

Implementation of A Thermal Head Room based P-State Driver in Linux

by

Harika Kilari

A thesis submitted to the Graduate Faculty of

Auburn University

in fulfillment of the

requirements for the Degree of

 Master of Science

Auburn, Alabama

December 10, 2016

Keywords:

Thermal Head Room, P-State Driver, Linux Kernel, Peak Temperature and Power Consumption

Copyright 2016 by Harika Kilari

Approved by

Sanjeev Baskiyar, Chair, Associate Professor, Computer Science and Software Engineering

Anthony Skjellum, COLSA Professor, Computer Science and Software Engineering

Xiao Qin, Professor, Computer Science and Software Engineering

ii

Abstract

 Processor overloading causes excessive heat dissipation and high temperatures which may

cause unreliable operation and low lifespan. To handle such risks, processors have thermal

protection modules, limit the temperature within permissible temperature ceiling via thermal

throttling. It is a computer architecture technique which lowers the operating frequency and

voltage (or, p-states) dynamically to conserve power and/or reduce heat dissipation at the cost of

performance. Intel’s Proportional, Integral and Derivative (PID) controller uses p-states to control

the temperature. We implemented a previously proposed Thermal Headroom Based p-state Driver

in the Linux to reduce thermal violations above the target temperature. Thermal headroom is the

resulting difference between adjacent peak (above target) to trough (below target) temperatures.

When temperature rises, the thermal headroom driver cools the CPU by reducing its p-state until

the temperature falls near the target temperature. Once there is enough thermal headroom, p-state

is increased to boost performance. We conducted an evaluation using the SPEC CPU 2006

benchmark suite. The thermal headroom was successful in reducing thermal constraint violations,

which in return could lower peak temperatures and energy consumption by 1 - 4 ̊C and 0.5 - 6 KJ

respectively compared to the PID based controller.

iii

Acknowledgments

 I take pleasure in thanking many people for making my thesis possible. Firstly, I would

like to thank Dr. Sanjeev Baskiyar for his guidance and support throughout this work. I owe much

gratitude to Dr. Xiao Qin and Dr. Anthony Skjellum for serving as members of my advisory

committee.

 I thank my father K.S.S. Prasad and mother K. Padmaja for providing me with a good life

and their determination to educate me. I also want to thank my sister Dr. Mounika for believing in

me and for her constant encouragement.

I would like to thank my friends Sagar and Sonakshi for their constant support and

encouragement. I thank Ravi Uppu and Shehenaz Shaik for their help throughout my thesis work.

I express my deepest gratitude to my family and my friends for their love, compassion and support

in my endeavor. Without them, I know that none of this would have ever been possible. Finally, I

am truly grateful to GOD for giving me such good opportunity in life.

iv

Table of Contents

Abstract ... ii

Acknowledgments.. iii

List of Tables .. vii

List of Figures .. viii

Chapter 1 Introduction .. 1

 1.1 Dynamic Thermal Management .. 1

 1.2 Dynamic Voltage Frequency Scaling .. 2

 1.3 Intel Thermal Daemon .. 3

 1.4 Thermal Headroom Approach .. 4

 1.5 Organization of Thesis ... 5

Chapter 2 Background ... 6

 2.1 Thermal Strategies ... 6

 2.1.1 Heat Balancing ... 6

 2.1.2 Deferred Execution of Hot Tasks .. 6

 2.1.3 Cool Loop for SMT and single thread ... 7

 2.1.4 Feedback Control Scheduling .. 7

 2.1.5 Thermal Aware Scheduler in Embedded Systems 8

v

 2.1.6 Priority Based Scheduling.. 8

 2.1.7 Zig-Zag Scheduling ... 8

 2.2 Intel Processor Technology... 9

 2.2.1 Processor States ... 9

 2.2.2 Intel Speed Step Technology ... 10

Chapter 3 Experiment .. 11

 3.1 Motivation ... 11

 3.2 Thermal Headroom Based P-State Driver .. 11

 3.2.1 Mathematical Representation... 12

 3.2.2 Algorithm ... [12-13]

 3.3 Implementation ... [14-15]

 3.4 Experimental Setup ... [15-17]

 3.5 Data Processing ... 18

 3.6 Results (Graphical Representation) .. [18-25]

Chapter 4 Discussion .. 26

 4.1 Peak Temperature Analysis .. 26

 4.2 Power Consumption Analysis ... [26-29]

 4.3 Run-time Analysis .. 29

vi

 4.4 Reliability Analysis ... [29-32]

 4.5 Conclusion .. 32

References .. [34-35]

vii

List of Tables

Table 1 ... 21

Table 2 ... 32

viii

List of Figures

Figure 1.1 ... 3

Figure 2.1 ... 9

Figure 2.2 .. 9

Figure 3.3.1 ... 15

Figure 3.6.1 .. 18

Figure 3.6.2 .. 19

Figure 3.6.3 .. 19

Figure 3.6.4 .. 20

Figure 3.6.5 .. 20

Figure 3.6.6 ... 21

Figure 3.6.7 .. 21

Figure 3.6.8 .. 22

Figure 3.6.9 .. 22

Figure 3.6.10 .. 23

Figure 3.6.11 .. 23

Figure 3.6.12 .. 24

Figure 3.6.13 ... 24

Figure 3.6.14 .. 25

Figure 3.6.15 .. 25

ix

Figure 4.1 ... 26

Figure 4.2 ... 26

Figure 4.3 ... 30

Figure 4.4.1 .. 32

Figure 4.4.2 .. 34

1

Chapter 1

 Introduction

1.1 Dynamic Thermal Management

Dynamic Thermal Management (DTM) is a heat management technique in computer

architecture, where the system uses different cooling strategies to bring down the temperature

of system. All electronic devices and circuits generate excess heat and thus require thermal

management to improve reliability and prevent premature failure. DTM is required to remove

the extra heat produced by computer components, to keep components within permissible

operating temperature limits. All modern day processors are designed to cut out or reduce their

voltage (which translates to power usage) and/or clock speed if the internal temperature of the

processor exceeds a specified limit.

