
 

 

 

 

 

Implementation of A Thermal Head Room based P-State Driver in Linux  
 

by 

 

Harika Kilari 

 

 

 

 

 

A thesis submitted to the Graduate Faculty of 

Auburn University 

in fulfillment of the 

requirements for the Degree of 

 Master of Science 

 

Auburn, Alabama 

December 10, 2016 

 

 

 

 
Keywords:  

Thermal Head Room, P-State Driver, Linux Kernel, Peak Temperature and Power Consumption  
 

 

 

 
Copyright 2016 by Harika Kilari 

 

 

 
Approved by 

 

Sanjeev Baskiyar, Chair, Associate Professor, Computer Science and Software Engineering 

Anthony Skjellum, COLSA Professor, Computer Science and Software Engineering 

Xiao Qin, Professor, Computer Science and Software Engineering 

 

 



ii 

 

 

 

 

 

 

Abstract 

 

 

 Processor overloading causes excessive heat dissipation and high temperatures which may 

cause unreliable operation and low lifespan. To handle such risks, processors have thermal 

protection modules, limit the temperature within permissible temperature ceiling via thermal 

throttling. It is a computer architecture technique which lowers the operating frequency and 

voltage (or, p-states) dynamically to conserve power and/or reduce heat dissipation at the cost of 

performance.  Intel’s Proportional, Integral and Derivative (PID) controller uses p-states to control 

the temperature. We implemented a previously proposed Thermal Headroom Based p-state Driver 

in the Linux to reduce thermal violations above the target temperature. Thermal headroom is the 

resulting difference between adjacent peak (above target) to trough (below target) temperatures. 

When temperature rises, the thermal headroom driver cools the CPU by reducing its p-state until 

the temperature falls near the target temperature. Once there is enough thermal headroom, p-state 

is increased to boost performance.  We conducted an evaluation using the SPEC CPU 2006 

benchmark suite. The thermal headroom was successful in reducing thermal constraint violations, 

which in return could lower peak temperatures and energy consumption by 1 - 4 ̊C and 0.5 - 6 KJ 

respectively compared to the PID based controller. 
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Chapter 1  

  Introduction 

 

1.1 Dynamic Thermal Management  

Dynamic Thermal Management (DTM) is a heat management technique in computer 

architecture, where the system uses different cooling strategies to bring down the temperature 

of system. All electronic devices and circuits generate excess heat and thus require thermal 

management to improve reliability and prevent premature failure. DTM is required to remove 

the extra heat produced by computer components, to keep components within permissible 

operating temperature limits. All modern day processors are designed to cut out or reduce their 

voltage (which translates to power usage) and/or clock speed if the internal temperature of the 

processor exceeds a specified limit.  

 

Components are often designed to generate as little heat as possible, and computers and 

operating systems may be designed to reduce power consumption and consequent heating 

according to workload, but more heat may still be produced than can be removed without 

attention to cooling. A 10 ̊C increase in overall temperature reduces the life span of electronic 

devices by half [1]. The cost for cooling and packaging also increases with increasing power 

[2], [3]. As the demand for high performance is growing, nowadays thinner and smaller 

computing systems such as laptops, ultra-books are being used for running HPC applications, 

which in turn demands innovative ways to monitor and reduce system heat dissipation. 

Thermal aware strategies have emphasized distributing the performance both temporally and 

spatially to mitigate temperature [4]. 
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1.2 Dynamic Voltage Frequency Scaling (DVFS) 

Dynamic Voltage Frequency Scaling (DVFS) is a power management technique in computer 

architecture, where the voltage used in a component is increased or decreased, depending upon 

circumstances. Dynamic voltage scaling to increase voltage is known as overvolting; dynamic 

voltage scaling to decrease voltage is known as undervolting. As the demand for high 

performance is growing, nowadays thinner and smaller computing systems such as laptops, 

ultra-books are being used for running HPC applications, which in turn demands innovative 

ways to monitor and reduce system heat dissipation and power consumption. Based on 

temperature, the BIOS controls the system fan. It monitors fan speed and can do thermal 

throttling accordingly.  

