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Abstract 

“A critical pillar of a strong PreK–12 education is a well-qualified teacher in 

every classroom” (Conference Board of Mathematical Sciences, 2012, p. 1). In order for 

teachers to help students build procedural fluency from conceptual understanding and 

meet the standards set forth by governing agencies, prospective teachers will need deep 

conceptual understanding of the mathematics they teach and experiences learning 

mathematics in ways that they will be expected to teach (Kilpatrick, Swafford, & Findell, 

2001). However, at least one study has suggested that there exists a preparation gap that 

may contribute to a lack of student achievement (Schmidt et al., 2007). Furthermore, 

prospective teachers who will likely be expected to use manipulatives in their future 

teaching practice may have limited experience using those materials to demonstrate their 

knowledge. 

Data from the National Assessment of Educational Progress over the last decade 

indicates that student achievement in Grades 4 and 8 in the Number & Operations domain 

has only increased by seven points and two points, respectively (https://nces.ed.gov/). 

Since fraction proficiency is thought to be a predictor of later success in algebra (Booth, 

Newton, & Twiss-Garrity, 2014; National Mathematics Advisory Panel, 2008; Usiskin, 

2007), further study on rational numbers may be beneficial. 

This study, which was conducted at a mid-sized, four-year university in the 

southeastern United States, used a case-study design to examine the impact of a 

manipulatives-intensive middle grades mathematics methods course on prospective
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teachers’ procedural and conceptual knowledge of fraction multiplication and division 

and the connections between the two types of knowledge, i.e. relational understanding 

(Skemp, 1987). Data for four participants were collected through tests of knowledge; 

observations; various assessments given by the instructor of the course; and one-on-one, 

task-based and semi-structured interviews.
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Glossary 

Computer applets are programs that are executed from within other applications. An 

applet is a small computer program that has limited features, requires limited 

memory resources, and is downloaded from the Internet to run on a webpage. 

An applet cannot read or write data on the user's machine 

(http://dictionary.reference.com/browse/applet). 

Conceptual knowledge is knowledge that is rich in relationships. It is how knowledge is 

networked with other existing knowledge, connected in such a way that the 

linking relationships are as prominent as the discrete pieces of information. “By 

definition, a piece of information is a part of conceptual knowledge only if the 

holder recognizes its relationship to other pieces of information (Hiebert & 

LeFevre, 1986, p. 1-2). Hiebert and LeFevre (1986) suggested that conceptual 

knowledge is achieved when one recognizes the relationships between pieces of 

information. 

Conceptual understanding is the comprehension of mathematical concepts, operations, 

and relations. (Kilpatrick, Swafford, & Findell, 2001) 

Concrete manipulatives are “material objects designed to represent explicitly and 

concretely mathematical ideas that are abstract” (Moyer, 2001, p. 176).  

Instrumental learning is learning that focuses on recall and procedural-skill development 

(Pesek & Kirshner, 2000). 
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Instrumental understanding is knowing “rules without reasons” and the ability to use the 

rules to compute (i.e., ability to perform conventional algorithms without an 

understanding of why the algorithms work) (Skemp, 1987, p. 153) 

Mathematical proficiency consists of conceptual understanding, procedural fluency, 

strategic competence, adaptive reasoning, and productive disposition 

(Kilpatrick, Swafford, & Findell, 2001, p. 5). 

Procedural fluency is “knowledge of procedures, knowledge of when and how to use 

them appropriately, and skill in performing them flexibly, accurately, and 

efficiently” (Kilpatrick, Swafford, & Findell, 2001, p. 121). 

Procedural knowledge has two distinct parts: formal language (i.e., symbol representation 

system) and rules, algorithms, or procedures used for completing mathematical 

tasks (Hiebert & LeFevre, 1986). Hiebert and LeFevre (1986) distinguished 

between two kinds of procedures, noting that “some procedures manipulate 

written mathematical symbols whereas others operate on concrete objects, 

visual diagrams, or other entities” (p. 7). 

Relational learning is learning that focuses on the meaning of mathematical concepts 

(Pesek & Kirshner, 2000).  

Relational understanding is understanding both what procedures to perform and why to 

perform them (Skemp, 1987, p. 153). Relational understanding “consists of 

building up a conceptual structure (schema) from which its possessor can 

produce an unlimited number of plans for getting from any starting point within 

his schema to any finishing point” (Skemp, 1987, p. 163). 
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Virtual manipulatives are interactive, Web-based visual representations of dynamic 

objects that present opportunities for constructing mathematical knowledge 

(Moyer, Bolyard, & Spikell, 2002). 
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Chapter 1: Introduction 

Consider the following scenario: 

Teacher: Class, today we’re going to learn how to divide fractions. Let’s 

look at this example: 1 1
2 6
÷ . For dividing fractions, I’m going 

to teach you about KFC. 

Student: KFC? Like Kentucky Fried Chicken? 

Teacher: (laughing) Well…no. KFC means Keep, Flip, Change.  

Student: Huh?  

Teacher: It’s an easy way to remember how to divide fractions. You 

keep the first fraction; flip the second fraction, and change the 

sign to multiply. 

Student: Why do you do that? 

Teacher: “Yours is not to ask why, just flip and multiply.” 

Student: I don’t get it. Why does flipping and multiplying work? Why do 

you flip the second fraction and not the first? 

Teacher: I’ve never really thought about why it works. This is the way I 

was taught, and it worked for me. So, that’s the way I am going 

to teach it. Don’t worry though; you’ll get it. 

Although this scenario may or may not have actually happened, its consequences 

are many. In order for students to use mathematics to solve problems, they need to 

understand the associated processes, why a particular process should be chosen, and what 

to expect as an outcome (Martin, 2009). However, if teachers only teach memorization of 



2 

procedures without understanding, mathematics may not be seen by students as a useful 

tool to solve problems. 

Since the recent wide-spread adoption of the Common Core State Standards for 

Mathematics (National Governors Association Center for Best Practices & Council of 

Chief State School Officers [NGA Center & CCSSO], 2010), many states have begun to 

use the term college and career ready. The National Center on Education and the 

Economy [NCEE] sought to determine what it means for a student to be college and 

career ready. In order to do so, the NCEE (2013) posed the following question: How 

much and what kind of mathematics does a student have to know and be able to deploy to 

be successful in their initial credit-bearing community college courses? They provided 

three justifications behind posing this question: 1) a large fraction of high school 

graduates enter community colleges; 2) community colleges provide the bulk of 

vocational and technical education, including auto mechanics, nurses, emergency medical 

technicians, and police officers; and 3) a large portion of community college graduates 

continue their education at four-year institutions.  

The NCEE (2013) found that most of the mathematics needed that will enable 

students to be successful is middle school mathematics, especially arithmetic, ratio, 

proportion, expressions and simple equations. However, they further noted that “a large 

proportion of our high school graduates do not have a sound command of this 

fundamental aspect of mathematics” (p. 2) as evidenced by the large failure rates in 

community colleges. The NCEE (2013) reasoned that students were taught procedures 

without “learning the concepts in any durable way” (p. 2) and that the instruction they 

received had “significant weaknesses in teaching the concepts on which these procedures 
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are based” (p. 2). They suggested that the teaching of fundamental middle grades 

mathematics concepts needs to be addressed in prospective teacher education through the 

way prospective teachers are taught mathematics, as well as through mathematics 

education courses (NCEE, 2013). That is, instruction in these courses should focus on 

conceptual development of topics in concert with procedural development. 

Although much research has been conducted regarding fractions, students’ NAEP 

data demonstrates there is room for growth (Walcott, Mohr, & Kloosterman, 2012). 

Suggestions made by the NCEE (2013) related to students’ lack of proficiency with ratio 

and proportion indicates the need for continuing the search for solutions to this problem. 

In addition, proficiency with fractions is thought to be a predictor of success in algebraic 

reasoning (Booth, Newton, & Twiss-Garrity, 2014; National Mathematics Advisory 

Panel [NMAP], 2008). If successful completion of algebra is a goal, then students need 

competence with fractions (Usiskin, 2007). 

Data released by the National Assessment of Educational Progress (NAEP) 

showed the overall average score on the 2015 Mathematics NAEP as 282, a drop from 

285 in 2013 (http://nces.ed.gov/nationsreportcard/). Considering the content NAEP aligns 

with a score above 300, there is still work to be done. For example, NAEP noted that a 

score above 300 would indicate that students could: add two fractions with unlike 

denominators, write an improper fraction as a decimal, determine the percent given the 

part and the whole, and identify fractional models. This comparison paints a bleak picture 

for student achievement in the United States. 

If student achievement is indeed impacted by teacher knowledge, as has been 

indicated by the Conference Board of Mathematical Sciences [CBMS] (2012) and others 
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(e.g., Kilpatrick, Swafford, & Findell, 2001; Darling-Hammond, 1997), then efforts need 

to be made to ensure that teachers entering the profession have a deep knowledge of the 

mathematics they will be required to teach in order to relate ideas to one another and 

address misconceptions (Darling-Hammond, 2008). In addition, teachers must also be 

able to use varying teaching strategies to reach diverse learners (Darling-Hammond, 

2008). In order for prospective teachers to develop deep knowledge of mathematics and 

varying strategies, they need experiences themselves learning mathematics in engaging 

ways, similar to what they will need to provide for their students (Kilpatrick et al., 2001).  

If prospective teachers do not have mastery of the content they are required to 

teach, then the issue becomes one of inequity. NCTM (2014) stated in Principles to 

Actions that “support for access and equity requires, but is not limited to, high 

expectations, access to high-quality mathematics curriculum and instruction, adequate 

time for students to learn, appropriate emphasis on differentiated processes that broaden 

students’ productive engagement with mathematics, and human and material resources” 

(p. 60). Providing access to high-quality mathematics instruction requires having teachers 

with mastery of the content they are responsible for teaching. In order to achieve access 

and equity for all students, NCTM (2014) suggested teachers design instruction that 

attends to the following eight Mathematics Teaching Practices presented by NCTM 

(2014):  

• Establish mathematics goals to focus learning;  

• Implement tasks that promote reasoning and problem solving;  

• Use and connect mathematical representations;  

• Facilitate meaningful mathematical discourse;  
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• Pose purposeful questions;  

• Build procedural fluency from conceptual understanding;  

• Support productive struggle in learning mathematics; and  

• Elicit and use evidence of student thinking (p. 10). 

However, research cited by NCTM (2014) indicates that one obstacle to 

instruction that promotes access and equity for all students is the belief that learning is 

memorizing and practicing skills, which some parents and educators still view as 

“effective” (e.g., Sam & Ernest, 2000). NCTM (2014) suggested productive beliefs to 

counter unproductive beliefs related to teaching and learning mathematics. For example, 

the unproductive belief that “mathematics learning should focus on practicing procedures 

and memorizing basic number combinations” should be replaced by the productive belief 

that “mathematics learning should focus on developing understanding of concepts and 

procedures through problem solving, reasoning, and discourse” (NCTM, 2014, p. 11). 

This productive belief is somewhat similar to statements by the NCEE (2013) regarding 

how students should learn mathematics, by developing understanding of concepts and 

procedures. 

Statement of the Problem 

Taking into consideration the adoption of the Common Core State Standards for 

Mathematics (CCSSM) (NGA Center & CCSSO, 2010), which emphasizes conceptual 

understanding to undergird students’ procedural fluency, prospective teachers will need 

deep conceptual understanding of the mathematics they teach in order to meet these 

standards (Kilpatrick, Swafford, & Findell, 2001). Furthermore, the CCSSM (NGA 

Center & CCSSO, 2010) suggested the use of concrete models particularly with fractions; 
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therefore, prospective teachers will likely need learning opportunities with manipulatives 

to prepare them to meet the needs of diverse learners. Because these standards are new, 

prospective teachers currently in, or soon to be entering, colleges of education may have 

deficiencies in both their conceptual understanding of mathematics and their ability to use 

manipulatives.  

Although much research has been done to examine prospective elementary 

teachers’ knowledge of fractions (e.g., Ma, 1999; Ball, 1990a; Ball, 1990b; Lo & Lou, 

2012), research has not examined middle school teachers’ knowledge of fractions to the 

same extent (Li & Kulm, 2008; Schmidt et al., 2007). Because middle school teachers 

build upon concepts from the elementary grades and prepare students for algebraic 

reasoning, which requires an understanding of fractions, it is important for these teachers 

to have strong conceptual understanding of fractions (Kilpatrick et al., 2001) and to have 

preparation on how the mathematical ideas of the middle grades connect with ideas and 

topics of elementary school and high school (Suzuka, Sleep, Ball, Bass, Lewis, & 

Thames, 2007). 

Since proficiency with fractions is thought to be a predictor of success in 

algebraic reasoning (Booth, Newton, & Twiss-Garrity, 2014; NMAP, 2008; Usiskin, 

2007) and in being college and career ready (NCEE, 2013), further study on rational 

numbers may be beneficial. Based on the findings of their study, the National Center on 

Education and the Economy [NCEE] (2013) recommended additional time be spent 

mastering middle school mathematics rather than advancing quickly to advanced algebra. 

Their recommendation also came with an emphasis on learning mathematics 

conceptually, not just procedurally. On the following page, Figure 1 shows the national 
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average scaled scores on the NAEP in the Number & Operations domain for Grades 4 

and 8 from 1990 to 2015 (http://nces.ed.gov/nationsreportcard/naepdata/dataset.aspx).  

 

Figure 1. NAEP Average Scores in the Number & Operations Domain by Years Tested 

Recommendations from the Conference Board of Mathematical Sciences [CBMS] 

(2012) focus not only on the practices that may improve students’ learning, but also 

specifically the content in which their teachers need to be proficient. The CBMS (2012) 

noted that knowledge of unit rates is developed by connecting ratios to prior learning of 

fractions. In addition, the CBMS (2012) specifically address importance of knowing the 

connections between multiplication and division of fractions, as well as the two models 

of fraction division: sharing (partitive) and measurement.  

The use of manipulatives is generally accepted as best practice in today’s 

classroom to help students develop conceptual understanding (NCTM, 2000; NCTM, 

2014). However, incorporating manipulatives into classroom instruction is not a simple 

matter (Burns, 1996; Puchner, Taylor, O’Donnell, & Fick, 2008; Moyer, 2001). For 

students to benefit from experiences with manipulatives, much planning and preparation 

must take place on the part of the teacher (Burns, 1996). Teachers must take into 
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consideration the appropriateness of manipulative materials, as well as the limitations of 

the manipulative materials, in order for students to benefit from their use (Cramer & 

Wyberg, 2009; Moss & Case, 1999).  

Teachers must recognize how to link the concrete representation to the symbolic 

representation in order to help students make those connections and develop conceptual 

understanding of mathematics (NCTM, 2000; Hiebert & Carpenter, 1992). Moreover, 

teachers must realize that how the manipulative is used in the classroom is of paramount 

importance (Ball, 1992; Moyer, 2001; Van de Walle, Karp, & Bay-Williams, 2013; 

Puchner, Taylor, O'Donnell, & Fick, 2008). That is, students who “mimic” a teacher’s 

actions with manipulatives may not benefit from the use of the manipulatives. Instead, 

students need opportunities to explore and develop their own mathematical reasoning 

through their experiences using the manipulatives (NCTM, 2014; Burns, 1996).  

It is important that prospective teachers have significant learning opportunities to 

develop understanding of the mathematics they are required to teach (Schmidt et al., 

2007). However, some prospective teachers’ prior learning experiences may have only 

focused on procedures (instrumental learning) instead of conceptual development 

(relational learning), and they may have never experienced learning with manipulatives. 

If prospective teachers engage in relational learning of fractions with manipulatives, they 

may experience interference due to their prior procedural learning similar to that 

experienced by grade school students studied by Pesek and Kirshner (2000). On the other 

hand, prospective teachers may be able to correct faulty understanding through the use of 

manipulatives similar to prospective elementary teachers studied by Green, Piel, and 

Flowers (2008).   
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Purpose of the Study 

Since proficiency with fractions is thought to be a predictor of student success in 

algebraic reasoning (National Mathematics Advisory Panel, 2008), it is important to 

continue to explore methods of instruction that might be helpful to students as they learn 

fractions. Perhaps equally important in improving students’ knowledge of fractions is 

ensuring teachers possess deep conceptual knowledge of fractions (Kilpatrick et al., 

2001). Part of ensuring that teachers possess the content knowledge necessary to be 

effective teachers is providing them with instructional experiences during their teacher 

preparation that will help them develop deep conceptual understanding of mathematics 

content in ways similar to what they will be expected to carry out with their own future 

students (Kilpatrick et al., 2001; Schmidt et al., 2007). Expected methods of instruction 

may include the use of manipulatives.  

Skemp (1987) suggested that having relational understanding is desirable due to 

the benefits of its adaptability to new tasks and being easier to remember. Relational 

understanding is having both procedural and conceptual knowledge and knowing how 

these are linked. Skemp (1987) noted that relational understanding is not only knowing 

what procedures to apply, but why to apply them.  

Numerous studies have examined prospective elementary teachers’ mathematics 

knowledge (e.g., Lo & Lou, 2012), specifically fraction knowledge, while fewer studies 

have examined prospective middle school teachers’ mathematics knowledge (e.g., Li & 

Kulm, 2008). Furthermore, few studies have examined the use of manipulatives with 

prospective teachers (e.g., Green, Piel, & Flowers, 2008; Vinson, 2001). Therefore, the 

purpose of this study was to investigate the impact of a manipulatives-intensive fractions 
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unit during a middle grades methods course on prospective teachers’ relational 

understanding of fractions in the hope of informing teacher educators and others.  

Prospective teachers in this study were enrolled in a middle grades methods 

course and were engaged in relational learning opportunities involving manipulatives and 

other best practices. Best practices carried out in the methods course included: 

• Actively engaging learners as members of a learning community;  

• Using worthwhile tasks; 

• Facilitating student-student and student-teacher discourse;  

• Inviting peer demonstrations; 

• Reflecting on students’ misconceptions;  

• Using multiple representations; 

• Taking learners’ prior knowledge into consideration;  

• Valuing alternative methods of problem solving; 

• Attending to the development of conceptual and procedural 

knowledge; 

• Facilitating connections with real-world phenomena and other 

content disciplines; 

• Encouraging metacognition; and  

• Encouraging abstraction when appropriate.   

 
As I collected and analyzed observational, interview, and assessment data, I 

attempted to answer the following question: 

What is the impact of a manipulatives-intensive fractions unit in a middle 

grades methods course on prospective teachers’ relational understanding 

of fractions?   
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Chapter 2: Literature Review 

This chapter begins with a discussion of conceptual and procedural knowledge of 

mathematics and their importance with respect to mathematics education. Next, literature 

related to fractions, including learning trajectories, fraction literacy, and student 

achievement data is discussed. Then, a review of literature related to teacher knowledge 

is presented, including literature about prospective teachers. Finally, a review of the 

literature on manipulatives, including a historical look at manipulatives, is provided.  

Knowledge and Understanding  

In this section, Hiebert and Carpenter’s (1992) conception of understanding is 

discussed. Conceptual and procedural knowledge from the perspectives of Hiebert and 

LeFevre (1986) and Hiebert and Carpenter (1992) are also mentioned and information 

about the importance of students and teachers having both types of knowledge is 

provided. The term conceptual understanding is discussed as it is commonly used in the 

literature, along with mathematical proficiency as it relates to conceptual understanding 

and procedural knowledge as defined by Kilpatrick, Swafford, and Findell (2001). Ball’s 

(1988) and Ma’s (1999) use of the term conceptual understanding is discussed and 

related to Hiebert and LeFevre’s (1986) notion of conceptual knowledge, as well as 

Skemp’s (1987) relational and instrumental understanding. Finally, instrumental and 

relational learning and Pesek and Kirshner’s (2000) study about the possibility of 

interference of prior instrumental learning on subsequent relational learning are 

discussed. 
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Hiebert and Carpenter (1992) defined understanding in terms of the way 

information is represented and structured. That is, “mathematics is understood if its 

mental representation is part of a network of representations” (Hiebert & Carpenter, 

1992, p. 67). Understanding also entails recognizing relationships between pieces of 

information (Hiebert & Carpenter, 1992). The number of connections that exists 

determines the depth of understanding (Hiebert & Carpenter, 1992).  

Hiebert and Carpenter (1992) described the process of building mathematical 

understanding: 

Networks of mental representations are built gradually as new information 

is connected to existing networks or as new relationships are constructed 

between previously disconnected information. Understanding grows as the 

networks become larger and more organized. Thus, understanding is not 

an all or none phenomenon. Understanding can be rather limited if only 

some of the mental representations of potentially related ideas are 

connected or if the connections are weak. Connections that are weak and 

fragile may be useless in the face of conflicting or nonsupportive 

situations. Understanding increases as networks grow and as relationships 

become strengthened with reinforcing experiences and tighter network 

structuring (p. 69). 

For example, students who make the connection that lining up decimal 

places when adding decimals means like units are being combined (e.g. tenths 

with tenths) are building on their existing knowledge of place value of whole 

numbers (Hiebert & Carpenter, 1992).  
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Conceptual and procedural knowledge. In mathematics education, there are 

two types of knowledge that are discussed frequently: conceptual and procedural 

knowledge (Hiebert & LeFevre, 1986). Conceptual knowledge is “knowledge that is rich 

in relationships” (Hiebert & LeFevre, 1986, p. 3). It is how knowledge is networked with 

other existing knowledge, connected in such a way that “the linking relationships are as 

prominent as the discrete pieces of information” (Hiebert & LeFevre, 1986, p. 3). By 

definition, a piece of information “is a part of conceptual knowledge only if the holder 

recognizes its relationship to other pieces of information” (Hiebert & LeFevre, 1986, p. 

4). Eisenhart et al. (1993) defined conceptual knowledge as “knowledge of the underlying 

structure of mathematics-the relationships and interconnections of ideas that explain and 

give meaning to mathematical procedures” (p. 9). 

Hiebert and LeFevre (1986) suggested that conceptual knowledge is achieved 

when one recognizes the relationships between pieces of information. These pieces of 

information can either be already stored in memory or new information linked with 

existing knowledge (Hiebert & LeFevre, 1986). Hiebert and LeFevre (1986) cited an 

example from Ginsburg (1977) of conceptual knowledge being formed between two 

existing pieces of information when a child understood multi-digit subtraction by 

recognizing the connection between the memorized algorithm and prior knowledge of the 

positional value of each digit. The authors further explained that conceptual knowledge 

of multi-digit subtraction could also be formed if the child recognized the connection 

between the algorithm and place value immediately upon being taught the algorithm 

(Hiebert & LeFevre, 1986).  
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In their explanation of this process, Hiebert and LeFevre (1986) stated, “Perhaps 

understanding is the term used most often to describe the state of knowledge when new 

mathematical information is connected appropriately to existing knowledge” (p. 4). In 

addition, Hiebert and LeFevre (1986) stated that the term meaningful learning conveys 

similar connotation. Hiebert and LeFevre (1986) further expressed that, “regardless of the 

term used, the heart of the process involves assimilating (Piaget, 1960) the new material 

into appropriate knowledge networks or structures. The result is that the new material 

becomes part of an existing network” (p. 4).  

Hiebert and Carpenter (1992) stated that conceptual knowledge is either primary, 

where knowledge is tied to a specific context, or reflective, where knowledge becomes 

abstract when it is freed from specific contexts. As a result of learning procedures 

conceptually, ideas are linked to other networks and bring forth a greater potential to 

transfer the procedural use to additional applications (Hiebert & Carpenter, 1992). For 

example, when students learn about decimal numbers, they learn about place values of 

numbers and that it is necessary to line up the decimals when adding or subtracting 

decimals (Hiebert & LeFevre, 1986). However, this learning of lining up decimals can be 

thought of as a primary level. It is not until a student makes the connection that lining up 

decimals is a special case of the general idea that one must add like things that the 

learning becomes reflective (Hiebert & LeFevre, 1986). Similarly, when students 

recognize that getting a common denominator when adding fractions means that they are 

adding the same size unit pieces, the learning has proceeded to a reflective level (Hiebert 

& LeFevre, 1986).   
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Eisenhart et al. (1993) provided an example of conceptual knowledge of fractions. 

More specifically, conceptual knowledge of dividing fractions includes knowledge of 

fractions in general and the particular fractions to be divided, as well as the meaning of 

division. Eisenhart et al. (1993) suggested concrete referents could be used to illustrate 

fraction division, but also emphasized that discussing the links between and among 

mathematical ideas is necessary as well. For example, mathematical ideas associated with 

division of fractions include division of whole numbers, how multiplication is related to 

division, scaling and proportion, partitive and measurement division, and how story 

problems are related to number sentences, just to name a few (Eisenhart et al., 1993). 

Procedural knowledge has two distinct parts: formal language (i.e., symbol 

representation system) and rules, algorithms, or procedures used for completing 

mathematical tasks (Hiebert & LeFevre, 1986). The formal language of mathematics 

includes “a familiarity with the symbols used to represent mathematical ideas and an 

awareness of the syntactic rules for writing symbols in an acceptable form” (Hiebert & 

LeFevre, 1986, p. 6). Procedures can be learned by rote and are generally followed in a 

step-by-step manner, done in a predetermined linear sequence (Hiebert & LeFevre, 

1986). Hiebert and LeFevre (1986) distinguished between two kinds of procedures and 

noted, “Some procedures manipulate written mathematical symbols whereas others 

operate on concrete objects, visual diagrams, or other entities” (p. 7).  

Procedural knowledge and conceptual knowledge differ in that the focus on 

procedural knowledge is on symbols and step-by-step procedures, while the focus of 

conceptual knowledge is how the knowledge is networked with other existing knowledge, 

as well as integrated with new knowledge (Hiebert & Carpenter, 1992). Both conceptual 
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and procedural knowledge are necessary for mathematical understanding (Eisenhart et al., 

1993). Hiebert and LeFevre (1986) indicated that conceptual knowledge must be learned 

meaningfully; however, procedural knowledge may or may not be learned with meaning 

(i.e., rote learning). However, Hiebert and LeFevre (1986) proposed that if procedures are 

learned with meaning, then they are linked to conceptual knowledge. Hiebert and 

LeFevre (1986) also suggested that the use of procedures provides a way for conceptual 

knowledge to be observable; therefore, conceptual and procedural knowledge are not 

necessarily distinct entities.  

Hiebert and LeFevre (1986) discussed the relationship between conceptual and 

procedural knowledge: 

Mathematical knowledge, in its fullest sense, includes significant, 

fundamental relationships between conceptual and procedural knowledge. 

Students are not fully competent in mathematics if either kind of 

knowledge is deficient or if they both have been acquired but remain 

separate entities. When concepts and procedures are not connected, 

students may have a good intuitive feel for mathematics but not solve the 

problems, or they may generate answers but not understand what they are 

doing (p. 9).  

Hiebert and Carpenter (1992) suggested that how well students’ conceptual and 

procedural knowledge are developed is related to their ability to apply skills and solve 

complex problems in new situations. That is, “procedural knowledge that is informed by 

conceptual knowledge results in symbols that have meaning and procedures that can be 

remembered better and used more effectively” (Hiebert & LeFevre, 1986, p. 16). For 
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example, a student tasked with adding two decimal numbers like 3.5 and 1.76 would 

recognize that adding the 5 and 6 would not be appropriate because they are not of like 

size (e.g., tenths and hundredths). 

A goal of education is to make knowledge useful to the learner, for the learner to 

become a competent user of his/her knowledge (Bransford, Brown, & Cocking, 2000). 

“A critical part of mathematical competence stipulates that entities in the symbol world 

must represent (for the learner) entities in the reference world” (Hiebert & LeFevre, 

1986, p. 10). Building conceptual knowledge that is linked to procedural knowledge 

gives meaning to symbols, while building procedural knowledge that is linked to 

conceptual meaning contributes to memory of procedures for their effective use (Hiebert 

& LeFevre, 1986). In other words, procedures that are meaningful and make sense are 

more likely to be recalled and useful.  

If procedures are linked with conceptual knowledge, they become stored 

as part of a network of information, glued together with semantic 

relationships. Such a network is less likely to deteriorate than an isolated 

piece of information, because memory is especially good for relationships 

that are meaningful and highly organized (Hiebert & LeFevre, 1986, p. 

11).  

However, teachers typically focus on developing procedural skill rather than 

conceptual development due to their belief that conceptual development takes more time 

(Hiebert & Carpenter, 1992; Skemp, 1987). As a result of the focus on procedural skill, 

students’ conceptual knowledge is often deficient (Moss & Case, 1999). 
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In fact, “what students learn through instruction at any moment is not just a 

function of the instruction; it is influenced by what they already know and by instruction 

in which they have already participated” (Thompson & Saldanha, 2003, p. 96). Once 

students have adopted procedural practices (even incorrect procedures) in solving 

mathematics problems, they are reluctant for those to be disturbed (Pesek & Kirshner, 

2000). As knowledge is acquired and procedures are practiced repeatedly, individual 

parts of knowledge become a single unit (Anderson, 1983). In order to connect a 

procedure with its conceptual knowledge, one must separate the procedure into its 

individual steps so that reflection of its makeup is possible, which can be difficult to do 

(Hatano, 1988). 

Conceptual understanding. Some of today’s mathematics education literature 

use the term conceptual understanding in ways that differ from others. Ball (1988) used 

the term conceptual understanding when she referred to what teachers need to know to be 

able to help students develop meaningful understanding of mathematics. She stated: 

In order to help students develop meaningful understanding of 

mathematics, teachers themselves need to have explicit and conceptual 

connected understandings of mathematical concepts and procedures. This 

includes being able to explain why a procedure works, to be able to 

connect one mathematical concept to another, or to make links between 

mathematics and other domains (p. 191). 

Ball (1988) gave a specific example of conceptual understanding when she 

stated that “knowing that division by zero is undefined and knowing why go hand 

in hand to comprise conceptual understanding” (p. 40). In addition, Ball stated 
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that a prospective teacher had conceptual understanding when the prospective 

teacher explained the regrouping algorithm using 64 as 50 plus 14 to clarify what 

is happening when the 6 changes to a 5 and the 4 changes to a 14 and indicated 

that the value of the number had not changed. Lastly, Ball (1988) stated that she 

asked prospective teachers to generate and explain representations of division 

with fractions, by zero, and in algebraic equations in order to get the candidates to 

“display explicit conceptual understanding” (p. 60). 

When NCTM established the Learning Principle in Principles and 

Standards for School Mathematics (NCTM, 2000), they indicated that conceptual 

understanding plays an important role in proficiency and cited Bransford, Brown, 

and Cocking (1999) in saying that “conceptual understanding is an important 

component of proficiency, along with factual knowledge and procedural facility” 

(NCTM, 2000, p. 20). However, NCTM (2000) did not provide an explicit 

definition of conceptual understanding. In NCTM’s Principles to Actions (2014), 

conceptual understanding is defined as “the comprehension of mathematical 

concepts, operations, and relations” (p. 7), which is the definition provided by 

Kilpatrick, Swafford, and Findell (2001) in the National Research Council’s 

Adding It Up: Helping Children Learn Mathematics. 

Finally, Ma (1999) used the term conceptual understanding when she 

discussed a teacher’s understanding of regrouping when subtracting. The teacher 

suggested using coins as a manipulative to get students to understand what the 

teacher called “borrowing.” The teacher indicated that a quarter could be changed 

to two dimes and a nickel so that one could “borrow a dime.” Ma (1999) noted 
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that this teacher’s “manipulative would not convey any conceptual understanding 

of the mathematical topic he was supposed to teach” (p. 5) because it was not 

related to the base-ten structure of the number system. 

Mathematical proficiency. In the National Research Council’s Adding It Up: 

Helping Children Learn Mathematics, Kilpatrick, Swafford, and Findell (2001) discussed 

the concept of mathematical proficiency. According to Kilpatrick, Swafford, and Findell 

(2001), mathematical proficiency has five strands that are interwoven and interdependent. 

The five strands are:  

• Conceptual understanding—comprehension of mathematical concepts, 

operations, and relations;  

• Procedural fluency—skill in carrying out procedures flexibly, accurately, 

efficiently, and appropriately;  

• Strategic competence—ability to formulate, represent, and solve 

mathematical problems; 

• Adaptive reasoning—capacity for logical thought, reflection, explanation, 

and justification;  

• Productive disposition—habitual inclination to see mathematics as 

sensible, useful, and worthwhile, coupled with a belief in diligence and 

one’s own efficacy (Kilpatrick et al., 2001, p. 5).  

 
Kilpatrick et al. (2001) defined procedural fluency as “knowledge of procedures, 

knowledge of when and how to use them appropriately, and skill in performing them 

flexibly, accurately, and efficiently” (p. 121). In order to help students become 

mathematically proficient, teachers need to focus equally on conceptual understanding 

and procedural fluency (Kilpatrick et al., 2001; NCTM, 2000; NCTM, 2014). “It can be 

said that those who have conceptual understanding grasp the full meaning of knowledge, 

and can discern, interpret, compare and contrast related ideas of the subtle distinctions 
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among a variety of situations” (Panasuk, 2010, p. 237). Principles and Standards for 

School Mathematics (NCTM, 2000) suggested that if conceptual understanding is 

developed prior to procedural fluency, then less time will be spent addressing students’ 

misconceptions and procedural difficulties. In addition, if students fail to develop a 

connected understanding of concepts and algorithms, they will not be able to use 

mathematics to its fullest potential (National Mathematics Advisory Panel, 2008). 

Relational and instrumental understanding. Skemp (1987) stated that 

relational understanding is knowing both what procedures to perform and why to perform 

them, while instrumental understanding is “learning rules without reasons” (p. 9).  

What is inflicted on all too many children and older students is the 

manipulation of symbols with little or no meaning attached, according to a 

number of rote-memorized rules. This is not only boring (because 

meaningless); it is very much harder, because unconnected rules are much 

harder to remember than an integrated conceptual structure (Skemp, 1987, 

p. 18).  

Skemp’s (1987) statement regarding relational understanding as “an integrated 

conceptual structure” is similar to Hiebert and LeFevre’s (1986) definition of conceptual 

knowledge, in that both definitions are grounded in the integration (linking) of 

mathematical concepts.  

Skemp (1987) stated that instrumental understanding of mathematics does not 

involve an awareness of the relationship between successive stages of procedures. 

However, relational understanding “consists of building up a conceptual structure 

(schema) from which its possessor can produce an unlimited number of plans for getting 
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from any starting point within his schema to any finishing point” (Skemp, 1987, p. 163). 

Skemp (1987) indicated several benefits of relational understanding: 1) it is more 

adaptable to new tasks; 2) it is easier to remember; 3) relational knowledge can be 

effective as a goal in itself (e.g., intrinsic motivation to learn); and 4) relational schemas 

are organic in quality (p. 158-159). With respect to the fourth benefit, Skemp (1987) 

noted, “If people get satisfaction from relational understanding, they may not only try to 

understand relationally new material which is put before them, but also actively seek out 

new material and explore new areas” (p. 159).  

Relational and instrumental learning. Relational learning is learning 

(instruction) that focuses on the meaning of mathematical concepts and the connections 

that exist among them, while instrumental learning is learning that focuses on recall and 

procedural-skill development (Pesek & Kirshner, 2000). Pesek and Kirshner (2000) 

studied the effectiveness of relational learning compared to instrumental learning that is 

followed by relational learning. In their study, Pesek and Kirshner (2000) examined the 

cognitive, attitudinal, and metacognitive interferences of prior instrumental learning on 

subsequent relational learning.  

Their study focused on six intact regularly scheduled fifth-grade mathematics 

classes that were heterogeneously-grouped. Within the classes, students were separated 

into two treatment groups using random stratification by gender and achievement level. 

The two treatment groups were I-R (instrumental-relational) and R-O (relational only). 

The I-R group received five days of instrumental instruction focused on using and 

memorizing conventional formulas for calculating the area and perimeter of various 
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geometric shapes. During instrumental instruction, formulas were not justified in terms of 

the characteristics of the geometric figures. 

Relational instruction was then provided in three one-hour lessons over a three-

day period to each intact class consisting of both I-R and R-O students. During relational 

instruction, all students were encouraged to use multiple modes of representation with no 

attention given to the use of conventional formulas (Pesek & Kirshner, 2000). Instruction 

focused on developing connections through the use of concrete materials, questioning, 

student communication, and problem solving. Instructional methods encouraged students 

to find efficient solution methods for calculating.  

Pesek and Kirshner (2000) gathered data through the use of a pre-test, 

intermediate test, post-test, retention test, and interviews. The pre-test, post-test and 

retention test were nearly identical and consisted of 37 open-ended items worth one point 

each; three items were deleted in the analysis due to being poorly constructed. The 

intermediate test was administered to the I-R group only after the instrumental instruction 

was complete and was the same format used during the instrumental instruction. The 

post-test mean for the I-R group was 14.36, while the post-test mean for the R-O was 

16.42. Trends for the retention test were similar. Although an analysis of covariance did 

not determine statistical significance between the means, the authors suggested that, 

given a larger sample size, there was a strong likelihood that the results would have been 

judged statistically significant.  

Six students from each class were selected for three interviews each: before any 

instruction, following the intermediate test, and following the post-test. The interview 

data was gathered in order to better understand any interference effects. Analysis of 
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interview data revealed evidence of interference of instrumental instruction on 

subsequent relational understanding (Pesek & Kirshner, 2000). The authors also 

identified cognitive, attitudinal, and metacognitive characteristics of the interference.  

One example of cognitive differences between the I-R and R-O students’ 

understanding was evident when discussing who needs to understand area and perimeter 

and why they need to understand it. The R-O interviewees gave examples of applications 

like carpet, painting, and wallpaper, while the I-R students gave examples of tests, later 

study, and college. Furthermore, a consistent misconception among I-R interviewees that 

was not present in R-O interviewees was the belief that one can only find the perimeter of 

walls, not the surface area, because walls “go around.” The R-O students’ responses are 

better aligned to the CCSSM (NGA Center & CCSSO, 2010) than the I-R students’ 

responses because there is an emphasis in the CCSSM to “solve real-world problems.”  

With respect to attitudinal interference, all interviewees indicated that they 

enjoyed learning the relational unit, and they liked “playing” with the Geoboards and 

rubber bands. In addition, all interviewees indicated that their regular mathematics 

instruction was similar to the instrumental instruction because their teacher explained 

problems on the overhead instead of students using hands-on manipulatives. One 

interviewee from the I-R treatment group indicated that he preferred the relational 

instruction over the instrumental instruction because the formulas were confusing, and it 

was difficult to remember which formula went with which geometric figure. 

Evidence of metacognitive interference was demonstrated when I-R students used 

operations incorrectly and used operations based on incorrect reasoning (Pesek & 

Kirshner, 2000). In addition, none of the I-R students could correctly explain the role of 
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the “2” in the perimeter formula )(2 wlP += . On the contrary, five of the six R-O 

interviewees were able to give a partial or a complete explanation of the perimeter 

formula for a rectangle despite the lack of instruction focused on formulas. Pesek and 

Kirshner (2000) suggested that maintaining applicative skills requires a higher level of 

cognitive demand and subsequent relational learning may cause students to be distracted.  

Pesek and Kirshner (2000) concluded that students who first received 

instrumental instruction experienced metacognitive interference and subsequently did not 

benefit from the use of representations in the same way that the students who received 

only relational instruction did. The authors cautioned against teaching for rote skill 

development part of the time and for conceptual understanding part of the time. In fact, 

Pesek and Kirshner (2000) stated, “initial rote learning of a concept can create 

interference to later meaningful learning” (p. 537). It should be noted that Pesek and 

Kirshner (2000) recognized that students who were stronger, as determined by their 

California Achievement Test scores, “seemed able to overcome the negative effects of 

instrumental instruction more easily than weaker students” (p. 533).  

Since the primary mode of relational instruction was through exploration using 

multiple representations, Pesek and Kirshner’s (2000) study may have implications on the 

effects of using multiple representations with prospective teachers in relational learning 

that has been preceded by instrumental learning. That is, if teacher educators focus on the 

conceptual development of middle grades mathematics, particularly through the use of 

manipulatives, prospective teachers in such courses may experience cognitive, attitudinal, 

and metacognitive interference from prior instrumental learning similar to that 

experienced by students in Pesek and Kirshner’s (2000) study.  



26 

Summary of knowledge and understanding. In this section, knowledge and 

understanding were examined from multiple perspectives, and mathematical proficiency 

as it relates to conceptual and procedural knowledge was discussed. In order for students 

to be considered mathematically proficient, they need both conceptual and procedural 

knowledge, as well as a connectedness between the two. How students learn depends on 

how they are taught (Pesek & Kirshner, 2000). If students are taught with a focus on 

procedures (instrumental learning) without the meaning associated with those procedures 

(relational understanding), it is likely that their mathematical proficiency will suffer. 

Therefore, it may be said that one is mathematically proficient if he/she has relational 

understanding, which entails having conceptual and procedural knowledge and an 

understanding of the connections between the two (Skemp, 1987). 

Teacher Knowledge 

This section begins with a discussion of the importance of qualified teachers in 

the middle school. Next, mathematical knowledge for teaching, specialized content 

knowledge, and pedagogical content knowledge are discussed. Finally, literature related 

to prospective teachers and how it relates to literature presented earlier in this paper is 

explicated. 

Why teacher knowledge matters. “A critical pillar of a strong PreK–12 

education is a well-qualified teacher in every classroom” (Conference Board of 

Mathematical Sciences [CBMS], 2012, p. 1). Teaching is a complex endeavor requiring 

mathematical knowledge, knowledge of teaching, knowledge of learning, knowledge of 

students, and much more (CBMS, 2012; NCTM, 2000).  
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However, in order to be well-qualified, teachers need more than a “student’s 

understanding” of the content they are required to teach, as well as an understanding of 

the curricular coherence of the content (CBMS, 2012). Teachers also need a balance of 

conceptual understanding and procedural knowledge of the mathematics they are required 

to teach, which is not always the case (Tchoshanov, 2011). 

Middle school is one of the critical points in a child’s education, and teacher 

knowledge likely has some impact on student success (Schmidt, Blömeke, & Tatto, 

2011). “Because the middle grades are ‘in the middle,’ it is critical that middle grades 

teachers be aware of the mathematics that students will study before and after the middle 

grades” (CBMS, 2012, p. 45). In addition to their responsibilities for middle grades 

content, middle grades teachers also need to have an elementary teacher’s perspective on 

mathematics content because they may need to provide additional instructional support 

for students who have not yet achieved mastery (CBMS, 2012). Moreover, prospective 

middle grades teachers need to be familiar with representations used in the earlier grades 

and how these representations support the extension of mathematical ideas into the 

middle grades and beyond (CBMS, 2012). Hence, prospective middle grades teachers 

need specialized preparation that addresses mathematics relevant for teaching grades 5-8, 

as well as methods courses which integrate the study of mathematics and pedagogy 

(CBMS, 2012).  
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Why prospective teacher education is important. In August 2013, the Council 

for the Accreditation of Educator Preparation (CAEP) Board approved new CAEP 

standards for accreditation. CAEP’s first recommended standard is prospective teachers’ 

development of content and pedagogical knowledge. The authors cited Ball, Thames, and 

Phelps (2008) as the source of their definition of content knowledge, which they 

articulated as “the depth of understanding of critical concepts, theories, skills, processes, 

principles, and structures that connect and organize ideas within a field” (p. 12). In their 

rationale for this standard, they cited a need for prospective teachers to develop “deep 

understanding of the major concepts and principles within the candidate’s field, including 

college- and career-ready expectations” (p. 11). This expectation stems partly from the 

recent adoption of the Common Core State Standards for Mathematics (NGA Center & 

CCSSO, 2010). 

“Effective programs of teacher preparation and professional development help 

teachers understand the mathematics they teach, how their students learn that 

mathematics, and how to facilitate that learning” (Kilpatrick et al., 2001, p. 10). Teacher 

preparation programs need to provide experiences for prospective teachers that help them 

to develop an integrated knowledge of mathematics, knowledge of the development of 

students’ mathematical understanding, and pedagogical practices that take into account 

the mathematics being taught and the students who are learning it (Kilpatrick et al., 

2001). 

In order for teachers to develop deeper understanding of mathematics and how to 

effectively teach it, “teachers themselves need experiences in doing mathematics—in 

exploring, guessing, testing, estimating, arguing, and proving…they should learn 
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mathematics in a manner that encourages active engagement with mathematical ideas” 

(Mathematical Sciences Education Board and National Research Council, 1989, p. 65).  

Prospective teachers need to be engaged in this type of learning as well as practicing 

teachers (Kilpatrick et al., 2001).  

Rationale for studying prospective middle grades teachers. For many years 

there has been a focus on the content knowledge of elementary teachers, or lack thereof 

as the case may be (e.g. Ma, 1999; Ball, 1990a; Ball, 1990b; Lo & Lou, 2012). However, 

less attention has been paid to what knowledge middle school mathematics teachers 

possess (Li & Kulm, 2008; Schmidt et al., 2007). Because middle school teachers build 

upon concepts from the elementary grades and prepare students for algebraic reasoning, 

which requires an understanding of fractions, it is important for these teachers to have 

strong conceptual understanding of fractions (Kilpatrick et al., 2001) and to have 

preparation on how the mathematical ideas of the middle grades connect with ideas and 

topics of elementary school and high school (Suzuka et al., 2007). 

In their report The Preparation Gap: Teacher Education for Middle School 

Mathematics in Six Countries (Schmidt et al., 2007), the authors stated that “the results 

clearly suggest that teacher education as defined by the learning opportunities provided 

likely has an impact on what future teachers know and believe as they leave their teacher 

preparation program” (p. 41). Schmidt et al. (2007) chose the term “preparation gap” to 

sum up their findings. They found that the top performing countries, as determined by the 

8th-grade results of the Third International Mathematics and Science Study (TIMSS), had 

future middle school teachers who had higher mathematical knowledge than those in the 

United States. Schmidt et al. (2007) attributed the higher achievement of Asian middle 
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school students to the learning experiences of their teachers during the teachers’ 

preparation. Similarly, Li and Kulm (2008) stated that a focus on the preparation of 

middle school mathematics teachers in different education systems suggests the 

importance of understanding not only the status of middle school teachers’ knowledge 

preparation they received through different programs of study, but also possible 

connections with middle school students’ mathematics performance (p. 836-837).  

Opportunities to develop conceptual knowledge of mathematics are among these 

important learning opportunities for prospective teachers (Li & Kulm, 2008). It is likely 

that prospective middle school teachers enter college with a procedural knowledge of 

mathematics, but their conceptual knowledge of mathematics may be lacking (Graeber, 

1999). Prospective teachers need to experience activities as learners, opportunities to 

examine their own misconceptions, and to design lessons that will facilitate students’ 

conceptual understanding (Graeber, 1999). If the cause of the achievement gap is truly a 

“preparation gap,” then mathematics teacher educators need to contemplate the learning 

opportunities they provide to future middle school mathematics teachers to help them 

develop their own conceptual understanding (Li & Kulm, 2008).  

Mathematical knowledge for teaching. The need for well-prepared, 

knowledgeable teachers has been a concern of many (NCTM, 2000; CBMS, 2012; 

Kilpatrick et al., 2001). Hill, Schilling, and Ball (2004) developed and tested measures 

that would determine the level of teachers’ mathematical knowledge for teaching. Hill, 

Rowan, and Ball (2005) defined mathematical knowledge for teaching as the 

mathematical knowledge used to carry out the work of teaching mathematics (p. 373).  
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Hill, Rowan, and Ball’s (2005) study used their previously-developed test 

measures to determine whether teachers’ mathematical knowledge for teaching was a 

predictor of student achievement. They found that “teachers’ mathematical knowledge 

for teaching positively predicted student gains in mathematics achievement during the 

first and third grades” (p. 399). With respect to student gains in the first grade, Hill, 

Schilling, and Ball (2004) suggested that teachers’ content knowledge is important even 

in very elementary mathematics content. 

Similarly, in their work to identify knowledge that is specific to teaching 

mathematics, Ball, Thames, and Phelps (2008) built upon Shulman’s (1986) conception 

of pedagogical content knowledge. The authors suggested that Shulman’s content 

knowledge could be subdivided into common content knowledge and specialized content 

knowledge. Ball et al. (2008) further suggested that Shulman’s pedagogical content 

knowledge could be subdivided into knowledge of content and students and knowledge 

of content and teaching. 

Ball et al. (2008) defined common content knowledge as the mathematical 

knowledge and skill used in settings other than teaching (p. 399). The authors proposed 

that this knowledge encompasses, for example, being able to do the work assigned to 

students and use terms and notation correctly. However, because this knowledge is not 

unique to teaching and is used in a wide variety of settings, Ball et al. (2008) chose to 

describe it as “common.” In order to study CCK, the authors posed questions that would 

be answerable by persons other than mathematics teachers. For example, Ball et al. 

(2008) asked questions which required knowing that a square is a rectangle; that 0/7 is 0; 

and that the diagonals of a parallelogram are not necessarily perpendicular, as well as a 
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question requiring knowledge of what numbers lie between 1.1 and 1.11 (p. 399). Ball et 

al. (2008) indicated that these questions do not require special knowledge and would be 

answerable by persons who know mathematics. 

Next, Ball et al. (2008) defined specialized content knowledge (SCK) as 

mathematical knowledge and skills unique to teaching (p. 400). They stated that SCK is 

not typically needed for purposes other than teaching. Ball et al. (2008) listed 16 

mathematical tasks for teaching, as shown in Table 1 below and continued on the 

following page. 

Table 1  

Mathematical Tasks of Teaching 
Presenting mathematical ideas 

Responding to students’ “why” questions 

Finding an example to make a specific mathematical point 

Recognizing what is involved in using a particular representation 

Linking representations to underlying ideas and to other representations 

Connecting a topic being taught to topics from prior or future years 

Explaining mathematical goals and purposes to parents 

Appraising and adapting the mathematical content of textbooks 

Modifying tasks to be either easier or harder 

Evaluating the plausibility of students’ claims (often quickly) 

Giving or evaluating mathematical explanations 

Choosing and developing useable definitions 

Using mathematical notation and language and critiquing its use 
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Asking productive mathematical questions 

Selecting representations for particular purposes 

Inspecting equivalencies (p. 400) 

Ball et al. (2008) provided an example problem, shown below in Table 2, that 

requires specialized content knowledge. The focus of the problem is mathematical 

concepts that are commonly confused, dividing by 2 (part a in Table 2) and dividing by 

2
1  (part c in Table 2). Part c of the problem also involves measurement division of 

fractions. 

Table 2  

Sample Problem to measure Specialized Content Knowledge (SCK) 
Which of the following story problems can be used to represent 

4
11  divided by 

2
1 ? 

 
 
 

a) You want to split 
4
11  pies evenly between 

two families. How much should each 
family get? 

 

 
Yes              No 
   
1                   2 

 
b) You have $1.25 and may soon double your 

money. How much money would you end 
up with? 

 

 
 1                  2 

 
c) You are making some homemade taffy and 

the recipe calls for 
4
11 cups of butter. How 

many sticks of butter (each stick = 
2
1 cup) 

will you need? (p. 400) 
 

 
 1                  2 
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The questions Ball et al. (2008) used to measure SCK are aligned with those 

examined by Ma (1999) to determine the extent of teachers’ conceptual understanding of 

division of fractions.  

The third type of knowledge Ball et al. (2008) defined was knowledge of content 

and students (KCS), which combines knowledge about students and knowledge about 

mathematics (p. 401). Within this domain, teachers must be able to anticipate students’ 

thinking and what they are likely to find confusing, including common conceptions and 

misconceptions. Problems Ball et al. (2008) asked in developing their measures for KCS 

included problems about the likelihood that students may write 405 for 45, the shapes 

students are likely to identify as triangles, and problems where confusion between area 

and perimeter lead to wrong answers.   

Finally, Ball et al. (2008) defined knowledge of content and teaching (KCT) as 

knowing about teaching and knowing about mathematics (p. 401). This knowledge 

domain includes knowing about the design of instruction. For example, sequencing 

content for instruction; choosing appropriate examples with specific goals in mind; 

evaluating advantages and disadvantages of particular representations for specific 

content; identifying advantages and disadvantages of specific instructional methods and 

strategies; responding to student contributions; and posing questions are all encompassed 

in KCT. Ball et al. (2008) gave the example of knowing which instructional models are 

appropriate for learning place value, knowing what each model can reveal about an 

algorithm, and how the differences matter for the development of a topic as being a part 

of KCT. In developing measures for KCT, Ball et al. (2008) asked questions like whether 

a tape measure would be a good tool for learning about place value, how to choose 
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examples to demonstrate multiple strategies for simplifying radicals, and how to 

sequence subtraction problems with and without regrouping. 

Ball et al. (2008) concluded, “Teachers who do not themselves know a subject 

well are not likely to have the knowledge they need to help students learn this content. At 

the same time, just knowing a subject well may not be sufficient for teaching” (p. 404). 

This statement is similar to that made by Kilpatrick et al. (2001). Ball et al. (2008) 

suggested that further research needs to be done to possibly refine their concept map, as 

well as look at relationships among specialized content knowledge, student achievement, 

and “whether and how different approaches to teacher development have different effects 

on particular aspects of teachers’ pedagogical content knowledge” (p. 405). Finally, Ball 

et al. (2008) suggested that a clearer sense of the knowledge domains might inform 

teacher education and professional development, and result in a curriculum for the 

content preparation of teachers. Therefore, one should wonder what learning experiences 

during prospective teacher education contribute to the development of MKT. 

Pedagogical content knowledge. “Effective teaching requires knowing and 

understanding mathematics, students as learners, and pedagogical strategies” (NCTM, 

2000, p.17). An, Kulm, and Wu (2004) suggested that the most important element in the 

domain of mathematics teachers’ knowledge is pedagogical content knowledge, the 

integration of pedagogy and content knowledge.  

Pedagogical content knowledge encompasses both how to teach mathematics 

content and how to understand students’ thinking (An, Kulm, & Wu, 2004). Pedagogical 

content knowledge also refers to the teachers’ ability to transform content into 
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pedagogically rich experiences for students while also taking into consideration their 

varying abilities and prior knowledge (Shulman, 1987).  

An, Kulm, and Wu (2004) compared the pedagogical content knowledge of 

United States (U.S.) and Chinese middle school teachers, within a cultural context, by 

examining how the teachers developed students’ mathematical thinking. An, Kulm, and 

Wu (2004) expanded upon Shulman’s (1987) conception of pedagogical content 

knowledge by including knowledge of content, knowledge of curriculum, and knowledge 

of teaching. Knowledge of content includes a broad mathematics knowledge, as well as 

more specific content knowledge of the mathematics particular to a given grade level 

(An, Kulm, & Wu, 2004).  

