0.5132
Bce1	Bacillus cereus	4.8	1.0000	1.0000	<.0001	1.0000
Bce2	Bacillus cereus	7.5	1.0000	1.0000	<.0001	1.0000
Bce3	Bacillus cereus	3.1	0.9926	1.0000	<.0001	1.0000
Bce4	Bacillus cereus	1.2	0.9307	1.0000	<.0001	1.0000
Bce5	Bacillus cereus	22.8	1.0000	1.0000	<.0001	0.9231
Bce6	Bacillus cereus	5.1	1.0000	1.0000	<.0001	1.0000
Bce7	Bacillus cereus	23.1	1.0000	1.0000	<.0001	0.8994
		16.2				1.0000
Bce8	Bacillus cereus		1.0000	1.0000	<.0001	
Bce9	Bacillus cereus	4.7	0.9998	1.0000	<.0001	1.0000
Bce10	Bacillus cereus	15.3	1.0000	1.0000	<.0001	1.0000
Bce11	Bacillus cereus	15.1	1.0000	1.0000	<.0001	1.0000
Bce12	Bacillus cereus	32.7	1.0000	0.9998	<.0001	0.1333
Bce13	Bacillus cereus	15.7	1.0000	1.0000	<.0001	1.0000
Bce14	Bacillus cereus	1.5	0.9459	1.0000	<.0001	1.0000
Bce15	Bacillus cereus	0.0	0.8384	0.9999	<.0001	1.0000
Bce16	Bacillus cereus	0.0	0.8384	0.9999	<.0001	1.0000
Bce17	Bacillus cereus	0.0	0.8384	0.9999	<.0001	1.0000
Bce18	Bacillus cereus	1.7	0.9544	1.0000	<.0001	1.0000
Bce19	Bacillus cereus	2.2	0.9738	1.0000	<.0001	1.0000
Bce20	Bacillus cereus	23.9	1.0000	1.0000	<.0001	0.8384
Bce20 Bce21	Bacillus cereus	10.4	1.0000	1.0000	<.0001	1.0000
Bce22	Bacillus cereus	5.1	1.0000	1.0000	<.0001	1.0000
Bce23	Bacillus cereus	13.1	1.0000	1.0000	<.0001	1.0000
Bce24	Bacillus cereus	9.4	1.0000	1.0000	<.0001	1.0000
Bce25	Bacillus cereus	3.7	0.9979	1.0000	<.0001	1.0000
Bce26	Bacillus cereus	3.9	0.9985	1.0000	<.0001	1.0000
Bce27	Bacillus cereus	0.7	0.8957	1.0000	<.0001	1.0000
Bce28	Bacillus cereus	6.1	1.0000	1.0000	<.0001	1.0000
Bce29	Bacillus cereus	2.9	0.9897	1.0000	<.0001	1.0000
Bce30	Bacillus cereus	1.4	0.9393	1.0000	<.0001	1.0000
Bce31	Bacillus cereus	0.6	0.8882	1.0000	<.0001	1.0000
Bce32	Bacillus cereus	22.5	1.0000	1.0000	<.0001	0.9393
Bce33	Bacillus cereus	12.2	1.0000	1.0000	<.0001	1.0000
Bce34	Bacillus cereus	5.5	1.0000	1.0000	<.0001	1.0000
Bce35	Bacillus cereus	12.7	1.0000	1.0000	<.0001	1.0000
Bce36	Bacillus cereus	9.6	1.0000	1.0000	<.0001	1.0000
Bce37	Bacillus cereus	0.4	0.8725	1.0000	<.0001	1.0000
Bce38	Bacillus cereus	10.4	1.0000	1.0000	<.0001	1.0000
Bce39	Bacillus cereus	2.3	0.9762	1.0000	<.0001	1.0000
Bce40	Bacillus cereus	4.5	0.9997	1.0000	<.0001	1.0000
Bce41	Bacillus cereus	38.4	0.9981	0.7347	<.0001	0.0189
Bce42	Bacillus cereus	48.3	0.2775	0.0701	<.0001	0.0002
Bce43	Bacillus cereus	22.5	1.0000	1.0000	<.0001	0.9406
Bce44	Bacillus cereus	13.9	1.0000	1.0000	<.0001	1.0000
Bce45	Bacillus cereus	37.6	0.9998	0.8133	<.0001	0.0258
Bce46	Bacillus cereus	26.1	1.0000	1.0000	<.0001	0.6134
Bce47	Bacillus cereus	24.4	1.0000	1.0000	<.0001	0.7919
Bce48	Bacillus cereus	0.6	0.8882	1.0000	<.0001	1.0000
Bce49	Bacillus cereus	6.9	1.0000	1.0000	<.0001	1.0000
Bce50	Bacillus cereus	8.2	1.0000	1.0000	<.0001	1.0000
Bce51	Bacillus cereus	10.6	1.0000	1.0000	<.0001	1.0000
Bfi1	Bacillus firmus	12.7	1.0000	1.0000	<.0001	1.0000
Bga1	Bacillus galliciensis	7.8	1.0000	1.0000	<.0001	1.0000
Ble1	Bacillus lentus	74.2	<.0001	<.0001	0.4208	<.0001
Bmo1	Bacillus mojavensis	0.6	0.8863	1.0000	<.0001	1.0000
Bmo2	Bacillus mojavensis	6.5	1.0000	1.0000	<.0001	1.0000
Bmo3	Bacillus mojavensis	54.5	0.2720	0.0907	0.0117	0.0010
Bmo4	Bacillus mojavensis	1.0	0.9183	1.0000	<.0001	1.0000
Bmt1	Bacillus methylotrophicus	1.6	0.9497	1.0000	<.0001	1.0000
Bmt2	Bacillus methylotrophicus	37.3	0.9999	0.8384	<.0001	0.0286
Bmt2 Bmt3	Bacillus methylotrophicus	3.3	0.9955	1.0000	<.0001	1.0000
Bmt4	Bacillus methylotrophicus	1.3	0.9322	1.0000	<.0001	1.0000
Bmt5	Bacillus methylotrophicus	0.0	0.8384	0.9999	<.0001	1.0000
Bmt6	Bacillus methylotrophicus	9.8	1.0000	1.0000	<.0001	1.0000
Bmt7	Bacillus methylotrophicus	38.3	0.9986	0.7499	<.0001	0.0201
Bmt8	Bacillus methylotrophicus	1.2	0.9292	1.0000	<.0001	1.0000
Bmt9	Bacillus methylotrophicus	2.7	0.9866	1.0000	<.0001	1.0000
Bmt10	Bacillus methylotrophicus	51.4	0.4749	0.1896	0.0039	0.0033
Bmt11	Bacillus methylotrophicus	12.5	1.0000	1.0000	<.0001	1.0000
Bmt12	Bacillus methylotrophicus	11.8	1.0000	1.0000	<.0001	1.0000
Bmt13	Bacillus methylotrophicus	9.0	1.0000	1.0000	<.0001	1.0000
Bmy1	Bacillus mycoides	35.2	1.0000	0.9730	<.0001	0.0613
Bmy2	Bacillus mycoides	5.1	1.0000	1.0000	<.0001	1.0000
Bmy3	Bacillus mycoides	7.8	1.0000	1.0000	<.0001	1.0000
Bmy4	Bacillus mycoides	0.0	0.8384	0.9999	<.0001	1.0000
Bmy5	Bacillus mycoides	2.0	0.9669	1.0000	<.0001	1.0000
Bmy6	Bacillus mycoides	1.8	0.9589	1.0000	<.0001	1.0000
Bmy7	Bacillus mycoides	47.9	0.7589	0.3763	0.0010	0.0115
Bmy8	Bacillus mycoides	18.7	1.0000	1.0000	<.00010	1.0000
Diliyo	Ductuus mycoutes	10.7	1.0000	1.0000	<.0001	1.0000

Bmy9	Bacillus mycoides	19.8	1.0000	1.0000	<.0001	1.0000
Bmy10	Bacillus mycoides	23.1	1.0000	1.0000	<.0001	0.8994
Bmy11	Bacillus mycoides	9.7	1.0000	1.0000	<.0001	1.0000