Components are often designed to generate as little heat as possible, and computers and

operating systems may be designed to reduce power consumption and consequent heating

according to workload, but more heat may still be produced than can be removed without

attention to cooling. A 10 ̊C increase in overall temperature reduces the life span of electronic

devices by half [1]. The cost for cooling and packaging also increases with increasing power

[2], [3]. As the demand for high performance is growing, nowadays thinner and smaller

computing systems such as laptops, ultra-books are being used for running HPC applications,

which in turn demands innovative ways to monitor and reduce system heat dissipation.

Thermal aware strategies have emphasized distributing the performance both temporally and

spatially to mitigate temperature [4].

2

1.2 Dynamic Voltage Frequency Scaling (DVFS)

Dynamic Voltage Frequency Scaling (DVFS) is a power management technique in computer

architecture, where the voltage used in a component is increased or decreased, depending upon

circumstances. Dynamic voltage scaling to increase voltage is known as overvolting; dynamic

voltage scaling to decrease voltage is known as undervolting. As the demand for high

performance is growing, nowadays thinner and smaller computing systems such as laptops,

ultra-books are being used for running HPC applications, which in turn demands innovative

ways to monitor and reduce system heat dissipation and power consumption. Based on

temperature, the BIOS controls the system fan. It monitors fan speed and can do thermal

throttling accordingly.

Thermal throttling adjusts the duty cycle of the processor clock or reduces the operating

frequency, voltage. Such controls significantly impact performance [5]. When the maximum

specified CPU temperature settings are exceeded performance loss occurs due to the

intervention of BIOS. The efficiency of some electrical components, such as voltage

regulators, decreases with increasing temperature, so the power used may increase with

temperature causing thermal runaway. Increases in voltage or frequency may increase system

power demands even faster than the CMOS formula indicates. The key idea behind our

approach was to limit performance when temperature crosses the set point. As power is

proportional to the square of processor frequency, there is conservation of energy [6], [7].

When the system runs out of cool tasks, there is a rapid temperature increment, then DVFS

takes corrective action to maintain temperature below cutoff as the temperature emergencies

could happen at a granularity of millisecond.

3

1.3 Intel thermal daemon

Intel thermal daemon (thermald) is a viable solution for monitoring and controlling core

temperatures implemented within Linux. While using techniques like thermal throttling, the

system will experience performance loss. In order to prevent such an effect, the thermal

daemon proactively cools the CPU by managing performance and thermal states. For

controlling these states, P-state drivers and other cooling devices are being used in the Linux

kernel developed by Intel. The block diagram for such an implementation is shown in Figure

1.1 which has been reproduced from [5]. Although these P-states perform quite well for the

power and performance trade-off, they are not suitable for temperature control at a set point

because they are discrete in nature and makes temperatures oscillate below and above the set

point. The official information as to how many states are available in a system are not yet

published and we know that they are limited in number [8]. This implementation allows user

to configure thermal control on the system. A brief illustration of Intel thermal daemon is

presented in Figure 1.1.

This module uses DTS sensors to track temperatures and uses Intel P-state driver, Power clamp

driver, Running Average Power Limit control and cpufreq as cooling methods.

4

1.4 Thermal Headroom Approach

Thermal Head Room analysis helps determine if the temperature may exceed the target

temperature in future. The Thermal Headroom approach takes into account the discrete nature

of the P-States. Transition to higher P-States is made only when the headroom is available.

After looking into several approaches and experiments, we determined that that a modified

approach based on thermal headroom works well for temperature and offers energy savings

with low schedule length penalty. In this research, a P-State driver was built which distributes

performance temporally while governing the target temperature with minimal modifications to

the underlying operating system.

Although temperature could be predicted using a temperature prediction model as in [9]– [10]

but we used the thermal virtual file system (i.e., /sys/class/hwmon) in Advanced Configuration

and Power Interface (ACPI) to directly read the temperature. Temperature reaction time (rise

and fall time) was found to be of a tenth of a second similar to that in [11]. Thermal virtual file

system reports temperature every 2 seconds which we choose as the sampling interval.

Hardware performance counters, thermal virtual file system were made use of in gathering data

for temperature, performance and power. Using the above data, the correlation between the

CPU maximum performance and temperature was exploited. This approach reduces thermal

oscillations and conserves energy by avoiding unnecessary cooling. We implemented this

approach in Linux kernel and tested it on HPC applications such as SPEC CPU2006

benchmarks.

5

1.5 Organization of Thesis

The Chapter 1 of this thesis gives an introduction of the major approaches used for thermal

management of multi-core processor systems. It briefly describes main techniques like

Dynamic Thermal Management, Dynamic Voltage Frequency Scaling, Linux Thermal

Daemon and Thermal Headroom Driver. The Chapter 2 gives an understanding of the different

kinds of initial solutions used for temperature control. It also highlights the setbacks and

tradeoffs for those solutions. The Chapter 3 introduces the purpose of the experiment followed

by the method and calculations and other details of the experiment conducted and finally the

results obtained. In the end the Chapter 4 includes the discussion of the results and the

conclusion.