Knowledge of curriculum includes selecting curricular materials with specific 

goals in mind (NCTM, 2000). Knowledge of teaching includes selecting appropriate 

instructional strategies while taking students’ thinking into consideration (NCTM, 2000). 

With respect to knowledge of teaching, An, Kulm, and Wu (2004) listed the following as 

being encompassed in knowing students’ thinking: addressing students’ misconceptions; 

building on students’ math ideas; engaging students in math learning; and promoting 

students’ thinking in mathematics. 

The subjects for An, Kulm, and Wu’s (2004) study were 28 U.S. mathematics 

teachers, ranging from fifth to eighth grade, from 12 schools in four school districts in a 

large metropolitan area in Texas and 33 Chinese fifth- and sixth-grade mathematics 

teachers from 22 schools in four school districts in a large city in Jiangsu province in 

eastern China. Data were collected using an author-constructed Mathematics Teaching 

Questionnaire, an author-constructed Teachers’ Beliefs about Mathematics Teaching and 
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Learning Questionnaire, and interviews and observations with selected teachers (An, 

Kulm, & Wu, 2004). 

The Mathematics Teaching Questionnaire consisted of four problems that were 

designed to examine teachers’ pedagogical content knowledge of fractions, ratios, and 

proportion. The problems focused on the following components of teachers’ knowledge 

of teaching: building on students’ mathematical ideas, identifying and correcting 

students’ misconceptions, engaging students in learning, and promoting student    

thinking (An, Kulm, & Wu, 2004). “On the one hand, the results [of the Mathematics 

Teaching Questionnaire] show that both groups of teachers have extensive and broad 

pedagogical content knowledge and are able to apply various methods to help students 

learn mathematics” (An, Kulm, & Wu, 2004, p. 155). However, there were marked 

differences in each of the four components of teaching for understanding.  

The Mathematics Teaching Questionnaire used by An, Kulm, and Wu (2004) is 

shown in Table 3 below and continued on the following page. 

Table 3  

Teaching Questionnaire (An, Kulm, & Wu, 2004) 
Problem 1 

 
Adam is a 10-year-old student in 5th grade 
who has average ability. His grade on the 
last test was an 82 percent. Look at Adam’s 
written work for these problems: 

    
9
7

5
4

4
3

=+      
5
23

2
11

2
12 =+  

 
 

a. What prerequisite knowledge might 
Adam not understand or be 
forgetting? 

b. What questions or tasks would you 
ask Adam, in order to determine what 
he understands about the meaning of 
fraction addition? 

c. What real world example of fractions 
is Adam likely to be familiar with 
that you could use to help him? 
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Problem 2 
 

A fifth-grade teacher asked her students to 
write the following three numbers in order 
from smallest to largest: 

3
2,

4
1,

8
3  

Latoya, Robert, and Sandra placed them in 
order as the follows. 

Latoya: 
8
3,

3
2,

4
1  

 
Robert: 

8
3,

4
1,

3
2  

 
Sandra: 

3
2,

8
3,

4
1  

 

 
 

a. What might each of the students be 
thinking? 

b. What question would you ask Latoya 
to find out if your opinion of her 
thinking is correct? 

c. How would you correct Robert’s 
misconception about comparing the 
size of fractions? 

 

Problem 3 
 

You are planning to teach procedures for 
doing the following type of fraction 
multiplication. 
 

14
1

4
1
×  

 

3
2

4
3
×  

 
 

a. Describe an introductory activity that 
would engage and motivate your 
students to learn this procedure. 

b. Multiplication can be represented by 
repeated addition, by area, or by 
combinations. 

c. Which one of these representations 
would you use to illustrate fraction 
multiplication to your students? 
Why? 

d. Describe an activity that would help 
your students understand the 
procedure of multiplying fractions. 

      

For Problem 1, 46% of U.S. teachers believed that Adam “forgot” the prerequisite 

knowledge of finding common denominators for addition of fractions, while 55% of 

Chinese teachers believed that Adam did not understand the prerequisite knowledge. 

Chinese teachers made statements supporting their beliefs. For example, teachers said 

that only like units can be added, as in the case of three books plus five books equals 

eight books. But, unlike units cannot be added, as in the case of three books and four 
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desks. The Chinese teachers further stated that Adam did not understand the concept of 

like units and may not be thinking of fractions as numbers. An, Kulm, and Wu (2004) 

suggested that the U.S. teachers appeared to believe that learning consists of knowing or 

not knowing, remembering or forgetting. On the contrary, Chinese teachers showed 

evidence of understanding students’ thinking more deeply and seemed to convey their 

belief that learning encompasses understanding with connections. 

Although concrete models can help students to visualize fractions, understanding 

fractions as quantity is important (Sowder et al., 1998). An, Kulm, and Wu (2004) found 

that 93% of U.S. teachers used concrete models when teaching fractions, whereas only 

42% of Chinese teachers used them. Instead, Chinese teachers focused on developing 

students’ understanding of the unit and procedural fluency through following the rules. 

The authors also found that only 29% of U.S. teachers focused on developing fractions 

conceptually, while 51% of Chinese teachers did so. An, Kulm, and Wu (2004) also 

suggested that the way fractions are introduced as parts of a whole in U.S. textbooks may 

lead to misconceptions regarding the numerator and denominator. 

An, Kulm, and Wu (2004) asserted that teachers should be able to identify 

students’ misconceptions and correct those misconceptions by using questioning and 

tasks. They found that 86% of U.S. teachers used a variety of models to address and 

correct students’ misconceptions in Problem 2. Chinese teachers also used models; 

however, Chinese teachers “focused on developing the explicit connection between the 

various models and abstract thinking” (An, Kulm, & Wu, 2004, p. 161). NCTM (2000) 

suggested that it is important for teachers to facilitate the linking of the concrete to the 

abstract when using concrete models. However, the authors found that U.S. teachers in 
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their study “often ignored developing the connection between the manipulative activities 

and abstract thinking” (An, Kulm, & Wu, 2004, p. 165). 

Another marked difference An, Kulm, and Wu (2004) found in the analysis of 

U.S. and Chinese teachers’ responses to Problem 2 involved questioning. That is, 100% 

of Chinese teachers were able to use questioning and tasks to correct students’ 

misconceptions, while only 61% of U.S. teachers could. Furthermore, 79% of U.S. 

teachers were not able to pose appropriate questions to help them identify student 

thinking, while only 39% of Chinese teachers could not do so. Effective questioning 

strategies are necessary for students to be able to further their understanding of concepts 

and make connections in mathematics (NCTM, 2000; NCTM, 2014). 

As An, Kulm, and Wu (2004) analyzed data for Problem 3, they found that 

although many U.S. teachers suggested a variety of ways to learn multiplication, most 

U.S. teachers (64%) used only an area representation for multiplying fractions, whereas 

67% of Chinese teachers used an area model and repeated addition. Furthermore, Chinese 

teachers were able to differentiate between when an area model was more appropriate 

and when repeated addition was more appropriate. Using multiple representations 

increases the chance for students to develop deeper, more connected understanding of 

fractions (NCTM, 2000). 

For Problem 4, An, Kulm, and Wu (2004) found that 100% of Chinese teachers 

asked probing questions to explore students’ thinking and encouraged students to think 

deeply and critically, whereas 43% of U.S. teachers provided only general questions that 

would not provide them insight into students’ thinking. Moreover, Chinese teachers 

tended to use an algebraic approach to build students’ abstract thinking using procedures, 
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while U.S. teachers tended to use charts and tables, concrete or pictorial models, and 

manipulatives.  

An, Kulm, and Wu (2004) concluded, “Teaching for understanding includes a 

convergent process in which teachers build students’ mathematics ideas by connecting 

prior knowledge and concrete models to new knowledge, focusing on conceptual 

understanding and procedure development” (p. 169). In addition, the authors stated that 

although the use of manipulatives helps students to develop conceptual understanding, 

teachers need to balance instruction so that procedural skill is achieved as well. “Without 

developing firm understanding and skill with procedures, students will not be able to 

solve problems efficiently and confidently” (An, Kulm, & Wu, 2004, p. 169).   

Prospective teacher literature. In this portion of the literature regarding teacher 

knowledge, literature about prospective teachers is presented. Studies on the effects of 

reform-oriented curricula; implementing mathematical tasks; the common and specialized 

content knowledge that Taiwanese prospective elementary teachers possess; the possible 

inadequacies of prospective middle school teachers’ mathematical knowledge for 

teaching fraction division; the obstacles and challenges prospective teachers experience 

learning fractions; and prospective teachers’ anxiety toward mathematics in a methods 

course focused on the use of manipulatives in learning are summarized. 
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Effects of reform-oriented curricula. Lloyd and Frykholm (2000) examined the 

effects of using reform-oriented middle school curricula with prospective elementary 

teachers. Their study included 50 prospective teachers, mostly female White sophomores, 

learning Geometry for prospective teachers in a one-semester math course. The 

classroom environment focused on prospective teachers’ opportunities afforded by the 

curriculum materials, engagement both as learners and teachers of mathematics, small-

group work, and sharing of work through class presentations. Course activities provided 

opportunities for prospective teachers to think about the nature of mathematics, make 

connections between their learning and that of their future students, and develop a vision 

for their future classroom practice. 

Lloyd and Frykholm (2000) found that many prospective teachers (PTs) 

expressed apprehension about taking a Geometry course and described their previous 

learning experiences in negative terms. However, the PTs also expressed a desire to “fill 

the gaps” in their knowledge. As the PTs worked, they expressed that the activities 

“posed significant mathematical difficulties to them” (Lloyd & Frykholm, 2000, p. 577). 

Many PTs were unfamiliar with “open questions” and “experiments in math,” which 

caused the PTs to experience frustration because of the misalignment with their previous 

learning experiences. One PT commented, “I must admit I found junior high math easier 

to understand the first time around” (Lloyd & Frykholm, 2000, p. 577).  On the other 

hand, some PTs thrived in the reform-oriented environment as evidenced by a statement 

from one of the PTs, “I am learning how to look for reasons and explanations as opposed 

to simply believing ‘the rules’ that some really ancient dead guy came up with. I prefer 

being able to use my own mind in solving problems” (Lloyd & Frykholm, 2000, p. 577). 
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The authors also found that “some of the teachers who reacted most positively to the 

middle school work were those who struggled the most with it” (Lloyd & Frykholm, 

2000, p. 578).   

Prospective teachers were also tasked with teaching their classmates. As a result, 

PTs began to recognize that teaching demands extensive subject matter knowledge and 

that the reform-oriented curriculum materials required a different teaching strategy than 

they had previously seen. PTs also began to understand connections between their 

knowledge of Geometry and their ability to teach it (Lloyd & Frykholm, 2000). 

Furthermore, “one of the most fascinating aspects of teachers’ reactions was the way they 

made connections between their own learning and their ideas about their future students’ 

learning” (Lloyd & Frykholm, 2000, p. 580). Lloyd and Frykholm (2000) suggested that 

mathematics teacher educators consider integrating mathematics and pedagogy to help 

PTs make critical connections between their learning and teaching experiences. 

The PTs in Lloyd and Frykholm’s (2000) study reacted differently to their 

learning experiences. For example, one PT commented that learning junior high math 

was easier the first time; another PT commented that it was nice to look for reasons and 

be able to use his/her own mind. This difference in attitudes among elementary PTs raises 

the question of whether middle grades prospective teachers would react similarly to 

reform-oriented instruction. 
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Implementing mathematical tasks. Rathouz and Rubenstein (2009) discussed 

their analysis of the orchestration of a fractions task to supporting prospective elementary 

teachers’ learning. The authors studied video records of prospective teachers attempting 

to resolve their confusions and justify their mathematical claims of generating two 

different story problems for 
3
2

2
13 − . Instruction prior to this fractions task focused on 

whole numbers, the meaning of operations, and the importance of the referent whole.  

Prospective teachers (PTs) generated a story problem about a person running 

three and one-half miles, stopping for a rest break after either “two-thirds of the way” or 

“two-thirds of a mile,” and determining how much farther the person must run. The PTs 

could not decide whether “two-thirds of the way” or “two-thirds of a mile” was 

appropriate. The instructor facilitated a debate situation where PTs had to justify their 

reasoning. One PT generated a number line (shown in Figure 2 below) to represent the 

three and one-half miles, and indicated where two-thirds of a mile and where two-thirds 

of the way were relative to the referent whole three and one-half miles. 

Figure 2. Two-thirds of a mile versus two-thirds of the way (Rathouz & Rubenstein, 
2009) 

Some PTs had difficulty understanding the referent whole: three and one-half 

miles versus one mile (Rathouz & Rubenstein, 2009). During the discussion, one PT 

remarked that when subtracting, it is important to have “like” units, e.g. three and one-

2
3 of

the way

2
3 of a

mile 3

3 miles2 miles1 mile
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half miles and two-thirds mile. Lamon (2007) suggested that a lack of understanding of 

the referent whole is common.  

Once PTs determined that the appropriate wording for their story problem was 

“two-thirds of a mile,” the instructor challenged them to create an expression for a similar 

story problem in which the walker rested after “two-thirds of the way.” The instructor 

capitalized on the language used by one PT, “two-thirds of three and one-half miles,” and 

asked the PTs to generate an expression to represent the wording even though instruction 

had not yet addressed fraction multipliers. By addressing this aspect of the task, the 

instructor was preparing PTs for later instruction addressing fraction multiplication.  

Rathouz and Rubenstein (2009) conjectured that the progress made by PTs in 

understanding this task was a result of highlighting and incorporating student 

misconceptions as learning opportunities; encouraging active debate that focused on 

reasoning; and building relationships among words, diagrams, meanings, and symbols. 

Rathouz and Rubenstein (2009) provided five characteristics of why the fractions task 

was worthwhile for prospective teachers:  

• The fractions task addressed multiple goals;  

• The fractions task was situated in the practice of teaching by having PTs 

generate the story problems;  

• The fractions task afforded the opportunity for PTs to experience 

disequilibrium (Ball & Foranzi, 2009);  

• The fractions task afforded PTs an opportunity to create and interpret 

representations; and  

• The task and its justification elicited many common and mathematical 

language issues (Rathouz & Rubenstein, 2009, p. 98-99).  
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Since this task was enacted with elementary teachers, it would be interesting to 

integrate a task like this into a middle grades methods course and compare the results to 

those found by Rathouz and Rubenstein (2009). In addition, since PTs generated pictorial 

representations, it would be interesting to observe PTs using hands-on or virtual 

manipulatives like colored length rods, pattern blocks, etc., to model the task.  

Understanding of fraction division. Lo and Lou (2012) used Ma’s (1999) 

knowledge package for understanding the meaning of fraction division (see Figure 3) and 

classification schemes for posing and modeling fraction division word problems to study 

Taiwanese prospective elementary teachers’ knowledge of fraction division.  

 

Figure 3. Ma’s (1999) knowledge package for understanding the meaning of division by 
fractions (p. 77) 

As evidenced by Ma’s (1999) model, deep conceptual knowledge of fraction 

division is built upon a network of prior knowledge of whole numbers, inverse 

operations, knowledge of multiplication, knowledge of addition, and fraction knowledge.  
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Lo and Lou (2012) also outlined two meanings of division: measurement division 

and partition division. In measurement division, the quotient represents the number of 

groups of the divisor that are contained in the dividend, i.e. using the divisor as the 

multiplicand results in the quotient representing the multiplier. In partition division, the 

quotient represents the group size when the dividend is partitioned into a number of 

groups according to the divisor, i.e. using the divisor as the multiplier results in the 

quotient as the multiplicand.  

Lo and Lou (2012) chose a word problem involving a traveling situation and a 

pictorial problem based on a number line. The authors indicated that their choice of the 

number line model was influenced by the emphasis of this model in recent U.S. reform 

documents (Common Core State Standards Initiative, 2010; National Mathematics 

Advisory Panel, 2008). 

Lo and Lou (2012) were also interested in whether Taiwanese prospective 

elementary teachers would use the concept of unitizing or division as the inverse of 

multiplication. The authors provided an example of using a unitizing approach for the 

following: Determine the amount of candy needed for the whole class if 
3
11 lb. is enough 

for 
3
2  of the class. Applying unitizing procedures would mean first thinking of how 

much candy is necessary for “
3
1 ” of the class. Then, one would determine that one-half 

of the 
3
11 lb. is needed for 

3
1  of the class, which equates to 

3
2  lb. of candy. Finally, 

since there are three-thirds in one whole, one needs 
3
23 × lb. or 2 lb. of candy for the 

whole class. 



48 

The classification schemes for fraction division Lo and Lou (2012) used were:  

• Equal-group measurement division,  

• Equal-group partition division,  

• Comparison measurement division,  

• Comparison partition division, and   

• Rectangular area division.  

Division problems of the first two structures deal with a certain number of groups, 

all of equal size as mentioned earlier under measurement and partition division. Within 

the third and fourth structures, comparison problems deal with multiplication comparison 

situations, where one set involves copies of the other. In rectangular area problems, the 

product is given as the area of a rectangle, and one of the dimensions, length or width, is 

given. Respondents are then prompted to determine the missing dimension. To 

accommodate for word problems generated by prospective teachers that did not fit the 

above constructs, Lo and Lou (2012) also included equal-group multiplication, 

comparison multiplication, and rectangular area multiplication in their coding. Lo and 

Lou (2012) also outline the most common types of pictorial models used to represent 

fractions: area, length, and set. 

In their study, Lo and Lou (2012) administered a 16-item instrument to collect 

data regarding prospective elementary teachers’ Common Content Knowledge (12 items) 

and Specialized Content Knowledge (4 items) (Ball, Thames, & Phelps, 2008). Their 

sample of participants initially included 28 special education majors, 7 art education 

majors, and 10 counseling education majors; however, only 36 participants were present 

for both data collection procedures. Although these participants had areas of 
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specialization other than mathematics, all of them would be responsible for teaching all 

subjects once they completed their teacher education preparation and began teaching. In 

Lo and Lou (2012), the authors discussed the following three problems in Table 4. 

Table 4  
 
An excerpt from a 16-item test used by Lo and Lou (2012) to measure prospective 
elementary teachers’ CCK and SCK 

Problem 1    

 

     What is the value of x?  

      (a) 
12
7   (b) 

5
3    (c) 

10
7    (d) 

15
7    (e) None of the above  

Problem 2 Jim jogged 
2
11 miles yesterday. This is 

8
3  of his weekly goal. 

How many miles does he plan to run each week? Explain your 

solution.  

 

Problem 3 Write a word problem that can be solved by using 
4
1

3
28 ÷  and 

model how to solve it by a drawing (p. 489). 

  

In the problems shown above, the first two measure Common Content 

Knowledge; the third measures Specialized Content Knowledge. Lo and Lou (2012) 

found that all but one student answered Problem 1 correctly using one of three different 

strategies (unit-fraction approach, part-whole approach, and ratio approach), while 100% 

of participants answered Problem 2 correctly using one of four different strategies (unit-

fraction approach, part-whole approach, ratio approach, and partition division approach). 
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Of the 40 participants who answered Problem 3, only 26 were able to correctly pose a 

word problem that was meaningful and develop a correct pictorial representation for 

solving their own word problem. The authors noted that their findings were similar to that 

of Ball (1990a, b) and Ma (1999) with practicing elementary teachers and that the 

majority of incorrect problems were symbolically representative of 4
3
28 ÷  or 4

3
28 × . 

Of the 26 prospective teachers who successfully posed a word problem, 22 were 

able to provide an appropriate pictorial diagram. Lo and Lou (2012) determined that 15 

out of the 22 drawings did not fully illustrate how to solve the word problem, but that the 

prospective teachers had relied on their verbal and symbolic reasoning to provide a 

correct solution. Another noteworthy statement by Lo and Lou (2012) was that 

Taiwanese prospective elementary teachers appeared to be able to move fluently between 

the arithmetic-based reasoning and algebraic-based reasoning. “The development of such 

ability is a critical goal of mathematics curriculum transition from the elementary to 

middle school level as students move from the pictorial representation typically used to 

solve word problems with fraction division to symbolic representation” (Lo & Lou, 2012, 

p. 496). 

As a result of their study, Lo and Lou (2012) suggested that improving K-12 

mathematics teaching and learning, as well as mathematics courses for prospective 

teachers that support the development of mathematical knowledge for teaching, may help 

to narrow the achievement gap between Taiwanese and U.S. students on international 

assessments such as the Trends in International Mathematics and Science Study (TIMSS) 

and the Programme for International Student Assessment (PISA). This sentiment is 
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similar to that of Schmidt, Blömeke, and Tatto (2011) regarding prospective teacher 

knowledge.  

Lo and Lou (2012) suggested that prospective elementary teachers need 

opportunities to develop general proficiency for posing word problems and using 

diagrams effectively to illustrate the reasoning behind a given solution. Since this 

research was done with prospective elementary teachers, it may be of interest to evaluate 

prospective middle school teachers’ ability to pose appropriate fraction division word 

problems and use pictorial diagrams or concrete manipulatives as representations. 

Prospective teachers’ conceptual understanding. Li and Kulm (2008) studied 

middle grades prospective teachers’ perceptions about their knowledge preparation and 

the extent of their mathematics knowledge on the topic of fraction division by developing 

assessments that would inform the researchers about the prospective teachers’ knowledge 

in mathematics and pedagogy for teaching. The 46 participants in the study were either 

juniors or seniors taking a middle grades methods course at a university. Li and Kulm 

(2008) stated that “helping students learn mathematics with conceptual understanding 

was one major theme in the methods course that helps these pre-service teachers learn 

how to teach” (p. 40), as well as the use of a variety of representations in teaching school 

mathematics. 

Data collected during the last class meeting of the methods course included a 

confidence survey regarding prospective teachers’ perceptions about their knowledge 

preparation in curriculum and instruction in general. With respect to the surveys, 99% of 

prospective teachers rated their knowledge of the mathematics curriculum framework of 

their state as either high or proficient; 96% of prospective teachers correctly identified the 
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appropriate grade level for teaching fraction division; and 98% of prospective teachers 

indicated that they were either ready or very ready to teach “Number—Representing and 

explaining computations with fractions using words, numbers, or models.” In addition, 

100% of prospective teachers either agreed or agreed a lot that multiple representations 

should be used in teaching mathematics topics; 96% either agreed or agreed a lot that 

teachers need to know students’ common misconceptions/difficulties in teaching a 

mathematics topic; and 100% either agreed or agreed a lot that modeling real-world 

problems is essential to teaching mathematics. 

In addition to the confidence survey, a mathematics test was developed to assess 

prospective teachers’ mathematics knowledge for teaching (Li & Kulm, 2008). The 

mathematics test included items to assess prospective teachers’ Common Content 

Knowledge (CCK), Specialized Content Knowledge (SCK), Knowledge of Content and 

Students (KCS), and Knowledge of Content and Teaching (KCT). Sample items are 

shown in Table 5 below and continued on the following page. 

Table 5  

Sample items used by Li and Kulm (2008) to measure CCK, KCT, SCK, and KCS 
Knowledge 

assessed 

Sample Items 

 
CCK 

Find the value of 
3
2

9
7
÷ . 

 
How many s'

2
1 are in 

3
1 ? 

 
Tell whether 

3
2

11
9

÷ is greater than or less than 
4
3

11
9

÷ without 

evaluating. Explain your reasoning. 
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CCK Johnny’s Pizza Express sells several different flavors of large-size 
pizza. One day, it sold 24 pepperoni pizzas. The number of plain  
cheese pizzas sold on that day was 

4
3  of the number of pepperoni 

pizzas sold, and was 
3
2  of the number of deluxe pizzas sold. How 

many deluxe pizzas did the pizza express sell on that day? 
 

SCK 
 

You are discussing operations with fractions in your class. During this 
discussion, John says, “It is easy to multiply fractions; you just 
multiply the numerators and the denominators. I think that we should 
define the other operations on fractions in a similar way: 

Addition 
( )
( )db

ca
d
c

b
a

+
+

=+  

Subtraction 
( )
( )db

ca
d
c

b
a

−
−

=−  

Division 
( )
( )db

ca
d
c

b
a

÷
÷

=÷  

How will you respond to John’s suggestions? (Deal with each 
separately.) 

 
KCS For each of the following two word problems (a) write an expression 

that will solve the problem (do not calculate the expression), (b) write 
common incorrect responses, and (c) describe possible sources of 
these incorrect responses: 

 
Problem (1) A 7-meter-long rope was divided into 12 equal pieces. 

What was the length of each piece? 
 
Problem (2) Six pounds of sugar were packed in boxes, each box 

containing 
4
3  pound. How many boxes were needed to 

pack all the sugar? 
 

 
KCT 

How would you explain to your students why 
3
12

3
2

=÷ ? 

Why is 4
6
1

3
2

=÷ ? 

 

Li and Kulm (2008) found that results on the mathematics tests were not in 

alignment with prospective teachers’ confidence. That is, while 93% of the prospective 
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teachers were able to correctly answer 
3
2

9
7
÷  procedurally, only 52% were able to 

correctly answer, “How many s'
2
1 are in 

3
1 ?”  Similarly, only 59% were able to 

correctly answer, “Tell whether 
3
2

11
9

÷  is greater than or less than 
4
3

11
9

÷  without 

evaluating. Explain your reasoning.” Furthermore, only 39% of prospective teachers were 

able to solve the pizza problem about Johnny’s Pizza Express. Regarding the item 

designed to measure specialized content knowledge, although 90% of the prospective 

teachers identified the generalizations for addition and subtraction as incorrect, only 2 of 

the 46 prospective teachers indicated that the generalization for division was correct. The 

majority of others cited the “flip and multiply” algorithm.  

For the two items assessing knowledge of curriculum and teaching, 26% drew and 

used pictorial representations to explain why 
3
12

3
2

=÷ , while 22% used the “flip and 

multiply” algorithm to explain. The remaining prospective teachers were not able to 

provide a complete explanation for either 
3
12

3
2

=÷  or 4
6
1

3
2

=÷ . Li and Kulm (2008) 

noted that none of the prospective teachers attempted to explain why the “flip and 

multiply” algorithm works. 

Li and Kulm (2008) found that although prospective teachers had developed 

general pedagogical understanding for mathematics classroom instruction, their 

mathematics knowledge for teaching fraction division was procedurally sound, yet 

conceptually weak. However, the authors suggested, “Teachers can do a relatively better 

job when their thinking and explanation are aided by drawing pictorial representations” 

(Li & Kulm, 2008, p. 841). This statement about the use of pictorial representations raises 
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the question of how prospective middle school teachers would express their 

understanding if they were using concrete or virtual manipulatives as representations as 

opposed to pictorial representations.  

Li and Kulm (2008) concluded that because students (in grade 7 of their state) are 

expected to learn fraction division using various models and solve problems involving 

fraction division, “the development of students’ basic understanding and application of 

fraction division is an essential requirement in mathematics classroom instruction” (p. 

841).  Li and Kulm (2008) further contended, “These pre-service teachers’ insufficient 

mathematics knowledge would likely limit their capability of teaching this content topic 

conceptually in the future” (p. 841). Finally, the authors suggested that mathematics 

teacher educators need to “think deeply about what knowledge in mathematics and 

pedagogy pre-service teachers need to learn through their program of study, and how to 

help pre-service teachers develop a sound and deep conceptual understanding of 

mathematics they will teach” (p. 841). 
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Prospective teachers’ obstacles and challenges. Much of the literature about 

rational numbers communicates that teaching and learning about rational numbers is a 

challenge. Osana and Royea (2011) examined the challenges and obstacles that 

prospective elementary teachers experienced during fraction instruction, and 

consequentially developed an intervention based on the principle of Progressive 

Formalization (Freudenthal, 1991) that focused on problem solving and on progressively 

formalizing prospective teachers’ intuitive knowledge of fractions. Osana and Royea 

(2011) wanted to examine the potential effects of the intervention and uncover specific 

difficulties experienced by the prospective teachers during instruction.  

Osana and Royea (2011) used Ball, Thames, and Phelps’ (2008) conception of 

Mathematical Knowledge for Teaching (MKT) as a basis for their study. More 

specifically, they were interested in understanding the development of the prospective 

teachers’ Specialized Content Knowledge (SCK), a component of MKT. Their research 

focused on “preparing teachers to develop the types of mathematical knowledge that will 

assist them to engage in tasks such as interpreting student thinking, providing clear, 

conceptual explanations for mathematical concepts and procedures, and creating tasks to 

mobilize specific mathematical ideas” (p. 333). Osana and Royea (2011) contended that 

little research has been done to examine specific instructional interventions that help 

prospective teachers to develop SCK. They hypothesized that their intervention had the 

potential to foster an inter-connected knowledge of school mathematics, which they 

stated is the core of SCK. 

As a part of their study, Osana and Royea (2011) revised a fraction unit in the 

second of two required methods courses at a large Canadian university. In the previous 
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unit, the instructional approach was teacher-led where pictorial models were used to 

explain the fraction concepts and procedures. The reason cited for the revision of the unit 

was the fact that the prospective teachers (PTs) admitted they memorized the models 

used by the instructors and replicated them on assignments. During instruction of the 

revised unit, 40 prospective elementary teachers worked in small groups creating their 

own representations of problem situations. The instructor (first author, Osana) used 

Progressive Formalization as the pedagogical approach by using solutions that the 

prospective teachers themselves created and making conceptual links between their 

strategies and more formal representations.  

Due to the large number of PTs in the class and the inability of the researchers to 

determine precise struggles the PTs experienced, the researchers conducted one-on-one 

instructional interviews with eight PTs recruited at the university prior to taking either 

required methods course. During the interviews, Royea replicated the intervention, asking 

interviewees to first draw a picture to solve a problem, and then write a number sentence 

for the problem solution. During problem solving, Royea highlighted specific 

fundamental fraction concepts inherent in the PTs’ solutions, as well as made explicit the 

connections between the model and the number sentence generated, the structure of the 

problem, or the symbolic representations of the procedures used. The fundamental 

fraction concepts used by Osana and Royea (2011) are listed in Table 6 on the following 

page. 
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Table 6  
 
Fundamental fraction concepts used during the instructional interventions (Osana & 
Royea, 2011) 

Concept number 
 

Fundamental Fraction Concept 

1 Wholes can be divided into parts 
 

2 Parts have to be the same size 
 

3 Part is smaller than the whole 
 

4 The size of the part is based on the size of the unit 
 

5 Fractions are expressed in terms of the original unit 
 

6 Parts can be combined to form wholes 
 

7 Parts (fractional units) can be combined no matter how many there 
are 

 
8 Each fraction has many equivalent representations 

 
 

In addition to videotaping the five individual one-hour instructional interventions, 

Osana and Royea (2011) administered three paper-and-pencil assessments of conceptual 

understanding and procedural knowledge to all students before and after the intervention.  

At the completion of the fraction assessment, each participant was presented with a 

“Problem Posing Task,” such that they had to generate word problems. The following 

problems were used on the pre-test: 
4
1

6
2
− , 

3
15 × , 

3
28 ÷ , and 5

2
17 ÷ . The following 

problems were used on the post-test: 
2
1

5
4
− , 

3
115× , 

4
36 ÷ , and 7

3
19 ÷ . The six types of 

fraction problems presented during the instructional intervention were equal sharing 

(fraction as quotient), addition with like denominators (part-whole concept), addition 

with unlike denominators (part-whole concept), multiplication—equal groups (part-whole 
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concept), measurement division (unknown number of groups), and multiplication—

fraction of a fraction (fraction as operator) (Osana & Royea, 2011).  

A statistical analysis of the conceptual and procedural pre- and post-test and the 

problem-posing task showed no significant gains on the PTs’ procedural knowledge and 

no significant gains on the problem-posing tasks. However, there was a significant 

improvement in PTs’ conceptual knowledge on the post-test. An analysis of the data for 

the problem-posing task showed that the majority of errors were made on the subtraction 

(
4
1

6
2
−  and 

2
1

5
4
− ) and division (

3
28 ÷ ) problems (Osana & Royea, 2011).  

An example of an error made on the pre-test subtraction problem was treating the 

fractions as whole numbers. That is, a word problem generated was: “One boy has six 

pieces of pizza. He plans to eat only 2 pieces. However, his friend wants to eat one piece. 

How much of the pizza remains?” The most common error on the post-test subtraction 

problem (
2
1

5
4
− ) involved PTs generating a problem that involved multiplication instead 

of subtraction. For example, one word problem generated was: “Sandra has 
5
4  of a 

watermelon in her fridge. Her mom comes to visit and eats half of the watermelon in the 

fridge. How much did she eat?”  

For the division problem (
3
28 ÷ ), all but one prospective teacher made one or 

more errors. Six of the eight PTs generated a word problem that represented 8
3
2
÷  

instead of the given problem. Osana and Royea (2011) speculated that this reversal of 

dividend and divisor occurred because participants were attempting to set up a partitive 

(partition) division model in which the number of groups was 8. They speculated that 
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these PTs likely did not know how to use a measurement division model in which 
3
2  

would represent the group size and the unknown would be the number of groups.  

In order to analyze data regarding the obstacles PTs experienced during 

instruction, Osana and Royea (2011) created a descriptive model with paths that 

represented chronological trajectories of PTs’ solutions. For example, PTs began by 

either pictorially representing the problem (as instructed) or symbolically representing the 

problem (even though they were prompted to provide a pictorial representation). The 

authors coded PTs’ actions as Procedural or Meaningful. The code “Procedural” was 

used when drawings were not based on conceptual knowledge, but on known algorithms 

and procedures previously learned and applied by rote memory. The authors coded paths 

as “Meaningful” when they were based on intuitive understandings of fractions. A final 

aspect of the coding included a determination of whether PTs’ number sentences 

reflected the mathematical structure of the problem or reflected the drawing and not the 

structure of the problem directly. 

Osana and Royea (2011) found that one obstacle that occurred with PTs whose 

drawings were meaningful was that the number sentence produced was more closely tied 

to the drawing and less connected to the mathematical structure of the problem. 

Therefore, the PTs “had difficulty seeing the connection between the concepts used to 

create the drawing and the problem’s structure” (p. 344). For example, the following 

problem was given: “Tom has 7 dog biscuits. His dog, Fido, eats 
4
1  biscuits a day. How 

many days will it take for Fido to eat all of the dog biscuits?” The authors discussed a 

prospective teacher who drew a meaningful model, which was clearly measurement 
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division, but the prospective teacher was not able to see division in the problem likely 

due to the fact that the drawing she produced was more associated with repeated addition 

or multiplication. 

Another example of difficulty experienced by a prospective teacher was in regard 

to the problem: “Aidan and his dad are making mini pizzas for a pizza party. It takes 
5
3   

cup of grated cheese for one pizza. They need to make 15 mini pizzas. How many cups of 

grated cheese will they need?” Instead of being representative of multiplication, the 

prospective teacher’s initial drawing was representative of 
5
315 ÷ , which she wrote on 

her paper. She changed it to 15
5
3
÷ , and then, finally to 15

5
3
× . Osana and Royea (2011) 

suggested that this prospective teacher struggled with the concept of partitioning and the 

structure of the multiplication problem. 

Many of the PTs created drawings as part of their problem solving. However, 

“rather than using their intuitive understandings of fractions to construct a drawing, the 

participants produced one that represented a procedure learned previously, either in high 

school or from earlier in the fractions instruction” (Osana & Royea, 2011, p. 346). PTs 

who performed in this manner experienced “considerable difficulty.” Their number 

sentences were generated as a result of reading the problem instead of being based on 

their drawings. Therefore, they were not able to make connections between the concepts 

used and the drawings (Osana & Royea, 2011). 

Osana and Royea (2011) discussed an example of PTs’ procedural use of 

drawings. The prospective teacher, Salena, was presented a problem that required 
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addition of two fractions with unlike denominators in order to solve it, 
6
4

4
3
+ . She began 

by drawing a rectangle partitioned horizontally into four parts with three shaded and a 

different sized rectangle partitioned horizontally into six parts with four shaded. After a 

discussion with the instructor about the need for equal parts, Salena partitioned the 

fourths into sixteenths, but only considered them to be twelfths because she did not 

extend the vertical lines through the unshaded fourth. She attempted to partition the sixths 

in a similar way, but abandoned the process after the instructor discussed the notion of 

unit with her.  

Salena then mentally found a common denominator of 12, drew two rectangles, 

and partitioned them into twelfths using all horizontal lines. At this point, Salena did not 

know how many parts to shade, which indicates a failure to connect the model and the 

number sentence (Osana & Royea, 2011). The authors suggested that her failure to 

connect the representations was due to her lack of conceptual knowledge of finding a 

common denominator.  

Taking into consideration Osana and Royea’s (2011) work, one might wonder 

whether similar results might be observed with PTs’ meaningful or procedural use of 

manipulatives to represent problem situations. Moreover, this study was enacted with 

prospective elementary teachers, which leads one to question how the results may vary if 

prospective middle school teachers were involved in similar research. 
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Prospective teachers’ anxiety toward mathematics. Teachers’ mathematical 

knowledge for teaching is important; however, teachers’ attitudes and beliefs are also 

important (Palardy & Rumberger, 2008; Vinson, 2001). Vinson (2001) studied 

prospective elementary teachers’ anxiety toward mathematics for four consecutive 

quarters at an undergraduate institution. Vinson (2001) collected data about prospective 

teachers’ anxiety by administering the Mathematics Anxiety Rating Scale (Richardson & 

Suinn, 1972) at the beginning and end of the quarter in which the prospective teachers 

(PTs) were enrolled in a methods course. Vinson (2001) also collected data from informal 

observations during the methods course and informal discussions and interviews with the 

prospective teachers.  

A statistical analysis of the data showed that PTs’ anxiety significantly decreased 

during three of the four quarters in which they were enrolled in a methods course that 

emphasized the use of manipulatives while learning mathematics. Vinson (2001) noted 

that the quarter in which there was not a significant decrease in prospective teachers’ 

anxiety was the professor’s first quarter teaching at the institution, as well as the 

professor’s first time teaching a mathematics methods course. Vinson (2001) suggested 

that the professor might have exhibited more stress and uncertainty than in subsequent 

quarters, which might have affected PTs. 

In addition to the statistical analysis, Vinson (2001) noted that some students 

experienced increased levels of anxiety, as revealed during interviews. Prospective 

teachers indicated that they believed their increased level of anxiety was due to the fact 

that they had not used manipulatives previously and that they were struggling to relearn 

the mathematics at the same time they were learning to use the manipulatives. On the 
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other hand, some PTs indicated that they were better able to understand mathematics 

concepts and procedures when using pictorial and concrete representations (Vinson, 

2001).  

Vinson’s (2001) study was done with prospective elementary teachers. However, 

it may have implications on prospective middle grades teachers. That is, if the use of 

manipulatives to learn mathematics concepts is emphasized in a middle grades methods 

course, will prospective middle grades teachers experience an increase in anxiety due to 

unfamiliarity with manipulatives or a decrease in anxiety due to increased conceptual 

knowledge? 

Table 7, shown below and continued on the following page, shows a summary of 

literature related to prospective teachers. 

Table 7  

Summary of literature related to prospective teachers 
Date Contributor Contribution 

2000 Lloyd & 

Frykholm 

Studied the effects of using reform-oriented middle 

school curricula with prospective elementary teachers  

2009 Rathouz & 

Rubenstein 

 

Implementing mathematical tasks with prospective 

elementary teachers in a reasoning-based learning 

environment that generated discourse, representations, 

and disequilibrium 
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2012 Lo & Lou Taiwanese prospective elementary teachers’ Common 

Content Knowledge was stronger than their Specialized 

Content Knowledge of division of fractions 

2008 Li & Kulm Prospective middle grades teachers had limited 

conceptual understanding of fraction division, yet a 

positive (unfounded) self-perception of their 

mathematical knowledge  

2011 Osana & 

Royea 

Examined obstacles and challenges experienced by 

prospective elementary teachers while experiencing 

Progressive Formalization intervention during fraction 

instruction; significant increase in conceptual knowledge 

from pre- to post-test; examined procedural use versus 

meaningful use of pictorial representations 

2001 Vinson Some prospective elementary teachers’ anxiety toward 

mathematics decreased after a methods class 

emphasizing manipulatives; some prospective 

elementary teachers experienced increases in anxiety due 

to their lack of previous experience with manipulatives 

and struggling to relearn mathematics at the same time 

they were learning to use the manipulatives 
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Summary of teacher knowledge. Because of the impact teaching can have on 

student achievement, having well-qualified teachers has been a concern of many (e.g., 

CBMS, 2012; NCTM, 2000; NCTM, 2014; Mathematical Sciences Education Board and 

National Research Council, 1989). Teachers need deep, connected knowledge of the 

mathematics they are required to teach, as well as understanding of possible student 

misconceptions and appropriate pedagogical practices (e.g., Tchoshanov, 2011; 

Kilpatrick et al., 2001; Suzuka et al., 2007; An et al., 2004). However, research has 

shown that U.S. teachers’ knowledge of fractions may be deficient (e.g., Rathouz & 

Rubenstein, 2009; Li & Kulm, 2008).  

There has been speculation about the possibility of a teacher “preparation gap” 

which may partially explain the student achievement gap (Schmidt, Blömeke, & Tatto, 

2011). If a preparation gap has contributed to the student achievement gap, then perhaps 

further research into teacher preparation programs can address this concern. 

As a result of reviewing literature on teacher knowledge, decisions were made to 

reflect aspects of the literature in this study. For example, deciding to study prospective 

teachers was the result of being interested in the possibility of a potential “teacher 

preparation gap” as suggested by Schmidt et al. (2011) and to examine the impact of 

engaging prospective teachers in constructivist learning experiences on those prospective 

teachers’ developing conceptual knowledge (Kilpatrick et al., 2001).   

Fractions as Rational Numbers 

In this section, a rationale for studying fractions is presented. Confrey et al.’s 

(2009) learning trajectories for rational numbers are discussed next, followed by a 

discussion of Johanning’s (2008) conception of fraction literacy. Then, teachers’ 
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conceptual understanding of fractions is examined. This section ends with a discussion 

about data from the National Assessment of Educational Progress (NAEP). 

Rationale for studying fractions. Much research has been done on rational 

numbers (Confrey, Maloney, Nguyen, Mojica, & Myers, 2009; Sowder, Phillip, 

Armstrong, & Schappelle, 1998; Moss & Case, 1999; Cramer, Post, & delMas, 2002; 

Olive & Vomvoridi, 2006). Researchers suggest that foundational understanding of 

rational numbers is necessary for students’ later scholastic success. For example, 

proficiency with fractions is thought to be a predictor of success in algebraic reasoning 

(Booth, Newton, & Twiss-Garrity, 2014; National Mathematics Advisory Panel, 2008; 

Usiskin, 2007).  

Usiskin (2007) asserted, “If algebra is to be ‘for all,’ then every student needs to 

have competence with fractions” (p. 370). Furthermore, Lesh, Post, Behr, and Silver 

(1983) suggested, “Many student difficulties in algebra can be traced back to an 

incomplete understanding of earlier fraction ideas” (p. 93). Finally, The National 

Mathematics Advisory Panel (2008) stated: 

Instruction focusing on conceptual knowledge of fractions is likely to have 

the broadest and largest impact on problem-solving performance, provided 

it is aimed at accurately solving problems that tap conceptual knowledge. 

Procedural knowledge is also essential and is likely to enhance conceptual 

knowledge and vice versa (p. 28).  

Perhaps further research can continue to inform practice and provide insights into 

the complicated issues associated with rational number learning (Silver & Herbst, 2007). 
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Students often struggle with conceptual understanding of fractions (Cramer, Post, 

& delMas, 2002; Moss & Case, 1999; Kastberg & Norton, 2007).  “An important part of 

learning about rational numbers is developing a clear sense of what they are” (Kilpatrick, 

Swafford, & Findell, 2001). However, children often have difficulty achieving 

mathematical proficiency involving rational numbers (Kilpatrick et al., 2001). Many 

times children apply poorly understood procedures for whole numbers when operating on 

fractions (Kilpatrick et al., 2001). The difficulties children experience with rational 

numbers is rooted in a lack of conceptual understanding (Kilpatrick et al., 2001). It is 

important for children to understand that rational numbers are numbers in the same way 

that whole numbers are numbers (Kilpatrick et al., 2001).  

Children need to understand that rational numbers can be represented as fractions, 

decimals, or percentages, and are related to division, measurement, and ratio (Kilpatrick 

et al., 2001). Extensive time should be spent on helping students develop the concept of 

unit and connecting and understanding the representations associated with rational 

numbers (Kilpatrick et al., 2001). Kilpatrick et al. (2001) suggested that instructional 

approaches that use objects or contexts to help students make sense of the operations on 

rational numbers offer more promise for developing mathematical proficiency than rule-

based approaches. Moreover, Kilpatrick et al. (2001) suggested, “Students’ learning 

opportunities should involve connecting symbolic representations and operations with 

physical or pictorial representations, as well as translating between various symbolic 

representations” (p. 416). 
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Learning trajectories for rational numbers. Research on rational numbers has 

been one of the most intensively research areas in mathematics (Confrey, Maloney, 

Nguyen, Mojica, & Myers, 2009). Recent research in mathematics education has focused 

on learning trajectories (Sarama & Clements, 2009; Confrey et al., 2009). Sarama and 

Clements (2009) suggested that mathematics learning trajectories are comprised of three 

parts: “a mathematical goal, a developmental path along which children’s math 

knowledge grows to reach that goal, and a set of instructional tasks for each level of 

children’s understanding along that path to help them become proficient in that level 

before moving on to the next level” (p. 64). Furthermore, Clements and Sarama (2004) 

posited that learning trajectories are grounded in constructivism and are emergent based 

on teachers’ interactions with children around the instructional tasks. 

Sarama and Clements (2009) suggested that mathematics goals should include the 

big ideas. They also suggested that teachers consider the instructional tasks from a child’s 

perspective because children’s interpretations are different from that of adults. By 

assessing children’s level of understanding and being knowledgeable about the typical 

learning route that children follow in developing their understanding, teachers can 

provide instructional activities at the appropriate level for students that promote 

children’s growth to the next level in a developmental progression (Sarama & Clements, 

2009).  

Sarama and Clements’ (2009) specifically referred to teachers teaching children 

when discussing learning trajectories. However, it leads one to wonder how teacher 

educators might take these same ideas into consideration when teaching prospective 

teachers. That is, if prospective teachers are lacking conceptual knowledge, teacher 
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educators need to consider how the lack of conceptual knowledge will affect the 

implementation of instructional activities intended to help them develop relational 

understanding. Moreover, similar to children, prospective teachers may not have the same 

interpretations of instructional tasks as that of the teacher educator.  

Using a lens of learning trajectories, Confrey et al. (2009) reviewed the research 

on rational number reasoning “because of its potential to unpack complexity by revealing 

characteristics of gradual student learning over time” (p. 1-2). Confrey et al. (2009) 

identified seven major areas of research in rational number reasoning:  

1) Equipartitioning/splitting;  

2) Multiplication and division;  

3) Ratio, proportion, and rate;  

4) Fractions-as-numbers;  

5) Area and volume;  

6) Similarity and scaling; and  

7) Decimals and percents.  

The authors examined literature for the purpose of identifying areas of consensus 

about children’s thinking about rational number reasoning (Confrey et al., 2009). Their 

syntheses had four goals: 1) identify common significant themes and findings; 2) 

introduce new distinctions to resolve differences or to integrate results; 3) discern the 

most compelling results among controversies; and 4) prepare to implement robust results 

into practice (p. 1-2).  

As a result of their work, they constructed a working definition for Learning 

Trajectory: “A researcher-conjectured, empirically-supported description of the ordered 
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network of experiences a student encounters through instruction (i.e. activities, tasks, 

tools, forms of interaction and methods of evaluation), in order to move from informal 

ideas, through successive refinements of representation, articulation, and reflection, 

towards increasingly complex concepts over time” (Confrey et al., 2009, p. 1-2). 

Confrey et al. (2009) discussed three major meanings for a/b:  

• a/b as a fraction (number),  

• a/b as a ratio—a relation between two numbers in various contexts, and 

• “a/b of” as an operator (p. 1-7).  

The authors suggested that children’s understanding of equipartitioning/splitting 

is foundational to understanding all three meanings for a/b. Confrey et al. (2009) further 

suggested that rational number reasoning should be developed in all three meanings of 

a/b in parallel and simultaneously build children’s intuitive and explicit understanding of 

the links among the meanings. The authors also suggested that students must develop 

strong rational number reasoning for later success in algebraic reasoning, which 

resounded statements made by Usiskin (2007) and the National Mathematics Advisory 

Panel (2008). 

Confrey et al. (2009) developed a Learning Trajectories map to provide a visual 

way of representing the connectedness of rational numbers. The authors used colors to 

signify a grouping schematic for rational number topics. They also used connecting 

segments to signify specific connections. On the following page, Figure 4 shows the 

concept map that Confrey et al. (2009) developed.  
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Figure 4. Confrey et al.’s (2009) Learning Trajectories Map for Rational Number 

Reasoning 

In the map, the pink “spine” represents equipartitioning/splitting, pertaining to the 

creation of equal-sized groups. Confrey et al. (2009) stated that when 

equipartitioning/splitting is used as an operation, it leads to partitive division as well as to 

multiplication, with division most directly derived from equipartitioning followed by 

multiplication as its inverse. Furthermore, Confrey et al. (2009) suggested that 

equipartitioning is “inherently recursive, not iterative” and that reassembling the fair 

shares size m, by n times as many of that part, produces the original whole represented as 

mn. 

Confrey et al. (2009) further discussed how equipartitioning is related to ratio, but 

distinguished between “many-to-one” and “many-as-one.” That is, they stated that 
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equipartitioning a collection into fair shares where both dimensions are maintained (e.g. 

coins and persons) produces a “many-to-one” grouping (e.g. coins per person), which 

leads to the ratio unit (n:1). When the process of equipartitioning is reversed, the number 

of objects formed by equal sharing covaries with the number of people. On the contrary, 

when only one dimension is kept, a “many-as-one” grouping is produced (e.g. m coins as 

a group). This “many-as-one” grouping leads to the idea of a composite unit (one m as 

the fair share, rather than m ones per person). Confrey et al. (2009) stated that reversing 

this process leads to the definition of multiplication as an iterative operation, which 

supports multiplication as repeated addition. 

In explaining how equipartitioning is related to ratio, Confrey et al. (2009) 

continued with an example of multiple children sharing one cake. If two dimensions are 

considered (i.e. one-to-many instead of many-to-one), then one cake shared among n 

children results in a fair share of 1/nth of the cake per child. When only one dimension is 

used, the fraction 1/n is defined as the unit fraction, which describes the part that results 

from partitioning the cake into n parts (Confrey et al., 2009). The authors suggested that 

this situation leads to n being the “splitter,” which is subsequently viewed as a scalar or a 

divisor. Confrey et al. (2009) suggested that dropping the second dimension, whose use 

ensures covariation, requires that the whole and the part of the single dimension share a 

common unit of one. This requirement of a common unit of one extends to comparisons, 

addition, and subtraction, as well as representing fractions on the number line.  

Confrey et al. (2009) reasoned that progressing through the “many-to-one” 

construct of equipartitioning leads to the learning trajectory for ratio, proportion, and rate 

(grey) because of the use of two different dimensions. They also claimed that the 
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progression through “many-as-one” results in fraction-as-number (gold). Finally, 

progression through “many-as-one” by building upon “times as many” supports the 

development of measure for length, area, and volume (blue).  

Confrey et al.’s (2009) work leads one to wonder to what extent prospective 

middle grades teachers understand the vastness of the connections among rational 

number concepts. The vastness of the connections is similar to the connectedness Hiebert 

and Carpenter (1992) and Hiebert and LeFevre (1986) discussed regarding conceptual 

knowledge, as well as Ball’s (1988) conceptual understanding. In addition, with Confrey 

et al.’s (2009) learning trajectories in mind, do middle grades prospective teachers 

themselves have any deficiencies in their own rational number understanding that may 

inhibit them as future teachers responsible for teaching rational number concepts? 

Finally, if middle grades prospective teachers do have deficiencies in their own rational 

number reasoning, what experiences in their middle grades methods can help them to 

develop more complete knowledge of rational numbers?  

The Common Core Standards Writing Team (2013) addressed learning 

progressions with respect to the Common Core State Standards for Mathematics. They 

examined the Common Core State Standards for Mathematics (NGA Center & CCSSO, 

2010) and discussed how the mathematics builds from one grade to the next. In their 

document examining number in grades 6-8 and the real number system for high school, 

the Common Core Standards Writing Team (CCSWT) explained that grade 6-8 students 

build on the representation of whole numbers and fractions as points on the number line 

and a firm understanding of the properties of operations on whole numbers and fractions. 

More specifically, the CCSWT (2013) noted that students begin with whole numbers as 
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counting numbers, transition to corresponding points on the number line, and then 

connect whole numbers on the number line to measurement. By connecting whole 

numbers to measurement, students can then begin to make connections to fractions on the 

number line by partitioning the whole number unit into pieces (CCSWT, 2013). They 

also noted that partitioning the number line into tenths, hundredths, etc. helps students to 

transition to using measurements in the metric system.  

The CCSWT (2013) also indicated that students learn whole number addition as 

concatenation (linking) and then represent addition of fractions similarly. Specifically,    

“
5
7

5
3
+  can be seen as putting together a length that is 3 units of one fifth long with a 

length that is 7 units of one fifth long, making 10 units of one fifths in all” (CCSWT, 

2013, p. 2). They noted that, “Representing sums as concatenated lengths on the number 

line is important because it gives students a way to think about addition that makes sense 

independently of how numbers are represented symbolically” (CCSWT, 2013, p. 2). 

They further noted that the concatenation model of addition extends to negative numbers 

in the seventh grade.  

With respect to the properties of operations, the CCSWT (2013) stated that 

“building understanding of multiplication and division of rational numbers relies on a 

firm understanding of properties of operations” (p. 3). Specifically, the multiplicative 

identity can play an important role in students’ understanding of equivalent fractions. The 

CCSWT (2013) explained the importance of the commutative property for multiplication 

through the example of 
2
15 ×  versus 5

2
1
× . In 

2
15 × , one can build on previous 
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understanding of whole number multiplication as repeated addition, 
2
1

2
1

2
1

2
1

2
1

++++ , 

whereas 5
2
1
×  leads to an understanding as “

2
1 of 5” where of means multiplication. 

