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Abstract

This thesis presents a Nonlinear Model Predictive Controller (NMPC) for an Unmanned

Ground Vehicle (UGV) capable of controlling the vehicle over both smooth and rough terrain

using measurements from GPS and a Light Detection And Ranging (LiDAR) unit equipped

to the vehicle. Linear Model Predictive Control (MPC) and NMPC have become more widely

used to control dynamic systems as computers have become more capable of handling the

computational expense required by model predictive control. Though the use of NMPC

rather than linear MPC creates an additional computational expense, NMPC allows for

path planning in addition to control of the vehicle. This is particularly advantageous in

scenarios in which the UGV is traversing terrain that contains obstacles of which the vehicle

has no a priori knowledge.

Rough, off-road terrain contains multiple hazards for an UGV. In this thesis, hazards

are classified into three groups: obstacles, rough traversable terrain, and rough untraversable

terrain. These three types of hazards create a rollover risk for a UGV. The NMPC presented

in this thesis is designed to mitigate this risk of rollover. Simulations of the NMPC in several

different scenarios are presented, as well as results from experimental implementation of the

NMPC on a test vehicle. Results from simulation and experimental implementation are

provided that show the NMPC is able to navigate a UGV around obstacles to a target

location without requiring the use of a priori knowledge of terrain and obstacles.
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Chapter 1

Introduction and Background

Unmanned ground vehicles (UGVs) allow transportation of items and/or persons in

situations where a driver is not available or unable to maintain his/her attention on the task

of driving the vehicle. A UGV is able to transport goods to people through areas that are

too dangerous to allow human drivers to traverse, and can deliver people from one area to

another without requiring the people being transported to be encumbered by the task of

driving. In many scenarios that require the use of a UGV, the UGV is unable to rely on

a priori knowledge of terrain and obstacle locations in order to navigate, and requires a

perception-based sensor to locate hazards and plan a path around them. Nonlinear model

predictive control is able to perform path planning while implementing both hard and soft

constraints on the path taken by the vehicle. These constraints keep the vehicle from driving

into unsafe scenarios that could result in rollover.

1.1 Overview of MPC

Model predictive control (MPC) has been used in industry since the 1980’s. Originally

MPC was only used for controlling processes in chemical plants and oil refineries, because

computers at the time were unable to handle the large computational expense required by

applying MPC to high dynamic systems. However, as computers have become more powerful

in recent years, MPC has become a popular control method for multiple types of dynamical

systems.

Model predictive control works by determining a series of control inputs subject to a

model over a set amount of time. This length of time is called the control horizon. Once

the series of inputs over the control horizon is determined, only the first input of that series
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is applied, and the process is repeated. Model predictive controllers, particularly nonlinear

model predictive controllers, are known to suffer from a high computational expense.

1.2 Prior Research

The goal of this thesis is to provide a NMPC algorithm that is able to navigate a UGV

over rough terrain using GPS and a perception-based sensor. Many authors have developed

MPC and NMPC algorithms to control or aid in control of ground vehicles. Reviews of the

research work found prior to assembling this thesis can be found in the following subsections.

1.2.1 Model Predictive Control for Semi-Autonomous Vehicles

Because MPC allows for easy implementation of constraints upon a system, many active

vehicle safety features use model predictive control. One such safety feature is a direct yaw

moment control system presented in [1]. In the work presented in [1], Lei presents an MPC

coupled with a tire cornering stiffness estimator to better predict yaw rate available to the

vehicle. Another vehicle safety feature that uses model predictive control is a lane-keeping

controller shown in [2]. In [2] an NMPC is presented that uses the linear bicycle model in

conjunction with a nonlinear tire model, much like the work presented in this thesis.

Nonlinear model predictive control can be advantageous, as it allows for the capture

of nonlinear dynamics within a system. However, NMPC algorithms typically suffer from

high computational expense, which can be prohibitive when trying to implement a controller

in real time. In an effort to more accurately capture the dynamics of a UGV without the

unwanted computational burden, an MPC strategy is presented in [3] and [4] that uses

successive linearizations of a nonlinear tire model, which yields a linear time varying tire

model. This strategy reduces run time and more accurately captures the dynamics of the

vehicle when the tires of the vehicle are just outside the linear region while still maintaining

a linear model. However, when the tires of the vehicle are operating well outside the linear

region, this linearization breaks down.
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1.2.2 Path Planning and Obstacle Avoidance

As previously mentioned, NMPC confers the added advantage of being able to path

plan without a priori knowledge of terrain. In order to safely traverse terrain in this man-

ner, an obstacle avoidance algorithm must be coupled with the NMPC. Several obstacle

avoidance algorithms for ground vehicles exist in literature [5] - [9]. In these references, a

constant longitudinal velocity of the vehicle is assumed, and a soft constraint is placed on

obstacle avoidance. Assuming a constant longitudinal velocity is not ideal for off-road op-

eration because the vehicle is likely to encounter scenarios in which the vehicle will need to

change velocities in order to safely navigate. Also, a hard constraint on obstacle avoidance

is preferable to a soft constraint for several reasons. With only a soft constraint on obstacle

avoidance, the NMPC penalizes paths close to an obstacle, but does not guarentee to avoid

the obstacle. Furthermore, the use of a hard constraint instead of a soft constraint, allows

paths that are close to an obstacle but still a safe distance to not be unnecessarily penalized.

In addition, with the hard constraint there is no obstacle avoidance parameter within the

cost function to be tuned. The reason for the assumption of constant velocity and the use of

a soft constraint on obstacle avoidance lies in the minimization method used by the NMPC.

References [5], [7], and [8] use a gradient based method for cost function minimization, and

[9] uses an interior point based method. These methods rely on having non-zero values for

the partial derivative of the cost and constraint functions with respect to the control input.