6

Chapter 2

Background

2.1 Thermal Strategies

2.1.1 Heat Balancing

Modern operating systems employ dynamic load balancing to improve response times and

prevent starvation when the system is overloaded. In Linux, the load-balancing routine in

the scheduler typically runs once in hundreds of milliseconds (200ms by default) [11]. It

employs task migration to minimize the differences in task queue length for each core. To

enable thermal aware scheduling in Linux, this scheme considers the thermal

characteristics of each task and core while making task-migration decisions. When the

system is overloaded, the Heat Balancing extension attempts to assign hot and cold tasks

to each core in order to create opportunities for leveraging temporal heat slack. When the

system has less number of tasks than the number of cores, the original load balancing

routine does not perform any task migration but the heat-balancing routine moves a hot

task to a colder, idle core to create opportunities for leveraging spatial heat slacks [4].

2.1.2 Deferred Execution of Hot Tasks

In some cases, the Heat-balancing may not be triggered in time to prevent the rising of

temperatures. To cover such scenarios, a reactive scheme called the Deferred Execution

scheme was implemented in the Linux scheduler [11]. When a core has multiple tasks and

one of the tasks consistently heats up a core, the scheduler temporarily suspends the time

slice of the current running hot task to allow other colder tasks to run before the hot task

further heats up the core.

7

2.1.3 Cool Loop for SMT and single-thread

When a system is fully-loaded or over-loaded with hot tasks, there is no sufficient heat

slack such that either Heat-balancing or Deferred Execution could leverage to reduce on-

chip hot spots. In such cases, the system needs to employ fast-responding, workload

reduction schemes to control temperature at the expense of performance. To lower

temperatures while maintaining reasonable throughput, a new kernel task called Cool Loop

was implemented, to create opportunities for temporal heat slack. The Cool Loop can be

thought of as the same as the OS idle loop, but with a higher OS priority [11]. It could

consist of no-op instructions or power-managing instructions that lower the core

temperature through fetch throttling, frequency/voltage scaling or power-gating. When the

cool loop is running it does not perform useful computation, but it has an OS priority that

is higher than user tasks but lower than interrupt service routines and scheduler ticks.

Allowing interrupt servicing routines does not impose additional risks of further heating

because interrupt routines including scheduler ticks are typically short.

2.1.4 Feedback Control Scheduling

This technique proposed by Yue [12], uses cache-miss ratio as feedback, where they could

set temperature at a reference point with a tight feedback loop controlling frequency via

cache-miss ratio. However, in presence of noise due to fan and heat from other cores in

case of a multi core general purpose computing CPU, the frequency-miss rate model does

not work as intended. Thus, a direct control over frequency such as DVFS is indeed

necessary.

8

2.1.5 Thermal Aware Scheduler in Embedded Systems

This scheme proposed in [13], exploits the variability between soft real-time and best effort

applications to maintain the system temperature below a desired level while satisfying

requirements such as throughput and fairness in temperature-constrained systems. The

thermal model proposed as above would not support rapid temperature change because in

a turbo state, the processor frequencies are opportunistically scaled [14] which in-turn leads

to abrupt changes in temperature.

2.1.6 Priority Based Scheduling

The hot and cold processes are classified based on instructions per cycle. This technique

targeted scenarios common to high-performance computing where processors are fully

loaded. However when the system runs out of cool process, there is a rapid temperature

increment, then DVFS takes corrective action, suggesting that scheduling cannot replace

DVFS as thermal emergencies could happen at a granularity of millisecond [15].

2.1.7 Zig-Zag Scheduling

This scheme executes the workload at maximum speed until the maximum temperature

threshold is reached, after that the speed is minimized to allow the processor to cool down.

They have formulated an optimal Zig-Zag policy [16] by executing different jobs with

different priorities at different discrete processor speeds for reduction in schedule length.

9

2.2 Intel Processor Technology

2.2.1 Processor States

A CPU can be put to different power states, depending on the current workload. These

states are determined by the active parts of the CPU. C0 is active mode running

instructions, C1, C1E are auto halt mode scaling frequency and voltage opportunistically.

C3 corresponds to L1/L2 caches flush and clock off. G1(Sleeping mode) encompasses S1

corresponding to standby mode, S3 Suspend to Ram (STR) and S4 Hibernate mode. G3 is

when the system is mechanically switched off. Processor P-States are defined as

frequency/voltage operating states. All P-States are sub-states of C0 and the processor

actually executes instructions in all P-States unlike other states, such as C1, C2 and C3.

The maximum performance and the most power consuming state is P0. The whole system

states and voltage, frequency varying with these states are illustrated in Figures 2.1 and 2.2

which are reproduced from [17].

10

2.2.2 Enhanced Intel Speed Step Technology

Enhanced Intel SpeedStep® Technology is an advanced means of enabling very high

performance while also meeting the power-conservation needs. Separation of voltage and

frequency changes. By stepping voltage up and down in small increments, the processor is

able to reduce periods of system unavailability that occur during frequency change. The

system is then able to transition between voltage and frequency states more often,

improving balance between power and performance. It reduces the latency associated with

changing the voltage/frequency pair, or P-state. Transitions can be undertaken more

frequently, enabling more granular demand-based switching, and the optimization of the

power and performance balance based on demand.

So while using the above techniques temperature violations may occur while trying to

optimize performance under at a particular target temperature due to discrete P-States. To

manage increasing constraints on power and thermal budgets, P-State transitions can be

dynamically controlled.

