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Abstract 
 
 
 The use of RFID technology is increasing in retail stores, because it improves the 

performance of automated checkout, inventory and theft detection systems. In this dissertation, 

we present a novel implementation of a mobile robot that can perform retail inventory 

autonomously. The robot builds the map by its sensors for surrounding environments. With the 

built map, the robot can autonomously generate a path to cover all the target spaces in the 

environment, and then it can perform the RFID based inventory. Experimental results show that 

our robot can efficiently perform RFID based inventory in a retail environment with complex 

layout, and provides inventory accuracy that compares favorably to manual inventory. 

            In this dissertation, we also present two RFID tag localization algorithms, the fixed 

power and variable power tag localization algorithms. Both algorithms are probabilistic in 

nature. For fixed-power localization, the robot collects RFID tag responses at a fixed power of 

RFID reader while it navigates in the store. After collecting enough responses for a RFID tag in 

different positions, the fixed power tag localization algorithm can estimate the location for this 

tag by recursive Bayes updating. The variable power tag localization algorithm needs the robot 

to collect the RFID tag responses at varying power levels of RFID reader from multiple 

locations. When a tag can be read at a high power level, but cannot be read at a low power level, 

we can determine relative range of the tag to the robot with higher resolution than a reader 

working at a fixed power level. After a number of successful tag responses are measured, the 

variable power tag localization algorithm calculates locations for each RFID tag. The 
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experimental results show that the fixed power tag localization algorithm takes about 30 minutes 

to estimate all the location of items in our mock retail store, in contrast, the variable method 

needs about 6 hours to complete the same task. The variable power tag localization algorithm 

provides better localization accuracy, the average error is about 0.5 meter. The fixed power tag 

localization algorithm provides about 1.5 meter localization accuracy. Therefore, two algorithms 

are fitted for two different application scenarios: The fix power tag localization algorithm can be 

used to quickly estimate the location of merchandise, and the variable power tag localization 

algorithm could be deployed for a scenario where more precise localization result is needed. 
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Chapter 1 Introduction 

Since the emergence of low-cost and reliable RFID tags, the retail world is undergoing a 

rapid transition from bar code to RFID [1]. A number of consequent benefits are available to the 

retailer and the customer, but these are not fully realized unless frequent, accurate inventory can 

be performed. Conventional RFID-based inventory counting, which is called “cycle counting,” 

requires people to walk around the store or warehouse using hand-held scanners to collect the 

RFID tags responses. The process is not particularly well-defined – each individual tends to 

develop his/her own approach that seems to yield the best results in the shortest amount of time. 

It generally involves walking around racks and shelves while waving the scanner. The scanner 

provides audible feedback (“popcorn”) that enables the user to determine when no new tags have 

been detected in a particular area. This process is time-consuming and labor-intensive. It also 

provides a relatively static picture of the inventory, and does not provide a convenient way to 

determine the location of items in the store.  

Meanwhile, in the last decade considerable progress has been made in the development of 

autonomous robots. The use of robots is increasing in environments relevant to the everyday life 

of the average person, such as tour guide robots [2] or hospital service robots [3].  Furthermore, 

since the introduction of the first commercially available vacuum cleaner robot, Electrolux 

Trilobrite [4], more and more families have begun to accept and use vacuum cleaner robots. The 

Roomba vacuum of iRobot is the most prevalent one, having entered the market with 

overwhelming success.  The success of these robotic vacuum cleaners is just the tip of the 
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iceberg for what autonomous mobile robots are capable of doing, and we believe more and more 

autonomous robots will service us in our daily life. 

 Autonomous robot research has focused on applications that are too monotonous or 

dangerous for humans to perform. An autonomous lawn mower was built by Auburn University 

[5]. It is capable of cutting around fences, and during operation it can autonomously avoid 

dynamic obstacles such as a person walking in front of it. Underwater robots are designed to 

explore the deep oceans, as well as rivers, lakes, and costal waters [6].  As we mentioned 

previously, performing retail inventory is a typical boring, time-consuming and labor-intensive 

task for a human being. Hence, deploying an autonomous robot to do inventory in a retail 

environment has captured the interest of retailers. Retailers are getting serious about deploying 

robots on the sales floor and in the stockroom for various aspects of inventory management. 

There are several pioneering robotic applications reported for similar purposes.  

Ehrenberg describes a system called LiBot, which automates the shelf-reading process 

and finds misplaced books autonomously in a library [7].  The system determines the order of the 

books on the shelves, and localizes each book. The paper addresses issues such as metal shelves 

and thin books with RFID tags in close proximity, which affect location accuracy. To deal with 

the limited location accuracy of the HF RFID system and the resulting uncertainty about the true 

position of the RFID tags, the authors used a probabilistic approach based on recursive Bayesian 

updating. Various limitations are described in the paper, primarily due to idealizing assumptions 

about the placement of tags, and the ability of the robot to maneuver precisely.  

Schairer presents a system for machine-aided inventory, along with results from testing in 

a simulated supermarket environment [8]. The robot, equipped with an RFID reader, traverses 

the supermarket environment while constantly detecting products within its range. The data are 
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transmitted using WLAN to a central computer which holds a model of the current state of the 

system. These data are augmented by additional product-specific information provided by an 

Enterprise Resource Planning (ERP) system. The detected objects as well as additional product 

data are visualized using Augmented Reality (AR) techniques. The robot localizes itself using 

the existing infrastructure of different ambient sensors (RFID, Bluetooth, WLAN).  

Melià -Seguí describes an actual installation in an apparel retail store in Barcelona, and 

presents some of the initial conclusions after several months of operation with real customers. In 

this case the RFID-based inventory is performed [9].    

1.1 Goals 

The work presented in this dissertation aims to develop an autonomous robot system to 

process RFID based inventory and localize the RFID tagged merchandise.  In such a system, an 

autonomous robot equipped with RFID scanner and several antennae is deployed to cover all the 

merchandise-containing space of a retail store. The robot will autonomously navigate in the retail 

environment to scan RFID tags and localize each tag, therefore localizing the related item. A key 

feature of the navigation algorithm is the ability to intelligently plan paths that bring the robot 

near areas to be scanned, as opposed to wasting time in open space. In a sense this is the 

complementary behavior to the well-studied, classical coverage problem in mobile robotics. The 

latter would be used, for example, in a robotic vacuum cleaner, or an autonomous agricultural 

tractor. In the present instance, we want to guide the robot near shelves and fixtures that contain 

merchandise, while minimizing the time and energy spent traversing open areas. This technology 

offers the possibility to perform inventory much more frequently than would be cost-effective for 

manual operations.  
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In this dissertation, we also propose two RFID tag localization algorithms for our robot; 

they are referred to as fixed power localization and variable power localization. Both algorithms 

are probabilistic in nature. The goal is to accurately report the location of multiple passive RFID 

tags in a target place. Passive RFID is not a precise location technology; we will explain more 

about this in Chapter 3. The fixed power tag localization algorithm will collect RFID tag 

responses at a fix power of the RFID reader. After collecting enough responses for an RFID tag 

in different positions, the fixed power tag localization algorithm could estimate the location for 

this tag. The greatest complicating factor to affect location accuracy is radio wave reflection 

(multipath fading). One approach to solve this problem is varying the power of the reader 

through the antenna to reduce multipath. When the successful tag responses are measured at 

varying power levels from multiple locations in the test area, the variable power tag localization 

algorithm can be used to precisely locate the RFID tag. For example, when a tag can be read at a 

high power level, but cannot be read at a low power level, we can determine relative range of the 

tag to the robot. The goal of the variable power algorithm is that we can determine the location of 

passive RFID tag in a retail environment with accuracy of 0.5 meter. 

1.2 Motivation 

The first challenge of an autonomous robot operating in a retail environment is how to 

handle a highly unstructured and dynamic environment. To perform the task, sensors must be 

used to perceive the environment surrounding the robot. Sonar, laser range-finders and depth 

image cameras have been the most prominent technology utilized in mobile robot community. 

Many indoor robot applications deploy a 2D map to represent the surrounding environment that 

is built by the mounted sensors. Compared to a 3D map, the 2D map consumes very little 

computing resources which means the autonomous navigation could be deployed with a cost 
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effective hardware platform. The drawback of a 2D map is that it only provides a single vertical 

slice representative of the environment. This drawback will limit the utility of an autonomous 

robot operating in a retail environment which is highly geometrically intricate.  

To address this problem, we introduce a multilevel map which represents the 

environment at multiple heights. Such a map is a practical departure from the ideal of a complete 

3-D map, which is intractable computationally. It provides rich vertical information for the 

environment while keeping the advantage of limited computing resource consumption. In order 

to deploy a mobile robot to perform retail inventory autonomously, a key feature of the 

navigation algorithm is the ability to intelligently plan paths that bring the robot near areas to be 

scanned, as opposed to wasting time in open space. We propose an inventory based path planner 

algorithm that can efficiently guide the robot to cover whole target spaces to collect RFID tag 

responses. 

On the other hand, the localization of passive RFID tags, which are dominant in retail, is 

another challenge for the RFID community. The intricate environment will prevent any existing 

wireless localization algorithm to be deployed for localizing passive RFID tags in the retail 

environment. We propose two RFID tag localization algorithms, fixed power and variable power 

tag localization algorithm, to handle this task. The fixed power tag localization algorithm is more 

efficient than the variable power tag localization algorithm, however, the localization accuracy is 

lower than the variable power one. 

The remainder of this dissertation is organized in the following manner: Chapter 2 

provides an overview of the field of autonomous mobile robots and wireless localization.  

Chapter 3 introduces the background of RFID technology. Chapter 4 details the whole 

navigational algorithm for an autonomous robot to do inventory in a retail environment. Chapter 
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5 presents the RFID tag localization algorithm. Chapter 6 introduces experimental setup and 

results, followed by the conclusion and suggestions for future work in Chapter 7. 
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Chapter 2 Literature Survey 

 Last decade witnessed the bloom of robotics research, and various robots appeared in our 

daily life.  The field of robotics has become a vast and multidisciplinary thrust at research 

institutions around the world.  The main research topics of robotics include: socially assistive 

robots [10], personal home automation robots [11], industrial manufacturing robots [12], search 

and rescue robots [13], and many more.  During all these researches the navigation strategy is the 

fundamental problem for all mobile robotics. In this chapter, we introduce some key research 

concepts of robotics with an emphasis on the mobile robot navigation issue.  

 Also in the last decade there has been much research focus on the RFID tag localization 

issue, especially since the RFID technology has been widely accepted by retail and industrial 

manufacturers since the beginning of the twenty first century. The RFID tag localization can be 

categorized as a famous research topic related to wireless localization [14]. This chapter also 

introduces some important research concepts around indoor wireless localization and mostly 

focuses on the RFID tag localization issue. 

2.1 Motion Planning of Autonomous Mobile Robots 

 The original goal of motion planning algorithms [15] was to solve the start-goal problem. 

These algorithms find out solutions for determining a path or trajectory between the start and 

goal point. Many papers talk about this topic, and they can be roughly divided into two 

categories: global and local motion planning. The global motion planning assumes that a 

complete environmental model is available, and it generates a path based on the knowledge of 
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this environmental model.  While the local motion planning model only requires modeling a 

small part of the environment to generate a path.  

 Moravec demonstrated a probabilistic method to update global world models based on 

sensory input of a robot, and then based on these world models to generate a route for the robot 

[16].  In his work, a Uranus mobile robot deploys a Bayesian statistical foundation to maintain a 

probabilistic, geometric map of the robot’s surroundings as it moves. The robot can deal 

correctly with uncertainties utilizing a continuously updating map. The updating map helps the 

robot to choose clear paths, identify locations (by correlating maps), and to identify well-known 

and insufficiently sensed terrain. 

 Hu and Brady describe a global path planner algorithm that enables a robot to respond to 

unexpected static obstacles [17].  In their work, they present a sensor-based method for real-time 

obstacle avoidance while a robot is navigating. It aims to achieve both collision free motion and 

minimum cost. The approach utilizes Bayesian decision theory to determine an optimal response 

to obstacles based on inaccurate sensor data. The optimal navigating rule minimizes the Bayes 

risk by trading between an alternative route or a sidestep maneuver for the current path. 