 

Thermal throttling adjusts the duty cycle of the processor clock or reduces the operating 

frequency, voltage. Such controls significantly impact performance [5]. When the maximum 

specified CPU temperature settings are exceeded performance loss occurs due to the 

intervention of BIOS. The efficiency of some electrical components, such as voltage 

regulators, decreases with increasing temperature, so the power used may increase with 

temperature causing thermal runaway. Increases in voltage or frequency may increase system 

power demands even faster than the CMOS formula indicates. The key idea behind our 

approach was to limit performance when temperature crosses the set point. As power is 

proportional to the square of processor frequency, there is conservation of energy [6], [7]. 

When the system runs out of cool tasks, there is a rapid temperature increment, then DVFS 

takes corrective action to maintain temperature below cutoff as the temperature emergencies 

could happen at a granularity of millisecond. 
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1.3 Intel thermal daemon 

Intel thermal daemon (thermald) is a viable solution for monitoring and controlling core 

temperatures implemented within Linux. While using techniques like thermal throttling, the 

system will experience performance loss. In order to prevent such an effect, the thermal 

daemon proactively cools the CPU by managing performance and thermal states. For 

controlling these states, P-state drivers and other cooling devices are being used in the Linux 

kernel developed by Intel. The block diagram for such an implementation is shown in Figure 

1.1 which has been reproduced from [5]. Although these P-states perform quite well for the 

power and performance trade-off, they are not suitable for temperature control at a set point 

because they are discrete in nature and makes temperatures oscillate below and above the set 

point. The official information as to how many states are available in a system are not yet 

published and we know that they are limited in number [8]. This implementation allows user 

to configure thermal control on the system. A brief illustration of Intel thermal daemon is 

presented in Figure 1.1. 

 

This module uses DTS sensors to track temperatures and uses Intel P-state driver, Power clamp 

driver, Running Average Power Limit control and cpufreq as cooling methods. 
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1.4  Thermal Headroom Approach 

Thermal Head Room analysis helps determine if the temperature may exceed the target 

temperature in future. The Thermal Headroom approach takes into account the discrete nature 

of the P-States. Transition to higher P-States is made only when the headroom is available. 

After looking into several approaches and experiments, we determined that that a modified 

approach based on thermal headroom works well for temperature and offers energy savings 

with low schedule length penalty. In this research, a P-State driver was built which distributes 

performance temporally while governing the target temperature with minimal modifications to 

the underlying operating system.  

 

Although temperature could be predicted using a temperature prediction model as in [9]– [10] 

but we used the thermal virtual file system (i.e., /sys/class/hwmon) in Advanced Configuration 

and Power Interface (ACPI) to directly read the temperature. Temperature reaction time (rise 

and fall time) was found to be of a tenth of a second similar to that in [11]. Thermal virtual file 

system reports temperature every 2 seconds which we choose as the sampling interval. 

Hardware performance counters, thermal virtual file system were made use of in gathering data 

for temperature, performance and power. Using the above data, the correlation between the 

CPU maximum performance and temperature was exploited. This approach reduces thermal 

oscillations and conserves energy by avoiding unnecessary cooling. We implemented this 

approach in Linux kernel and tested it on HPC applications such as SPEC CPU2006 

benchmarks. 
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1.5 Organization of Thesis 

The Chapter 1 of this thesis gives an introduction of the major approaches used for thermal 

management of multi-core processor systems. It briefly describes main techniques like 

Dynamic Thermal Management, Dynamic Voltage Frequency Scaling, Linux Thermal 

Daemon and Thermal Headroom Driver. The Chapter 2 gives an understanding of the different 

kinds of initial solutions used for temperature control. It also highlights the setbacks and 

tradeoffs for those solutions. The Chapter 3 introduces the purpose of the experiment followed 

by the method and calculations and other details of the experiment conducted and finally the 

results obtained. In the end the Chapter 4 includes the discussion of the results and the 

conclusion. 
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Chapter 2  

Background 

2.1 Thermal Strategies  

2.1.1 Heat Balancing 

Modern operating systems employ dynamic load balancing to improve response times and 

prevent starvation when the system is overloaded. In Linux, the load-balancing routine in 

the scheduler typically runs once in hundreds of milliseconds (200ms by default) [11]. It 

employs task migration to minimize the differences in task queue length for each core. To 

enable thermal aware scheduling in Linux, this scheme considers the thermal 

characteristics of each task and core while making task-migration decisions. When the 

system is overloaded, the Heat Balancing extension attempts to assign hot and cold tasks 

to each core in order to create opportunities for leveraging temporal heat slack. When the 

system has less number of tasks than the number of cores, the original load balancing 

routine does not perform any task migration but the heat-balancing routine moves a hot 

task to a colder, idle core to create opportunities for leveraging spatial heat slacks [4].  