Because the equations of motion that govern the position of the vehicle relative to an obstacle

do not directly contain any control input variables, a hard constraint cannot be applied in

this manner. Because a hard constraint on obstacle avoidance and the ability to incorporate

longitudinal velocity into the control input vector are desirable, the work presented in this

thesis uses a different type of minimization technique called a pattern search. The pattern

search will be described in detain in Chapter 3.
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1.3 Contributions

This thesis presents an NMPC algorithm capable of safely navigating a UGV to a target

location over rough terrain using GPS and a LiDAR unit. The NMPC presented performs

path planning, taking into account knowledge of the terrain the UGV is traversing provided

by a LiDAR, and does not rely on a flat or smooth terrain assumption as in [5] - [7] and [9].

Simulations of the performance of the NMPC are provided and these simulation results are

validated with experimental data. Simulation and experimental results are analyzed and the

benefits of NMPC versus linear MPC are discussed. In summary, this thesis provides the

following contributions to the field:

• Development of a control algorithm for a UGV on rough terrain that is capable of both

path planning and control

• NMPC algorithm features a hard constraint on obstacle avoidance

• NMPC algorithm presented has low enough computational burden for real time imple-

mentation

• Simulations of NMPC performance are validated with experimental data
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Chapter 2

Vehicle Model

This chapter will outline various vehicle and tire models used for vehicle navigation and

control, including the models used by the NMPC algorithm described by this thesis.

2.1 Planar Dynamic Model

The most prevalent model used to describe the planar dynamics of a vehicle is the

bicycle model. There are two common variations of this model: the kinematic model and

the lateral model [10]. These models are shown in Figures 2.1 and 2.2. In Figure 2.1, δ is

the steer angle, β is the sideslip, r is the yaw rate, L is the wheel base length, and Vx and Vy

are the longitudinal and lateral velocities respectively. In Figure 2.2, the wheel base length

is split up into front wheel base length, a, and rear wheel base length, b. The simpler of

the two bicycle models, the kinematic model, assumes zero lateral tire velocity i.e. the slip

angles at each tire are zero. This assumption is invalid when the vehicle is traveling at high

speeds or is turning [11]. The lateral model does not rely on this assumption of zero slip,

and incorporates the front and rear tire slip angles shown by αf and αr, respectively. The

calculation of the front and rear slip angles is shown in Eqs. (2.1 - 2.2) below.

αf = δ − tan−1((Vy + ar)/Vx) (2.1)

αr = tan−1((−Vy + ar)/Vx) (2.2)

The front and rear tire slip angles are then mapped to a front and rear lateral tire force,

Fyf and Fyr, respectively. This mapping is subject to a tire model, which is discussed in a

5



later section. Because the UGV will likely experience tire slip throughout its operation, the

lateral bicycle model was used instead of the simpler kinematic model.

Figure 2.1: Kinematic Bicycle Model

Figure 2.2: Lateral Bicycle Model
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Once the lateral tire forces are determined, the heading, lateral velocity, and x and y

positions in the local vehicle frame (ψ, Vy, and x and y, respectively) can be calculated.

These calculations are described by Eqs. (2.3 - 2.6).

ψ̈ = ((a ∗ Fyf cos(δ))− (b ∗ Fyr))/Izz (2.3)

V̇y = (Fyf cos(δ) + Fyr)/m− (Vxψ̇) (2.4)

ẋ = Vx cos(ψ)− Vy sin(ψ) (2.5)

ẏ = Vx sin(ψ) + Vy cos(ψ) (2.6)

Where the yaw inertia of the vehicle is Izz and m is the vehicle mass.

2.2 Roll Dynamic Model

There are two different types of dynamic roll models prevalent in literature: the full

car model [10], and the curvilinear trajectory roll model [12] shown in Figures 2.3 and 2.4

respectively, where φ is the roll of the vehicle. Both roll models feature experimentally

determined stiffness and damping coefficients, shown by K and C respectively. The inputs

to the full car model are the terrain height on the tires of the vehicle, shown as z1, z2, z3,

and z4 in Figure 2.3. The full car model offers the benefit of characterizing roll produced by

the impact of the terrain on the vehicle, whereas the curvilinear trajectory roll model only

characterizes roll produced by steering. However, unless the terrain height inputs to the full

car model are known to within centimeter level accuracy, an accurate value for roll cannot

be determined. Because it is unreasonable to assume that the terrain height under each tire

can be known to the degree of accuracy that is required by the full car model, the curvilinear

trajectory roll model was used in this thesis. The roll motion described in the curvilinear

trajectory roll model is shown in Equation (2.7).
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φ̈ = −(Cf/Ixx)φ̇− (Kφ/Ixx)φ+ (mVxhcg/Ixx)β̇ + (mVxhcg/Ixx)ψ̇ (2.7)

Where the roll inertia of the vehicle is Ixx, and hcg is the center of gravity height.

Figure 2.3: Full Car Model

8



Figure 2.4: Curvilinear Trajectory Roll Model
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2.3 Tire Model

As previously mentioned, the tire model maps slip angle, α, to a lateral tire force, Fy.

The relationship between slip angle and lateral tire force is largely linear during normal

vehicle operation, but the tire forces saturate under aggressive maneuvering. Because the

UGV must operate over the full operational capability of the vehicle, and will at times

exit the linear region of the tire curve, a nonlinear tire model is desired despite being more

computationally burdensome than a linear model. The nonlinear model used is Pacejka’s

magic formula [13]. This model is shown in Figure 2.5, and is characterized by Eqs. (2.8 -

2.9).