 Ó'Dúnlaing, Colm, and Yap present a new method for path planning that uses a map of 

the environment [18]. Their map is a generalized Voronoi diagram. Their method reduces the 

search for a collision-free motion by searching for a connected path along the edges of such a 

diagram. The approach could plan an obstacle-avoiding motion of a single circular disc amid 

polygonal obstacles. 

 A vector field histogram approach is proposed by Borenstein and Koren [19]. This 

method is based on the virtual force field histogram [20] that they previously developed. In their 

work, an occupancy grid map is deployed for modeling the environment. This map is generated 
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and updated continuously by the robot’s ultrasonic sensors. The approach checks the free spaces 

by transforming the occupancy map into a histogram, then the path planner will generate the 

motion and velocity for the robot.  

 The Dynamic Window Approach (DWA) [21], which is the most prevalent local path 

planner, was proposed by Fox, Burgard and Thrun. The DWA provides a dynamic windows 

method to reactive collision avoidance for a synchro-drives mobile robot.  The DWA directly 

searches the controlling command in a velocities space, it also take the dynamics limits of robot 

into account. The DWA only detects the potential collision in a very short time period, and only 

considers admissible velocities to generate a trajectory on which the robot is able to stop safely.  

 Besides the conventional start-goal path planning algorithms, there is a subdivision of 

robot motion called coverage path planning algorithms [22]. These algorithms address the 

applications for floor cleaning [23], lawn mowing [24], mine hunting [25], etc... This kind of 

path planning algorithm controls robots to sweep out the whole target spaces physically or by its 

sensors.  

 A floor coverage approach is described by Hofner and Schmidt [26]. This approach takes 

the non-holonomic constraints into account.  This approach uses a set of patterns to cover a 

bounded region, which is free of obstacles.  The robot’s path is represented by a concatenation of 

motion patterns.  These patterns accommodate the non-holonomic constraints of the robot. 

 Elfes presents an approximate cellular decomposition method for the robot coverage 

problem [27]. The approach is developed for an autonomous robot navigating in an unknown and 

unstructured environment. It uses a fine grid based map to represent the environment, the cells 

are the same size and shape, and it assume that if the robot enters a cells it has covered this cell.  
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 Lumelsky demonstrates a coverage algorithm that is based on a partial discretization of 

space [28]. The space is represented by cells with fixed width while the top and bottom can be 

any shape. The planar terrain-covering algorithm can navigate the robot in a connected 

environment to cover all cells of the map, and the robot could start at an arbitrary point.  

2.2 Wireless and RFID Localization Algorithms 

 An astonishing growth of wireless systems has been witnessed in the last decades. As 

wireless system bloom, the demand for accurate positioning in wireless networks has been 

growing. The wireless localization can be roughly divided into two categories, indoor and 

outdoor wireless localization [29,30]. The primary progress in RFID systems has been made 

during the last ten years. The RFID localization researches can be categorized as wireless 

localization, because they share many common characteristics. It is very difficult to model radio 

wave propagation in the indoor environment due to the severe multipath and low chances of line-

of-sight (LOS) path. Therefore, there is no good model for indoor radio multipath so far [30].  

 Time of arrival (TOA) is one of the most famous algorithms in wireless location. It 

measures the radio signal propagation time to evaluate the distance. TOA measurements must be 

made with respect to signals from at least 3 reference transmitters. The basic idea is shown in the 

following figure [31].  
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Figure 2.1. Positioning based on TOA 

There are two preconditions for TOA working, firstly, all transmitters and receivers have to be 

precisely synchronized. Secondly, the signals must provide timestamp. To overcome the 

drawback of precisely synchronizing between transmitters and receivers, time difference of 

arrival (TDOA) is introduced [32].  TDOA determine the relative position by examining the 

difference of receiving time of signals from multiple transmitters, instead of absolute time of 

TOA. TDOA and TOA algorithms do not work with UHF passive RFID, because of the narrow 

bandwidth of UHF passive RFID, which is 902 – 928 MHz in United States. RFID readers and 

tags can not operate in short pulse mode required for TDOA and TOA distance determination 

[33]. 

  RSS-Based (or called Signal Attenuation-Based) method estimates the distance of a 

receiver to a transmitter by using the attenuation of emitted signal strength. However server 

multipath fading of indoor environment greatly reduce the localization accuracy and the 

parameters employed in RSS-Based models are site-specific. There are some methods that can be 

used to improve accuracy, such as utilizing the premeasured RSS contours centered at the 



 12

receiver [34] or multiple measurements at several base stations.   Teuber, Eissfeller and Pany 

introduce a fuzzy logic algorithm that is able to significantly improve the location accuracy using 

RSS measurement [35]. 

 Received Signal Phase Method or POA [30] utilizes the received radio wave phase or 

phase difference to estimate the distance between a receiver and transmitters. It needs all 

transmitters to emit sinusoidal signals at the same frequency and same phase. As the receiver is 

located at an arbitrary position, the distances between it and each transmitter are different. The 

different distances will cause different receive phases, and we can use these phases to estimate 

the distances. With distances to at least three transmitters, we can use similar method or TOA to 

evaluate the position of the receiver.  

 The angulation Techniques or AOA estimation evaluates [36,37] the location of target by 

the intersection of several pairs of angle direction lines which are the radius from the transmitters 

to receiver.  The basic idea of AOA is given in the following figure. 

 

Figure 2.2. Positioning based on AOA 

 Xuyu Wang demonstrates an AOA based method, which uses cooperative APs with 

antenna arrays for accurate indoor localization [38]. This method first estimates the arriving 
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angles for all multipath components using the MUSIC (Multiple Signal Classification) algorithm. 

Then it exploits the geometric relationship among the angles to identify LOS (Line of Sight) 

angles. The user location can be computed with the LOS angles and the known distance between 

the two APs. 

 In addition to the traditional approaches, machine learning based methods became a hot 

topic in wireless localization. Multiple researchers [39, 40, 41] proposed a deep learning based 

indoor fingerprinting system. The system consists of an off-line training phase and an on-line 

localization phase. In the off-line training phase, the deep learning is utilized to train all the 

weights of a deep network as fingerprints. Then in the on-line localization phase, a probabilistic 

method based on the radial basis function is used to obtain the estimated location. 

  



 14

 

 

Chapter 3 RFID Technology Overview 

 The retail world is undergoing a rapid transition from bar code to radio frequency 

identification (RFID) [1].  The motivation for the transition is to overcome the deficiencies of 

existing bar code technology. The sensing device requires a clear line of sight to bar codes. This 

deficiency greatly reduces the efficiency of inventory counts, especially in giant warehouse and 

sale floors. The bar codes can be distorted or defaced by dirt, paint, ink and other opaque materials. 

Mechanical damage to the bar codes degrades their readability, as well. Data stored by the bar 

code on a surface is not readily modified or extended, save perhaps by wholesale replacement. 

Finally, most of the bar codes only provide product level identification. Items with the same 

product category share the same Universal Product Code (UPC). It cannot provide item level 

identification which is a fundamental requirement for product tracking and quality control.   

 To remedy these deficiencies of bar code technology, the retail sector has turned to an 

alternative technique, radio-frequency identification (RFID). While RFID has been around for 

decades, the dramatically decreased cost and increased capabilities have motivated the retail world 

to widely deploy this technology. RFID offers many benefits for supply chain management, 

inventory control, and many other applications. It provides item level Electronic Product Code 

(EPC) that is unique for each item. RFID, especial the UHF passive type that relies on the radio 

wave to communicate between reader and tags, provides greater convenience for inventory, and 

greatly reduces the manual labor of inventory management.  
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  In this chapter, we introduce the history of RFID. Then we categorize RFID tags. Thirdly, we 

examine the technical basis for passive RFID. Lastly, we introduce some characters of passive 

RFID tags and illustrate how they affect the robot inventory and RFID tag localization. 

3.1 History of RFID  

 The basic idea of RFID technology, communication using reflected radio energy, can be 

traced back to the origin of radar technology. During World War II, the radar was deployed by 

allies and the enemies to detect planes while they were still miles away. Unfortunately, one 

problem with radar technology was that there was no way to identify the type of plane. The 

Germans discovered that if they rolled the airplane when they returned to base, it would change 

the reflected radar waves, and they used this method to inform the radar operators that these were 

German planes [42].  This phenomenon, essentially, worked as the first passive RFID system. On 

the other hand, the British developed the first active system to identify friend or foe (IFF). A 

transmitter was deployed on each British plane, when it received the signal from the radar, it 

replied with a signal that allowed for the identification of the plane [42]. The modern RFID 

system works the same as this basic concept, when a signal is sent to a RFID tag, it wakes up and 

either reflects back a signal (passive RFID tag) or sends a signal (active RFID tag). 

 In 1948 Stockman published a paper to introduce a work related to RFID that involved 

continuous time modulation of reflected signals. He designed a device that could modulate 

human voice on reflected light signal [43]. RF communication systems greatly improved 

throughout the 1950s to 1960s, resulting in the deployment of the first anti-theft system based on 

radio waves. This system used radio waves to determine whether an item had been paid for or 

not. It attached an electronic article surveillance tag to an item; these kind of tags are still used 

today. The tag is a 1-bit tag, which is either on or off. If the item is paid for, the bit of tag will be 
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turned off, otherwise the bit will remain on. When the item goes out of a store, readers at the 

doors will detect the tag and sound an alarm if the tag bit is still on [44]. 

 During the 1960s to 1970s, there was more research in the RFID area. The most 

significant break-through in this period was made by Robert Richardson. He developed a device 

that could couple and rectify the energy from an electromagnetic (EM) field and transmit signals 

at a harmonic of the received frequency, which is the basic concept of modern passive RFID tag 

to extract power and the way to send signals [42].  Later in the same decade, Vinding developed 

a system that was based on inductive coupling technology, which is the ancestor of today’s Near 

Field (NF) RFID system [42].   

 In the 1970s, Los Alamos National Laboratory made a great contribution to RFID system. 

In 1975, Koelle, Depp and Freyman of Los Alamos introduced a novel concept that the 

transponder antenna load modulation can work as a simple and effective way for backscatter 

modulation [42].  They developed a system that placed a transponder in a truck and readers at the 

gates of secure facilities. They used this system for tracking purposes, the gate antennae would 

wake up the transponder in the truck, and then the transponder would respond with an ID and 

other data for tracking, like the driver’s ID [44]. This system was commercialized in the 1980s, 

and it became widely deployed on roads, bridges and tunnels. Los Alamos also developed a 

passive RFID tag for tracking cows. They developed a passive RFID system that used Ultra high 

frequency (UHF) radio waves, in which the tag extracts energy from the radio wave and simply 

reflects a modulated signal back to the reader for identifying the cow.  After that, companies 

developed a low-frequency system, which was 125 kHz, and developed smaller tags that could 

be encapsulated in glass. These encapsulated tags could be injected under the cows’ skin.  The 
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similar system is still used in the livestock industry today [44].  The following figure illustrates 

the idea of tagging a RFID tag to a sheep’s ear. 

 

Figure 3.1. A sheep with a RFID tag, the tag is marked by a red rectangle 

 After the success of the 125 kHz RFID systems, many companies moved up to higher 

frequency, 13.56MHz, which could offer greater range and faster data transfer rate. Today, 13.56 

MHz RFID systems are widely used for access control, payment systems (Mobile Speed pass) 

and contactless smart cards. The automobile industry also introduced the 13.56 MHz RFID 

system as an anti-theft device in cars. A reader in the steering column of a car reads the passive 

RFID tag in the key. The reader will check the ID number feedback from the key tag, and 

compare it with the programmed ID, if they do not match the car will not start [44]. 