11

Chapter 3

Experiment

3.1 Motivation

A Thermal Headroom based P-State driver is required in Linux Kernel as the P-States are

discrete. Sudden P-State transitions might result in thermal violations leading to emergencies.

We need real time data while making P-State transitions to prevent the violations. The Thermal

Head Room based P-State driver provides a history based learning where thermal head room

is measured during the time when the P-State is boosted. This approach learns that there is an

overshoot of temperature with an increase in P-State, thus an increase in P-State is performed

only when the calculated thermal headroom is available next time.

3.2 Thermal Headroom Based P-State Driver

This research monitors the CPU temperature and its variations by making P-State transitions

using an approach that is inspired by Model Predictive Control (MPC). The adaptation of MPC

for Thermal Headroom approach will be explained. MPC is a predictive algebraic method used

for calculating results of a sequence of control variable changes. After a few initial

observations, the controller can use a control sequence to produce desired output. Specific

knowledge of the process could be used to optimize the best long-term output by foreseeing

the results of an action in future. This approach prevents actions taken by conventional methods

as they target short-term goals which are costly in the long-term.

12

3.2.1 Mathematical Representation

The deviations from the desired output , either specified by mathematical model or

reference trajectory, produce an error function  for increments of control

actions ∆∆ Here is the output and  is the control action. In

case of P-State control p + 1th state and pth state can be considered as control actions and

is the desired target-temperature and  is the current temperature. Thermal Head

Room based algorithm is inspired by MPC control. However, it uses a reference trajectory

for measurements of , obtained through a system model which might be inaccurate in

case of processors where the temperature varies both with program transformation and

input control signal. Thus, we measure ∆ as headroom for ∆. We switch to higher

P-State only when  is less than or equal to this headroom. We switch to a lower P-State

whenever the observed temperature is greater than target temperature. Such an approach

prevents unnecessary oscillations of temperature around the target temperature because the

P-State is increased only if it is predicted that doing so will not increase the temperature

above the target temperature.

3.2.2 Algorithm

The Thermal Headroom algorithm waits for polling interval on line 5 and the temperature

is read on line 6, if the observed temperature is greater than target temperature, the P-State

is simply reduced to next lower state as in line 8 and a lookup headroom bit is set. When

the temperature if found to be less than target temperature on line 10, then based on lookup-

headroom the P-State is raised and Thermal Headroom is calculated on line 15. In the

consecutive iterations, if the difference between target temperature and current temperature

13

is greater than the measured headroom, then an increment in P-State is made on line 19. A

detailed algorithm is depicted here, reproduced from [18].

Algorithm Thermal Head Room Based P-State Driver

1: const P-state-max; P-state-min; ► max and min possible states

2: procedure THERMAL HEADROOM (int Target-temp)

3: int T; lookup-headroom = 0; THR = 0; ►Temp; flag; Thermal headroom

4: while (1) do

5: Wait (δt) ►polling interval

6: T ← Read Temperature

7: if (T > Target-temp) and (P-state > P-state-min) then

8: P-state − − ► cool CPU

9: lookup-headroom ← 1 ►set flag to compute headroom later

10: else if (T < Target-temp) then

11: if (lookup-headroom) and (P-state < P-state-max) then

12: P-state + + ►switch state for computing THR

13: Wait (δt)

14: T ′ ← Read Temperature

15: THR ← T ′ − T ►Compute headroom and turn-off flag

16: lookup-headroom ← 0

17: else if (Target-temp − T > THR) and (P-state < P-state-max) then

18: P-state + + ►headroom available, so speed-up

19: end if

20: end if

21: end while

22: end procedure

14

3.3 Implementation

The main purpose of Thermal Headroom Based P-State Driver was to serve thermal

management functionality and help in temperature-aware scheduling. In this research we have

implemented this logic within the Linux Kernel Scheduler. The code changes were made

within /kernel/sched/core.c and a customized Linux kernel was built with long term stable

linux4.4.4 version. The implementation can be broadly classified into two parts:

a) Check threshold: Computes thermal headroom to monitor the temperature within target

using P-State changes.

b) Measure: Reads the temperature from the thermal virtual file systems.

In computing, the Advanced Configuration and Power Interface (ACPI) specification provides

an open communication that operating systems can use to perform discovery and configuration

of computer hardware components, for example, to perform power management by putting

unused components to sleep, and to do status monitoring. Internally, ACPI advertises the

available components and their functions to the operating system kernel using instruction lists,

which the kernel parses and then executes the desired operations.

struct cpufreq_policy {

unsigned int cpu; /* cpu managing this policy, must be online */

unsigned int min; /* in kHz */

unsigned int max; /* in kHz */

}

The implementation of the current experiment are not a part of default kernel. To activate the

thermal headroom features, we have compiled the code changes in linux kernel source to build

a custom kernel. We have downloaded a recent stable kernel 4.4.4 to access the source code

and made the required changes in Linux scheduler and system calls module. In the next step

15

we have configured the kernel to enable debugging and logging. We compile all the modules

using make command and then build the custom kernel code into debian packages. The final

step was to install the custom kernel .deb package using make install command. This updates

the new kernel options into the configuration of the grub boot loader. The thermal headroom

features are available once we boot into the new linux kernel. The Thermal Headroom module

coded within Linux kernel scheduler uses this structure cpufreq_policy to make changes to the

CPU frequency, where it is increased or decreased based on headroom available. This policy

structure is associated with ACPI, described earlier, which will enforce Linux kernel to send

commands to hardware to update the changes made.