Bmy12	Bacillus mycoides	10.4	1.0000	1.0000	<.0001	1.0000
		19.4	1.0000	1.0000	<.0001	0.9997
Bmy13	Bacillus mycoides					
Bmy14	Bacillus mycoides	34.2	1.0000	0.9940	<.0001	0.0857
Bmy15	Bacillus mycoides	31.3	1.0000	1.0000	<.0001	0.6203
Bmy16	Bacillus mycoides	5.2	1.0000	1.0000	<.0001	1.0000
Bmy17	Bacillus mycoides	6.5	1.0000	1.0000	<.0001	1.0000
Bmy18	Bacillus mycoides	5.4	1.0000	1.0000	<.0001	1.0000
		66.9	0.0092	0.0015	0.3115	<.0001
Bmy19	Bacillus mycoides					
Bmy20	Bacillus mycoides	10.3	1.0000	1.0000	<.0001	1.0000
Bmy21	Bacillus mycoides	32.4	1.0000	0.9999	<.0001	0.1464
Bmy22	Bacillus mycoides	21.0	1.0000	1.0000	<.0001	1.0000
Bmy23	Bacillus mycoides	28.0	1.0000	1.0000	0.0002	1.0000
Bmy24	Bacillus mycoides	5.8	1.0000	1.0000	<.0001	1.0000
	· · · · · · · · · · · · · · · · · · ·	14.2				1.0000
Bmy25	Bacillus mycoides		1.0000	1.0000	<.0001	
Bmy26	Bacillus mycoides	38.7	0.9963	0.7013	<.0001	0.0166
Bmy27	Bacillus mycoides	1.1	0.9246	1.0000	<.0001	1.0000
Bmy28	Bacillus mycoides	1.0	0.9166	1.0000	<.0001	1.0000
Bmy29	Bacillus mycoides	0.6	0.8863	1.0000	<.0001	1.0000
Bmy30	Bacillus mycoides	14.9	1.0000	1.0000	<.0001	1.0000
Bmy31	Bacillus mycoides	5.3	1.0000	1.0000	<.0001	1.0000
Bmy32	Bacillus mycoides	77.7	0.0001	<.0001	0.9947	<.0001
Bmy33	Bacillus mycoides	0.0	0.8384	0.9999	<.0001	1.0000
Bmy34	Bacillus mycoides	0.0	0.8384	0.9999	<.0001	1.0000
Bmy35	Bacillus mycoides	1.2	0.9277	1.0000	<.0001	1.0000
			0.8384	0.9999		
Bmy36	Bacillus mycoides	0.0			<.0001	1.0000
Bmy37	Bacillus mycoides	16.4	1.0000	1.0000	<.0001	1.0000
Bmy38	Bacillus mycoides	13.9	1.0000	1.0000	<.0001	1.0000
Bmy39	Bacillus mycoides	26.5	1.0000	1.0000	<.0001	0.5751
Bmy40	Bacillus mycoides	1.0	0.9166	1.0000	<.0001	1.0000
Bmy41	Bacillus mycoides	1.9	0.9650	1.0000	<.0001	1.0000
Bmy42	Bacillus mycoides	46.2	1.0000	0.9717	0.0389	0.2572
Bmy43	Bacillus mycoides	1.8	0.9599	1.0000	<.0001	1.0000
Bmy44	Bacillus mycoides	5.8	1.0000	1.0000	<.0001	1.0000
Bps1	Bacillus psychrosaccharolyticus	12.6	1.0000	1.0000	<.0001	1.0000
Bps2		21.6	1.0000	1.0000	<.0001	1.0000
-	Bacillus psychrosaccharolyticus					
Bps3	Bacillus psychrosaccharolyticus	9.7	1.0000	1.0000	<.0001	1.0000
Bps4	Bacillus psychrosaccharolyticus	0.0	0.8384	0.9999	<.0001	1.0000
Bps5	Bacillus psychrosaccharolyticus	2.9	0.9905	1.0000	<.0001	1.0000
Bpu1	Bacillus pumilus	0.0	0.8384	0.9999	<.0001	1.0000
Bpu2	Bacillus pumilus	7.0	1.0000	1.0000	<.0001	1.0000
Bpu3	Bacillus pumilus	19.1	1.0000	1.0000	<.0001	0.9999
Bpu4	Bacillus pumilus	17.7	1.0000	1.0000	<.0001	1.0000
Bpu5	Bacillus pumilus	0.0	0.8384	0.9999	<.0001	1.0000
Bpu6	Bacillus pumilus	78.4	<.0001	<.0001	0.9982	<.0001
Brep1	Brevibacterium epidermidis	32.1	1.0000	1.0000	<.0001	0.1605
•	Brevibacterium epidermidis	20.4	1.0000	1.0000	<.0001	0.9968
Brep2						
Brep3	Brevibacterium epidermidis	1.2	0.9292	1.0000	<.0001	1.0000
Brep4	Brevibacterium epidermidis	1.7	0.9556	1.0000	<.0001	1.0000
Brep5	Brevibacterium epidermidis	5.0	0.9999	1.0000	<.0001	1.0000
Brep6	Brevibacterium epidermidis	3.8	0.9982	1.0000	<.0001	1.0000
Brep7	Brevibacterium epidermidis	1.1	0.9215	1.0000	<.0001	1.0000
Brio1	Brevibacterium iodinum	2.6	0.9856	1.0000	<.0001	1.0000
Bsa1	Bacillus safensis	0.0	0.8384	0.9999	<.0001	1.0000
Bsa2	Bacillus safensis	3.6	0.9974	1.0000	<.0001	1.0000
Bsa3	Bacillus safensis	1.6	0.9521	1.0000	<.0001	1.0000
Bsa4	Bacillus safensis	2.0	0.9688	1.0000	<.0001	1.0000
Bsa5	Bacillus safensis	0.6	0.8882	1.0000	<.0001	1.0000
Bsa6	Bacillus safensis	4.7	0.9998	1.0000	<.0001	1.0000
	5					
Bsa7	Bacillus safensis	0.5	0.8805	1.0000	<.0001	1.0000
Bsa8	Bacillus safensis	2.2	0.9746	1.0000	<.0001	1.0000
Bsa9	Bacillus safensis	1.1	0.9199	1.0000	<.0001	1.0000
Bsa10	Bacillus safensis	13.1	1.0000	1.0000	<.0001	1.0000
Bsa11	Bacillus safensis	46.1	0.4453	0.1353	<.0001	0.0005
Bsa12	Bacillus safensis	6.4	1.0000	1.0000	<.0001	1.0000
Bsa13	Bacillus safensis	14.3	1.0000	1.0000	<.0001	1.0000
Bsa14	Bacillus safensis	21.5	1.0000	1.0000	<.0001	0.9790
Bsa15	Bacillus safensis	0.6	0.8882	1.0000	<.0001	1.0000
Bsa16	Bacillus safensis	33.1	1.0000	0.9994	<.0001	0.1194
Bsa17	Bacillus safensis	5.6	1.0000	1.0000	<.0001	1.0000
Bsa18	Bacillus safensis	0.6	0.8844	1.0000	<.0001	1.0000
Bsa19	Bacillus safensis	0.0	0.8384	0.9999	<.0001	1.0000
Bsa20	Bacillus safensis	1.1	0.9231	1.0000	<.0001	1.0000
Bsa21	Bacillus safensis	0.0	0.8384	0.9999	<.0001	1.0000
Bsa22	Bacillus safensis	5.6	1.0000	1.0000	<.0001	1.0000
Bsa23	Bacillus safensis	18.2	1.0000	1.0000	<.0001	1.0000
Bsa24	Bacillus safensis	1.5	0.9446	1.0000	<.0001	1.0000
Bsa25	Bacillus safensis	62.5	0.0378	0.0079	0.1200	<.0001

Bsa26	Bacillus safensis	74.1	0.0006	<.0001	0.8614	<.0001
Bsa27	Bacillus safensis	79.2	<.0001	<.0001	0.9997	<.0001
Bsa28	Bacillus safensis	9.7	1.0000	1.0000	<.0001	1.0000