In 5th grade, the CCSSM (NGA Center & CCSSO, 2010) includes dividing whole 

numbers by unit fractions and unit fractions by whole numbers. Dividing a whole number 

by a unit fraction is considered measurement division, while dividing a unit fraction by a 

whole number is partitive division. Beginning in 6th grade, division of a fraction by a 

fraction is required in the CCSSM (NGA Center & CCSSO, 2010), which can be more 

difficult to conceptualize (CCSWT, 2013). The CCSWT provided 
3
2

3
8
÷  as an example of 

using measurement division, indicating that the answer 4 is how many 
3
2  there are in 

3
8

. They also discussed the fact that 
4
3

3
2
÷  could be interpreted as “

4
3 of what amount is 

equal to 
3
2 ?” and that reasoning about this division in this manner can lead to 

understanding reciprocal relationships, proportional reasoning, one-step equations 

involving multiplication, and the invert-and-multiply rule for dividing fractions 

(CCSWT, 2013).   

Fraction literacy. Johanning (2008) discussed her conception of fraction literacy, 

which she likened to reading literacy. Johanning (2008) conceived that fraction literacy 

entails knowing when to apply knowledge to specific contexts.  

Johanning (2008) expounded on Mason and Spence’s (1999) ideas of knowing-

about a subject: (1) knowing-that, or factual knowledge; (2) knowing-how, or technique 

and skill; and (3) knowing-why, or having a story that reconstructs actions. Mason and 
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Spence (1999) argued, “The central problem of education is that knowing-about does not 

in itself guarantee knowing-to” (p.282). In other words, just because students know how 

to multiply fractions does not mean they know when to apply this knowledge to specific 

contexts (Johanning, 2008). 

“The practices that students engage in when learning about fractions differ from 

the practices they engage in when learning to use fractions” (Johanning, 2008, p. 282-

283). Sowder, Philipp, Armstrong, and Schappelle (1998) suggested that students need 

opportunities in a variety of situations in order for them to realize the many ways 

fractions can be used. This sentiment aligns with the suggestion made by Kastberg and 

Norton (2007) for teachers to provide experiences for students that will foster their 

understanding of rational number representations in a variety of mathematics domains.  

Johanning (2008) used the terms “learning about” and “learning to use” based on 

her conception of mathematical literacy by blending parts of Scribner and Cole’s (1981) 

idea of literacy, Mason and Spence’s (1999) thoughts on knowing-about a subject, and 

Hiebert and Carpenter’s (1992) discussion of conceptual and procedural knowledge, 

which was the theoretical basis for her study. Johanning (2008) used this conception of 

mathematical literacy to study middle school students’ developing mathematical literacy. 

Johanning (2008) defined a literate user of fractions as one who would “not only know 

about fractions but be able to use knowledge about fractions to achieve goals in a variety 

of mathematical situations” (p. 285). The focus of her study was to identify common 

patterns of student behavior when students are learning to use fractions (Johanning, 

2008).  
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Johanning (2008) conducted her study with sixth- and seventh-grade students who 

were taught mathematics through the use of the Connected Mathematics Project II 

curriculum. The study took place over two years and in several data collection phases. In 

the first year, 23 sixth-grade students participated; in the second year, 23 seventh-grade 

students participated. Of the 23 students in Year 1, there were eight who were also in the 

Year 2 class. Although some of the students in Year 2 had a different teacher than those 

in Year 1, they were all exposed to the same curriculum. Four students who were in both 

Year 1 and Year 2 were interviewed.  

Johanning (2008) collected data through field notes and observations, interviews, 

and video-taping. Both of the teachers involved in the study were strong in their 

mathematical understanding and had an inquiry-based pedagogy. The selection of 

teachers was important because of the theoretical basis of Johanning’s study. Inquiry-

based learning allows for more discourse in the classroom than traditional pedagogy. By 

conducting the study in a classroom where discourse was encouraged, Johanning had a 

good vantage point from which to examine students’ reasoning about the mathematics 

they were using.  

As a result of her study, Johanning (2008) suggested that students do not naturally 

move from knowing the procedures of fractions to knowing when to apply them in 

certain mathematical contexts. Johanning (2008) stated, “Understanding how to use 

fractions is tied to understanding situations in which they can be used and the various 

ways that fractions and other mathematical content merge” (p. 291). This statement is 

similar to statements made by Hiebert and LeFevre (1986) in their discussion of 

conceptual and procedural knowledge. The statement is also related to Confrey et al.’s 



79 

(2009) learning trajectories for rational number reasoning and understanding the 

connections of rational numbers.  

In addition, Johanning (2008) expressed that it is important to engage students in 

conversations about problems in which fractions are used in order to deepen their 

understanding of fractions. Johanning (2008) found that classroom discourse associated 

with the appropriateness of the use of fractions revealed ways in which students made 

connections that deepened their understanding. For example, students worked on a 

problem involving the area of a rectangular storm shelter. The area of the storm shelter 

was 24 square meters, with a length of 
3
15  meters. The students were trying to find what 

number to multiply by 
3
15  to get exactly 24. At least one student suggested that 5.3 could 

be used instead of 
3
15 , since the students could not use the repeating decimal 3.5  in their 

calculations. However, after showing that multiplying by 5.3 was not the same as 

multiplying by 
3
15 , it was determined that using a repeating decimal that has been 

truncated does not produce an exact answer like using a fraction does (Johanning, 2008). 

This meaningful discourse and investigation of the possible interchange of decimals with 

fractions deepened students’ understanding of the use of fractions (Johanning, 2008). The 

author noted that it is commonplace for students to convert fractions to decimals when 

operating in contextual situations once they have learned how to do so. 

Johanning (2008) found that what students learn when learning about fractions is 

different from what they learn when they have to use fractions in context. Furthermore, it 

is important for teachers to help students to develop situational understanding along with 
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mathematical understanding (Johanning, 2008). Johanning (2008) stated that students 

need support when learning to use fractions, and that by using the fractions in context, 

they develop deeper understanding of the mathematics they are studying. 

Taking Johanning’s (2008) study into consideration, one might wonder to what 

degree prospective middle grades teachers have fraction literacy. In addition, if presented 

with a similar task of determining a missing dimension of a rectangle when given the area 

of the rectangle, how might teachers solve the task? Would prospective teachers use a 

truncated decimal for 
3
15  like the students in Johanning’s (2008) study? Finally, to what 

extent would prospective teachers know which procedures to apply in differing contexts? 

Teachers’ conceptual understanding of fractions. In order to facilitate students’ 

conceptual learning of fractions and their ability to use fractions literately, to provide 

them with experiences that will promote fraction literacy, and to help students make 

connections across mathematical domains, teachers must first have conceptual 

understanding of fraction themselves (Kilpatrick et al., 2001).  

While a graduate student at Michigan State University in 1989, Liping Ma was 

responsible for coding transcripts of teachers’ responses to mathematics questions that 

were collected as part of the Teacher Education and Learning to Teach Study at the 

National Center for Research on Teacher Education (1991).  As a result of studying these 

data, Ma (1999) found that “although 43% of the U.S. teachers in the study successfully 

calculated 2
1

4
31 ÷ , all failed to come up with a representation of division by fractions” 

(p. 64).  
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As part of the study, teachers were asked to create a representation as well as a 

story problem for the fraction division problem. Among the 23 teachers, six were not able 

to create a story problem and 16 created stories with misconceptions. “Only one teacher 

provided a conceptually correct but pedagogically problematic representation” (Ma, 

1999, p. 64). In addition, Ma (1999) found that the teachers had various misconceptions 

about the meaning of division by fractions, including the notion that the answer to a 

division problem should be smaller than the dividend.  

In their story problems, 10 U.S. teachers confused division by one-half with 

division by two, while six teachers confused dividing by one-half with multiplying by 

one-half.  Ma (1999) noted that there seemed to be no difference to the teachers among 

division by one-half, division by two, and multiplication by one-half. There were two 

teachers, however, who did not confuse the operations even though they were not able to 

produce a representative story problem. Furthermore, their inadequate knowledge of the 

computational procedure interfered with them developing an understanding of the 

meaning of division of fractions. Ma (1999) stated that the lack of understanding in the 

meaning of division by fractions limited the teachers in being able to generate an 

appropriate representation. 

Another finding by Ma (1999) was that the lack of conceptual understanding of 

fractions among the U.S. teachers was not present in a sample of 72 Chinese teachers 

who were studied. Among the 72 Chinese teachers studied, 90% of them solved the 

problem correctly based on procedural methods. A striking difference between the U.S. 

teachers and the Chinese teachers was that 65 of the 72 Chinese teachers created a total of 

more than 80 representative story problems, while only 8% were not able to create a story 
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problem. Ma (1999) suggested that one of the reasons the U.S. teachers’ fraction 

knowledge was inferior to that of the Chinese teachers was that most of the U.S. teachers’ 

understanding was supported only by the partitive model of whole number division, 

whereas the Chinese teachers’ understanding was connected to multiple conceptions of 

fraction division.   

The conclusions by Ma (1999) regarding inservice teachers’ lack of conceptual 

understanding of division of fractions have implications on student achievement. If Ma’s 

(1999) sample is at all representative of teachers’ knowledge, then a lack of student 

understanding in the rational number domain, as noted by Kastberg and Norton (2007), is 

relatively comprehensible, albeit undesirable. In addition, Ma’s (1999) study examined 

data from 1991. Considering that these data were collected near the time of the new 

NCTM Standards documents, would similar data be present among prospective teachers 

who were likely in K-12 schools during the reform movement? 

NAEP data related to fraction literacy. Kastberg and Norton (2007) examined 

and discussed student results on the 2003 National Assessment of Educational Progress 

(NAEP). Problems involving fractions on the NAEP included recognizing appropriately 

partitioned fractions; indicating a fractional location on a number line; solving time, 

length, and weight measurement problems involving fractions; recognizing relative 

extents of a whole; and forming a meaningful word problem requiring division by a 

fraction. 

After studying the data, Kastberg and Norton (2007) found that improvement in 

students’ procedural knowledge may account for increased overall performance instead 

of improvement in students’ conceptual understanding. For example, both fourth-grade 
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and eighth-grade students were asked to indicate the location for the fraction 
4
3  on a 

number line that had been partitioned into 8ths and already had the location for 
2
1  

marked. Eighth-grade students outperformed fourth-grade students only by a margin of 

7% (64% to 57%, respectively). Fourth-grade students typically chose 
8
3 . Kastberg and 

Norton (2007) suggested that the basis for this error was that the location represented 

three out of four marks on the first half of the number line without taking into 

consideration the relative whole. 

The typical incorrect response from eighth graders was to equate 
2
1  to 

4
2  and 

count one more mark to the right, which actually represents one more eighth, 
8
5 . 

Kastberg and Norton (2007) reasoned that students were using their procedural 

knowledge when equating 
2
1  to 

4
2 , but they lacked conceptual understanding of relative 

extents of a whole when they did not recognize the eighths in relationship to the given 

whole.  

Kastberg and Norton (2007) also discussed students’ performance on solving a 

word problem that required students to divide by a fraction. Based on the distracters 

students chose, the authors concluded that the increase in student performance was likely 

due to procedural fluency rather than conceptual understanding. Additionally, with 

respect to word problems, 8th-grade students’ performance on forming a meaningful word 

problem requiring division by a fraction has decreased (Kastberg & Norton, 2007). 
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In summary, Kastberg and Norton (2007) concluded, “What remains lacking 

among the majority of Grade 8 students is the concept of a fraction as a relative extent of 

a whole” (p. 87). Furthermore, the authors suggested that because of this inadequacy in 

students’ understanding, “students rely on rote procedures for which they have no 

meaningful interpretation” (p. 87). To address this inadequacy, Kastberg and Norton 

(2007) suggested that teachers provide students with opportunities to integrate 

mathematical knowledge and opportunities in a variety of mathematical contexts other 

than those focusing on numerical computation. 

Summary of fractions as rational numbers. Fractions are a complex domain as 

evidenced by the lackluster achievement noted throughout research. Much research has 

been done to understand this complexity. However, research shows that U.S. students’ 

and teachers’ understanding of fractions is still lagging behind that of other countries. 

Understanding the complex domain of fractions has implications on student 

achievement throughout schooling (National Mathematics Advisory Panel, 2008; 

Usiskin, 2007; Lesh, Post, Behr, & Silver, 1983).  Perhaps further research can inform 

practice and bring about greater understanding of this complex domain and how to teach 

it in ways that impact student achievement in order to address these complex issues 

(Silver & Herbst, 2007). 

Manipulatives as Representations 

In this section, a rationale for studying manipulatives is provided. Next, 

manipulatives are examined from a historical perspective. Then, the teachers’ role in 

using manipulatives; how teachers’ use of manipulatives affects students’ learning; how 

teachers’ attitudes about manipulatives affect students’ learning; other factors affecting 
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the use of manipulatives; the use of manipulatives with prospective elementary teachers 

to correct arithmetic misconceptions; and, briefly, the use of virtual manipulatives is 

considered. 

Rationale for manipulatives. The National Council of Teachers of Mathematics 

(2000) stated in Principles and Standards for School Mathematics, “Representing ideas 

and connecting the representations to mathematics lies at the heart of understanding 

mathematics” (p. 136). Representations can be expressed through language (verbal), 

pictures (visual), manipulative models (physical), written symbols (symbolic), and real-

word contextual situations (Lesh, Post, & Behr, 1987; Van de Walle, Karp, & Bay-

Williams, 2013). Figure 5 shows possible types of representations that can be used in 

mathematics instruction and their interconnectedness (NCTM, 2014, p. 25). 

 

Figure 5. Types of representations and their interconnectedness 

Cognitive psychology proposed by Piaget (1960), Bruner (1966), and Dienes 

(1969) suggested that children learn better when they have the opportunity to explore 

mathematics through the use of multiple representations and to make connections among 
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Visual 

Symbolic 

Contextual Verbal 
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these representations. Hiebert and Carpenter (1992) stated, “Mathematics is understood if 

its mental representation is part of a network of representations” (p. 67). In fact, “the 

degree of understanding is determined by the number and strength of the connections” 

[among the representations] (Hiebert & Carpenter, 1992, p. 67). This study focused on 

concrete representations through the use of manipulatives. However, pictorial 

representations as an extension of concrete models, verbal representations through 

written and spoken mathematical language, symbolic representations through facilitating 

the connection of the concrete models to the symbols, and real-world contexts were also 

examined as was appropriate.  

Manipulatives are defined as “material objects designed to represent explicitly 

and concretely mathematical ideas that are abstract” (Moyer, 2001, p. 176). However, the 

manipulatives themselves are not carriers of the meaning and insight (Moyer, 2001). On 

the contrary, it is through the use of the manipulatives that students gain understanding 

(Moyer, 2001).  However, some teachers may not be able to transform mathematical 

ideas into representations (Ball, 1992). Because of this inability, there is evidence that the 

mere use of manipulatives does not guarantee conceptual understanding for the students 

(Baroody, 1989).  

Within the last two decades, virtual manipulatives became available via the World 

Wide Web that simulate the same process as can be used with concrete manipulatives but 

with greater repetition and precision available due to the nature of virtual manipulatives 

(e.g. National Library of Virtual Manipulatives http://nlvm.usu.edu/, Illuminations 

http://illuminations.nctm.org/, Math Playground http://www.mathplayground.com/). 

Virtual manipulatives are “interactive, Web-based visual representations of dynamic 
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objects that present opportunities for constructing mathematical knowledge” (Moyer, 

Bolyard, & Spikell, 2002, p.373).  

Virtual manipulatives are more than just pictures of manipulatives; students are 

able to slide, flip, and turn virtual manipulatives as if they were actual three-dimensional 

objects. The following are examples of manipulatives that exist in concrete and virtual 

form: colored length rods, pattern blocks, base-ten blocks, fraction bars, fraction circles, 

probability spinners, dice, algebra tiles, pentominoes, tangrams, coins, two-colored 

counters, geoboards, colored square tiles, and three-dimensional blocks (i.e. linking 

cubes). This list of concrete and virtual manipulatives is not meant to be an exhaustive 

list, but to draw attention to the fact that there are many concrete and virtual 

manipulatives available for teachers and students to use.  

Although the use of manipulatives may be helpful for some students, the use of 

manipulatives as a pedagogical practice in and of itself is not sufficient (NCTM, 2000; 

Carbonneau, Marley, & Selig, 2013; Puchner, Taylor, O’Donnell, & Fick, 2008). If 

manipulatives are going to be used as an instructional strategy, teachers need to 

understand how the physical representation of manipulatives connects to the symbolic 

representation to realize the full potential of learning through using manipulatives (Ball, 

1992; Moyer, 2001; NCTM, 2000), as well as which concrete representations are 

appropriate for particular content (Graeber, 1999; Cramer & Wyberg, 2009). Teachers 

also need to be knowledgeable about the appropriate use of manipulatives in instruction 

and use them as more than just diversions or as teacher-led activities (Ball, 1992; Moyer, 

2001; Van de Walle, Karp, & Bay-Williams, 2013; Puchner, Taylor, O'Donnell, & Fick, 

2008; NCTM, 2014). 
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In 2010, the Common Core State Standards for Mathematics (NGA Center & 

CCSSO, 2010) were adopted by forty-four states, the District of Columbia, four 

territories, and the Department of Defense Education Activity.  The Common Core State 

Standards for Mathematics (CCSSM) is a set of standards that were developed based on 

“research-based learning progressions detailing what is known today about how students’ 

mathematical knowledge, skill, and understanding develop over time” (NGA Center & 

CCSSO, 2010, p. 4). The CCSSM articulates what students should know and be able to 

do at each grade level to be “college and career ready” upon graduation, but it does not 

prescribe a certain set of instructional interventions for teachers to use. The CCSSM 

(NGA Center & CCSSO, 2010) stresses conceptual understanding to undergird 

procedural fluency, which is in keeping with Kilpatrick et al.’s (2001) recommendation 

for mathematical proficiency. Although the CCSSM does not prescribe instructional 

strategies, there are 15 occurrences of “using visual fraction models” listed in the 

Standards when teaching fraction concepts (NGA Center & CCSSO, 2010). 

“Mathematics is inherently representational in its intentions and methods” (Kaput, 

1989, p. 169). Panasuk (2010) stated, “Mathematical relationships, principles, and ideas 

can be expressed in multiple representations including visual, verbal, and symbolic. Each 

type of representation articulates different meanings of mathematical concepts” (p. 238). 

Goldin and Shteingold (2001) suggested, “External systems of representation and internal 

systems of representation and their interaction are essential to mathematics teaching and 

learning” (p. 2). Goldin and Shteingold (2001) further stated that visual imagery, natural 

language, problem solving abilities, and attitudes toward mathematics all affect students’ 
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internal representations. These statements are similar to those made by Hiebert and 

Carpenter (1992) regarding representations. 

Principles and Standards for School Mathematics (NCTM, 2000) stated that one 

of the purposes of using representations is for students to develop a mental image of 

concrete mathematical ideas upon which to reflect as they progress through their 

scholastic experiences. Mental images can be thought of as internal representations 

(Panasuk, 2010).  Hiebert and Carpenter (1992) stated, “To think about mathematical 

ideas we need to represent them internally, in a way that allows the mind to operate on 

them” (p. 66). Internalization, however, requires a connection to external representations 

(Hiebert & Carpenter, 1992). Kaput (1989) used the term “fusion” to describe the 

internalization of an external representation. However, if students fail to develop these 

mental images, they may hold on to memorized rules instead of learning with 

comprehension (Saul, 2001). 

Recently, NCTM released Principles to Actions (NCTM, 2014) which contained 

an updated set of Principles that are based on a decade of experience and research about 

excellent mathematics programs, as well as significant obstacles and unproductive beliefs 

that compromise progress. The updated Guiding Principles for School Mathematics 

presented in Principles to Actions (NCTM, 2014) are Teaching and Learning; Access and 

Equity; Curriculum; Tools and Technology; Assessment; and Professionalism. NCTM 

(2014) defined each Principle; discussed obstacles that influence school programs and 

strategies for overcoming the obstacles; provided illustrations of effectiveness related to 

each Principle; and proposed “specific actions for productive practices and policies that 
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are essential for widespread implementation of Pre-K—12 mathematics programs with 

the power to ensure mathematical success for all students at last” (p. 4).   

Historical perspective of manipulatives. In the 21st century, manipulatives are 

certainly not new to mathematics education. In the 1950s, Zoltan Dienes introduced what 

he called multi-base blocks (now known as base-ten blocks) as an embodiment of the 

place value system (Sriraman & Lesh, 2007). Dienes believed that the structure in the 

embodiment was important, as was recognizing structure across multiple embodiments. 

Dienes stated, “The structural features one recognizes from these multiple 

embodiments—this brings out the essence of abstraction” (Sriraman & Lesh, 2007, p. 

67). 

Also in the early 1950s, Weaver (1953) studied a teacher who allowed five 

students to use their choice of manipulatives (without direct instruction) to demonstrate 

the subtraction problem: 52 – 37. The teacher’s purpose was to have students make the 

connection between the physical representation of regrouping and the symbolic 

representation associated with the algorithm (Weaver, 1953).  One student, Billy, counted 

out fifty-two items and took away thirty-seven of them, one at a time. Although accurate, 

this strategy was not efficient, nor did it model the algorithm that the teacher wanted the 

students to eventually connect.  

Weaver (1953) also discussed a student, Betty, who represented the number fifty-

two using five bundles of ten and two singles in place-value pockets. Betty manipulated 

the bundles and singles in a way that represented the algorithm (Weaver, 1953). She 

unbundled a ten and placed them with the singles, and then removed three bundles of ten 

and seven singles. In contrast to Betty’s model, Tommy used only five singles in the tens 
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pocket and two singles in the ones pocket (Weaver, 1953). When he realized he would 

not have enough singles to subtract seven, Tommy removed one of the singles from the 

tens pocket and placed ten singles in the ones pocket. This manipulation is a physical 

representation of what the algorithm of subtraction with regrouping represents. 

Furthermore, it shows that Tommy had deep understanding of the process of subtraction 

when it requires regrouping (Weaver, 1953). 

As time passed, manipulatives continued to be a popular topic among 

mathematics educators and researchers as evidenced by the following quote in the 

Journal for Research in Mathematics Education: “It is obvious from reading the articles 

or the advertisements in any recent mathematics teachers’ journal on this continent or 

across the Atlantic that the use of manipulative activities in the teaching and learning of 

mathematics is in vogue” (Kieren, 1971, p. 228). Kieren (1971) went on to review 

Piaget’s, Bruner’s, and Dienes’ contributions to the discussions about the learning 

theories around the use of manipulatives. He summarized by reminding readers that 

manipulatives “should best include a wide variety of concrete referents for a concept and 

can contribute a readiness foundation for later ideas” (Kieren, 1971, p. 232). 

Research of manipulative use with students continued into the 1980s (Sowell, 

1989). In the 1960s and 1970s, research findings were mixed (Sowell, 1989). Researchers 

continued to study teachers’ and students’ use of manipulatives in an effort to shed light 

on this complex issue (Sowell, 1989). Sowell (1989) examined 60 studies involving the 

use of concrete manipulatives where students worked directly with materials, pictorially 

where students watched demonstrations or used printed pictures, symbolically with 

pencil-and-paper work, or listened to lectures to learn mathematics. Although there was a 
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difference in effectiveness between the concrete and symbolic instruction, the meta-

analysis done by Sowell (1989) was inconclusive as to which manipulatives might be 

most appropriate. 

Just prior to the turn of the 21st century, the National Council of Teachers of 

Mathematics (NCTM) released several documents advocating mathematics education 

reform. These documents included Curriculum and Evaluation Standards for School 

Mathematics (NCTM, 1989), Professional Standards for Teaching Mathematics (NCTM, 

1991), and Assessment Standards for School Mathematics (NCTM, 1995).  

NCTM (1989) stated in Curriculum and Evaluation Standards for School 

Mathematics, “The mathematics classroom envisioned in the Standards is one in which 

calculators, computers, courseware, and manipulative materials are readily available and 

regularly used in instruction” (p. 243).  One example of using a model (i.e. manipulative 

materials) to represent fractions concepts found in the Curriculum and Evaluation 

Standards for School Mathematics involved demonstrating fractions using pattern blocks 

(NCTM, 1989, p. 224). The teaching suggestion was for students to be asked to use 

pattern blocks to demonstrate 1
2

, 1
3

, 1
6

, 2
3

, etc. in multiple ways, given that the 

yellow hexagon is one whole.  

In NCTM’s Professional Standards for Teaching Mathematics (1991), the focus 

shifted to standards for teaching mathematics, evaluating the teaching of mathematics, 

professional development for mathematics teachers, and support for developing teachers. 

Worthwhile tasks, discourse, and the learning environment as a mathematical community 

were emphasized as being central to improving mathematics instruction (NCTM, 1991). 

NCTM (1991) reiterated the need for tools such as calculators, computers, and concrete, 
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pictorial, and metaphorical models. They further stated, “Knowing that students need 

opportunities to model concepts concretely and pictorially, for example, might lead a 

teacher to select a task that involves such representations” (NCTM, 1991, p. 27). 

The release of the Assessment Standards for School Mathematics (NCTM, 1995) 

drew attention to the fact that curriculum, instruction, and assessment should be 

“seamless.” That is, if manipulative models are used during instruction, then students 

should have access to them during assessments. In addition, as an example of how 

teachers can use assessment evidence to plan the next day’s lesson, a vignette showed 

students using Cuisenaire™ rods to explore measurement (NCTM, 1995).  

Next, NCTM’s monumental document Principles and Standards for School 

Mathematics (PSSM) was released in 2000. PSSM (NCTM, 2000) built upon the ideas 

presented in the three prior Standards documents. NCTM (2000) communicated the 

importance of representing mathematics by identifying it as one of the Process Standards. 

Furthermore, they stated, “Representing ideas and connecting the representations to 

mathematics lies at the heart of understanding mathematics” (NCTM, 2000, p. 136). This 

statement resounded the ideas of Zoltan Dienes regarding the importance of recognizing 

the structure of a representation and how mathematics is embodied in it (Sriraman & 

Lesh, 2007). 

The Common Core State Standards for Mathematics (CCSSM) (NGA Center & 

CCSSO, 2010) advocates conceptual understanding to undergird procedural knowledge. 

The CCSSM (NGA Center & CCSSO, 2010) also suggested the use of concrete models, 

particularly in the Number domain. In fourth through sixth grades, concrete and visual 

models are referenced approximately 20 times, particularly in association with fractions. 
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For example, 6.NS.1 states, “Interpret and compute quotients of fractions, and solve word 

problems involving division of fractions by fractions, e.g., by using visual fraction 

models and equations to represent the problem” (NGA Center & CCSSO, 2010, p. 42). 

Building upon the Process Standards advocated by NCTM (2000) and the five 

strands of mathematical proficiency noted in the National Research Council’s Adding It 

Up document (Kilpatrick, Swafford, & Findell, 2001), the CCSSM (NGA Center & 

CCSSO, 2010) introduced the Standards for Mathematical Practice. These Standards 

describe what mathematically proficient students do. Standard 5 states, “Mathematically 

proficient students consider the available tools when solving a mathematical problem” 

(NGA Center & CCSSO, 2010, p. 7). The CCSSM summarizes this standard as “Use 

appropriate tools strategically” (NGA Center & CCSSO, 2010, p. 7). Concrete models are 

among the tools listed. These models can include colored length rods, base-ten blocks, 

fraction circles, pattern blocks, and more. However, concrete “model” should not be 

confused with mathematical “model” in Standard 4, which states that students can model 

using mathematics. The term model with mathematics means that students can generate 

mathematical models like equations or functions that describe a real-world situation or 

phenomenon (NCTM, 2000). 

Recently, Principles to Actions (NCTM, 2014) established eight Mathematics 

Teaching Practices that represent “a core set of high-leverage practices and essential 

teaching skills necessary to promote deep learning of mathematics” (p. 9). These 

practices are: 

1) Establish mathematics goals to focus learning. 

2) Implement tasks that promote reasoning and problem solving. 
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3) Use and connect mathematical representations. 

4) Facilitate meaningful mathematical discourse. 

5) Pose purposeful questions. 

6) Build procedural fluency from conceptual understanding. 

7) Support productive struggle in learning mathematics. 

8) Elicit and use evidence of student thinking. 

NCTM (2014) provided a sample high-leverage task of “Procedures with 

Connections” from Stein and Smith (1998) which involves the use of pattern blocks. The 

task was to find 
6
1 of 

2
1  using two hexagons as the referent whole. In addition, the 

following high-leverage task classified as “Doing Mathematics” was cited from Stein and 

Smith (1998): “Create a real-world situation for the following problem:
4
3

3
2
× . Solve the 

problem you created without using the rule, and explain your solution.” A possible 

student response, shown below in Figure 6, was given as: “For lunch Mom gave me 

three-fourths of a pizza that we ordered. I could only finish two-thirds of what she gave 

me. How much of the whole pizza did I eat?” 

 

Figure 6. Possible pictorial student response to 
4
3

3
2
×  (NCTM, 2014, p. 19) 



96 

In addition to establishing the Mathematics Teaching Practices, NCTM (2014) 

also updated the Principles established in PSSM (NCTM, 2000). The previous 

Technology Principle was revised to include tools other than electronic and renamed as 

the Tools and Technology Principle. Not only did NCTM (2014) include non-electronic 

tools such as manipulatives, measurement tools, and geometric models, they also 

advocated the use of such throughout K-12 mathematics programs. They noted that, 

although some people may view manipulatives as juvenile or unnecessary, students of all 

ages may benefit from the use of physical and virtual manipulatives because 

manipulatives can provide visual models of a range of mathematical ideas.  

In addition, NCTM (2014) highlighted Orlich’s (2000) research that indicated that 

many junior and high school students are still operating at a concrete level of thinking. 

NCTM (2014) reiterated the importance of using multiple representations such as 

contextual, visual, verbal, physical, and symbolic (Lesh, Post, & Behr, 1987) and 

emphasized that effective teaching involves not only using representations, but also 

making connections among multiple representations.  

Principles to Actions (NCTM, 2014) emphasizes the importance of learning with 

understanding through the use of tools and technology to make sense of mathematical 

concepts; engaging in mathematical reasoning using tools and technology in an 

investigative and exploratory manner; and incorporating tools and technology that 

facilitate students’ mathematical communication. Furthermore, Principles to Actions 

(NCTM, 2014) encouraged teachers to reflect upon how students may use tools and 

technology, to make instructional decisions based on goals and objectives, and to 
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thoughtfully consider how to incorporate tools and technology in meaningful ways as an 

integral part of the curriculum.  

NCTM (2014) also reminded teachers that there is still a potential for tools and 

technology to be used in unproductive, ineffective ways. They stated, “Effective use of 

technology and other tools requires careful planning; teachers need appropriate 

professional development to learn how to use them effectively” (NCTM, 2014, p. 82). If 

teachers provide step-by-step instructions on using tools and technology instead of 

providing students with opportunities to reason and explore, then the tools and 

technology will likely be unproductive (NCTM, 2014). In addition, tools and technology 

should not be used only as a “fun activity,” diversions from the norm, or for skills 

practice to develop procedural fluency without the development of conceptual 

understanding (NCTM, 2014). Because of the potential for unproductive use of tools and 

technology, NCTM (2014) stated that it is important for teachers to “have a deep 

knowledge of mathematics and understand how such tools and technology can be used 

strategically in ways that support meaningful learning” (p. 81).  

Table 8, shown below and continued on the next page, contains a historical 

timeline for literature regarding manipulatives. 

Table 8  

Historical timeline regarding manipulatives 
Date Contributor Contribution 

1950s Dienes Introduced base-ten blocks to represent place value 

1953 Weaver Teacher using straws and place value pockets to teach 

regrouping 
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1971 Kieren Advocated a wide variety of concrete referents as 

foundation for later topics 

1989 Sowell Meta-analysis of research on manipulatives was 

inconclusive 

1989 NCTM Suggested regular use of manipulatives in instruction and 

provided example of using pattern blocks 

1991 NCTM Suggested that teachers’ knowledge of children’s need to 

model concepts concretely should guide instructional 

choices 

1995 NCTM Instruction and assessment should be aligned; if 

manipulatives are used during instruction, then they should 

be available during assessment 

2000 NCTM Teachers need to facilitate the linking of multiple 

representations 

2010 NGA Center 

& CCSSO 

Suggested the use of concrete models when teaching 

fractions and other concepts like volume 

2014 NCTM Reiterated the importance of using multiple representations 

and making connections among the representations; 

provided an example of high-leverage tasks from Stein & 

Stein (1998) involving the use of pattern blocks and a real-

world context to find a fraction of a fraction; advocated use 

of manipulatives throughout K-12 
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Summary for historical perspective of manipulatives. Manipulatives have been 

used in K-12 education for many years and highly researched. Advocates of 

manipulatives have touted their benefits (NCTM, 2000, 2014), while others have noted 

that research on the efficacy of manipulatives is mixed (Sowell, 1989).  

NCTM (2014) reminded teachers that careful planning must precede the use of 

tools such as manipulatives during instruction if students are to benefit from their use. In 

addition, although some may have a perception of manipulatives as only for young 

children, NCTM (2014) conveyed their support of the use of manipulatives in an 

investigative and exploratory manner throughout K-12 schooling.  

Teachers’ role in using manipulatives. “The abilities to recognize, create, 

interpret, make connections and translate among representations are powerful 

communication tools for mathematical thinking” (Panasuk, 2010, p. 239). While 

Principles and Standards for School Mathematics advocated teachers modeling 

conventional ways of representing mathematics, they also stressed that “representations 

do not show the mathematics to the students” (NCTM, 2000, p. 209). Principles and 

Standards (NCTM, 2000) further emphasized that students need to know which 

representations are appropriate for particular situations and to move fluidly among 

multiple representations because, as students link different representations, it deepens 

their understanding of mathematics (NCTM, 2000).  

Facilitating the linking of multiple representations as well as understanding and 

recognizing the mathematics embodied in the representations is a responsibility that lies 

with teachers (NCTM, 2000). Concrete materials being used need to closely match the 
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significance of the mathematical relationships in order for them to be effective tools for 

students’ learning (Hiebert & Carpenter, 1992). Hiebert and Carpenter (1992) stated: 

Differences in how physical materials are used to develop understanding 

are not only grounded in the nature of those physical materials: There also 

are important differences in how materials may be used to make 

connections explicit. As noted earlier, the effects of using materials on 

students’ understanding may have as much to do with the context in which 

they are used and the way in which students interact with materials as with 

the materials themselves. We have argued that an important variable to 

consider is the explicitness with which the connections are drawn for 

students between features of the materials and symbolic representations 

(Hiebert & Carpenter, 1992, p. 88). 

Moss and Case (1999) voiced concern about the use of the circle model as the 

only mode of instruction because it limits students to think only about the part-whole 

relationship of fractions. Cramer et al. (2002) echoed Moss and Case’s (1999) concern 

regarding the use of the circle model and suggested compensating for it by intermittently 

using fractional pieces as the unit rather than always using the whole circle as the unit. 

Along the same lines, after studying the 1996 NAEP rational number data, Wearne and 

Kouba (2000) concluded that students lack an understanding of the unit, similar to 

Kastberg and Norton’s (2007) findings for the 2003 NAEP. Finally, Principles and 

Standards for School Mathematics (NCTM, 2000) cautioned teachers not to introduce 

conventional representations to students before they can use them meaningfully because 

it could be counterproductive.  
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Teachers’ uses affecting the efficacy of manipulatives. Students “are influenced 

both by what the teacher understands about what he or she is teaching, and by what he or 

she discerns about what students know and about how students might build productively 

upon that knowledge” (Thompson & Saldanha, 2003, p. 96). Teachers need to understand 

the manipulative and how it embodies the mathematics that they are attempting to 

represent (Ball, 1992; Moyer, 2001). Furthermore, how the manipulative is used is of 

great importance.  

Van de Walle, Karp, and Bay-Williams (2013) cautioned teachers not to have 

students “do as I do” when using manipulative models. They contended that doing so 

opens up the possibility of students mimicking teachers’ actions in a way that is mindless 

and leads to memorization of procedures. Instead, Van de Walle et al. (2013) suggested 

that students be allowed to use the manipulatives in ways that promote thinking and aid 

in the development of concepts.  

Teachers should also be cognizant of how students are affected by the teachers’ 

instruction. Izsák, Tillema, and Tunç-Pekkan (2008) studied one sixth-grade teacher who 

was implementing the Connected Mathematics Project curriculum (CMP). The authors 

discussed the negative effects of students’ and teachers’ different interpretations when 

representing fractions using drawings, specifically iterative and recursive partitioning 

compared to left-to-right partitioning. Although the sixth-grade teacher involved in the 

study had previously used paper folding to illustrate recursive partitioning as part of her 

implementation of the Connected Mathematics Project curriculum, she did not make the 

transition of using recursive partitioning when representing fractions on the number line 

(Izsák et al., 2008). Instead, when the teacher demonstrated how to partition a number 
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line into eighths that was marked from zero to one, she used a left-to-right partitioning 

scheme and changed the location of the “1” based on her inaccurate partitioning (Izsák et 

al., 2008). In doing so, she inadvertently undermined one student’s understanding of a 

fixed unit, which subsequently caused the student problems (Izsák et al., 2008). It should 

be noted, however, that the teacher’s strategy of changing the fixed unit did not affect 

another student who had a stronger understanding of fractions (Izsák et el., 2008). As a 

final point, the teacher not only neglected to model recursive partitioning, but also did not 

capitalize on the fact that one of her highest achieving students used recursive 

partitioning and iterating when calculating 
9
2

3
1
+ ; she merely commented that what he 

had done was interesting (Izsák et al., 2008). 

Although modeling fractions is important, teachers should exercise caution when 

representing concrete models through pictorial representations (Olive & Vomvoridi, 

2006). In their study, Olive and Vomvoridi (2006) observed that a teacher who attempted 

to cut a circle into tenths had drawn it in such a way that it appeared that two of the tenths 

were the size of eighths (in a circle model). One of the students in her class who was 

interviewed did not have an understanding of the part-whole relationship of fractions, nor 

did he have the understanding that fractional pieces need to be the same size (e.g., each 

one-tenth of the circle model needs to be the same size as all the other one-tenth pieces). 

The teacher’s poor attempt at drawing did not aid the student in developing a better 

understanding of the need for the fraction pieces to be of equal size (Olive & Vomvoridi, 

2006). Also, when asked to draw a circle model representing fifths, the teacher did not 

draw it so that all the pieces were of equal size. 
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Incorporating manipulatives into instructional strategies does not guarantee 

effective use (Puchner, Taylor, O’Donnell, & Fick, 2008). Puchner et al. (2008) studied 

inservice elementary and middle school mathematics lessons in which manipulatives 

were used as an instructional strategy. The teachers in their study had participated in 

professional development and reported “an increased understanding of the importance of 

using manipulatives” (Puchner et al., 2008, p. 313). However, an analysis of lessons 

taught by these teachers showed a pattern of ineffective manipulative use and misuse. 

Puchner et al. (2008) suggested that effective use of manipulatives is more difficult than 

most realize. 

In their study, Puchner et al. (2008) analyzed data collected from 23 different 

teachers during a lesson study that followed a summer professional development institute. 

In one particular sixth-grade lesson, students were shown how to use non-traditional 

methods (decomposition, arrays, and base-ten blocks) to demonstrate a multiplication 

problem. Many students used the base-ten blocks, but when they could not count 

accurately, they reverted to using an algorithm to get the right answer.  In addition, some 

students first used the algorithm to get the right answer and then attempted to make the 

non-traditional methods fit. This “answer-first, model-second” method is similar to the 

procedural use of drawings described by Osana and Royea (2011) in their study of 

prospective elementary teachers. Puchner et al. (2008) pointed out, “Teachers noticed 

that, for some students, the answer and the non-traditional procedure to obtain the answer 

became two separate processes” (p. 319). Instead of developing conceptual knowledge of 

multiplication and linking the traditional algorithm to non-traditional strategies, the 
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lesson became focused on students figuring out how to use the manipulative to come out 

with the answer they already knew (Puchner et al., 2008).  

Another example of ineffective use of manipulatives highlighted by Puchner et al. 

(2008) was in an eighth-grade class using linking cubes. Observers noted that students 

seemed very confused about what they were supposed to do with the cubes and focused 

on color, counting, and rearranging the cubes instead of using them in an investigative 

way. Puchner et al. (2008) indicated that a major problem with this particular lesson was 

that the teacher neglected to “think carefully about how pedagogy will support the 

specific content goals of the lesson” (p. 322). Puchner et al. (2008) related this failure to 

link pedagogy and content to Shulman’s (1986) pedagogical content knowledge, 

suggesting that teachers had not carefully analyzed how the content would actually be 

learned using the manipulative.  

Puchner et al. (2008) observed, “Manipulative use turned into an end in and of 

itself, rather than a tool leading to better understanding” (p. 321). Some students in their 

study used manipulatives in a procedural manner that mimicked the teacher’s actions, 

which is what Van de Walle et al. (2013) cautioned against. Puchner et al. (2008) 

suggested, “Student understanding through manipulatives occurs when students are 

motivated to use a manipulative as a tool to obtain the answer to a challenging problem” 

(p. 321). The authors suggested that professional development activities include 

analyzing inappropriate scenarios involving manipulatives and scenarios that do not 

involve manipulatives in order to help teachers understand that the mere use of 

manipulatives does not guarantee student learning. Puchner et al.’s (2008) research and 
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the authors’ suggestions may be of interest to teacher educators as they prepare 

prospective teachers to incorporate manipulatives in their future classes. 

Teachers’ attitudes affect the use of manipulatives. Teachers’ attitudes about 

the use of manipulatives also affect how they use manipulatives and whether students 

benefit from the use of manipulatives. Izsák, Tillema, and Tunç-Pekkan (2008), 

mentioned earlier, were also interested in teachers’ attitudes toward the use of 

manipulatives.  

The teacher in Izsák, Tillema, and Tunç-Pekkan’s (2008) study considered herself 

a predominately traditional teacher who focused on algorithms and seldom used 

manipulatives, although she reported using picture drawings when either introducing a 

topic or when there was confusion. By the nature of the Connected Mathematics Project 

curriculum that was being used, students were expected to use representations to 

understand what they were learning about fraction addition. However, Izsák et al. (2008) 

noted that the teacher often asked her students to visualize, not draw, fraction strips when 

they were having difficulties even though the class had previously used representations 

during instruction. Through interviews, the teacher shared her beliefs that students should 

rely less on pictures as they progressed.  

As a result of examining their data, Izsák et al. (2008) interpreted the teacher’s 

statements and actions as a desire for students to move quickly from representations to 

numeric methods. However, if the transition from the use of concrete representations to 

the use of mental images is expected too quickly, students may not make necessary 

connections and thus not benefit from the representation to the fullest extent possible 

(Hiebert & Carpenter, 1992).  
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As evidenced in Izsák et al.’s (2008) study, teacher attitudes have an impact on 

the use of representations in learning. For representations to benefit the students’ 

learning, teachers not only need to understand how to represent mathematical concepts, 

but also need to consider students’ needs and the usefulness of a representation (Moyer, 

2001). Piaget (1952) asserted, “Children do not have the mental maturity to grasp abstract 

mathematical concepts presented in words or symbols alone and need many experiences 

with concrete materials and drawings for learning to occur” (p. 175). However, if 

teachers have the attitude that concrete materials are just for fun or just for use after a 

concept has been learned, then the usefulness of such materials are not being maximized 

(Moyer, 2001).  

Beliefs about how students learn mathematics influences teachers as to how and 

why they use manipulatives (Moyer, 2001). Moyer (2001) studied the beliefs and 

attitudes of a group of teachers involved in a summer institute to see how their beliefs 

affected their use of manipulatives in instruction. Ten of the 18 participants (from the 

summer institute) volunteered to be a part of the study conducted by Moyer. Moyer 

collected self-report data from the teachers on a monthly basis regarding the most recent 

class they taught and what they employed to teach it. Classroom observations were 

conducted, as well as interviews with the teachers about how they used manipulatives in 

their classroom.  

As a result of her study, Moyer (2001) found that although some type of 

mathematics tool was used in 79% of the mathematics lessons, half of the instances of 

manipulative use involved students observing the teacher using the manipulative. 

Moreover, Moyer (2001) found that there were very few instances of students 
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participating in “hands-on” use of the manipulatives for learning. In general, the 

manipulatives were used as rewards for good behavior or to play games after classwork 

had been done (Moyer, 2001).  

Moyer (2001) found the following reasons for using manipulatives were prevalent 

among the teachers: as a reward (or punishment by withholding); to give a break in the 

routine; to provide a visual model when introducing concepts; for student use in problem 

solving; to make it more fun; and to reinforce and provide enrichments for concepts. 

During interviews, attitudes emerged as teachers differentiated between ‘fun math,’ 

where manipulatives were used, and ‘real math,’ where pencil-and-paper techniques were 

used. Teachers routinely gave tests on Thursdays and let students use manipulatives on 

“fun” Fridays. One reason teachers cited for not using manipulatives was a lack of time 

due to the need to focus on criterion-referenced tests. When one student asked to use the 

manipulatives, the teacher said, “Go ahead if you think it will help, but it is quicker to do 

it mathematically” (Moyer, 2001, p. 189). Then, the teacher suggested the student solve 

the problem first without the manipulative. 

Other factors affecting the use of manipulatives. Choice of curriculum may be 

another factor in how teachers and students utilize representations. Cramer, Post, and 

delMas (2002) conducted a quantitative study in a suburban school district south of 

Minneapolis with 66 fourth- and fifth-grade classrooms comparing the use of a 

conventional curriculum with the use of the Rational Number Project (RNP) to teach 

fractions. 

Students who were in the classrooms that used the RNP curriculum were given 

the opportunity to use manipulative materials such as fraction circles, chips, paper 



108 

folding, and pictures, as well as story problems and written symbols to explore fraction 

concepts (Cramer et al., 2002). Although the commercial curricula that were being used 

also incorporated representations of fractions like fraction bars, counters, paper folding, 

and fraction circles, the focus of the commercial curricula was more on developing the 

students’ procedural fluency at the symbolic level (Cramer et al., 2002).  

Cramer et al. (2002) found that students who used the RNP curriculum realized 

higher achievement on the post-test and retention test than students who used commercial 

curricula.  Moreover, the students in the RNP curriculum displayed greater conceptual 

knowledge of fractions, were better able to judge the relative sizes of two fractions, and 

were better able to transfer their knowledge of fractions to problems they had not 

previously been taught (Cramer et al., 2002).  

Additionally, even though the students using the commercial curricula spent more 

instructional time on adding and subtracting fractions than did students using the RNP, no 

significance difference was found between their achievements in that area (Cramer et al., 

2002). Cramer et al. (2002) noted two significant differences in the two curricula: the 

emphasis on the use of hands-on manipulative models in the RNP versus on pictorial and 

symbolic representations and on procedural skill development in the commercial 

curricula. The authors attributed the greater gain of students in the RNP curriculum to 

instruction that involved multiple concrete models. Cramer et al. (2002) also suggested 

that because of the emphasis on students’ use of concrete models, classroom discourse as 

a result of using the models could also have been a factor in the students’ gains.  

Not all manipulatives are equally beneficial with certain concepts. Cramer and 

Wyberg (2009) studied the efficacy of different concrete models for teaching the part-
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whole construct for fractions. “To be effective, manipulatives should mirror the structure 

of the concept and enable learners to use that structure to construct a mental model for 

that concept” (Cramer & Wyberg, 2009, p. 228). However, Cramer and Wyberg (2009) 

found that not all models were of the same usefulness in helping students to develop 

mental models for fraction understanding. 

In their study of fourth and fifth graders, Cramer and Wyberg (2009) compared 

the use of paper folding strips, a fraction chart based on the paper folding strips, dot 

paper, chip models, and pattern blocks to help students develop mental images for 

fraction understanding, as well as the use of a number line to construct common 

benchmarks like 
2
1 . Additionally, students explored mathematical concepts related to 

fractions through the inclusion of probability in the unit.  

Cramer and Wyberg (2009) found that although lessons included pattern blocks, 

students subsequently had difficulty representing the fraction 
4
3  using the pattern blocks. 

They surmised that students did not develop a mental image that would aid them in 

modeling 
4
3  using the pattern blocks. The authors speculated that it is possible that, 

unlike fraction circles, because the pieces of the pattern blocks are not similar in shape, 

students had difficulty seeing the relationships between the pieces. As a result, Cramer 

and Wyberg (2009) asserted that the pattern blocks have serious limitations to support 

students’ development of mental images for fractions. 

Additionally, Cramer and Wyberg (2009) found that neither the chip model, nor 

dot paper supported the need for finding common denominators when adding fractions, 
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and furthermore, supported students’ errors of adding numerators and adding 

denominators. Instead, these two models supported students’ whole number thinking. 

On the other hand, Cramer and Wyberg (2009) found that students’ understanding 

of fractions was most supported by the fraction chart model that was related to paper 

folding. In fact, although fourth-grade students were not taught procedurally how to 

compare fractions, most were able to use mental images to determine which of two 

fractions was the larger. However, Cramer and Wyberg (2009) stated that there were 

limitations in using the fraction chart, particularly when fractions were greater than one 

and in developing students’ estimation skills. 

Finally, Cramer and Wyberg (2009) advised teachers to examine the following 

before selecting a manipulative model when working with fractions: 

• Does the model build mental images for fractions and what happens when 

you operate on them so that students are able to construct effective 

estimation skills? 

• Does the model show the need for finding common denominators when 

adding and subtracting? 

• Does the model show the action of adding and subtracting clearly? 
 

• Does the model too easily support the common incorrect strategies for 

adding and subtracting fractions? 

• Can the students see the connections between the model and symbolic 

procedure for adding and subtracting fractions? (p. 254) 

In summary, Cramer and Wyberg (2009) suggested that using “multiple models in 

learning fractions may be the most effective strategy for ensuring that students develop 

meaningful understanding of the complex domain of fractions” (p. 255).  
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Recovery through the use of manipulatives. Although students usually do not 

overcome the interference of rote knowledge independently, Mack (1993) suggested that 

by moving back and forth between students’ informal knowledge of and symbolic 

representations of fractions, it is possible to overcome the interference of rote knowledge. 

In addition to using informal knowledge, the use of concrete manipulatives may be a 

viable way to address faulty understanding due to instrumental learning (focus on 

procedures) that precedes relational learning (Green, Piel, & Flowers, 2008).  

Green et al. (2008) studied the effects of using manipulatives to correct two 

groups of prospective elementary teachers’ arithmetic misconceptions. Green et al. 

(2008) used “guided constructivism,” which they suggested was conceptually similar to 

Freudenthal’s (1991) guided reinvention or guided reconstruction. The authors stated, 

“our intent was to guide students through a hierarchy of manipulatives that represent 

increasingly abstract objects—from concrete to representational to transitional to 

symbolic—by using manipulatives as tools for examining, constructing, seeing, and 

testing the performance of arithmetic operations and studying their interrelationships” (p. 

236). 

Study 1 consisted of 50 participants, while Study 2 consisted of 39 participants. 

The studies took place while prospective teachers (PTs) were enrolled in a required 

course for elementary education majors usually taken in the junior year. Most of the PTs 

were female with an average age of 26 years and an average SAT mathematics score of 

487. During four classes (
3
11  hours each) of the 30-class semester, PTs used 

manipulatives to solve problems posed by the instructors. Students first compared 

solutions, and then the instructors demonstrated the solutions using overhead 
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manipulatives or whiteboard illustrations. Instructors did not directly answer prospective 

teachers’ questions; instead, they redirected the questions to the class or to the 

manipulative arrangement.  

Initially, they found that when asked to pictorially represent 
4
3

2
11 ÷ , only 15% of 

the students in their study could accurately do so (Green et al., 2008). However, after 

working with the subjects for only 
3
11  hours using Cuisenaire™ rods, 66% of them were 

able to accurately represent the problem on a post-test (Green et al., 2008). The authors 

attributed the success to the fact that by using the Cuisenaire™ rods, students could see 

the pieces. The authors also reported a statistically significant decrease between the pre-

test and post-test for arithmetic misconceptions (Green et al., 2008). 

Green et al. (2008) believed that the success of their intervention was also related 

to prospective teachers’ active use of manipulatives to solve problems. Green et al. 

(2008) indicated that no direct explicit instruction about misconceptions was given. 

Furthermore, the authors believed that if they had merely demonstrated the use of 

manipulatives to solve problems without prospective teachers’ direct problem solving, 

the PTs would not have realized the gains they did, nor would they have decreased their 

arithmetic misconceptions. Although Green et al.’s (2008) study was enacted using 

prospective elementary teachers, its results are encouraging and leads one to question 

whether similar results could be realized with middle school prospective teachers.  
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Virtual manipulatives. As mentioned earlier, virtual manipulatives have been 

available for approximately twenty years now. One benefit of virtual manipulatives over 

pictorial representations of fractions is precision (Moyer-Packenham & Westenskow, 

2013). Students are able to manipulate the unit, cutting it into halves, thirds, fourths, etc. 

with greater precision than is probable when drawn by hand. By using virtual 

manipulatives, students who have not yet grasped the concept of equal size pieces may be 

able to develop mental images that will help them to further their understanding of 

fraction concepts. 

Increasing numbers of studies on virtual manipulatives are being published 

(Moyer-Packenham & Westenskow, 2013). In 2005, Reimer and Moyer indicated that 

some research on computer-based manipulatives has been inconclusive due to design and 

sampling that may affect student achievement results. In fact, Reimer and Moyer (2005) 

stated, “Although those results are mixed, the amount of research on high-quality 

dynamic virtual manipulative is so limited that a judgment about their potential uses in 

mathematics instruction is entirely speculative” (p. 8). 

Since that time, Moyer-Packenham and Westenskow (2013) did a meta-analysis 

of the effects of virtual manipulatives on student achievement and mathematics learning 

by examining 66 studies on virtual manipulatives. They based their decision to do a meta-

analysis on the fact that although research on virtual manipulatives spans two decades, 

“to date, there has been no attempt to synthesize this research base” (p. 36). Moyer-

Packenham and Westenskow (2013) began by searching the literature through electronic 

data bases and found 150 publications about virtual manipulatives, some of which were 

opinion articles, theory papers, and articles suggesting instructional strategies. For their 
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meta-analysis, Moyer-Packenham and Westenskow (2013) included only studies in 

which student achievement data were collected and for which threats to internal validity 

were not significant. 