  

2.1.2 Deferred Execution of Hot Tasks 

In some cases, the Heat-balancing may not be triggered in time to prevent the rising of 

temperatures. To cover such scenarios, a reactive scheme called the Deferred Execution 

scheme was implemented in the Linux scheduler [11]. When a core has multiple tasks and 

one of the tasks consistently heats up a core, the scheduler temporarily suspends the time 

slice of the current running hot task to allow other colder tasks to run before the hot task 

further heats up the core. 
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2.1.3 Cool Loop for SMT and single-thread 

When a system is fully-loaded or over-loaded with hot tasks, there is no sufficient heat 

slack such that either Heat-balancing or Deferred Execution could leverage to reduce on-

chip hot spots. In such cases, the system needs to employ fast-responding, workload 

reduction schemes to control temperature at the expense of performance. To lower 

temperatures while maintaining reasonable throughput, a new kernel task called Cool Loop 

was implemented, to create opportunities for temporal heat slack. The Cool Loop can be 

thought of as the same as the OS idle loop, but with a higher OS priority [11]. It could 

consist of no-op instructions or power-managing instructions that lower the core 

temperature through fetch throttling, frequency/voltage scaling or power-gating. When the 

cool loop is running it does not perform useful computation, but it has an OS priority that 

is higher than user tasks but lower than interrupt service routines and scheduler ticks. 

Allowing interrupt servicing routines does not impose additional risks of further heating 

because interrupt routines including scheduler ticks are typically short. 

 

2.1.4 Feedback Control Scheduling 

This technique proposed by Yue [12], uses cache-miss ratio as feedback, where they could 

set temperature at a reference point with a tight feedback loop controlling frequency via 

cache-miss ratio. However, in presence of noise due to fan and heat from other cores in 

case of a multi core general purpose computing CPU, the frequency-miss rate model does 

not work as intended. Thus, a direct control over frequency such as DVFS is indeed 

necessary. 
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2.1.5 Thermal Aware Scheduler in Embedded Systems 

This scheme proposed in [13], exploits the variability between soft real-time and best effort 

applications to maintain the system temperature below a desired level while satisfying 

requirements such as throughput and fairness in temperature-constrained systems. The 

thermal model proposed as above would not support rapid temperature change because in 

a turbo state, the processor frequencies are opportunistically scaled [14] which in-turn leads 

to abrupt changes in temperature. 

 

2.1.6 Priority Based Scheduling 

The hot and cold processes are classified based on instructions per cycle. This technique 

targeted scenarios common to high-performance computing where processors are fully 

loaded. However when the system runs out of cool process, there is a rapid temperature 

increment, then DVFS takes corrective action, suggesting that scheduling cannot replace 

DVFS as thermal emergencies could happen at a granularity of millisecond [15]. 

 

2.1.7 Zig-Zag Scheduling  

This scheme executes the workload at maximum speed until the maximum temperature 

threshold is reached, after that the speed is minimized to allow the processor to cool down. 

They have formulated an optimal Zig-Zag policy [16] by executing different jobs with 

different priorities at different discrete processor speeds for reduction in schedule length.  
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2.2 Intel Processor Technology 

2.2.1 Processor States 

A CPU can be put to different power states, depending on the current workload. These 

states are determined by the active parts of the CPU. C0 is active mode running 

instructions, C1, C1E are auto halt mode scaling frequency and voltage opportunistically. 

C3 corresponds to L1/L2 caches flush and clock off. G1(Sleeping mode) encompasses S1 

corresponding to standby mode, S3 Suspend to Ram (STR) and S4 Hibernate mode. G3 is 

when the system is mechanically switched off. Processor P-States are defined as 

frequency/voltage operating states. All P-States are sub-states of C0 and the processor 

actually executes instructions in all P-States unlike other states, such as C1, C2 and C3. 

The maximum performance and the most power consuming state is P0. The whole system 

states and voltage, frequency varying with these states are illustrated in Figures 2.1 and 2.2 

which are reproduced from [17]. 
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2.2.2 Enhanced Intel Speed Step Technology 

Enhanced Intel SpeedStep® Technology is an advanced means of enabling very high 

performance while also meeting the power-conservation needs. Separation of voltage and 

frequency changes. By stepping voltage up and down in small increments, the processor is 

able to reduce periods of system unavailability that occur during frequency change. The 

system is then able to transition between voltage and frequency states more often, 

improving balance between power and performance. It reduces the latency associated with 

changing the voltage/frequency pair, or P-state. Transitions can be undertaken more 

frequently, enabling more granular demand-based switching, and the optimization of the 

power and performance balance based on demand. 