Bsa29	Bacillus safensis	0.0	0.8384	0.9999	<.0001	1.0000
Bsa30	5	2.2	0.9738			
	Bacillus safensis			1.0000	<.0001	1.0000
Bsa31	Bacillus safensis	25.4	1.0000	1.0000	<.0001	0.6884
Bsa32	Bacillus safensis	9.3	1.0000	1.0000	<.0001	1.0000
Bsa33	Bacillus safensis	39.4	0.9889	0.6366	<.0001	0.0129
Bsa34	Bacillus safensis	3.4	0.9963	1.0000	<.0001	1.0000
Bsa35	Bacillus safensis	2.1	0.9697	1.0000	<.0001	1.0000
Bsi1		8.9				0.9955
	Bacillus siamensis		1.0000	1.0000	<.0001	
Bsi2	Bacillus siamensis	0.0	0.8384	0.9999	<.0001	1.0000
Bsi3	Bacillus siamensis	2.8	0.9885	1.0000	<.0001	1.0000
Bsp1	Bacillus simplex	0.8	0.9047	1.0000	<.0001	1.0000
Bsp2	Bacillus simplex	60.2	0.0044	0.0004	0.0038	<.0001
Bsp3	Bacillus simplex	62.0	0.0437	0.0095	0.1061	<.0001
Bsp4	Bacillus simplex	93.9	<.0001	<.0001	1.0000	<.0001
Bsp5	Bacillus simplex	22.1	1.0000	1.0000	<.0001	0.9589
Bsp6	Bacillus simplex	40.1	0.9688	0.5575	<.0001	0.0093
Bsp7	Bacillus simplex	29.3	1.0000	1.0000	<.0001	0.3273
Bsp8	Bacillus simplex	55.9	0.2035	0.0626	0.0186	0.0005
Bsp9	Bacillus simplex	12.8	1.0000	1.0000	<.0001	1.0000
Bsp10	Bacillus simplex	15.7	1.0000	1.0000	<.0001	1.0000
Bsp11	Bacillus simplex	8.6	1.0000	1.0000	<.0001	1.0000
Bsp12	Bacillus simplex	21.6	1.0000	1.0000	<.0001	0.9762
Bsp13	Bacillus simplex	35.2	1.0000	0.9722	<.0001	0.0608
Bsp14	Bacillus simplex	20.9	1.0000	1.0000	<.0001	0.9920
	Bacillus simplex Bacillus simplex	20.9	1.0000	1.0000		0.3035
Bsp15	1				<.0001	
Bsp16	Bacillus simplex	9.8	1.0000	1.0000	<.0001	1.0000
Bsp17	Bacillus simplex	2.2	0.9746	1.0000	<.0001	1.0000
Bsp18	Bacillus simplex	1.7	0.9533	1.0000	<.0001	1.0000
Bsp19	Bacillus simplex	0.0	0.8384	0.9999	<.0001	1.0000
	•	22.7				
Bsp20	Bacillus simplex		1.0000	1.0000	<.0001	0.9262
Bsp21	Bacillus simplex	17.8	1.0000	1.0000	<.0001	1.0000
Bsp22	Bacillus simplex	0.9	0.9099	1.0000	<.0001	1.0000
Bsp23	Bacillus simplex	11.1	1.0000	1.0000	<.0001	1.0000
Bsp24	Bacillus simplex	44.8	0.5776	0.1983	<.0001	0.0011
Bsp25	Bacillus simplex	3.2	0.9938	1.0000	<.0001	1.0000
	•					
Bsp26	Bacillus simplex	64.5	0.0201	0.0038	0.1927	<.0001
Bsp27	Bacillus simplex	2.9	0.9897	1.0000	<.0001	1.0000
Bsp28	Bacillus simplex	0.0	0.8384	0.9999	<.0001	1.0000
Bsp29	Bacillus simplex	3.9	0.9985	1.0000	<.0001	1.0000
Bsp30	Bacillus simplex	5.4	1.0000	1.0000	<.0001	1.0000
		3.9				1.0000
Bsp31	Bacillus simplex		0.9985	1.0000	<.0001	
Bsp32	Bacillus simplex	14.4	1.0000	1.0000	<.0001	1.0000
Bsp33	Bacillus simplex	12.0	1.0000	1.0000	<.0001	1.0000
Bsp34	Bacillus simplex	5.9	1.0000	1.0000	<.0001	1.0000
Bsp35	Bacillus simplex	31.4	1.0000	1.0000	<.0001	0.1918
Bsp36	Bacillus simplex	11.4	1.0000	1.0000	<.0001	1.0000
		12.2				
Bsp37	Bacillus simplex		1.0000	1.0000	<.0001	1.0000
Bsp38	Bacillus simplex	5.2	1.0000	1.0000	<.0001	1.0000
Bsp39	Bacillus simplex	3.3	0.9955	1.0000	<.0001	1.0000
Bsp40	Bacillus simplex	4.7	0.9999	1.0000	<.0001	1.0000
Bsp41	Bacillus simplex	2.0	0.9679	1.0000	<.0001	1.0000
Bsp42	Bacillus simplex	21.1	1.0000	1.0000	<.0001	0.9885
	1					
Bsp43	Bacillus simplex	0.0	0.8384	0.9999	<.0001	1.0000
Bsp44	Bacillus simplex	7.3	1.0000	1.0000	<.0001	1.0000
Bsp45	Bacillus simplex	4.3	0.9995	1.0000	<.0001	1.0000
Bsp46	Bacillus simplex	34.4	1.0000	0.9916	<.0001	0.0804
Bsp47	Bacillus simplex	15.8	1.0000	1.0000	<.0001	1.0000
Bsp48	Bacillus simplex Bacillus simplex	3.6	0.9648	1.0000	<.0001	1.0000
•						
Bsp49	Bacillus simplex	5.8	1.0000	1.0000	<.0001	1.0000
Bsp50	Bacillus simplex	8.2	1.0000	1.0000	<.0001	1.0000
Bsp51	Bacillus simplex	10.0	1.0000	1.0000	<.0001	1.0000
Bsp52	Bacillus simplex	1.8	0.9578	1.0000	<.0001	1.0000
Bsp53	Bacillus simplex	81.9	<.0001	<.0001	1.0000	<.0001
Bsp54	Bacillus simplex Bacillus simplex	3.0	0.9923	1.0000	<.0001	1.0000
		2.9				
Bsp55	Bacillus simplex		0.9909	1.0000	<.0001	1.0000
Bsp56	Bacillus simplex	6.2	1.0000	1.0000	<.0001	1.0000
Bsp57	Bacillus simplex	28.1	1.0000	1.0000	<.0001	0.4186
Bsp58	Bacillus simplex	6.4	1.0000	1.0000	<.0001	1.0000
Bsp59	Bacillus simplex	10.9	1.0000	1.0000	<.0001	1.0000
•		7.1	1.0000			1.0000
Bsp60	Bacillus simplex			1.0000	<.0001	
Bsp61	Bacillus simplex	8.5	1.0000	1.0000	<.0001	1.0000
Bsp62	Bacillus simplex	7.3	1.0000	1.0000	<.0001	1.0000
Bsp63	Bacillus simplex	4.6	0.9998	1.0000	<.0001	1.0000
Bsp64	Bacillus simplex	16.5	1.0000	1.0000	<.0001	1.0000
Bsp65	Bacillus simplex Bacillus simplex	8.3	1.0000	1.0000	<.0001	1.0000
Bsp66	Bacillus simplex	25.8	1.0000	1.0000	<.0001	0.6495
Bsp67	Bacillus simplex	0.0	0.8384	0.9999	<.0001	1.0000

Bsp68	Bacillus simplex	87.1	<.0001	<.0001	1.0000	<.0001
Bsp69	Bacillus simplex	24.3	1.0000	1.0000	<.0001	0.7967
Bsp70	Bacillus simplex	19.8	1.0000	1.0000	<.0001	0.9992
Bsp71	Bacillus simplex	31.7	1.0000	1.0000	<.0001	0.1792
Bsp72	Bacillus simplex	23.3	1.0000	1.0000	<.0001	0.8863