As a result of their meta-analysis, Moyer-Packenham and Westenskow (2013) 

found that “virtual manipulatives have a moderate effect on student achievement when 

compared with other instructional treatments” (p. 45). They also identified five 

“interrelated affordances of virtual manipulatives that promote student learning: focused 

constraint, creative variation, simultaneous linking, efficient precision, and motivation” 

(p. 46). Moyer-Packenham and Westenskow (2013) indicated that limited research on 

virtual manipulatives has been done with students beyond Grade 6. More specifically, the 

authors only included two studies at the university level in their meta-analysis. 

Interestingly though, the effect size Moyer-Packenham and Westenskow (2013) found for 

the use of virtual manipulatives at the university level was 1.17. 

 One example of a study that shows the potential effects of virtual manipulatives 

on student achievement was done by Reimer and Moyer (2005). Reimer and Moyer 

(2005) conducted a study in Reimer’s third-grade class using applets found on the 

National Library of Virtual Manipulatives (http://nlvm.usu.edu/) to determine what 

impact the use of virtual manipulatives had on students’ fraction learning. Nineteen of the 

25 students in Reimer’s class participated in the study. Students were previously taught a 

unit on fractions that involved the use of physical manipulatives and other strategies. 

After instruction, students were given a test on their conceptual knowledge and on their 

procedural knowledge of fractions. Students were allowed to use physical manipulatives 

on the test due to the fact that they were used during instruction (Reimer & Moyer, 2005). 
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This practice is in alignment with instruction advocated by NCTM’s Assessment 

Standards for School Mathematics (1995). 

After the test on fractions, students were taught using the virtual manipulatives 

applets (Reimer & Moyer, 2005). Prior to using the virtual manipulatives in the fractions 

lessons, the teacher allowed students time to use an applet on base-10 blocks found on the 

National Library of Virtual Manipulatives website so that they would be familiar with 

virtual manipulatives, but not the fractions applets. The teacher led instruction and 

discussions, and then the students used the applets in the computer lab for one hour each 

day. 

The statistical analysis showed that students’ test scores on the conceptual 

knowledge tests were significantly different, but not the test scores on the procedural test 

(Reimer & Moyer, 2005). The class average on the conceptual pre-test was 60% and on 

the post-test, 69%. After looking at the scores individually, 53% of the students improved 

in their conceptual knowledge of fractions, four students showed no change (because 

their scores were 94%, 100%, 100%, & 100%), and five students’ scores decreased 

(Reimer & Moyer, 2005). The scores on the pre-test and post-test for the procedural 

knowledge were 90% and 96%, respectively. Because procedural test scores were so high 

initially, this left little room for improvement, unlike the conceptual knowledge pre-test. 

However, when looking at the differences in scores on both pre-tests (60% on conceptual 

versus 90% on procedural), questions could be raised regarding how the concrete 

manipulatives were used during instruction, as well as what other strategies were used. 

Table 9, shown on the following two pages, contains a summary of literature regarding 

concrete and virtual manipulatives. 
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Table 9  

Summary of literature related to manipulatives 
Contributor(s) Level Contribution 

Van de Walle, Karp, 

& Bay-Williams 

(2013) 

K-8 Cautioned against having students mimicking 

teachers’ actions with manipulatives 

Moss & Case 

(1999) 

4th grade Concern regarding over-use of circle model, 

limiting students to part-whole understanding 

Izsák, Tillema, & 

Tunç-Pekkan 

(2008) 

6th grade  Negative effects on students’ understanding as 

a result of teacher’s use of partitioning and 

attitudes toward representations  

Olive & 

Vomvoridi (2006) 

6th grade Teachers’ incorrect partitioning of circles 

interfered with students’ understanding of 

need for unit fractions to be the same size 

Puchner, Taylor, 

O’Donnell, & Fick 

(2008) 

K-8 Ineffective or misuse of manipulatives in 

classroom activities after teachers participated 

in professional development 

Moyer (2001) In-service 

teachers 

Teachers attitudes toward manipulatives 

affects classroom use of the manipulatives 

Cramer, Post, & 

delMas (2002)  

 

4th & 5th 

grades 

Choice of curriculum affects student 

achievement through implementing 

manipulatives 

Cramer & Wyberg 

(2009) 

4th & 5th 

grade 

Studied efficacy of different concrete models; 

found that pattern blocks did not help students 
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 create mental representations of fourths; found 

dot paper and chip model reinforced students’ 

misconceptions of adding numerators and 

denominators 

Green, Piel, & 

Flowers (2008) 

Prospective 

elementary 

teachers 

Used manipulatives to correct prospective 

elementary teachers’ fraction misconceptions 

Moyer-Packenham 

& Westenskow 

(2013) 

K-

university 

Meta-analysis of research showed virtual 

manipulatives have a moderate effect size on 

student achievement 

Reimer & Moyer 

(2005) 

3rd grade Used virtual manipulatives after concrete 

manipulatives to teach fraction concepts;  

students’ conceptual knowledge significantly 

increased from pre-test to post-test 

Summary of manipulatives literature. Using manipulatives can be a complex 

issue. If manipulatives are going to be used productively, students need to have engaging, 

investigative experiences using them, rather than being provided step-by-step direct 

instruction (NCTM, 2014; Van de Walle, Karp, & Bay-Williams, 2013).  

Teachers must understand the appropriateness of manipulative materials with 

respect to the mathematics they are teaching (Cramer & Wyberg, 2009; Moss & Case, 

1999; Puchner, Taylor, O’Donnell, & Fick, 2008), as well as an awareness of how 

students may be affected by the misuse of such materials (Olive & Vomvoridi, 2006; 

Izsák, Tillema, & Tunç-Pekkan, 2008). Finally, teachers need to be cognizant that their 
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attitudes toward manipulatives may compromise the benefits that manipulatives can 

provide to students (Moyer, 2001; Izsák, Tillema, & Tunç-Pekkan, 2008). 

A review of the literature on manipulatives informed this study by generating in 

the researcher a concern regarding: over-use of fraction circle model; efficacy of certain 

concrete models; and use of manipulatives to correct prospective teachers’ 

misconceptions.  

Summary of literature review. Teaching is a complex endeavor, and having 

well-qualified teachers is important. Teachers need to deeply understand the mathematics 

they are tasked to teach in order to be able to provide clear, conceptual explanations to 

their students and address students’ misconceptions. Teachers need to be able to provide 

multiple representations of mathematical content and facilitate the linking of these 

representations.  Furthermore, if teachers are going to incorporate concrete models as a 

form of representation, they will need experiences with these materials and will need to 

recognize that incorporating manipulatives into instruction is not a simple matter. 

A variety of studies have shown that prospective teachers’ conceptual knowledge 

is lacking even though their procedural knowledge is not (Lloyd & Frykholm, 2000; 

Rathouz & Rubenstein, 2009; Li & Kulm, 2008). If prospective teachers’ conceptual 

knowledge is lacking, then they will need significant learning opportunities during their 

teacher education courses to develop conceptual knowledge, and thereby increase the 

likelihood that they will have relational understanding of fractions. At least one study has 

shown promise in addressing elementary prospective teachers’ misconceptions regarding 

fractions through the use of concrete manipulatives (Green et al., 2008). Considering that 

much research has been done on the effectiveness of using manipulatives in the K-12 
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school setting, perhaps additional research done at the university level can further inform 

the field. 
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Chapter 3: Methods 

In Chapter 2, literature was presented emphasizing the importance of having 

conceptual understanding to support procedural fluency (NCTM, 2014; Kilpatrick et al., 

2001); relational understanding was defined as having both conceptual and procedural 

knowledge and knowing the connections between them (Skemp, 1987); the vast inter-

connectedness of fraction concepts and the importance of teachers possessing relational 

understanding of fractions themselves was considered (e.g., Confrey et.al, 2009; Lesh, 

Post, Behr, & Silver, 1983; Kilpatrick et al., 2001; National Mathematics Advisory Panel, 

2008; Usiskin, 2007); and literature related to manipulatives was reviewed (e.g., Moyer, 

Bolyard & Spikell, 2002; NCTM, 2000; Van de Walle, Karp, & Bay-Williams, 2013), 

including a historical look at the use of manipulatives in K -12 settings (e.g., Moyer, 

2001; Ball, 1992). In each section, concerns were highlighted that current literature has 

not addressed.  

The purpose of this study was to gather and analyze data through qualitative 

research methods to attempt to answer the following question:  

What is the impact of a manipulatives-intensive fractions unit in a middle 

grades methods course on prospective teachers’ relational understanding 

of fractions? 

Philosophical Beliefs 

“All research is interpretive: guided by a set of beliefs and feelings about the 

world and how it should be understood and studied” (Denzin & Lincoln, 2011, p. 13). 

Within a set of beliefs, there may be beliefs about the nature of reality (ontology), the 
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nature of knowledge (epistemology), and how we know the world or gain knowledge of it 

(methodology) (Denzin & Lincoln, 2011). Additionally, there may be beliefs about how 

to communicate findings (rhetorical) and biases that impact interpretations (axiological) 

(Creswell, 2007). 

I will now present the beliefs that shaped this study. With respect to ontology, 

Lincoln, Lynham, and Guba (2011) suggested that qualitative researchers construct 

knowledge through their lived experiences and interactions, and therefore must 

participate in the research process in order to produce knowledge that is reflective of the 

participants’ reality. During this study, I interacted with participants through one-on-one 

interviews and conducted observations during class in order to observe participants in the 

natural environment. Throughout this study, I constructed knowledge as a result of the 

interactions between the participants and me. Additionally, I used quotes in the words of 

participants as evidence of the participants’ perspectives.  

With respect to epistemology, Lincoln, Lynham, and Guba (2011) noted that 

people are shaped by their experiences, and the knowledge we generate is a result of our 

experiences. In practice, researchers collaborate with participants and spend time with 

participants in the field in order to become an “insider” (Creswell, 2007). Although it was 

not likely I could become an insider because of my status at the research site, I attempted 

to lessen the distance between the participants and me by responding to participants in a 

friendly manner to establish a positive rapport with them.  

My beliefs about how knowledge is acquired influenced me in the methodological 

decisions that I chose for this study (Denzin & Lincoln, 2011). Because I believe 

knowledge is constructed, I chose to conduct one-on-one, task-based interviews as part of 
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the research process in hopes that I could be privy to participants’ knowledge. In practice, 

I described situations in detail in order to provide the reader with as much context of the 

experiences as possible. In addition, I examined details prior to making generalizations 

and continually revised my interview questions based on participants’ responses (Lincoln 

& Guba, 1985).   

The rhetorical practice of qualitative research allows the use of personal voice and 

writing in an informal, literary style, which allows me to refer to myself in first person 

(Creswell, 2007). However, because writing in first person presented the potential for the 

reader to focus more on my actions and less on the participants’ knowledge, I chose to 

write in passive voice to communicate about the participants. When I communicated 

about my analysis and interpretations, I used first person. Furthermore, I used the 

language of qualitative research to convey each aspect of this study. For example, I chose 

wording that was tentative like may, possible, and seemed in lieu of definitive words. 

Finally, the axiological practice of qualitative research is that the researcher 

acknowledges that research biases are present (Creswell, 2007). In practice, this requires 

me to openly discuss values that shape the narrative and to include my own interpretation 

in conjunction with the interpretations of participants. Therefore, I provided a section in 

this chapter disclosing my biases and the values that shaped this study.  

Theoretical Basis for the Study 

“Learning is a constructive process that occurs while participating in and 

contributing to the practices of the local community” (Cobb & Yackel, 2004, p. 220). 

Ernst von Glasersfeld (1995) claimed that people construct knowledge based on their 

own experiences, and that what one person experiences may or may not be like that of 
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another. Ernst von Glasersfeld (1995) used the term “theory of knowing” to communicate 

his ideas of constructivism, and indicated that although each person individually makes 

meaning of their world, each person is influenced by the social interactions in which they 

are involved. Naylor and Keogh (1999) stated, “The central principles of this approach 

are that learners can only make sense of new situations in terms of their existing 

understanding. Learning involves an active process in which learners construct meaning 

by linking new ideas with their existing knowledge” (p. 93). A classroom is a social 

environment in which the participants bring unique backgrounds upon which they can 

build. Although multiple characters are engaged in this social environment at the same 

time, not all will be affected in the same way. 

Constructivists posit knowing as a process (Ültranir, 2012). von Glasersfeld 

(1995) suggested that knowledge starts “in the heads of persons, and that the thinking 

subject has no alternative but to construct what he or she knows on the basis of his or her 

own experience” (p. 1). Furthermore, knowledge is not passively received but is built up 

through a cognitive process (von Glasersfeld, 1995). As part of that process, teachers are 

tasked with providing students with opportunities and experiences for constructing 

knowledge instead of merely transmitting information (von Glasersfeld, 1995). However, 

von Glasersfeld (1995) stated that many teachers “convey what counts as accepted 

knowledge, rather than help students to build it up for themselves” (p. 185). He also 

suggested that students might be less likely to develop an aversion to mathematics if 

students are given the opportunity to understand that what they are expected to learn 

involves mental operations and abstractions, rather than actions and objects of the 

everyday world (p. 185). 
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Brooks and Brooks (1999) stated, “Deep understanding occurs when the presence 

of new information prompts the emergence or enhancement of cognitive structures that 

enable us to rethink our prior ideas” (p. 15). They further shared the following regarding 

constructivism: 

The constructivist vista, however, is far more panoramic and, therefore, 

elusive. Deep understanding, not imitative behavior, is the goal. But, 

capturing another person’s understanding is, if anything, a paradoxical 

enterprise. Unlike the repetition of prescribed behaviors, the act of 

transforming ideas into broader, more comprehensive images, escapes 

concise description. We see neither the transformed concept nor the 

process of construction that preceded its transformation. The only 

discernible aspect is, once again, the student’s behavior, but a different 

type of behavior. In the constructivist approach, we look not for what 

students can repeat, but for what they can generate, demonstrate, and 

exhibit (p. 16). 

Ernest (1996) presented the following pedagogical implications of constructivism: 

sensitivity to the learners’ previous knowledge upon which to build; allowing learners to 

experience cognitive conflicts in order for them to have opportunities to resolve and 

remedy misconceptions; presenting learners with opportunities for metacognition and 

self-regulation; use of multiple representations with which to connect prior knowledge; 

learners’ awareness of the importance of learning goals; and an awareness of differences 

in social contexts (p. 346).  
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Brooks and Brooks (1999) listed the following characteristics of constructivist 

classrooms:  

• Curriculum is presented whole to part with emphasis on big concepts; 

• Pursuit of student questions is highly valued;  

• Curricular activities rely heavily on primary sources of data and 

manipulative materials;  

• Students are viewed as thinkers with emerging theories about the world; 

• Teachers generally behave in an interactive manner, mediating the 

environment for students; 

• Teachers seek the students’ points of view in order to understand students’ 

present conceptions for use in subsequent lessons; 

• Assessment of student learning is interwoven with teaching and occurs 

through teacher observations of students at work and through students’ 

exhibitions and portfolios; and 

• Students primarily work in groups (p. 17).  

In this study, the instructor of the middle grades methods course focused on 

providing opportunities and experiences for prospective teachers to construct their own 

knowledge instead of passive reception of information. Moreover, the instructor 

attempted to create an environment in which participants felt part of a social community, 

free to share their thoughts and conceptions through discourse or other means of non-

verbal communication. The instructor also used multiple representations with which to 

connect prospective teachers’ prior procedural knowledge and conceptual knowledge of 

fractions. Lastly, the instructor presented opportunities for prospective teachers to 

experience and resolve cognitive conflicts, as well as opportunities for metacognition and 
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self-regulation. The bulleted list below outlines constructivist-based activities that 

occurred during the fractions unit studied. 

• Examining multiplication with an emphasis on the meaning of the 

multiplier and multiplicand;  

• Examining partitive and measurement division;  

• Examining root words of numerator and denominator to link to 

meaning of each;  

• Investigating fraction magnitude and equivalence using on-line 

applets and recursive partitioning;  

• Comparing two fractions by examining the relative sizes of 

fractions instead of procedural algorithms;  

• Adding fractions using fraction strips, decomposition of fractions, 

and pattern blocks;  

• Writing algebraic expressions by investigating relationships among 

Cuisenaire™ rods and pattern blocks;  

• Multiplying fractions using length, area, and region models and the 

distributive property; 

• Using a fraction as an operator;  

• Generating conjectures about the product and quotient based on the 

size of the multiplier relative to one and divisor relative to the 

dividend (respectively); 

• Dividing fractions using length and region models; 

• Introducing proportional reasoning using set models;  

• Recursive partitioning using length and area models;  

• Analyzing tasks based on the level of cognitive demand;  

• Conducting discussions regarding the Common Core Standards for 

Mathematical Practice (NGA Center & CCSSO, 2010) and the link 

to the Process Standards from NCTM (2000). 
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With respect to the theoretical underpinnings for my research inquiry, throughout 

this study, I gathered and analyzed data in an attempt to develop understanding. During 

data collection and analysis, I constructed my own understanding based on my prior 

experiences, beliefs, and background knowledge associated with the topics of my study 

and my experiences. For example, during interviews, I did not merely record what 

participants said and did; I attempted to make meaning of what they were saying and 

doing. I attempted to analyze participants’ responses based on what they said and how 

they said it, which guided me through the interview process. However, throughout this 

process, it is possible that I was influenced by my beliefs and prior knowledge of 

mathematics, learning, use of manipulatives, and more. If other researchers were to 

attempt to replicate my study, they may or may not uncover findings similar to mine 

because their prior experiences, beliefs, and background knowledge, which may 

influence their data analysis, may be different than mine.  

Because of my belief that people construct their own knowledge, I chose methods 

to generate data with the hope that data analysis would provide insight into the 

relationships of interest. Using other data collection methods, I might have arrived at 

different interpretations and conclusions. For example, I chose to conduct task-based 

interviews because of my belief that I could learn about my participants’ knowledge by 

interacting with them in a one-on-one, mathematically-rich environment. Furthermore, if 

I had used only tests without interviews, I might not have been privy to participants’ 

depth of knowledge and connectedness of knowledge because of the limitations due to 

the data-collection instrument. However, because the researcher is the instrument in 
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qualitative research, it was important for my design to allow me to generate data that 

could possibly provide depth of insight. 

As a researcher in this study, my focus was vastly different than it would have 

been as an educator or a teacher educator. As a researcher, I sought to understand; 

whereas, if I were acting as an educator or a teacher educator, I would have attempted to 

affect my participants’ experiences and knowledge level. At times during interviews and 

observations, remaining a researcher was difficult because of my prior experiences 

teaching. When I recognized that participants had gaps in their knowledge, my first 

impulse was to help them. However, as a researcher, I had to resist the urge to affect my 

participants’ knowledge. Although I attempted to remain in the role of researcher, it is 

possible that the sequence of questions I asked participants affected the outcome of the 

interviews.  

Conceptual Framework 

Lester (2005) stated, “A conceptual framework is an argument that the concepts 

chosen for investigation, and any anticipated relationships among them, will be 

appropriate and useful given the research problem under investigation” (p. 460). Lester 

(2005) further suggested that a conceptual framework serves as a scaffold to support 

arguments about what is relevant to study and why. Huberman and Miles (1994) 

suggested that a conceptual framework “lays out the key factors, constructs, or variables, 

and the presumed relationships among them” (p. 440). They also suggested that graphic 

displays of main variables connected by bidirectional arrows specifying relationships 

among the variables are useful in making frameworks clear.  
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In Figure 7, shown below, I initially proposed the Venn diagram among the 

variables conceptual and procedural knowledge and use of manipulatives. As I gained 

understanding about their interaction, I continually considered revising my 

representation. My final representation is presented in Chapter 5 of this paper. 

Figure 7. Initially Proposed Relationship among Conceptual and Procedural Knowledge 
and Use of Manipulatives 

In the proposed diagram, conceptual knowledge means having knowledge of the 

relationship among pieces of information (Hiebert & Carpenter, 1992). Procedural 

knowledge refers to having knowledge of the formal language (i.e., symbol 

representation system) and rules, algorithms, or procedures used for completing 

mathematical tasks (Hiebert & LeFevre, 1986). Relational understanding is having both 

conceptual and procedural knowledge and understanding the connections between the 
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two (Skemp, 1987). Relational understanding means having a connected understanding of 

mathematical concepts and procedures, knowing what procedures to perform and why to 

perform them, the ability to explain why a procedure works, and the ability to connect 

one mathematical concept to another or to make connections between mathematics and 

other domains (Skemp, 1987). Use of manipulatives refers to how participants used the 

manipulatives during classes and interviews. I viewed participants’ use of manipulatives 

through a lens of procedural use of manipulatives versus meaningful use of manipulatives 

similar to that used by Osana and Royea (2011) in their work with prospective teachers 

using pictorial representations procedurally or meaningfully.  

I posit that the intersection of the three variables (procedural knowledge, 

conceptual knowledge, and use of manipulatives) is relational understanding of 

manipulatives. If a person has relational understanding of manipulatives, they will be able 

to explain how the conceptual and procedural knowledge are connected to the use of the 

manipulatives. For example, using measurement division for 
3
23÷ , the quotient is the 

number of two-thirds that can be made from three wholes. Each whole in the dividend is 

composed of 
2
11  two-thirds, or 

2
3

 two-thirds. Therefore, the quotient to the division 

problem can be calculated by multiplying 
2
33× . The quotient is 

2
14  groups of 

3
2

 in 3 (1 

yellow, 1 red, 1 purple, 1 green, and 
2
1

of a group pink). Figure 8, on the following page, 

shows a region model for this division problem. 
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Figure 8. Region model for 
3
23÷  

Another lens through which I viewed my study was the belief that students’ 

learning should be grounded in the meaning of the mathematics, not just in the 

manipulation of the symbols of mathematics.  

What is inflicted on all too many children and older students is the manipulation 

of symbols with little or no meaning attached, according to a number of rote-

memorized rules. This is not only boring (because meaningless); it is very much 

harder, because unconnected rules are much harder to remember than an 

integrated conceptual structure (Skemp, 1987, p. 18).   

During the process of analyzing data, I examined the degree to which prospective 

teachers’ responses (verbal or physical) provided evidence of comprehension of the 

connectedness among fractional conceptions, the meaning of operations on fractions, the 

meaning of the steps involved in procedures, and how and why procedures work. In 

analyzing participants’ procedural knowledge, I examined the degree to which their 

responses showed evidence of knowledge of the symbols and ability to accurately 

perform the algorithms associated with procedures used to solve problems.  

Because of my interest in prospective teachers’ relational understanding of 

fractions, I examined my data through the lenses of Confrey et al.’s (2009) learning 

trajectories of fractions, as well as Lesh, Post, Behr, and Silver’s (1983) conceptions of 
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fractions: fraction as a ratio; fraction as an operator; fraction as division; and fraction as a 

measure. I also viewed participants’ knowledge of fraction division using Ma’s (1999) 

conception which indicates that prior knowledge of whole number multiplication and 

division is necessary for developing conceptual understanding of fraction division. 

Another lens through which I viewed the data was the effects prior instrumental 

learning had on subsequent relational learning (Pesek & Kirshner, 2000). It stands to 

reason that all participants in my study had prior instrumental learning of mathematics. 

However, it may be the case that they had not experienced relational learning. I was 

particularly interested in how prospective teachers’ prior instrumental learning affected 

the relational learning that they experienced in their middle grades methods course. If 

participants experienced interference due to prior instrumental learning, I was interested 

in discovering whether they were able to overcome the interference and what contributed 

to their ability to overcome the interference. 

Positionality (Researcher Biases) 

In 1990, I earned a Bachelor of Science degree in Mathematics from a four-year 

university in the southeastern United States. I knew that I wanted to teach mathematics; 

so, I worked various part-time jobs for one year before I began my graduate studies (at 

the same university). I was accepted into an alternative Master’s program to earn a 

Master of Education degree in Secondary Mathematics Education. After earning my 

Master’s degree in 1993, I began teaching Basic Math, Pre-Algebra, and Algebra I to 

eighth-grade students in a middle school in the southeastern U.S. One particular day 

during my second year teaching, I was teaching students the conventional algorithm for 

dividing fractions. The looks on their faces conveyed to me that they did not comprehend. 
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It was at that point, that I asked myself out loud, “Why do you multiply by the 

reciprocal?” I had procedural knowledge of how to perform the conventional algorithm 

but not conceptual knowledge of division by fractions, nor did I remember anyone ever 

expecting me to understand fraction division conceptually. 

I spent the next few minutes processing the problem, trying to discern why the 

conventional algorithm worked and what it meant. I explored the problem using a set of 

fraction circles I borrowed from a colleague. After several minutes, I began to develop 

conceptual knowledge of dividing fractions, as well as understanding of the connections 

between the conventional algorithm and the manipulative. I explained my thinking to my 

class and began to challenge them to develop conceptual knowledge of dividing fractions. 

Some of the students in my class understood, which inspired me to begin teaching 

differently than I had previously. I began focusing more on the meaning of the 

mathematics that I was teaching, not just the procedures. 

At that time in my career, I may or may not have been aware of the terms 

conceptual and procedural knowledge or relational understanding. Nonetheless, for the 

next 17 years, I strived to help my students to develop relational understanding (Skemp, 

1987). Many students came to me without being able to demonstrate procedural fluency 

of the four basic operations on whole numbers and rational numbers. Each year I 

continued to integrate manipulatives into my instruction as a vehicle for conveying 

concepts to students in an effort to improve their relational understanding. During some 

lessons, students used the manipulatives, and some lessons I demonstrated using the 

manipulatives while I challenged students to think about why algorithms worked. 
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In January 2009, I resumed my graduate studies in an Education Specialist 

program in Secondary Mathematics Education in the southeastern U.S. I began reading 

research on the use of manipulatives, fractions, and conceptual and procedural 

knowledge. Concurrently, I began to use more cooperative learning groups, to 

differentiate instruction more, and to allow students to use manipulatives more 

themselves in an exploratory manner to solve non-routine problems. Over the years, I had 

been relatively successful helping students to improve their relational understanding of 

fractions. However, once I incorporated more reform-based methods of instruction, I 

noticed that my students were more enthusiastic about mathematics and demonstrated 

better gains than previously. 

After having taught middle school and high school mathematics for 19 years, I 

became the director of an urban mathematics collaborative at a small four-year state 

university in the southeastern U.S. My responsibilities included, but were not limited to, 

conducting professional development sessions for practicing and prospective teachers, 

teaching middle grades methods courses for prospective teachers, and teaching graduate 

courses for a K-5 mathematics endorsement program at our university. 

During professional development sessions with K-12 teachers, many verbally 

expressed their lack of knowledge about using manipulatives during instruction. In 

addition, when asked “why” a conventional algorithm worked, many admitted that they 

did not know why the procedure worked, just that they had always been told to “do it” 

that way. Often times, once the participants explored with manipulatives and were 

questioned about what they were doing, some were able to articulate some degree of 
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relational understanding. Moreover, they began to verbally express a greater degree of 

comfort with using the manipulatives. 

While teaching prospective methods courses, I found that my students had very 

few prior experiences with manipulatives. Taking into consideration the recent adoption 

of the Common Core State Standards for Mathematics (National Governors Association 

Center for Best Practices & Council of Chief State School Officers [NGA Center & 

CCSSO], 2010), which advocates the use of concrete models particularly with fractions, I 

became interested in how mathematics educators prepare future teachers to become more 

proficient using manipulatives in their mathematics instruction. Furthermore, the CCSSM 

(NGA Center & CCSSO, 2010) emphasizes conceptual understanding to undergird 

students’ procedural fluency. Because these standards were new then, my concern was 

that prospective teachers currently in colleges of education may have gaps in their 

conceptual knowledge of mathematics and may have limited experience using 

manipulatives to demonstrate their knowledge.  

Prior to this study, I observed prospective teachers using manipulatives to explore 

fractions during their middle grades methods course. In addition, I conducted a task-

based interviewed with a prospective teacher taking the methods course I was observing. 

The prospective teacher’s reactions during the interview caused me to be even more 

interested in how prospective teachers’ experiences with manipulatives affected their 

relational understanding of fractions. 

Because of my aforementioned experiences, I developed a particular interest in 

the impact of the use of manipulatives to help prospective teachers develop conceptual 

and procedural knowledge of fractions (i.e., relational understanding). This study was my 
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effort to better understand this phenomenon in order to inform the field and contribute to 

the ongoing conversations regarding these topics. 

Finally, during this study, I may have paid more attention to particular aspects of 

prospective teachers’ use of manipulatives because of my prior experiences with grade 

school students, prospective teachers, and practicing teachers. I may have also neglected 

to notice potentially important details or happenings because of my background and the 

biases I brought to this study. In addition, the interpretations, analyses, and conclusions 

that I made regarding data were likely affected by my previous experiences (Creswell, 

2009).  

Design of Study 

Creswell (2009) stated, “Case studies are a strategy of inquiry in which the 

researcher explores in depth a program, event, activity, process, or one or more 

individuals” (p. 13). Yin (2009) defined case study as “an empirical inquiry that 

investigates a contemporary phenomenon in depth and within its real-life context, 

especially when the boundaries between phenomenon and context are not clearly 

evident” (p. 18).  

Stake (1995) stated that instrumental case study is used when researchers have a 

need “for understanding the complex interrelationships among all that exists” (p. 37) and 

believe that they may gain insight by studying a particular case. “Case studies involve a 

detailed description of the setting or individuals, followed by analysis of the data for 

themes or issues” (Creswell, 2009, p. 184). Although some techniques for data collection 

are more commonly used than others, Merriam (2009) suggested that case study does not 

use a prescribed set of data collection or data analysis methods.  
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Stake (1995) indicated that “all research is a search for patterns, for consistencies” 

(p. 44). Stake (1995) also suggested that, as research progresses, the researcher 

continually refines his/her understanding about “the particular,” not a generalization.  The 

researcher strives to understand a particular case, not just how it is different from others, 

but understanding the case itself (Stake, 1995). The researcher draws from a mix of 

his/her own understanding, prior personal experience, scholarship, and assertions from 

other researchers to arrive at an in-depth understanding (Stake, 1995). In addition, the 

researcher does not intervene or try to alter what participants know (Stake, 1995). 

Instead, the researcher attempts to understand the participants’ views and attempts to 

preserve the multiple realities, i.e. how people see things differently (Stake, 1995). In 

communication, the qualitative case researcher “uses narratives to optimize the 

opportunity of the reader to gain an experiential understanding of the case” (Stake, 1995, 

p. 40).  

Yin (2009) stated that case study inquiry will likely involve more variables of 

interest than data points and will rely on multiple sources of evidence with a need for data 

to converge in a triangulating fashion. In addition, Yin (2009) stated that prior 

development of theoretical propositions should guide data collection and analysis. Yin 

(2009) advised researchers to consider the type of research question posed, the extent of 

control an investigator has over actual behavioral events, and the degree of focus on 

contemporary events. In particular, Yin (2009) stated that case studies are used in 

qualitative research when one wants to know answers to “how” and “why” questions 

about a phenomenon by collecting data through multiple sources and when the 

investigator does not require control over behavior events. 
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Merriam (2009) explained that for a study to be considered a case study, “one 

particular program or one particular classroom of learners (a bounded system) or one 

particular learner selected on the basis of typicality, uniqueness, success, and so forth, 

would be the unit of analysis” (p. 41). Merriam (2009) stated that qualitative case 

researchers “are interested in insight, discover, and interpretation rather than hypothesis 

testing” (p. 42).  

Taking into consideration the aforementioned literature from Creswell (2009), 

Stake (1995), Yin (2009), and Merriam (2009), case study was an appropriate strategy for 

this study because I sought to develop an in-depth understanding of a phenomenon by 

collecting and analyzing data from multiple sources (e.g. interviews, observations, and 

assessments) over an extended period of time. By studying multiple participants, I 

attempted to understand the impact of a manipulatives-intensive fractions unit on 

prospective teachers’ relational understanding. In addition, my prior understanding and 

experiences likely affected my interpretation of the data. I did not attempt to alter my 

participants’ experiences, but to understand how their experiences were affected by 

multiple variables.  

The context of the setting was an important factor in my research. If I only 

conducted interviews outside of the classroom environment without observing 

participants in the natural setting of the classroom, I would not have been able to examine 

participants acting naturally. As I designed my study, I took into consideration literature 

related to my topic and designed data collection procedures and protocols accordingly. 

Finally, in reporting data analysis, I used thick description in a narrative style to help the 

reader to gain an experiential understanding of the participants’ experiences.   
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Trustworthiness 

Lincoln and Guba (1985) stated that trustworthiness is related to one’s ability to 

“persuade his or her audiences (and self) that findings of an inquiry are worth paying 

attention to, worth taking account of” (p. 290). They suggested that there are four 

constructs which need to be considered when establishing trustworthiness in naturalistic 

inquiry: truth value (credibility), applicability (transferability), consistency 

(dependability), and neutrality (confirmability).  

With respect to truth value, Lincoln and Guba (1985) stated that “to demonstrate 

‘truth value,’ the naturalist must show that he or she has represented those multiple 

constructions adequately, that the reconstructions (findings and interpretations) that have 

been arrived at via the inquiry are credible to the constructors of the original multiple 

realities” (p. 296). Lincoln and Guba (1985) suggested the following to increase 

credibility: prolonged engagement; persistent observation; triangulation; peer debriefing; 

and member checking.  

In order to increase credibility through prolonged engagement and persistent 

observation, I observed participants in their EDMG 1 class five times over the course of a 

semester. I interviewed the participants prior to the beginning of the fractions unit and at 

the end of the semester as opposed to a shorter duration between interviews. Finally, I 

collected multiple forms of data for triangulation, which I outline in the Data Collection 

section of this document.  

I also used the technique of peer debriefing suggested by Lincoln and Guba 

(1985). Throughout all phases of the study, I consulted with the chair of my committee, 

as well as other members of my committee, regarding decisions made for this study. 
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These decisions were related to the review of literature, development of data collection 

instruments, methods of data analysis, and interpretation of data. As each phase of the 

study occurred, I met with the chair of my committee regularly to evaluate my progress 

and make necessary revisions. In addition, Dr. Robert Hill (pseudonym) served as an 

additional peer debriefer. Dr. Hill has served on several dissertation committees and has 

been the director of a center responsible for evaluating grant projects.  

The instructor of EDMG provided member checking during this study. Once I 

collected and analyzed observation and assessment data, I periodically consulted the 

instructor to verify that I correctly interpreted relevant data. 

Lincoln and Guba (1985) suggested that naturalistic inquirers could satisfy 

referential adequacy by archiving “raw data.” Since I permanently deleted video 

recordings of interviews after transcription and analysis, I retained electronic copies of 

transcribed raw data throughout my study and used direct quotes from participants to 

support claims that I made.  

Because generalizability is generally not the goal of qualitative research, Lincoln 

and Guba (1985) suggested that the best a naturalistic inquirer could hope for is 

transferability. They further suggested that the burden is on the original inquirer to 

provide context and sufficient descriptive data to make similar judgments possible for 

subsequent researchers. Therefore, I used rich, thick description in order to communicate 

as great a picture as possible to the reader. 

Lincoln and Guba (1985) also stated that naturalist inquirers strive for 

dependability as opposed to reliability (aforementioned consistency). Qualitative 

researchers realize that interviews and observations cannot be repeated with exactly the 



141 

same results due to effects such as time passing and participants’ subsequent experiences 

affecting the context. In an effort to establish dependability, I used interview protocols so 

that I stayed focused on gathering relevant data that would help me answer my research 

questions.  

Finally, to establish confirmability, I maintained an electronic audit trail that 

documented my progress, which was available to my committee upon request. In my 

audit trail, I maintained raw data to help me justify my findings; included notes on 

methodological decisions and trustworthiness notes; maintained materials related to the 

study’s intentions (proposal); and included notes about instrument development and 

justifications.  

In order to maintain confidentiality of participants, I used pseudonyms for all 

participants and maintained security of their identities by removing any identifying 

information from collected documents. I secured electronic documents on a password 

protected computer, including video recordings. After recordings were transcribed, 

analyzed, and reported on, I permanently deleted video recordings from all electronic 

devices. 

Description of Sample 

I collected data at a small four-year state university in the southeast, a site chosen 

as a convenience sample. At the time of the study, the university employed 

approximately 475 full-time and part-time faculty members and enrolled approximately 

7,000 transient and residential undergraduate and graduate students, with approximately 

56% White, 35% African American, 5% Hispanic, 2% Asian/Pacific Islander, 1% non-

resident alien and 1% American Indian/Alaskan Native. At the time of data collection, 
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approximately 40% of the university’s student population were male; approximately 60% 

were female.  

Middle-grades prospective teachers in the university’s College of Education are 

required to take two middle grades mathematics methods courses as part of their middle 

grades teacher certification program designed for teachers of grades 4-8. The first of 

these two methods courses (pseudonym EDMG 1) focuses on upper elementary content 

such as operations on fractions and decimals, as well as an introduction to proportional 

reasoning. The second of these two methods courses furthers prospective teachers’ 

experiences with proportional reasoning, as well as transformational geometry, 

developmental algebra, data analysis, statistics and probability. I chose to observe 

students in the first required course because the bulk of instruction on fraction concepts 

occurs in EDMG 1. In addition, concrete and virtual manipulatives are commonly used 

during fraction instruction in EDMG 1. 

Within the College of Education over the last four years, an average of 33 

undergraduate students enrolled in a middle grades teacher certification program and an 

average of 10 undergraduate students enrolled in the secondary mathematics teacher 

certification program. During the academic year of 2012-2013, the middle grades 

certification program began requiring students to declare two areas of specialization. For 

the year of 2012-2013 (the latest data available prior to the study), 19 students chose 

mathematics as one of their two areas of specialization. 

Creswell (2009) suggested researchers “purposefully select” participants or sites 

that provide data collection that will help the researcher to understand the problem and 

the research question. Ms. Paige’s EDMG 1 course was purposefully selected to study 
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because of my knowledge of her methods of instruction in EDMG 1 and the content 

which is covered. Ms. Paige had taught the course as an adjunct instructor for three 

consecutive fall semesters prior to my study. She was a certified middle grades 

mathematics teacher who had worked at the university’s mathematics professional 

development outreach center for 13 years, providing professional development 

experiences to area middle grades practicing and prospective mathematics teachers. Ms. 

Paige has seven years of experience teaching middle grades mathematics and was 

awarded an Education Specialist degree in Middle Grades Mathematics Education from 

the university in the spring of 2012.  

Ms. Paige’s instruction during EDMG 1 was focused on developing procedural 

and conceptual knowledge of middle grades mathematics, with opportunities for students 

to construct their own knowledge. She consistently provided opportunities for students to 

use concrete and virtual manipulatives during instruction, as well as opportunities for 

students to share their understanding with peers through presentations. 

Ms. Paige used worthwhile tasks as a regular part of instruction. Many of the 

tasks she used are taken from NCTM publications like Mathematics Teaching in the 

Middle School and Rich & Engaging Mathematical Tasks Grades 5—9 (NCTM, 2012), 

as well as Elementary and Middle School Mathematics: Teaching Developmentally (Van 

de Walle et al., 2013). She encouraged student-student discourse throughout classroom 

activities and invited students to present to their peers. In order to verify that Ms. Paige 

used reform-methods of teaching, I have included sample activities and class agendas 

from her course in the appendices (Appendix P).  
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Since the release of the Common Core State Standards for Mathematics, Ms. 

Paige has incorporated lessons on attending to the Standards for Mathematical Practice. 

Prior to the release of the CCSSM (NGA Center & CCSSO, 2010), Ms. Paige 

orchestrated her lessons around the Principles and Standards presented in Principles and 

Standards for School Mathematics (NCTM, 2000). 

It is important for me to disclose that since September, 2012, Ms. Paige has been 

a part-time employee under my supervision. While I was taking a required qualitative 

research class in the fall of 2012, Ms. Paige allowed me to observe her EDMG 1 class on 

multiple occasions and helped me to solicit a prospective teacher to interview for my 

pilot study. When Ms. Paige decided to integrate a pre-test into her course, she asked me 

to examine the questions and give her feedback on the problems. During the fall of 2013, 

Ms. Paige also invited me to assist her prospective teachers with writing lesson plans. 

Ms. Paige’s assistance with this study had no bearing on her employment status. I 

attempted to remain cognizant of my position as researcher and did not intentionally 

impose my ideas for EDMG 1 on Ms. Paige. Even though I attempted to remain in the 

roll of researcher during observations and interactions with Ms. Paige, it is possible that I 

may have influenced her instruction due to the nature of our working relationship. In 

addition, during data analysis, I may have drawn conclusions based on my previous 

experiences and not based on the data.  

To obtain permission to collect data, I submitted the proper forms to the 

Institutional Review Board (IRB) at Auburn University and the university in which I 

collected data. The IRB granted approval for my study on October 24, 2014. After IRB 

approval, I asked a colleague in the college to administer the Instructor Consent Form 
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(Appendix N) to Ms. Paige. On October 28, 2014, Ms. Paige consented to observation of 

and data collection from her students as part of my study. Ms. Paige allowed me to speak 

with EDMG 1 students on October 28, 2014, about participation in my study. I gave each 

student in the class a consent form (Appendix O) and told them I would come back to 

class on October 30, 2014, to collect signed forms. On October 30, 2014, I returned to 

class and collected four signed consent forms out of 10 originally distributed. Table 10, 

shown below, contains information specific to the participants in the study. All 

participants, associated schools, and the course name referenced in this study are referred 

to by pseudonyms to ensure confidentiality. The term traditional student means that the 

student entered college immediately upon graduation from high school and pursues 

college studies on a continuous full-time basis.  

Table 10  

Participant Information 
Pseudonym Race Traditional student Major 

Samantha White American No Math/Science 

Krystal African American Yes Math/ELA 

Jacob White American No Math/Science 

Matthew Middle Eastern No Math/Science 

Data Collection 

Creswell (2007) suggested a compendium of data collection approaches for 

qualitative research including documents, records, interviews, observations, and physical 

artifacts. For triangulation purposes, data collection included pre-instruction surveys 

(tests) of conceptual and procedural knowledge of fractions; classroom observations; 
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assessment data for course assignments; individual task-based interviews; post-

instruction tests of conceptual and procedural knowledge of fractions; and individual 

interviews regarding participants’ perceptions of their understanding of fractions, use of 

manipulatives and other best practices in EDMG 1, and attitudes toward future classroom 

use of manipulatives and other best practices.  

The term triangulation comes from surveying (Berg, 2009). The purpose of data 

triangulation in qualitative research is similar to that of surveying (Berg, 2009). By 

having multiple data points, one hopes to find a “true center” among the three points. For 

qualitative research, the researcher hopes to find mutual confirmation of measures and 

validation of findings through an analysis of multiple types of data (Berg, 2009). “An 

important feature of triangulation is not the simple combination of different kinds of data 

but the attempt to relate them so as to counteract the threats to validity identified in each” 

(Fielding & Fielding, 1986, p. 31, as cited in Berg, 2009). 

Procedures for collecting data. Once all necessary approvals were met, I 

emailed each participant to schedule an interview time convenient to his/her schedule. As 

assessment documents were available, the instructor provided me with copies of each 

participant’s documents. To schedule observation times, the instructor provided me with 

a list of potential observations dates and content to be covered. From that list, I chose 

dates that were convenient to my schedule and that would provide optimum information 

based on the content of the class. After the course concluded, I contacted each participant 

by email to schedule the final interview and data collection. 

In order to answer my research question, I collected and analyzed assessment, 

interview, and observational data. Table 11, on the following page, delineates data-



147 

collection instruments and a timeline for data collection. In the sections following Table 

11, I discuss each type of data-collection instrument in the order presented in the table.  

Table 11  

Data collection timeline 
Instrument Appendix  Time 

Procedural Pre-Test Appendix A August 2014 

Conceptual Pre-Test Appendix E August 2014 

Initial Attitude Survey Appendix J November 5th & 7th, 2014 

Pre-Instruction Task-based 
 
Interview 
 

Appendix H November 5th & 7th, 2014 

Observations  November 4, 13, 18, 20 &  
 
December 2, 2014 
 

Assessment data  October—December, 2014 

Procedural Post-Test Appendix A December 15-18, 2014 

Conceptual Post-Test Appendix E December 15-18, 2014 

Post-Instruction Task-based  
 
Interview 
 

Appendix H December 15-18, 2014 

Semi-Structured Interview Appendix K December 15-18, 2014 
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Procedural and conceptual knowledge tests. Pre-instruction tests of procedural 

and conceptual knowledge of fractions were done to establish a base-line for students’ 

knowledge (Appendix A & Appendix E). These tests were administered to all students in 

the course as a regular part of instruction; however, I was privy only to the tests of the 

participants in my study. By obtaining these tests, I hoped to gain insight into students’ 

thinking prior to observing them during instruction and to examine how participants’ 

knowledge changed over the course of the semester. 

Procedures for developing tests. Initially, Ms. Paige created a conceptual pre-test 

for the fall 2013 section of EDMG 1. At the time, she asked me to critique her pre-test. 

Ms. Paige made revisions based on my feedback and administered the revised pre-test to 

prospective teachers in EDMG 1.  

While preparing the proposal for this study, I asked Ms. Paige about the 

possibility of revising her pre-test. She and I worked over the course of several months to 

refine the questions and include additional questions. Some of the problems we generated 

were based on literature, some were based on previous observations Ms. Paige made 

while she was teaching EDMG 1. My committee provided additional input into the 

development of the tests, as well as a mathematics teacher educator and a mathematician. 

Based on their feedback, I made final revisions to the conceptual test (Appendix E).  

Based on input from Ms. Paige, I created the procedural test to compare students’ 

procedural ability to answer the same questions on the conceptual test. However, I 

changed the decimal multiplication problem on the conceptual test so as not to risk 

participants remembering the answer from the procedural test while they were taking the 

conceptual test.  
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Procedures for administering tests. As a part of regular instruction, Ms. Paige 

administered the procedural knowledge test on the first day of class; she administered the 

conceptual knowledge test on the second day of class. Although the pre-tests were given 

by Ms. Paige at the beginning of the semester, I did not have access to the tests until after 

IRB approval.  

Initial attitude survey. At the beginning of the pre-instruction interviews, I 

administered an attitude survey about participants’ level of confidence in their conceptual 

and procedural knowledge of fractions, their familiarity with manipulatives, and their 

beliefs about students’ use of manipulatives (Appendix J). I gave this survey based on Li 

and Kulm’s (2008) work with prospective middle grades mathematics teachers in which 

they found that teachers’ beliefs were not in alignment with their conceptual knowledge.  

The purpose of the Initial Survey was to help me gain insight about 

participants’ confidence and beliefs and to compare these data to the conceptual 

and procedural tests to determine whether participants had a realistic view of their 

ability. In lieu of a final attitude survey, I included prompts to address these same 

ideas in a final semi-structured interview.  

Task-based interviews. As part of data collection, I engaged participants in two 

individual task-based interviews (Goldin, 2000). “Task-based interviews can serve as 

research instruments for making systematic observations in the psychology of learning 

mathematics and solving mathematical problems” (Goldin, 2000, p. 520). Task-based 

interviews can also be used for describing the participants’ knowledge (Goldin, 2000).  

Goldin (2000) suggested that the value of task-based interviews lies in the fact 

that they provide a structured mathematical environment that can be controlled to some 
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extent. In addition, “task-based interviews make it possible to focus research attention 

more directly on the subjects’ processes of addressing mathematical tasks, rather than just 

on the patterns of correct and incorrect answers in the results they produce” (Goldin, 

2000, p. 520). Finally, task-based interviews can help researchers infer and describe the 

deeper understandings in participants (Goldin, 2000). 

Goldin (2000) made the following suggestions that may help with replicability 

and generalizability of research when using task-based interviews: 1) researchers should, 

whenever possible, create interview scripts including the questions posed and the major 

interview contingencies; 2) researchers should also make explicit their choices in script 

design; and 3) researchers should be as descriptive as possible about their population and 

methods so that other researchers can, at the least, closely replicate the tasks, questions, 

etc., and see similarities and differences across populations. I developed my interview 

protocol based on my literature review and prior experiences teaching middle school 

students, middle grades prospective teachers, and practicing teachers (Appendix H). A 

colleague who taught mathematics grades 7-12 in public schools for 30 years, college 

mathematics courses, and teacher education courses reviewed my interview protocol for 

the task-based interviews. Based on her feedback, I revised the protocol to what it is now. 

Goldin (2000) also stated, “The goal of the comparability of research findings 

refers to the need for descriptions of conditions, observations, and inferences from the 

observations to be sufficiently precise that, when other observers under different 

conditions make observations and inferences, the findings of the studies can be compared 

with respect to some defined outcome variables” (p. 531). In addition, Goldin (2000) 

stated, “The concept of reliability includes measuring the consistency with which a task-
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based interview is conducted, observations are taken, and inferences are made from the 

observations using defined criteria” (p. 531).  

I conducted all interviews in the resource room of my work department to have 

easy access to multiple types of manipulatives, as well as a computer for virtual 

manipulatives. The initial task-based interviews occurred on November 5 and November 

7, 2014, several days prior to the beginning of the fractions unit. By the time the 

interviews occurred, students had already become familiar with the use of two-color 

counters; whole number and integer multipliers and multiplicands; and partitive and 

measurement division of whole numbers and integers. The second task-based interviews 

occurred December 15-18, 2014, after the course concluded. During each interview, 

participants attempted to solve two fraction tasks and generate a real-world scenario for 

each. The interviews lasted between approximately thirty minutes and a little more than 

an hour.  

I video recorded each interview on a Sony HDR-PJ10 video camera I borrowed 

from a department within my college. I transferred the video recordings to a password-

protected computer which belongs to my department at work. After transferring the 

videos to the password-protected computer, I permanently deleted the interviews from the 

camera. Once I transcribed, analyzed, and reported on my data, I permanently deleted the 

videos from the computer. 
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Observations. With respect to observations, Berg (2009) indicated the following 

possibilities for the researcher to act as he/she gathers data through observations: 

complete participant; participant as observer; observer as participant; and complete 

observer.  

As a complete participant, the researcher acts as a hidden investigator. Since I 

conducted this study at an institution where I was likely to be known by some prospective 

teachers, it was less likely for me to be able to act as a complete participant. Acting as a 

participant as observer was not feasible because of potential difficulty in developing 

rapport with students. The role of observer as participant generally involves limited 

visits and more formal interactions. By collecting data as an observer as participant, I 

risked failing to understand the dynamics of the class and how the interactions among 

them affect the students’ development. In addition, acting as an observer as participant, I 

may have inadvertently affected the students’ knowledge by interacting with them. 

Therefore, I acted as a complete observer during this study. Generally speaking, a 

complete observer announces their role as a researcher and remains in the setting for a 

prolonged period of time as a passive observer (Berg, 2009). Acting as a complete 

observer was difficult for me during this study because each of the participants wanted to 

interact with me during the observations because of our familiarity with one another due 

to the pre-instruction individual interviews I conducted. I attempted to limit my 

interaction with the participants, but I did not completely ignore them because I did not 

want to risk offending them. 

Observing for a prolonged period of time gave me the opportunity to gather data 

from which I could better understand the progression of students’ conceptual and 
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procedural knowledge of fractions as they used manipulatives. Another benefit of 

observing for a prolonged period of time was having the opportunity to gather data about 

how students reacted when using manipulatives while learning about the different 

operations on fractions: addition, subtraction, multiplication, and division. Finally, 

observing for a prolonged period of time also provided an opportunity for me to observe 

students using multiple types of concrete and virtual manipulatives, including but not 

limited to fraction bars, fraction circles, colored length rods, and pattern blocks.  

I observed class five times during the fractions unit: November 4, 13, 18, and 20, 

and December 2. During observations, I took field notes of what transpired in class. I 

attempted to transcribe participants’ actual wording without changing the words. 

However, in my notes, I inserted clarifiers of my perception about participants’ 

responses. In my notes, I included drawings of the classroom setting (Bernard & Ryan, 

2010) and what I observed as participants were using manipulatives, as well as how they 

interacted with one another and the instructor. During each observation, I attempted to 

seat myself so that I was not a distraction. However, by the nature of being a researcher 

and not one of their classmates, I may have inadvertently affected the environment even 

though I attempted to minimize my affect. In addition to taking field notes, I also kept a 

reflective journal. I wrote my reflective thoughts regarding observations as soon as 

possible after the observations, so that I documented my initial analysis as accurately as 

possible, as well as to minimize the amount of data lost due to memory loss (Bernard & 

Ryan, 2010).  
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I observed the following classroom activities in EDMG 1:  

• Students working in pairs using manipulatives to explore fraction 

multiplication and division;  

• Students presenting solutions to their peers pictorially and using 

manipulatives;  

• The instructor facilitating classroom discourse;  

• Students using pattern blocks during a fractions quiz;  

• Students generating conjectures about the product of two fractions based 

on the size of the multiplier and multiplicand; and 

• Students discussing how their class activities attended to the Standards for 

Mathematical Practice. 

Assessment data. I collected assessment data for each participant to attempt to 

triangulate data (Berg, 2009), as well as to gain more insight of my participants. The 

three types of data were a math autobiography, a fractions quiz, and a problem report.  

For three out of four participants, I collected a math autobiography from Ms. 

Paige that students wrote as an assignment. Ms. Paige could not locate a copy of 

Samantha’s autobiography. Although I contacted Samantha multiple times by email, I 

was still not able to get a copy of her autobiography. In lieu of Samantha’s math 

autobiography, I compiled information about Samantha that I collected through 

observations, interactions, and surveys, as well as from observations made by Ms. Paige. 

Students’ math autobiography could include information about: mathematics courses that 

had an influence on the writer; memorable experiences in learning mathematics; attitudes 

toward mathematics; how experiences have influenced the writer’s learning of 
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mathematics and views about teaching mathematics; and why the writer wants to be a 

mathematics teacher. 

The content of the fractions quiz was the meaning of fractions and fraction 

comparison schemas. Five of the problems required students to determine which fraction 

was larger or smaller based on fraction comparison schemas taught during the course. 

One problem on the fractions quiz required students to determine the value of a variety of 

pattern blocks based on a particular pattern block being assigned a value of one. Finally, 

students were to provide information about the meaning of the numerator and 

denominator of a fraction. 