Fyf = D ∗ sin(C ∗ tan−1(B ∗ αf )) (2.8)

Fyr = D ∗ sin(C ∗ tan−1(B ∗ αr)) (2.9)

Where B, C, and D are unitless shape parameters of the UGV’s tires.

Figure 2.5: Pacejka Tire Model

Combining the lateral bicycle model, the Pacejka tire model, and the simpler roll model,

a 7x1 vehicle state vector, x, is derived and shown in Equation (2.10).

10



x = [x, y, φ, φ̇, ψ, ψ̇, Vy]
T (2.10)

The NMPC algorithm is developed using the above state vector, and the algorithm is

described in detail in the next chapter.
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Chapter 3

Nonlinear Model Predictive Control Algorithm

This chapter outlines the development of the Nonlinear Model Predictive Control (NMPC)

algorithm using the nonlinear vehicle model presented in the previous chapter. The cost and

constraint functions derived for the NMPC are detailed. These functions define optimality

for the NMPC. The method employed to minimize the cost function subject to the constraint

functions is then explored. In order to determine feasibility of real time implementation, run

time of the NMPC is then evaluated.

3.1 Cost/Constraint Functions

In order to determine a suitable series of inputs over the control horizon, conditions

for optimality must be defined by cost and constraint functions. Two cost functions were

developed: one cost function that incorporates the predicted value of roll, and the other

incorporates lateral acceleration instead. Both cost functions are used independently, and

simulation results of each cost function are shown in the next chapter. The cost functions

used by the NMPC are shown in Equations (3.1 - 3.2).

J =

∫ t

0

(αφ2 + βφ̇2 + γd2t + ηr2 + εg2)dt (3.1)

J =

∫ t

0

(νa2y + γd2t + ηr2 + εg2)dt (3.2)

The parameters shown in this cost function are soft constraints for the NMPC. In the above

equations, φ and φ̇ are roll and time rate of change of roll, respectively. Distance of the

vehicle from the target is annotated as dt, r and g are the roughness and grade of the terrain
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the vehicle would be traversing, respectively, and ay is the lateral acceleration of the vehicle.

In calculation of ay, no longitudinal slip is assumed, and Equation (3.3) is used.

ay = Vxψ̇ + g sin(φgrade) (3.3)

Where the bank angle of the terrain the vehicle is traversing is φgrade.

The weights on each of the parameters described above are given by α, β, γ, η, ν, and

ε. Of these weights, γ must be by far the largest to ensure that the vehicle drives to the

target location. In order to keep the vehicle from driving in unsafe regions, additional hard

constraints are added, and are shown in Equations (3.4 - 3.10).

dob > ravoid (3.4)

|δ| ≤ 45◦ (3.5)

|φ| ≤ φthresh (3.6)

Vxmin ≤ Vx ≤ Vxmax (3.7)

r < rthresh (3.8)

g < gthresh (3.9)

|ay| < aythresh (3.10)

The distance of the vehicle to an obstacle is dob, and ravoid is the radius around the

obstacle in which the vehicle is not allowed to enter. This ravoid parameter is set by the

certainty of the measured location of an obstacle; if the NMPC is not certain of the exact

location of an obstacle, the controller will give the obstacle a wider berth. Likewise if

the NMPC is certain of the location of an obstacle, the controller might drive closer to

the obstacle in an effort to follow a more optimal path. As previously mentioned, δ is

the steer angle of the vehicle, and it is constrained to be within the physical limitations
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of the vehicle. Lateral and longitudinal velocities, denoted by Vy and Vx respectively, are

constrained to be within predefined threshold values, along with terrain roughness and grade.

These constraints are imposed to ensure the vehicle does not perform any unsafe maneuvers,

nor traverse any unsafe terrain.

3.2 Direct Shooting Method

A direct shooting method [14] was used to calculate cost and minimize the cost function.

The direct shooting method gets its name by being analogous to a marksman shooting at

a target. An initial guess of the control parameters is made, and then shot forward in time

using Runge-Kutta fourth order integration over the length of the control horizon. The

total cost over the control horizon is computed, and changes are then made to the control

inputs accordingly. The process is then repeated until the target is reached within a certain

threshold. The steer angle input was broken up into three parameters as shown in Equation

(3.11), where tf is the length of time of the control horizon.

δ(t) = u0 + u1(t/tf ) + u2(t/tf )
2 (3.11)

Steer angle was parameterized in this manner to constrain any path calculated by the

NMPC to be quadratic. A quadratic path was chosen as a balance between the ability of

the NMPC to generate different types of paths and computational expense of the NMPC.

With a higher order parameterization, the NMPC will be able to generate different types

of paths, but with each additional parameter introduced, the computational expense is in-

creased. A quadratic path is robust enough to avoid obstacles and deliver the vehicle to the

target location, and only requires three parameters to be optimized. Furthermore, with this

parameterization, only three parameters correspond to the entire series of inputs over the

control horizon, rather than having a different steer angle calculated at each time step. Not

having to determine a new steer angle at each time step will greatly improve run time.
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This parameterization results in a vector of control input parameters U = [u0, u1, u2, Vxdes ]
T ,

where Vxdes is desired longitudinal velocity. Desired longitudinal velocity is incorporated into

the control input vector in order to allow the velocity of the vehicle to change based on the

requirements of the terrain being traversed. Because a closed form solution for the optimal

control input does not exist, a pattern search algorithm [15] was used to change the input

parameters after shooting forward.

3.3 Pattern Search

The pattern search algorithm minimizes the cost function by calculating the cost over

the prediction horizon for an initial guess of input parameters, U, then manipulating the

parameters to successively lower the cost. In order to lower the cost in this manner, a

generating matrix Γ is made and is shown in Equation (3.12) below.