The flowchart in Figure 3.3.1 demonstrates the flow of events and data within the headroom

approach. Initially Thermal Headroom module reads the active/online CPU information from

ACPI using get_cpu() function. Then it reads the current frequency information of the CPU

by calling cpufreq_cpu_get(cpu). Then the headroom module executes the algorithm discussed

earlier and makes changes to frequency values within the cpufreq_policy structure. The

modified data is then notified to ACPI through cpufreq_cpu_put(cpu_policy). ACPI further

processes these changes into OS kernel instructions, and finally kernel uses the system

commands to trigger hardware changes.

Fig. 3.3.1: Thermal Headroom Driver Flow Chart

We also need user space processes to conduct tests by running benchmarks. A system call is

the programmatic way in which a computer program requests a service from the kernel of the

16

operating system it is executed on. A couple of system calls have been implemented

{check_threshold, get_measure} to provide communication with Thermal Headroom module

which now implemented as an integral kernel service. This user space application uses the

thermal and temporal data obtained from kernel along with Linux Perf tool to evaluate the

performance of the headroom approach against other controllers.

3.4 Experimental Setup

The experiments were performed on Intel i5-4200H dual core processor of Lenovo Y50

Gaming laptop running Ubuntu 14.04 LTS at base frequency of 2.8 GHz with 8 GB RAM. The

processor chip is equipped with 128KB of L1 cache, 512KB of L2 cache, and 3MB of L3

cache. The PID and Thermal Headroom based approaches were coded in C and the later

approach has been implemented within the Linux operating system kernel.

Target Temperature Benchmarks Group

56 ̊ C

lbm

sphinx

povray

namd

Group 1

Group 2

Group 3

Group 4

60 ̊ C

calculix + omnetpp

perlbench + soplex

h264ref + astar

games + gromacs

tonto + leslie3d

Group 5

Group 6

Group 7

Group 8

Group 9

63 ̊ C

bzip2 + gemfdtd

bwaves + gcc

sjeng + cactusadm

lbmquantum + wrf

hammer + gobmk

xalanbmk + zuesmp

Group 10

Group 11

Group 12

Group 13

Group 14

Group 15

 Table 1: Benchmarks Group Setup for Target Temperatures

17

The temperature was obtained from the system file /sys/class/hwmon/hwmon2/temp1_input

and the power consumed by the processor was recorded after every interval of 2-3 seconds.

This interval was chosen to match the default setting of polling interval of 4 seconds within

the thermald software. The perf tool was used to measure the power consumed by the

processor. The system performance was broadly classified into 10 P-States each corresponding

to range of values from 100 to 0. Each P-State affects the frequency and voltage of the system

where the frequency would be altered between 300 MHz to 3GHz.

The processes were pinned to a single core by using task set functionality in Linux, creating

full load on the core while the OS runs on the remaining cores. The room temperature was

maintained at 21 ̊ C /70 ̊ F. A total of 26 variations of SPEC CPU2006 benchmarks were run.

A run of individual benchmarks were able to build enough thermal stress to test target

temperature 56 ̊ C, but in order to evaluate higher target temperatures of 60 ̊ C and 63 ̊ C

different combinations of benchmarks have been used. The benchmarks were grouped as

{G1,G2,G3,G4}, {G5,G6,G7,G8,G9}, {G10,G11,G12,G13,G14,G15,G16} as shown in Table

1. The average temperatures observed when the benchmarks were run without controller are

59.6 ̊ C, 68.2 ̊ C and 74.3 ̊ C. An average temperature of 52 ̊ C is observed when the setup is

idle. So target temperatures of 56 ̊ C, 60 ̊ C and 63 ̊C have been chosen which serve as middle

point for idle and without controller scenario.

For a single run on each group at their respective target temperature, data has been recorded in

a set of [time, temperature and power consumption] for every instance after a polling interval

of 2-3 seconds roughly for a runtime of 700seconds. These data files have been collected for

each group under three scenarios: i). Native: without any P-State controller ii). PID

Controller: PID based P-State driver iii). Thermal Headroom: Headroom P-State driver

18

3.5 Data Processing

For a single run on each group at their respective target temperature, data has been recorded in

a set of [time, temperature and power consumption] for every instance after a polling interval

of 2-3 seconds roughly for a runtime of 700seconds. These data files have been collected for

each group under three scenarios: i) Native: without any P-State controller ii) PID Controller:

PID based P-State driver iii) Thermal Headroom: Headroom based P-State driver. The graphs

are using sampled data with a sample interval of 20 seconds, they include representations of

power and temperature for three scenarios described earlier.

3.6 Results (Graphical Representation)

Fig. 3.6.1: Temperature and Power vs Time for Group1

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Te
m

p
er

at
u

re
 (

°C
)

P
o

w
er

(W
at

t)

Time (seconds)

Power(PID) Power (Headroom)

Power (Native) Power (Idle)

Temp (Native) Temp (PID)

Temp (Headroom)

19

 Fig. 3.6.2: Temperature and Power vs Time for Group2

Fig. 3.6.3: Temperature and Power vs Time for Group3

0

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Te
m

p
er

at
u

re
 (

°C
)

P
o

w
er

(W
at

t)

Time (seconds)

Power (PID) Power (Headroom)
Power (Native) Power (Idle)
Temp (Native) Temp (PID)
Temp (Headroom)

0

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Te
m

p
er

at
u

re
 (

°C
)

P
o

w
er

(W
at

t)

Time (seconds)

Power (PID) Power (Headroom)