Bsp73	Bacillus simplex	17.1	1.0000	1.0000	<.0001	1.0000
Bsp74	Bacillus simplex	10.5	1.0000	1.0000	<.0001	1.0000
Bsp75	Bacillus simplex	5.6	1.0000	1.0000	<.0001	1.0000
Bsp76	Bacillus simplex	14.5	1.0000	1.0000	<.0001	1.0000
Bsp77	Bacillus simplex	23.1	1.0000	1.0000	<.0001	0.8975
Bsp78	Bacillus simplex	0.8	0.9047	1.0000	<.0001	1.0000
Bsp79	Bacillus simplex	49.4	0.2104	0.0483	<.0001	<.0001
Bsp80	Bacillus simplex	12.0	1.0000	1.0000	<.0001	1.0000
Bsp81	Bacillus simplex	9.6	1.0000	1.0000	<.0001	1.0000
Bsp82	Bacillus simplex	4.3	0.9995	1.0000	<.0001	1.0000
Bsp83	Bacillus simplex	2.7	0.9871	1.0000	<.0001	1.0000
Bsp84	Bacillus simplex	39.0	1.0000	0.9826	<.0001	0.1470
		0.9				1.0000
Bsp85	Bacillus simplex		0.9065	1.0000	<.0001	
Bsp86	Bacillus simplex	0.0	0.8384	0.9999	<.0001	1.0000
Bsp87	Bacillus simplex	4.9	1.0000	1.0000	<.0001	1.0000
Bsp88	Bacillus simplex	22.0	1.0000	1.0000	<.0001	0.9630
Bsp89	Bacillus simplex	38.1	0.9991	0.7674	<.0001	0.0215
Bsp90	Bacillus simplex	52.2	0.0340	0.0038	<.0001	<.0001
		10.6	1.0000	1.0000	<.0001	1.0000
Bsp91	Bacillus simplex					
Bsp92	Bacillus simplex	7.9	1.0000	1.0000	<.0001	1.0000
Bsp93	Bacillus simplex	26.4	1.0000	1.0000	<.0001	0.5802
Bsp94	Bacillus simplex	44.1	0.6469	0.2363	<.0001	0.0015
Bsp95	Bacillus simplex	0.4	0.8725	1.0000	<.0001	1.0000
Bsp96	Bacillus simplex	1.3	0.9365	1.0000	<.0001	1.0000
Bsp97		1.7	0.9544	1.0000	<.0001	1.0000
	Bacillus simplex					
Bsp98	Bacillus simplex	0.5	0.8785	1.0000	<.0001	1.0000
Bsp99	Bacillus simplex	1.5	0.9472	1.0000	<.0001	1.0000
Bsp100	Bacillus simplex	7.9	1.0000	1.0000	<.0001	1.0000
Bsp101	Bacillus simplex	49.9	0.5910	0.2574	0.0022	0.0057
Bsp102	Bacillus simplex	2.1	0.9714	1.0000	<.0001	1.0000
Bsp102 Bsp103	Bacillus simplex	49.3	0.2146	0.0495	<.0001	<.0001
Bsp104	Bacillus simplex	4.3	0.9995	1.0000	<.0001	1.0000
Bsp105	Bacillus simplex	12.0	1.0000	1.0000	<.0001	1.0000
Bsp106	Bacillus simplex	0.0	0.8384	0.9999	<.0001	1.0000
Bsp107	Bacillus simplex	0.0	0.8384	0.9999	<.0001	1.0000
Bsp108	Bacillus simplex	4.3	0.9995	1.0000	<.0001	1.0000
Bsp109	Bacillus simplex	3.1	0.9935	1.0000	<.0001	1.0000
Bsp110	Bacillus simplex	4.6	0.9998	1.0000	<.0001	1.0000
Bsp111	Bacillus simplex	2.8	0.9885	1.0000	<.0001	1.0000
Bsp112	Bacillus simplex	8.0	1.0000	1.0000	<.0001	1.0000
Bsp113	Bacillus simplex	63.3	0.0010	<.0001	0.0144	<.0001
Bsp114	Bacillus simplex	26.8	1.0000	1.0000	<.0001	0.9455
Bsp115	Bacillus simplex	48.2	0.7383	0.3598	0.0011	0.0106
	Bacillus simplex	9.8	1.0000	1.0000	<.0001	1.0000
Bsp116						
Bsp117	Bacillus simplex	16.1	1.0000	1.0000	<.0001	1.0000
Bsp118	Bacillus simplex	25.8	1.0000	1.0000	<.0001	0.6469
Bsp119	Bacillus simplex	38.0	0.9993	0.7773	<.0001	0.0223
Bsp120	Bacillus simplex	5.4	1.0000	1.0000	<.0001	1.0000
Bsp121	Bacillus simplex	18.7	1.0000	1.0000	<.0001	1.0000
Bsp122	Bacillus simplex	2.7	0.9871	1.0000	<.0001	1.0000
Bsp123	Bacillus simplex	74.2	0.0005	<.0001	0.8715	<.0001
		14.3				1.0000
Bsp124	Bacillus simplex		1.0000	1.0000	<.0001	
Bsp125	Bacillus simplex	6.7	1.0000	1.0000	<.0001	1.0000
Bsp126	Bacillus simplex	3.6	0.9972	1.0000	<.0001	1.0000
Bsp127	Bacillus simplex	0.8	0.8994	1.0000	<.0001	1.0000
Bsp128	Bacillus simplex	18.3	1.0000	1.0000	<.0001	1.0000
Bsp129	Bacillus simplex	99.9	<.0001	<.0001	1.0000	<.0001
Bsp130	Bacillus simplex	61.6	0.0490	0.0109	0.0960	<.0001
Bsp131	Bacillus simplex	1.1	0.9199	1.0000	<.0001	1.0000
Bsp132	Bacillus simplex	9.0	1.0000	1.0000	<.0001	1.0000
Bsp133	Bacillus simplex	73.7	0.0007	<.0001	0.8329	<.0001
Bsp134	Bacillus simplex	13.6	1.0000	1.0000	<.0001	1.0000
Bsp135	Bacillus simplex	10.1	1.0000	1.0000	<.0001	1.0000
Bsp136	Bacillus simplex	10.9	1.0000	1.0000	<.0001	1.0000
Bsp137	Bacillus simplex	7.1	1.0000	1.0000	<.0001	1.0000
	Bacillus simplex Bacillus simplex	0.0				
Bsp138	1		0.8384	0.9999	<.0001	1.0000
Bsp139	Bacillus simplex	67.6	0.0072	0.0011	0.3548	<.0001
Bsp140	Bacillus simplex	4.6	0.9998	1.0000	<.0001	1.0000
Bsp141	Bacillus simplex	99.9	<.0001	<.0001	1.0000	<.0001
Bsp142	Bacillus simplex	6.0	1.0000	1.0000	<.0001	1.0000
Bsp143	Bacillus simplex	3.8	1.0000	1.0000	<.0001	1.0000
	Bacillus simplex	10.8	1.0000	1.0000	<.0001	1.0000
Bsp144 Bsp145						
Bsp145	Bacillus simplex	0.0	0.8384	0.9999	<.0001	1.0000
Bsp146	Bacillus simplex	70.9	0.0021	0.0003	0.6075	<.0001
Bsp147	Bacillus simplex	6.1	1.0000	1.0000	<.0001	1.0000

Bsp148	Bacillus simplex	17.6	1.0000	1.0000	<.0001	1.0000
Bsp149	Bacillus simplex	64.7	0.0189	0.0035	0.2013	<.0001
•	-					
Bsp150	Bacillus simplex	2.1	0.9705	1.0000	<.0001	1.0000
Bsp151	Bacillus simplex	2.8	0.9889	1.0000	<.0001	1.0000
Bsp152	Bacillus simplex	14.7	1.0000	1.0000	<.0001	1.0000
Bsp153	Bacillus simplex	89.7	<.0001	<.0001	1.0000	<.0001
Bsp154	Bacillus simplex	48.2	0.7383	0.3598	0.0011	0.0106