The problem report involved fraction multiplication. The problem report was an 

out-of-class homework assignment based on an in-class activity. The in-class activity 

involved students using manipulatives to model fraction multiplication. Problems 

included combinations of fractional, whole number, and mixed number multipliers and 

multiplicands. There was also a section that required students to reflect on their 

experiences. 

Post-instruction procedural and conceptual knowledge tests. The Procedural 

and Conceptual Post-Tests were administered to each participant at the conclusion of the 

semester after each participated in the Post-Instruction Task-based Interview. The Post-

Tests were administered only to the participants in my study.  

The purpose of the post-instruction tests was to determine how students’ 

conceptual and procedural knowledge of fractions changed. However, I was not focused 

on statistical significance of students’ increase in knowledge since there were too few 

data to consider the tests a representative sample of a population. My interest was in the 
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development of the participants’ conceptual and procedural knowledge of fractions as a 

result of their experiences using manipulatives in their middle grades methods course. 

Therefore, I analyzed qualitative differences in students’ understanding as demonstrated 

on the tests. 

Semi-structured interview. At the end of the course, I conducted a semi-

structured, individual interview with each participant to gather affective data on his/her 

beliefs regarding the development of their relational understanding of fractions, their use 

of manipulatives during their methods course, their anticipated use (or non-use) of 

manipulatives during their future classroom practice, and their anticipated use (or non-

use) of best practices exemplified by the instructor. 

I developed my interview protocol based on my literature review (Appendix K). 

After I constructed the interview protocol, a colleague familiar with qualitative research 

critiqued my protocol for alignment with my research question and for the potential my 

questions had to elicit useable data. Based on her feedback, I revised my protocol to what 

it is now. 

Kvale and Brinkmann (2009) defined an interview as a conversation that has a 

structure and a purpose. Kvale and Brinkmann (2009) stated, “The qualitative research 

interview attempts to understand the world from the subjects’ points of view, to unfold 

the meaning of their experiences, to uncover their lived world prior to scientific 

explanations” (p. 1). Kvale and Brinkmann (2009) indicated that the purpose of 

interviewing is to produce knowledge. They further stated that the research interview is a 

professional conversation “where knowledge is constructed in the inter-action between 

the interviewer and the interviewee” (p. 2).  
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Kvale and Brinkmann (2009) expounded on 10 intricacies of semi-structured 

research interviews: qualitative, descriptive, specificity, deliberate naiveté, focused, 

ambiguity, change, sensitivity, interpersonal situation, and positive experience. I will now 

explain how these apply to my research interview. “The qualitative interview seeks 

qualitative knowledge as expressed in normal language; it does not aim at quantification” 

(Kvale & Brinkmann, 2009, p. 30). Precision in description, use of language, and 

stringency in interpreting meaning are important for validity of research interviews. As I 

transcribed, analyzed, and reported on data from interviews, I used exact quotes from 

interviewees. I encouraged participants to describe as precisely as possible what they 

experienced and how they felt. For specificity, I attempted to word questions in ways that 

encouraged participants to give specific examples about what I was asking. For deliberate 

naiveté, although I have biases toward manipulatives, relational understanding, and 

fractions, I attempted to be curious and sensitive to participants’ views and obtain 

descriptions that were inclusive of the participants’ views and not only of the views that 

we have in common. I also included prompts about prospective teachers’ anticipated use 

of best practices in their future instruction to middle grades students. 

Kvale and Brinkmann (2009) stated that interviews should be focused on themes 

and lead participants to discuss the themes of the interview, but not lead participants to 

specific opinions of the themes. Kvale and Brinkmann (2009) use the term 

“presuppositionlessness” for this. Because of my strong opinions about my research, I 

made a concerted effort not to lead participants to share in my opinions. With respect to 

ambiguity, Kvale and Brinkmann (2009) suggested that interviewees’ answers are 

sometimes ambiguous. However, it is the interviewers’ responsibility to clarify whether 
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the ambiguity is a result of a failure to communicate in the interview setting or whether it 

is reflective of genuine inconsistences and contradictions in the interviewees’ situation. 

Although I was not attempting to affect the participants’ views, the interview may 

have caused participants to discover new aspects of what they were describing and see 

relationships that they were not aware of previously. With respect to sensitivity, Kvale 

and Brinkmann (2009) indicated that different interviewers may get different results from 

interviewing. To minimize this, they suggested having a standardized interview form and 

keeping a presuppositionless attitude. To address these, I developed an interview protocol 

to follow and asked all participants each question (Appendix K). 

As stated earlier, an interview produces knowledge as a result of the interactions 

between the interviewer and interviewee. With respect to interpersonal situation, Kvale 

and Brinkmann (2009) indicated that an interview can cause anxiety, as well as evoke 

defense mechanisms in either party. Therefore, I attempted to be sensitive to the 

participants’ feelings and told each that we could end the interview at any time if he/she 

needed to do so. Because knowledge generated from an interview is the result of who is 

participating in the interview, an interview conducted by another interviewer may not 

produce the same knowledge.  

Data Analysis Procedures 

“Analysis is the search for patterns in data and for ideas that help explain why 

those patterns are there” (Bernard & Ryan, 2010, p. 109). Furthermore, data analysis 

involves interpreting the patterns and linking those findings to other research (Bernard & 

Ryan, 2010). Bernard and Ryan (2010) suggested that researchers begin with a small 

chunk of text and code it line-by-line. They suggested researchers then use the constant 
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comparative method, followed by axial coding (Strauss & Corbin, 1998). Huberman and 

Miles (1996) stated that the constant comparative method involves examining how a 

sentence is similar to or different from the subsequent sentence. Bernard and Ryan (2010) 

also suggested that researchers keep running notes about the concepts they identify and 

include hypotheses about how the concepts may be related. 

Bernard and Ryan (2010) suggested eight observational techniques to discover 

themes within data: repetitions; indigenous typologies or categories; metaphors and 

analogies; transitions; similarities and differences; linguistic connectors; missing data; 

and theory-related material. Additionally, Bernard and Ryan (2010) suggested four 

manipulative techniques to process texts: cutting and sorting; word lists and key-words-

in-context; word co-occurrence; and metacoding. Bernard and Ryan (2010) suggested 

applying several techniques until no new themes are discovered.  

To analyze my data, I used a priori codes taken from literature and read line-by-

line for evidence of conceptual and procedural knowledge in participants’ responses. As I 

analyzed my data, I looked for repetition; linguistic relationships between mathematical 

meaning and how participants’ associated language revealed their understanding of the 

mathematics; and evidence of mathematical knowledge based on the definitions of 

mathematical knowledge found in literature. For example, when I analyzed fraction 

multiplication problems that were in the form c
b
a
× , where a, b, and c were Natural 

numbers, I used Lesh, Post, Behr, and Silver’s (1983) conception of fraction as an 

operator. Applying Lesh et al.’s (1983) conception of fraction as an operator on the 

problem 
8
5  of 2 means that the multiplicand 2 is partitioned into 8 equal parts and the 
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value of 5 of the 8 equal parts is determined. A pictorial representation using a region 

model for this problem is shown in Figure 9. The symbolic representations that are 

aligned with this pictorial representation involve the traditional algorithm known as cross 

simplification and are represented as 
1
1

4
5

1
2

8
5

×=× , where a common factor of 2 has been 

divided from the denominator of 
8
5  and the numerator of 

1
2 . 

 

Figure 9. Region model representation for 
8
5  of 2 

I analyzed participants’ use of manipulatives using a coding scheme adapted from 

Osana and Royea (2011) in their work with prospective elementary teachers. A summary 

of Osana and Royea’s (2011) use of the terms Meaningful and Procedural for coding 

participants’ drawings of fraction problems is shown in Table 12 and continued on the 

following page. Then, Table 13, also on the following page, shows the coding schemas 

used for the participants’ use of manipulatives and pictorial representations in this study. 

Table 12  

Summary of Osana and Royea’s (2011) Coding Scheme 
Coding Schemas for Participants’ Use of Pictorial Representations 
 
Meaningful Use  Drawings based on intuitive understanding of fractions and 

the quantities expressed in the problem 
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Procedural Use Drawings that were replications of a known standard 

procedure or were learned by rote from previous instruction 

If participants could not explain why they solved the problem 

using a particular picture or strategy 

 
Table 13  

Adapted Coding Schemas  
Use of Manipulatives or Pictorial Representations 
 
Meaningful Use Use of manipulatives or pictorial representations based on 

conceptual meaning of fractions 

 
Procedural Use Use of manipulatives or pictorial representations not based 

on conceptual meaning of fractions 

In addition, I looked for evidence of students’ conceptual knowledge of fractions 

using Lesh, Post, Behr, and Silver’s (1983) definitions of fraction as part-whole, ratio, 

division, operator, and measure. I also looked for evidence of students’ conceptual 

knowledge using Confrey et al.’s (2009) conceptions of equipartitioning as recursive 

partitioning, fraction iteration, and unit fractions. I looked for evidence of students’ 

conceptual understanding of fractions using Lo and Lou’s (2012) definitions of 

multiplication, partitive division, and measurement division. Finally, I looked for 

evidence of interference of prior instrumental learning on subsequent relational learning 

(Pesek & Kirshner, 2000). 

With respect to validity, Bernard and Ryan (2010) contended that there is no 

ultimate demonstration of validity. That is, “the validity of a concept depends on the 
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utility of the device that measures it and on the collective judgment of the scientific 

community that a construct and its measure are valid” (Bernard & Ryan, 2010, p. 72). 

However, reliability refers to agreement among coders and across methods and across 

studies (Bernard & Ryan, 2010). Strong inter-rater reliability increases the likelihood that 

a discovered theme is valid.  

To establish reliability for scoring of the tests, two colleagues graded a sample of 

the procedural and conceptual tests. On samples of the procedural test, scores assigned 

among the three scorers only varied by one point overall. On the samples of the 

conceptual tests, scores assigned among the three scorers varied by an average of four 

points. To establish reliability for coding of text, I asked a colleague to code portions of 

text from the task-based interviews with participants.  

Bernard and Ryan (2010) also suggested that researchers perform constant 

validity checks. That is, they advised researchers to watch for disagreements among 

knowledgeable informants and try to discover why; check for informant accuracy 

whenever possible; welcome negative evidence and determine the result of it; look for 

alternative explanations for phenomena; and try to fit negative cases into one’s theory. In 

an effort to perform constant validity checks, I consulted with Ms. Paige regarding 

questions related to my participants’ data. 

Procedures for scoring tests. Ms. Paige and I developed the rubric shown below 

for grading the procedural knowledge test. 

2 – Correct algorithm with correct answer 

1 – Correct algorithm with some minor calculation errors 

0 – No answer or incorrect procedure with incorrect answer 
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For the procedural test, the highest possible score was 34 points (17 

problems). The range 0-26 represented low procedural, and 27-34 represented 

high procedural.  These ranges were based on approximately 80% proficiency. 

When analyzing prospective teachers’ responses on the conceptual knowledge 

test, I used a coding scheme adapted from Forrester and Chinnappan (2010). The coding 

scheme (rubric) is shown below: 

3 – Conceptual representation with clear reasoning and correct 

explanation 

2 – Conceptual representation with unclear reasoning and partially 

correct explanation 

1 – Representation provided with no evidence of conceptual 

knowledge 

0 – No representation 

Based on the rubric, the highest possible score on the conceptual test was 

51 points (17 problems). For the conceptual test, the ranges were: 0-25 for low 

conceptual knowledge and 26-51 for high conceptual knowledge. I based the 

range of 0-25 on a person receiving more ones than twos (i.e., 9 ones and 8 twos). 

This range of scores also aligns with a person making less than 50% on the test. 

Since I only established low and high, the other range was 26-51 because it covers 

the remainder of possible scores. 

Summary of Methods 

The qualitative research methods and data collection methods were chosen for 

this study because of the literature I reviewed and their potential to provide data that 

would help me answer my research question, as well as based on my own prior 

experiences. The theoretical underpinning for this study, constructivism, guided my data 



164 

collection and analyses, as well as the knowledge I gained as I conducted the study. 

Instruments were refined over the course of the study based on feedback I received from 

various university personnel I asked to review the instruments in light of my research 

question. Finally, the conceptual framework that guided this study was rooted in the 

literature associated with the content of this study. 
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Chapter 4: Research Findings 

Introduction 

In this chapter, data collected for the four participants in this study are reported. 

The participants were seniors enrolled in the first of two required math methods courses 

prior to student teaching. Each participant was a middle grades education major. At the 

university, all middle grades education majors were required to choose two disciplines in 

which to major. Three of the four participants were math/science majors, while the fourth 

participant was a math/English Language Arts major. Two of the participants were 

female, two were male. The four participants are referred to by the pseudonyms 

Samantha, Krystal, Jacob, and Matthew, and are reported on respectively. 

Sample class activities are provided in Appendix P. Class activities during the 

fractions unit included:  

• Examining multiplication with an emphasis on the meaning of the 

multiplier and multiplicand;  

• Examining partitive and measurement division;  

• Investigating fraction magnitude and equivalence using on-line 

applets and recursive partitioning;  

• Comparing two fractions by examining the relative sizes of 

fractions instead of procedural algorithms;  

• Adding fractions using fraction strips, decomposition of fractions, 

and pattern blocks;  

• Multiplying fractions using length, area, and region models and the 

distributive property; 
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• Using a fraction as an operator;  

• Generating conjectures about the product and quotient based on the 

size of the multiplier relative to one and divisor relative to the 

dividend (respectively); 

• Dividing fractions using length and region models; 

• Recursive partitioning using length and area models;  

• Analyzing tasks based on the level of cognitive demand;  

• Conducting discussions regarding the Common Core Standards for 

Mathematical Practice (NGA Center & CCSSO, 2010) and the link 

to the Process Standards from NCTM (2000). 

Data were collected about each participant’s knowledge of fractions through the 

following instruments:  

• Procedural Pre-Test (Appendix A),  

• Conceptual Pre-Test (Appendix E),  

• Initial Attitudinal Survey (Appendix J),  

• Pre-Instruction Task-based Interview (Appendix H),  

• Classroom Observations,  

• Assessments given by the EDMG 1 instructor,  

• Procedural Post-Test (Appendix A),  

• Conceptual Post-Test (Appendix E),  

• Post-Instruction Task-based Interview (Appendix H), and  

• Semi-Structured Interview (Appendix K).  

In this chapter, I present data for each participant that helped to answer my 

research question. When appropriate, I included direct quotes from each participant. I did 
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not change misspelled words because I believed that this information helps the reader 

have a better understanding of each participant’s overall knowledge base. However, I 

removed filler words in order to make the text easier to read (e.g., like, to where, and you 

know). Additionally, when appropriate, I included images of actual student work. 

Summary of the instruments. The problems on the Procedural Tests included 

operations on whole numbers, fractions, and decimals; fraction equivalence; and fraction 

comparison. All problems on the Procedural Tests were middle grades problems. For 

each problem on the Procedural Tests, there was a related problem on the Conceptual 

Test. The only problem that was numerically different was the decimal multiplication 

problem. It was different on the Procedural and Conceptual Tests because of the concern 

that students might remember the answer and not provide justification.  

The Initial Survey asked students to rate their knowledge of and attitudes toward 

mathematics and manipulatives. There was also a prompt asking participants to share 

additional information as they wished.  

The Individual Task-based Interviews involved interacting with participants in a 

one-on-one setting using manipulatives to solve fraction tasks. A variety of manipulatives 

were available for participants to use, if they chose to do so (See Appendix L). The 

problems given during the Task-based Interviews were chosen based on related literature 

about fractions. 

Five classroom observations were done beginning November 4, 2014, and ending 

December 2, 2014. During observations, I made notes about what participants were doing 

and saying. As much as was possible, I recorded what the participants said instead of my 

interpretations. After each observation, I wrote a reflection on my initial interpretation of 
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what I observed. I varied my seating in the room from one observation to the next as 

seating was available in the room. 

The various assessment documents I collected for the participants included a math 

autobiography (except for Samantha), a fractions quiz, and a problem report. The 

problem report was a homework assignment that followed a classroom activity. 

Essentially, students were to restate in their own words and provide a picture for tasks 

that were done in a previous classroom activity. 

Finally, the Semi-Structured Interview, conducted at the end of the semester, 

involved questioning participants in a one-on-one setting about their experiences in the 

course. There were questions about the participants’ perception of their understanding, 

instructional practices of the instructor, their attitudes toward manipulatives, and specific 

experiences that occurred during the course. 

Samantha 

During the fall of 2014, Samantha, a White American female in her mid-twenties, 

participated in this study while she was a student in EDMG 1. Samantha, originally from 

the Northeast, was a non-traditional student enrolled in the middle grades education 

program at a mid-sized, four-year university in the Southeast. Samantha’s declared areas 

of specialty were mathematics and science. In addition to attending classes at the 

university, Samantha worked to support herself and her daughter. 

Beginning in third grade, Samantha was placed in advanced math classes (Initial 

Survey, Appendix J). Early in her education, Samantha’s teachers “were hands on” and 

allowed her to “ask many questions” (Initial Survey, Appendix J). Samantha remembered 

using manipulatives for algebraic equations in her fifth-grade program for high achieving 
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students. On the contrary, Samantha stated, “Not many manipulatives were used in [her] 

secondary education” (Initial Survey, Appendix J). According to Samantha, she 

“struggled in college math” because “teaching styles were very different and relied on a 

lot of independent learning” (Initial Survey, Appendix J). Samantha stated that she 

experienced difficulty because “if [she] did not understand something, [she] had no one 

to walk [her] through the steps” (Initial Survey, Appendix J). 

At the beginning of the study, Samantha rated herself as somewhat confident in 

her procedural ability in the operations on fractions and very confident in her 

understanding of the meaning behind the operations on fractions (Initial Survey, 

Appendix J). Samantha also rated herself as somewhat confident in understanding the 

‘why’ behind the conventional algorithms for fractions. Although Samantha indicated 

that she was only somewhat familiar with manipulatives during her prior learning 

experiences, she felt that it was very important for middle grades students to use 

manipulatives to learn mathematics (Initial Survey).  

Samantha demonstrated an increase on her Conceptual Tests from Pre-Test to 

Post-Test, but demonstrated a decrease on her Procedural Tests from Pre-Test to Post-

Test. Table 14, shown below, conveys her scores on all four tests. 

Table 14  

Samantha’s Procedural and Conceptual Knowledge 
 Pre-Test Post-Test Change 

Procedural 82.4% 79.4% – 2.9%  

Conceptual 82.4% 92.2% + 9.8% 
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Fraction multiplication. Data regarding Samantha’s procedural and conceptual 

knowledge of fraction multiplication were collected through Pre- & Post-Instruction 

Tests, Pre- & Post-Instruction Task-based Interviews, assessment, and observational data. 

In the next sections, these data are expounded upon. 

Pre-instruction data. The problems that best demonstrate Samantha’s initial 

procedural and conceptual knowledge of fraction multiplication were 
3
1

2
1
× , 

8
5

 of 2, and 

5
33

6
12 × . For 

3
1

2
1
× , Samantha’s pictorial representation did not show clear evidence of 

conceptual knowledge of a fractional multiplier, i.e, fraction as an operator (Lesh, Post, 

Behr, & Silver, 1983). Based on Samantha’s work on the Conceptual Pre-Test, shown in 

Figure 10, it was not clear whether Samantha knew that 
3
1

2
1
×  means to take one-half of 

one-third.  

 

Figure 10. Samantha’s pictorial representation for 
3
1

2
1
×  

Similarly, Samantha’s pictorial representations for 
8
5

 of 2 on both Pre-Tests, 

shown in Figure 11 on the following page, appeared to be aligned with 
8
52× , or two 

groups of 
8
5

. 
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Procedural Pre-Test

 

Conceptual Pre-Test

Figure 11. Samantha’s representations for 
8
5

 of 2 

For the mixed number multiplication problems, Samantha did not correctly 

calculate 
5
33

6
12 × , nor did she identify errors in 

10
16

30
36

5
33

6
12 ==× . On both Pre-

Tests, Samantha appeared to obtain a common denominator to multiply mixed numbers. 

Some of Samantha’s work on the Procedural Pre-Test, shown in Figure 12, appeared to 

be somewhat aligned with the incorrect procedure provided on the Conceptual Pre-Test, 

10
16

30
36

5
33

6
12 ==× . 

 

Figure 12. Samantha’s procedural knowledge of mixed number multiplication 

During Samantha’s Pre-Instruction Task-based Interview, she was asked to 

demonstrate 6
4
3
×  using manipulatives. Initially, Samantha considered using the yellow 

hexagon as the whole. However, Samantha decided to use the pink double hexagon 
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because she stated that she did not want to use two different pattern block pieces to 

represent three-fourths, the red isosceles trapezoid for one-half and the brown right 

trapezoid for one-fourth. To model 6
4
3
× , Samantha used the pink double hexagon as the 

whole and the red isosceles trapezoid as one-fourth (Appendix L). Samantha created six 

sets of three red isosceles trapezoids, shown in Figure 13, which seemed to represent 

4
36×  instead of 6

4
3
× . When Samantha was asked to clarify whether she demonstrated 

6
4
3
×  or 

4
36× , she said, “Three-fourths times six because my group size was three-

fourths, and I had six groups of three-fourths.” 

 

Figure 13. Samantha used pattern blocks to model 6 groups of 
4
3

 

Samantha made statements that provided insight into her conceptual knowledge. 

Initially, Samantha stated that the multiplier was “the action of what [is done] to the 

multiplicand.” Then, she stated that “the multiplicand is supposed to [be] representative 

of how many groups there are.” Samantha also said, “If I were to do six times three-

fourths or three-fourths times six, it would still be the same value, but it would have a 

different meaning.”  
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 After Samantha determined the answer to be 
2
14 , she expressed confidence in 

her answer but offered to “think about it in reverse.” To do so, Samantha had “to think 

what one-fourth of six would be,” which was language associated with using a fraction as 

an operator (Lesh, Post, Behr, & Silver, 1983). Samantha first expressed the desire to use 

a calculator. Since a calculator was not provided, she used mental calculations to 

determine that one-fourth of six was one and one-half. Then, to calculate 6
4
3
× , 

Samantha stated, “I’m multiplying one and one-half times three, yeah, four and a half.” 

After Samantha performed the calculations mentally, she provided pictorial and symbolic 

representations (shown in Figure 14) for her calculations. 

 

Figure 14. Samantha’s work for calculating three-fourths of six 
 

  After Samantha demonstrated fraction multiplication, she was asked to generate a 

real-world scenario for 6
4
3
× . Samantha stated, “Let’s say I have seventy-five cents. 

Each one of these [red isosceles trapezoids] is a quarter. But, there is six kids. How much 

money do we have all together?” To provide clarification, Samantha continued, “So, if 

each kid has seventy-five cents or three quarters, which is three-fourths because it’s four 

quarters to the dollar, how much money do they have collectively?” Samantha concluded 
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by providing the answer of four and a half dollars and saying that she used money 

because it is relative to everyone. Prior to the end of the interview, Samantha generated 

another real-world scenario for fraction multiplication and provided an answer. She 

stated, 

I’m doing a bake sale. Instead of making my normal one cake, I want to 

make six cakes. If it takes three-fourths cups of sugar for one cake, but I’m 

making six cakes, so I’m now going to have three-fourths cups of sugar 

times six cakes, how much sugar will that be for the total amount of 

cakes? Four and a half cups of sugar. 

Samantha’s pre-instruction data seems to point her flexibility in using concrete, 

pictorial, and symbolic representations, as well as in her ability to generate real-world 

scenarios. However, Samantha’s use of the multiplier and multiplicand in a fraction 

multiplication problem did not appear to be aligned with the conceptual meaning of those 

terms. 

Observational and assessment data. After Samantha participated in the initial 

task-based interviews, some assessment and observational data were collected pertaining 

to her progressing conceptual knowledge of fraction multiplication. However, there was 

limited information available through observation and assessment data about how her 

procedural knowledge of fraction multiplication progressed.  

During a class discussion about fraction multiplication, Samantha voiced a 

general statement that seemed to be aligned with conceptual knowledge of using a 

fraction as an operator. That is, a student in the class stated that the fraction 

multiplication problem,  
4
3

2
1

−× , was representative of “taking one part of the 
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multiplicand.” Samantha followed this statement with, “You are taking a part of a part,” 

seemingly to generalize multiplying by a proper fraction. 

During a class discussion, the instructor asked students to generate a real-world 

scenario for 
4
316× . Samantha responded, “We’re going on a road trip. It’s going to be 16 

days. We’ve traveled three-fourths of the time so far. How many days have we traveled?” 

However, Samantha’s scenario seems to be conceptually aligned with 16
4
3
× . The 

instructor, Ms. Paige, drew a rectangle on the board and partitioned it into fourths. The 

class discussed dividing out a common factor of 4 from the 4 and the 16 to simplify the 

problem to 43× . Ms. Paige then asked the class to generalize dividing out a common 

factor. Samantha explained that bc
b
a
×  represented a generalization for being able to 

divide a common factor from the denominator of the multiplier and the numerator of the 

multiplicand. 

During fraction multiplication instruction, the class was asked to use 

manipulatives to model the problem 
3
2

2
1
× . Samantha began with two orange one-third 

pieces; then, she placed a light blue one-sixth piece on each orange one-third. Next, 

Samantha put the two one-sixth pieces together, compared them to the one-third, and 

stated that they were the same. Samantha’s use of the manipulatives seemed to be aligned 

with the symbolic representation of 
6
1

6
1

3
1

3
1

2
1

+=⎟
⎠
⎞

⎜
⎝
⎛ + , which uses the distributive 

property.  
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The manner in which Samantha modeled fraction multiplication for 
3
2

2
1
×  was 

different from what she did on her Problem Report for 
4
3

3
2
× . The Problem Report was 

an out-of-class assignment that was based on an in-class activity. In her Problem Report, 

Samantha noted that 
4
3

 needed to be “divided into three equal parts,” which was “simple 

because it [was] already partitioned into three equal pieces of 
4
1

.”  

An area in which Samantha seemed to have made progress during the fractions 

unit was connecting the meaning of fraction multiplication to the manipulatives. The 

instructor asked students to model 
2
11

2
11 ×  as 

2
3

2
3
×  because another student questioned 

whether the concrete representation would be the same even though the symbolic 

representations were different. Samantha stated that she needed “one group and half of a 

group.” Using fraction circles, Samantha began with one red whole and one pink half to 

represent one group of 
2
11 . Then, she used one pink half and one yellow fourth to 

represent half of a group of 
2
11 . Samantha’s representation did not appear to be aligned 

with 
2
3

2
3
× . In contrast to Samantha’s representation, Jacob, another student in EDMG 1 

who participated in this study, demonstrated 
2
3

2
3
×  using fraction circles by beginning 

with three pink halves. Then, Jacob partitioned three-halves into two equal groups that 

each contained one pink half and one yellow fourth. Next, Jacob assembled three groups 
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of one pink half and one yellow fourth to represent 
2
3

2
3
× . Once Jacob finished his 

demonstration, Samantha said, “I like that we can switch the representation. I never really 

thought about that.” 

There were two fraction multiplication problems on Samantha’s Problem Report 

that were somewhat related to problems on the Pre-Tests, 2
3
2
×  and 2

4
11 × . For 2

3
2
× , 

Samantha used a number line model and fraction circles shown in Figure 15. It seemed 

that Samantha used the idea of fraction as an operator on the number line model. For the 

circle model, Samantha’s pictorial representation seems to be more aligned with 
3
22× , or 

two groups of two-thirds.  

 

Figure 15. Samantha’s representations for 2
3
2
×  

The explanation Samantha provided about 2
3
2
×  was conceptually aligned with 

using a fraction as an operator. She wrote,  

I would solve this first by dividing the group of 2 (the multiplicand) into 

three equal parts. I am dividing the multiplicand into three because it is the 

denominator of the fraction in the multiplier. The denominator represents 

how many parts my whole is partitioned into. In this case, the whole is 2 



178 

(the multiplicand). Out of the equal parts, I would only have 2 parts. I only 

have 2 parts of the three because the numerator of the fraction in the 

multiplier represents the parts of the whole that I have. The answer is 
3
4

. 

This makes sense because the multiplier was less than one, and my 

product was less than the multiplicand. 

For 2
4
11 × , Samantha first stated that she “decomposed the multiplier to be 

⎟
⎠
⎞

⎜
⎝
⎛ +

4
11 .” Then, she noted that she was “solving for ( ) ⎟

⎠
⎞

⎜
⎝
⎛ ×+× 2

4
121 .” Next, Samantha 

“had one whole group of two so it would be ⎟
⎠
⎞

⎜
⎝
⎛ ×+ 2

4
12 .” Samantha noted, “2 divided by 

4 is 
2
1

. Each part is 
2
1

, and I only have the one part.  I then have 
4
12

4
12 =+  as the 

product.” Samantha’s pictorial representation for this problem is shown in Figure 16. 

 

Figure 16. Samantha pictorially represented 2
4
11 ×  

In the reflective part of the Problem Report, Samantha made several statements 

about how completing the assignment helped her. She stated, “By using manipulatives, 

my understanding of mathematics was deepened because it gave me the representation as 
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to why the answer is the way it is. The visual helped me distinguish the steps of solving 

and provided justification as to why my answers make sense.”  

Another comment Samantha made in her reflection was, “Students need more 

than just the algorithm to understand what they are doing. This investigation allowed me 

to do the work behind the algorithm. It is important to use this approach in teaching 

mathematics to build connections and provide the meaning behind what they [students] 

are doing.” Although Samantha mentioned ‘the algorithm,’ she did not mention which 

algorithm. 

Observational and assessment data seemed to indicate that Samantha refined her 

use of the multiplier and multiplicand in fraction multiplication problems. She continued 

to demonstrate flexibility in using multiple representations for fraction multiplication, 

including length and region models. 

Post-instruction data. At the conclusion of the semester-long course, Samantha 

completed the Procedural and Conceptual Post-Tests and participated in two interviews, 

the Post-Instruction Task-based Interview and the Semi-Structured Interview. Samantha’s 

Procedural Post-Test score was 79.4%, a drop of approximately 3%, while her 

Conceptual Post-Test score was 92.2%, an increase of 9.8%. 

Although Samantha improved her pictorial representation for 
3
1

2
1
×  from Pre-

Test to Post-Test, she did not provide a precise enough representation to earn full credit. 

In contrast to her Pre-Test, Samantha communicated that 
3
1

2
1
×  meant “to take 

2
1

 of 
3
1

.” 

However, Samantha did not partition her circle equally into sixths to fully communicate 

her answer of 
6
1

, as shown on the following page in Figure 17. 
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Figure 17. Samantha’s representation for 
3
1

2
1
×  

On the Procedural Post-Test, Samantha provided a correct answer of 
4
11  for 

8
5

 of 

2, but did not provide a pictorial representation as she did on the Procedural Pre-Test, nor 

did she show any work. On the Conceptual Post-Test, it seemed that Samantha attempted 

to use a fraction as an operator for 
8
5

 of 2, but she did not clearly communicate her 

answer, as shown in Figure 18. 

 

Figure 18. Samantha’s representation for 
8
5

 of 2 

For 
5
33

6
12 ×  on the Procedural Post-Test, Samantha used the multiplier as the 

number of groups and calculated the answer to be 
5
47 . On the Conceptual Post-Test, 

Samantha did not provide a complete description of the error in the work given, as shown 

in Figure 19 on the following page. 
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Procedural Post-Test 

 

Conceptual Post-Test 

Figure 19. Samantha’s work for mixed number multiplication 

During the Post-Instruction Task-based Interview, Samantha was asked to use 

manipulatives to model 
4
3

3
2
× . One notable difference from her Pre-Instruction Interview 

was the fact that she began by estimating her answer. She stated, “My multiplier isn’t 

one, so I don’t have one whole group of the three-fourths.” When Samantha was asked 

whether she knew that before her methods course, she replied,  

Actually, no. I don’t think anyone ever broke it down. Now I have more 

reasoning into deciding the reasonableness of my answers. I liked how we 

broke that down and had a huge discussion. Now it’s something I look to 

before I even do anything. I’m like, ‘Alright, so my answer should be 

somewhere in this range.’ 

As Samantha explained 2 3
3 4
× , she used fraction circles to demonstrate her 

understanding, as shown in Figure 20 on the following page. Samantha explained, 

 If I have three-fourths, I have 3 pieces. Now, with my multiplier, because 

it’s two-thirds, it’s not one whole one, so I don’t even have one whole 
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group of these [three-fourths]. But because it’s a fraction, what I have to 

do is divide it by the numerator [sic. denominator] into three equal parts, 

which is perfect, ‘cause three-fourths has three, one-fourth equal parts. 

And then, out of these, I have one-third of three-fourths, one-third of 

three-fourths, one-third of three-fourths. Out of that, I have two [moved 

two of the fourths away from the third and put them together] as 

determined by the numerator of the multiplier. So, my answer, which I 

knew was going to be less than three-fourths, I have two, one-fourths 

[points individually to each fourth that she placed together] which is 

equivalent to one-half [overlaid the pink one-half onto the yellow two-

fourths]. 

Each one-fourth is one-third of three-fourths 

 

Two one-fourths is equivalent to one-half 

 

Figure 20. Samantha demonstrated knowledge of fraction as an operator 

After Samantha finished explaining her work using the manipulatives, she was 

asked to explain how the manipulative connects to a conventional algorithm. Samantha 

said,  

I’ve actually really enjoyed using the manipulatives ‘cause it gives you the 

visualization as to how the pieces are related. It’s just a model. That’s how 

it connects. It’s modeling that algorithm. Before you’d just multiply 

across, but I never knew what it was doing; I just knew what to do.  
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As Samantha continued, she said that she multiplied across. In other words, she 

multiplied the numerators, multiplied the denominators, and simplified the product. 

Specifically, 2 3 6
3 4 12
× = , followed by 6 1

12 2
= . Then, she added, “Now, the 

manipulative explains the story of the algorithm, showing me what is going on and why 

my answer is the answer it is.” The algorithm that appeared to be aligned with the work 

Samantha did with the manipulatives was cross simplification. Samantha indicated that 

she would partition the three pieces into three separate groups, which meant that a 

common factor of three could be divided from the denominator of the multiplier and the 

numerator of the multiplicand. If the cross simplification algorithm were used, then the 

problem 2 3
3 4
×  would have symbolically transformed into 2 1

1 4
× . 

After Samantha demonstrated 2 3
3 4
× , she generated a real-world scenario for this 

problem. Samantha stated that, since it was Christmastime, she planned to buy her 

daughter stocking stuffers. She said, “I only have three-fourths of the stocking [filled up]. 

I wanna give her two-thirds of it. So I need to figure out how much of a stocking should I 

fill it up on? Half.” 

Post-instruction data showed that Samantha refined her understanding of the 

meaning of the multiplier and multiplicand within the context of fraction multiplication. 

In addition, Samantha appeared to have refined her understanding of a fraction multiplier, 

i.e. fraction as an operator, as well as her conceptual knowledge of mixed number 

multiplication.  



184 

Summary of fraction multiplication. The assessment, observational, and 

interview data collected regarding Samantha’s procedural and conceptual knowledge of 

fraction multiplication showed that Samantha may have lacked procedural knowledge of 

the traditional algorithm associated with mixed number multiplication, but she seemed to 

compensate by applying conceptual knowledge to calculate her answers. The data also 

showed that Samantha believed that the algorithm was evident in her use of 

manipulatives even though she never explicitly explained how it was evident. The data 

also indicated that Samantha used her conceptual knowledge of fraction multiplication 

more than her procedural knowledge. Finally, Samantha was able to generate real-world 

scenarios for fraction multiplication, although not all of them seemed aligned with the 

symbolic representation that Samantha believed she was representing. 

Fraction division. Pre- and post-instruction data related to Samantha’s procedural 

and conceptual knowledge of fraction division were collected and examined. Limited 

observational data were available related to fraction division. These data are reported in 

the next section.  

Pre-instruction data. Although Samantha’s answers on her Procedural Pre-Test 

were correct for all four fraction division problems, she showed limited work for these 

problems. For example, for 3
3
12 ÷ , Samantha wrote 

9
7

1
3

3
7

=÷ . Because Samantha did 

not invert the divisor and change division to multiplication, it cannot be assumed that she 

did or did not know the standard algorithm associated with fraction division. 

On the Conceptual Pre-Test, Samantha did not symbolically represent her answer 

for each division problem, as shown on the following page in Figure 21. Samantha’s 



185 

pictorial representations for the fraction division problems appear to be aligned with 

measurement division.  

 

 

Figure 21. Samantha’s representations for fraction division 

Between the times that Samantha completed the Pre-Tests and participated in the 

Pre-Instruction Task-based Interview, the EDMG 1 class learned about measurement 

division with whole numbers and integers, but not with fractions. Additionally, the class 

used pattern blocks during an activity that required students to determine the value of 

each of the pattern blocks in comparison to a specified pattern block that was assigned a 

value of one (Appendix L). 

During the Pre-Instruction Task-based Interview, Samantha was asked to use 

manipulatives to represent 
3
23÷ . Samantha used the yellow hexagon as one whole, the 

black chevron as two-thirds, and the blue rhombus as one-third. As Samantha modeled 

the division problem (shown in Figure 22 on the following page), she indicated that 

measurement division would be best and explained that dividing by two-thirds meant that 

she was taking out two-thirds to see how many groups of two-thirds [she had]. This 

explanation seemed aligned with Lo and Lou (2012) conception of the measurement 
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interpretation of division. Another name for this model of division is the repeated 

subtraction model of division (Van de Walle, Karp, & Bay-Williams, 2013), which 

Samantha alluded to when she stated, “take away another two-thirds.” 

 

Figure 22. Samantha used pattern blocks to demonstrate 
3
23÷  

Next, Samantha explained the answer and interpreted the remainder, which was 

represented by the blue rhombus. She explained: 

I have four ‘two-thirds’, but then I still have leftovers so that could either 

be the remainder, which is equivalent to one-third. So the four groups of 

two-thirds that I have…I have four plus, I guess one-half. It would be four 

and one-half because this [blue rhombus] is one-half of two-thirds. So 

two-thirds fits into three, four complete times and then one half time. 

When she was asked whether she could confirm her answer procedurally, Samantha 

laughed and said, “With a calculator.” Samantha then followed up by saying, “I guess I 

could try.”  

To calculate the answer to 
3
23÷ , Samantha converted 

3
23÷  to 

3
2

3
9
÷  and 

divided the numerators and divided the denominators. Samantha explained,  

So with me having nine-thirds which is equivalent to three, and I’m 

dividing it by two-thirds, I can kind of just go across the top, I’m pretty 
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sure, because it’s all the same parts. So two fits into nine four times but 

then I have ... Yeah, yeah, okay, sorry I got lost. So, I have four, but then I 

have…okay, yeah. So then I have, so if I subtract four, if I’m using like, I 

guess, I guess my model that means I have one-third after like, I guess, 

taking away the four, divided by two-thirds. Well one-third is half of two-

thirds, so that’s how I guess I got my one-half. I don’t know if that’s 

correct, but it makes sense to me. 

When Samantha finished her explanation and was asked what made her question her 

answer, she responded, “Algebra rules, fraction rules, the rules. So I don’t know if I’m 

following all the rules correctly I guess.” When she was asked if she knew another way to 

calculate 
3
23÷ , Samantha immediately responded, “With a calculator. My first thought 

was to convert this fraction [two-thirds] into a decimal, but it’s a repeating decimal. So, 

it’s hard to do, I guess, without…there’s going to be slight error if I do a decimal by hand 

because I can’t keep the repeating part of it.” Samantha’s reference to changing two-

thirds to a decimal was language aligned with fraction as division (Lesh, Post, Behr, & 

Silver, 1983). In conclusion, Samantha said, “I feel confident in my answer. I’m not quite 

sure if I explained it properly or if I followed the correct procedure, but it makes sense to 

me.” 

Pre-instruction data indicated that Samantha’s conceptual knowledge of the 

measurement interpretation of fraction division was consistent. Based on statements that 

Samantha made, it appeared that she was more confident in her conceptual knowledge of 

fraction division than her procedural knowledge.  
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Observational data. During fraction division instruction, the class was asked to 

generate a word problem for 4
4
1
÷ . Samantha stated, “I have 

4
1

 cup of bleach. I want to 

make 4 containers of sanitizer. How much bleach would be in each container of 

sanitizer?” The class did not discuss whether the scenario was aligned with the 

measurement interpretation of division or the partitive interpretation of division (Lo & 

Lou, 2012). 

The class also explored and discussed a problem related to flower beds and 

fertilizer. The task prompted students to determine how many bags of fertilizer were 

necessary to cover five flower beds if each bag of fertilizer covered three-fourths of a 

flower bed. Symbolically, the problem was represented by 
4
35÷ . During the class 

discussion, EDMG-1 students discussed the reason for inverting and multiplying as part 

of the conventional fraction division algorithm. However, Samantha never contributed to 

the discussion.  

Limited observation and assessment data were available to examine how 

Samantha’s procedural and conceptual knowledge of fraction division progressed 

between the pre-tests and post-tests. With such limited information, it is not appropriate 

to make conclusions at this point about Samantha’s procedural and conceptual knowledge 

of fraction division. 
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Post-instruction data. Samantha correctly answered two of the four fraction 

division problems on the Procedural Post-Test, whereas she previously answered all four 

fraction division problems correctly on the Procedural Pre-Test. Similar to her Procedural 

Pre-Test, Samantha showed very limited work on her Procedural Post-Test. For example, 

with no work shown to indicate how she calculated her answer, Samantha provided the 

answer for 
4
36÷  as 4.5, which is in stark contrast to her answer on the Conceptual Post-

Test shown in Figure 23. 

 

Figure 23. Samantha’s representation for 
4
36÷  

For the problem 
4
3

2
11 ÷  on the Procedural Post-Test, Samantha answered “2” 

without showing work. On the Conceptual Post-Test for this problem, Samantha initially 

appeared to show fraction multiplication instead of division, but she marked out her work 

and generated another representation, which is shown in Figure 24. 

 

Figure 24. Samantha initially confused multiplication and division 
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The problem 
8
32÷  was the final noteworthy division problem on the Procedural 

Post-Test. Figure 25 shows the contrast between Samantha’s work on the Pre-Test and 

Post-Test. 

Procedural Pre-Test 

 

Procedural Post-Test 

 

Figure 25. A comparison of Samantha’s procedural knowledge of fraction division 

On her Procedural Post-Test, it appeared that Samantha shaded 
8
3

 five times. However, 

instead of numbering them as “1, 2, 3, 4, 5,” Samantha numbered them “1, 2, 3, 4, 4.” In 

addition, Samantha did not shade all of the eighths because there were 
8
2

 left unshaded 

instead of 
8
1

, as there should have been. Moreover, it was difficult to see whether there 

were actually 
8
3

 shaded every time or whether she partitioned the second whole into nine 

parts instead of eight. The mistakes that she made and an understanding of measurement 

division helps one to make sense of her answer of 
3
24 . It is worth mentioning that, 

although Samantha did not answer 
8
32÷  correctly, she used the correct denominator for 

her answer. A common mistake for fraction division problems like this is to indicate that 

the answer is 
8
2  because each remaining piece is one-eighth of the original whole. 
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During the Post-Instruction Task-based Interview, Samantha was asked to use 

manipulatives to represent 
2
1

6
5
÷ . Samantha began, “Okay. Um, so I’m gonna grab 

manipulatives in a minute, but already I know that my answer is going to be larger than 

one, ‘cause five-sixths is greater than one-half so I can definitely get one-half in there.” 

In response to being asked which type of division she was using, Samantha responded, 

“Partition? No, no, no, no, measurement model where the repeated subtraction ... where 

I’m taking each part out.” Her response in the post-instruction interview was similar to 

that of her pre-instruction interview. 

Samantha used fraction circles to model her answer for 
2
1

6
5
÷  (shown in Figure 26 

on the following page) as she explained:  

So, here’s my five-sixths. I need to divide it by one-half. I’m able to get 

one whole half in there, but then I have this part [the remaining two-

sixths]. So, I’m gonna keep that [pink one-half] just to say it’s accounted 

for. And I have to figure out what part of this [remaining two-sixths] ... 

Or, not what part but like, what portion of the half this is. So, I have two-

sixths left over, but it doesn’t make up a whole half. But, if I put one more 

one-sixth, I do have one whole half. So, since there’s three one-sixths 

[that] will make up the half, two ‘one-sixths’ out of the half is two-thirds. 

So, I’d say my answer would be one and two-thirds [points to the pink 

one-half as she says ‘one’ and points to the two-sixths as she says ‘two-

thirds’]. 
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Figure 26. Samantha’s representation for 
2
1

6
5
÷  using fraction circles 

When Samantha finished her explanation, she was asked whether she was confident in 

her answer. She responded,  

No, not necessarily. Um, I had a lot of difficulty with this in class ‘cause 

changing the referent whole, like what I noticed that I kept doing um, was 

I kept kind of like, I guess doing multiplication, or I couldn’t change ... I 

had difficulty changing the whole. And, but I’m gonna go with it. 

Next, Samantha was asked to confirm her answer using her procedural knowledge. 

Samantha explained, 

Yeah. So, it’d be difficult for me to divide five into a half um, just ‘cause 

2.5 sixths is difficult to like, think about. So what I’m going to do is use an 

equivalent fraction, so I’m going to have ten-twelfths. To where if I could 

divide that in half, it would be five-twelfths (see Figure 27). Yeah. And 

even then I can’t convert, honestly. I’m trying to think though. Two-thirds 

... No, no, no, no, that’s wrong. I don’t know, I had a very difficult time 

doing the division part with the manipulatives. 

 

Figure 27. Samantha’s symbolic representation for 
2
1

6
5
÷  
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Samantha seemed to confuse dividing by one-half with dividing in half, which 

was a problem that Ma (1999) found common among US teachers in her study. 

Samantha’s verbiage also varied as she explained. Samantha began by saying she was 

dividing five into a half; then, she stated she would divide that in half. Subsequently, she 

said, “I’m not quite sure. As far as dividing in half, um ... Oh, oh, and I’m doing it here, 

too. I keep multiplying by accident, and that’s why I’m going wrong.” It appeared by her 

statement that Samantha realized what she was doing wrong.  

In conclusion, Samantha shared, “I liked what I did with the manipulatives 

because I can at least reason as to how I approached my answer. I know I definitely have 

at least one half. So this [procedural work] is wrong.” Then, Samantha said, “I’m 

definitely more confident with manipulatives. That makes more sense as far as 

approaching my answer.” 

Post-instruction data showed that Samantha’s procedural knowledge of fraction 

division was not consistent. These data also showed that Samantha’s conceptual 

knowledge of fraction division was higher than her procedural knowledge. However, at 

times, Samantha seemed to confuse fraction multiplication with division. The data also 

showed that Samantha was generally able to resolve the confusion she experience by 

relying on her conceptual knowledge of fraction division. 
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Summary of fraction division. Throughout the study, Samantha consistently 

displayed conceptual knowledge of measurement division of fractions. On the contrary, 

Samantha’s procedural knowledge of fraction division was not as consistent. Even 

though, at times, Samantha experienced some confusion related to her conceptual 

knowledge of fraction division, she was generally able to overcome the confusion. Based 

on observation and interview data, it is possible that Samantha experienced interference 

from her lack of procedural knowledge (Pesek & Kirschner, 2000). 

Many of the times Samantha explained fraction division using manipulatives, she 

articulated her understanding clearly and, in general, accurately. However, when she was 

asked to perform calculations procedurally, Samantha was not as successful performing 

the associated procedures as she had been providing a conceptual explanation even 

though she claimed that she “understood the procedural part.” The evidence regarding 

Samantha’s procedural and conceptual knowledge of fraction division and using 

manipulatives contradicted what Samantha stated when she discussed her difficulties with 

division. Samantha believed that she understood the procedural part and that she got 

confused when she thought about the manipulatives. However, Samantha’s story paints 

the opposite picture.  
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Summary for Samantha. Samantha’s assessment, observational, and interview 

data all support that Samantha’s conceptual knowledge of fractions was higher than her 

procedural knowledge. Although Samantha refined her conceptual knowledge of 

fractions, she did not appear to show progress in her procedural knowledge of fractions. 

Even after a manipulatives-intensive fractions unit in her middle grades methods course, 

Samantha appeared to have areas of weakness in both her procedural and conceptual 

knowledge of fraction multiplication and division. Her use of manipulatives and pictorial 

representations was, for the most part, meaningful with only a few possible occurrences 

of procedural use.  

Although Samantha’s conceptual knowledge was stronger than her procedural 

knowledge of fraction division, she experienced some confusion that may have been 

related to gaps in both types of knowledge. This confusion may have interfered with 

Samantha’s sense of confidence in her knowledge as she used manipulatives to 

demonstrate fraction division.  

With respect to Samantha’s relational understanding of fraction multiplication and 

division, there was little evidence to support that Samantha knew the connections 

between the procedural and conceptual knowledge that she possessed. Evidently, 

Samantha had some awareness of a possible deficit in relational understanding because 

she rated her ability to help her future students to develop relational understanding of 

fractions as a seven out of ten. Samantha provided a specific example of her weakness: 

fraction division. She said, “I guess in order for me to teach [division] to somebody else, 

I would have to first fully master both the procedural knowledge and the conceptual 

knowledge, understand both thoroughly before I feel like I could pass that along.” 
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Krystal 

During the fall of 2014, Krystal, an African American female in her early 

twenties, participated in this study while she was an EDMG-1 student. Krystal was a 

traditional student enrolled in the middle grades education program at the university; her 

two chosen areas of specialty were mathematics and English Language Arts. Krystal was 

originally from the city in which the university was located and was educated in the local 

public school system, grades K-12. At the time of this study, Krystal was single with no 

children.  

In her mathematics autobiography, Krystal conveyed several positive comments 

about mathematics and her experiences learning mathematics, both prior to high school 

graduation and during her college experience. Krystal stated that mathematics became her 

favorite subject in third grade when she learned about multiplication and saw patterns in 

the numbers of the multiplication table. Krystal also stated that she learned to do algebra 

in her honors classes in middle school and completed geometry, trigonometry, and pre-

calculus in high school. Krystal indicated that she “had no problem with geometry and 

trigonometry” and that “algebra made complete sense” to her. Krystal mentioned other 

topics in mathematics as well. She said that she “got a thrill out of variables” and that she 

liked “simplifying equations and factoring.” 

Krystal’s college experiences seemed mostly positive. She shared that statistics 

“was a breeze,” but that “Applied Statistics made the student dig deeper to fully evolve in 

their learning.” Krystal also commented, “Derivatives started off scary, but once 

understood, it was a breeze.” Krystal also discussed the difficulties she experienced 
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learning mathematics; she wrote, “I am comfortable stating when I don’t understand 

something and know when to seek for help.”  

Krystal also provided several examples of how she viewed mathematics as being 

necessary for success in life. Krystal stated that she works with children at a recreation 

center and has told the children that mathematics is useful for baking, building 

construction, working with money in retail, and getting paid wages. 

Finally, Krystal shared her opinions on teaching. Krystal believed that teachers 

are important and that she “will be a great contribution” to the field. However, she 

expressed concern that “the passion that some teachers have now has disintegrated;” that 

“there isn’t a lot of spunk in some teachers anymore;” and that teachers may have 

become complacent. She also stated, 

Math can be learned in different ways by the student. I believe that it starts 

with the teacher. If the teacher knows different methods in how to teach 

and break down a math problem for each student to better understand, then 

every student will get what they need from the teacher to accomplish the 

work. That is why it is important to have different techniques and methods 

to present to a classroom because everyone learns differently. In one 

[college] class, it seemed as if we had to teach ourselves the text and come 

to class to go over homework and take quizzes and tests. Instead of the 

professor explaining how to work problems and why the answer is what it 

is, he just tested us on what we knew. Of course, the class grade average 

was below average but for the few of us that knew to study on our own, it 

made a difference. 
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Krystal’s score on the Procedural Pre-Test was 76.5%. On her Initial Survey, 

Krystal rated her confidence in her procedural ability in the operations on fractions as 

“somewhat confident” (Appendix J). However, Krystal’s score on her Conceptual Pre-

Test score was 54.9%. For her conceptual understanding of the meaning behind the 

operations on fractions and in her understanding of the ‘why’ behind the conventional 

algorithms of adding, subtracting, and multiplying fractions, she rated her confidence as 

“slightly confident” (Initial Survey, Appendix J). For her conceptual understanding of 

fraction division, Krystal selected “not at all confident” (Initial Survey, Appendix J) in 

her understanding the ‘why’ behind the conventional algorithm.  

During the study, Krystal gave accounts of her use of manipulatives that seemed 

somewhat at odds. On her Initial Survey, Krystal indicated that she was “very familiar” 

(Appendix J) with manipulatives during her own learning experiences. However, during 

her Pre-Instruction Task-based Interview, Krystal stated, “I don’t recall using 

manipulatives when we were in school.”  

From Pre- to Post-Test, Krystal demonstrated positive gains on both the 

Procedural and Conceptual Tests. Table 15 shows Krystal’s scores, as well as the changes 

from Pre-Tests to Post-Tests. 

Table 15  

Krystal’s Procedural and Conceptual Knowledge 

 Pre-Test Post-Test Change 

Procedural 76.5% 85.3% +8.8%  

Conceptual 54.9% 56.9% +2.0% 
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Fraction multiplication. Data regarding Krystal’s procedural and conceptual 

knowledge of fraction multiplication were collected through Pre- & Post-Instruction 

Tests, Pre- & Post-Instruction Task-based Interviews, assessment, and observational data. 

In the next sections, these data are expounded upon. 

Pre-instruction data. On her Procedural Pre-Test, Krystal correctly calculated 

3
1

2
1
×  and 

5
33

6
12 ×  using conventional algorithms. However, Krystal did not calculate 

8
5

 of 2 as a multiplication problem. Instead, Krystal interpreted the problem as division 

and calculated the answer as 
16
5

.  

On her Conceptual Pre-Test, Krystal provided a pictorial representation that did 

not seem to be representative of 
8
5

 of 2, as shown in Figure 28 below. 