 

So while using the above techniques temperature violations may occur while trying to 

optimize performance under at a particular target temperature due to discrete P-States. To 

manage increasing constraints on power and thermal budgets, P-State transitions can be 

dynamically controlled. 
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Chapter 3  

Experiment 

3.1 Motivation 

A Thermal Headroom based P-State driver is required in Linux Kernel as the P-States are 

discrete. Sudden P-State transitions might result in thermal violations leading to emergencies. 

We need real time data while making P-State transitions to prevent the violations. The Thermal 

Head Room based P-State driver provides a history based learning where thermal head room 

is measured during the time when the P-State is boosted. This approach learns that there is an 

overshoot of temperature with an increase in P-State, thus an increase in P-State is performed 

only when the calculated thermal headroom is available next time. 

 

3.2 Thermal Headroom Based P-State Driver  

This research monitors the CPU temperature and its variations by making P-State transitions 

using an approach that is inspired by Model Predictive Control (MPC). The adaptation of MPC 

for Thermal Headroom approach will be explained. MPC is a predictive algebraic method used 

for calculating results of a sequence of control variable changes. After a few initial 

observations, the controller can use a control sequence to produce desired output. Specific 

knowledge of the process could be used to optimize the best long-term output by foreseeing 

the results of an action in future. This approach prevents actions taken by conventional methods 

as they target short-term goals which are costly in the long-term. 
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3.2.1 Mathematical Representation 

The deviations from the desired output , either specified by mathematical model or 

reference trajectory, produce an error function  for increments of control 

actions ∆∆ Here is the output and  is the control action. In 

case of P-State control p + 1th state and pth state can be considered as control actions and 

is the desired target-temperature and  is the current temperature. Thermal Head 

Room based algorithm is inspired by MPC control. However, it uses a reference trajectory 

for measurements of , obtained through a system model which might be inaccurate in 

case of processors where the temperature varies both with program transformation and 

input control signal. Thus, we measure ∆ as headroom for ∆. We switch to higher 

P-State only when  is less than or equal to this headroom. We switch to a lower P-State 

whenever the observed temperature is greater than target temperature. Such an approach 

prevents unnecessary oscillations of temperature around the target temperature because the 

P-State is increased only if it is predicted that doing so will not increase the temperature 

above the target temperature. 

 

3.2.2 Algorithm 

The Thermal Headroom algorithm waits for polling interval on line 5 and the temperature 

is read on line 6, if the observed temperature is greater than target temperature, the P-State 

is simply reduced to next lower state as in line 8 and a lookup headroom bit is set. When 

the temperature if found to be less than target temperature on line 10, then based on lookup-

headroom the P-State is raised and Thermal Headroom is calculated on line 15. In the 

consecutive iterations, if the difference between target temperature and current temperature 
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is greater than the measured headroom, then an increment in P-State is made on line 19. A 

detailed algorithm is depicted here, reproduced from [18].  

 

        

Algorithm Thermal Head Room Based P-State Driver 

 

1: const P-state-max; P-state-min;                                         ► max and min possible states 

2: procedure THERMAL HEADROOM (int Target-temp) 

3:  int T; lookup-headroom = 0; THR = 0;               ►Temp; flag; Thermal headroom 

4:  while (1) do 

5:   Wait (δt)                                        ►polling interval 

6:   T ← Read Temperature 

7:   if (T > Target-temp) and (P-state > P-state-min) then 

8:    P-state − −                 ► cool CPU 

9:    lookup-headroom ← 1           ►set flag to compute headroom later 

10:   else if (T < Target-temp) then 

11:    if (lookup-headroom) and (P-state < P-state-max) then 

12:     P-state + +                    ►switch state for computing THR 

13:     Wait (δt) 

14:     T ′ ← Read Temperature 

15:     THR ← T ′ − T             ►Compute headroom and turn-off flag 

16:     lookup-headroom ← 0 

17:    else if (Target-temp − T > THR) and (P-state < P-state-max) then 

18:     P-state + +                          ►headroom available, so speed-up 

19:    end if 

20:   end if 

21:  end while 

22: end procedure 
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3.3 Implementation 

 

The main purpose of Thermal Headroom Based P-State Driver was to serve thermal 

management functionality and help in temperature-aware scheduling. In this research we have 

implemented this logic within the Linux Kernel Scheduler. The code changes were made 

within /kernel/sched/core.c and a customized Linux kernel was built with long term stable 

linux4.4.4 version.  The implementation can be broadly classified into two parts: 

 

a) Check threshold: Computes thermal headroom to monitor the temperature within target 

using P-State changes.  

b) Measure: Reads the temperature from the thermal virtual file systems. 