Γ =



1 0 0 0 −1 0 0 0 0

0 1 0 0 0 −1 0 0 0

0 0 1 0 0 0 −1 0 0

0 0 0 1 0 0 0 −1 0


(3.12)

Given that U has four components, the size of the generating matrix is 4x9. The number of

columns, n, is defined by 2*(number of inputs)+1.

Each column of Γ is multiplied by a predefined value, δu. This value is then added to

the initial guess of U, as shown in Equation (3.13).

un = uguess + Γnδu (3.13)

The cost of each input, un, is then calculated. If the cost is lowered by any un, that un

is stored as uguess for the next iteration. If the cost is not lowered by any of the un values,

then the value of δu is divided by two for the next iteration. Iterations continue until δu is
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reduced to such a small value that further changes to U are negligible. Pseudocode of this

process is shown in Table 3.1 below.

Table 3.1: Pseudocode of Pattern Search Algorithm

while δu > 0.01
if J(un) < J(uguess)

uguess = un
else

δu = 0.5δu
end

end

Further information on this algorithm can be found in [15]. The pattern search algorithm

finds a local minimum, rather than a global minimum, and is therefore sensitive to the initial

guess for the optimal control input. However, because the main contributing factor to cost

is known to be the distance from the UGV to the target location, an intelligent initial guess

of the control input vector can be made.

3.4 Run Time

The two parameters that most affect the run time of the NMPC are the time step of

the numerical integrator used in the direct shooting method, and the prediction horizon.

A trade-off exists for both of these parameters between performance and computational

expense. Based on testing in simulation, 0.01 s appeared to be a good compromise between

run time and performance for the numerical integrator. The NMPC was then coded in C++

with this time step in order to determine run time for real time implementation. Figure

3.1 shows the run time for one optimization routine over varying prediction horizons. It is

important to note that the run time of the NMPC algorithm is also sensitive to changes in

location of the target and obstacle relative to the vehicle. The run times displayed in Figure

6 are determined for a vehicle located at (0m, 0m), an obstacle located at (10m, 0m), and a

target located at (30m, 0m). All run times were evaluated on a computer equipped with an

i7 processor at 2.8 GHz.
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Figure 3.1: NMPC Run Times

From the above figure, it can be seen that control horizons from 0 - 4 seconds allow the

NMPC to be able to run at 50 Hz. Therefore varying control horizons from 3 - 4 seconds

were implemented. Simulations with of the NMPC are shown in the next chapter.
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Chapter 4

NMPC Simulations

This chapter details the performance of the NMPC in two simulation environments.

The first simulation environment was created in MATLAB using MATLAB’s numerical in-

tegration tool, ode45 [16]. The second environment was developed using CarSim [17], a high

fidelity vehicle simulation software. This chapter is broken up into three sections. First,

the process used to simulate rough terrain is explored. Next, the simulation environment

created in MATLAB is detailed and the results shown. In the third section of this chapter,

the CarSim environment is detailed, and the results of those simulations are shown.

4.1 Terrain Generation

In order to simulate the performance of the NMPC algorithm over rough terrain, a

point cloud of a terrain is generated using a Weierstrass-Mandelbrot function [18] [19]. This

point cloud is broken up into grid cells, and a plane is fit to each grid using a least squares

solution. Figure 4.1 below shows the generated terrain in MATLAB, while Figure 4.2 shows

the same terrain with the planar least squares fit. The terrain shown in Figure 4.2 simulates

the information given to the NMPC from the LiDAR measurements when determining the

optimal path for the UGV. The terrain grade is calculated from the magnitude of the slope

of each planar fit, and the terrain roughness is calculated from the residuals of the fit. The

point cloud of generated terrain is provided to the CarSim simulation environment.
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Figure 4.1: Generated Terrain

Figure 4.2: Terrain with Planar Fit
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4.2 MATLAB Simulations

A simulation environment was created in MATLAB using an E-Class SUV model, shown

in Figure 4.3. This vehicle model was chosen because much of the parameters of the vehicle

were given in CarSim, which are provided in Table 4.1. Roll stiffness and roll damping (Kφ

and Cf , respectively), were not given by CarSim. These parameters were hand tuned, and

are only approximate values. In order to tune this parameters, known steer inputs were

fed into a vehicle model in CarSim, and the roll of the vehicle was calculated. These same

steer inputs were then fed into the vehicle model in the simulation environment created in

MATLAB, and the roll stiffness and roll damping parameters were manipulated by hand in

an effort to best match the results from the CarSim simulation.

Figure 4.3: E-Class SUV

Initially, simulations were conducted over flat terrain to examine the performance of the

NMPC in the most benign conditions. The controller was run at 10 Hz, and the steer angle

and longitudinal velocity computed by the NMPC were then fed into MATLAB’s built in

Runge-Kutta fourth order integrator, ode45. Transient changes of longitudinal velocity and

steer angle of the vahicle was added by approximating changes in said angles and velocities

as a first order response. In this way, when the desired steer angle or longitudinal velocity

changed, the steer angle or velocity smoothly transitioned to the new target value rather than

jumping to the new value like what would be seen in a step input. The system equations

given to the NMPC and ode45 were the same. Table 4.2 shows the parameters used for
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Table 4.1: Parameters of E-Class SUV

m 1590 kg
a 1.18 m
b 1.77 m
hcg 0.72 m
Izz 2687.1 kg m2

Ixx 894.4 kg m2

Kφ 100000 Nm/rad
Cf 10000 Nms/rad
B 9.55 rad−1

C 1.3 rad−1

D 6920 N

one of the simulations, and the results of the simulation are shown in Figures 4.4 - 4.6.

Obstacle and target locations are given by (x, y) coordinates in a local reference frame, and

the vehicle starts at (0 m, 0 m) for all simulations. All simulations on flat terrain feature

the cost function shown in Equation (3.1). Variable terrain simulations also use the same

cost function, unless otherwise stated below.