Power (Native) Power (Idle)

Temp (Native) Temp (PID)

Temp (Headroom)

20

Fig. 3.6.4: Temperature and Power vs Time for Group4

Fig. 3.6.5: Temperature and Power vs Time for Group5

0

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Te
m

p
er

at
u

re
 (

°C
)

P
o

w
er

(W
at

t)

Time (seconds)

Power (PID) Power (Headroom)

Power (Native) Power (Idle)

Temp (Native) Temp (PID)

Temp (Headroom)

0

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Te
m

p
er

at
u

re
 (

°C
)

P
o

w
er

(W
at

t)

Time (seconds)

Power (PID) Power (Headroom)
Power (Native) Power (Idle)
Temp (Native) Temp (PID)
Temp (Headroom)

21

Fig. 3.6.6: Temperature and Power vs Time for Group6

Fig. 3.6.7: Temperature and Power vs Time for Group7

0

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Te
m

p
er

at
u

re
 (

°C
)

P
o

w
er

(W
at

t)

Time (seconds)

Power(PID) Power(Headroom)

Power (Native) Power(Idle)

Temp (Native) Temp (PID)

Temp(Headroom)

0

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Te
m

p
er

at
u

re
 (

°C
)

P
o

w
er

(W
at

t)

Time (seconds)

Power(PID) Power(Headroom)
Power (Native) Power(Idle)
Temp (Native) Temp (PID)
Temp(Headroom)

22

Fig. 3.6.8: Temperature and Power vs Time for Group8

Fig. 3.6.9: Temperature and Power vs Time for Group9

0

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Te
m

p
er

at
u

re
 (

°C
)

P
o

w
er

(W
at

t)

Time (seconds)

Power(PID) Power(Headroom)

Power (Native) Power(Idle)

Temp (Native) Temp (PID)

Temp(Headroom)

0

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Te
m

p
er

at
u

re
 (

°C
)

P
o

w
er

(W
at

t)

Time (seconds)

Power(PID) Power (Headroom)
Power (Native) Power (Idle)
Temp (Native) Temp (PID)
Temp (Headroom)

23

Fig. 3.6.10: Temperature and Power vs Time for Group10

Fig. 3.6.11: Temperature and Power vs Time for Group11

0

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Te
m

p
er

at
u

re
 (

°C
)

P
o

w
er

(W
at

t)

Time (seconds)

Power(PID) Power(Headroom)

Power (Native) Power(Idle)

Temp (Native) Temp (PID)

Temp(Headroom)

0

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Te
m

p
er

at
u

re
 (

°C
)

P
o

w
er

(W
at

t)

Time (seconds)

Power(PID) Power (Headroom)
Power (Native) Power (Idle)
Temp (Native) Temp (PID)
Temp (Headroom)

24

Fig. 3.6.12: Temperature and Power vs Time for Group12

Fig. 3.6.13: Temperature and Power vs Time for Group13

0

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Te
m

p
er

at
u

re
 (

°C
)

P
o

w
er

(W
at

t)

Time (seconds)

Power(PID) Power(Headroom)
Power (Native) Power(Idle)
Temp (Native) Temp (PID)
Temp(Headroom)

0

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Te
m

p
er

at
u

re
 (

°C
)

P
o

w
er

(W
at

t)

Time (seconds)

Power (PID) Power (Headroom)
Power (Native) Power (Idle)
Temp (Native) Temp (PID)
Temp (Headroom)

25

Fig. 3.6.14: Temperature and Power vs Time for Group14

Fig. 3.6.15: Temperature and Power vs Time for Group15

0

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Te
m

p
er

at
u

re
 (

°C
)

P
o

w
er

(W
at

t)

Time (seconds)

Power (PID) Power (Headroom)
Power (Native) Power (Idle)
Temp (Native) Temp (PID)
Temp (Headroom)

0

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Te
m

p
er

at
u

re
 (

°C
)

P
o

w
er

(W
at

t)

Time (seconds)

Power(PID) Power(Headroom)
Power (W/O Controller) Power(Idle)
Temp (W/O Controller) Temp (PID)
Temp(Headroom)

26

Chapter 4

Discussion

4.1 Peak Temperature Analysis

Figures 4.1a, b, and c represent the peak temperatures observed when certain group of

benchmarks are run at target temperatures 56 ̊ C, 60 ̊ C and 63 ̊C respectively in the three

different scenarios as described earlier. For each target temperature, the average peak

temperature was calculated by taking an average of set of peak temperatures recorded for

groups within the scenario. At target temperature 56 ̊ C, the average peak temperature

observed for Headroom, PID and Native were 58 ̊ C, 58.75 ̊ C and 77.75 ̊ C. The average

peak temperatures observed at target temperature 60 ̊ C were 59.2 ̊ C, 62.8 ̊ C and 82 ̊ C.

Lastly, the average peak temperatures observed at target temperature 63 ̊ C were 63 ̊ C,

63.7 ̊ C and 80.5 ̊ C. Headroom approach has performed well against PID based controller,

we can see that the reductions in peak temperatures range between 0.75 ̊ C – 3.6 ̊ C. The

peak temperatures in Native scenario are relatively pretty higher than PID and Headroom

approaches.