 In the early 1990s, an ultra-high frequency (UHF) RFID system was developed by IBM, 

it offered up to 20 feet read range and higher data transfer rate. Later, this technology was sold to 

Intermec, a bar code systems provider. Then, Intermec’s RFID systems were deployed in 

warehouse tracking, farming, etc. But the high cost of RFID systems prevented the widespread 

deployment of RFID technology.  The RFID technology was expensive at the time due to the 

low volume of sales and the lack of open, international standards [44]. 
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 The 1990s to 2000s witnessed a sharp increase in the RFID international standards 

activity.  Many standardization activities were conducted in the 1990s, most of these were 

conducted by the International Standards Organization (ISO) and International Electrotechnical 

Commission (IEC). Initial standardization interests were in animal tracking (ISO-11784 and 

ISO-11785) and contactless proximity card (ISO-14443) applications. In the 1990s, RFID 

technology was accepted by supply chain management, and this motivated more standardization 

activities. In 1996, the standardization of RFID was accepted by the Article Number Association 

(ANA) and European Article Numbering (EAN) groups. In 1999, a UHF frequency band for 

RFID was adopted by EAN international and the Uniform Code Council (UCC) of the United 

States. They also established an Auto-ID Center at the Massachusetts Institute of Technology. 

This organization developed a global RFID standard for product labeling called the Electronic 

Product Code (EPC), this standard enabled the capability of item level identification. During this 

period, the biggest improvements resulted from the way people used the RFID. Previously, tags 

were used as a mobile database that stored information about the product. Sarma and Brock [44] 

only stored a serial number on the RFID tag, and the information of related product associated 

with the serial number was stored in a database that would be retrieved through the Internet. 

They turned RFID into a networking technology by linking products to the Internet through the 

tags.  

 With the growth of silicon technology, RFID tags became cheaper and more reliable. In 

the first decade of the 21st century, the world moved toward the technology’s widespread and 

large-scale adoption. Some of the biggest retailers in the world—Albertsons, Metro, Target, 

Tesco, Wal-Mart—and the U.S. Department of Defense have said they plan to use EPC 
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technology to track goods in their supply chain. And many other industries are also moving to 

adopt the RFID technology.  

3.2 Architecture of a RFID System and Type of RFID  

 A typical RFID system consists of an interrogator, more often called a reader, 

transponders, also called tags, and the antennae that are connected to the reader for sending and 

receiving signals. Figure 3.2 shows a typical RFID system. The antennae may be integrated with 

the reader, like a hand-held system or separate from the reader and connected by a cable. The tag 

is integrated with the antenna and at least one silicon chip, which responses to the reader query 

and stores data to built-in memory. In most cases, the reader will be connected to a computer to 

provide interface with other systems or human beings.  

 

Figure 3.2. A typical RFID system 

 A RFID system can be classified by the frequency of the radio waves they use and by 

power source of the tag. RFID systems can use frequencies from around 100 kHz to over 5 GHz, 

the RFID frequency bands are shown in Figure 3.3. The frequency of most RFID systems are 

concentrated in very narrow bands that are available by regulators for unlicensed industrial 
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implementation. The most commonly use frequency bands are 125/134 kHz, 13.56 MHz, 860-

960 MHz and 2.4 GHz. The RFID systems that rely on 125/134 kHz radio wave are called low-

frequency (LF) systems. While systems that work on 13.56 MHz are referred to as high-

frequency (HF) systems. Systems that operate in 860-960 MHz are called ultra-high-frequency 

(UHF) systems, and the systems in 2.4 GHz are referred to as microwave systems.  Nowadays, 

most retail deployments of UHF RFID system are in their warehouses and sales floors 

environments.  

 

Figure 3.3. Typical frequency spectrum available for RFID 

 From the power source of the tag, the system can be classified into three categories as 

follows: 

1. Passive RFID system  

2. Semi-passive RFID system 

3. Active RFID system 

In a passive RFID system, the tag has no ‘on-board’ power source. The tag has to extract power 

from the signals sent by the reader. This kind of tag is usually small and low cost, so it is the most 
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widely used in retail.  In an active RFID system, the tag has an on-board battery. The ‘on-board’ 

battery provides power for transmitting the data from the tag to the reader. The battery also 

provides power for other electronic components of the tag. A semi-passive tag is actually a passive 

one in nature, but it contains a battery to supply power to the built-in chip and auxiliary components 

like sensors, user interface etc.  Figure 3.4 shows the difference among passive, semi-passive and 

active RFID system. 

 

Figure 3.4. Passive, semi-passive and active RFID system. 

 In our work, we will focus on the passive RFID system, because UHF passive RFID 

systems are most widely deployed in the retail sector. This is mostly because of the low cost and 

reliability of UHF passive RFID system. Later in this chapter we will introduce more technical 

details about the passive RFID system. 
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3.3 Technical Basics for Passive RFID 

 Without a built-in battery the passive RFID tag extracts power from the electromagnetic 

field that is created by the reader. The extracted energy is used to power up internal circuits. 

There are two different power extracting techniques or coupling techniques, inductively coupling 

and radiative coupling, used by passive tags.  

 Inductively coupling is usually used in the near-field (NF) region. Most of near-field 

(NF) tags are inductive coupled to a reader antenna coil by the magnetic field. This mechanism is 

based upon Faraday’s principle of magnetic induction. When a current flowing through the coil 

of the reader antenna, it will produce a magnetic field around it. Then, this magnetic field causes 

a nearby tag’s antenna coil to generate a current, this phenomenon is called magnetic induction 

[45]. The communication between the reader and a tag relies on load modulation [46].  Based on 

the mutual inductance between the reader antenna coil and the tag coil, any current variation 

from the tag coil causes a current variation in the reader’s coil. This current variation can be 

detected by the reader, hence a tag could change its current to communicate with the reader. The 

current in the tag coil is proportional to the load applied to the coil, so we can change the load to 

change the current, and this technology is called load modulation. The basic idea of near field 

communication by inductive coupling is shown in Figure. 3.5.  
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Figure 3.5. Near-field communication using inductive coupling. 

 Generally speaking, the inductive coupling RFID works on low frequency, most common 

frequencies are 128 kHz and 13.56 MHz. A drawback of inductive RFID system is that it only 

can detect tags within a very short distance, because the power of the magnetic field drops as 
ଵ

௥ల
, 

where r is the distance between a tag and the reader antenna coil.  

 Radiative coupling is applied in the far-field. A tag extracts power from the radio wave 

that is sent by the reader antenna. This extracted power will be used to power up internal control 

circuits.  A method called backscattering is used to communicate between the tag and the reader. 

Part of the radio wave will be reflected back to the reader antenna, due to the impedance 

mismatch between the tag antenna and the load.  So changing the load of the tag could vary the 

strength of the reflected wave. The tag changes in load could send data through the varying 

reflected wave, which can be detected by the reader. This method is called backscattering. The 

basic idea of radiative coupling and backscattering are illustrated in Figure. 3.6. 
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Figure 3.6. Far-field communication using radiative coupling. 

 The radiative coupling tags usually operate in higher frequency than inductive ones, the 

most common frequency bands are in 860 – 960 MHz UHF band and in 2.4GHz Microwave 

band. Since they operate at higher frequency, an advantage of radiative coupling tags over 

inductive ones is that a smaller antenna can be used, which leads to lower fabrication cost. This 

is the main reason UHF passive tags dominate in retail applications. The following figure shows 

some commercial UHF passive tags. Most of these tags are the same size as printed bar codes. 

 

Figure 3.7. An example of some commercial UHF passive tags. A dime is placed in left top 

corner as a reference of tag size. Thickness of tags is less than 1 mm. 
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3.4 Characteristics of UHF Passive RFID  

 In this section we will introduce two characteristics of UHF passive RFID; detectable 

range and multipath fading. When we design the robot to do autonomous inventory and localize 

RFID tags, we must take these two characteristics into account.   

3.4.1 Detectable Range of UHF Passive RFID 

 The first characteristic we are interested in is the detectable range of a UHF passive RFID 

reader. A passive RFID tag without any built-in power supply, absorbs power from radio wave 

that is sent by the reader, hence the power intensity of radio wave determines the detectable 

range of a UHF passive RFID system.  In an unobstructed free space, the radio wave strength 

falls off as the square of the distance traveled, which can be determined by Friis transmission 

equation  

 ௥ܲ	 ൌ ௧ܲ	
ீ೟	ீೝ	ఒమ

ଵ଺୐గమௗమ
					 

where ௥ܲ	is the power received by a RFID tag antenna, ௧ܲ	is the power input to the RFID reader 

antenna, ܩ௧	is reader antenna gain, ܩ௥	is RFID tag antenna gain, L is system loss factor, ߣ is the 

wavelength, and ݀ is the distance between the reader antenna and a RFID tag. So, the reader can 

only read the tag within a specific distance, and as the distance between the reader and a tag 

increasing the power intensity decreases rapidly. A typical RFID antenna power attenuation is 

illustrated in Figure 3.8. 
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Figure 3.8. Typical RFID signal strength over distance [47] 

From the above figure, we can see that as the distance between RFID tag and RFID antenna 

increases, the received power by tag decreases tremendously, consequently the probability of 

detecting that tag decreases tremendously.  So, when our robot does inventory, it needs to move 

as close as it can to read more tags. 

3.4.2 Multipath Fading of UHF Passive RFID system 

 As we introduced above, in free space, the power intensity of UHF passive RFID radio 

wave falls off as the square of the distance traveled. But in a real retail environment, we cannot 

predict the power intensity by the Friis transmission equation at all. The radio wave of UHF 

passive RFID system reflects from obstacles. The reflected waves propagate and interfere with 

the waves sent by the reader antenna; this phenomenon is called multipath fading.  In a retail 

environment, many items such as shelves, racks, and even ornaments will reflect the radio 

waves, and create a very complex radio power intensity field, which almost cannot be prepicted. 

We take a very simple environment as an example to demonstrate how the multipath fading will 
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affect the radio power intensity field. A RFID reader is placed within a simple rectangular room, 

the wall and floor will reflect radio wave, and there are no other obstacles. The power density 

field is shown in the following figure [48] 

 

Figure 3.9. Power intensity of a RFID reader in an empty room [48] 

From the above figure, we can tell the power density decreases monotonically near the reader, 

however after distances greater than 1 meter the power density becomes very complex. In such a 

room, by moving a tag away from the reader antenna, we could find that a tag may disappear and 

then reappear.  And in a real retail environment, the power intensity field is even more complex. 

The multipath fading is a big challenge to our RFID tag localization, because the complex power 

field creates a complex RFID detectable model, which is a fundamental component for RFID tag 

localization.   
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Chapter 4 Robot Navigation for Retail Environment  

 Efficiently and safely navigating throughout the retail environment is an essential task for 

a robot during inventory and RFID tags localization.  An autonomous robot needs to cover all of 

the potential space in this environment to collect responses from the RFID tags. In this chapter 

we will detail an approach for the robot to navigate and cover the whole target space. Robot 

navigation is a vast field, and it can be divided into three subcategories.  

 How to represent the environment: 

 A robot detects its environment by its sensors. An autonomous robot must answer a 

fundamental question: given the number of noisy sensory observations, what does the 

environment actually look like?  A map built by sensor observations is a common way to 

represent the environment. 

 How to localize the robot: 

 Throughout the last decade, sensor-based localization has been recognized as a key 

problem in mobile robotics. It answers a critical question for the robot: given some sensor 

observations and a map, can the robot localize against the given map? If the robot can correctly 

localize itself, it can properly navigate itself in a given map. 

 Robot path planning: 

 One of the ultimate goals of mobile robotics research is to build robots that can safely and 

efficiently navigate indoor environments. Robots must localize themselves by their sensor 
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observations and make a path plan that can guide itself to its goals. A robot must react to 

unforeseen circumstances, just like a human.  

 There is one other requirement for a robot that works in a retail environment. That is how 

efficiently it covers the whole target space. Merchandise items that are tagged with RFID tags 

usually are distributed throughout the whole retail environment. The robot must cover all the 

target spaces to collect the RFID tag response by moving closer to them. In this chapter we will 

present the details of our robot navigation algorithm, which could answer all the above questions.  

4.1 Mapping 

 In this dissertation we employ the well-known costmap strategy, which is kind of like an 

occupancy grid map, to represent the environment. Occupancy grid maps are spatial 

representations of the robot’s environments. They represent environments by fine-grained, metric 

grids of variables that reflect the occupancy of the environment. In a costmap, each cell can have 

one of 255 different cost values, to represent the free, occupied or unknown statuses. Figure 4.1 

is an example of a costmap. The black cells represent obstacles, and the colored cells represent 

obstacles inflated by the inscribed radius of the robot. The red circle represents the footprint of 

the robot, while the white represents the free space, and the gray represents the unknown space. 