Bsp155	Bacillus simplex	4.8	0.9999	1.0000	<.0001	1.0000
Bsp156	Bacillus simplex	3.4	0.9961	1.0000	<.0001	1.0000
Bsp157	Bacillus simplex	16.6	1.0000	1.0000	<.0001	1.0000
Bsp158	Bacillus simplex	30.8	1.0000	1.0000	<.0001	0.2245
Bsp159	Bacillus simplex	56.8	0.1650	0.0480	0.0251	0.0004
		9.6	1.0000	1.0000	<.0001	1.0000
Bsp160	Bacillus simplex					
Bsp161	Bacillus simplex	4.0	0.9989	1.0000	<.0001	1.0000
Bsp162	Bacillus simplex	7.1	1.0000	1.0000	<.0001	1.0000
Bsp163	Bacillus simplex	0.0	0.8384	0.9999	<.0001	1.0000
Bsp164	Bacillus simplex	0.0	0.8384	0.9999	<.0001	1.0000
Bsp165	Bacillus simplex	71.4	<.0001	<.0001	0.2188	<.0001
Bsp166	Bacillus simplex	1.8	0.9589	1.0000	<.0001	1.0000
Bsp167	Bacillus simplex	1.3	0.9365	1.0000	<.0001	1.0000
Bsp168	Bacillus simplex	69.1	0.0042	0.0006	0.4596	<.0001
Bsp169	Bacillus simplex	2.6	0.9851	1.0000	<.0001	1.0000
Bsp170	Bacillus simplex	3.1	0.9926	1.0000	<.0001	1.0000
Bsp171	Bacillus simplex	67.3	0.0079	0.0013	0.3390	<.0001
Bsp172	Bacillus simplex	0.0	0.8384	0.9999	<.0001	1.0000
Bsp173	Bacillus simplex	4.9	0.9999	1.0000	<.0001	1.0000
Bsp174	Bacillus simplex	5.3	1.0000	1.0000	<.0001	1.0000
Bsp175	Bacillus simplex	6.1	1.0000	1.0000	<.0001	1.0000
Bsp176	Bacillus simplex	34.7	1.0000	0.9866	<.0001	0.0730
Bsp177	-	1.4	0.9379	1.0000	<.0001	1.0000
•	Bacillus simplex					
Bsp178	Bacillus simplex	1.7	0.9567	1.0000	<.0001	1.0000
Bsp179	Bacillus simplex	3.6	0.9975	1.0000	<.0001	1.0000
Bsp180	Bacillus simplex	7.3	1.0000	1.0000	<.0001	1.0000
	1					
Bsp181	Bacillus simplex	5.9	1.0000	1.0000	<.0001	1.0000
Bsp182	Bacillus simplex	1.6	0.9521	1.0000	<.0001	1.0000
Bsp183	Bacillus simplex	3.3	0.9948	1.0000	<.0001	1.0000
		4.8	0.9999			1.0000
Bsp184	Bacillus simplex			1.0000	<.0001	
Bsp185	Bacillus simplex	9.5	1.0000	1.0000	<.0001	1.0000
Bsp186	Bacillus simplex	8.3	1.0000	1.0000	<.0001	1.0000
Bsp187	Bacillus simplex	35.6	1.0000	0.9589	<.0001	0.0540
•	-					
Bsp188	Bacillus simplex	73.0	0.0009	0.0001	0.7829	<.0001
Bsp189	Bacillus simplex	7.3	1.0000	1.0000	<.0001	1.0000
Bsp190	Bacillus simplex	2.2	0.9754	1.0000	<.0001	1.0000
Bsp191	Bacillus simplex	2.5	0.9822	1.0000	<.0001	1.0000
Bsp192	Bacillus simplex	15.1	1.0000	1.0000	<.0001	1.0000
Bsp193	Bacillus simplex	4.6	0.9998	1.0000	<.0001	1.0000
Bsp194	Bacillus simplex	7.8	1.0000	1.0000	<.0001	1.0000
Bsp195	Bacillus simplex	32.1	1.0000	1.0000	<.0001	0.1594
Bsp196	Bacillus simplex	95.1	<.0001	<.0001	1.0000	<.0001
Bsp197	Bacillus simplex	38.2	0.9987	0.7524	<.0001	0.0203
		48.4	0.2692	0.0672	<.0001	0.0002
Bsp198	Bacillus simplex					
Bsp199	Bacillus simplex	41.0	0.9246	0.4705	<.0001	0.0063
Bsp200	Bacillus simplex	30.9	1.0000	1.0000	<.0001	0.2174
Bsp201	Bacillus simplex	1.7	0.9567	1.0000	<.0001	1.0000
	-					
Bsp202	Bacillus simplex	14.7	1.0000	1.0000	<.0001	1.0000
Bsp203	Bacillus simplex	13.2	1.0000	1.0000	<.0001	1.0000
Bsp204	Bacillus simplex	21.1	1.0000	1.0000	<.0001	0.9164
Bsp205	Bacillus simplex	5.5	1.0000	1.0000	<.0001	1.0000
Bsp206	Bacillus simplex	0.0	0.8384	0.9999	<.0001	1.0000
Bsp207	Bacillus simplex	2.2	0.9738	1.0000	<.0001	1.0000
Bsp208	Bacillus simplex	27.5	1.0000	1.0000	<.0001	0.4728
Bssin1	Bacillus subtilis subsp. inaquosorum	0.0	0.8384	0.9999	<.0001	1.0000
	1 1					
Bssin2	Bacillus subtilis subsp. inaquosorum	1.0	0.9166	1.0000	<.0001	1.0000
Bssin3	Bacillus subtilis subsp. inaquosorum	7.5	1.0000	1.0000	<.0001	1.0000
Bssin4	Bacillus subtilis subsp. inaquosorum	6.8	1.0000	1.0000	<.0001	1.0000
Bssin5	Bacillus subtilis subsp. inaquosorum	14.4	1.0000	1.0000	<.0001	1.0000
Bssin6	Bacillus subtilis subsp. inaquosorum	25.6	1.0000	1.0000	<.0001	0.6625
Bssin7	Bacillus subtilis subsp. inaquosorum	2.4	0.9810	1.0000	<.0001	1.0000
Bssin8	Bacillus subtilis subsp. inaquosorum	4.6	0.9998	1.0000	<.0001	1.0000
Bssin9	Bacillus subtilis subsp. inaquosorum	4.8	0.9999	1.0000	<.0001	1.0000
Bssin10	Bacillus subtilis subsp. inaquosorum	6.1	1.0000	1.0000	<.0001	1.0000
Bssin11	Bacillus subtilis subsp. inaquosorum	0.0	0.8384	0.9999	<.0001	1.0000
Bssin12	Bacillus subtilis subsp. inaquosorum	0.0	0.8384	0.9999	<.0001	1.0000
Bssin13	Bacillus subtilis subsp. inaquosorum	1.4	0.9379	1.0000	<.0001	1.0000
Bssin14	Bacillus subtilis subsp. inaquosorum	1.7	0.9533	1.0000	<.0001	1.0000
Bssin15	Bacillus subtilis subsp. inaquosorum	0.5	0.8805	1.0000	<.0001	1.0000
Bsssu1	Bacillus subtilis subsp. subtilis	0.0	0.8384	0.9999	<.0001	1.0000
Bsssu2	Bacillus subtilis subsp. subtilis	74.8	0.0004	<.0001	0.9084	<.0001
Bsssu3	Bacillus subtilis subsp. subtilis	74.2	0.0005	<.0001	0.8715	<.0001
Bsssu4	Bacillus subtilis subsp. subtilis	0.7	0.8920	1.0000	<.0001	1.0000

Bte1	Bacillus tequilensis	29.6	1.0000	1.0000	<.0001	0.3035
Bte2	Bacillus tequilensis	23.7	1.0000	1.0000	<.0001	0.8537
Bte3	Bacillus tequilensis	0.0	0.8384	0.9999	<.0001	1.0000