4.2 Energy Consumption Analysis

Higher temperatures result in higher leakage current, this is explained by the phenomenon

known as Frenkel-Poole Emission. When random thermal fluctuations occur, they give

enough energy for the electrons to move out of their localized state into conduction band

which results in power leakage. The standard quantitative expression for Frenkel-Poole

Emission is:

𝐽 ∝ 𝐸𝑒𝑥𝑝 (
−𝑞(∅𝐵 − √𝑞𝐸/(𝜋𝜖))

𝑘𝐵𝑇
)

where, J is the current density, E is the applied electric field, q is the elementary charge, ∅B

is the voltage barrier, ϵ is the dynamic permittivity, kB is Boltzmann's constant and T is the

temperature. This equation is reproduced from [19].

27

(a) Peak temperatures at target 56 ̊ C

(b) Peak temperatures at target 60 ̊ C

 (c) Peak temperatures at target 63 ̊ C

 Fig. 4.1: Peak Temperature Analysis

0

20

40

60

80

100

G1 G2 G3 G4

Te
m

p
er

at
u

re
 (̊

C
)

W/O Controller PID Headroom

0

20

40

60

80

100

G5 G6 G7 G8 G9

Te
m

p
er

at
u

re
 (̊

C
)

W/O Controller PID Headroom

0

20

40

60

80

100

G10 G11 G12 G13 G14 G15

Te
m

p
er

at
u

re
 (̊

C
)

W/O Controller PID Headroom

28

In the current experiment the applied electric field will be same as we are using the same

electronic system. The current density is primarily effected by temperature (J α 1/T).

The idle state for the system is defined as the duration when there is no user application or

benchmark being run. Power readings have been recorded for the three scenarios in each

run. Energy consumption for various groups at different target temperatures, was computed

by calculating the integral area under the power graphs for these groups, shown in Figure

4.2.

 Fig. 4.2: Energy Consumption

The time marked at the point where the system drops into idle state serves as the upper

time limit for calculating actual energy consumption. This calculation can be expressed

as:

𝐸(𝑡) = ∫ 𝑃(𝑡)𝜕𝑡

𝐸𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐸𝑡𝑜𝑡𝑎𝑙 − 𝐸𝑖𝑑𝑙𝑒

As mentioned earlier Figures in section 3.7 show the results at target temperatures 63̊ C,

60̊ C and 56̊ C. We observe that the power readings for PID are close to Native scenario,

but the headroom approach as compared to PID consumes 6 KJ less energy in case of G13.

0

5

10

15

20

25

G1 G4 G5 G9 G13 G14

En
er

gy
 (

K
Jo

u
le

s)

W/O Controller PID Headroom

29

We observe a sudden dip and rise in power for both G5 and G9 benchmarks, as the

processor briefly goes into idle power state for a duration of 10-15 seconds. The power

readings drop to idle power once the execution of benchmark ends. Energy savings of 1.5

KJ and 1.9KJ were observed for headroom approach against PID for G1 and G9

respectively. In case of G4 the energy consumption of headroom was less than PID by 0.5

KJ, on the other hand no energy savings were made in case of G5 and G14.

4.3 Run Time Analysis

At target temperature 56̊ C, Headroom approach when compared to PID controller an

average run-time penalty of 9.02% has been observed. At target temperature 60̊ C,

Headroom approach when compared to PID controller an average run-time penalty of 4.3%

has been observed. At target temperature 63̊ C, Headroom approach when compared to

PID controller an average run-time penalty of 6% has been observed. Figure 4.3 shows the

run times for different groups.

4.4 Reliability Analysis

The Mean Time Between Failure (MTBF) is a widely used metric to express reliability of

an approach. In the current scenario we are trying to stabilize the processor temperature

around a target temperature. The frequent violations of thermal constraint due to sudden

increase in temperature beyond the threshold impose prospective failures on the thermal

protection algorithm.

Failure rate (λ) is the frequency with which an engineered approach fails, expressed in

failures per unit of time. In special processes called renewal processes, where the time to

recover from failure can be neglected and the likelihood of failure remains constant with

respect to time, the failure rate is simply the multiplicative inverse of the MTBF (1/λ).

Reliability is defined as a measure of module or an approach to perform its intended

function under specified conditions for a specified period of time. Software failures

denoted as principal failures in this scenario, can be defined as an incorrect operation of

protection caused by a mistake in the planning or design or setting or application of the

30

(a) Run-Times at target 56 ̊C

(b) Run-Times at target 60 ̊C

(c) Run-Times at target 63 ̊C

 Fig. 7: Run-Time Analysis

0

100

200

300

400

500

600

700

800

G1 G2 G3 G4

R
u

n
-T

im
e

(s
ec

o
n

d
s)

W/O Controller PID Headroom

0

200

400

600

800

1000

1200

1400

G5 G6 G7 G8 G9

R
u

n
-t

im
e

(s
ec

o
n

d
s)

W/O Controller PID Headroom

0

200

400

600

800

1000

1200

1400

1600

G10 G11 G12 G13 G14 G15

R
u

n
-T

im
e

(s
ec

o
n

d
s)

W/O Controller PID Headroom

31

protection and control mechanism according to International Electro technical vocabulary

[20]. Therefore, MTBF can be expressed in terms of failures as:

𝑀𝑇𝐵𝐹 = 1/𝜆

MTBF =
∑(start of downtime − start of uptime)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

The reliability analysis framework applied in the case can be modeled using the

Probabilistic Relational Model (PRM) shown in Figure 4.4.1, reproduced from [20]. The

benefit of using PRMs for reliability analysis of systems is the ability to both apply the

probabilistic reasoning offered by Bayesian networks together with architecture models.

 Fig. 4.4.1: Reliability Analysis Framework

Exponential Failure Distribution can be used to depict the reliability of the system. The

failure density function in an exponential distribution can be calculated as shown in the

following equation, reproduced from [20].