To avoid collision, the footprint of the robot should never intersect a black cell and the center 

point of the robot should never cross a colored cell. 
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Figure 4.1. Example of a costmap. 

 Our map is generated from the observations of the robot’s sensors, while manually 

controlling the robot to navigate throughout the room. One of the most important skills enabling 

robots to navigate efficiently in dynamic and obstacle-rich environments is the ability to generate 

maps at multiple heights; i.e., multilevel maps. Such a map is a practical departure from the ideal 

of a complete 3-D map, which is intractable computationally. The process of building a map 

dynamically in a partially unknown environment, and locating oneself within it, is called 

simultaneous location and mapping (SLAM) [49]. This technique is well-established in the 

robotics community; in fact, it is a fundamental component built into Robot Operating System 

(ROS), a commonly used software platform for mobile robots. The sensors on our robot are a 

light detection and ranging sensor (LIDAR), and a Kinect™. The Kinect can yield depth 

information using a structured light (SL) sensor, together with a conventional RGB video image 

[50]. The LIDAR sensors used for cost-constrained indoor robots are 2D – they provide the 

range vs. angles while sweeping at a constant height above the floor. Range and precision are 

reasonably good, but the single vertical slice limits the utility in a geometrically intricate 

environment such as a home or a store. On the other hand, the SL sensor in the Kinect provides a 

three-dimensional image of the space in front of the sensor. Each pixel is tagged with depth 
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information, but the range and resolution are limited. In this dissertation we propose an 

innovative algorithm to combine the strengths of these readily available, inexpensive sensors to 

generate a useful multilevel map so that mobile robots can perform better in retail environments. 

 Our mapping algorithm is based on the Rao-Blackwell Particle Filtering (RBPF), which 

is the most widely used simultaneous location and mapping (SLAM) implementation. We utilize 

the strengths of the robot’s two sensors, the Kinect and LIDAR. Instead of merging both of the 

sensor’s output data, our algorithm can handle the two data streams separately, and manipulate 

them to provide a multilevel map.  We will first discuss the traditional RBPF for the SLAM 

problem below, and then detail our mapping algorithm. 

4.1.1 RBPF for SLAM 

 SLAM performs the tasks of building a map while estimating the pose (location and 

orientation) of the robot within a given map. The most widely used SLAM implementation is the 

Rao-Blackwell Particle Filtering (RBPF) [51]. It has two inputs: odometry and sensor 

observation, and two outputs: map and pose. It works as expressed by the Rao-Blackwell 

theorem below: 

ܲሺݔଵ:௧,݉|ݖଵ:௧, ଴:௧ିଵሻݑ ൌ ܲሺݔଵ:௧	|ݖଵ:௧, ,ଵ:௧ݔ|଴:௧ିଵሻܲሺ݉ݑ  ሺ1ሻ				ଵ:௧ሻݖ

In Eq. (1), ݔ is the pose of the robot,	݉ is the map, z contains the observations, u contains the 

odometry measurements, and ܲ is conditional probability. The subscripts denote the discrete 

time, for example,	ݔଵ:௧ denotes the poses from time T=1 to T=t. The key idea of RBPF is to 

partition the SLAM problem into two sub-problems: pose estimating and map updating. The map 

will be updated with the estimated pose.  In Eq. (1), ܲሺݔଵ:௧	|ݖଵ:௧,  ଴:௧ିଵሻ is called robot pathݑ

posterior, it represents the pose estimate. This is a typical localization problem, and it can be 
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solved by the Monte Carlo localization algorithm [52].  ܲሺ݉|ݔଵ:௧,  ଵ:௧ሻ represents the solution toݖ

the problem of generating a map when the pose is known. Rao-Blackwell Particle Filtering [53] 

uses a set of particle filters, each particle with its own trajectory (a trajectory is represented by a 

sequence of poses x0, x1, x2,… xt) and the related map. The updating step for Rao-Blackwell 

Particle Filtering is as follows: 

 Pose estimating: each particle estimates its current poses xt from prior poses (x0, x1, x2, … xt-

1) and observation against the existing map. 

 Map updating: each particle updates its own map with estimated pose xt in previous steps and 

observations. 

 Weighting: Each particle survives with a weight (also called likelihood) of how well the 

observations match to its own map. 

After one updating step is done, estimated pose and mapping can be selected from the best-

matched particle. 

4.1.2 Multiple‐layer Mapping Algorithm with Both LIDAR and Kinect 

 Let’s take a look at the detail of Pose estimating of the RBPF approach. Pose estimating 

is based on the Monte-Carlo Localization [52], the main steps are as follows: 

 Movement updating: Generate from each previous particle to a new particle according to 

the motion model: ݔ௧ ൌ ௧ିଵݔ	 ൅		ݑ௧ିଵ.   

 Observation updating: weigh the particles with the observations likelihood: ݓ௧ ൌ

	ܲሺݖ௧|m,   .௧ሻݔ
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 The estimated pose can be selected from the highest weight particle.  In the observation 

updating step ܲሺݖ௧|m,  ௧ሻ present the measurement probability, which tells how well theݔ

observations ݖ௧ match up with the map ݉	when robot pose is ݔ௧.   

 As seen from the above description of pose estimating step, observation is a key factor of 

SLAM. The more information the observation can provide, the more precisely the pose can be 

estimated and the more realistically the map can be generated. 

 Mapping with any single sensor has its limitations. For example, we use a 360-degree 

Laser Scanner Development Kit (RPLIDAR) [54] in our experiment. However, the drawback of 

our LIDAR is that it only provides data in a 2D horizontal plane, so it will miss important 

information about vertical structure. This will increase the likelihood of collision with objects, 

such as tables, that are non-uniform in the vertical dimension. However, due to its long range and 

large angle of view, it can yield reliable and percise pose estimation. Figure 4.2 shows the 

probability density function derived from LIDAR, Kinect, and the odometry. We can see that the 

observation from LIDAR offers the most precise estimate.  

 

 Figure 4.2. Pose probability density functions of LIDAR, Kinect, and the odometry. 
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On the other hand, the Kinect has shorter range and limited angle of view, but provides 3D depth 

which represents the environment more completely. As shown in Figure 4.2, the pose estimate 

from the Kinect has higher uncertainty than from the LIDAR.  

Then we try to combine these two sensors together. Because SLAM with LIDAR can provide an 

precise pose, we first generate a pose from LIDAR and a map called LIDAR-layer-map. We can 

directly use this precise pose for registration of the Kinect’s image. With the depth information 

from the Kinect and the precise pose, we can get another map called Kinect-layer-map. In this 

map, we will have a precise pose and all useful information from the environment. In this way, 

we will get two separate maps but with high consistency in coordinates, which makes up a 

multiple-layer map. Our multiple-layer mapping algorithm is outlined as below.  

 

Figure 4.3. Outlines multiple- layer mapping x is the pose of robot, ml is the LIDAR-layer-map, 

mk is the Kinect-layer-map, zl contains the observations of the LIDAR, zk contains the 

observations of the Kinect, and u contains the odometry measurements. 
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4.2 Robot Localization 

After the multiple-layer mapping algorithm makes an environmental map, the robot can navigate 

against this map. During the autonomous navigation, the robot must do a very critical task, which 

is localizing itself against the given map. In order to reduce the computation complexity, we first 

project the multiple layer map into a one layer map that only has the outline of objects.  This map 

keeps the most important information of objects that are sufficient for robot localization and 

collision avoidance. In our work, we implement the famous Monte-Carlo Localization [52].  

4.3 Inventory Based Path Planner 

The inventory based path planner generates a navigational path from the given map. The path 

should ideally cover all of the merchandise in the map. From the knowledge of the RFID antenna 

model, the robot is required to move close to the merchandise to get higher read rates. In the 

costmap used to represent the robot’s environment, merchandise-rich areas are represented as 

occupied cells. They are classified as “obstacles” because they impede the robot’s motion. 

However, unlike obstacles normally encountered in robotics, these have the additional 

characteristic of being regions of high interest for scanning. The task of the path planner is to 

find a suitable path in the given map that will cycle around all such “interesting obstacles” in the 

map enough times to perform a reasonably exhaustive inventory count. 

Our inventory based path planner comprises two layers or levels, the global planner and the local 

planner. The global planner generates the path to cover all the merchandise-rich regions of the 

map. The path is represented by a group of discrete goals, such that when the robot navigates to 

all the goals it will have covered all the merchandise. The local path planner determines how to 
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move from one goal to another, and it also handles the dynamics of the environment, for example 

a person standing in front of the robot. 

4.3.1 Global Path Planner 

The global path planner generates a path that covers the entire map while circling around all 

the merchandise fixtures, ideally enabling the robot-mounted reader to read all the RFID tags in 

the map. The use of passive RFID tags requires the reader antenna to send enough power to trigger 

the tags. This requires the global path planner to balance the requirement to get close to the tags 

with the need to avoid collisions with the store fixtures. The final global path is represented by a 

group of discrete navigational goals. 

The following paragraphs describe in detail how the costmap is filled in. Firstly, the map is 

rendered in grayscale. Free space cells are assigned the value 0, and occupied space is assigned 

the value 1. Unknown space is specially marked, for example assigned a -1, which will help to 

validate the path if we do not want the robot to move into an unknown area. Our aim is to find the 

best route around the obstacles in the map.  This route must be closed, but cannot cause the robot 

to collide with other obstacles.  A brief outline of the different steps of the global path planner 

algorithm is given in table 4.1. We will discuss details in the later steps. 

Table 4.1. The outline of the global path planner algorithm 

Step1. Dilate the input grayscale map 

Input: (X, ݈) presenting the grayscale map and dilate parameter 

 Step 1.  Dilate the input grayscale map 

 Step 2.  Detect the edges of dilated map 

 Step 3.  Sample the edges as the global path 

 Step 4.  Assign the orientation of each global path goal 
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 Intuition dictates dilating the obstacles of the map to a specific scale, and choosing the 

route in the edge of the dilated obstacles. The dilation is represented by the equation below. 

ܦ ൌ  ܤ⊕ܣ

In the above equation, D denotes the image after dilation, A is the original image of the map, and 

B is the dilating kernel, ⊕ denotes the dilation operation. We choose a square kernel to dilate the 

image. The size of the kernel is controlled by the input parameter	݈. Changing the size of the kernel 

will change the size of the dilated obstacles. Since the robot’s path will be chosen to lie along the 

edges of the dilated obstacles, the size of the kernel can control the distance from the reader antenna 

to the merchandise.  

Step 2. Detect the edges of the dilated map 

 The edges of the dilated map objects must be determined to extract the potential route. In 

this work, we use the well-known Canny edge detector [55]. This has been implemented in our 

work using Python, and also by using OpenCV.  

Step 3. Sample the edges 

 After we get the edges of the dilated map, we sample the edges, and choose the sampled 

edge points as the goals of the path.  

Step 4. Assign the orientation of each global path goal 

 A goal of the global path comprises of two main parts:  the position and the orientation in 

the map. The position of each goal is given by the sampling step. We need this step to assign the 

orientation to each goal. The strategy is each goal should face the next one. Following this rule, 

after assigning the orientation to all goals, the navigation of the robot will become smoother.  

The orientation of a goal is given by the below equation:  
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 atan2 (g2.y – g1.y, g2.x – g2.x) = 1ߠ

Here 1ߠ is the orientation of goal g1, g2 is the next goal of g1. (g1.x, g1.y) and (g2.x, g2.y) is the 

position of goal g1 and g2 in the given map.  

 The following figure shows the various stages of our global path planner. 

 

Figure 4.4. The output of the global path planner at various stages. Panel 1: Original map, Panel 

2: Original map converted to grayscale, Panel 3: Dilated image, Panel 4: Edges extracted from 

the dilated image, Panel 5: Sample global path, sampled global goals are indicated by red dots, 

Panel 6: Orientated Global path, the green arrows indicate the positions and orientations of the 

global goals. 
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4.3.2 Local Path Planner  

 After executing the global path planner, we get a group of goal points that represent the 

global path. However, the robot still needs to figure out how to move among these points, and it 

has to handle the dynamics of the environment, like a person moving into the path of the robot.  