  

In computing, the Advanced Configuration and Power Interface (ACPI) specification provides 

an open communication that operating systems can use to perform discovery and configuration 

of computer hardware components, for example, to perform power management by putting 

unused components to sleep, and to do status monitoring. Internally, ACPI advertises the 

available components and their functions to the operating system kernel using instruction lists, 

which the kernel parses and then executes the desired operations. 

 

struct cpufreq_policy { 

 

unsigned int         cpu;   /* cpu managing this policy, must be online */ 

unsigned int         min;   /* in kHz */ 

unsigned int         max;   /* in kHz */ 

 

} 

 

The implementation of the current experiment are not a part of default kernel. To activate the 

thermal headroom features, we have compiled the code changes in linux kernel source to build 

a custom kernel. We have downloaded a recent stable kernel 4.4.4 to access the source code 

and made the required changes in Linux scheduler and system calls module. In the next step 
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we have configured the kernel to enable debugging and logging. We compile all the modules 

using make command and then build the custom kernel code into debian packages. The final 

step was to install the custom kernel .deb package using make install command. This updates 

the new kernel options into the configuration of the grub boot loader. The thermal headroom 

features are available once we boot into the new linux kernel. The Thermal Headroom module 

coded within Linux kernel scheduler uses this structure cpufreq_policy to make changes to the 

CPU frequency, where it is increased or decreased based on headroom available. This policy 

structure is associated with ACPI, described earlier, which will enforce Linux kernel to send 

commands to hardware to update the changes made. 

 

The flowchart in Figure 3.3.1 demonstrates the flow of events and data within the headroom 

approach. Initially Thermal Headroom module reads the active/online CPU information from 

ACPI using get_cpu( ) function. Then it reads the current frequency information of the CPU 

by calling cpufreq_cpu_get(cpu). Then the headroom module executes the algorithm discussed 

earlier and makes changes to frequency values within the cpufreq_policy structure. The 

modified data is then notified to ACPI through cpufreq_cpu_put(cpu_policy). ACPI further 

processes these changes into OS kernel instructions, and finally kernel uses the system 

commands to trigger hardware changes. 

 

 

Fig. 3.3.1: Thermal Headroom Driver Flow Chart 

 

We also need user space processes to conduct tests by running benchmarks. A system call is 

the programmatic way in which a computer program requests a service from the kernel of the 
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operating system it is executed on. A couple of system calls have been implemented 

{check_threshold, get_measure} to provide communication with Thermal Headroom module 

which now implemented as an integral kernel service. This user space application uses the 

thermal and temporal data obtained from kernel along with Linux Perf tool to evaluate the 

performance of the headroom approach against other controllers. 

 

 

3.4 Experimental Setup 

 

The experiments were performed on Intel i5-4200H dual core processor of Lenovo Y50 

Gaming laptop running Ubuntu 14.04 LTS at base frequency of 2.8 GHz with 8 GB RAM. The 

processor chip is equipped with 128KB of L1 cache, 512KB of L2 cache, and 3MB of L3 

cache. The PID and Thermal Headroom based approaches were coded in C and the later 

approach has been implemented within the Linux operating system kernel.  

 

       

Target Temperature Benchmarks Group 

 

56 ̊ C 

 

 

lbm 

sphinx 

povray 

namd 

Group 1 

Group 2 

Group 3 

Group 4 

 

 

60 ̊ C 

calculix + omnetpp 

perlbench + soplex 

h264ref + astar 

games + gromacs 

tonto + leslie3d 

Group 5 

Group 6 

Group 7 

Group 8 

Group 9 

 

 

 

 

63 ̊ C 

bzip2 + gemfdtd 

bwaves + gcc 

sjeng + cactusadm 

lbmquantum + wrf 

hammer +  gobmk 

xalanbmk + zuesmp 

Group 10 

Group 11 

Group 12 

Group 13 

Group 14 

Group 15 

 

  Table 1:  Benchmarks Group Setup for Target Temperatures 
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The temperature was obtained from the system file /sys/class/hwmon/hwmon2/temp1_input 

and the power consumed by the processor was recorded after every interval of 2-3 seconds. 