Bth1	Bacillus thuringiensis	0.0	0.8384	0.9999	<.0001	1.0000
Bth2	Bacillus thuringiensis	2.6	0.9845	1.0000	<.0001	1.0000
Bth3	Bacillus thuringiensis	2.8	0.9889	1.0000	<.0001	1.0000
Bth4	Bacillus thuringiensis	1.6	0.9497	1.0000	<.0001	1.0000
Bto1	Bacillus toyonensis	3.2	0.9943	1.0000	<.0001	1.0000
Bto2	Bacillus toyonensis	14.2	1.0000	1.0000	<.0001	1.0000
Bto3	Bacillus toyonensis	3.1	0.9926	1.0000	<.0001	1.0000
Bto4	Bacillus toyonensis	11.0	1.0000	1.0000	<.0001	1.0000
Bto5	Bacillus toyonensis	0.0	0.8384	0.9999	<.0001	1.0000
Bto6	Bacillus toyonensis	5.2	1.0000	1.0000	<.0001	1.0000
Bto7	Bacillus toyonensis	13.2	1.0000	1.0000	<.0001	1.0000
Bto8	Bacillus toyonensis	7.8	1.0000	1.0000	<.0001	1.0000
Bto9	Bacillus toyonensis	5.7	1.0000	1.0000	<.0001	1.0000
Bto10	Bacillus toyonensis	64.7	0.0005	<.0001	0.0250	<.0001
Bto11		62.7	0.0003	0.0001	0.0230	<.0001
	Bacillus toyonensis					
Bto12	Bacillus toyonensis	1.9	0.9650	1.0000	<.0001	1.0000
Bto13	Bacillus toyonensis	21.0	1.0000	1.0000	<.0001	0.9905
Bto14	Bacillus toyonensis	0.0	0.8384	0.9999	<.0001	1.0000
Bto15	Bacillus toyonensis	0.0	0.8384	0.9999	<.0001	1.0000
Bto16	Bacillus toyonensis	13.5	1.0000	1.0000	<.0001	1.0000
Bto17	Bacillus toyonensis	0.7	0.8939	1.0000	<.0001	1.0000
Bto18	Bacillus toyonensis	5.5	1.0000	1.0000	<.0001	1.0000
Bto19	Bacillus toyonensis	0.0	0.8384	0.9999	<.0001	1.0000
Bto20	Bacillus toyonensis	5.9	1.0000	1.0000	<.0001	1.0000
		11.5		1.0000		
Bto21	Bacillus toyonensis		1.0000		<.0001	1.0000
Bto22	Bacillus toyonensis	64.8	0.0004	<.0001	0.0265	<.0001
Bto23	Bacillus toyonensis	51.1	0.1304	0.0258	<.0001	<.0001
Bto24	Bacillus toyonensis	8.7	1.0000	1.0000	<.0001	1.0000
Bto25	Bacillus toyonensis	18.2	1.0000	1.0000	<.0001	1.0000
Bto26	Bacillus toyonensis	0.0	0.8384	0.9999	<.0001	1.0000
Bto27	Bacillus toyonensis	0.0	0.8384	0.9999	<.0001	1.0000
Bto28	Bacillus toyonensis	6.0	1.0000	1.0000	<.0001	1.0000
Bto29	Bacillus toyonensis	17.3	1.0000	1.0000	<.0001	1.0000
Bto30	Bacillus toyonensis	36.9	1.0000	0.8765	<.0001	0.0338
Bto30 Bto31	Bacillus toyonensis	3.8	0.9982	1.0000	<.0001	1.0000
		10.3				
Bto32	Bacillus toyonensis		1.0000	1.0000	<.0001	1.0000
Bto33	Bacillus toyonensis	0.3	0.8664	1.0000	<.0001	1.0000
Bto34	Bacillus toyonensis	0.0	0.8384	0.9999	<.0001	1.0000
Bto35	Bacillus toyonensis	0.0	0.8384	0.9999	<.0001	1.0000
Bto36	Bacillus toyonensis	1.1	0.9246	1.0000	<.0001	1.0000
Bto37	Bacillus toyonensis	0.5	0.8785	1.0000	<.0001	1.0000
Bto38	Bacillus toyonensis	31.7	1.0000	1.0000	<.0001	0.1792
Bto39	Bacillus toyonensis	0.8	0.9047	1.0000	<.0001	1.0000
Bto40	Bacillus toyonensis	1.0	0.9133	1.0000	<.0001	1.0000
Bto41	Bacillus toyonensis	1.6	0.9484	1.0000	<.0001	1.0000
Bto42	Bacillus toyonensis	0.0	0.8384	0.9999	<.0001	1.0000
Bto42 Bto43		1.6				1.0000
	Bacillus toyonensis		0.9509 0.8384	1.0000	<.0001	
Bto44	Bacillus toyonensis	0.0		0.9999	<.0001	1.0000
Bto45	Bacillus toyonensis	11.9	1.0000	1.0000	<.0001	1.0000
Bto46	Bacillus toyonensis	0.6	0.8882	1.0000	<.0001	1.0000
Bto47	Bacillus toyonensis	0.9	0.9099	1.0000	<.0001	1.0000
Bto48	Bacillus toyonensis	0.6	0.8901	1.0000	<.0001	1.0000
Bto49	Bacillus toyonensis	0.4	0.8725	1.0000	<.0001	1.0000
Bto50	Bacillus toyonensis	1.8	0.9599	1.0000	<.0001	1.0000
Bto51	Bacillus toyonensis	67.6	<.0001	<.0001	0.0718	<.0001
Bto52	Bacillus toyonensis	1.9	0.9620	1.0000	<.0001	1.0000
Bto53	Bacillus toyonensis	20.3	1.0000	1.0000	<.0001	0.9971
Bto55 Bto54	Bacillus toyonensis	33.1	1.0000	0.9994	<.0001	0.1185
Bto55	Bacillus toyonensis	42.2	0.8384	0.3722	<.0001	0.0038
Bto55 Bto56	Baculus toyonensis Bacillus toyonensis	42.2	0.8384	0.3722	<.0001	1.0000
Bto57	Bacillus toyonensis	34.2	1.0000	0.9932	<.0001	0.0837
Bto58	Bacillus toyonensis	1.1	0.9215	1.0000	<.0001	1.0000
Bto59	Bacillus toyonensis	1.7	0.9567	1.0000	<.0001	1.0000
Bto60	Bacillus toyonensis	0.9	0.9116	1.0000	<.0001	1.0000
Bto61	Bacillus toyonensis	0.0	0.8384	0.9999	<.0001	1.0000
Bto62	Bacillus toyonensis	1.7	0.9544	1.0000	<.0001	1.0000
Bto63	Bacillus toyonensis	0.4	0.8745	1.0000	<.0001	1.0000
Bto64	Bacillus toyonensis	5.1	1.0000	1.0000	<.0001	1.0000
Bto65	Bacillus toyonensis	1.0	0.9133	1.0000	<.0001	1.0000
Bto66	Bacillus toyonensis	0.8	0.9012	1.0000	<.0001	1.0000
Bto67	Bacillus toyonensis	3.5	0.9969	1.0000	<.0001	1.0000
Bto68	Bacillus toyonensis	0.0	0.8384	0.9999	<.0001	1.0000
Bto69	Bacillus toyonensis	19.3	1.0000	1.0000	<.0001	0.9998
Bto70	Bacillus toyonensis	0.9	0.9116	1.0000	<.0001	1.0000
Bve1	Bacillus velezensis	0.0	0.8384	0.9999	<.0001	1.0000
Bve2	Bacillus velezensis	54.7	0.2613	0.0861	0.0125	0.0009
Bve3	Bacillus velezensis	11.4	1.0000	1.0000	<.0001	1.0000

Bve4	Bacillus velezensis	32.1	1.0000	1.0000	<.0001	0.1572
Bve5	Bacillus velezensis	10.2	1.0000	1.0000	<.0001	1.0000