 Our local navigational path planner is based on the Dynamic Window Approach (DWA) 

[56].  It will figure out the route from one global goal to another, and efficiently respond to the 

unforeseen dynamics of the retail environment. Our local planner is especially designed to deal 

with the constraints imposed by limited velocities and accelerations for a short time interval. To 

ensure the efficient response to the highly dynamic environment, the local planner takes the 

limitation of the sensors into account. Trajectories are approximated by circular curvatures, 

resulting in a two-dimensional search space of translational and rotational velocities. 

Translational velocity is denoted by v, rotational velocity by w. A brief outline for the one cycle 

of our local planner is given in Table 4.2. 

Table 4.2. Outline of local path planner 

Step 1.  Generate Circular trajectories : Generating a set of circular trajectories 
curvatures which are uniquely determined by pairs (v,w) of translational and rotational 
velocities. This results in a two-dimensional search space of translational and rotational 
velocities. 

Step 2.  Admissible velocities: Executing the restriction of Admissible velocities into 
trajectories, which are generated by step 1, only safe trajectories are considered. A pair 
(v,w) is considered admissible if the robot is able to stop before it collides with the closest 
obstacle. 

Step 3.  Dynamic window: The dynamic window restricts the trajectories of step 2, only 
the trajectories whose velocities can be reached within a short time interval are considered. 

Step 4.  Senor limitation: Filtering out the trajectories that violate the senor limitation. 

Step5.  Optimization: In this step the trajectories maximizing an objective function that is 
chosen from the remaining trajectories. 
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Step 1.  Generate Circular trajectories 

Reference [52] shows that the trajectory of a synchro-drive robot can be approximated by a 

sequence of circular arcs, which have circular curvature. A curvature is uniquely determined by 

the velocity (v,w) of translational and rotational velocities. This is the first step of the local path 

planner, it will generate a set of trajectories to a given goal point for a very short time intervals 

  .is very short ܶ׏ are constant, because usually the ܶ׏ We assume that the velocities within . ܶ׏

With this assumption, we can make the search space two-dimensional and thus tractable. 

 Step 2.  Admissible velocities 

In this step, we will filter out the trajectories which may cause the robot to collide into obstacles. 

We can check the trajectories within the ܶ׏ to make sure that the robot will not collide with any 

obstacles. Furthermore, a trajectory is considered admissible if the robot moves with 

corresponding velocity, and is able to stop before it reaches this obstacle. 

Step 3.  Dynamic window 

In this step, we will take into account the limitation of the robot’s acceleration which is restricted 

by its motors.  Only the trajectories with velocities that can be reached within a time interval 

given the limited accelerations of the robot are considered.  

Step 4. Sensor limitation 

This step is critical, it enables the robot to safely navigate in the retail environment. It will take 

into account the sensor limitation. A retail environment is highly dynamic and unstructured, for 

example, it may contain uneven objects and people may suddenly move close to the robot. The 

local planner must handle these obstacles efficiently to avoid colliding into them. However, 

every sensor has its own limitations, which sometimes causes the robot to fail to fully detect its 
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surrounding environment. Consider the Kinect for example; it has a narrow viewing angle, 43 

degrees in vertical, 57 degrees in horizontal, 0.8 to a 4 meter long range. The Kinect can detect 

the objects only in this range. In order to detect all the dynamic objects, the local planner only 

considers the trajectories that navigate the robot within the sensor’s detectable range. The idea of 

this step is illustrated by the figure 4.5 below.  

 

Figure 4.5.  Sensor limitation, here we assume the Kinect is the only senor of the robot. The blue 

circle represents the robot. Only the trajectories that guarantee the robot’s navigation within the 

Kinect’s view is valid. We consider trajectories within a very short time interval.  

 

Step 5. Optimization 

The local planner chooses an optimal path in this search space for the robot to move from one 

goal to another. The optimal path will maximize the objective function, which is the same as 

traditional DWA:   

,ݒሺܩ ሻݓ ൌ ߙሺߜ	 ∙ ݄݁ܽ݀݅݊݃ሺݒ, ሻݓ ൅ ߚ	 ∙ ,ݒሺݐݏ݅݀ ሻݓ ൅ ߛ	 ∙ ,ݒሺ݈݁ݒ  ሻሻ  (1)ݓ

 ݃݊݅݀ܽ݁ܪሺݒ,  .is a measure of progress towards the goal location	ሻݓ

 ݀݅ݐݏሺݒ,  .is the distance to the closest obstacle on the trajectory	ሻݓ

 ݈݁ݒሺݒ,   .is the forward velocity of the robot	ሻݓ
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 The function ߜ	smoothes the weighted sum of the three components and results in more side 

clearance from obstacles. ,ߙ	ߚ and ߛ are adjustable parameters for choosing an optimal 

trajectory. 

In order to maximize received signal strength, the robot needs to move as close as possible to the 

merchandise, so the local planner should choose a correspondingly suitable route. An example to 

demonstrate this idea is shown in Figure. 4.6. 

 

Figure 4.6. The local planner will generate multiple routes, and RFID inventory quality is 

maximized by the one closest to the merchandise.  

In Figure. 4.6, the robot needs to move from the starting point to the goal, both of which are near 

the merchandise table. The DWA will generate multiple candidate routes, as shown by dashed 

lines in the figure. The best route for RFID inventory is the blue one, which will take the robot 

close to the table. So, the value of  	ߚ is set larger than normal to make the robot always choose a 

route close to obstacles as an optimal trajectory.  
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Chapter 5 RFID Tag Localization   

 The key factor of inaccurate inventory is misplaced items. It is said that 16% of the items 

in the stores of main retailers in United States are not located in the correct places [57]. Being 

able to localize RFID tags can dramatically increase the chance to find misplaced products. It 

demonstrated by [58] that localization technologies can significantly reduce the time to retrieve 

the misplaced items in a warehouse. As the use of RFID tags increases, the benefits of localizing 

RFID tags, especially passive RFID tags, is also increasing.   

 However, passive RFID is not easy to localize precisely. Firstly, most of the 

commercially-used RFID tags cannot provide calibrated RSSI information; this prevents us from 

using RSSI as an observation for localization. Secondly, as we have introduced in Chapter 3, the 

retail environment is highly unstructured, and that induces radio wave reflection (multipath 

fading), which is the greatest complicating factor to affect location accuracy.  Multipath fading is 

so heavy in retail indoor environment that time-of-arrival algorithms such as LTOA cannot yield 

an acceptable localization result.  

 In this chapter, we will introduce two RFID tag localization algorithms, (1) fixed power 

and (2) variable power tag localization. The goal of those algorithms is to accurately report the 

location of multiple passive RFID tags in a pre-determined area. Both algorithms are 

probabilistic approaches based on recursive Bayesian updating. They both have obvious 

advantages and disadvantages, and can suit for different scenarios. They are both collecting the 

output of the conventional RFID reader, combined with robot pose, and use this information with 
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a probabilistic antenna model to estimate the location of RFID tags. We will first introduce the 

recursive Bayesian updating algorithm, then present the method of building a probabilistic 

antenna model, and detail the two RFID tag localization algorithms. 

5.1 Bayesian Updating 

 Bayesian updating or Bayes filter is a widely researched topic in the robotics community, 

and addresses the problem of estimating belief over the state ݔ	of a dynamical system for sensor 

observations. The Bayes filter is recursively updating the belief ܾ݈݁ሺݔ௧ሻ	at time t, and ܾ݈݁ሺݔ௧ሻ is 

calculated from the belief ܾ݈݁ሺݔ௧ିଵሻ	at time t-1. In this section, we will firstly introduce the 

typical Bayesian updating for robot state estimating, and then illustrate how to modify it for 

RFID tag localization. Table 5.1 provides pseudo-code for a step of a typical Bayesian updating. 

Table 5.1. Pseudo-code of one step of Bayesian updating 

 The Bayesian updating algorithm calculates belief distribution ܾ݈݁ሺݔ௧ሻ recursively. It 

calculates the ܾ݈݁ሺݔ௧ሻ from control	ݑ௧, observation ݖ௧ and prior belief ܾ݈݁ሺݔ௧ିଵሻ, which is 

calculated previously.  

 The typical Bayesian updating algorithm has two essential steps. The first step is called 

the control update or prediction. The main idea of control update is illustrated in Line 3 of Table 

1. Bayesian updating (ܾ݈݁ሺݔ௧ିଵሻ, ݑ௧, ݖ௧): 

2. for all ݔ௧ିଵ do: 

3. ܾ݈݁ሺݔ௧ሻ ൌ ,௧ݑ|௧ݔሺܲ׬  ௧ିଵݔ௧ିଵሻ݀ݔ௧ିଵሻܾ݈݁ሺݔ

4. ܾ݈݁ሺݔ௧ሻ ൌ  ௧ሻݔ|	௧ݖܲሺ	௧ሻݔሺ݈ܾ݁ߟ

5. end for 

6. return ܾ݈݁ሺݔ௧ሻ 
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5.1. It calculates a belief of state ݔ௧ based on the prior belief of state ݔ௧ିଵ and the control ݑ௧.  

The belief ܾ݈݁ሺݔ௧ሻ represents the belief distribution of a robot to make a transition from state 

  .௧ିଵሻݔand the prior belief ܾ݈݁ሺ	௧ݑ ௧, which under the condition of the given controlݔ to	௧ିଵݔ

 The second step of Bayesian updating is called the measurement update. The main idea 

of measurement update is illustrated in Line 4 of Table 5.1. ܲሺݖ௧	|ݔ௧ሻ is the probability of robot 

in state ݔ௧  to observe the measurement of ݖ௧	. The ܾ݈݁ሺݔ௧ሻ is the product of ܾ݈݁ሺݔ௧ሻ and 

ܲሺݖ௧	|ݔ௧ሻ. It does so for every hypothetical posterior state	ݔ௧. The	ߟ is a constant, which helps to 

integrate the sum of all ܾ݈݁ሺݔ௧ሻ	into 1. 

 To compute the ܾ݈݁ሺݔ௧ሻ recursively, we should provide an initial belief ܾ݈݁ሺݔ଴ሻ at time 

t=0. Usually the initial belief can be given; for example, we know the start pose of a robot. If the 

initial belief is unknown we can give normalized probability to all hypothetical states, after 

several Bayesian updating steps the states will be converged.  

 Let’s take look at how to implement Bayesian updating for RFID tag location estimating 

in a retail environment.  The first assumption is that during the inventory period the RFID tags 

are stationary. This assumption is reasonable, because during most of time the merchandise in 

retail is stationary. Reference [7] introduces a Bayesian updating algorithm for HF RFID 

localization. Let ݔ denote a two-dimensional vector that represents the location of a RFID tag. 

 denotes a binary variable that represents the observation of RFID reader against a RFID tag at	௧ݖ

time T = t.  ݄௧	represents the location of reader at time T= t. The ܾ݈݁ሺݔ௧ሻ in Table 5.1 can be 

denoted by ܲሺݖ|ݔ௧, ݄௧ሻ. Because the RFID tags are stationary, in the control update step: 

  ܾ݈݁ሺݔ௧ሻ ൌ ܲሺݖ|ݔ௧, ݄௧ሻ ൌ 	ܲሺݖ|ݔ௧ିଵ, ݄௧ିଵሻ                         (1) 

Let’s substitute the equation (1) into Line 4 of Table 5.1,  
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 ܾ݈݁ሺݔ௧ሻ ൌ ܲሺݖ|ݔ௧, ݄௧ሻ ൌ ,௧ିଵݖ|ݔሺܲߟ ݄௧ିଵሻ	ܲሺݖ௧	|ݔ, ݄௧ሻ      (2) 

 In equation (2) ܲሺݖ௧	|ݔ, ݄௧ሻ is called a RFID model, which gives the probability of a tag, 

which is located in ݔ, to be observed by a RFID reader which is located in ݄௧. We will detail how 

to build a RFID model in the next section. We can see from equation (2), if we can measure the 

observations of a RFID tag in several locations, the RFID tag location can be estimated by 

recursively updating the observations. 