This interval was chosen to match the default setting of polling interval of 4 seconds within 

the thermald software. The perf tool was used to measure the power consumed by the 

processor. The system performance was broadly classified into 10 P-States each corresponding 

to range of values from 100 to 0. Each P-State affects the frequency and voltage of the system 

where the frequency would be altered between 300 MHz to 3GHz.  

 

The processes were pinned to a single core by using task set functionality in Linux, creating 

full load on the core while the OS runs on the remaining cores. The room temperature was 

maintained at 21 ̊ C /70 ̊ F. A total of 26 variations of SPEC CPU2006 benchmarks were run. 

A run of individual benchmarks were able to build enough thermal stress to test target 

temperature 56 ̊ C, but in order to evaluate higher target temperatures of 60 ̊ C and 63  ̊ C 

different combinations of benchmarks have been used.  The benchmarks were grouped as 

{G1,G2,G3,G4}, {G5,G6,G7,G8,G9}, {G10,G11,G12,G13,G14,G15,G16}  as shown in Table 

1. The average temperatures observed when the benchmarks were run without controller are 

59.6 ̊ C, 68.2 ̊ C and 74.3 ̊ C. An average temperature of 52 ̊ C is observed when the setup is 

idle. So target temperatures of 56 ̊ C, 60 ̊ C and 63  ̊C have been chosen which serve as middle 

point for idle and without controller scenario. 

 

For a single run on each group at their respective target temperature, data has been recorded in 

a set of [time, temperature and power consumption] for every instance after a polling interval 

of 2-3 seconds roughly for a runtime of 700seconds. These data files have been collected for 

each group under three scenarios: i). Native: without any P-State controller ii). PID 

Controller: PID based P-State driver iii). Thermal Headroom: Headroom P-State driver 
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3.5 Data Processing  

 

For a single run on each group at their respective target temperature, data has been recorded in 

a set of [time, temperature and power consumption] for every instance after a polling interval 

of 2-3 seconds roughly for a runtime of 700seconds. These data files have been collected for 

each group under three scenarios: i) Native: without any P-State controller ii) PID Controller: 

PID based P-State driver iii) Thermal Headroom: Headroom based P-State driver. The graphs 

are using sampled data with a sample interval of 20 seconds, they include representations of 

power and temperature for three scenarios described earlier. 

 

 

 

3.6 Results (Graphical Representation) 

 

 

 
 

Fig. 3.6.1: Temperature and Power vs Time for Group1 
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 Fig. 3.6.2: Temperature and Power vs Time for Group2 
 

 

 
 

Fig. 3.6.3: Temperature and Power vs Time for Group3 
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Fig. 3.6.4: Temperature and Power vs Time for Group4 
 

 
 

Fig. 3.6.5: Temperature and Power vs Time for Group5 
 

0

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Te
m

p
er

at
u

re
 (

°C
)

P
o

w
er

(W
at

t)

Time (seconds)

Power (PID) Power (Headroom)

Power (Native) Power (Idle)

Temp (Native) Temp (PID)

Temp (Headroom)

0

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Te
m

p
er

at
u

re
 (

°C
)

P
o

w
er

(W
at

t)

Time (seconds)

Power (PID) Power (Headroom)
Power (Native) Power (Idle)
Temp (Native) Temp (PID)
Temp (Headroom)



21 

 

 

 
 

Fig. 3.6.6: Temperature and Power vs Time for Group6 

 

 
 

Fig. 3.6.7: Temperature and Power vs Time for Group7 
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Fig. 3.6.8: Temperature and Power vs Time for Group8 
 

 
 

Fig. 3.6.9: Temperature and Power vs Time for Group9 
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Fig. 3.6.10: Temperature and Power vs Time for Group10 

 

 
 

Fig. 3.6.11: Temperature and Power vs Time for Group11 
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Fig. 3.6.12: Temperature and Power vs Time for Group12 
 

 
 

Fig. 3.6.13: Temperature and Power vs Time for Group13 
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Fig. 3.6.14: Temperature and Power vs Time for Group14 

 

 
 