Bve6	Bacillus velezensis	7.1	1.0000	1.0000	<.0001	1.0000
Bve7	Bacillus velezensis	7.9	1.0000	1.0000	<.0001	1.0000
Bve8	Bacillus velezensis	17.7	1.0000	1.0000	<.0001	1.0000
Bve9	Bacillus velezensis	15.0	1.0000	1.0000	<.0001	1.0000
Bve10	Bacillus velezensis	11.8	1.0000	1.0000	<.0001	1.0000
Bve11	Bacillus velezensis	0.0	0.8384	0.9999	<.0001	1.0000
Bve12	Bacillus velezensis	46.4	0.8749	0.4883	0.0005	0.0192
Bve13	Bacillus velezensis	39.8	1.0000	0.9616	<.0001	0.1216
Bve14		15.3				
	Bacillus velezensis		1.0000	1.0000	<.0001	1.0000
Bve15	Bacillus velezensis	20.7	1.0000	1.0000	<.0001	1.0000
Bve16	Bacillus velezensis	23.8	1.0000	1.0000	<.0001	0.8472
Bve17	Bacillus velezensis	17.0	1.0000	1.0000	<.0001	1.0000
Bve18	Bacillus velezensis	0.0	0.8384	0.9999	<.0001	1.0000
Bve19	Bacillus velezensis	0.0	0.8384	0.9999	<.0001	1.0000
Bve20	Bacillus velezensis	0.0	0.8384	0.9999	<.0001	1.0000
Bve21	Bacillus velezensis	9.4	1.0000	1.0000	<.0001	1.0000
Bve22	Bacillus velezensis	0.0	0.8384	0.9999	<.0001	1.0000
Bve23	Bacillus velezensis	0.0	0.8384	0.9999	<.0001	1.0000
Bve24	Bacillus velezensis	1.9	0.9650	1.0000	<.0001	1.0000
Bve25	Bacillus velezensis	1.1	0.9231	1.0000	<.0001	1.0000
		4.9				
Bve26	Bacillus velezensis		0.9999	1.0000	<.0001	1.0000
Bve27	Bacillus velezensis	2.3	0.9769	1.0000	<.0001	1.0000
Bve28	Bacillus velezensis	2.7	0.9866	1.0000	<.0001	1.0000
Bve29	Bacillus velezensis	3.8	0.9982	1.0000	<.0001	1.0000
Bve30	Bacillus velezensis	0.9	0.9082	1.0000	<.0001	1.0000
Bve31	Bacillus velezensis	33.9	1.0000	0.9961	<.0001	0.0920
Bve32	Bacillus velezensis	1.1	0.9215	1.0000	<.0001	1.0000
Bve33	Bacillus velezensis	15.1	1.0000	1.0000	<.0001	1.0000
Bve34	Bacillus velezensis	6.7	1.0000	1.0000	<.0001	1.0000
Bve35	Bacillus velezensis	4.8	0.9999	1.0000	<.0001	1.0000
Bve36	Bacillus velezensis	13.6	1.0000	1.0000	<.0001	1.0000
			1.0000			
Bve37	Bacillus velezensis	39.2		0.9795	<.0001	0.1420
Bve38	Bacillus velezensis	2.7	0.9876	1.0000	<.0001	1.0000
Bve39	Bacillus velezensis	3.3	0.9955	1.0000	<.0001	1.0000
Bve40	Bacillus velezensis	12.5	1.0000	1.0000	<.0001	1.0000
Bve41	Bacillus velezensis	3.8	0.9982	1.0000	<.0001	1.0000
Bwe1	Bacillus weihenstephanensis	8.0	1.0000	1.0000	<.0001	1.0000
Bwe2		21.1				
	Bacillus weihenstephanensis		1.0000	1.0000	<.0001	0.9889
Bwe3	Bacillus weihenstephanensis	31.5	1.0000	1.0000	<.0001	0.1892
Bwe4	Bacillus weihenstephanensis	47.0	0.3722	0.1050	<.0001	0.0003
Bwe5	Bacillus weihenstephanensis	1.2	0.9277	1.0000	<.0001	1.0000
Bwe6	Bacillus weihenstephanensis	93.3	<.0001	<.0001	1.0000	<.0001
Bwe7	Bacillus weihenstephanensis	0.7	0.8975	1.0000	<.0001	1.0000
Bwe8	Bacillus weihenstephanensis	3.4	0.9957	1.0000	<.0001	1.0000
Bwe9	Bacillus weihenstephanensis	6.7	1.0000	1.0000	<.0001	1.0000
Bwe10	Bacillus weihenstephanensis	1.1	0.9199	1.0000	<.0001	1.0000
Bwe11	Bacillus weihenstephanensis	0.6	0.8901	1.0000	<.0001	1.0000
Bwe12	Bacillus weihenstephanensis	11.1	1.0000	1.0000	<.0001	1.0000
Bwe13	Bacillus weihenstephanensis	1.1	0.9231	1.0000	<.0001	1.0000
Bwe14	Bacillus weihenstephanensis	0.0		0.9999		
	1		0.8384		<.0001	1.0000
Bwe15	Bacillus weihenstephanensis	14.3	1.0000	1.0000	<.0001	1.0000
Bwe16	Bacillus weihenstephanensis	17.9	1.0000	1.0000	<.0001	1.0000
Bwe17	Bacillus weihenstephanensis	29.9	1.0000	1.0000	<.0001	0.2792
Bwe18	Bacillus weihenstephanensis	39.1	0.9932	0.6676	<.0001	0.0146
Bwe19	Bacillus weihenstephanensis	1.3	0.9336	1.0000	<.0001	1.0000
Bwe20	1					1.0000
	Bacillus weihenstephanensis	1.1	0.9246	1.0000	<.0001	
Bwe21	Bacillus weihenstephanensis	0.6	0.8901	1.0000	<.0001	1.0000
Enx1	Enterobacter xiangfangensis	0.0	0.8384	0.9999	<.0001	1.0000
Exs1	Exiguobacterium sibiricum	28.7	1.0000	1.0000	<.0001	0.3702
Fso1	Fictibacillus solisalsi	59.6	0.0834	0.0206	0.0572	0.0001
Lma1	Lysinibacillus macroides	13.1	1.0000	1.0000	<.0001	1.0000
		20.6	1.0000	1.0000	<.0001	0.9946
Lpa1	Lysinibacillus parviboronicapiens					
Paam1	Paenibacillus amylolyticus	16.5	1.0000	1.0000	<.0001	1.0000
Paam2	Paenibacillus amylolyticus	26.5	1.0000	1.0000	<.0001	0.5751
Paam3	Paenibacillus amylolyticus	22.1	1.0000	1.0000	<.0001	0.9589
Paam4	Paenibacillus amylolyticus	11.0	1.0000	1.0000	<.0001	1.0000
Paam5	Paenibacillus amylolyticus	11.6	1.0000	1.0000	<.0001	1.0000
Paam6	Paenibacillus amylolyticus	4.1	0.9992	1.0000	<.0001	1.0000
Paam7	Paenibacillus amylolyticus	4.4	0.9996	1.0000	<.0001	1.0000
Paam8	Paenibacillus amylolyticus	3.4	0.9961	1.0000	<.0001	1.0000
Paam9	Paenibacillus amylolyticus	9.6	1.0000	1.0000	<.0001	1.0000
Paba1	Paenibacillus barcinonensis	17.4	1.0000	1.0000	<.0001	1.0000
Pagl1	Paenibacillus glycanilyticus	7.5	1.0000	1.0000	<.0001	1.0000
Pail1	Paenibacillus illinoisensis	16.8				
			1.0000	1.0000	<.0001	1.0000
Pala1	Paenibacillus lautus	0.0	0.8384	0.9999	<.0001	1.0000