 

Figure 28. Krystal’s representation for 
8
5

 of 2 

Similarly, Krystal represented 
3
1

2
1
×  as two circles with one-half of the first circle 

shaded and one-third of the second circle shaded, as shown in Figure 29 on the following 

page. Krystal’s representation did not appear connected to the conceptual meaning of 

one-half of one-third. 
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Figure 29. Krystal’s representation of 
3
1

2
1
×  

On the Conceptual Pre-Test, Krystal was asked to determine the error in 

10
16

30
36

5
33

6
12 ==× . She converted both mixed numbers to improper fractions, 

renamed each using the common denominator of 30, added the numerators to obtain  

30
173

, and then simplified to 
30
235 . It seemed that Krystal added the two mixed numbers 

instead of multiplying them. 

During the Pre-Instruction Task-based Interview, Krystal was asked to 

demonstrate 6
4
3
×  using her choice of manipulatives. Krystal responded,   

“Um, you can’t have three-fourth of a group. So when we learn um, 

multiplication of fractions using manipulatives, we always started with the 

multiple… [self-corrected] multiplier, which is three-fourths. And that 

would’ve been three-fourth groups of six. But that’s a lot, so I’m gonna 

just you know um, what property is that? Commutative? Or associative? 

I’m just gonna swap them and do six groups of three-fourth.” 

At this point in the course, Mrs. Paige already provided instruction on multiplication with 

whole numbers and integers and used the correct terminology and meaning associated 
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with multiplier and multiplicand. However, use of a fraction multiplier had not been 

discussed or explored. 

Instead of modeling 6
4
3
× , Krystal seemed to capitalize on her knowledge of the 

commutative property to model 
4
36×  by making six groups of three-fourths using 

fraction circle pieces. She first determined the answer to be 
4

18
 and explained that 

eighteen-fourths is equivalent to eighteen one-fourths or ⎟
⎠
⎞

⎜
⎝
⎛

4
118 . She subsequently 

provided an equivalent answer of 
2
14  by moving the fourths pieces to create four wholes 

with two remaining one-fourths. During the interview, Krystal did not write down any 

procedures to calculate her answer.  

When Krystal was asked to generate a real-word scenario for 6
4
3
× , she generated 

seven scenarios as a part of her problem-solving process. Below are the seven scenarios 

Krystal generated over the span of approximately seven minutes: 

• I have six candy bars, and I’m going to give each friend three-fourth of each 

bar. How many candy bars are there total? 

• Let’s say if I have three-fourth of a bag of candy and I give them to six 

friends. How many do I have? 

• So if I have three-fourth of a bag of candy, six bags of three-fourths.  

• If I have six bags that hold three-fourth pieces of candy, how many… how 

much candy do I have? 
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• If I have three-fourth of a bag of candy, six three-fourth, how much do I have? 

• If I have six bags of candy, which hold three-fourth pieces of candy, how 

much ... And if I put all the candy in one big bag, if I wanted to give them ... 

No, that will be too much, I’m going into too many operations. Okay then, if I 

put them in one big bag, how many ... how much candy do I have? 

• Okay, so if I have six bags of candy which hold ... which measures ... which is 

three-fourth of a bag full. If I put all of my candy together, how many bags of 

candy can I make? 

For the first scenario, Krystal was asked what the scenario implied. Krystal responded, 

“Maybe an addition problem.” For the next five scenarios, Krystal was asked to clarify 

the appropriate unit of measure for each scenario. When Krystal voiced the final scenario 

and expressed her confidence in its correctness, she articulated the answer to be 
2
14  bags 

of candy. 

During this scenario-generating experience, Krystal referenced the importance 

behind the word of as it relates to multiplication. Krystal said, “Like especially because I 

said ‘of’. I said three-fourth of the bags. So that implies multiplication.” This reference 

may provide evidence of Krystal’s progressing conceptual knowledge.  On her 

Procedural Pre-Test for the problem 
8
5

 of 2, Krystal used division instead of 

multiplication. 

Pre-instruction data showed that Krystal’s procedural knowledge of fraction 

multiplication was fairly consistent. Krystal also demonstrated conceptual knowledge of 
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fraction multiplication in the form of 
c
ba× , where a, b, and c are Natural numbers. 

However, there may be gaps in Krystal’s conceptual knowledge of fraction multiplication 

in the form of c
b
a
× , where a, b, and c are Natural numbers. Finally, Krystal’s use of 

manipulatives to demonstrate her conceptual knowledge was generally meaningful.   

Observational and assessment data. During course instruction addressing 

fraction multiplication, Ms. Paige asked students to model 
2
11

2
11 ×  as 

2
3

2
3
×  because 

another student questioned whether the concrete representations would be the same even 

though the symbolic representations were different.  

Krystal began with three pink one-half pieces. To show that she halved the 
2
3

, 

Krystal placed one yellow one-fourth piece on each of the pink halves. She then used the 

three pink one-half pieces and the three yellow one-fourth pieces to represent her final 

answer of 
4
12 . 

Krystal’s Problem Report provided further evidence of her developing conceptual 

knowledge of fraction multiplication. The Problem Report was an out-of-class 

assignment that was based on an in-class activity. The problems on the assignment that 

were similar to Pre-Test and interview problems were 2
3
2
× , 

4
3

2
1
× , 

4
3

3
2
×  and 

2
11

2
11 × .  
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For the problem 2
3
2
× , Krystal provided a region model representation, as shown 

in Figure 30. The phrases “I have shown 
3
2

 of a group of 2” and “1 group of 
3
2

” that 

Krystal used did not seem aligned. 

 

Figure 30. Krystal’s representation for 2
3
2
×  

To show 
4
3

2
1
× , Krystal provided a region model and justification, as shown in 

Figure 31. Ms. Paige noted on the assignment that Krystal did not provide sufficient 

pictorial justification for her answer.  

 

Figure 31. Krystal’s representation for 
4
3

2
1
×  
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Krystal’s pictorial representation and justification for 
4
3

3
2
×  are shown in Figure 

32. Krystal’s explanation of “from each shaded 
4
1

we take account of 2 of the 3 parts or 

12
2

12
2

12
2

++ ” seemed indicative of the mathematics associated with using the 

distributive property and language associated with using a fraction as an operator. The 

symbolic representation that aligns with Krystal’s verbal representation is ⎟
⎠
⎞

⎜
⎝
⎛ ++

4
1

4
1

4
1

3
2 , 

while the symbolic representation that aligns with Krystal’s pictorial representation is 

12
2

12
2

12
2

12
3

12
3

12
3

3
2

++=⎟
⎠
⎞

⎜
⎝
⎛ ++ . The writing on Krystal’s paper was done by Ms. Paige 

as she graded Krystal’s paper. 

 

Figure 32. Krystal’s representation for 
4
3

3
2
×  

For 
2
11

2
11 × , Krystal included a reference to the distributive property and 

decomposing fractions shown on the following page in Figure 33. She provided a 
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pictorial representation that effectively models the problem and is aligned with her 

symbolic and written explanation. 

 

Figure 33. Krystal’s representation for 
2
11

2
11 ×  

In Krystal’s reflective part of the assignment, she first referenced learning the 

“why about multiplying fractions.” She indicated that the “investigation influenced [her] 

views on teaching fractions as a teacher.”  Krystal also stated that she learned what 

multiplying fractions means, that the manipulatives were a great help, and that her 

understanding deepened “tremendously.” Krystal shared, “Although I thought I 

understood fractions, I really didn’t have a deeper knowledge of fractions that I now 

have.” 

Observational and assessment data provided evidence of Krystal’s developing 

conceptual knowledge of mixed number multiplication and the distributive property of 

multiplication. Krystal’s use of manipulatives and pictorial representations to 

demonstrate her conceptual knowledge of fraction multiplication was generally 

meaningful.  
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Post-instruction data. Krystal demonstrated positive gains from the Pre-Tests to 

the Post-Tests. The larger of the two gains was on her Procedural Post-Test, a gain of 

8.8%. Part of this gain can be attributed to Krystal’s improvement on the problem 
8
5

 of 2. 

Instead of dividing, as she did on the Pre-Test, Krystal wrote the problem as 

multiplication, 
1
2

8
5
× , and provided the answer 

8
10

. 

On her Conceptual Post-Test, Krystal realized an overall gain of 1.96%. Part of 

Krystal’s overall gain included improvement on two of the three fraction multiplication 

problems. For 
3
1

2
1
× , Krystal appeared to demonstrate increased conceptual knowledge 

of using a fraction operator, as shown in Figure 34. However, Krystal did not partition the 

whole circle into sixths to demonstrate why one-half of one-third is 
6
1

. 

 

Figure 34. Krystal’s representation of 
3
1

2
1
×  

Similarly, Krystal exhibited improvement from Conceptual Pre-Test to Post-Test 

on the fraction multiplication problem, 
8
5

 of 2, shown in Figure 35 on the following page. 

As noted earlier, Krystal shaded five-eighths of one on the Conceptual Pre-Test instead of 
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five-eighths of two. Krystal’s work on this problem is similar to her work for 2
3
2
×  on 

the Problem Report mentioned earlier. 

 

Figure 35. Krystal’s representation for 
8
5

 of 2 

For the remaining multiplication problem, 
5
33

6
12 × , Krystal noted that the error 

was “distributing the whole numbers” and “distributing the fractions.” While her meaning 

was not completely clear, it is possible that she was aware of the need for the partial 

products of  3
6
1
×  and 

5
32×  to be included in the product since she accurately used the 

distributive property to multiply two mixed numbers on her Problem Report.  

During the Pre-Instruction Task-based Interview, Krystal was asked to use 

manipulatives to demonstrate 
4
3

3
2
× . Krystal asked, “Do I have to use the manipulatives 

first before I do the algorithm?” When she was told that it was her choice, Krystal 

responded, “Okay, because that’s going to kill me. I just want to simplify it right off the 

bat (Laughter). Because if we cross simplify [moved her hands to make an X as she said 

‘cross simplify’], the answer will be one-half.” When she was asked to justify her answer 

with a manipulative, Krystal whispered, “I’ll try my best.” Krystal’s question and 
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responses may be signs that she was more confident in her procedural knowledge than in 

either her conceptual knowledge or her use of manipulatives.  

Similar to her performance on the Conceptual Pre-Test for 
3
1

2
1
× , Krystal literally 

modeled the multiplier 
3
2

 and the multiplicand 
4
3

 using fraction circles. Krystal began, 

“Three-fourths is what we have.” Then, she modeled three-fourths using three yellow 

one-fourths. As she stated, “We’re doing two-thirds of this [three-fourths],” Krystal 

overlaid the fourths with two orange one-third pieces with the beginning edges of the 

fraction pieces lined up with one another, as shown in Figure 36. Krystal then filled in the 

gap with a one-twelfth piece. Krystal’s actions seemed to be aligned with addition and 

subtraction of fractions instead of fraction multiplication.  

  

Figure 36. Krystal’s initial representation of 
4
3

3
2
×  

As Krystal demonstrated 
4
3

3
2
× , she overlaid additional twelfths onto the orange 

thirds and stated, “That’s twelve-thirds.” When she was asked to clarify, she said, “Is that 

incorrect? Was I wrong? There are four-twelfths, four, whatever. (Laughs) There’s four 

of these twelfths that make up one-third.” Krystal continued,  

So, but three-thirds, we have twelve-thirds, twelve-fourths. We have 

twelve-fourths. Yeah, we have twelve of these fourths. Is that the correct 
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one? Oh my lanta. Am I saying the right one, Jesus. Okay. Let’s regroup. 

Three-fourths is what we have. I have two-thirds group of three-fourth. 

Two-thirds doesn’t cover or make up the full three-fourths. So, I added 

this 12th here [pointing to the one black twelfth that she overlaid in the 

gap]. Oh, Jesus, I’m getting hot. (Laughter). 

Throughout the interview, Krystal articulated 
4
3

3
2
×  several different ways. She 

initially voiced the four expressions listed below but was unable to produce a 

representation for these expressions. 

• Two-thirds group of three-fourths;  

• Two-third groups of three-fourths;  

• Two-thirds groups of three-fourths; and 

• Two-thirds group of three-fourth. 

After Krystal spent approximately six minutes working, I asked Krystal what 
4
3

3
2
×  

meant. Krystal responded, “I’m looking for two-thirds of a group of three-fourths.” When 

Krystal articulated ‘two-thirds of a group of three-fourths,’ she pointed to the orange 

thirds. I then asked, “What has to be done to the group?” Krystal responded, “I have to 

take two parts of three.” Immediately thereafter, Krystal demonstrated 
4
3

3
2
× , stated that 

the answer was one-half, and expressed confidence in her work. Krystal’s representations 

are shown in Figure 37 on the following page. 
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Figure 37. Krystal used twelfths to model 
4
3

3
2
×  

Krystal was then asked to generate a real-world scenario for 
4
3

3
2
× . Krystal 

stated, “I have three-fourths of a pizza for lunch. I ate two-thirds of that pizza. How much 

pizza did I eat?” Once she stated the scenario, she used the fraction circles to demonstrate 

the scenario in a manner similar to her previous demonstration. Krystal explained, “I ate 

two thirds of that slice, two-thirds of that slice, and two-thirds of that. So I ate two-thirds 

of each one-fourth.” Krystal concluded, “You will see that I ate half of my pizza which 

was once a whole pizza.” She also commented, “You have to make sure that your 

language is correct. That’s what I’ve been working on since.” 
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Summary of fraction multiplication. Krystal’s procedural knowledge appeared to 

be consistent from Pre-Test to Post-Test. From pre-instruction to post-instruction, Krystal 

seemed to make progress in her conceptual knowledge of fraction multiplication, but may 

still have gaps in her conceptual knowledge. On the six different fraction multiplication 

problems involving a fraction multiplier, Krystal tended to use alternative strategies to 

determine the answers instead using the fraction multiplier as an operator on the 

multiplicand. For example, Krystal appeared to use the commutative and distributive 

properties of multiplication on 6
4
3
×  and 

4
3

3
2
× . It also appeared that Krystal made 

progress in her ability to generate real-world scenarios for fraction multiplication. 

Fraction division. Assessment, observational, and interview data were collected 

regarding Krystal’s procedural and conceptual knowledge of fraction division. In this 

section, the data is expounded upon. 

Pre-instruction data. Krystal correctly answered the four fraction division 

problems on the Procedural Pre-Test using the conventional algorithm of inverting the 

divisor and multiplying. For each of the three problems that involved a whole number, 

Krystal rewrote the whole numbers using equivalent fractions. For example, Figure 38 on 

the following page shows Krystal’s work for 
8
32÷ . Krystal also used the conventional 

algorithm of cross simplification once she changed the problem to multiplication. 
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Figure 38. Krystal displayed procedural knowledge of fraction division 

On the same four fraction division problems on the Conceptual Pre-Test, Krystal 

earned full credit on one of them, 3
3
12 ÷ . For this problem, Krystal stated, “less than 1 

because 
3
12  is being divided by a number greater than its value.” For the remaining 

division problems, Krystal’s pictorial representations showed evidence of the 

measurement interpretation of division, as shown in Figure 39. 

 

 

Figure 39. Krystal’s initial conceptual knowledge of fraction division 

During the Pre-Instruction Task-based Interview, Krystal was asked to 

demonstrate 
3
23÷  using manipulatives. Her immediate reaction was to chuckle. When 

Krystal was questioned about her reaction, she stated, “Oh, really. I mean of course I 
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know how to do it um, written. But…” After about one minute, Krystal said, “I don’t 

know how to start. Because you need three wholes and you need to divide it by two-

thirds.” 

Krystal used fraction circles to demonstrate 
3
23÷ , shown in Figure 40. After she 

represented the fraction division, Krystal procedurally worked the problem, produced the 

answer 
2
14 , and commented that her manipulative model was not aligned with her 

procedural answer. 

 

Figure 40. Krystal’s initial representation of 
3
23÷   

After generating her first representation for 
3
23÷ , Krystal stated, “Three divided 

by two-thirds. You’re trying to find out how many times two-thirds can go into three.” 

Krystal communicated that go into was not proper terminology as she generated the 

model shown in Figure 41. 

 

Figure 41. Krystal’s second representation of 
3
23÷  
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Subsequently, Krystal said, “If I have two-thirds, I’m trying to get it to make three 

wholes. Let’s see how many two-thirds to make three wholes.” Krystal moved the thirds 

to make three whole circles, as shown in Figure 42. 

 

Figure 42. Krystal’s third representation of 
3
23÷  

While this is an effective representation of 
3
23÷  using the measurement 

interpretation of division, Krystal had difficulty interpreting the remaining one-third. 

Krystal said, “I still don’t know what is the half. So, I’m still missing something. A lot in 

fact, quite a bit.” Krystal added, “And now despite this [referring to the extra one-third], 

which was just out here, I have three. So I’m closer. (chuckled) So I guess um, the 

missing link is how I interpret the reciprocal.” For approximately three more minutes, 

Krystal continued to work through the problem. She mentioned division, groups of two-

thirds, and that she felt like she had done this previously. However, Krystal was not able 

to resolve her perceived misalignment with her procedural answer and her manipulative 

representation. 

During the interview, Krystal was asked to generate a real-world scenario for 

3
23÷ . Krystal said, “If I have three pizzas, and I give my friends two-thirds of each 

pizza, how many pieces do I have?” Krystal demonstrated her scenario using the orange 

fraction circle pieces (see Figure 40) as she said, “I take two-thirds of each pizza, then I 
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will have one-third of each pizza left. However, that’s not the result.” Krystal continued, 

“The answer would be four and one-half. So, I only have three one-thirds. But I feel like 

that doesn’t make sense.” Krystal was not able to reconcile her answer of 
2
14  with her 

real-world scenario and the fraction circles she used.  

 Pre-instruction data suggested that Krystal’s procedural knowledge of fraction 

division appeared to be greater than her conceptual knowledge. During her interview, 

Krystal appeared to have exhibited more confidence in her procedural knowledge than in 

her conceptual knowledge. The pictorial, verbal, and concrete representations that Krystal 

provided for fraction division seemed aligned with the measurement interpretation of 

division.  

Observational and assessment data. Krystal appeared to display knowledge of 

the measurement interpretation of division during a class discussion about fraction 

division. During the previous class meeting, the class solved the following problem:  

Rachel has 5 flower beds to fertilize. She knows the square footage of the 

flower beds and the “per square foot” information on the fertilizer bag. 

She figures out that a bag of fertilizer will cover 
4
3

 of a flower bed. How 

many bags of fertilizer will she use? 

At the beginning of class, the class revisited the solution and discussed why the 

traditional algorithm works and what it means. When Ms. Paige asked what type of 

division the problem was, Krystal stated, “Measurement.” Ms. Paige responded, “I 

already know how much I am measuring out. What am I looking for?” Krystal answered, 
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“Groups.” When Ms. Paige did not respond, another student in the class clarified, 

“Number of groups.” 

Following the discussion about the flower bed/fertilizer problem, the class 

explored a real-world context problem about sharing a 4-ft. party sub-sandwich. In the 

scenario, each person received 
4
1

ft. of the sub-sandwich, for which the instructor wrote 

on the white board 
4
14÷ . The class was tasked with using a number line to model the 

problem and determine the number of people who could be served. Krystal volunteered to 

demonstrate the problem at the white board. She used a number line representation and 

partitioned each foot into fourths. As she drew, Krystal used recursive partitioning 

(Confrey et al., 2009) as she halved each whole, and then halved the halves to get fourths. 

As Krystal carried out this action, she stated, “When we do that, we find that there are 

sixteen equal parts in our whole.”  

After the discussion about the sandwich being shared, the class explored another 

fraction division problem using pattern blocks. As the class explored 
2
1

4
3
÷  using pattern 

blocks, Krystal seemed to confuse dividing by one-half and dividing in half. Ms. Paige 

suggested to students to use the hexagon pattern block as the whole. By using the 

hexagon as the whole, students had to use the brown right trapezoid as one-fourth (See 

Appendix L).  

Krystal worked with another student to represent the problem. Once Krystal and 

her partner had three brown right trapezoids to show three-fourths, Krystal placed three 

orange square tiles vertically on top of the trapezoids. As she did this, Krystal said that 

each fourth needed to be divided in half. By dividing the fourths in half, Krystal may 
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have confused dividing by one-half with dividing in half, which is equivalent to dividing 

by two. In addition, placing the square tiles vertically on the trapezoids did not partition 

each trapezoid into two equal parts. Krystal stated that her answer was six-fourths, which 

is correct but not aligned with the action she performed with the manipulative. It seems 

possible that Krystal’s response was based on her procedural knowledge rather than her 

work with the manipulatives. 

Observational data showed that Krystal appeared to have some conceptual 

knowledge of the measurement interpretation of fraction division, but she seemed to use 

that knowledge inconsistently. Her use of pictorial and concrete representations seemed 

generally meaningful. 

Post-instruction data. In keeping with her performance on the Procedural Pre-

Test, Krystal correctly answered all four of the fraction division problems on the 

Procedural Post-Test. Krystal improved from Conceptual Pre-Test to Post-Test on one of 

the four fraction division problems, 
4
36÷ .  

Krystal’s Post-Test response for 
4
36÷ , shown in Figure 43 on the following page, 

provided more insight into her conceptual knowledge than her Pre-Test response offered. 

Krystal explained multiplying 6
3
4
×  by stating, “It takes 

3
4

 to make 1.”  
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Pre-Test 

 

Post-Test 

 

Figure 43. Krystal demonstrated some progress toward relational understanding 

Krystal’s responses for 
4
3

2
11 ÷  and 3

3
12 ÷ , shown in Figure 44, showed less 

evidence of an improvement in her conceptual knowledge of fraction division.  

 

 

Figure 44. Krystal’s Conceptual Post-Test answers for fraction division 



220 

During her Post-Instruction Task-based Interview, Krystal was asked to model 

2
1

6
5
÷  using manipulatives. Krystal began, “This is what we have. It’s five-sixth divided 

by a half. So, we could either cut each, not cut, but um, partition each part into half and 

add them up.” As Krystal explained that she could partition each part into half, she used 

her index finger to imitate the action of cutting one of the sixths in half. Krystal then 

overlaid a one-tenth piece onto one of the sixths. Krystal immediately stated that the one-

tenth was not half [of the sixth] and removed it. Krystal continued, “Or we could just, 

because we did it in class before, take half of the five-sixth.” To show what she meant, 

Krystal laid a pencil vertically such that it split the five-sixths in half, as shown below in 

Figure 45.  

 

Figure 45. Krystal first representation for 
2
1

6
5
÷  

After an approximate 10-second delay, Krystal was asked, “So, what would that 

answer be?” Krystal responded, “In my mind, I’m thinking two and a half. I’m just trying 

to make sure.” Up to this point, there was no evidence that Krystal attempted to work the 

problem procedurally. Krystal appeared to keep her attention focused on the manipulative 

to explain her answer.  

To justify her answer of 
2
12 , Krystal explained that she would use one-half of the 

first sixth with one-half of the second sixth to make one; one-half of the third sixth with 
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one-half of the fourth sixth to make one; and have one-half of the fifth sixth left. Taking 

her explanation into consideration, Krystal would have been correct for 
6
5

2
1
×  if she had 

said “two and a half sixths” or 
1
22

6
 because that answer is equivalent to 

12
5

.  

When Krystal was asked which model of division she was using, she answered, “I 

am using…measurement.” Krystal then continued to justify her answer by saying, 

“Because, um, you know, it will be like how many halves can, I don’t want to say go 

into, but how many halves can we make from five-sixths. And that will be two and a 

half.” Krystal’s interpretation of measurement division was correct: the number of halves 

that can be made from five-sixths. However, her answer, two and a half, was not correct. 

When Krystal was asked if there were any of the manipulatives that could justify 

her answer, Krystal picked up a black one-twelfth fraction piece and overlaid it onto a 

one-sixth piece, laid another twelfth adjacent to the previous twelfth. To verify that she 

had twelfths, Krystal quietly counted and decided that she was correct. Krystal overlaid 

more twelfths onto the sixths. Once she covered the five-sixths with twelfths, Krystal 

said, “Okay, five-sixths is equivalent to two, four, six, eight, ten-twelfths. Now, but we’re 

only looking for half of each part of five-sixth. So, take that half, and put that half, that 

half, that half, that half.” As Krystal explained, she removed every other twelfth from 

each of the sixths and put them beside the five-sixths fraction model, as shown in Figure 

46 on the following page.  
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Figure 46. Krystal’s second representation for 
2
1

6
5
÷  

Krystal continued, “So, now we have half of each part and we have one half, two-

half, three, four, and five-halves, which is equivalent to two and one-half.” As she 

explained, Krystal pointed to the remaining twelfths that were left overlaid on the sixths. 

As Krystal said “which is equivalent to two and one-half,” she rearranged the twelfths 

that she previously removed, as shown in Figure 47.  

 

Figure 47. Krystal’s representation for 
2
12  

When Krystal was asked to clarify her answer of two and one-half, she answered, 

“Two and a half parts.” Shortly thereafter, Krystal stated, “It’s two and a half of five-

sixth.” When Krystal was asked if she was confident in her answer, she responded, “I 

am.” Krystal subsequently experienced confusion when she calculated the answer as 
3
21 , 

which was not aligned with her previous answer of 
2
12 .   

Once Krystal realized her answers did not match, Krystal was asked what it meant 

to divide by one-half. She immediately responded, “To take half of it or to multiply by 

2.” Krystal’s answer of “multiply by 2” seemed to point to her procedural knowledge of 
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the algorithm for dividing fractions, which is to multiply by the reciprocal of the divisor. 

As Krystal explained that she had to multiply by two, she created two sets of five-sixths 

using fraction circles. She also used the manipulatives to demonstrate equivalence 

between two sets of five-sixths and her answer of 
3
21 , as shown in Figure 48. 

6
5

1
2
×  

 

6
41  

 

3
21  

 

Figure 48. Krystal’s final representation for 
2
1

6
5
÷   

When Krystal was asked to explain her work, she said, “I multiplied by the 

reciprocal because [removes one-sixth from the whole] five-sixths is our referent whole, 

but we still have a missing part, and so we have to fill the missing part. So, we need to 

multiply by the reciprocal, which makes it, in this problem, a whole number.” As Krystal 

said ‘five-sixths is our referent whole,’ she removed the one-sixth that she previously 

used to create six-sixths, or one whole. Then, as Krystal said ‘we still have a missing 

part,’ she pointed to the empty space that remained since she removed the one-sixth 

piece. As she said ‘we have to fill the missing part,’ Krystal replaced the one-sixth piece 

to make one whole. One final statement that Krystal made in her justification was, “So, 

it’s like filling the whole, kind of.” Although Krystal was able to use manipulatives to 

demonstrate the action happening because of the algorithm of inverting and multiplying 

(two groups of five-sixths), it was not clear that Krystal possessed conceptual knowledge 

of why inverting and multiplying is an appropriate algorithm for dividing by fractions. 



224 

Summary of fraction division. Krystal appeared to make progress in her 

procedural and conceptual knowledge of fraction division during the fraction unit. 

However, there appeared to be continued gaps in her conceptual knowledge. For 

example, Krystal seemed to confuse dividing by one-half with dividing in half during a 

class activity and during the Post-Instruction Task-based Interview. Although Krystal 

verbally expressed measurement division correctly during her Post-Instruction Interview, 

she did not consistently use the information to demonstrate her knowledge. In some 

cases, Krystal appeared to use her procedural knowledge to determine how to use the 

manipulative to demonstrate fraction division. For example, during the Post-Instruction 

Task-based Interview, Krystal seemed to use her procedural knowledge of the algorithm 

to represent 
2
1

6
5
÷ . 

Summary for Krystal. Krystal’s procedural knowledge of fraction multiplication 

and division was generally consistent from Pre-Test to Post-Test. Krystal demonstrated 

an increase in her conceptual knowledge of fraction multiplication and division, yet her 

conceptual knowledge of these two fraction concepts was inconsistent. For example, at 

times, Krystal confused fraction multiplication with division. It also seemed that Krystal 

was more confident in her procedural knowledge than in her conceptual knowledge. At 

least once, Krystal appeared to use her procedural knowledge to guide her use of 

manipulatives. It also seemed that Krystal tended to use region models more than length 

models to demonstrate fraction multiplication and division. 

With respect to relational understanding, there were few instances of Krystal 

connecting her procedural knowledge to her conceptual knowledge. Therefore, the depth 

of Krystal’s relational understanding of fraction multiplication and division was unclear. 
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When Krystal was asked about her confidence in helping her future students develop 

relational understanding of fractions, she responded that she planned to “use tons of 

manipulatives.” Krystal expressed a desire to present fractions in ways that would engage 

students and “keep the classroom exciting,” like “ice cream, candy, books, games— 

nothing boring” (Semi-Structured Interview, p. 16).  

Jacob 

Jacob, a White American male in his late twenties, participated in this study in the 

fall of 2014 while he was a student in EDMG 1. Jacob was a non-traditional, full-time 

student enrolled in the middle grades education program. Jacob’s two chosen areas of 

specialty were mathematics and science. At the time of the study, he was married with 

one young son; his wife was an elementary teacher for a local school system. Jacob 

served in the military immediately after high school and completed two tours of duty in 

combat. He was originally from the northeast but lived in the southeast at the time of the 

study. 

In Jacob’s mathematics autobiography, he made positive and negative comments 

about his mathematics experiences. Jacob also shared information about his desire to be a 

mathematics teacher, as well as his views on the usefulness of mathematics. Jacob 

indicated that he chose to become a middle grades mathematics teacher because he loves 

teaching and believes middle grades is where most students learn to love mathematics or 

to hate it. He also stated that he hoped to be able to get more students to love 

mathematics than to hate it.  

Jacob referenced a specific experience that sparked his interest in becoming a 

mathematics teacher. Jacob shared that, until he took Trigonometry/Pre-Calculus, 
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mathematics came very easy to him. He wrote, “I could not grasp the concepts of 

Trigonometry/Pre-Calculus it was totally foreign to me” (Mathematics Autobiography, p. 

1). Jacob further stated, “The class made me rethink everything I thought I knew about 

math” (Mathematics Autobiography, p. 1). Jacob explained, “I had to go back to the 

basics and figure out the ‘how’ and the ‘why’ math worked and not just the memorization 

of math” (Mathematics Autobiography, p. 1). Consequently, Jacob decided, “If I could 

resolve this problem at the source, than [then] it would help a lot of students so they 

didn’t have to be in my shoes” (Mathematics Autobiography, p. 1). 

Jacob also shared his views on the importance of learning math. He wrote, 

“Students today don’t fully understand the gravity of what math really does for us as a 

society and how it plays major roles in all aspects of our lives.  Today, to [too] many 

students think that math does not need to be learned because it can just be done on a 

computer” (Mathematics Autobiography, p. 1). Jacob also noted that math is very 

important and is used in everyday life around the world. Jacob’s views on what math 

does for us as a society, how math plays major roles in all aspects of our lives, and is 

used in everyday life around the world may have been related to his life experiences in 

the military. 

Jacob specifically named his favorite mathematics subjects as geometry and 

algebra. He stated that he liked doing proofs and enjoyed working with angles, sides, and 

different shapes in geometry. With regard to algebra, Jacob stated that he liked solving 

the equations and figuring out the unknown. 

In Jacob’s Initial Survey, he rated his confidence in both his procedural ability in 

the operation on fractions and his understanding of the meaning of the operations on 
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fractions as somewhat confident (Appendix J). Jacob indicated that he was somewhat 

confident in understanding the ‘why’ behind the conventional algorithms of fractions. 

Jacob also noted on his survey that he learned math through memorization and repetition.  

On his Conceptual Pre-Test, Jacob wrote that he was not confident in any of his 

answers on the Pre-Test. Jacob also shared, “Drawing math problems examples is not 

something I have ever had to do. It [is] hard to put it in any other terms other than what it 

is.” Table 16 shows Jacob’s scores on all four tests as well as the change from Pre- to 

Post-Tests. 

Table 16  

Jacob’s Procedural and Conceptual Knowledge 
 Pre-Test Post-Test Change 

Procedural 88.2% 91.1% +2.9%  

Conceptual 45.1% 82.4% +37.3% 

Fraction multiplication. In the next section, data for Jacob’s procedural and 

conceptual knowledge of fractions are reported. Data collected included pre- and post-

instruction tests; observational and assessment data; and pre- and post-instruction 

interview data. 
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Pre-instruction data. Jacob correctly answered two of the three fraction 

multiplication problems on the Procedural Pre-Test: 
3
1

2
1
×  and 

5
33

6
12 × . For the mixed 

number multiplication problem, Jacob used the conventional algorithm of converting the 

mixed numbers to improper fractions, cross simplifying, and multiplying to obtain the 

answer 
5

39 . The problem Jacob missed on the Procedural Pre-Test was 
8
5

 of 2. He wrote 

the problem as division, 
8
52÷ , and used the conventional algorithm of inverting the 

divisor and multiplying to get his answer of 
5

16
.  

Jacob did not receive credit for any of the three multiplication problems on the 

Conceptual Pre-Test. For 
3
1

2
1
× , Jacob provided a pictorial representation that did not 

appear to be aligned with the conceptual meaning of fraction multiplication. Jacob’s 

representation is shown in Figure 49.  

 

Figure 49. Jacob’s representation for 
3
1

2
1
×  

Although Jacob did not get full credit on the Conceptual Pre-Test for 
8
5

 of 2, the 

drawing he provided on the Pre-Test, shown in Figure 50 on the following page, appeared 
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to be conceptually aligned with using a fraction as an operator. Using 
8
5

 as a multiplier 

means to split the multiplicand into eight equal parts; then keep (or shade) five of those 

parts. Since Jacob did not provide any information as to what the numerical answer was, 

it was not clear as to the depth of his knowledge.  

 

Figure 50. Jacob’s correct model for 
8
5

 of 2 

For the final fraction multiplication problem, Jacob was asked to determine the 

error in the problem 
10
16

30
36

5
33

6
12 ==× . Jacob did not provide an explanation about 

the error. Instead, Jacob worked out the problem using a conventional algorithm of 

converting the mixed numbers to improper fractions to obtain 
5

18
6

13
× , multiplying the 

numerators and multiplying the denominators to obtain 
30

234 , simplifying to obtain 
5

39 , 

and converting his answer back to the mixed number 
5
47 . 

During Jacob’s Pre-Instruction Task-based Interview, he was asked to use 

manipulatives to represent 6
4
3
× . Jacob immediately began to calculate the answer using 

cross simplification and multiplying the numerators and multiplying the denominators to 
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obtain the answer 
2
9 . As soon as he finished, Jacob reached for a set of fraction circles. 

Before Jacob opened the set, he put them to the side and began to draw six circles on 

paper, as shown in Figure 51. Although he stated that he did not remember the name of 

the manipulative, Jacob explained that his plan would be to use the fraction circles. Jacob 

continued by partitioning the six circles into fourths.  

 

Figure 51. Jacob’s pictorial representation for 6
4
3
×  

As Jacob pictorially represented his thinking, he also verbally explained. Jacob said,  

We’ll just use like pizza and pie…you’re going to have six of them 

[drawing six circles on the paper] make those into fourths, of course, equal 

parts, and then essentially it would be like three of each of the fourths, 

since multiplication is repetitive addition, and so on and so forth, so you’d 

just model it out to have, you’d have six pies, you take three-fourths of 

each, you’d essentially just add them together [counts by ones to eighteen 
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pointing to each fourth as he counts] you’d have eighteen-fourths, which 

would reduce down to… [mumbles, two, nine, four, half] 

After Jacob finished explaining, he again reached for a set of fraction circles, but he said 

he changed his mind because he was trying to think if there might be an easier way rather 

than opening all of the packages just looking for the fourths. Instead, Jacob chose the 

two-colored counters and said, “Essentially it’s going to be the same.” Although Jacob 

indicated that he did not know that the fraction circles were a region model and the two-

colored counters were a set model, he generated the manipulative representation shown in 

Figure 52 to represent 6
4
3
× . Jacob’s use of a set model and fraction circles was similar 

to the representations for three-fourths that he provided on his Conceptual Pre-Test. 

Six groups of four-fourths 

 

Six groups of three-fourths 

 

Figure 52. Jacob’s second representation of 6
4
3
×  

As Jacob demonstrated with the set model, he explained, “So you have six groups 

of essentially what is four-fourths so then you [removing one counter from each group] 

do that and you have six groups of three-fourths so then you would just count them all up 

[counts by ones to eighteen] so you have eighteen-fourths.” Jacob was asked to reconcile 

his answers 
2
14  and 

2
9  with the model he chose, the two-colored counters set model. 

Without hesitation, Jacob moved the 18 counters in order to have four counters in each 
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group. As Jacob worked, he explained, “If you reconsolidate to make a whole…the 

groups whole of being the group of four, four in a group and you reconsolidate so that 

there is four in each group, then you have one, two, three, four [groups], and then half a 

group left.” Jacob’s representation for this explanation is shown in the image on the left 

in Figure 53.  

Jacob also explained how to reconcile the model with his answer 
2
9

. Jacob said, 

“If you break them into half groups, so if your group is consistent of four, so then half the 

group would be consistent of two, so then if you make them all into groups of two, then 

you’d have nine ‘half’ groups.” Jacob’s representation for this explanation is shown in 

the image on the right in Figure 53. 

2
14  

 

2
9  

 

Figure 53. Jacob’s representations for his answers of 
2
14  and 

2
9  

Pre-instruction data showed that Jacob demonstrated flexibility in representing 

fraction multiplication using a variety of representations. However, it appeared that 

Jacob’s use of the multiplier and multiplicand in a fraction multiplication problem was 

not aligned with the conceptual meaning associated with those terms. Pre-instruction data 

also showed that Jacob’s procedural knowledge of fraction multiplication was 
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consistently demonstrated. Jacob’s Conceptual Pre-Test answer to 
3
1

2
1
×  may indicated 

that Jacob has gaps in his conceptual knowledge. 

Observational and Assessment Data. Jacob’s Problem Report, an out-of-class 

assignment based on an in-class activity, provided insight into Jacob’s developing 

conceptual knowledge of fraction multiplication. There were three problems on the 

assignment that were similar to Pre-Test fraction multiplication problems: 2
3
2
× , 2

4
11 × , 

and 
2
11

2
11 ×  . There was one problem that was also part of the Post-Instruction Task-

based Interview: 
4
3

3
2
× . 

To demonstrate 2
3
2
× , Jacob provided the region model shown in Figure 54, as 

well as an explanation to accompany his pictorial representation. Jacob interpreted 2
3
2
×  

as “two third groups of two.” Jacob indicated that each circle should be divided into three 

equal parts. Jacob then stated, “You will then take two of 1/3 from each whole.” Jacob 

concluded that his final answer was 
3
11 . 

 

Figure 54. Jacob’s representation for 2
3
2
×  
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The second fraction multiplication problem on the Problem Report that was 

somewhat related to the Pre-Test problem of 
8
5

 of 2 was 2
4
11 × .  The main difference 

between these two problems is that the multiplier for 2
4
11 ×  was a mixed number. Jacob 

wrote, “This problem is one and one fourth groups of two wholes.” Jacob began with two 

whole circles and then indicated, “You are going to want to take one fourth of the group 

of two whole. In order to do this you are going to dived [divide] the two wholes into four 

equal parts (this step will give you four one half).” Jacob provided a final answer of 
2
12  

along with the pictorial representation shown in Figure 55. 

 

Figure 55. Jacob’s representation for 2
4
11 ×  

The final problem on the Problem Report related to the Pre-Tests was 
2
11

2
11 × , 

which Jacob determined to be 
4
12 . Jacob noted that 

2
11

2
11 ×  means “one and one half 
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groups of one and one half.” Jacob’s pictorial representation is shown in Figure 56. The 

notes on his solution were written by Ms. Paige. 

 

Figure 56. Jacob’s representation for 
2
11

2
11 ×   

Jacob provided two methods for calculating the answer to 
4
3

3
2
× . In his first 

explanation, Jacob wrote, “Since you have three parts of the whole that you are working 

with (the 
4
3

) and the denominator (3 of the 
3
2

) you can simply take two of the 
4
1

 pieces 

from the whole of the 
4
3

.” Jacob’s representation is shown below in Figure 57. 

 

Figure 57. Jacob’s first representation for 
4
3

3
2
×   
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Secondly, Jacob renamed 
4
3

 as 
12
9

; then, he appeared to use the multiplier 
3
2

 as a 

fraction operator on the 
12
9

, as shown in Figure 58. Jacob explained,  

The second way to do it is when you have the whole divided and shaded 

into 
4
3

. You then divide each of the four 
4
1

 pieces into three more equal 

parts. This will make your whole divided into 12 equal parts. You will see 

that at this point you have a whole divided into 12 equal parts and 9 of 

those parts are shaded (
12
9

 of the whole is shaded this is because 
12
9

 is 

equivalent to 
4
3

). Now you take two [of] every three pieces are [and] 

partition them out. In the end you will have 6 of the 9 pieces portioned 

out. When you consolidate all your pieces you will see that you have six 

12
1

 pieces which is 
12
6

 and is equivalent to you[r] final answer of 
2
1

. 

  

Figure 58. Jacob’s second representation for 
4
3

3
2
×  

In the reflective part of the assignment, Jacob indicated that using the 

manipulative helped him to think about multiplying fractions in a manner other than 
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algorithmically. Jacob acknowledged that he usually performed the algorithm without 

thinking about what fraction multiplication means. He stated, “The manipulative made 

me think about what multiplication in and of itself really means ( ____ groups of ____) 

and how to be able to show that using manipulatives.” Jacob also communicated how his 

thoughts about teaching were impacted. He shared, “I came to realize that just teaching 

the basic algorithm would not be good enough.”  

Jacob noted that a breakthrough for him was trying to figure out how to multiply 

improper fractions, specifically 
2
3

2
3
×  instead of 

2
11

2
11 × . After class concluded the day 

fraction multiplication was explored using manipulatives, Jacob questioned the instructor 

about how to model 
2
3

2
3
× . They worked several minutes, trying various pictorial 

representations unsuccessfully. Next, they attempted to use manipulatives to represent the 

problem. After several minutes of the instructor and Jacob working, Jacob was able to 

demonstrate 
2
3

2
3
×  using fraction circles and using a fraction as an operator. Therefore, 

the instructor asked him to present it to the class during the following class meeting. 

At the next class meeting, Jacob used fraction circles to model 
2
3

2
3
× . He began 

with three pink halves and told the class, “Your problems [manipulatives] are supposed to 

be representative of your numbers.” Jacob continued, “The denominator [of the fraction 

multiplier] is two. You want to divide into two equal parts.” As Jacob explained, he 

demonstrated that only one of the halves needed to be split in half, as shown in the 

second image in Figure 59 on the following page. Each group, then, contained one pink 

half and one yellow fourth, which was equivalent to three-fourths. Jacob counted the 
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groups, “One group, two groups.” Next, Jacob said that they needed three groups of the 

three-fourths in order to show 
2
3

2
3
× . Jacob finished by putting the halves together to 

make one whole, one-half with two-fourths to make one whole, and had one-fourth 

remaining. Jacob’s representations are shown in Figure 59. 

  
 
Three-halves 

 
 
Three-halves 
split into two 
equal parts 

 
Three groups of three-
halves 

 
Two and one-half 

Figure 59. Jacob’s representations for 
2
3

2
3
×  

Finally, during a class discussion, another student generated a real-world context 

that the student believed to be aligned with 
4
316 × . The context involved 16 pans of 

barbeque, three-fourths of which had been eaten. Jacob questioned the appropriateness of 

the scenario with respect to the symbolic representation. Jacob asked, “Wouldn’t that be 

16
4
3
×  instead of 

4
316 × ?”  

Observational and assessment data collected during the fractions unit showed that 

Jacob appeared to have refined his conceptual knowledge of fraction multiplication. 

Jacob also demonstrated flexibility in using multiple representations for fraction 

multiplication.  
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Post-instruction data. On the Procedural Post-Test, Jacob calculated 
3
1

2
1
×  as 

6
1

and 
5
3

6
12 ×  as 

5
47  using the conventional algorithm he used on his Procedural Pre-Test. 

For the problem 
8
5

 of 2, Jacob first treated the problem as division, changed the problem 

to 
2
1

8
5
× , and wrote 

16
5

 as the answer. However, Jacob erased his work and replaced it 

with the answer 
16
10

 without showing work.  

On the Conceptual Post-Test, for 
8
5

 of 2, Jacob drew two circles, each partitioned 

into fourths, and shaded five parts, which was similar to his work on the Conceptual Pre-

Test. Jacob duplicated this representation and interpreted his answer as 
16
10

, as shown in 

Figure 60. 

 

Figure 60. Jacob’s representation for 
8
5

 of 2 

Also similar to his Conceptual Pre-Test, Jacob did not communicate a specific 

error in 
10
16

30
36

5
33

6
12 ==× . Instead, Jacob again applied his procedural knowledge to 
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calculate the answer as 
5
47  using the standard algorithm of converting each to improper 

fractions, cross simplifying, and multiplying.  

Finally, Jacob’s pictorial representation for 
3
1

2
1
×  on his Conceptual Post-Test is 

shown in Figure 61. Jacob’s representation appeared to be a mixture of a set model and a 

region model, both of which he used separately during his Pre-Instruction Task-based 

Interview.  

 

Figure 61. Jacob’s representation for 
3
1

2
1
×  

During his Post-Instruction Task-based Interview, Jacob was asked to use 

manipulatives to represent 
4
3

3
2
× . He began by interpreting 

4
3

3
2
×  as “

3
2

 grp of 
4
3

,” 

which is what he wrote on his task paper. Jacob first modeled the multiplicand using 

three yellow one-fourth fraction-circle pieces and the multiplier using two orange one-

third fraction-circle pieces. For several minutes, Jacob overlaid the orange thirds and the 

black twelfths onto the yellow fourths. When Jacob was asked about his thinking, he 

responded, “It would be two-thirds groups of three-fourths so I was modeling three-

fourths and then I was looking at two-thirds compared to that.” The series of pictures in 



241 

Figure 62, progressing from left to right, illustrate the process Jacob went through as he 

represented 
4
3

3
2
×  using fraction-circle manipulatives. 

   

  

 

Figure 62. Jacob’s process as he represented 
4
3

3
2
×  

Immediately thereafter, Jacob was asked the reason why he was comparing two-

thirds to three-fourths. As Jacob continued to overlay the yellow and orange fraction-

circle pieces, Jacob began, “Because for multiplication it’s ‘two-thirds groups of three-

fourths’ so you’re seeing how…” Next, Jacob was asked what it meant to have two-thirds 

groups. He responded, “It means you’re not going to have a whole group, you’re going to 

have two-thirds of the group.” Jacob was then asked how the fact that two-thirds of a 

group of three-fourths is less than three-fourths aligned with the manipulatives. Jacob 

said, “So, you have your three-fourths, and you are trying to find out how much your 

two-thirds would take of that three-fourths.” As he explained, Jacob overlaid two orange 

thirds onto the three yellow fourths. For approximately two more minutes, Jacob 

continued manipulating the fraction pieces but did not appear to determine an answer to 

4
3

3
2
× .  
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Since Jacob appeared to stall in his progress, he was asked to model three-thirds 

of three-fourths because Jacob previously used that terminology. Once Jacob showed 

three yellow fourths, he was reminded that he stated earlier that two-thirds of that would 

be less than three-fourths. Immediately, Jacob said, “Got it.” He then explained and 

demonstrated how to use the fraction-circle pieces to arrive at one-half as the answer, as 

shown in Figure 63. Jacob said,  

Three-fourths. Your whole [red]. And this is three-fourths of it [first image 

from the left]. So three-fourths. So, your denominator of the two-thirds is 

three, and now you have three parts that you are working with because 

your numerator over here [
4
3 ] is three, how many parts you’re working 

with. So, your three is your new whole, and if you take two of those three 

[second image from the left] which is your new working parts, you have 

two-fourths which compared to a whole [third image] is a half [fourth 

image] so it would be one-half. 

 

Figure 63. Jacob’s second representation for 
4
3

3
2
×  

As he explained, Jacob referenced remembering the work he and the instructor had done 

to model 
2
3

2
3
×  and how they used the numerator and denominator of the fraction 

multiplier to operate on the fraction multiplicand. 
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When Jacob was asked about his confidence in his answer, he said, “Pretty 

confident. Extremely confident.” Jacob confirmed his answer procedurally by 

multiplying the fractions and simplifying; he also indicated that he had already mentally 

calculated the answer. Jacob shared, 

Sometimes it’s easier for me to do it that way and work backwards, and 

sometimes, um, it’s easier to go the other…I think it probably would be 

easier to just go without it [the answer] and being able to show it [the 

problem] without knowing the final answer as far as learning how to do it.  

That way you learn the process rather than learning how to figure out the 

answer. But, knowing the answer allows me to check what I am doing 

because I am not fully confident in my abilities. As you can see, it takes a 

while to get to the final answer. If I knew 100% what I was doing, I’d be 

like, ‘oh, there you go’ [referring to the manipulative that showed the 

answer of one-half]. So knowing the answer allows me to figure out the 

right way to show it. 

From the time Jacob was presented the task to the time he said ‘got it,’ almost 

eight minutes elapsed. Conversely, once Jacob stated that he ‘got it,’ it only took him one 

and one-half minutes, from beginning to end, to explain and demonstrate using the 

fraction-circle pieces.  

Once Jacob demonstrated 
4
3

3
2
× , he was asked to explain how the manipulative 

connects to a conventional algorithm. Jacob first reiterated what he shared earlier using 

two-thirds as a fraction operator on three-fourths. Then, Jacob was asked to explain how 
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the manipulative connects to the answer 
12
6 . Jacob first provided a pictorial 

representation, shown below in Figure 64. He stated that each of the shaded pieces were 

fourths. Based on the fact that he called them ‘fourths’ and the labels he provided for the 

circles, it appeared that Jacob considered each circle to be one whole.  

 

Figure 64. Jacob’s representation to justify 
12
6

4
3

3
2

=×  

After Jacob provided the pictorial representation in Figure 64, he decided to use 

the fraction-circle pieces to justify the answer 
12
6 . Jacob reverted back to modeling the 

problem as he had originally by overlaying the orange and yellow fraction pieces and 

filling in the missing piece. The images (from left to right) in Figure 65 show how Jacob 

used the manipulatives as he explained the connection.  

  

 

Figure 65. Jacob’s use of fraction-circle pieces as he explained the answer 
12
6  



245 

When Jacob was questioned about the use of the twelfths, Jacob said, “The 

twelfth is what the denominator is going to be up here [indicating procedural answer 

written on task paper], and it’s also what is left over when you overlay with the two-

thirds over the three-fourths.” When he was asked what operation he modeled, Jacob 

said, “I don’t really know. I don’t know if I’m really making a procedural connection to it 

or if I’m just trying to see the representation, the comparison of two-thirds to three-

fourths.” An excerpt from the transcript is provided below. 

Peppers: And what does your two-thirds represent in this problem? 

Jacob:  Um, the multiplier [sounds unsure] 

Peppers: Which tells you…? 

Jacob: Um, what you’re doing to the multiplicand [starts manipulating the 

fraction pieces] 

Peppers: Can you talk about what you are doing right now? 

Jacob: It takes four twelfths to make one-third and since you have two-

thirds that can fit onto…that fit with the three-fourths, um, that 

means that eight of the twelfths will fit on the two-thirds. So, then 

if you take two of every three, because of two-thirds… So, out of 

these three, take two; out of these three, you take two and then, 

what did I just do? 

Although Jacob appeared to be using the fraction two-thirds as an operator, the 

difficulty he experienced was likely related to the fact that Jacob was operating on the 

multiplier two-thirds instead of the multiplicand three-fourths. When Jacob was asked 

whether the whole he was working with was two-thirds, he responded, “No, the whole 

would be the three-fourths. I think that’s where I just screwed it up.” Jacob clarified,  
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So, [counting twelfths] nine-twelfths make up three-fourths, and eight-

twelfths make up the two-thirds, so then if you take two of every three of 

the twelfths, you’d get six-twelfths. I’m just trying to think if that happens 

to be a coincidence or if it’s actually a correct way of doing it. And the 

reason why the twelfths would come into play is because there is a twelfth 

left over of the two-thirds so then your new comparative whole would be 

the twelfths, finding out how many twelfths are in the three-fourths, and 

you’re taking two of every three of the twelfths. 

Although Jacob appeared to make progress toward justifying why the answer was 

six-twelfths, it seemed there were still problems with his justification. It is noteworthy 

that 
4
3

3
2
×  was on Jacob’s Problem Report and that Jacob provided two different correct 

methods for determining the answer. However, in the Problem Report, Jacob never 

seemed to connect the algorithm to the explanation he provided nor the pictorial 

representation. 

Finally, Jacob was asked to generate a real-world scenario for 
4
3

3
2
× . He 

generated the following scenario: “3 friends ate 
4
3  of a whole pizza that were all exactly 

the same size. How much did 2 of the three friends eat?” Jacob then revised his original 

scenario. His revised scenario was: “3 friends each had their own pizza. They each ate 
4
3  

of the pizza. How much pizza did 2 of the 3 friends eat of all 3 pizzas?” 
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Post-instruction data revealed that Jacob refined his conceptual knowledge of a 

fraction operator but still seemed to have gaps in his conceptual knowledge. The data also 

pointed to Jacob’s flexibility in using multiple representations.  

Summary of fraction multiplication. Jacob’s procedural knowledge of fraction 

multiplication was consistent throughout the data collected. His conceptual knowledge of 

fraction multiplication was not as consistent as his procedural knowledge. During the 

fractions unit, Jacob used manipulatives to explore fraction multiplication and, many 

times, successfully demonstrated a fraction operator in a multiplication problem using 

manipulatives. However, by the conclusion of the course, Jacob continued to experience 

some difficulty demonstrating a fraction operator using manipulatives. The difficulty 

Jacob experienced may have been due to interference of his procedural knowledge on his 

conceptual knowledge. Jacob’s use of manipulatives was a mixture of procedural and 

meaningful use. For example, during his Post-Instruction Task-based Interview, after 

Jacob demonstrated 
2
1

4
3

3
2

=×  meaningfully, his use of manipulatives to justify the 

algorithm for 
12
6

4
3

3
2

=× appeared to be procedural. 

Fraction division. Data collected regarding Jacob’s procedural and conceptual 

knowledge of fraction division are discussed in this section. These data were collected 

through pre- and post-instruction tests, pre- and post-instruction interviews, classroom 

observations, and assessments given by the instructor of the course. 
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Pre-instruction data. On the Procedural Pre-Test, Jacob correctly answered all 

four of the fraction division problems: 
4
36÷ , 

4
3

2
11 ÷ , 

8
32÷ , and 3

3
12 ÷ . Jacob’s work 

included the use of the conventional algorithm of fraction division, multiplying by the 

reciprocal of the divisor. His work also included the use of the conventional algorithm of 

cross simplification associated with fraction multiplication. In addition, below Jacob’s 

work for 
4
3

2
11 ÷ , he wrote, “Keep change flip.” 