As shown in Table 4.2, a control horizon of 4 s was used. This control horizon was found

to be a good compromise between ability to recognize and avoid an obstacle, and planning

a more optimal path to the target location. Simulation results showed that the NMPC is

more able to generate an optimal path with a lower control horizon, though less able to

recognize obstacles in the path of the vehicle. This effect is owing to the parameterization

of the steer input. Within a smaller control horizon, there are fewer possible paths for the

NMPC to evaluate; therefore the NMPC is more likely to select an optimal one. However,

with the smaller control horizon, the NMPC is also more likely to generate a path into a

position to where it will be unable to escape collision with an obstacle when the obstacle is

finally seen by the NMPC. In order to mitigate this risk, minimum and maximum values for

control horizon can be set based on the speed of the vehicle and the number of obstacles in

the vicinity of the vehicle.
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Table 4.2: Parameters for MATLAB Flat Terrain Simulation 1

α 1
β 1
γ 10000

ravoid 3 m
Vxmax 3 m/s
Vxmin 0 m/s
φthresh 15◦

tc 4 s
Target Location (50 m, 0 m)

Obstacle Location (25 m, 0 m)

Figure 4.4: Vehicle Path for MATLAB Simulation 1, Flat Terrain
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Figure 4.5: Steer Angle for MATLAB Simulation 1, Flat Terrain

Figure 4.6: Longitudinal Velocity for MATLAB Simulation 1, Flat Terrain
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The results of another flat terrain simulation (Simulation 2) are shown in Figures 4.7

- 4.9. For this simulation, the obstacle is located at (15 m, 15 m) and the target location

is (30 m, 30 m). The control horizon is 3.5 s, ravoid is 4 m, and the maximum longitudinal

velocity is constrained to 4 m/s. For both flat terrain simulations, the NMPC generates a

path that is a near global minimum of the cost function.

Figure 4.7: Vehicle Path for MATLAB Simulation 2, Flat Terrain
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Figure 4.8: Steer Angle for MATLAB Simulation 2, Flat Terrain

Figure 4.9: Longitudinal Velocity for MATLAB Simulation 2, Flat Terrain
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Next, simulations of the vehicle over varying terrain roughness were conducted, as well

as simulations featuring multiple obstacles. These simulations based on the MATLAB vehi-

cle model do not take the effect of the terrain on the vehicle into account, but knowledge of

the terrain roughness and grade does affect the path planned by the NMPC. An initial vari-

able terrain simulation was conducted using two types of terrain: mildly rough traversable

terrain, and moderately rough traversable terrain. For all simulations, green squares denote

mildly rough terrain, and orange squares denote moderately rough terrain. Figures 4.10 -

4.13 show a simulation (Simulation 3) over mildly rough terrain with multiple obstacles.

Parameters for the simulation are shown in Table 4.3.

Table 4.3: Parameters for MATLAB Simulation 3, Multiple Obstacles

α 1
β 1
γ 10000
η 10
ε 10

ravoid 3.0 m
Vxmax 5 m/s
Vxmin 0 m/s
φthresh 15◦

tc 3.0 s
Target Location (43 m, 0 m)

(8 m, 10 m)
Obstacle Locations (13 m, 0 m)

(26 m, -3 m)
(32 m, 5 m)
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Figure 4.10: Vehicle Path for MATLAB Simulation 3, Multiple Obstacles

Figure 4.11: Steer Angle for MATLAB Simulation 3, Multiple Obstacles
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Figure 4.12: Longitudinal Velocity for MATLAB Simulation 3, Multiple Obstacles

Figure 4.13: Vehicle Roll for MATLAB Simulation 3, Multiple Obstacles
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Figures 4.14 - 4.17 show a simulation (Simulation 4) of the vehicle over both mildly

rough and moderately rough terrain, and the parameters used in the simulation are shown

in Table 4.4. In addition to the added cost of the NMPC generating a path through the

moderately rough terrain, the maximum longitudinal velocity of the UGV was further con-

strained to be 2 m/s. This additional constraint imposes a velocity that is not practical

for transportation, but the constraint is imposed to illustrate the ability of the NMPC to

change target longitudinal velocity based on terrain roughness. While the path the NMPC

generates does successfully avoid the obstacle and bring the UGV to the target, it is a sub-

optimal trajectory. A more optimal path would be for the UGV to turn to the right when

avoiding the obstacle, and avoid the moderately rough terrain altogether. Also, the path

generated by the NMPC is unnecessarily aggresive when avoiding the obstacle. This is likely

a result of poor characterization of the roll stiffness and roll damping of the vehicle. The

suboptimality in the path generated by the NMPC is caused by the pattern search finding

a local minimum rather than a global minimum.

Table 4.4: Parameters for MATLAB Simulation 4, Variable Terrain

α 1
β 1
γ 10000
η 10
ε 10

ravoid 3.5 m
Vxmax 5 m/s
Vxmin 0 m/s
φthresh 15◦

tc 3.5 s
Target Location (45 m, 0 m)

Obstacle Location (18 m, 0 m)
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Figure 4.14: Vehicle Path for MATLAB Simulation 4, Variable Terrain

Figure 4.15: Steer Angle for MATLAB Simulation 4, Variable Terrain
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Figure 4.16: Longitudinal Velocity for MATLAB Simulation 4, Variable Terrain

Figure 4.17: Vehicle Roll for MATLAB Simulation 4, Variable Terrain
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In an effort to generate a path closer to the global minimum of the cost function, the

lateral acceleration cost function was used (Equation (3.2)). Table 4.5 shows the parameters

used in simulation with the lateral accleration cost function. Velocity within the moderately

rough region of terrain (again, shown in orange) was constrained in the same manner as

before. Simulation results (Simulation 5) are shown in Figures 4.18 - 4.20. The NMPC

performs better with the lateral acceleration cost function, but still generates a suboptimal

path. The path generated again takes the vehicle into the rough terrain. However, the

vehicle does not unnecessarily aggresively steer away from the obstacle, and a much smoother

trajectory is generated around the obstacle. This is likely due to the simpler vehicle model,

which does not characterize roll directly. As a result, there is not a large amount of tuning

and system identification required. As previously mentioned, in order to directly characterize

vehicle roll accurately using the curvilinear trajectory roll model, the roll stiffness and roll

damping parameters of the vehicle must accurately be known, and these parameters can be

difficult to measure. Using a lateral acceleration model instead of a roll model allows for

greater ease of implementation.