5.2 Antenna Model  

 As illustrated by equation (2), the Bayesian updating algorithm highly relies on the RFID 

model ܲሺݖ௧	|ݔ, ݄௧ሻ.  One could develop a RFID model as a function of the relative distance 

between the tag and the reader antenna. Theoretically, a propagation model can be applied to 

build a RFID Model. In unobstructed free space, Friis transmission equation [59] shows that the 

signal strength level decreases at a rate inversely proportional to the distance travelled, 

 ௥ܲ	 ൌ ௧ܲ	
ீ೟	ீೝ	ఒమ

ଵ଺୐గమௗమ
						ሺ3ሻ 

In equation (3) ௥ܲ	is the power received by RFID tag antenna and ௧ܲ	is the power input to RFID 

reader antenna. ܩ௧	is the reader antenna gain, ܩ௥	is the RFID tag antenna gain and L is the system 

loss factor. ߣ is the wavelength, and ݀ is the distance between the reader antenna and a RFID tag. 

Based on this relationship we can build a map that indicates tag received signal strength. We can 

convert this map into a RFID model ܲሺݖ௧	|ݔ, ݄௧ሻ by an intuitive rule that is higher signal strength 

to higher observed probability. However, this method is only feasible for simple geometries, and 

therefore it is not practical for retail environments.  
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 Instead, we built our model through experiments. We mounted a RFID reader antenna 

into our robot, which is the same layout as we use for the RFID localization. And we placed a 

RFID tag at 10 cm intervals around the reader antenna while recording the numbers of successful 

observations by reader after a fixed time period, like 2 seconds. We repeated our experiment 20 

times, then we created a map of numbers of successful observations. We converted this map into 

RFID model ܲሺݖ௧	|ݔ, ݄௧ሻ, and higher successful observations gained higher observed probability.  

Figure 5.1 is an example of our experiment based RFID model. The experiment reader is Zebra 

FX9500 Fixed RFID Reader and the antenna is Zebra AN720 RFID Antenna. And the interval of 

the RFID model is 10 cm.  

 

Figure 5.1 RFID model, the RFID reader antenna is setting in position (0,0). Here, the reader is 

Zebra FX9500 Fixed RFID Reader and the antenna is Zebra AN720 RFID Antenna. The interval 

of the model is 10 cm.  
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5.3 Fixed Power Tag Localization Algorithm 

 The fixed power tag localization algorithm can be divided into two phases. The first 

phase is called observation collecting. In this phase, a robot mounted with an RFID reader and 

antennae will slowly navigate in the target area. The robot collects the RFID tag responses while 

navigating. Every record of the RFID tag response will be associated with the reading antenna 

pose(x, y, Ɵ) against a given map. During whole observation collecting, the reader will work 

under a fixed transmission power setting. In order to get maximum numbers of RFID tag 

responses, the reader usually works under the maximum transmission power setting.   

 The second phase is the RFID tag location estimating. After the robot navigates the target 

area, the robot has collected all the RFID tag responses in varied locations. Then we use 

recursive Bayesian updating combine the related RFID model to estimate the locations of RFID 

tags. The next table illustrates the main steps of estimating a RFID tag location by fixed power 

tag localization algorithm. 

Table 5.2. The tag location estimating of fixed power tag localization algorithm  

 In step 1, the hypothetical posterior states or locations	ݔ can be initialized by all possible 

locations. The possible locations are generated from all the observed records of a RFID tag.  We 

find the boundary of the observed records, which beyond this boundary the reader does not read 

 Input: all observed records of a RFID tag, the records include related antenna poses 

 Step 1.  Initialize hypothetical posterior states or locations  we assign all possible ,ݔ

locations of the tag. Assign normalized belief to every ܾ݈݁ሺݔ଴ሻ. 

 Step 2.  For every observed record updating the ܾ݈݁ሺݔ௧ሻ by equation (2). 

 Step 3.  Check that the tag is localizable or not, if yes, find the highest belief in all 

hypothetical locations, and this location is the estimated location for the tag.  
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any response of the tag. All the positions ሺݔᇱ,  ᇱሻ inside of this boundary are the hypotheticalݕ

posterior positions. In order to reduce the computing effort, we sample these positions, for 

example, the positions can be sampled at the same interval of the RFID model. Then the discrete 

points ݔ ∈ 	 ሼሺݔଵ
ᇱ , ଵݕ

ᇱሻ, ሺݔଶ
ᇱ , ଶݕ

ᇱ ሻ, … , ሺݔ௡ᇱ , ௡ᇱݕ ሻሽ are the initialized hypothetical posterior positions.  

Then we will initialize an even belief ܾ݈݁ሺݔ଴ሻ for every potential position, for example 

ܾ݈݁ሺݔ଴ሻ ൌ 1.  

 In step 2, we will update the belief ܾ݈݁ሺݔ௧ሻ in every hypothetical posterior position for all 

observations by equation (2). In equation (2), for a given potential position ݔ ൌ ሺݔ௡ᇱ , ௡ᇱݕ ሻ the 

probability of the measurement can be given by RFID model ܲሺݖ௧	|ݔ, ݄௧ሻ. 

 In step 3, after updating all the observations, we find the ܾ݈݁ሺݔ௧ሻ will converge, that is 

only a small number of hypothetical posterior positions ݔ will survive. A hypothetical posterior 

position survives when the ܾ݈݁ሺݔ௧ሻ greater than a threshold, for example 0. The less surviving 

potential positions the better confidence of the tag localization. We can introduce a threshold 

௦ܶ௨	of the number of surviving hypothetical posterior positions as a criterion. When the surviving 

hypothetical posterior positions are greater than ௦ܶ௨ we can tell this tag is not localizable, 

because we may failed to collect enough observations for it.  Then we can find the highest belief 

in all surviving hypothetical locations, and this location is the estimated location for the tag. The 

following figure illustrates the basic idea of every step of the fixed power tag localization 

algorithm. 
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Figure 5.2. Procedures of fixed power tag localization algorithm, (a) initial hypothetical posterior 

locations	ݔ, (b) bel(xt) after first observation updating, (c) bel(xt) after all observations are 

updated, (d) location result: the red point is the estimated location of this tag, and the blue one is 

the ground truth position, and error in this case is 0.28 meter. 
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5.4 Variable Power Tag Localization Algorithm 

  Passive RFID is not a precise location technology.  The reader model only can provide a 

rough location estimation. Consider Figure 5.1 as an example. If the reader detects an RFID tag, 

it only can tell the tag may exist in a 4 square meter area. In the fixed power tag localization 

algorithm, the low-resolution RFID model ܲሺݖ௧	|ݔ, ݄௧ሻ, is one of the main factors to affect 

location accuracy. If we can improve the resolution of the RFID model, we can greatly improve 

the accuracy of the algorithm. 

 One approach to improve resolution of the RFID model is to reduce the transmission 

power of the RFID reader. Take figure 5.3 as an example, the resolution of the model under 

power 80 is less than 1 square meter, by contrast the resolution of the model under power 170 is 

more than 4 square meters. But the drawback of reducing the transmission power is that the 

detectable range will be reduced dramatically, in figure 5.3 the detectable range reduced from 3 

meters under power 170 to 1 meter under power 80. This drawback is not acceptable for a robot 

working in retail environment, because most of the merchandise items are located farther than 

the 1 meter of the robot’s navigation trajectory.  

 We propose a method that can improve resolution of the RFID Model while keeping the 

detection range.  While collecting RFID tag responses in a position, we vary the transmission 

power of the RFID reader. By deploying variable transmission power, we can greatly improve 

the resolution of the RFID model.  For example, when a tag can be detected at a high power 

level, but cannot be detected at a low power level, we can tell that the tag has high probability of 

existing in the area that is inside the high power detectable area and outside of the low power 

detectable area. After collecting all the responses under different transmission powers, we 

combine the measurements of each individual transmission power to create a vector-based 
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measurement. Then using this vector measurement to estimate the location of tags.  This 

approach is called the variable power tag localization algorithm. 

 The variable power tag localization algorithm also can be divided into two phases, 

observation collecting phase and RFID tag location estimating phase. In the observation 

collecting phase, the robot needs to stop in several positions to collect the RFID tag responses.  

These stopping locations are called measurement points. In each measurement point the RFID 

reader scans tags at several power levels and records the results for each individual tag. For each 

tag a reading vector is generated based on the reader antenna pose and the reader powers. For 

example, a reader will scan at 4 power level indices: 80,110,140, and 170. We assume a tag was 

scanned only at power levels 140 and 170 from the same antenna, the measurement vector is [0, 

0, 1, 1], and we denote this vector as ݖ. A valid vector based measurement consists of this vector 

and the related reading antenna pose (x, y, Ɵ), and we denote this pose as ݄.   

 In the RFID tag location estimating phase, based on these vector based measurements, 

which are collected in the observation collecting phase, a probabilistic localization algorithm is 

deployed to estimate a RFID tag location. The procedure of RFID tag location estimating 

algorithm is the same with fixed power tag localization algorithm, which is illustrated in table 

5.2. The first step is initializing hypothetical posterior location	ݔ, the second step is updating all 

the observed records by equation (2), then choosing highest belief hypothetical location ݔ as the 

estimated location. Here, the observation measurement ݖ is a vector that denotes the observation 

states under varied power levels. The RFID model ܲሺݖ௧	|ݔ, ݄௧ሻ based variable power vector, 

provides higher resolution. 
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 The variable power RFID model ܲሺݖ௧	|ݔ, ݄௧ሻ is generated from fixed power ones. We 

denote a fixed power RFID model as ܲሺݖ௧௟|ݔ, ݄௧ሻ that is under a certain power level ݌௟. Since the 

measurement vector ݖ௧	 consists of multiple power levels, the ܲሺݖ௧	|ݔ, ݄௧ሻ can be given by 

following equation, 

ܲሺݖ௧	|ݔ, ݄௧ሻ ൌ 		ෑܽ

ே

௟ୀ଴

ܲሺݖ௧௟|ݔ, ݄௧ሻ		ሺ4ሻ 

Where N is the total power levels, ܽ is the weight. The lower power should have a higher weight, 

because the lower power levels have lower probability to be affected by multipath fading. The 

following example shows how to generate a variable power RFID model. It also demonstrates 

the improvement of model resolution.  The RFID reader works under 4 power levels, 

170,140,110,and 80.  The RFID model for individual 170,140,110 and 80 power levels are 

shown in the following figure, we use the same reader and antenna as pervious, which the reader 

is Zebra FX9500 Fixed RFID Reader and the antenna is Zebra AN720 RFID Antenna.  
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Figure 5.3. The RFID model for Power lever 170, 140,110 and 80. The antenna is set in position 

(0,0) for every model. Here, the reader is Zebra FX9500 Fixed RFID Reader and the antenna is 

Zebra AN720 RFID Antenna. 

 Let us generate variable power RFID model ܲሺݖ௧	|ݔ, ݄௧ሻ for above power setting by 

equation (4). The weight for power 170 is 0.1, power 140 is 0.2, power 110 is 0.3 and power 80 

is 0.4. The variable power RFID model ܲሺݖ௧	|ݔ, ݄௧ሻ is shown in the following figure, 
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Figure 5.4. Variable power RFID model, (a) the model of measurement vector [0,0,0,1], (b) the 

model of measurement vector [0,0,1,1], (c) the model of measurement vector [0,1,1,1] and (d) 

the model of measurement vector [1,1,1,1]. The power level setting is power 80,110,140 and 

170. The antenna is set in position (0,0) for every model. Here, the reader is Zebra FX9500 Fixed 

RFID Reader and the antenna is Zebra AN720 RFID Antenna. 

 From the above figure, we can tell that the variable power RFID model provides higher 

resolution and keeps the same detect range as the max power level.  The valid measurements of 

the above example are [0,0,0,1],[0,0,1,1],[0,1,1,1] and [1,1,1,1]. We will filter out the 

measurement that get does not show at higher power level but be detected under lower power 

level, like measurement vector [0,1,0,0] that a tag is detected under power level 110, but can not 
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be detected by higher power levels 140 and 170.  These phenomena mostly are caused by 

multipath fading of radio waves, which under the higher power level the reflection is stronger 

that reduce the transmission power in the tag’s position because different phase of reflected 

waves.  Under the strong multipath fading phenomena the measurement is not consistent with the 

RFID model any more. Because a tag may be detected by a reader that is farther than detectable 

range or cannot be detected even if it is located within the detectable range.  We can safely filter 

out these measurements to improve the estimating accuracy.  