Jacob earned partial credit on one of the four fraction division problems on his 

Conceptual Pre-Test, the real-world context that was aligned with 
8
32÷ . The real-world 

context was: “One serving of pizza is 
8
3  of a pizza. How many servings will be available 

in 2 pizzas?” Jacob’s work for this problem is shown in Figure 66. 

 

Figure 66. Jacob’s representation for the context problem for 
8
32÷  

Jacob left two of the fraction division problems blank: justifying why 
4
36÷  is 

greater than 6 and providing a pictorial representation to illustrate 
4
3

2
11 ÷ . To justify 

whether the quotient of 3
3
12 ÷  was greater than one or less than one without performing 

the division, Jacob answered, “If what your dividing by is 1 or greater.”  
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During his Pre-Instruction Task-based Interview, Jacob was presented with the 

task of modeling 
3
23÷  using manipulatives. After approximately one minute, Jacob 

began to work the problem procedurally but stopped prior to completing it. He turned his 

attention toward the manipulatives that were available but hesitated and said, “I’m not a 

big fan of fractions or manipulatives.” He continued,  

I’ve just never really been good at it, you know, like, as far as…as far as, 

like doing them [fractions] without using a calculator or anything like that. 

And as far as manipulatives, it was just never used growing up in math. 

Like the first time I used manipulatives was in the class I’m in now. So it’s 

kind of a new thing. 

Next, Jacob was asked what it meant to divide three by two-thirds. Jacob 

responded with a laugh, “You multiply it by its inverse: three-halves. Keep, change, flip, 

because I like multiplication better. I honestly don’t even know.”  

After one and one-half minutes, Jacob verbalized, “You have three wholes and 

you are dividing it by two-thirds.” Jacob clarified, “If you have three, and you’re 

breaking it up into two-thirds, then you have two-thirds of three.” During the interview, 

Jacob generated a pictorial representation for 
3
23÷ , shown in Figure 67 on the following 

page, but he did not attempt to use a manipulative to model the problem. Even though 

Jacob partitioned each circle into thirds, he stated that he was not sure why he did that. In 

addition, Jacob mentioned the two types of division, partitive and “multiple subtracting;” 

yet, it did not appear that he was able to capitalize on his knowledge of these types of 

division to model the fraction division problem. 
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Figure 67. Jacob’s representation for 
3
23÷  

During the interview, Jacob expressed his discomfort with using manipulatives, as 

well as some frustration at not knowing how to answer the questions he was being asked. 

Some of the possible signs of frustration that Jacob displayed during the interview were 

exhaling sharply; saying “I don’t even know anymore” and “I’m at a loss;” raising his 

hands in the air, which seemed to convey surrender; tapping and fidgeting with his 

pencil; laughter that did not seem indicative of humor; and swiveling his chair back and 

forth.  

Jacob’s pre-instruction data indicated that his procedural knowledge of fraction 

division was higher than his conceptual knowledge. Although he provided a 

representation for a real-world fraction division context problem, Jacob was not able to 

generate a real-world context for 
3
23÷ .  
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Observational and assessment data. Limited data were collected about Jacob’s 

progressing knowledge of fraction division during the fractions unit. However, during a 

class discussion about fraction division, Jacob inquired about the reason for the 

conventional algorithm of invert and multiply.  

The class was discussing a real-world context about people sharing a 4-foot sub-

sandwich, where each serving was 
4
1

 ft. long. Jacob asked, “What is your justification for 

telling someone to flip that over?” In response, Ms. Paige used her fingers and began 

counting fourths. She held up one finger to represent the first foot and counted off four 

servings, each 
4
1

 ft. in size. Likewise, Ms. Paige counted for each of the four feet and 

restated that there were four groups of four servings per group. To reinforce what she was 

doing, Ms. Paige wrote 4 groups × 
group 1

servings 4
= 16 servings on the board and simplified 

the unit group using dimensional analysis. Jacob indicated that he understood, and the 

class proceeded to another problem. 

Based on the limited data available through observations and assessments, it is not 

appropriate to draw any conclusions about Jacob’s developing procedural and conceptual 

understanding. It may be appropriate to state that Jacob seemed interested in 

understanding the reasons behind the conventional algorithm for fraction division, 

multiplying by the reciprocal of the divisor. 
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Post-instruction data. On his Procedural Post-Test, Jacob gained 2.9%, which 

was not surprising considering his high Pre-Test score of 88.2%. Jacob realized the 

largest gain (+37.3%) on his Conceptual Post-Test of all four participants in the study. Of 

Jacob’s 37.3% gain, 13.7% can be attributed to his answers on the fraction division 

problems. In this section, post-instruction data related to Jacob’s procedural and 

conceptual knowledge of fraction division are reported.  

As Jacob had done on his Procedural Post-Test, he received full credit for all four 

fraction division problems: 
4
36÷ , 

4
3

2
11 ÷ , 

8
32÷ , and 3

3
12 ÷ . The work shown on his 

Post-Test was similar to that of his Pre-Test, which included conventional algorithms 

associated with fraction division.  

In contrast to his Conceptual Pre-Test, Jacob received full credit on three of the 

four fraction division problems: 
4
36÷ , 

4
3

2
11 ÷ , and 

8
32÷ . Noteworthy with respect to 

Jacob’s possible preference toward procedures was the fact that Jacob provided a 

representation for 
4
36÷  without showing any procedural work. Also notable was the fact 

that Jacob wrote ‘grp’ beside the first three groups of three-fourths, which likely meant 

that he knew the answer represented the number of groups. Jacob’s work for 
4
36÷  is 

shown in Figure 68 on the following page. 
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Figure 68. Jacob’s representation for 
4
36 ÷  

Although Jacob earned partial credit for his response to 3
3
12 ÷ , shown in Figure 

69, it seemed that Jacob was comparing the sizes of the dividend and divisor to each 

other. 

 

Figure 69. Jacob’s response for estimating the quotient for 3
3
12 ÷  

Jacob began the Post-Instruction Task-based Interview by interpreting 
2
1

6
5
÷  as, 

“How many groups of a half can you make from five-sixths?” To demonstrate, Jacob 

used fraction circles, as shown in Figure 70 on the following page. Initially, Jacob 

explained, “You have one, and two-sixths left over and that’s a third.” However, he then 

calculated the answer to be 
3
21  and revised his explanation. Jacob said, 

So, you have your five-sixths. You have, ‘How many groups of one-half 

can you make from five-sixths?’ So, you have a half…that’s one half, and 
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you have some left over. Then you compare to the other half, and it’s not 

enough…not enough left…so you have two of the three parts left to make 

the other half [fourth image from the left], and since these are thirds, you 

have two-thirds, so you have one whole group of a half and two-thirds of a 

group of a half, so you have one and two-thirds. 

 

Figure 70. Jacob’s process as he modeled 
2
1

6
5
÷  

Once Jacob complete his explanation, he was asked to generate a real-world 

context for 
2
1

6
5
÷ . Jacob considered filling up bottles, as well as the amount of gas in a 

tank. However, he did not follow through with those scenarios. Instead, Jacob generated 

the following scenario to represent 
2
1

6
5
÷ : If you have 

6
5  cup of flour and you need 

2
1  of 

a cup to make a cake, how many cakes can you make? He provided the answer, one and 

two-thirds but added, “You can make one whole cake and then you’d be able to make 

two-thirds of another cake, not taking into account the old theory ‘can you really dig half 

a hole’, can you really make half a cake?” 

A marked difference between Jacob’s Pre-Instruction Interview and his Post-

Instruction interview was the manner in which he reacted toward using manipulatives. 

Initially, Jacob expressed not being a fan of manipulatives; subsequently, Jacob did not 

hesitate to reach for the manipulatives when he was presented the task. Another marked 

difference from the Pre-Instruction Interview to the Post-Instruction Interview was 
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Jacob’s demeanor during the interview. When Jacob was asked about his confidence, he 

first said, “I’m more confident now than I was walking out of our first session together 

[laughing]. Our first session, I was like, ‘I got a lot of work to do.’ Jacob also shared, 

Going into it, I went in with the overconfidence aspect of ‘it’s just 

fractions, it’s just division, it’s just multiplication, like it’s not that hard, 

it’s middle school. I was like, ‘Too easy.’ But, all this new light, I’m like, 

‘Wow, I didn’t know that.’ So, I thought I knew it all, but now I am 

realizing I don’t know it all, and I have so much more work to do. So, I’m 

less confident about it to where I have to keep striving to learn more at this 

point because I know that I don’t know it all like I thought I did, and I’m 

like, ‘Wow, I apparently had no clue.’ You know? I knew the algorithm, 

but I didn’t know all of this about it, so I am less confident.  

Post-instructional data showed that Jacob’s procedural knowledge of fraction 

division was consistent and was higher than his conceptual knowledge. Although Jacob 

increased his conceptual knowledge of fraction division, the data indicated that there are 

still gaps in his conceptual knowledge.  

Summary of fraction division. Although Jacob progressed in his conceptual 

knowledge of fraction division, it appeared that he continued to prefer using his 

procedural knowledge. As evidenced by his Conceptual Post-Test and Post-Instruction 

Interview, there continued to be gaps in his conceptual knowledge of fraction division. 

Finally, even though Jacob indicated that he was less confident than previously, he 

appeared somewhat confident in using manipulatives to model fraction division. 
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Summary for Jacob. After experiencing constructivist teaching during a 

manipulatives-intensive fractions unit in a middle grades methods course for prospective 

teachers, Jacob demonstrated gains in his conceptual knowledge of fraction 

multiplication and division as evidenced by data collected from tests, observations, and 

interviews. Additionally, Jacob demonstrated greater confidence using manipulatives 

than before the fractions unit. The increased confidence Jacob demonstrated might have 

been due to the increase in his conceptual knowledge of fractions. 

With respect to relational understanding, there was little data to confirm that 

Jacob achieved relational understanding in any of the areas examined. Jacob was not able 

to explain connections between his procedural and conceptual knowledge of fraction 

multiplication and division. Part of this inability might be attributed to the gaps that likely 

existed in his conceptual knowledge. When asked about his confidence in his ability to 

help his future students develop relational understanding, Jacob responded, “I am 

confident in my ability not to steer someone into left field, um, but I’m not a hundred 

percent confident of ‘I am the greatest teacher alive, this is how you do this.’ But I am 

more confident in my ability than I was before.” 

Matthew 

Matthew, a male student of Middle Eastern descent enrolled in the middle grades 

education program at the university, participated in this study while he was an EDMG-1 

student. Matthew’s two chosen areas of specialty were mathematics and science. 

Matthew was a non-traditional student in his mid- to late-twenties and single with no 

children. He was a student athlete at the university and worked part-time at a local 

athletic facility teaching lessons in his area of athletic expertise. Matthew previously 
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served in his country’s military, but not in a combat position. Instead, he served in a 

teaching capacity. 

In his mathematics autobiography, Matthew cited several reasons for wanting to 

become a mathematics teacher and shared multiple experiences that contributed to his 

desire to be a mathematics teacher. These experiences included family relationships, 

language difficulties, and life situations. 

Matthew’s stated that his grandmother was a mathematics teacher and was very 

influential in his understanding of mathematics. However, when his family relocated to 

another country, language barriers prevented his grandmother from continuing to teach 

mathematics. Although Matthew’s grandmother did not continue formally teaching 

mathematics, she continued helping him and, according to Matthew, passed her passion 

along to him. In fact, because of Matthew’s limited knowledge of the language in his new 

country of residence, he said that he depended on his grandmother and father for help 

understanding mathematics and other subjects when he started elementary school.  

Matthew shared a memory about using Cuisenaire rods to learn addition and 

subtraction that he said felt like occurred yesterday. Matthew wrote, “Using these bars 

was one of my favorite activities because it felt like I was playing with a puzzle 

especially in that period. The period where words did not really make sense to me and the 

only thing I could relate to was numbers because it was a universal thing” (Mathematics 

Autobiography, p. 2).  

In seventh grade, Matthew was accepted into a school that offered advanced math 

and science programs. He noted that geometry was one of his favorite subjects and that 

his grandmother helped to simplify the content. Matthew also shared that as he 
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progressed in school he began to analyze his teachers’ techniques and compare their 

techniques to how he would teach the content. 

After Matthew finished school, he served in his country’s army. He stated that his 

country’s army had an education corp that was responsible for educating the public about 

the army to try to connect the two parties. Matthew indicated that he was sent into 

schools to tutor students who were struggling with mathematics. He shared that, at first, 

tutoring was a challenge because he did not know what to expect. However, he 

subsequently felt more comfortable, and it became clear to Matthew that he wanted to be 

a teacher.  

Matthew’s indicated that his decision to become a math teacher was the result of a 

long process. He noted, “Teaching is an honorable profession and is one of the most 

important professions there are” (Mathematics Autobiography, p. 3). Matthew also wrote, 

“Teachers have the capability to change and improve people’s lives, and I want to 

become a teacher for one sole purpose, making a difference in other people’s lives” 

(Mathematics Autobiography, p. 3). In summary, Matthew wrote,  

My own thoughts of how a good teacher should be, my goals, along with 

the life experiences I picked up from my grandmother, my father, and my 

teachers all have an impact on why I want to be a teacher. Throughout my 

whole life, I have always had teachers who motivate me to succeed and 

accomplish my dreams. These great inspirational individuals have helped 

me shape my decision to pursue a teaching career (Mathematics 

Autobiography, p. 3). 
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In his Initial Survey, Matthew indicated that he was somewhat confident in his 

procedural ability in the operations on fractions and his understanding of the meaning of 

the operations on fractions. In addition, Matthew rated himself as somewhat confident in 

understanding the ‘why’ behind the conventional algorithms of fractions. Finally, despite 

recalling using Cuisenaire rods during elementary school, Matthew indicated he was only 

slightly familiar with using manipulatives. 

Matthew demonstrated an increase on his Conceptual Tests from Pre-Test to Post-

Test, but demonstrated a decrease on his Procedural Tests from Pre-Test to Post-Test. 

Table 17 communicates Matthew’s scores on all four of the tests, as well as the changes 

from Pre-Tests to Post-Tests. 

Table 17  

Matthew’s Procedural and Conceptual Knowledge 
 Pre-Test Post-Test Change 

Procedural 94.1% 91.2% – 2.9%  

Conceptual 74.5% 86.3% + 11.8% 

Fraction multiplication. Data were collected regarding Matthew’s procedural 

and conceptual knowledge of fraction multiplication prior to, during, and after fraction 

instruction. In this section, these data are reported. 
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Pre-instruction data. On his Procedural Pre-Test, Matthew demonstrated his 

procedural knowledge of fraction multiplication by correctly answering two of the three 

problems: 
3
1

2
1
×  and 

5
33

6
12 × . In Matthew’s work, he used of the conventional 

algorithm associated with fraction multiplication. For example, Matthew converted each 

mixed number to an improper fraction and then used cross simplification to determine the  

answer 
5
47 . 

On his Procedural Pre-Test, Matthew interpreted the problem 
8
5

 of 2 on his as a 

division problem and calculated the answer as 
16
5

. One notable difference between 

Matthew’s work and his peers’ work was the symbolic notation used. Instead of using the 

obelus (÷ ), Matthew used a colon (:) to indicate division. Matthew used a colon on two 

other fraction division problems on the Conceptual Pre-Test as well. In the United States, 

colons are commonly used when writing ratios, a comparison of two numbers. Matthew’s 

use of a colon could be related to his early educational experiences in his country of 

origin. 

Matthew’s representation on the Conceptual Pre-Test for the fraction 

multiplication problem 
3
1

2
1
×  contained an area model. Matthew also provided a 

verbal interpretation to accompany his pictorial representation, as shown in Figure 71 

on the following page. 
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Figure 71. Matthew’s representation for 
3
1

2
1
×  

For the problem 
8
5

 of 2, Matthew seemed to begin with a length model 

representation but provided a region model instead. Matthew’s work for 
8
5

 of 2 is shown 

in Figure 72.  

 

Figure 72. Matthew’s representation for 
8
5

 of 2 

To address the error in 
10
16

30
36

5
33

6
12 ==× , Matthew first noted that the error 

was multiplying the whole numbers and multiplying the fractions. Then, he referenced 

the need to convert first. Although he did not specify what he meant by convert, given 

that he provided procedural work alongside his explanation, it is likely that he meant that 

the mixed numbers needed to be converted to improper fractions. Matthew’s work is 

shown in Figure 73 on the following page. 
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Figure 73. Matthew’s justification for the error associated with 
5
33

6
12 ×  

During his Pre-Instruction Task-based Interview, Matthew first used two-color 

counters as a set model to represent 6
4
3
×  even though he stated that he was not aware 

of the type of model he was using. He also expressed concern about students thinking 

that the two-color counters represented positives and negatives instead of fractions. As 

Matthew arranged the counters, he stated that 6
4
3
×  meant three-fourth groups of six. 

Matthew also indicated that the 6 was the multiplier and 
4
3  was the multiplicand. Next, 

Matthew shared that he did not remember the meanings associated with the terms 

multiplier and multiplicand, but he clarified that his model represented, “Six of three-

fourths.”  Matthew’s representation is shown in Figure 74. 

 

Figure 74. Matthew’s first representation for 6
4
3
×  
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When Matthew was asked what his answer was, he worked the problem on paper 

using a standard algorithm of multiplying the numerators and the denominators and stated 

that the answer was 
4

18
 or 

2
14 . I asked Matthew, “Can you show me that in your 

model?” Once he considered it, he said, “No, I cannot. It’s not a good model.” He then 

decided to use fraction circles instead. Matthew placed four sets of three yellow one-

fourth fraction-circle pieces in front of him and said, “I have four times three-fourths.” 

He continued, 

I want to show, uh, six groups of, of three-fourths. Ah [says it as if he has 

just realized something]... six groups of three fourths. And here is three-

fourth groups of six. You see what I am doing is, I am using the property 

of multiplication, that you can, uh, it doesn’t matter if it’s six by three or 

three by six, but kids, they don’t know it. 

As Matthew verbalized six groups of three-fourths and three-fourth groups of six, he 

wrote the symbolic representations for each on his task paper: 
4
36×  and 6

4
3
× . Matthew 

subsequently provided the region model representation for 
4
36×  shown in Figure 75. 

4
36×  

 

2
14  

 

Figure 75. Matthew’s representation for 
2
14

4
36 =×  
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Next, Matthew was asked to reconsider the set model that he generated earlier and 

explain how the answer 
4

18  was evident in the set model (see Figure 74). Matthew stated 

that each of the counters represented one-fourth of one whole, where four counters 

represented four-fourths or one whole group.  

Once Matthew was asked to generate a real-world problem for 6
4
3
× , he indicated 

that he could generate a real-world problem if he knew how to model 6
4
3
× . Therefore, 

he again attempted to use the fraction circles to model 6
4
3
× . Matthew stated that he 

would be able to determine three-fourths of six by calculating two-fourths [of six] and 

one-fourth [of six]. Then, Matthew stated that he knew that one-half of six was three. 

Once Matthew calculated one-fourth of six by multiplying
2
11

4
16 =× , he demonstrated 

his answer using the fraction circles, as shown in Figure 76. 

Matthew began with six, the given 
number or multiplicand. 

 

Matthew showed that three-fourths of six 
is four and one-half. 

 

Figure 76. Matthew’s representation for 6
4
3
×  

Once Matthew demonstrated 6
4
3
× , he generated the following real-world context 

for the problem: “We have six pizzas. The dad of the family always eats three-fourth of 
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no matter what the order. We need to figure out how many pizzas he will eat.” Then, 

Matthew stated that the answer was 
2
14  pizzas. 

Pre-instructional data showed that Matthew progressed in his conceptual 

knowledge of fraction multiplication. He also demonstrated flexibility in using multiple 

representations.  

Observational and assessment data. During the in-class fraction multiplication 

activity, data were collected regarding Matthew’s use of both pictorial representations 

and manipulatives, primarily fraction circles. Matthew began the class activity by 

drawing pictorial representations. For 
2
1

2
1
× , Matthew stated that he should begin by 

drawing a representation of the first number. Matthew transitioned to verbally expressing 

the problem as taking one-half of one-half. As a result, Matthew drew a circle, halved it, 

shaded in half of it, and said that that was how much he had. Then, he verbalized that he 

needed to take one-half of that. To demonstrate, Matthew drew a line across the shaded 

one-half, which made it the equivalent fraction two-fourths. Finally, Matthew shaded 

darker one of the already-shaded fourths and showed it to his classmate Jacob to find out 

if Jacob agreed.  

Matthew transitioned to using fraction circle manipulatives because his poorly-

drawn representations caused him some confusion. After using the fraction circle 

manipulatives to model 
4
3

3
2
×  as ‘three-fourths of a group of two-thirds’ and as ‘two-

thirds of a group of three-fourths,’ Matthew realized that the respective processes were 

different from each other even though the resulting products were equivalent. Once 

Matthew was aware of how the process was affected by the use of the multiplier and 
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multiplicand, he began using these terms appropriately as he modeled the problems with 

the manipulatives. As he continued modeling fraction multiplication and mixed number 

multiplication with the fraction circle manipulatives and confirming his answers 

procedurally, Matthew became very excited about what he had done. 

Although Matthew used fraction circle manipulatives during the class activity, he 

used a length model pictorial representation on his Problem Report that he submitted for 

a grade. The work that Matthew represented for 
4
3

3
2
×  is shown in Figure 77.  

 

Figure 77. Matthew’s length model representation for 
4
3

3
2
×  

In the reflective part of the assignment, Matthew shared several positive 

comments related to the use of manipulatives to demonstrate fraction multiplication.  

• Working with manipulatives helped me to see how mathematics 

actually makes sense. 

• Teaching this topic to young adolescents with manipulatives will 

improve their sense making mechanism because they can see and 

even touch the answer. 
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• This investigation helped me understand the procedure, and it 

convinced me not to teach students procedures right away. 

• I learned during this investigation that even though we have the 

commutative property of multiplication, it matters which number is 

the multiplicand and which is the multiplier when we are trying the 

represent the problem with manipulatives and when we add 

context to the problem. 

Observational and assessment data showed that Matthew continued to 

refine his understanding of fraction multiplication. He also continued to 

demonstrate flexibility in his use of multiple representations. 

Post-instruction data. Matthew’s performance on fraction multiplication on the 

Procedural Post-Test was not like his performance on the Procedural Pre-Test on two 

problems, 
8
5

 of 2 and 
5
33

6
12 × . On the Pre-Test problem 

8
5

 of 2, Matthew interpreted it 

as division. However, on the Post-Test, Matthew interpreted the problem as 

multiplication and calculated the answer 
4
11

8
10

=  using the standard algorithm of 

multiplying the numerators and the denominators and simplifying.  

Matthew calculated 
5
33

6
12 ×  on the Procedural Pre-Test as 

5
47  but calculated it 

as 
5
413  on the Procedural Post-Test. Matthew first converted each mixed number to an 

improper fraction, cross simplified, and then multiplied the numerators and the 

denominators. His error occurred when he multiplied the numerators, 313× , and 
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produced 69 instead of 39. As a result, his answer was 
5
413 . This error was part of the 

reason Matthew’s Procedural Post-Test was 2.9% less than his Pre-Test. 

On his Conceptual Post-Test, Matthew’s pictorial representation for 
3
1

2
1
×  was a 

length model, whereas previously he used an area model. As shown in Figure 78, 

Matthew used solid lines to denote the thirds and dashed lines in each third to denote that 

the whole was partitioned into sixths.  

 

Figure 78. Matthew’s length model representation for 
3
1

2
1
×  

Conversely, Matthew’s pictorial representation for 
8
5

 of 2 was somewhat difficult 

to interpret, as shown in Figure 79. Furthermore, Matthew did not provide a numerical 

answer to accompany his pictorial representation. 

 

Figure 79. Matthew’s representation for 
8
5

 of 2  
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For the problem 
5
33

6
12 × , Matthew’s Conceptual Post-Test differed very little 

from his Pre-Test answer. He again noted that the error in 
10
16

30
36

5
33

6
12 ==×  was 

that the whole numbers and fractions cannot be multiplied separately; however, he did 

calculate the answer on the Post-Test as he had on the Pre-Test.  

To demonstrate 
4
3

3
2
×  as part of his Post-Instruction Task-based Interview, 

Matthew began with three yellow fourths overlaid on the red one whole. Then, Matthew 

overlaid two orange thirds onto the three-fourths, as shown in Figure 80. Matthew said, 

“We have to see how much is two-thirds out of…,” but he did not complete his sentence. 

Once Matthew was questioned about how he was using the manipulative, he said, “I want 

to see what part of two-thirds from three-fourths.”  

 

Figure 80. Matthew’s first representation for 
4
3

3
2
×  

As Matthew considered how to progress, the following exchange took place between him 

and the researcher: 

Matthew: Well, I want to see what’s, what part of um, two-thirds 
from three-fourth. Fourths. So yeah I, I would say that 
probably I compared it. 

Peppers: Okay. How does that connect to multiplication, what you 
just said? 

Matthew: Well, because it’s two-thirds of three-fourth. Two-thirds, 
um, two-thirds groups. Two-thirds groups of three-fourths. 
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Peppers: Okay. 

Matthew: So ... well, I have to use the (laughs). I have to use um ... 
two-thirds and three-fourths. 

Peppers: What does it mean when you say two-thirds groups? 

Matthew: I don’t know. I mean ... what does it mean? 

Peppers: To say you have two-thirds groups? I believe that’s what 
you said, isn’t it? 

Matthew: Yeah. 

Peppers: Okay.  

Matthew: Okay, so let’s say I have um, that’s the part of what I have 
after that, so let’s say two-thirds of six, so that’s the part of 
s- the two-thirds that’s part of six. Um ... 

Peppers: Is that what you’re showing me with your manipulatives 
right now? 

Matthew: Yes. [sounds unsure of himself] 

Peppers: How? 

Matthew: That’s a better question. Um ... 

Peppers: What is the orange two-thirds of? 

Matthew: (sighs) Two-thirds of that ... mmm, okay. Two-thirds is 
the.. of the whole. 

Peppers: Okay. 

Matthew: Here we need to find the two-thirds of the three-fourths and 
yeah. So we need to see. We need to divide each one of 
them by three. [picks up two of the purple tenths and places 
them on one of the fourths, removes them] Is it this one? 
[picks up three black twelfths and places them on one of 
the fourths, continues by placing two more twelfths on the 
next fourth] Well, wait, we don’t need to do that [removes 
all of the twelfths], because it’s already divided by three. 
We have three parts and we consider only two. So if we 
consider only two, it’s gonna be half of the whole. So the 
answer is half. 
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The images in Figure 81 show Matthew’s process of representing 
4
3

3
2
× . 

   

Figure 81. Matthew’s process of representing 
4
3

3
2
×  

After Matthew explained and demonstrated 
4
3

3
2
×  using the fraction circle 

manipulatives, he was asked about his initial difficulty. Matthew stated that, because the 

first task involved fraction division, he had difficulty transitioning from division to 

multiplication. In addition, Matthew stated that he knew the answer was one-half and 

that, as a result, overlaying the thirds onto the fourths did not make sense because of the 

gap between the thirds and the fourths. 

Next, Matthew generated the following real-world scenario for 
4
3

3
2
× : “Three-

fourths of the students in the classroom are boys. Two-thirds of them are playing tennis. 

How many students are playing tennis in the classroom?” Matthew stated that the answer 

was half of the students. When he was asked to clarify with respect to his original 

question of how many students, Matthew said, “That’s how much because we can’t say 

how many. We will have to give actually the number of students and not the ratio.” 

Post-instruction data showed that Matthew’s procedural and conceptual 

knowledge of fraction multiplication was generally consistent. At times, Matthew 

experience some confusion, but he seemed to be able to resolve it. He also continued to 

demonstrate flexibility using multiple representations for fraction multiplication.  
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Summary of fraction multiplication. Considering that Matthew’s procedural 

knowledge of fraction multiplication was high at the onset of the course, the data 

collected showed limited evidence of improvement in this area, except for the problem 
8
5

 

of 2. Conversely, the data showed that Matthew made more progress in his conceptual 

knowledge of fraction multiplication than in his procedural knowledge. Even though 

Matthew demonstrated gains in his conceptual knowledge of fraction multiplication, the 

data collected showed that he continued to have areas of weakness. In general, Matthew 

demonstrated flexibility in his use of multiple representations for fraction multiplication, 

including length, area and set models as well as real-world contexts. Overall, Matthew’s 

use of manipulatives was a mixture of procedural and meaningful.  

Fraction division. Data collected regarding Matthew’s procedural and conceptual 

knowledge of fraction division are discussed in this section. These data were collected 

through pre- and post-instruction tests, pre- and post-instruction interviews, and 

classroom observations. 

Pre-instruction data. Matthew demonstrated his initial procedural knowledge of 

fraction division on the Procedural Pre-Test by correctly answering all four fraction 

division problems: 
4
36÷ , 

4
3

2
11 ÷ , 

8
32÷ , and 3

3
12 ÷ . As he procedurally calculated 

answers, Matthew used the standard algorithms associated with fraction division, 

including multiplying by the reciprocal of the divisor and cross simplifying.  

On his Conceptual Pre-Test, Matthew provided a pictorial representation for three 

of the problems, as well as the procedural calculations for each of those three, as shown 
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in Figure 82. Matthew’s representation for the context problem provided more insight 

into his conceptual knowledge of fraction division.  

 

Figure 82. Matthew’s initial conceptual knowledge of fraction division 

By the time Matthew’s Pre-Instruction Task-based Interview occurred, class 

instruction had already addressed the measurement interpretation of division using whole 

numbers and integers but not fractions. To demonstrate 
3
23÷ , Matthew used three red 

one whole circles from fraction circle sets and overlaid them with orange thirds, shown in 

Figure 83 on the following page.  As Matthew worked to make sense of his answer, he 

provided four different answers: 
3
14 , 

3
13 , 

2
11 , and 

2
14  (respectively).   
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Figure 83. Matthew’s demonstration of 
3
23÷  

As Matthew explained why he believed the answer was 
2
14 , he indicated that he 

mentally calculated the answer using the conventional algorithm of multiplying by the 

reciprocal of the divisor. Once he was asked to explain further, Matthew said, “Because 

we’re dividing it by two-thirds, what we [have] left is one-third, which is a half of two-

thirds.”  

Next, Matthew attempted to generate a real-world scenario for 
3
23÷ . The 

scenario was about having three pizzas that would be shared. Each person was supposed 

to eat two-thirds of a pizza. However, Matthew did not formulate a question for the 

scenario. He considered whether the answer could be 
2
14  people but decided the unit 

people was not appropriate. Then, Matthew altered his scenario such that two-thirds of a 

pizza was eaten each day. He asked, “How many days it’s going to take me to finish that 

pizza?” Matthew interpreted that the one-half in his answer represented one-half of a day. 

Matthew stated that he was not confident in his scenario, but he thought it was the best he 

could do at the time. 

Pre-instructional data showed that Matthew’s procedural knowledge of fraction 

division was consistent, while his conceptual knowledge was inconsistent. It appeared 

that Matthew had some gaps in his conceptual knowledge of fraction division. 
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Observational and assessment data. Limited observational and assessment data 

were collected regarding Matthew’s progressing fraction division knowledge. During the 

fractions unit, the class used manipulatives to model the measurement interpretation of 

fraction division in a real-world context, as well as without context. The real-world 

context problem was about flower beds being fertilized. Five flower beds were to be 

fertilized using bags of fertilizer that would cover three-fourths of each flower bed. The 

class modeled the problem using pattern blocks, represented it symbolically as 
4
35÷ , and 

discussed the reason for the standard algorithm of changing division to multiplication and 

inverting the divisor.  

Another context problem that was discussed was about a four-foot party sandwich 

that would be shared among guests. Each guest was to receive one-fourth of a foot of the 

sandwich, which was represented symbolically as 
4
14÷ . A pictorial length model 

representation was drawn on the white board and discussed.  

After the discussion concluded, Matthew inquired as to why inverting and 

multiplying was an appropriate algorithm. The instructor explained that each foot 

provided four servings and related that to the multiplication problem 44× . In addition, 

the instructor wrote the following on the white board: servings 16
group 1

servings 4groups 4 =× . 

The instructor noted that the unit group simplified and the unit servings remained as the 

unit for the answer. After the instructor provided the explanation, Matthew did not 

comment any further. 
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Based on the limited data available, it is not appropriate to draw any conclusions 

about Matthew’s progressing procedural and conceptual knowledge of fraction division. 

In addition, no data related to Matthew’s use of representations was collected. Therefore, 

no conclusions can be made at this point.  

Post-instruction data. Despite the fact that Matthew correctly answer all four 

fraction division problems on his Procedural Pre-Test, he only answered three of the four 

correctly on the Procedural Post-Test. For the problem Matthew answered incorrectly,

4
3

2
11 ÷ , he converted the mixed number to an improper fraction, inverted the divisor, 

changed division to multiplication, and cross simplified. However, instead of getting the 

answer 2 as he had on the Pre-Test, Matthew wrote 
2
1

 as his answer on the Post-Test. It 

was not clear as to why Matthew gave this answer. 

Matthew’s answers on the Conceptual Post-Test for fraction division also 

contained procedural knowledge, as shown in Figure 84. 

 

Figure 84. Matthew’s Conceptual Post-Test representations for fraction division 
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One particular difference between Matthew’s Post-Test representations for 
4
36 ÷  in 

comparison to his Pre-Test representation was the fact that he darkened in all of the 

fourths, whereas previously he left one-fourth of each whole unshaded on his Pre-Test.   

For the remaining fraction division problem, Matthew previously indicated on his 

Conceptual Pre-Test that the answer to 3
3
12 ÷  should be less than one because “3 does 

not fit into 
3
12  not even one time.” On his Conceptual Post-Test, Matthew noted that if 

the number used to divide by (divisor) is larger than the number being divided (dividend), 

the answer will be less than one. Matthew also provided the converse, that if the divisor is 

smaller than the dividend, the answer is larger than one. Matthew was able to articulate 

his generalization better on the Post-Test answer than he did on the Pre-Test. 

During his Post-Instruction Task-based Interview, for the problem 
2
1

6
5
÷ ,  

Matthew began by stating that he needed to determine how many groups of one-half can 

be made from five-sixths. Matthew continued by saying that the answer should be one 

and that he needed to determine how much the remaining part was when compared to the 

half. As Matthew compared the remaining part (
6
2

) to one-half, as shown in Figure 85, he 

said, “It’s two-thirds of the half.” He also stated that the answer was 
3
21 . 

Figure 85. Matthew’s process modeling 
2
1

6
5
÷  
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Once Matthew provided his answer of 
3
21 , he was asked to justify the algorithm 

of inverting the divisor and multiplying. Initially, he said laughingly, “Because I was 

taught like this all my life.” Then, Matthew explained, “Our whole [red] contained two 

parts of the original whole [pink].” As he explained, he hovered the pink one-half over 

the five-sixths that he used previously, which is shown in Figure 86. However, Matthew 

did not explain what function 
6
5

 has in the procedure. 

  

Figure 86. Matthew demonstrating his explanation of multiplying by the reciprocal 

Finally, Matthew generated a real-world scenario similar to one the class explored during 

fraction division instruction. Matthew stated, “I have five-sixths of a bed. It takes two 

bags [of fertilizer] to fill up one bed. How many bags I’m going to use for this?”  

Post-instruction data showed that Matthew’s procedural knowledge of fraction 

division was fairly consistent. The data also showed that Matthew refined his conceptual 

knowledge of fraction division from what it was initially. He also effectively 

demonstrated the measurement interpretation of division using multiple representations. 

His use of manipulatives appeared to be generally meaningful.  
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Summary of fraction division. As evidenced by the data collected, Matthew’s 

procedural knowledge of fraction division was, for the most part, consistent. Initially, 

Matthew demonstrated at least some degree of conceptual knowledge of measurement 

division of fractions, but he was not confident in his knowledge. Data showed that 

Matthew’s conceptual knowledge of fraction division increased. Overall, Matthew’s use 

of manipulatives was generally meaningful. After the conclusion of the fractions unit, 

Matthew expressed greater confidence in his conceptual knowledge of fraction division 

than he had initially.  

Summary for Matthew. The data collected showed that Matthew’s procedural 

knowledge of fraction multiplication and division were both generally consistent prior to 

and after the fractions unit. The data also showed that Matthew’s conceptual knowledge 

of these concepts increased and/or was refined after the fractions unit, but there were still 

gaps in his knowledge. Even though Matthew experienced difficulty transitioning from 

fraction division to fraction multiplication, he was aware of this difficulty and seemed to 

resolved it. 

Matthew may have experienced some interference of his procedural knowledge 

on his developing conceptual knowledge or on his ability to demonstrate his knowledge 

using manipulatives. Generally, Matthew procedurally worked out problems in his head 

and then attempted to use the manipulative to show his answer. At times, Matthew 

experienced some confusion as he attempted to model his answer using the 

manipulatives. It was not clear whether the confusion was interference due to procedural 

knowledge.  
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With respect to relational understanding, Matthew demonstrated both procedural 

and conceptual knowledge of fraction multiplication, but there was limited evidence that 

he understood the connections between them. In addition, although Matthew 

demonstrated procedural and conceptual knowledge of fraction division, he only 

demonstrated limited evidence that he understood the connections between them. Finally, 

even though Matthew attempted to explain the connections between the procedural and 

conceptual meaning of fraction multiplication and division and the manipulative models, 

there was not enough data to draw any conclusions about his relational understanding of 

manipulatives. 

Summary of Research Findings 

The four prospective teachers in this study showed varying levels of procedural 

and conceptual knowledge of fraction multiplication and division as evidenced by the 

observational, interview, and assessment data. Initially, all four participants demonstrated 

gaps in their conceptual knowledge and some inconsistencies in their procedural 

knowledge. All of the participants demonstrated some progress in filling the gaps in their 

conceptual knowledge, but it is possible that not all of the demonstrated gaps were filled.  

The four participants also had limited prior learning experiences using 

manipulatives, and, at times, experienced some level of confusion as they attempted to 

use the manipulatives to demonstrate mathematical concepts. The four participants 

displayed varying levels of procedural and meaningful use of manipulatives and pictorial 

representations as they attempted to demonstrate their conceptual knowledge. In addition, 

representations provided by all four of the participants lacked precision in some manner, 

whether pictorial or verbal.  
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With respect to relational understanding, none of the participants clearly 

demonstrated relational understanding of the fraction concepts being investigated. Even 

though none of the prospective teachers were able to articulate a clear connection 

between the manipulative representation and the associated symbolic algorithms, they all 

indicated that they intended to use manipulatives in their future classrooms to help 

students develop conceptual understanding of fraction concepts.   
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Chapter 5: Conclusions, Discussions, and Suggestions for Future Research 

This chapter first presents limitations to this study, followed by conclusions of the 

study. Next, findings related to the literature are presented, and implications for 

prospective-teacher methods courses are discussed. Finally, further areas of study are 

suggested based on the findings of the study. 

Limitations 

Prior to discussing the conclusions of this study, it is necessary to point out 

specific limitations of the study. The limitations of this study were sample location, size, 

time constraints, and data collection. These limitations do not compromise the usefulness 

of this study, but they do limit its generalizability. This study was conducted in a one-

semester, middle grades methods course in a mid-sized, four-year university in the 

southeastern United States. Data were collected for only four of the 10 students in the 

class, each with varying academic backgrounds. It was not clear as to how the differences 

in their academic backgrounds impacted the results. With respect to data collection, there 

were no interviews conducted related to the Procedural and Conceptual Tests. If 

interviews had been conducted, clarifications might have been made for incomplete 

answers which would have impacted the analysis and interpretation of the data. If this 

study were to be replicated in a different size university, in a different region of the U.S., 

and with a different population, the results of such a study may or may not be similar to 

the findings of this study. 
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Conclusions 

The purpose of this study was to determine the impact of a manipulatives-

intensive fractions unit during a middle grades methods course on prospective teachers’ 

relational understanding of fractions. In Chapter 1, I suggested that prospective teachers 

in current colleges of education may have gaps in their conceptual knowledge of 

mathematics and limited experiences using manipulatives to learn mathematics. In 

Chapter 2, I asserted that relational understanding is having both conceptual and 

procedural knowledge and knowing the connections between them (Skemp, 1987).  As a 

result of this study, I found that prospective teachers seemed to have gaps in their 

conceptual knowledge of fractions and were quite unfamiliar with using manipulatives. 

Additionally, the prospective teachers in this study demonstrated a variety of levels of 

procedural and conceptual knowledge of fractions. However, there was limited evidence 

that showed that these prospective teachers were able to make connections between their 

procedural and conceptual knowledge. 

It is possible that prospective teachers did not demonstrate relational 

understanding of fractions because of the gaps in their conceptual knowledge of fractions 

at the beginning of the course and the limited time available during the course to develop 

necessary connections. It stands to reason that before one can possess relational 

understanding of a concept, one must first possess procedural and conceptual knowledge 

of the concept. Considering that there is limited time available during a one-semester 

middle grades methods course, it is possible that the gaps in their knowledge limited 

them from having ample time to fully develop their relational understanding.  
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In Chapter 3, I proposed a Venn diagram among three variables: procedural 

knowledge, conceptual knowledge and use of manipulatives (see Figure 7). Based on 

Skemp’s (1987) conception of relational understanding as having procedural and 

conceptual knowledge and knowing the connections between them, I proposed that the 

intersection of the aforementioned three variables could be thought of as having relational 

understanding of manipulatives. 

As I examined participants’ data through a lens of procedural use or meaningful 

use of manipulatives, I realized that I should revise my proposed diagram to include all 

representations. This realization was based on the fact that, at times, participants’ used 

pictorial representations in lieu of manipulatives. Some pictorial representations were 

based on participants’ procedural knowledge, and some were meaningful because they 

were based on participants’ conceptual knowledge. For example, Jacob used pictorial 

representations during his Post-Instruction Task-based Interview to model 
4
3

3
2
× . As 

Jacob represented the fraction multiplication pictorially, it seemed that he may have been 

using the representation procedurally to produce the answer that he already calculated. 

In considering Hiebert and Carpenter’s (1992) claim that “mathematics is 

understood if its mental representation is part of a network of representations (p. 67),” I 

focused on the phrase network of representations. I also considered literature that 

suggested that teachers need to understand how the physical representation of 

manipulatives connects to the symbolic representation to realize the full potential of 

learning through using manipulatives (Ball, 1992; Moyer, 2001; NCTM, 2000). If 

mathematics is going to be a useful tool to solve problems, its users need to understand 

the connections among procedural knowledge, conceptual knowledge, and 
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representations to realize its maximum usefulness. Therefore, I posit that one has 

relational understanding of representations when one knows which representations to use 

in order to best represent a mathematical idea conceptually and is able to choose the 

appropriate procedure to apply and why to apply it. Furthermore, having relational 

understanding of representations means the user of the representations will also recognize 

connections among the various types of representations: symbolic, pictorial, concrete, 

verbal, and real-world context. Figure 87, shown below, is my revised version of this 

idea. 

 

Figure 87. Final Diagram of Relationship among Procedural and Conceptual Knowledge 

and Use of Representations 

During the fractions unit, a class activity (mentioned earlier in this paper) 

provided an opportunity for prospective teachers (PTs) to possibly develop relational 
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understanding of representations. The class was presented with a task about determining 

the number of bags of fertilizer needed for a specified number of flower beds. The real-

word context is a type of representation. Prospective teachers were required to represent 

the context either concretely with manipulatives or pictorially. Additionally, PTs were 

responsible for expressing the problem symbolically, explaining why the context implied 

division, and explain why the traditional algorithm of invert and multiply related to the 

context. If PTs were able to make connections among multiple representations and 

recognize the connections among the representations and their procedural and conceptual 

knowledge, then I suggest that they would have demonstrated relational understanding of 

representations.  

Since it was not clear that any of the four participants demonstrated relational 

understanding of fraction concepts, I was not able to determine the extent to which they 

achieved relational understanding of representations. Further study in this area may 

reveal more about this idea. 

Findings Related to Literature 

In comparison to Ma’s (1999) findings, two of the four participants in this study, 

Samantha and Krystal, experienced confusion between dividing by one-half and dividing 

in half. Samantha seemed able to resolve her confusion by focusing on the conceptual 

meaning of division by one-half and her demonstration using fraction circles. Krystal 

seemed to rely more on her procedural knowledge to clarify that dividing by one-half 

meant to multiply by the reciprocal, 2. 

With respect to Pesek and Kirshner’s (2000) interference of procedural 

knowledge on conceptual knowledge, all four participants seemed to experience some 
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degree of confusion as they attempted to demonstrate fraction multiplication and division. 

This confusion could have been related to the gaps in their conceptual knowledge, their 

limited experience using manipulatives, or interference from their existing or lacking 

procedural knowledge. For example, as Jacob attempted to model 
4
3

3
2
×  during his Post-

Instruction Task-based Interview, he first used fraction circles in a manner related to 

fraction comparison or fraction addition and subtraction instead of focusing on the 

conceptual meaning of multiplication. At the beginning of the task, Jacob procedurally 

calculated the answer even though he did not communicate it until the end of the 

interview. 

Moss and Case (1999) expressed concern about the over-use of the circle model 

because its over-use potentially limits students’ fraction knowledge to part-whole 

relationship. The participants in this study were provided a variety of manipulatives (See 

Appendix L) with which to demonstrate their knowledge during the Pre- and Post-

Instruction Interviews. During their Pre-Instruction Task-based Interviews, Samantha 

used pattern blocks and pictorial area representations for multiplication and pattern 

blocks for division; Krystal used fraction circles for multiplication and division; Jacob 

used a set model for multiplication and drew circles for division; and Matthew used a set 

model for fraction multiplication but discarded it for fraction circles, and he used fraction 

circles for division. On the contrary, all four participants exclusively used fractions 

circles during their Post-Instruction Task-based Interview. 

If these prospective teachers use manipulatives once they begin teaching, the 

question arises as to whether they will exclusively use the fraction circles or whether they 

will recognize the usefulness of other manipulatives. If they recognize the usefulness of 
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other manipulative models, the further question will be whether they chose an appropriate 

manipulative for a specific problem/concept. 

Johanning (2008) provided an example of students using decimals in lieu of 

fractions or mixed numbers and the teacher helping the students to determine that doing 

so would not provide equivalence. The example dealt specifically with using the 

truncated decimal 5.3 instead of the mixed number 
3
15 . During Samantha’s interview, she 

noted that she could attempt to use a decimal for 
3
2

, but she recognized that it would not 

provide an equivalent answer. This example provides insight into Samantha’s ability to 

guide her future students to greater conceptual knowledge of the inappropriateness of 

using truncated decimals in lieu of fractions. 

In Chapter 2, research by Puchner, Taylor, O’Donnell, and Fick (2008) and Olive 

and Vomvoridi (2006) were highlighted regarding poorly-drawn pictorial representations 

that undermined students’ understanding that fractional pieces need to be the same size. 

In this study, all four prospective teachers displayed a lack of precision of drawing 

fractions using a circle as the whole. For example, in Krystal’s pictorial representation of 

3
1

2
1
×  on her Post-Instruction Conceptual Test, not all of the thirds in her circle model 

were equivalent.  

Puchner et al. (2008) also expressed concern about the “answer-first, model-

second” method of using manipulatives. Some of the prospective teachers also displayed 

the “answer-first, model-second” method of using manipulatives. For example, Jacob 

consistently calculated answers procedurally prior to attempting to model the problems 

conceptually. Although it was not clear whether this method interfered with Jacob’s 
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ability to conceptually model problems, it is possible that interference did occur. For 

example, during his Post-Instruction Task-based Interview, Jacob experienced difficulty 

modeling 
4
3

3
2
× . However, once Jacob focused on the conceptual meaning of the 

problem, he was successful modeling the problem. These findings possibly point to 

potential problems in these prospective teachers’ future classrooms. If these practices 

continue, students’ appropriate use of manipulatives may be adversely impacted. 

Finally, in Chapter 2, literature by Cramer and Wyberg (2009) was discussed 

regarding the efficacy of concrete models. The difference in the concrete models used by 

Samantha and Krystal to model 
3
23÷  may have contributed to Samantha’s correct 

solution and may have interfered with Krystal generating a complete solution. Samantha 

used a black chevron to model the fraction 
3
2

, whereas Krystal used two individual 
3
1

 

fraction circle pieces. Krystal experienced difficulty making sense of the remaining 
3
1

 

fraction piece but realized that she was closer than she had been during a previous 

attempt. It is possible that the use of the two individual 
3
1

 fraction pieces interfered with 

Krystal counting the groups of 
3
2

 that were needed to make 3 because Krystal counted 

the thirds in increments of 
3
1

. In contrast, Samantha counted each chevron and 

recognized that the remaining rhombus (
3
1

) was half of a chevron. 
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Implications for Prospective Teacher Methods Courses 

This study may be of interest to colleges of education as they attempt to prepare 

prospective teachers to successfully implement the new standards. Generally, the primary 

purpose for methods courses is to familiarize prospective teachers with appropriate, 

research-based pedagogical methods for facilitating experiences that lead to their 

students’ mathematical learning, not for the prospective teachers to learn the mathematics 

that they will be teaching. However, teachers cannot teach beyond their own level of 

knowledge. All four of the participants in this study demonstrated gaps in their 

procedural and conceptual knowledge of fractions as assessed through tests, observations, 

and interviews. Furthermore, although all four participants demonstrated some degree of 

procedural and conceptual knowledge of fractions, none of them clearly demonstrated 

relational understanding of fractions. 

Since there is limited time available in methods courses and much to accomplish, 

perhaps teacher educators should consider integrating instruction through a focus on Ball 

et al.’s (2008) Mathematical Knowledge for Teaching, as well as on Ma’s (1999) 

Pedagogical Content Knowledge. By integrating pedagogical issues with mathematical 

content in this manner, perhaps prospective teachers will have opportunities to develop 

specialized content knowledge, common content knowledge, knowledge of the 

mathematical horizon, knowledge of content and students, knowledge of content and 

teaching, and knowledge of curriculum.  

Another possible implication of this study for teacher educators is how to address 

gaps in prospective teachers’ knowledge. Middle grades prospective teachers at the 

university in which this study was conducted are not required to take a mathematics 
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course related to middle grades mathematics like elementary prospective teachers are 

required to take for their program, i.e. “math for elementary teachers.” Instead, they are 

required to take the following courses: college algebra, pre-calculus, applied calculus, 

introductory statistics, discrete mathematics, and geometry & measurement. Perhaps a 

course solely focused on “math for middle grades teachers” could be instituted to address 

prospective teachers’ relational understanding of middle grades mathematics content 

rather than addressing the issue during the methods course. Requiring a mathematics 

course specifically for middle grades teachers to explore the mathematics content of 

grades 5-8 would be in alignment with recommendations by the Conference Board of 

Mathematical Sciences (2012). They recommended a mathematics course for prospective 

middle grades teachers that provides the opportunity to explore middle grades 

mathematics content, but specified that instructors for the course model appropriate 

pedagogy aligned with the Standards for Mathematical Practice (National Governors 

Association Center for Best Practices, & Council of Chief State School Officers [NGA 

Center & CCSSO], 2010). 

Taking into consideration that the Common Core State Standards for Mathematics 

(NGA Center & CCSSO, 2010) suggests that teachers use concrete models to facilitate 

fraction understanding, teachers must possess deep understanding of the manipulative 

models they use, the appropriateness of the model, and how to connect the attributes of 

the manipulative model to the symbolic representation. Of the four participants in this 

study, none of them explicitly explained the connections between the manipulative model 

and the related symbolic representation. If these prospective teachers are to successfully 

use manipulatives to facilitate their students’ procedural and conceptual knowledge, it is 
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likely that they will first need to spend additional time using the materials and experience 

for themselves the connections between the concrete and symbolic representations before 

they will be able to facilitate such experiences for their students. 

During this study, all four participants provided forms of representation that 

lacked attention to precision. One of the Standards of Mathematical Practice advocated in 

the Common Core State Standards for Mathematics (NGA Center & CCSSO, 2010) is to 

attend to precision. A lack of attention to precision by teachers may negatively impact 

students’ understanding. Therefore, teacher educators may find this study helpful in 

considering the types of representations and whether prospective teachers attend to 

precision in the various types of representations they employ. 

Further Areas of Study 

This study focused on the impact that a manipulatives-intensive fractions unit in a 

middle grades methods course had on the relational understanding of fractions of four 

specific prospective teachers. As with any research, the process of attempting to answer 

questions related to a study gives birth to new questions. 

First of all, the question arises as to what other aspects of the course impacted 

prospective teachers’ relational understanding. Secondly, what, if any, aspects of the 

course hindered prospective teachers’ development of relational understanding? What 

part did the difference in participants’ mathematics education backgrounds play in their 

propensity to persevere?  

Considering that all four participants in this study used fraction circles during 

their Post-Instruction Task-based Interviews, the question also arises as to whether they 

will be knowledgeable enough to choose other appropriate manipulatives to model 
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particular concepts. Therefore, further research could be done to examine prospective 

teachers’ ability to choose an appropriate manipulative when given a specific scenario or 

concept. 

Because this study was done prior to the prospective teachers’ student teaching 

experience, further research could examine whether prospective teachers’ correctly 

implemented manipulatives during their student teaching experience. In addition, further 

research could examine whether the prospective teachers’ allowed students to explore 

concepts using manipulatives or whether the prospective teachers showed students how to 

use the manipulatives. 

Further longitudinal research could be done to examine the development of 

prospective teachers’ relational understanding of fractions beginning at the onset of their 

first methods course and concluding after their student teaching experience. In addition, 

since this research studied prospective teachers’ relational understanding, research could 

also be done to study practicing teachers’ relational understanding of fractions. 

Finally, teachers’ relational understanding of representations could also be studied 

within the rational number domain, as well as other domains. By studying the extent of 

prospective and practicing teachers’ relational understanding of representations, research 

may inform practice and provide strategies to improve student achievement in facilitating 

the use of representations, as well as connecting the representations.   
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Appendix A: Procedural Knowledge Test 

Calculate each answer. Show all associated work. 