Table 4.5: Parameters for MATLAB Simulation 5, Variable Terrain

α 1
γ 5000
η 20
ε 20

ravoid 3.5 m
Vxmax 5 m/s
Vxmin 0 m/s
aythresh 6 m/s2

tc 4.0 s
Target Location (45 m, 0 m)

Obstacle Location (18 m, 0 m)
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Figure 4.18: Vehicle Path for MATLAB Simulation 5, Variable Terrain

Figure 4.19: Steer Angle for MATLAB Simulation 5, Variable Terrain
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Figure 4.20: Longitudinal Velocity for MATLAB Simulation 5, Variable Terrain

4.3 CarSim Simulations

CarSim is a high fidelity vehicle modeling software with a Simulink interface that is

capable of simulating vehicle motion on different types of terrain. Unlike the simulations

developed in MATLAB, simulation environments created with CarSim can account for the

effect of rough terrain on the motion of the vehicle. Figure 4.21 shows the Simulink model

used for testing with CarSim.

Figure 4.21: CarSim/Simulink Model

The only input provided by the NMPC to the vehicle in the CarSim environment was

steer angle. The desired longitudinal velocity computed by the NMPC was constrained to be
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2 m/s, and this velocity was set as a constant target for the vehicle in CarSim. The target

location was set to (30 m, 10 m), and an obstacle was placed at (15 m, 5 m). ravoid was

set to 3 m. Unfortunately, transient changes in steer angle inputs could not be simulated

without causing CarSim to crash, so the steer angle of the vehicle in the CarSim simulation

was assumed to be able to instantaneously change when given new commands. The terrain

shown in Figure 4.1 was used for simulation, and the NMPC was run at 2.5 Hz, which was

the highest frequency that CarSim would allow. The cost function featuring the curvilinear

trajectory roll model was used for simulation in CarSim (Equation 3.1). Figures 4.22 - 4.24

show the results of the CarSim simulation.

Figure 4.22: CarSim Simulation: Vehicle Path
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Figure 4.23: CarSim Simulation: Steer Angle

Figure 4.24: CarSim Simulation: Roll
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As previously mentioned, the NMPC sometimes generates a suboptimal path to the

target location as a result of the pattern search finding a local minimum. This generation of

a suboptimal path highlights one of the drawbacks of NMPC. Owing to the suboptimality of

paths generated by the NMPC, use of this NMPC is only recommended in situations where

the ability to plan a path and control the vehicle simultaneously is required. In scenarios

in which a desired path is known a priori and only vehicle control is required, use of a

linear MPC in conjunction with a linearized vehicle model is recommended. However, in the

absence of a priori path knowledge, the NMPC is able to provide a safe path to a target

location.
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Chapter 5

Experimental Implementation of NMPC

In order to validate the simulation results, the NMPC was implemented on Auburn’s test

vehicle, the Prowler. This chapter details the experimental implementation of the NMPC.

The first section describes the experimental setup of the Prowler. The following section

discusses sources of error that are unique to this particular experimental implementation.

Finally, the last section shows experimental results.

5.1 Experimental Setup

The Prowler is an ATV test vehicle equipped with a GPS receiver, inertial measurement

unit (IMU), on-board computer, and motors that control steering and throttle position. The

Prowler is shown in Figure 5.1, and the motors used to control steering and throttle are shown

in Figure 5.2. The vehicle parameters of the Prowler used in experimental implementation

are shown in Table 5.1. All testing done with the Prowler was conducted on the skid pad at

the National Center for Asphalt Technology (NCAT). The skid pad was chosen for testing

because it is a large flat surface, and is a benign environment for testing performance of the

NMPC. Because testing was done on a flat surface and the Prowler was not equipped with a

sensor that could measure roll or roll rate (φ and φ̇ respectively), roll and roll rate were both

assumed to be zero. Because roll stiffness and roll damping of the Prowler were unknown, an

additional constraint was placed on changes in the steering wheel angle between successive

time steps to be under a predefined threshold value of 12.5◦. This was done because in the

absence of roll stiffness and roll damping parameters, the NMPC is unable to characterize

roll produced by steer input. This added constraint ensured the Prowler would not rollover

from too aggressive a steer input.
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Vehicle states measured by GPS were position, course, and longitudinal velocity. Yaw

rate was measured by the IMU. Throughout experimental testing, course was assumed to be

equivalent to heading (i.e. zero sideslip). Errors introduced by this assumption and other

errors introduced in experimental implementation will be discussed more in the next section.

For experimental testing of the NMPC, target and obstacle locations were surveyed us-

ing GPS prior to running the NMPC, and both obstacle and target locations were then given

to the NMPC. This mitigated much of the error in relative distance measurements between

the vehicle and obstacle and vehicle and target. Once the target and obstacle locations

were determined, the Prowler was initialized a distance away from the obstacle and in the

direction in line with both the target and obstacle, and the NMPC was then started and al-

lowed to control the vehicle. Because the initial course of the Prowler had to be determined,

and reliable course measurements could only be obtained from GPS when the Prowler was

moving, the first four control inputs to the steering wheel determined by the NMPC were

thrown out. Initializing the course of the Prowler in this way allowed for measurements from

GPS to be converted into a local frame.