 Compared to fixed power tag localization algorithm, the variable power tag localization 

algorithm could provide higher localization accuracy. The drawback of variable power tag 

localization algorithm is that during the observation collecting phase, it takes a longer time than 

fixed power does. Because it needs to stop in several measurement points and scan RFID tags in 

varied power levels.  
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Chapter 6 Experimental Setup and Results 

  In this chapter, we present and discuss the experimental results of an autonomous robot 

that does RFID based inventory and localizes RFID tags in a retail environment. Here, we 

evaluate the performance of the algorithms developed, including the mapping algorithm, the 

navigation algorithm and the RFID tag localization algorithm. We perform our experiments in a 

mock apparel store, and our experiments have the following components: 

1.  A map is created for the mock apparel store, 

2. The robot autonomously navigates in the store, 

3. The robot does inventory in the store, 

4. RFID tags are localized in the store. 

6.1 Experimental Setup  

6.1.1 Experiment Environment 

 To demonstrate the performance of our robotic inventory approach, we conducted 

experiments using a mock apparel store at the RFID Laboratory at Auburn University. This is an 

enclosed region laid out with fixtures and products to closely emulate a retail clothing store. The 

size of the store is 17×12 meters (204 square meters). There are 674 items of merchandise with 

RFID tags in this room. This total is comprised of 415 jeans and khakis, 149 T-shirts, 33 pairs of 

shoes, 21 dresses and tops, 30 pieces of lingerie, and 26 pairs of pants. The jeans are distributed 

in a five layer metal shelf and a five layer wooden shelf. The metal shelf is denoted as number 1 

and the wooden shelf is denoted as number 6 in figure 6.1.  The shoes are placed in a 3 layer 

plastic shelf that hangs on a wall, which is denoted as number 8 in figure 6.1. Lingerie is placed 
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on a wooden table, which is donated as number 2 in figure 6.1.  T-shirts, pants and dress tops are 

hung on 4 metal racks, which are denoted as number 3, 4, 5 and 7 respectively in figure 6.1. 

Dresses are hung on 2 metal racks that are denoted as number 9 and 10 in figure 6.1.   

 
Figure 6.1(a) the top view blueprint map, and (b) photo of the store.  The RFID tagged 

merchandise is distributed in the blue area of blueprint map. 

 Our experimental RFID tag is Avery 237, which is widely used in retail. All the tags are 

tagged the same as in a commercial setting. The following photo illustrates a typical tag position 

on an item. 
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Figure 6.2(a) Experimental RFID tag Avery 237, and (b )The RFID tag attached to a 

merchandise item 

In effect, we establish the experimental environment to mimic a real retail store as much as 

possible. 

6.1.2 Robot System 

 Our experimental robotic system consists of three parts, an autonomous robot, a wireless 

network and a remote workstation.  

 
Figure 6.3. The main parts of our experimental robotic system. 

Autonomous robot   

 Our robot is built on a REX-16D Round Robot Base from Zagros Robotics, which 

consists of two drive motors, two free rotating caster wheels, and three 14-inch diameter ABS 
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plastic shelves for electronics and payload. One additional disk is added upon the top of the 

chassis to mount the RFID antennae. The robot components are shown in Figure 6.4. 

 
Figure 6.4. Robot components 

1) Raspberry Pi 3 controller 

 We use two Raspberry Pi 3 controllers as the local controllers. The two Raspberry Pi 3 

controllers work to process the sensors’ input and to navigate the robot in the retail environment. 

The Raspberry Pi 3 is a powerful credit-card sized single board computer. It provides a 1.2GHz 

Quad-Core ARM Cortex-A53 Processor and 1GB memory. It provides a USB interface to an 

Arduino Mega 2560 which performs low-level motor interface tasks, such as PWM output and 

wheel encoder input. Its built-in Wi-Fi LAN provides efficient wireless communication capability. 

Both Raspberry Pi 3 controllers use Ubuntu as the operating system, and the software we use is 

Robot Operating System (ROS). ROS provides open-source libraries and tools to help software 

developers create robotic applications. 

2) LIDAR 
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 For higher elevation scans, we use the RPLidar A1M1-R3 laser scanner. This sensor can 

perform a 360-degree scan with a maximum range of 6 meters. The scanning frequency used is 

5.5 Hz, although it can be configured to a maximum of 10 Hz.  

3) Kinect  

 For 3D environment scans, we use Microsoft Kinect™. This sensor has a 43-degree 

vertical and 57-degree horizontal field of view. It provides up to 30 frames per second of color 

and depth images.  

4) RFID reader and Antennas 

 We use a Zebra FX7500 RFID reader and four Zebra AN720 Antennae to read the RFID 

tags. The Zebra FX7500 RFID reader provides frequency bands of 902 MHz ~ 928 MHz and 

865 MHz ~ 868 MHz. It also provides up to 8 antenna ports. The Zebra AN720 Antenna has a 

frequency band from 902 MHz to 928 MHz and maximum 6 dBi antenna gain. The Beam width 

of the Zebra AN720 is 100 degrees.  

6.2 Mapping Results 

 To demonstrate the performance of our mapping algorithm, we conducted an experiment 

in our mock store, which was introduced previously. During the experiment we drove the robot by 

keyboard in the store, meanwhile the robot built the map for the surrounding environment. The 

robot built three maps simultaneously, a map built by LIDAR scans only, a map built by Kinect 

scans only and a map built by our multiple-layer mapping algorithm with both LIDAR and Kinect 

scans.  

 Firstly, take a look at the process of projecting a 3D Kinect depth image to a 2D scan while 

still keeping the important vertical outline structure information. Figure 6.5(a) shows a photo of  a 

real shoe rack. As shown in Figure 6.5(b), the depth image of the Kinect provides vertical structure 
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information of a shoe rack that is comparable with the RGB photo shown in Figure 6.5(a). After 

projecting the 3D depth image into the 2D scan, it will contain all the profile information of the 

shoe rack, as described by the red curves in Figure. 6.5(b).  

 
Figure 6.5(a) photo of shoe rack, (b) depth image of shoe rack 

We implemented a standard SLAM in ROS [60] to build a map with only LIDAR scans or 

only Kinect scans.  The map built by LIDAR only is shown in figure 6.6(a). This map is precise, 

but sparse. Compared with the blue print map in Figure 6.1(a), many items are lost, such as the 

rest area and the shoe rack. This is caused by the LIDAR only being able to provide data in a 2D 

horizontal plane. So, it will lose important information about vertical structure, such as rest area 

and shoe rack, which cannot be detected by the LIDAR at all. 
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Figure 6.6(a) SLAM with LIDAR scans only, (b) SLAM with Kinect scans only 

 On the other hand, the map with Kinect scans only is shown in Figure 6.6(b), it keeps the 

information of all items in the store, such as the rest area and shoe rack that are marked by red 

rectangles in Figure 6.6(b). However, the whole map is not readable at all. Because of the poor 

view range of the Kinect scan; it cannot provide enough information for SLAM to make a good 

pose estimation. Therefore, the items are laid out in wrong positions in the built map.  

 The fused map is shown in Figure 6.7. We can see this map has a high consistency (well-

registered) with the LIDAR-layer-map, and contains all useful information from the 

environment. Compared to Figure 6.6(b), we find the use of LIDAR pose reduces the distortion 

of the map and preserves the useful information. Apparently, the robot will perform much better 

using the fused map because it will know more precisely its position and the structure of the 

environment while navigating. And we also mark the shoe rack and rest area with red rectangles 

in Figure 6.7, as we can see the shoe rack in the map is perfectly shown against the wall as it is, 

and keep enough profile information for robot navigation. 
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Figure 6.7. Fused map by multiple-layer mapping algorithm with both LIDAR and Kinect scans. 

6.3 Navigational Results 

 To demonstrate the performance of our robot navigating in a retail environment, we also 

conducted an experiment in our mock store. We used the map that is built above, which is shown 

in Figure 6.7.  In this section, we first take a look at how to generate a global path by our 

inventory based path planner algorithm, and then we will test the robot to navigate in the store by 

the generated path. 

6.3.1 Global Path Generating 

 We loaded the map of the store, which is shown in figure 6.7.  The map was converted 

into a costmap, the obstacles in the map were inflated by the inscribed radius of the robot. The 

result is given as following. 
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Figure 6.8. Inflated costmap of the experimental mockup store 

  Then we used the inflated costmap as the input to our global path planner. We used two 

sets of parameters,	݈=0.45 and ݈ ൌ 0.8, which controlled the distance of the global path to the 

obstacles. The generated global paths are illustrated in Figure 6.9. 
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Figure 6.9(a) the global path generated with ݈=0.45, and (b) the global path generated with ݈=0.8. 

Each generated path is consisted of a group of discrete arrows, which are marked as green in the 

figure.   

 We can tell in Figure 6.9, there are total 66 points generated as the global path for ݈=0.45 

and 67 points for ݈=0.8.  Hereafter, the global path generated under the parameter ݈=0.45 is 

called the closer path, and the global path generated under the parameter ݈=0.8 is called the 

farther path. The arrow of each goal point faces to the next point, this will help to smooth the 

navigation.  Both the paths guide the robot to navigate in the merchandise areas; this can greatly 

improve the navigating performance while not losing any inventory accuracy.   
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6.3.2 Robot Navigates in the Store 

 With the map created and the global path generated, the robot is ready for navigating in 

the store. We navigated the robot by the two global paths, closer path and farther path, which 

were generated previously. The initial pose of the robot was given. Repeated experiments had 

demonstrated that the robot can navigate the store reliably while scanning tags in each type of 

fixture – metal shelves, stacked goods, and metallic hangers. The navigational path resulting 

from a typical run of each path is shown in Figure. 6.10.  

 
Figure 6.10(a) Robot inventory navigation result of the closer path, (b) Robot inventory 

navigation result of the farther path 

 In the above figure, the green arrows in the maps are the global path goals that are 

autonomously generated by the robot, and the brown curves are records of actual routes. From the 

routes we can see the robot cycles around the merchandise zones to scan the RFID tags. During 

the navigation the maximum speed of the robot was limited to 0.8 meter per second. The average 
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navigation time for the farther path was about 27 minutes; in contrast average navigation time for 

the closer path was about 30 minutes. 

 Only depending on the navigational time, we cannot tell which path is a better one, because 

the ultimate goal of our robot is not navigating in a retail environment but to do inventory. We will 

compare the performance of them by inventory accuracy, which will be introduced later. 

6.4 RFID Inventory Results 

In order to compare robot inventory accuracy, we conducted a manual inventory in our mockup 

store. The RFID reader for our manual inventory experiment was the Zebra RFD8500 handheld, 

which is a piece of powerful and widely deployed RFID equipment in retail. The manual inventory 

approach is waving handheld near merchandise. The Zebra RFD8500 handheld and manual 

inventory approach are illustrated as follows.  

 
Figure 6.11(a) Zebra RFD8500 handheld, (b) waving handheld in front of merchandise to do 

manual inventory. 
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During the manual inventory experiment, we set the RFID power to the maximum of the 

handheld. We repeated the manual experiment five times to get an average accuracy of the result, 

which is shown in table 6.1. 

While the robot was navigating in the store, it collected the RFID tag responses. We used the 

same map as the navigational experiment and set the reader power to the maximum that is 170 

power level. We performed an inventory on our mockup store five times for each global path, to 

get the mean inventory and mean inventory accuracy shown in the following table.  