1. 34×  

2. 28÷  

3. Determine which fraction is larger: 
11
10  or 

10
9  

4. Determine which fraction is larger: 
31
15  or 

19
10  

5. Provide 3 values equivalent to three-fourths. 

6. Show numerically why 
15
12  is equivalent to 

35
28 . 

7. 
4
3

3
2
+  

8. 
4
31

3
25 −  

9. 1 1
2 3
×  

10. 
8
5  of 2 

11. 36
4

÷  

12. 
4
3

2
11 ÷  

13. 
8
32 ÷  

14. 7.6913521.4 ++  

15. 1 32 3
6 5
×  
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16. 3
3
12 ÷  

17. 24.925.4 ×  
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Appendix B: Answer Key to Procedural Test 

1. 34× = 12  

2. 28÷ = 4 

3. Determine which fraction is larger: 
11
10 or 

10
9    Answer: 

11
10  

Possible answer: Each fraction is one unit fraction from being one whole. The 

fraction which is missing the smaller unit fraction is 
11
10 . That is, 

11
10  is 1

11
 from 1, 

while 
10
9  is 1

10
 from 1. Since 1 1

11 10
< , 

11
10  is not as far from 1 as 

10
9 . 

Possible answer: Get a common denominator and compare numerators. That is, 

100 99
110 110

>  

Possible answer: Convert each to a decimal and compare. That is, 10 0.90
11

≈ , while 

9 0.9
10

=  

4. Determine which fraction is larger: 
31
15  or 

19
10  Answer: 

19
10  

Possible answer: Compare to benchmark of 1
2

.  
19
10  is greater than 1

2
, while 

31
15  

is less than 1
2

. 

Possible answer: Compare decimals. 15 0.4839
31

≈ ; 10 0.5263
19

≈  

Possible answer: Get a common denominator and compare numerators. 

285 310
589 589

<  

5. Provide 3 values equivalent to three-fourths.   
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Possible answers: 0.75, 75%, 
4
3  or any equivalent fraction  

6. Show numerically why 
15
12  is equivalent to 

35
28 .   

Possible answer: Both simplify to 
5
4  or 0.8 

Possible answer: Both can be converted to 84
105

 or an equivalent fraction. 

7. 
4
3

3
2
+  

Possible work: 8 9 17
12 12 12

+ = or 
12
51  

8. 2 35 1
3 4
−  

Possible work: 17 7
3 4

−  68 21
12 12

−
4 7
1 2 12

113  

Possible work: 8 95 1
12 12

−
20 94 1
12 12

−
12
113  

9. 1 1
2 3
× = 

6
1  

10. 
8
5  of 2 = 

4
11  

Possible work: 5 2
8
×

5 2
8 1
×

10
8

5
4 4

11  or 10
8

21
8 4

11  

Possible work: Cross simplification 5 2
8 1
×

5 1
4 1
×  by dividing a common factor 

of 2 

11. 36
4

÷  

Possible work: 6 3
1 4
÷

6 4
1 3
×

2 4
3

 8 
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Possible: Cross simplification 6 4
1 3
×

2 4
1 1
×  by dividing a common factor of 3 

12. 
4
3

2
11 ÷  

Possible work: 3 3
2 4
÷

3 4
2 3
×

12
6

 2 

Also possible: Cross simplification 3 4
2 3
×

1 2
1 1
×  by dividing common factor of 3 

and a common factor of 2 

13. 
8
32 ÷  

Possible work:  2 3
1 8
÷

2 8
1 3
×

16
3 3

15  

14. 7.6913521.4 ++ = 208.91 

15. 1 32 3
6 5
× = 

5
47  

Possible work: 13 18
6 5
×

234
30

247
30

47
5

  

Also possible: Cross simplification 13 18
6 5
×

13 3
1 5
×

39
5

47
5

 

16. 3
3
12 ÷ = 

9
7  

Possible work: 7 3
3 1
÷

7 1
3 3
×

9
7  

17. 24.925.4 × = 39.27     
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Appendix C: Rubric for Procedural Knowledge Test  

2 – Correct algorithm with correct answer 

1 – Correct algorithm with some minor calculation errors 

0 – No answer or incorrect procedure with incorrect answer 
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Appendix D: Conceptual Knowledge Test (including justifications for use) 

 
1. Provide an illustration (model, drawing, etc.) to represent 1234 =×  and a model 

(drawing) to represent 1243 =× . Explain the meaning of the 4, the 3, and the 12 in 
each representation. 

 
I chose to use this problem to determine whether prospective teachers (PTs) 
understand the purpose of a multiplier (number of groups) and a multiplicand 
(number in each group)(Tsay & Hauk, 2009).  

 
 
2. Provide illustrations (models, drawings, etc.) to represent 428 =÷  interpreted in 

two different ways. Explain the meaning of the 8, the 2, and the 4 for each 
interpretation. 

 
I chose this problem to determine whether prospective teachers understand the 
difference between the partitive model of division and the measurement model of 
division (Osana & Royea, 2011). This will help me to understand their background 
knowledge as I am analyzing their responses to the fraction division problems which 
involve the measurement model. 

 
 
3. Without converting each fraction to a decimal or using a conventional algorithm, 

determine which fraction is larger: 
11
10  or 

10
9 . Explain your reasoning.  

 
I chose this problem because I want to find out whether PTs will recognize that each 
fraction is 2 unit fractions away from one whole and use the knowledge of which unit 
fraction is larger to determine magnitude (Cramer & Wyberg, 2009). 

 
 

4. Without converting each fraction to a decimal or using a conventional algorithm, 
determine which fraction is larger: 

31
15  or 

19
10 . Explain your reasoning. 

 
I chose this problem because I want to find out whether PTs will use 1

2
as a 

benchmark or will procedurally find common a denominator or convert each 
fraction to a decimal (Cramer & Wyberg, 2009). 

 
 
5. Provide 4 different representations to express “three-fourths.” 

 
I chose this problem based on an article I read in Teaching Children Mathematics 
(Watanabe, 2002) focusing on multiple representations. 
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6. Explain why 
15
12  is equivalent to 

35
28 . 

 
I chose this problem because I want to see whether PTs will simplify each fraction, 
obtain a common denominator, convert each to decimals, or think in terms of 
percentages.  

 
7. Explain why 

3
2  cannot be added to 

4
3  without finding a common denominator. 

 
I chose this problem because I want to find out if PTs understand the concept of a 
unit fraction and the requirement that the unit must be the same in order to add. For 
example, An, Kulm, and Wu (2004) cited an example given by Chinese teachers that 
books plus books equals books, but one cannot add books plus desks. Chinese 
teachers also stated that students who make the mistake of adding across are not 
thinking of fractions as numbers.  

 
8. Student A and Student B solved the following problem: 2 35 1

3 4
−  

 
Which student’s response is correct? 

 
Determine the error in the incorrect response. 
 

I chose this problem based on my experience teaching middle school students. 
Students often misapplied the regrouping strategy for whole numbers when 
regrouping with mixed numbers. 
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9. Provide an illustration (model, drawing, etc.) for 1 1
2 3
× . Explain how your model 

connects to the operation. 
 
I am interested in how PTs model this problem: area, number line, circular region, 
or not model it at all. 

 
10. Provide an illustration (model, drawing, etc.) for 

8
5  of 2.  

This problem was illustrated in Ball, Thames, & Phelps (2008) as an example of 
specialized content knowledge. Ball et al. (2008) showed this using fraction circles. 

 
11. Provide an illustration (model, drawing, etc.) to explain why the quotient of 36

4
÷  is 

larger than 6.     
 
 A version of this problem was on the original pre-test for EDMG 1 administered for 

the first time in the fall 2013; however, the instructor did not ask the prospective 
teachers to provide a model. I am using it to find out if PTs understand “How many 
groups of 3

4
” or “ 3

4
of what number is 6?” (Lamon, 2001) 

 This problem was also used for measurement division by Osana and Royea (2011) 
with prospective elementary teachers. 

 
12. Provide an illustration (model, drawing, etc.) for 

4
3

2
11 ÷  

 
I chose this problem because Green, Piel, and Flowers (2008) used this problem in 
their study of using manipulatives to correct PTs’ misconceptions regarding 
fractions. 

 
 

13. Determine what operation should be used to solve the following problem. Justify 
your choice. 
 “One serving of pizza is 

8
3  of a pizza. How many servings will be available in 2 

pizzas?” 
 

I am using this problem to determine PTs’ fraction literacy (Johanning, 2008). 
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14. Explain why it is necessary to line up the decimals when adding the following 
numbers: 7.6913521.4 ++  

 
I chose this problem because of my experience teaching middle grades. My former 
students often lined up digits instead of lining up common place values. The students 
lined up the digits 1, 5, and 7 instead of lining up the digits in the ones place, the 4, 
5, and 9. Conceptual understanding of like place values is similar to understanding 
of like units (Hiebert & LeFevre, 1986). 

 
15. Examine the following work and determine the error. 

    1 32 3
6 5
× = 

30
36 =

10
16  

 
I chose this problem because I want to find out whether PTs will explain the error 
using the distributive property or procedural knowledge of multiplying mixed 
numbers, that is, whether they mention changing the mixed numbers to improper 
fractions. 

 
 

16. Explain how you can determine whether the answer (quotient) is greater than 1 or 
less than 1 without having to actually perform the division. 

    3
3
12 ÷  

 
I am using this problem to determine PTs’ procedural knowledge of dividing 
fractions. (Osana & Royea, 2011). Since the dividend is smaller than the divisor, one 
may choose the partitive model or think in terms of proportional reasoning that 
stems from part-total.  

 
 

17. Without using a calculator or performing the standard algorithm, determine where 
the decimal should be placed in the product (answer): 8.25 6.34 52305× =  

 Explain your reasoning. 
 

 I chose this problem for two reasons:  
1) During TEAM-Math summer institute, a similar problem was given, and a teacher 
I knew personally applied a “counting decimal places” procedure to the problem 
and got it wrong. Even after a discussion, the teacher still did not seem to 
understand what she had done wrong.  
2) In my own experience teaching at CSU, I gave this exact problem to my students 
who were enrolled in a K-5 mathematics endorsement class. A graduate-level 
student who is also an in-service fourth grade teacher applied a “counting decimal 
places” procedure and did not get it right. A middle grades science teacher enrolled 
in the class explained why 5.2305 was wrong by stating that 8 × 6 equals 48 so the 
answer must be more than 48. She then stated that it must be 52.305. 
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 List the problem number(s) with which you felt the MOST confident. 

This request was on the original pre-test given to EDMG 1 in the fall of 2013. 
 

List the problem number(s) with which you felt the LEAST confident. 
 

I added this request after talking with a faculty member at the university who works 
as an evaluator for grants. He questioned why I had a prompting for MOST 
confident only and not LEAST confident as well. 
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Appendix E: Conceptual Knowledge Test  

1. Provide an illustration (model, drawing, etc.) to represent 1234 =×  and an 
illustration (model, drawing, etc.) to represent 1243 =× . 

 
1234 =×      1243 =×  

 
 
 
 
 
 
 
Explain the meaning of the 4, the 3, and the 12 in each representation. 
 
 
 
 
 
 
 
 

 
2. Provide illustrations (models, drawings, etc.) to represent 428 =÷  interpreted in 

two different ways. 
 
 
 
 

 
 
 
 
 

 Explain the meaning of the 8, the 2, and the 4 for each interpretation. 
 
 
 
 
 
 
 

 
 

1st interpretation of   
 

2nd interpretation of  
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3. Without converting each fraction to a decimal or using a conventional algorithm, 
determine which fraction is larger: 

11
10  or 

10
9 . Explain your reasoning.  

 
 
 
 
 
 
 
 
 
 

4. Without converting each fraction to a decimal or using a conventional algorithm, 
determine which fraction is larger: 

31
15  or 

19
10 . Explain your reasoning. 

 
 
 
 
 
 
 
 
 
5. Provide 4 different representations to express “three-fourths.” 

 
 
 
 
 

 
6. Explain why 

15
12  is equivalent to 

35
28 . 

 
 
 
 
 
 

7. Explain why 
3
2  cannot be added to 

4
3  without finding a common denominator. 
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8. Student A and Student B solved the following problem: 2 35 1
3 4
−  

 
Which student’s response is correct? 
 
 
Determine the error in the incorrect response. 
 
 
 
 
 
 
 
 
 
 

9. Provide an illustration (model, drawing, etc.) for 1 1
2 3
× . Explain how your model 

connects to the operation. 
 

 
 
 

. 
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10. Provide an illustration (model, drawing, etc.) for 
8
5  of 2.  

 
 
 
 
 
 
 
 
 

11. Provide an illustration (model, drawing, etc.) to explain why the quotient of 36
4

÷  is 

larger than 6.     
 

 
 
 
 
 
 
 
 

12. Provide an illustration (model, drawing, etc.) for 
4
3

2
11 ÷  

 
 

 
 
 
 
 
 
 

13. Determine what operation should be used to solve the following problem. Justify 
your choice. 
“One serving of pizza is 428=÷ of a pizza. How many servings will be available in 2 

pizzas?” 
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14. Explain why it is necessary to line up the decimals when adding the following 
numbers: 7.6913521.4 ++  

 
 
 
 
 
 
 
 
 

15. Examine the following work and determine the error. 
   1 32 3

6 5
× = 

30
36 =

10
16  

 
 
 
 
 
 
 
 
 

16. Explain how you can determine whether the answer (quotient) is greater than 1 or 
less than 1 without having to actually perform the division. 

    3
3
12 ÷  

 
 
 
 
 
 
 
 
 

17. Without using a calculator or performing the standard algorithm, determine where 
the decimal should be placed in the product (answer): 8.25 6.34 52305× =  

 Explain your reasoning. 
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List the problem number(s) with which you felt the MOST confident and explain why. 

 

 

 

 

 

 

 

 

 
List the problem number(s) with which you felt the LEAST confident and explain why. 
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Appendix F: Answer Key for Conceptual Knowledge Test 

1. The multiplier is the number of groups; the multiplicand is the group size.  
Sample correct answer for 34×  (4 groups of 3) 

 
Sample correct answer for 43×  (3 groups of 4) 

 

2. 28÷  shown as partitive model (split into given # of groups) versus measurement 
model (split based on given # in each group) 
 

Partitive division model

Measurement division model

 

3. To determine whether students understand that each fraction is 1 unit fraction 
away from a whole and that the fraction with the smaller unit is “missing less” 
than the fraction with the larger unit; therefore, 

11
10 is closer to one than 

10
9 . 
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4. 
31
15  versus 10

19
  

Using 1
2

 as a benchmark, 
31

5.15  is exactly one-half, so 
31
15  is less than 1

2
.  

Using 1
2

 as a benchmark, 
19

5.9  is exactly one-half, so 
19
10  is more than 1

2
. 

 
5. Possible answers:  

  

 

 

 

 

 

 

 

 

 

 

6. Both fractions are equivalent to 
5
4 or 0.8. Also, the numerator is 80% of the 

denominator. 
 

7. You cannot add 
3
2  to 

4
3  because they do not have the same size unit fraction. 

The unit fraction
3
1  is larger than the unit fraction 

4
1 . Fractions must be of the 

same size unit from the same whole in order to add them. 
 

 

Length Model 

 

Location on a number line 

 

Area Model 

 

Region Model 

Set Model 

 

 

Symbolic Equivalents 
 

Decimals: 0.75, 0.750 
Fractions: , , etc 

Percentage: 75% 

Real-World Context 
Example: I worked 8 hours Friday; 6 
hours was spent working in my yard. 
What fraction of my time working 
Friday was spent working in the 
yard? 
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8. 
4
31

3
25 −  

Student A shows a misconception of regrouping. Student A erroneously adds 10 
to the numerator 8 as if he/she were working in base ten.  
Student B shows the proper procedure for regrouping, that is, 

12
121 =  which is 

added to the existing 
12
8  to get 

12
20 . 

 
9. Model 1 1

2 3
× . First, the yellow shaded part is 

3
1  of the rectangle.  

Step 1: 1
2

 of 
3
1   means to split the 

3
1  into two equal pieces and use one of 

those.  
Step 2: In order to determine the answer, you must compare the final shaded part 
to the original (referent) whole. 

 

10. Provide an illustration (model, drawing, etc.) for 
8
5  of 2.  
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11. Two different possibilities for 36
4

÷ :  

Possibility 1: Using the measurement model of division such that the divisor is the 
“group size,” then the quotient tells how many groups of size 3

4
 can be made 

from 6. Each whole will provide at least one 3
4

, with something remaining. 

Therefore, there will be at least 6 groups of size 3
4

. The remaining pieces can be 

used to make more groups of 3
4

. Therefore, the answer will be larger than 6. 

 
 

Possibility 2: Partitive division. 6 represents 3
4

 of the “unknown” total. So one 

can conceive that 3
4

 of the total (i.e. 3
4

 × total) would equal 6. Since 3
4

 is not 

the “entire” total and the 3
4

 part is 6, then the entire total must be larger than 6. 
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12. Model  
4
3

2
11 ÷ = 2 (1 blue 

4
3  and 1 green 

4
3 ) (Measurement model) 

 
Another possibility: 

2
11  is 

4
3  of what quantity? (Partitive model) 

 

2
11 (outlined in green) is 

4
3  of 2 (the blue rectangles). 

13. The word problem requires division because you are asking how many 
8
3  can be 

made from 2 wholes (measurement model). There are five- 3
8

’s (dark blue, 

yellow, green, red, and purple) and one-third of a 
8
3  (light blue) in 2 wholes. The 

light blue can be thought of as a complex fraction 
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

8
3
8
1

 which simplifies to 
3
1  (of 

a group the size 
8
3 ).   
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14. 7.6913521.4 ++  

This problem is similar to adding fractions. In order to add anything, one must 
have like units to add. “Tenths” must be added to “tenths,” “hundredths” must be 
added to “hundredths,” etc. 

 
15. Procedurally 1 32 3

6 5
×  

5
18

6
13

×
30

234
30
247  

5
47  

or 

1 32 3
6 5
×

5
18

6
13

×
5

39
5
47  

 

Using partial products from the distribute property 

1 32 3
6 5
× ⎟

⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ +

5
33

6
12  

5
3

6
13

6
1

5
3232 ⋅+⋅+⋅+⋅  

5
47  

Only the 32×  and 
5
3

6
1
×  were done in the work shown on the test. 

 

16. Procedurally 3
3
12 ÷  

1
3

3
7
÷  

3
1

3
7
×

9
7  

Conceptually: When a dividend is smaller than its divisor, the quotient is less than 
one whole because there is not one whole divisor which can be made from the 
dividend (measurement model). Using the partitive division model, you have 

3
12  

to be partitioned into 3 equal groups. There is not enough of the dividend for 1 
whole to be in each group. 

 

17. 8.25 6.34 52305× =  

If prospective teachers only use a procedural algorithm of “counting decimal 
places” commonly associated with multiplying decimals, they will get 5.2305 
If prospective teachers use number sense or estimation, they may note that 68×  is 
48, so the answer must be larger than 48, but relatively close to 48. Therefore, the 
answer must 52.305 

  

3 

1 



334 

Appendix G: Rubric for Conceptual Knowledge Test 

 
3 – Conceptual representation with clear reasoning and correct explanation 

2 – Conceptual representation with unclear reasoning and partially correct 

explanation 

1 – Representation provided with no evidence of conceptual understanding 

0 – No representation 

 

This rubric was adapted from Forrester and Chinnappan (2010). 
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Appendix H: Interview Protocol 

Thank you for being willing to allow me to interview you. If at any time during 

the interview you feel uncomfortable and wish to end the interview, please let me know. 

The purpose of these interviews is to study how prospective teachers use fraction 

manipulatives and how that relates to their procedural knowledge and conceptual 

understanding of fractions. I am video recording these interviews. However, only the 

chair of my committee and I will have access to these videos. After I transcribe the 

videos, I will permanently delete them from my files. When referring to you in my study, 

I will not use your real name nor compromise your identity in any way.  

During your interviews, I will present you with fraction tasks and a variety of 

manipulatives from which to choose that you can use to model the tasks. If you prefer to 

use virtual manipulatives instead of concrete, you are welcome to do so. During the tasks, 

if you want to change which manipulative you are using, you are welcome to do so. 

While you are working on the tasks, I may ask you questions about your thinking, why 

you are doing what you are, and what something means. When I ask you questions, I am 

not indicating that what you are doing is right or wrong. I am simply attempting to make 

sure that I understand and do not make assumptions. As I ask you questions, I am not 

attempting to help you to get a right answer or to teach you anything. That is not the 

purpose of this interview. Do you have any questions for me before we get started?  
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Task 1 Part A (first interview):   
Use your choice of manipulatives to solve 23

3
÷ . 

Possible interview questions:  

What does it mean to divide? 
What purpose does the dividend serve in a division problem? 
What purpose does the divisor serve in a division problem? 
What does a remainder tell you in a division problem? 
What does it mean to divide by 

3
2 ? 

Can you tell whether the answer will be larger or smaller than the dividend before you 
actually solve it? How do you know? 

Are you confident in your answer? 
Can you explain how you determined your answer using the manipulatives? 
Can you interpret the meaning of the remainder in this problem? 
Does your answer make sense? 
Is there any other way to interpret the meaning of this division problem? 
Would you get the same answer if you reversed the order of the numbers? 
Using procedures you are comfortable with, can you perform the calculations for this 

problem to get an answer? 
What caused you to begin the problem the way you did? 
How did you decide which manipulative to use? 
Explain how the manipulative connects to a conventional algorithm. 

 
Task 1 Part B (first interview):  

Generate a real-world story problem that would be solved by the previous 
problem: 23

3
÷ . Explain how you know that your scenario is appropriate. 

 
Possible questions: 
 
How does the story problem you generated relate to what you modeled with 

manipulatives? 
How do you know that the story problem you generated is appropriate for this problem? 
Are there any other real-world story problems that you could generate for this problem? 
Are you confident in your answer? How confident are you in your answer? 
 
 
 
 
 
 
 
 
 
Task 2 Part A (first interview): 



337 

   Use your choice of manipulatives to solve 6
4
3
× .      

 
Possible Questions: 

 
What does it mean to multiply by a fraction? 
How do you know whether the answer will be larger or smaller than the numbers in your 

problem? 
Can you relate multiplying by 

4
3  to anything other idea in mathematics? 

Would you get the same answer if you reversed the order of the numbers? 
Does 6

4
3
×  mean the same thing as 

4
36 × ? 

Would the manipulative be used in the same way if you reversed the order? 
How did you decide which manipulative to use? 
Explain how the manipulative connects to a conventional algorithm. 
 
Task 2 Part B (first interview): 

Generate a real-world story problem that would be solved by the previous 
problem: 6

4
3
×  

Explain how you know that your scenario is appropriate. 
 

Possible Questions: 
 

How does the story problem you generated relate to what you modeled with 
manipulatives? 

How do you know that the story problem you generated is appropriate for this problem? 
Are there any other real-world story problems that you could generate for this problem? 
Are you confident in your answer? How confident are you in your answer? 
 
Task 3 Part A (second interview): Use your choice of manipulatives to solve 

2
1

6
5
÷  and 

interpret the answer with respect to the manipulative. 
 
Possible Questions: 
 
What does it mean to divide? 
What purpose does the dividend serve in a division problem? 
What purpose does the divisor serve in a division problem? 
What does a remainder tell you in a division problem? 
What does it mean to divide by 

2
1 ? 

Can you tell whether the answer will be larger or smaller than the dividend before you 
actually solve it? How do you know? 

Are you confident in your answer? 
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Can you explain how you determined your answer using the manipulatives? 
Can you interpret the meaning of the remainder in this problem? 
Does your answer make sense? 
Is there any other way to interpret the meaning of this division problem? 
Using procedures you are comfortable with, can you perform the calculations for this 

problem to get an answer? 
What caused you to begin the problem the way you did? 
Would you get the same result if you divided 

6
5

2
1
÷ ? 

How did you decide which manipulative to use? 
Explain how the model connects to a conventional algorithm. 
 
 
Task 3 Part B (second interview): Generate a real-world story problem that would be 

solved by the previous problem: 
2
1

6
5
÷ . Explain how you know that your scenario is 

appropriate. 
 
Possible Questions: 
 
How does the story problem you generated relate to what you modeled with 

manipulatives? 
How do you know that the story problem you generated is appropriate for this problem? 
Are there any other real-world story problems that you could generate for this problem? 
Are you confident in your answer? How confident are you in your answer? 
 
Task 4 Part A (second interview): Use your choice of manipulatives to solve 

4
3

3
2
× . 

Explain how the manipulative connects to a conventional algorithm. 
 

Possible questions: 
 

What does the first number in a multiplication problem tell you? 
What does the second number in a multiplication problem tell you? 
Do you know the names for each number in a multiplication problem? 
What does it mean to multiply by a fraction? 
How will your answer compare to each of the numbers in your problem? That is, will 

your answer be larger or smaller than the numbers you multiply with? Can you 
explain how you know? 

How do you know when to “cross simplify” or “cross multiply?” 
Are you confident in your answer? How confident are you in your answer? 
How did you decide which manipulative to use? 
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Task 4 Part B (second interview): Generate a real-world story problem that would be 
solved by the previous problem: 

4
3

3
2
× . Explain how you know that your scenario is 

appropriate. 
 

Possible Questions: 
 

How does the story problem you generated relate to what you modeled with 
manipulatives? 

How do you know that the story problem you generated is appropriate for this problem? 
Are there any other real-world story problems that you could generate for this problem? 
Are you confident in your answer? How confident are you in your answer? 
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Appendix I: Solutions for Task-Based Interviews 

Task 1 Part A (first interview):  

Use your choice of manipulatives to solve 23
3

÷ . 

This measurement-division-model task could be done using pattern blocks, colored 

length rods, fraction circles, or colored square tiles. 

 

The answer is 14
2

groups of 2
3

 in 3 (1 yellow, 1 red, 1 purple, 1 green, and 1
2

of a 

group pink). 

Another possibility: Partitive division: 2
3

 of what number is 3?   

 

 

3

4
1
2

11 1 11

1
3

1
3

1
3
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Task 1 Part B (first interview): 

Generate a real-world story problem that would be solved by the previous problem: 23
3

÷

 Explain how you know that your scenario is appropriate. 

Possible answers: 

You have $3, which is 
3
2 of what I have. How much money do I have? 

While walking, I drink 
3
2  of a bottle of water every mile that I walk. How many miles 

will I have walked after I drink 3 bottles of water? 

 

Task 2 Part A (first interview): 

Use your choice of manipulatives to solve 6
4
3
× . 

Explain how the manipulative connects to a conventional algorithm. 
 

This problem was on the original pre-test for EDMG 1 administered for the first time in 
the fall of 2013. However, the instructor did not ask the prospective teachers to model it. 
I chose to keep this problem because I want to analyze whether prospective teachers 
understand fraction-as-multiplier (Tsay & Hauk, 2009). This task is also in alignment 
with Lamon’s (2001) idea of fraction as an operator, i.e. “three-fourths of something.” 

 
 

 

 

 

4
1
2

3
4  of 6 

1
2

 of 
1
2

 of 6( )
is the same as 

1
4

 of 6

1
1
2

Starting here
1
2  of 6

3 60
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Could use circles.  

 

Task 2 Part B (first interview): 

Generate a real-world story problem that would be solved by the previous problem: 6
4
3
×  

Explain how you know that your scenario is appropriate. 

 

Possible answers: 

The price I pay for a shirt on sale is 75% of the original cost $6, which means I will pay 

less than $6. 

 

 

 

Task 3 Part A (second interview): 
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Use your choice of manipulatives to solve 5 1
6 2
÷ .   

Explain how the manipulative connects to a conventional algorithm and interpret the 
answer with respect to the manipulative. 

 
I chose this problem because it was on the TEAM-Math post-test I took after summer 
institute. One of the teachers at the school where I was teaching at the time had no idea 
how to model this problem. He was very frustrated about it. 
The yellow represents 

6
5 .  

Step 1: To divide 
6
5  by 1

2
 can mean, how many groups of size 1

2
 can be made from 

6
5  of one whole. (measurement division model) 

Step 2: There is one group of 1
2

 in 
6
5  (outlined in red), with 

6
2 of the whole remaining 

(outlined in blue).  

Step 3: It requires 
6
3  to make 1

2
, but there are only 

6
2  remaining of the necessary 

6
3 . 

Therefore, it takes one and two-thirds groups of 1
2

to make 
6
5  (of one whole).  

 

 

Task 3 Part A Another possibility: Partitive division 
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6
5  is 

2
1  of what quantity? 

 

6
5  (outlined in red) is 

2
1  of 

6
10 (yellow and blue together). To get that, I have to double 

my quantity 
6
5 .  

 

 

6
10  is equivalent to 

6
41  (outlined in purple) or 

3
21 (outlined in green) 
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Task 4 Part A (second interview) 

Use your choice of manipulatives to solve 
4
3

3
2
× .  

Explain how the model connects to a conventional algorithm. 
 

A similar problem was in Stein and Smith (1998). “Create a real-world situation for the 
following problem:  

4
3

3
2
× . Solve the problem you created without using the rule, and 

explain your solution.” Stein and Smith provide a rectangular illustration of a possible 
solution similar to what I have illustrated in my answers to the Pre-Assessment. In 
addition, I want to analyze prospective teachers’ understanding of fraction multiplier 
operating on a fraction multiplicand (Tsay & Hauk, 2009). 

 

To model 
4
3

3
2
× , begin by shading 

4
3 of a whole; then, select two out of the three shaded 

pieces. This could be modeled using colored square tiles, fraction circles, colored length 

rods, or pattern blocks. 
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Task 4 Part B (second interview):  
Generate a real-world story problem that would be solved by the previous problem: 

4
3

3
2
×  

Explain how you know that your scenario is appropriate. 

 

Possible answer: 

Answer from Stein and Smith (1998): “My mom gave me three-fourths of a pizza to eat. I 

ate two-thirds of what she gave me. Therefore, I ate one-half of the original (whole) 

pizza.” 
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Appendix J: Initial Survey 

For the statements below, use the following scale: 

Not at all 
confident 

Slightly 
confident 

Somewhat 
confident 

Very 
confident 

1 2 3 4 
 

1) Rate your overall level of confidence in your procedural ability in the operations 

on fractions. 

1 2 3 4  

 

2) Rate your overall level of confidence in your understanding of the meaning 

behind the operations on fractions. 

1 2 3 4  

 

3) Rate your overall level of confidence in understanding the “why” behind the 

conventional algorithms of fractions. 

a. For addition of fractions:  1 2 3 4  

b. For subtraction of fractions:  1 2 3 4  

c. For multiplication of fractions: 1 2 3 4  

d. For division of fractions:  1 2 3 4  
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For the statements below, use the following scale: 

not at all familiar slightly familiar somewhat familiar very familiar 
1 2 3 4 

 

4) Rate your familiarity with manipulatives during your own learning experiences: 

1 2 3 4  

 

5) Rate your familiarity with the use of manipulatives:  

a. To teach mathematics in general: 1 2 3 4  

 

b. To teach fraction concepts:  1 2 3 4 

  

6) Rate your familiarity with virtual manipulatives: 

1 2 3 4  

 

 

For the statement below, use the following scale: 

not at all important slightly important somewhat important very important 
1 2 3 4 

 

7) Rate your belief about the importance of middle grades students using 

manipulatives to learn mathematics: 

1 2 3 4  
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Please briefly describe your own school experiences learning math.  

 

 

 

 

 

 

 

 

 

If you would like to provide any additional information, please feel free to write it in the 

space provided. 

 

 

 

 

 

 

 

 

 

Thank you for your willingness to share with me 
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Appendix K: Semi-Structured Follow-Up Interview Questions 

1. Tell me about a specific example of your fraction understanding that has changed 

during your methods course. (e.g., fraction equivalence, meaning of numerator 

and denominator, operations on fractions, etc.)  

2. Tell me about what aspect of the course was the most helpful to you in improving 

your fraction understanding. (e.g. collaborative group work, peer demonstrations, 

use of multiple representations, use of manipulatives, etc.) 

3. Tell me about what aspect of the course was the least helpful to you in improving 

your fraction understanding. 

4. Tell me about a specific misconception(s) about fractions that you had when you 

began your methods course. (If needed) What do you think helped you to correct 

that misconception? 

5. Tell me about a specific fraction concept that you are still confused about. 

What interfered with you being able to resolve your understanding of that 

concept? 

6. Relational understanding is having both conceptual and procedural knowledge 

and an understanding of the connections between the two. Tell me about your 

confidence in being able to help your future students to develop relational 

understanding of fractions; and of mathematics in general. 

7. Tell me about which instructional practices from your methods course you are 

likely to incorporate into your future teaching and why. 

8. Tell me about which instructional practices from your methods course you are not 

likely to incorporate into your future teaching and why. 
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9. Tell me about a specific example of using manipulatives that helped you gain 

fraction understanding. 

10. Tell me about a specific example of using manipulatives that did not help you 

gain fraction understanding. 

11. Tell me about a specific instance when you were comfortable using manipulatives 

in class. (If needed) What do you think contributed to your comfort? 

12. Tell me about a specific instance when you were uncomfortable using 

manipulatives in class. (If needed) What do you think contributed to your 

discomfort? 

13. Tell me about the likelihood that you will use manipulatives with your students 

when you become a teacher. What influences that decision?  

14. Tell me about a specific way you plan to use manipulatives in your future 

classroom. (e.g., teacher directed, student focused, “fun Friday,” etc.) 

15. Tell me about a specific concrete or virtual manipulative you plan to use and a 

specific fraction concept you will teach using that manipulative. (e.g., fraction 

circles, number lines, colored length rods, etc. to teach equivalence, operations, 

etc.) 

16. Tell me about a specific concrete manipulative you are more likely to use than 

virtual and why.  

17. Tell me about a specific virtual manipulative you are more likely to use than 

concrete and why. 

  



352 

Appendix L: Manipulatives 

 

Pattern Blocks 

 

 

Cuisenaire Rods 

 

 

Fraction Circles 
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Algebra Tiles 

 

The yellow square is 1 ; the red square is 1− .  
The green rectangle is x ; the red rectangle is x− . 
The large blue square is 2x ; the large red square is 2x− . 

Ruler to show fractions of one foot 

 

Number lines 

 

Two-color counters 

 

Virtual Manipulatives-Fraction Bars 
(http://www.mathplayground.com/Fraction_bars.html) 
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Appendix M: Codebook for Analyzing Data 

Concept Example  Operational Definition 
(reference) 

Additional information 

Attitudinal 
interference 
(AttdInf) 

 

 Experiencing difficulty 
due to attitudes toward a 
new experience or due to 
the new experience 
causing 
uncomfortableness which 
is in contrast to the 
comfort of a prior 
experience (Pesek & 
Kirshner, 2000) 

 

May say things like 
“Why can’t we just do it 
the old way of doing 
things?” 

Conceptual 
Knowledge 
(ConcptKnw) 

 

 Conceptual knowledge is 
achieved when one 
recognizes the 
relationships between 
pieces of information. 
(Hiebert & LeFevre, 
1986) 

 

  
 

Procedural 
Knowledge 
(PrcdKnw) 

 

 Knowledge of the formal 
language (i.e., symbol 
representation system) 
and rules, algorithms, or 
procedures used for 
completing mathematical 
tasks (Hiebert & 
LeFevre, 1986) 

 

 

Relational 
understanding 
(RelUnd) 

 

 Understanding both what 
procedures to perform 
and why to perform them 
(Skemp, 1987) 

 

The term 
“understanding” focuses 
on a person’s cognitive 
processes. 

 
Instrumental 
understanding 
(InstUnd) 

 

  
Possessing the 
knowledge of “rules” and 
procedures associated 
with symbols of 
mathematics (Skemp, 
1987) 

 
 

 
The term 
“understanding” focuses 
on a person’s cognitive 
processes. 

 



355 

Relational 
learning 
(RelLrn) 

 learning that focuses on 
the meaning of 
mathematical concepts 
(Pesek & Kirshner, 2000) 

 

The term “learning” 
focusing on the type of 
instruction being 
provided by the teacher. 

Instrumental 
learning 
(InstLrn) 

 “learning rules without 
reasons” (Skemp, 1987,  
p. 9); learning that 
focuses on recall and 
procedural-skill 
development (Pesek & 
Kirshner, 2000) 

 

The term “learning” 
focusing on the type of 
instruction being 
provided by the teacher. 

Fraction as part-
whole 
comparisons 
(FrPartWh) 

 The part-whole 
interpretation of rational 
number depends directly 
on the ability to partition 
either a continuous 
quantity or a set of 
discrete objects into 
equal-sized subparts or 
sets. (Lesh, Post, Behr, & 
Silver, 1983)  

 

Uses one dimension 

Fraction as a 
ratio 
(FrRatio) 

3 girls to 4 
boys 

Ratio is a relation that 
conveys the notion of 
relative magnitude; Ratio 
is a comparison of two 
quantities’ (Lesh, Post, 
Behr, & Silver, 1983) 

 

Uses two dimensions 

Fraction as 
division 
(FrDiv) 
 

2
8  as 28 ÷  (Lesh, Post, Behr, & 

Silver, 1983) 
Related to decimals 

    
    
    
Fraction as an 
operator 
(FrOper) 

3
2 of 12 = 8 When operating on 

continuous object like 
length, the fraction acts 
as a stretcher-shrinker 
combination similar to 
scale factors. (Lesh, Post, 
Behr, & Silver, 1983) 

 

Related to multiplier-
divider; denominator 
acts as divider; 
numerator acts as 
multiplier  
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Fraction as a 
measure of 
discrete or 
continuous 
quantities 
(FrMeas) 

 

3
4

hr. = 45 

mins 

Associated with area, 
length, and volume 
(Lesh, Post, Behr, & 
Silver, 1983) 

Related to part-whole 
construct of fractions; 
can use number line, 
geometric regions, or 
sets of discrete objects 

Equipartitioning
/ splitting as 
recursive 
partitioning 
(ReCurPart) 

 

One-half of 
one-half is 
one-fourth 

 

Successive partitioning 
of a whole to create unit 
fractions; Begin with one 
whole, partitioning and 
successive partition 
creates a multiplicative 
number of parts (based 
on multiplicative 
reasoning) (Confrey et 
al., 2009) 

 

Specific example: Begin 
with one whole. Split it 
in two. You have twice 
as many parts as 
previously. Then split 
each part in two. You 
have twice as many 
parts as the previous 
partition. In comparison 
to your original whole, 
you have 2*2 as many 
parts. The whole is 
represented by 

2
2

2
21 ××

which is equivalent to 

4
4 . 

Reassembling the parts 
leads to 

4
14 ×  as nm× . 

 
Iterative  
(Iter) 

 Building from the unit 
fraction to the whole 
based on additive 
reasoning (Confrey et al., 
2009) 

 

1
4
1

4
1

4
1

4
1

=+++  

Unit fraction 
(UntFr) 

 
n
1  A fraction with a 

numerator of 1; 
A fair share of 1 whole to 
be shared among n 
(Confrey et al., 2009) 

 

Related to ratio, but 
only one dimension is 
maintained; 1 whole 
shared among n means 
that each share will be 

thn
1 of the whole 

 
Knowledge of 
multiplication 
(KnwMult) 

 

34×  The first number is the 
multiplier; it tells you 
how many “groups” or 
“sets” you have. The 

4 sets of 3 objects in 
each set is 12 objects 
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second number is the 
multiplicand; it tells you 
what is in each “group” 
or “set.” (Lo & Lou, 
2012) 

 
Knowledge of 
partitive 
division 
(KnwPartDiv) 

 

28 ÷  The first number is the 
dividend; it is what is to 
be “shared.” The second 
number is the divisor; it 
tells you how many sets 
you will partition the 
dividend into. The 
quotient represents what 
will be in each set. (Lo & 
Lou, 2012) 

 

I have 8 objects that I 
will share between 2 
people. Each person will 
get 4 objects. 

Knowledge of 
measurement 
division 
(KnwMeasDiv) 

28 ÷  The first number is the 
dividend; it is what is to 
be “shared.” The second 
number is the divisor; it 
tells you the number of 
objects in each set to be 
shared. The quotient 
represents the number of 
sets shared. (Lo & Lou, 
2012) 

 

I have 8 objects; I will 
share 2 objects with 
each person. I will be 
able to share with 4 
people. 

Procedural use 
of 
manipulatives 
(PrcdUseManp) 

 Use of manipulatives is a 
replication of a known 
standard procedure or 
ones that were learned by 
rote from a previous 
problem during 
instruction; participants 
cannot explain why they 
solve the problem using a 
particular picture or 
strategy (adapted from 
Osana & Royea, 2011) 

 

Participant may explain 
that they are doing “the 
same thing as before.” 

Meaningful use 
of 
manipulatives 
(MnUseManp) 

 Use of manipulatives is 
based on intuitive 
understandings of 
fractions and the 
quantities expressed in 
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the problem (adapted 
from Osana & Royea, 
2011) 

 
Mathematical 
Knowledge for 
Teaching 
(MKT) 

 The mathematical 
knowledge used to carry 
out the work of teaching 
mathematics (Hill, 
Rowan, & Ball, 2005) 

 

 

Common 
Content 
Knowledge 
(CCK) 

 The mathematical 
knowledge and skill used 
in settings other than 
teaching (Ball, Thames, 
& Phelps, 2008) 

 

Questions that would be 
answerable by persons 
other than mathematics 
teachers 

Specialized 
Content 
Knowledge 
(SCK) 

 The mathematical 
knowledge and skill 
unique to teaching (Ball, 
Thames, & Phelps, 2008) 

 

Not typically needed for 
purposes other than 
teaching 

Knowledge of 
Content and 
Students (KCS) 

 Combines knowledge 
about students and 
knowledge about 
mathematics; teachers 
must be able to anticipate 
students’ thinking and 
what they are likely to 
find confusing, including 
common conceptions and 
misconceptions (Ball, 
Thames, & Phelps, 2008) 
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Knowledge of 
Content and 
Teaching 
(KCT) 

 Knowing about teaching 
and knowing about 
mathematics; includes 
knowing about the design 
of instruction. (Ball, 
Thames, & Phelps, 2008) 

For example, 
sequencing content for 
instruction, choosing 
appropriate examples 
with specific goals in 
mind, evaluating 
advantages and 
disadvantages of 
particular 
representations for 
specific content, 
identifying advantages 
and disadvantages of 
specific instructional 
methods and strategies, 
responding to student 
contributions, and 
posing questions  
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Appendix N: Instructor Consent Form 

Auburn University 
Auburn University, Alabama 36849-5212 

 
Curriculum and Teaching                     Telephone: (334)844-4434 
College of Education                       Fax: (334)844-6789 
5040 Haley Center 

 

(NOTE:  DO NOT SIGN THIS DOCUMENT UNLESS AN IRB APPROVAL STAMP 

WITH CURRENT DATES HAS BEEN APPLIED TO THIS DOCUMENT.) 

 
INSTRUCTOR CONSENT FORM 

For a Research Study entitled 
 

An Exploratory Study of the Impact of a Manipulatives-Intensive Fractions Unit 
during a Middle Grades Methods Course on Prospective Teachers’ Relational 

Understanding of Fractions 
 

This letter is to request your approval to conduct a research study to investigate the 
development of prospective teachers’ relational understanding of fractions through the 
use of concrete and virtual manipulatives during the middle grades mathematics methods 
course you are teaching, EDMG 1. This study is being conducted by Denise S. Peppers, a 
graduate student at Auburn University, under the supervision of Professor Dr. Marilyn E. 
Strutchens. Your course was selected as a possible course for the study because it is a 
middle grades math methods course for prospective teachers, and you plan to use 
concrete and virtual manipulatives during instruction.  

 
Pre-instruction and post-instruction assessment data will be collected and analyzed for 
qualitative changes, not for statistical significance. Data regarding students’ attitudes 
toward mathematics, fractions, and manipulatives will be collected. Based on the results 
of the pre-tests and attitude data, Mrs. Peppers will choose two to four participants for the 
study to observe and interview. Observational data will be collected a minimum of five 
times during the semester. Interview data will be collected from selected students during 
interviews conducted outside of normal class time. Additional assessment data will be 
collected such as class reflections, homework tasks, and standardized test scores.  

 
 

________________ 

Instructor’s Initials 
Page 1 of 3
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With respect to the interviews, the first interview will take place during the first four 
weeks of class; the second interview will take place during the last four weeks of class; 
and the final interview will take place within two weeks of the class ending. The 
interviews will take place at times other than during class; efforts will be made to 
schedule interviews at times that are most convenient to participants. Interviews will take 
place at the Columbus Regional Mathematics Collaborative resource room on the third 
floor of the Cunningham Center. During interviews, participants will be asked to solve 
fraction tasks using manipulatives and about their experiences using manipulatives in the 
EDMG 1 class. Mrs. Peppers will make an effort to keep the interviews to no more than 
75 minutes. Interviews will be video recorded and transcribed so that data from the 
interview can be analyzed.  

 
The purpose of this letter is to request your permission to use data gathered from pre- and 
post-tests, surveys, observations, interviews, and other assessment data as part of this 
research study. 

 
The only risk that your students may encounter would be a breach in confidentiality. All 
identifying information will be removed from any documents that are collected. Once 
data has been collected, analyzed, and reported on, all information pertaining to your 
students will be destroyed. Video recordings will not be shared with anyone other than 
members of Mrs. Peppers’ dissertation committee and will be permanently erased upon 
the completion of this research study. All data will be stored on a password protected 
computer; only Mrs. Peppers will have the password. Furthermore, in the process of 
writing up the analysis, all participants will be referred to by pseudonyms (names other 
than their real names).  

 
There will be no cost to you or your students associated with participating in this study. 

 
Allowing access to your students is completely voluntary. Your decision about whether 
or not to allow access to your students or to not allow access to your students will not 
jeopardize your standing or relations with Columbus State University (CSU), the College 
of Education and Health Professions, the Department of Teacher Education at CSU, the 
Columbus Regional Mathematics Collaborative, Auburn University (AU), the College of 
Education, or the Curriculum and Teaching Department at AU.  

 
 
 

       ________________ 
      Instructor’s Initials 
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Any information obtained in connection with this study will remain confidential.  
Information obtained through this study may be used to fulfill educational requirements, 
published in professional journals, and presented at professional meetings. 

 
If you have any questions about this study, please ask them now or contact Mrs. Peppers 
at the Columbus Regional Mathematics Collaborative at (706)568-2480 or by email at 
dsp0003@auburn.edu or peppers_denise@columbusstate.edu. You may also contact Dr. 
Strutchens. Her phone number is (334)844-6838, and her email address is 
strutme@auburn.edu. A copy of this document will be given to you to keep. 

 
If you have questions about your rights as a research participant, you may contact the 
Auburn University Office of Human Subjects Research of the Institutional Review Board 
by phone at (334)844-5966 or by email at hsubjec@auburn.edu or IRBChair@auburn.edu 
or IRBadmin@auburn.edu 

 
HAVING READ THE INFORMATION PROVIDED, YOU MUST DECIDE 
WHETHER OR NOT YOU WISH TO PARTICIPATE IN THIS RESEARCH 
STUDY. YOUR SIGNATURE INDICATES YOUR WILLINGNESS TO 
PARTICIPATE.  

 
 
 
 

___________________________________ ___________________________________ 
Course Instructor’s signature              Date         Investigator obtaining consent    Date 

 
 
 

____________________________________  ___________________________________ 
Printed Name        Printed Name 
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Appendix O: Participant Consent Form 

Auburn University 
Auburn University, Alabama 36849-5212 

 
Curriculum and Teaching                 Telephone: (334)844-4434 
College of Education                              Fax: (334)844-6789 
5040 Haley Center 

 

(NOTE:  DO NOT SIGN THIS DOCUMENT UNLESS AN IRB APPROVAL STAMP 
WITH CURRENT DATES HAS BEEN APPLIED TO THIS DOCUMENT.) 

 
PARTICIPANT CONSENT FORM 

For a Research Study entitled 
 

An Exploratory Study of the Impact of a Manipulatives-Intensive Fractions 
Unit during a Middle Grades Methods Course on Prospective Teachers’ Relational 

Understanding of Fractions 
 

You are invited to participate in a research study that will be used to investigate the 
development of prospective teachers’ relational understanding of fractions through the 
use of concrete and virtual manipulatives during a middle grades mathematics methods 
course. This study is being conducted by Denise S. Peppers, a graduate student at Auburn 
University, under the supervision of Professor Dr. Marilyn E. Strutchens. You were 
selected as a possible participant because you are currently enrolled in a middle grades 
math methods course for prospective teachers and are age 19 or older.  

 
As a regular part of instruction, all students will take pre-tests to assess their conceptual 
understanding and procedural knowledge of fractions. If you decide to participate in this 
research study, you will be asked to take an initial attitude survey. Based on the results of 
the pre-test and attitude survey, Mrs. Peppers will choose one to four participants for the 
study. Mrs. Peppers will observe EDMG 1 class while students use manipulatives during 
a fractions unit. Additionally, Mrs. Peppers will individually interview the chosen 
participants three times over the course of the semester in order to gain insight into 
participants’ developing relational understanding of fractions through the use of 
manipulatives while taking the EDMG 1 course. Additional assessment data will be 
collected such as class reflections, homework tasks, and standardized test scores. Lastly, 
participants will take post-tests to assess their conceptual and procedural knowledge of 
fractions.  

 
 

________________ 
Participant’s Initials 
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With respect to the interviews, the first interview will take place during the first four 
weeks of class; the second interview will take place during the last four weeks of class; 
and the final interview will take place within two weeks of class concluding. The 
interviews will take place at times other than during class; efforts will be made to 
schedule interviews at times that are most convenient to participants. Interviews will take 
place at the Columbus Regional Mathematics Collaborative resource room on the third 
floor of the Cunningham Center. During interviews, participants will be asked to solve 
fraction tasks using manipulatives and about their experiences using manipulatives in the 
EDMG 1 class. Mrs. Peppers will make an effort to keep the interviews to no more than 
75 minutes. Interviews will be video recorded and transcribed so that data from the 
interview can be analyzed. Your total time commitment to this study will be 
approximately four hours. 

 
The purpose of this letter is to request your permission to use data gathered from pre- and 
post-tests, observations, interviews, and other assessment data as part of this research 
study. 

 
The only risk that you may encounter would be a breach in confidentiality. All 
identifying information will be removed from any documents that are collected. Once 
data has been collected, analyzed, and reported on, all information pertaining to you will 
be destroyed. Video recordings will not be shared with anyone other than members of 
Mrs. Peppers’ dissertation committee and will be permanently erased upon the 
completion of this research study. All data will be stored on a password protected 
computer; only Mrs. Peppers will have the password. Furthermore, in the process of 
writing up the analysis, all participants will be referred to by pseudonyms (names other 
than their real names).  

 
To thank you for your time, you will receive a $40 gift card. There will be no cost to you 
associated with participating in this study. 

 
As part of normal class instruction in EDMG 1, all students will be required by the 
instructor to participate in the instructional activities. However, your participation in the 
study is completely voluntary. If you change your mind about your participation, you can 
be withdrawn from the study at any time without penalty. If you choose to withdraw, 
your data can be withdrawn as long as it is identifiable. Your decision about whether or 
not to participate or to stop participating will not jeopardize your standing in EDMG 1 
nor relations with the instructor, Columbus State University (CSU), the College of 
Education and Health Professions, the Department of Teacher Education at CSU, the 
Columbus Regional Mathematics Collaborative, Auburn University (AU), the College of 
Education, or the Curriculum and Teaching Department at AU.  

 
 

       ________________ 
      Participant’s Initials 
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Any information obtained in connection with this study will remain confidential.  
Information obtained through your participation may be used to fulfill an educational 
requirement, published in a professional journal, presented at a professional meeting, etc. 

 
If you have any questions about this study, please ask them now or contact Mrs. Peppers 
at the Columbus Regional Mathematics Collaborative at (706)568-2480 or by email at 
dsp0003@auburn.edu or peppers_denise@columbusstate.edu. You may also contact Dr. 
Strutchens. Her phone number is (334)844-6838, and her email address is 
strutme@auburn.edu. A copy of this document will be given to you to keep. 

 
If you have questions about your rights as a research participant, you may contact the 
Auburn University Office of Human Subjects Research of the Institutional Review Board 
by phone at (334)844-5966 or by email at hsubjec@auburn.edu or IRBChair@auburn.edu 
or IRBadmin@auburn.edu 

 
HAVING READ THE INFORMATION PROVIDED, YOU MUST DECIDE 
WHETHER OR NOT YOU WISH TO PARTICIPATE IN THIS RESEARCH 
STUDY. ALSO, YOU MUST DECIDE WHETHER YOU GIVE PERMISSION TO 
BE INTERVIEWED. YOUR SIGNATURE INDICATES YOUR WILLINGNESS 
TO PARTICIPATE.  

 
 
 
 

_________________________________      ________________________________ 
Participant’s signature                    Date              Investigator obtaining consent    Date 

 
 
 

_________________________________            ________________________________ 
Printed Name          Printed Name 
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Appendix P: Samples of Activities and Class Agendas for EMDG 1 

Activity: “Don’t Fence Me In”  

• Math concepts—fixed perimeter; maximize area; definition of rectangle; 

systematic approach to problem solving; creation of definitions of area & 

perimeter; reference dimensions as rows by columns; discuss circle as shape with 

most area given static perimeter; 1 dimension versus 2 dimensions—hard for 

students 

• Create table of rectangle dimensions; focus on systematic reasoning; How do you 

know when you have all rectangular possibilities? 

• Use of tools—inch grid paper; square tiles; string; If you didn’t use them; how 

might a student use them? How might they help you conceive of the 

mathematics? 

• School students struggle with area/perimeter; context helps; what is length; what 

are square units? 

 

Activity: Examine NCTM Process Standards and Common Core Standards for 

Mathematical Practice 

Class Agenda—September 8, 2014 

• Introduce lesson—multiplying integers with manipulatives (i.e., two-color 

counters) 

• 7th-grade lesson that has its foundation in 3rd grade 

• Importance of building new learning from prior learning 
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• Teacher’s job is to introduce new information by connecting it to prior 

learning/understanding 

o Takes planning 

o Analysis of to-be-taught concepts 

o Deep understanding of to-be-taught concepts 

o Teachers cannot JUST START as lesson 

• Put your student/teacher hats on; will toggle between both 

• PowerPoint 

• Groups according to Process Standards activity from last week 
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