Fig. 3.6.15: Temperature and Power vs Time for Group15 
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Chapter 4 

Discussion 

 

4.1 Peak Temperature Analysis  

 

Figures 4.1a,  b, and c represent the peak temperatures observed when certain group of 

benchmarks are run at target temperatures 56 ̊ C, 60 ̊ C and 63  ̊C  respectively in the three 

different scenarios as described earlier. For each target temperature, the average peak 

temperature was calculated by taking an average of set of peak temperatures recorded for 

groups within the scenario. At target temperature 56 ̊ C, the average peak temperature 

observed for Headroom, PID and Native were 58 ̊ C, 58.75 ̊ C and 77.75 ̊ C. The average 

peak temperatures observed at target temperature 60 ̊ C were 59.2 ̊ C, 62.8 ̊ C and 82 ̊ C. 

Lastly, the average peak temperatures observed at target temperature 63 ̊ C were 63 ̊ C, 

63.7 ̊ C and 80.5 ̊ C. Headroom approach has performed well against PID based controller, 

we can see that the reductions in peak temperatures range between 0.75 ̊ C – 3.6 ̊ C. The 

peak temperatures in Native scenario are relatively pretty higher than PID and Headroom 

approaches. 

 

4.2 Energy Consumption Analysis  

 

Higher temperatures result in higher leakage current, this is explained by the phenomenon 

known as Frenkel-Poole Emission. When random thermal fluctuations occur, they give 

enough energy for the electrons to move out of their localized state into conduction band 

which results in power leakage. The standard quantitative expression for Frenkel-Poole 

Emission is: 

𝐽 ∝  𝐸𝑒𝑥𝑝 (  
−𝑞(∅𝐵 −  √𝑞𝐸/(𝜋𝜖))

𝑘𝐵𝑇
)

 

 

 

where, J is the current density, E is the applied electric field, q is the elementary charge, ∅B 

is the voltage barrier, ϵ is the dynamic permittivity, kB  is Boltzmann's constant and T is the 

temperature. This equation is reproduced from [19]. 
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(a) Peak temperatures at target 56 ̊ C 

 

 

(b) Peak temperatures at target 60 ̊ C 

 

 

                                       (c)  Peak temperatures at target 63 ̊ C 

 

                    Fig. 4.1: Peak Temperature Analysis 
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In the current experiment the applied electric field will be same as we are using the same 

electronic system. The current density is primarily effected by temperature (J α 1/T). 

 

The idle state for the system is defined as the duration when there is no user application or 

benchmark being run. Power readings have been recorded for the three scenarios in each 

run. Energy consumption for various groups at different target temperatures, was computed 

by calculating the integral area under the power graphs for these groups, shown in Figure 

4.2. 

 

 

 Fig. 4.2: Energy Consumption 

 

The time marked at the point where the system drops into idle state serves as the upper 

time limit for calculating actual energy consumption. This calculation can be expressed 

as: 

 

𝐸(𝑡) =  ∫ 𝑃(𝑡)𝜕𝑡 

𝐸𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐸𝑡𝑜𝑡𝑎𝑙 − 𝐸𝑖𝑑𝑙𝑒 

                       

As mentioned earlier Figures in section 3.7 show the results at target temperatures 63̊ C, 

60̊ C and 56̊ C. We observe that the power readings for PID are close to Native scenario, 

but the headroom approach as compared to PID consumes 6 KJ less energy in case of G13. 
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We observe a sudden dip and rise in power for both G5 and G9 benchmarks, as the 

processor briefly goes into idle power state for a duration of 10-15 seconds. The power 

readings drop to idle power once the execution of benchmark ends. Energy savings of 1.5 

KJ and 1.9KJ were observed for headroom approach against PID for G1 and G9 

respectively. In case of G4 the energy consumption of headroom was less than PID by 0.5 

KJ, on the other hand no energy savings were made in case of G5 and G14. 

 

4.3 Run Time Analysis 

 

At target temperature 56̊ C, Headroom approach when compared to PID controller an 

average run-time penalty of 9.02% has been observed. At target temperature 60̊ C, 

Headroom approach when compared to PID controller an average run-time penalty of 4.3% 

has been observed. At target temperature 63̊ C, Headroom approach when compared to 

PID controller an average run-time penalty of 6% has been observed. Figure 4.3 shows the 

run times for different groups. 