Table 6.1. Inventory accuracy 

Zone 
Merchandises 
type 

Ground 
truth 

Closer path  Farther path  Manual 

Mean 
inventory 
result 

Mean 
inventory 
accuracy  

Mean 
inventory 
result 

Mean 
inventory 
accuracy  

Mean 
inventory 
result 

Mean 
inventory 
accuracy  

Jean 
shelf  

Jeans 370 252 68.11% 240.6 65.03% 187.8 50.76% 

Cloth 
rack 

T-shirts, 
Dress tops, 
Pants 

175 172.8 98.74% 170.2 97.26% 158.4 90.51% 

Shoes 
rack 

Shoes 31 31 100.00% 30.8 99.35% 26.8 86.45% 

Dresses 
rack 

Dresses, 
Shoes 

23 23 100.00% 23 100.00% 22.6 98.26% 

Island 
rack 

Jeans, 
shoes,       
T-shirts 

45 44 97.78% 44.2 98.22% 37.6 83.56% 

Lingerie 
table 

Bras, 
Panties 

30 30 100.00% 30 100.00% 29.8 99.33% 

Total    674 552.8 81.78% 538.8 79.70% 463 68.49% 
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Figure 6.12. Inventory accuracy chart  

 From Table 6.1, we can see the overall average inventory accuracy for the closer path is 

81.78%, except the jean shelf, all other zones are close to 100%. The overall average inventory 

accuracy for the farther path is 79.70%. In contrast, the manual inventory accuracy is 68.49%. We 

can tell that the robot inventory is better than the manual one. Because the robot can exactly cover 

all the target spaces to do a full RFID scanning, while, the manual inventory may leave some 

places not fully scanned. From figure 6.12 and table 6.1, we also can tell that the performance of 

the closer path is a little bit better than the farther path.  

 This experiment also shows that the structure of the merchandise zone can greatly influence 

the inventory accuracy. From Table 6.1, we see the jean shelf, which is a five layer metal shelf, 

has the worst inventory results. This shelf is at a height of 76 inches (1.93 m) compared with the 

mounting height of the upper antennas of 33 inches (0.83 m), which significantly degrades the tag 

reading. The phenomenon is illustrated in the following figure.  This effect also occurs with manual 
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inventory, because the metal shelf will reflect a lot of the signal waves.  Even so, the robotic 

inventory accuracy is quite competitive with manual inventory.  

 
Figure 6.13(a) Illustrates the robot cannot detect the high level RFID tags of the jean shelf, (b) In 

the photo the robot navigates and collects RFID tags response in front of the jean shelf.  

 From the above figure, we can tell the robot cannot detect the RFID tags that are placed 

on a higher level of the jean shelf and those that touch the metal plane in the lower level, and this 

phenomenon is proved by the experiment data. The following table shows the level inventory 

accuracy of the jean shelf. More detailed analysis shows that most missed tags are placed in the 

top level of the metal shelf. We can see in Table 6.2 in the two lower levels the robot gets more 

than 90% inventory accuracy; in contrast, in the top level the robot only gets 20% inventory 

accuracy.  In the lower level, we find out the RFID tags that are exactly laid on the metal plane 

are prone to fail detection by the robot, because the metal will shield radio waves.  

  The similar phenomenon also happened with manual inventory, it gets better inventory 

accuracy in lower levels. Compared to robot experiment results, the manual one has around 55% 
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in level 1 to level 4, because when we waved a handheld those levels were mostly covered. In the 

manual inventory, a human being is not as patient as a robot to cover every space with even and 

maximum scanning effort; this is the reason why manual inventory accuracy in level 2 to level 4 

is lower than the robot. In level 1, however, a human being can elevate the handheld to get better 

inventory accuracy than the robot. In level 0, the manual experiment got similar inventory 

accuracy, for the position of level 0 also is too high for a human to cover as the robot does. 

Table 6.2. The jean shelf level inventory accuracy 

Jean shelf level inventory accuracy 

Jean 
shelf 
level 

Ground 
truth 

Closer path  Farther path  Manual 

Mean 
inventory 
result 

Mean 
inventory 
accuracy  

Mean 
inventory 
result 

Mean 
inventory 
accuracy  

Mean 
inventory 
result 

Mean 
inventory 
accuracy  

level 0 59 12 20.34% 11.8 20.00% 10.2 17.29% 

level 1 90 42.8 47.56% 41 45.56% 50 55.56% 

level 2 77 57.6 74.81% 52.4 68.05% 42.6 55.32% 

level 3 84 82.2 97.86% 78 92.86% 53.6 63.81% 

level 4 60 57.4 95.67% 57.4 95.67% 31.4 52.33% 

total 370 252 68.11% 240.6 65.03% 187.8 50.76% 

Notes: Level 4 is closest to the ground, Level 0 is farthest from the ground 
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Figure 6.14. Jean shelf level inventory accuracy chart  

 An intuitive solution to improve the inventory of high vertical structure is to mount a 

RFID antenna in a higher position on the robot.  

6.5 RFID Tag Localization Results 

Our last experiment series demonstrate the performance of the RFID tags localization. 

We still conducted our experiments in the mock store. We will test our two RFID tags 

localization algorithms separately, fixed power tag localization and variable power tag 

localization algorithm, and compare the results by localization accuracy. The localization 

accuracy is presented by the error between the estimated location and the ground truth position 

of each RFID tag. The ground truth position is manually measured by locating each item in a 

given map. The ground truth and the estimated position are both measured in a 2-dimensional 

Cartesian coordinate system referenced to the given map. 
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We conducted 4 experiments for fixed power tag localization. In these 4 experiments during 

the observation collecting phase, the RFID reader was operated at 80, 110, 140 and 170 power 

levels separately. Then we can compare the localization results for each experiment. We use the 

map same as the navigational experiment and only use the closer path, because when conducting 

our experiment under the lower power level, we need the robot to move as close to the merchandise 

as possible, so that we can collect more RFID tag responses. The average observation collecting 

time is in the same level of RFID inventory, which is about 30 minutes. 

 During the experiment of the variable power tag localization algorithm, we used the goal 

points of the closer path as the measurement points in the observation collecting phase. The 

measurement points are illustrated in the following figure. 

 
Figure 6.15. The blue points represent the measurement points of variable power tag localization 



 75

The robot will stop at each measurement point and shift േ	90,േ45 and 0 degrees to collect 

RFID tag responses under 80, 110, 140 and 170 power level. Base on those RFID tag responses 

we can generate the measurement vector for the variable power tag localization algorithm. The 

average observation collecting time is about 6 hours. The results are given in the following table. 

Table 6.3. Tag localization results 

 

 
Figure 6.16. Tag localization rate by different algorithms 
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Figure 6.17. Tag localization average error and standard deviation by different algorithms  

There are two important criteria to evaluate RFID tags localization methods: 

1. The tag localization rate, the percentage of localized tags to all existing tags.  

2. The localization error, which can be measured by average error and standard 

deviation in a zone. 

 From Table 3, Figure 6.16 and Figure 6.17, the localization rate of the fixed power tag 

localization algorithm is degraded greatly as the RFID reader power is decreased. However, the 

localization error is decreased as we reduce the RFID reader power. We can tell that the variable 

power tag localization algorithm provides better performance of localization. It got the same 

localization rate with the fixed power localization algorithm at the strongest RFID reader power, 

and smaller localization error and standard deviation than all fixed power localization 

algorithms. This is because the variable power tag localization algorithm utilizes vector-based 
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measurement with responses under the variable power level. The vector-based measurement can 

provide longer detectable range while providing higher localization resolution.   

 The experiment results tell that the structure of the merchandise zones can greatly 

influence the tag localization rate, too. The jean shelf got very low tag localization rate, because 

only the items in the lower levels, which is level 3 and 4, got enough observations to be 

localized. The experiments also tell us that the variable power tag localization algorithm provides 

very reliable localization accuracy. In all merchandise zones the average error is about 0.5 meter 

with about 0.2 meter standard deviation. The localization accuracy provides great practical 

application value; the 0.5 meter accuracy is enough for localization of an item in the retail 

environment, the following figure shows how the localization results help to locate items in our 

mockup store.  
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Figure 6.18. Examples of localized items in our mock store. The blue points are the ground truth 

positions of items, and red points are the positions estimated by the variable power tag 

localization algorithm. (a). an undergarment is localized on the lingerie table, (b) a T-shirt is 

localized in one of cloth racks, (c) a pair of jeans is localized in the jeans shelf, and (d) a pair of 

jeans is localized in the island rack. 

The above figure tells that combined with a given map, the localization results of the variable 

power tag localization algorithm can help to find items in the sales floor or warehouse. For 
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example in (d) of Figure 6.18 the localized result tells that the pair of jeans are placed on the 

right corner of the island rack. And this localization result can be achieved on mass numbers of 

RFID tags in a real store environment.  

 But the fixed power tag localization algorithm is more efficient than the variable one. It 

only takes about 30 minutes to collect and evaluate all the tag localizations, but variable power 

tag localization algorithm needs 6 hours to do so. The results tell us that these two algorithms are 

fitted for two different scenarios. The fixed power tag localization algorithm can be used to 

quickly estimate the location of merchandise. For example to locate many items in a giant 

warehouse, the results of the fixed power tag localization algorithm are enough to locate those 

items. If more precise localization results are needed, the variable power tag localization 

algorithm is the better choice. For example, if we need find misplaced items on the sales floor, 

we could apply a robot to do the localization task during off time, and the precise localization 

results can be generated. The precise localization results could help locate a misplaced item to 

the exact position to reduce the effort of labor to find it and relocate it. 

  



 80

 

Chapter 7 Conclusion and Future Work 

 This dissertation presents a novel application of a mobile robot that performs retail 

inventory autonomously and provides merchandise positions by localizing the attached RFID 

tags. The robot builds a map by using onboard sensors in an enclosed, indoor environment. The 

robot then generates a global path that can navigate the robot to collect RFID tag responses with 

its onboard RFID reader and antennae. We showed that the robot can efficiently do the inventory 

in the retail sales floor, which consists of different types of merchandise and structures. The 

inventory accuracy is better than that of manual inventory. We also developed two RFID tag 

localization algorithms for the robot. The fixed power tag localization algorithm can be used to 

quickly estimate the location of RFID tags, but it only provides limited localization accuracy. 

The variable power tag localization algorithm needs the robot to do some extra effort to collect 

observations of RFID tags; however, it provides very precise localization accuracy that could 

guide a human being to find any item in a retail environment.  

7.1 Summary 

 We have conducted several experiments in our mock apparel store to evaluate the 

performance of our robot to operate in retail environments. The results of inventory experiments 

show that the robot can efficiently navigate in the obstacle-rich environment. The inventory 

accuracy is highly competitive with the manual one. The results also show that if we can 

improve our robot structure by raising the vertical height of RFID antennae to enable them to 

cover all merchandise, the robot could yield even better inventory accuracy. Therefore, the 
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results indicate that deploying a robot or a group of robots to perform retail inventory represents 

a promising alternative to deploying a large number of stationary RFID readers or having 

personnel scan objects manually.  Our approach greatly reduces the manual labor required in 

retail stores for inventory. In addition, it is significantly less expensive than equipping every 

possible location with an RFID reader antenna [62].   

 We also compared the performance of two RFID tag localization algorithms, the fixed 

power and the variable power tag localization algorithms. The results show that the fixed power 

tag localization algorithm takes about 30 minutes to estimate all the location of items in our 

mock store; in contrast, the variable power method needs about 6 hours to do so. The variable 

power tag localization algorithm provides much better localization accuracy, the average error is 

about 0.5 meter. Under the same localization rate, the fixed power tag localization algorithm 

could only provide meter level localization accuracy. Therefore, two algorithms are fitted for two 

different application scenarios: the fix power tag localization algorithm can be used to quickly 

estimate the location of merchandise, and the variable power tag localization algorithm could be 

deployed for a scenario that needs more precise localization results. 

 Combining the results of inventory and tag localization experiments, we arrive at the 

conclusion that our robot could be deployed in real retail environments. It could greatly reduce 

the effort of inventory, and help to improve the efficiency of the retail inventory management by 

generating merchandise locations. 

7.2 Future Work 

 One of the main difficulties for deploying the robot to giant retail environments is that a 

single robot cannot complete the inventory task in a short time. Currently the robot needs about 

30 minutes to complete the inventory in 204 square meters of our mockup store. The 
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supercenters of Wal-Mart could size up to 260,000 square feet [61], which is about 24,154 

square meters, and may have multiple floors.  Apparently, a single robot is not enough to 

complete the inventory task in an acceptable time period. Our future work will focus on 

developing a group of robots to do inventory in the same space, this will greatly reduce the time 

for doing inventory in giant retail environments such as the sales floor of a Wal-Mart 

supercenter. 

 Another future work will focus on improving the tag localization algorithm, that does do 

not depend on the robot platform to collect the RFID observations. For example, we can collect 

the tag responses by a handheld, and based on this kind of observation, the tag localization 

algorithm could estimate the locations of target items with RFID tags.  
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