Table 5.1: Parameters of the Prowler

m 544 kg
a 0.7239 m
b 0.7239 m
hcg 0.4 m
Izz 3500 kg m2

B 9.55 rad−1

C 1.3 rad−1

D 6920 N

39



Figure 5.1: The Prowler

Figure 5.2: Prowler Control Motors
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5.2 Sources of Error

Bringing the NMPC out of the simulation environment, and into an experimental en-

vironment introduces several sources of error that impacted the performance of the NMPC.

Throughout the simulations shown in Chapter 4, perfect knowledge of the vehicle state vec-

tor was assumed to be known. This is obviously a poor assumption, as the measurements

provided to the NMPC will contain noise. The noise in the measurements from the sensors

(with the exception of course measurements), was small enough to be neglected.

A large source of error within the experimental implementation of the NMPC stemmed

from position and course measurements provided by GPS. Because stand-alone GPS was

used, the position solution provided to the NMPC had an error of 1 - 3 meters [20]. How-

ever, because the NMPC uses relative distance to target and obstacle locations, this error

was largely mitigated. The main sources of error introduced by GPS measurements were

from noisy course measurements. GPS course is measured by differencing carrier phase mea-

surements, which produced a large amount of noise when the Prowler was moving at low

speeds. The amount of noise in course measurements is shown by Figure 5.3. The effect of

the noisy measurement of course is amplified as the target location is placed farther away

from the initial location of the Prowler. This is because the target and obstacle locations

are transformed into a local frame once the course of the Prowler is initialized. If the initial

course of the Prowler is off by several degrees, the path the NMPC plans will have error in

the predicted location of the Prowler. The farther the Prowler travels, the larger the error

will be. After travelling 100 meters on the skid pad, the Prowler would often be 1 - 2 meters

away from the target location owing to poor course initialization. In addition to poor course

initialization, noisy course measurements will cause the steer input to fluctuate around a set

point when driving straight. This was managed in experimental implementation by running

the NMPC at a lower frequency. Several potential solutions to problems created by noisy

course measurements exist. Course measurements should be filtered in some way before they
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are sent to the NMPC. However, implementation of a better navigation solution is outside

the scope of this thesis.

Another source of error within experimental implementation is that many of the pa-

rameters, namely the tire model (i.e. the tire slip relationship), of the Prowler were not

known to a high degree of certainty. Of the vehicle parameters shown in Table 5.1, only the

mass of the Prowler along with the front and rear wheel base lengths were measured. Error

in the model parameters of the vehicle causes the NMPC to plan a path that is different

than the path generated once the inputs from the NMPC are applied to the vehicle. During

experimental testing, it was evident that the linear region of the Prowler tires was much

smaller than that of the vehicle model used by the NMPC. In order to minimize this error

in the tire model, the Prowler was constrained such to not perform aggressive steering and

stay within the linear region of the tire. In addition, the error in path generation caused by

error in model parameters is directly proportional to the control horizon; therefore during

experimental testing the control horizon was kept low. With these additional constraints, the

error introduced from lack of knowledge of vehicle model parameters was kept to a minimum.

Error in tire shape and mass moment of inertia parameters could be reduced by performing

system identification on the test vehicle, and tuning the parameters in question to match

datasets taken with the Prowler.

Finally, a large amount of error was introduced by poor control of velocity. For all

experimental data sets, the velocity was constrained to be a set value, and a driver or a

controller would attempt to control the vehicle to that value. However, at low speeds it is a

non-trivial task to maintain the constant velocity expected by the NMPC, and the Prowler

was often travelling at a velocity other than what the NMPC commanded. This has a similar

effect to the error introduced by incorrect vehicle parameters; the NMPC is generating a path

that is different than what is actually being realized.
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Figure 5.3: Noise in Course Measurement

5.3 Experimental Results

The NMPC was employed to initially control only the steer angle of the vehicle and the

velocity was controlled manually. Once satisfactory results were obtained with steer control

only, velocity control was implemented. The results of steer control only (semi-autonomous

control) and steering and velocity control (fully autonomous control) are detailed in the

sections below.

5.3.1 Semi-Autonomous Control

For the data shown in this section, the NMPC was constrained to a target velocity of

3 m/s. The driver of the Prowler manipulated the throttle in an effort to maintain this

velocity. A constant control horizon of 3.5 s was used. Experimental results agree with

simulation results in that the NMPC is able to generate a path around an obstacle and to a

target location, but the path generated was suboptimal.
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Figure 5.4: Semi-autonomous Obstacle Avoidance on Prowler

5.3.2 Fully Autonomous Control

For the sake of ease of implementation, the target velocity for fully autonomous data

sets was constrained to be a set value of 4.5 m/s. Velocity was controlled to this target value

with a lower level PID controller that commanded throttle position. The value of 4.5 m/s

was chosen because it was large enough to be maintained by the PID controller with only

throttle control, yet small enough to be able to safely test the NMPC. In order to obtain

better results from the NMPC with velocity control implemented, the control horizon was

scheduled based on distance of the vehicle to an obstacle. The control horizon was initially

set to be 2.2 s, but was reduced to 1 s once the vehicle passed the obstacle. This scheduling of

the control horizon allows the vehicle to more precisely hit the target location after avoiding

the obstacle, but a suboptimal path is still generated. Figures 5.5-5.6 show experimental

results of the NMPC controlling both steering and velocity.
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Figure 5.5: Fully Autonomous Obstacle Avoidance on Prowler: Simulation 1