Pala2	Paenibacillus lautus	15.3	1.0000	1.0000	<.0001	1.0000
Pala3	Paenibacillus lautus	7.3	1.0000	1.0000	<.0001	1.0000
Pala4	Paenibacillus lautus	10.1	1.0000	1.0000	<.0001	1.0000

Pamd1	Paenibacillus macquariensis subsp. defensor	12.2	1.0000	1.0000	<.0001	1.0000
Panag1	Pantoea agglomerans	0.0	0.8384	0.9999	<.0001	1.0000
Paod1	Paenibacillus odorifer	25.7	1.0000	1.0000	<.0001	0.6573
Pata1	Paenibacillus taichungensis	64.4	0.0211	0.0040	0.1865	<.0001
Path1	Paenibacillus thiaminolyticus	1.7	0.9544	1.0000	<.0001	1.0000
Patu1	Paenibacillus tundrae	11.7	1.0000	1.0000	<.0001	1.0000
Pava1	Paenibacillus validus	13.7	1.0000	1.0000	<.0001	1.0000
Paxy1	Paenibacillus xylanexedens	74.8	<.0001	<.0001	0.4681	<.0001
Paxy2	Paenibacillus xylanexedens	22.5	1.0000	1.0000	<.0001	0.9379
Rhil1	Rhizobium larrymoorei	0.7	0.8975	1.0000	<.0001	1.0000
Rhoq1	Rhodococcus qingshengii	0.0	0.8384	0.9999	<.0001	1.0000
Soi1	Solibacillus isronensis	8.9	1.0000	1.0000	<.0001	1.0000
Spg1	Sporosarcina globispora	22.2	1.0000	1.0000	<.0001	0.9533
Spg2	Sporosarcina globispora	1.1	0.9246	1.0000	<.0001	1.0000
Spg3	Sporosarcina globispora	6.1	1.0000	1.0000	<.0001	1.0000
Spg4	Sporosarcina globispora	20.2	1.0000	1.0000	<.0001	0.9978
Spg5	Sporosarcina globispora	45.5	0.5083	0.1639	<.0001	0.0008
Spg6	Sporosarcina globispora	18.5	1.0000	1.0000	<.0001	1.0000
Spg7	Sporosarcina globispora	2.6	0.9845	1.0000	<.0001	1.0000
Spg8	Sporosarcina globispora	6.0	1.0000	1.0000	<.0001	1.0000
Spg9	Sporosarcina globispora	26.0	1.0000	1.0000	<.0001	0.6211
Spg10	Sporosarcina globispora	0.0	0.8384	0.9999	<.0001	1.0000
Uid1	Bacillus aerophilus/stratosphaericus*	31.7	1.0000	1.0000	<.0001	0.5868
Uid2	Bacillus stratosphericus/aerophilus*	11.4	1.0000	1.0000	<.0001	1.0000
Uid3	Bacillus stratosphericus/aerophilus*	0.0	0.8384	0.9999	<.0001	1.0000
Uid4	Bacillus stratosphericus/aerophilus*	6.6	1.0000	1.0000	<.0001	1.0000
Uid5	Bacillus stratosphericus/aerophilus*	10.2	1.0000	1.0000	<.0001	1.0000
Uid6	Bacillus stratosphericus/aerophilus*	24.4	1.0000	1.0000	<.0001	0.7846
Uid7	Bacillus stratosphericus/aerophilus*	47.4	0.3386	0.0920	<.0001	0.0003
Uid8	Bacillus altitudinis/stratosphericus/aerophilus*	0.0	0.8384	0.9999	<.0001	1.0000
Uid9	Bacillus altitudinis/stratosphericus/aerophilus*	5.1	1.0000	1.0000	<.0001	1.0000
Uid10	Bacillus altitudinis/stratosphericus/aerophilus*	1.3	0.9336	1.0000	<.0001	1.0000
Uid11	Unidentified species*	8.2	1.0000	1.0000	<.0001	1.0000
Uid12	Unidentified species*	21.8	1.0000	1.0000	<.0001	0.9697
Uid13	Unidentified species*	1.9	0.9650	1.0000	<.0001	1.0000
Control	Active ingredient ^c					
Poncho/Votivo	Clothianidin and B. firmus I-1582	21.1		1.0000	<.0001	0.9885
Clariva	Pasteuria nishizawae	16.3	1.0000		<.0001	0.0000
Temik	Aldicarb	99.6	<.0001	<.0001		<.0001
Untreated control	Sterile distilled water	2.8	0.9885	1.0000	<.0001	
			DROG GL D D DV			

^aIn vitro tests were performed in 96-well plates. Data collected were analyzed in SAS 9.4 using PROC GLIMMIX procedure at significant level of $\alpha \le 0.05$. ^aIn vitro tests were performed in 96-well plates. Data collected were analyzed in SAS 9.4 using PROC GLIMMIX procedure at significant level of $\alpha \le 0.05$. P value less than 0.05 indicate a significant effect. Adjusted P values were obtained according to Dunnett's method. The LS-means are presented in the tables with adjusted P values to determine statistical differences. ^bMortality was determined by calculating as the following equation: [(live J2 prior to exposure - live J2 at 48 hours) / live J2 prior to exposure] × 100. ^cActive ingredients for the nematicides Poncho/Votivo are Clothianidin plus B. firmus I-1582, Clariva is Pasteuria nishizawae, Temik is Aldicarb, ^{condentited potential is terihol divided divided divided divided terms of the state of the stat}

and untreated control is sterile distilled water.

^dDunnett's option was used in the LSMEANS statement to assess the differences between bacterial isolates and the Poncho/Votivo, Clariva, Temik, and the untreted control.

*Indistinguishable species and unidentified strains.

Code	Scientific name
Bce52	Bacillus cereus
Bpu7	Bacillus pumilus
Bsp209	Bacillus simplex
Bsp210	Bacillus simplex
Bsp211	Bacillus simplex
Bsp212	Bacillus simplex
Bsp213	Bacillus simplex
Bsp214	Bacillus simplex
Bsp215	Bacillus simplex
Bsp216	Bacillus simplex
Bsp217	Bacillus simplex
Bsp218	Bacillus simplex
Bsp219	Bacillus simplex
Bto71	Bacillus toyonensis
Pape1	Paenibacillus peoriae
Spg11	Sporosarcina globispora
Spg12	Sporosarcina globispora
Sps1	Sporosarcina psychrophila
Uid13	Bacillus stratosphericus/aerophilus*
Uid14	Unidentified species*
Uid15	Unidentified species*

*Indistinguishable species and unidentified strains.