 

4.4 Reliability Analysis  

 

The Mean Time Between Failure (MTBF) is a widely used metric to express reliability of 

an approach. In the current scenario we are trying to stabilize the processor temperature 

around a target temperature. The frequent violations of thermal constraint due to sudden 

increase in temperature beyond the threshold impose prospective failures on the thermal 

protection algorithm.  

 

Failure rate (λ) is the frequency with which an engineered approach fails, expressed in 

failures per unit of time. In special processes called renewal processes, where the time to 

recover from failure can be neglected and the likelihood of failure remains constant with 

respect to time, the failure rate is simply the multiplicative inverse of the MTBF (1/λ). 

Reliability is defined as a measure of module or an approach to perform its intended 

function under specified conditions for a specified period of time. Software failures 

denoted as principal failures in this scenario, can be defined as an incorrect operation of 

protection caused by a mistake in the planning or design or setting or application of the  
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(a)  Run-Times at target 56  ̊C 

 

 
 

(b)  Run-Times at target 60  ̊C 

 

 
 

(c)  Run-Times at target 63  ̊C 

 

             Fig. 7: Run-Time Analysis 
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protection and control mechanism according to International Electro technical vocabulary 

[20]. Therefore, MTBF can be expressed in terms of failures as: 

 

𝑀𝑇𝐵𝐹 =  1/𝜆 

      

MTBF =
∑(start of downtime − start of uptime)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠
 

 

The reliability analysis framework applied in the case can be modeled using the 

Probabilistic Relational Model (PRM) shown in Figure 4.4.1, reproduced from [20]. The 

benefit of using PRMs for reliability analysis of systems is the ability to both apply the 

probabilistic reasoning offered by Bayesian networks together with architecture models. 

 

                        

 

                   Fig. 4.4.1: Reliability Analysis Framework 

 

Exponential Failure Distribution can be used to depict the reliability of the system. The 

failure density function in an exponential distribution can be calculated as shown in the 

following equation, reproduced from [20]. 

𝐹(𝑡) = 1 − 𝑒−𝜆𝑡 

where, λ is the failure rate, t is time, e is natural log base (λ > 0, t > 0). 

 

We have run both the PID and Thermal headroom approach for a duration of 700 seconds 

each, and every time the temperature was above the target temperature it was considered 
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as a failure of the algorithm. We have computed failure rates for the thermal protection 

functions provided through the PID and Thermal Headroom approaches, which reflects the 

reliability of the algorithms being used. MTBF was computed as the mean of durations of 

the failures. Failure rate (λ) was then computed as the inverse of the MTBF value 

calculated. Each graph in Figure 4.4.2 demonstrates the density of failures observed for 

each algorithm within the duration of 700 seconds in the three scenarios.  

 

The failure rates (λ) for PID vs Thermal Headroom approach at the target temperatures 56 ̊ 

C, 60 ̊ C and 63 ̊ C are shown in Table 2. We can observe that PID algorithm has a higher 

failure rate than Thermal Headroom algorithm in all the cases. Failure rate is a fundamental 

in determining the safety and reliability of the approach. Lower failure rates in case of 

Thermal headroom approach as compared to PID help us to conclude that the headroom 

algorithm is a more reliable thermal management strategy due to fewer number of thermal 

violations. 

 

 

Target Temp 56 ̊ C 60 ̊ C 63 ̊ C 

PID 0.00956 0.00652 0.00930 

Thermal Headroom 0.00847 0.00526 0.00723 

        

Table 2: Failure rates (λ) for PID and Thermal Headroom 

 

4.5  Conclusion  

 

In this paper, we investigated the trade-off among peak temperatures, power consumption 

and reliability of a new Thermal Head Room based P-State driver. We could significantly 

reduce temperature overshoots beyond set-point, as a result we could achieve energy 

conservation and higher reliability. The prime goal for this research was to analyze 

Thermald (PID based approach) for temperature violations beyond reference temperature 

and propose a new mechanism for reducing violations under a thermal constraint in Linux 
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kernel. We have conducted an extensive architectural study of the Head room based 

thermal driver. This approach was implemented within Linux kernel and thoroughly 

evaluated. In future this approach can be extended to High Performance Computing 

perspective in distributed processing systems. 

 

 

       

(a) Failure Density at target 56 ̊ C 

 

      

                 (b)  Failure Density at target 60 ̊ C 
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(c)  Failure Density at target 63  ̊C 

 

Fig. 4.4.2: Reliability Analysis 
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