Figure 5.6: Fully Autonomous Obstacle Avoidance on Prowler: Simulation 2
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, a nonlinear model predictive control algorithm (NMPC) was presented for

use with an unmanned ground vehicle. First, several vehicle models are presented, including

the models used by the NMPC. The NMPC uses a lateral bicycle model with a Pacejka tire

model in order to capture the planar dynamics of the vehicle, and a curvilinear trajectory

model to capture the roll dynamics of the vehicle. The use of more complicated vehicle

dynamic models may increase the accuracy of characterization of the motion of a vehicle,

but at the cost of increased computational expense. In addition to added computational

expense, more complicated models also contain additional parameters that are not easily

measurable and can differ significantly from vehicle to vehicle. An example of this is the tire

curve parameters used by the Pacejka tire model. These tire model parameters also change

based on the vertical load on the tire and the tire pressure. If many of these parameters are

not known to a high degree of certainty, the benefits of using these more complicated vehicle

models is mitigated.

The NMPC algorithm presented in this thesis differs from NMPC algorithms in litera-

ture as the algorithm presented herein features a hard contraint on obstacle avoidance. The

hard constraint on obstacle avoidance was desirable, as it ensures that the NMPC will not

generate a path that would bring the vehicle an unsafe distance to an obstacle. However,

introducing this hard constraint required using a different cost minimization method than

what was used in literature. Instead of the cost minimization algorithms that are prevalent

in literature, a pattern search algorithm was used. The pattern search algorithm and other
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cost minimization algorithms used for control of vehicles are suceptible to finding local min-

ima rather than the global optimal solution. The nonlinearities of vehicle dynamics make

determining a global minimum of cost very challenging. Control inputs do not appear di-

rectly in the equations of motion of the vehicle. Because of this, a closed form solution of

the minimum of the cost function presented cannot be obtained.

Another challenge of NMPC is the run time required. Because model predictive control

operates by calculating a series of inputs into the future at each time step, run time can be

quite burdensome. The run time of the NMPC presented in this thesis was sufficiently small

enough for the NMPC to operate at 10 Hz. The quickness of the run time owes itself largely

to the parameterization of the control input vector. By parameterizing the steer input over

the control horizon into three different components as shown in Equation (3.11), only three

parameters are required to be calculated for an entire series of control inputs.

Simulations of the performance of the NMPC in two different simulation environments

were presented: a simulation environment created in MATLAB, and a CarSim simulation

environment. These simulations reveal the often suboptimal performance of the NMPC,

but also validate the ability of the NMPC to navigate a vehicle to a target location around

obstacles. The results from simulation are validated with experimental implentation of the

NMPC on Auburn’s test vehicle, the Prowler. Several errors are introduced when bringing

the NMPC out of the simulation environments and into experimental implentation, and were

detailed in Chapter 5. Testing was conducted at the National Center for Asphalt Technology

on a skid pad, which was a smooth flat surface that offered a benign environment for testing

the NMPC. Experimental tests confirmed what was shown by the simulations: the NMPC

will navigate the vehicle around an obstacle and to a target location, but the path is often

suboptimal.

Owing to the suboptimality of the path generated by the NMPC, a different path plan-

ning and control algorithm is recommended in situations where a priori knowledge of terrain

roughness and obstacle locations is known, and the ability to generate a path and control
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inputs simultaneously is not needed. In the case where a priori information is available,

a simpler control algorithm can adequately control the vehicle with less computational ex-

pense. However, in the absence of such knowledge, the work presented in this thesis lays a

foundation for UGV control over variable terrain.

6.2 Future Work

There are several methods in which the experimental and simulation results could be

improved upon. One such way would be to perform a more intensive search for the minimum

of the cost function. The run time of the NMPC is well below the one second requirement of

experimental implementation, and a slightly larger computational expense would not hinder

performance of the NMPC. A potential way of performing a more intensive search for the

minimum of the cost function would be to employ a “swarming method”1 in conjunction

with the pattern search. A “swarming method” would involve making several initial guesses

for control input rather than just one, and finding the corresponding local minimum for

each guess with the pattern search. The local minimum with the lowest cost would then be

chosen to be input to the vehicle. Using this type of method would ensure that the NMPC

did not arbitrarily prefer one direction of turning over another, for example because one turn

direction yielded a local minimum before the other turn direction was tried.

As previously mentioned, there is a trade-off between optimality of the path generated

and ability of the NMPC to recognize and avoid obstacles when setting the value for the

control horizon. Throughout all of the simulations and some of the experimental data, the

control horizon was a constant value. Better performance can be achieved if the control

horizon changes throughout operation of the NMPC dependent on vehicle speed and relative

location of detected obstacles.

1This idea is courtesy of a hot tub conversation in Utah with Dan Pierce.
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As with any model based control method, knowledge of model parameters is invaluable.

The performance of the NMPC in the experimental environment suffered from lack of com-

plete knowledge of test vehicle parameters. Measuring many of these parameters, such as

the tire curve model parameters, roll stiffness, and roll damping, is not feasible, but these

parameters can be estimated using system identification. Once more accurate values for the

vehicle parameters in question are obtained, the path generated by the NMPC will more

accurately match the path driven by the vehicle.

Finally, as previously mentioned, a better vehicle navigation solution would enhance

the performance of the NMPC. In experimental implementation, raw sensor measurements

were fed directly to the NMPC. These measurements contained a lot of noise, and negatively

impacted the performance of the NMPC. Rather than use raw measurements, a GPS/INS

solution could be employed to filter measurements given to the NMPC. A GPS/INS solution

would allow for a better determination of initial course of the vehicle as well as allow for

more reliable updates of the heading of the vehicle, which would improve performance of the

NMPC.
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