𝐹(𝑡) = 1 − 𝑒−𝜆𝑡

where, λ is the failure rate, t is time, e is natural log base (λ > 0, t > 0).

We have run both the PID and Thermal headroom approach for a duration of 700 seconds

each, and every time the temperature was above the target temperature it was considered

32

as a failure of the algorithm. We have computed failure rates for the thermal protection

functions provided through the PID and Thermal Headroom approaches, which reflects the

reliability of the algorithms being used. MTBF was computed as the mean of durations of

the failures. Failure rate (λ) was then computed as the inverse of the MTBF value

calculated. Each graph in Figure 4.4.2 demonstrates the density of failures observed for

each algorithm within the duration of 700 seconds in the three scenarios.

The failure rates (λ) for PID vs Thermal Headroom approach at the target temperatures 56 ̊

C, 60 ̊ C and 63 ̊ C are shown in Table 2. We can observe that PID algorithm has a higher

failure rate than Thermal Headroom algorithm in all the cases. Failure rate is a fundamental

in determining the safety and reliability of the approach. Lower failure rates in case of

Thermal headroom approach as compared to PID help us to conclude that the headroom

algorithm is a more reliable thermal management strategy due to fewer number of thermal

violations.

Target Temp 56 ̊ C 60 ̊ C 63 ̊ C

PID 0.00956 0.00652 0.00930

Thermal Headroom 0.00847 0.00526 0.00723

Table 2: Failure rates (λ) for PID and Thermal Headroom

4.5 Conclusion

In this paper, we investigated the trade-off among peak temperatures, power consumption

and reliability of a new Thermal Head Room based P-State driver. We could significantly

reduce temperature overshoots beyond set-point, as a result we could achieve energy

conservation and higher reliability. The prime goal for this research was to analyze

Thermald (PID based approach) for temperature violations beyond reference temperature

and propose a new mechanism for reducing violations under a thermal constraint in Linux

33

kernel. We have conducted an extensive architectural study of the Head room based

thermal driver. This approach was implemented within Linux kernel and thoroughly

evaluated. In future this approach can be extended to High Performance Computing

perspective in distributed processing systems.

(a) Failure Density at target 56 ̊ C

 (b) Failure Density at target 60 ̊ C

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700

Fa
ilu

re
 D

en
si

ty
 F

(t
)

Time(seconds)

PID (λ=0.00956)

THBD (λ=0.00847)

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700

Fa
ilu

re
 D

en
si

ty
 F

(t
)

Time(seconds)

PID (λ=0.006515)

THBD (λ=0.005263)

34

(c) Failure Density at target 63 ̊C

Fig. 4.4.2: Reliability Analysis

References

[1] L. Yeh and R. Chu, "Thermal management of microelectronic equipment: Heat transfer

theory," Analysis Methods, and Design Practices (ASME), 2002.

[2] S. Gunther, F. Binns, D. M. Carmean and J. C. Hall, "Managing the impact of increasing

microprocessor power consumption," Intel Technology Journal, vol. 5, no. 1, pp. 1-9, 2001.

[3] H. F. Hamann, A. Weger, J. A. Lacey, P. B. Z. Hu, E. Cohen and W. J., "Hotspot-limited

microprocessors: Direct temperature and power distribution measurements," IEEE Journal

of Solid-State Circuits, vol. 42, no. 1, pp. 56-65, 2007.

[4] C. Y. Lee, S. Yang and R. Chang, "Thermal-aware scheduling collaborating with OS and

architecture," in 42nd International Conference on Parallel Processing (ICPP),

Lyon,France, 2013.

[5] S. Pandruvada, "Linux thermal daemon," Intel, [Online]. Available: https://01.org/linux-

thermal-daemon/documentation/introductionthermal-daemon.

[6] S. Baskiyar and R. Abdel-Kader, "Energy aware dag scheduling on heterogeneous

systems," Cluster Computing, vol. 13, no. 4, pp. 373-383, 2010.

[7] S. Baskiyar and K. K. Palli, "Low power scheduling of dags to minimize finish times,"

High Performance Computing-HiPC, vol. 10, no. 1, pp. 353-362, 2006.

[8] "Intel and core i7 (Nehalem) dynamic power management.," Arizona State University,

2011. [Online]. Available: https://impact.asu.edu/cse591sp11/Nahelempm.pdf.

[9] Y. Fu, N. Kottenstette, Y. Chen, C. Lu, X. D. Koutsoukos and H. Wang, "Feedback

thermal control for real-time systems," 16th IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS), pp. 111-120, 2010.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700

Fa
ilu

re
 D

en
si

ty
 F

(t
)

Time(seconds)

PID (λ=0.009302)

THBD (λ=0.007233)

35

[10] S. Zhang and K. S. Chatha, "Approximation algorithm for the temperature-aware

scheduling problem," in 10th IEEE/ACM Proceedings of the international conference on

Computer-aided design, Beijing, China, 2007.

[11] J. Choi, C.-Y. Cher, H. Franke, H. Hamann, A. Weger and P. Bose, "Thermal-aware task

scheduling at the system software level," in Proceedings of the 2007 International

Symposium on Low Power Electronics and Design (ISPLED), New York, NY, 2007.

[12] J. Yue, T. Zhang, B. Q. Y. Liu and C. Tianzhou, "Thermal-aware feedback control

scheduling for soft real-time systems," in IEEE 9th International Conference on Embedded

Software and Systems (HPCCICESS), IEEE 14th International Conference on High

Performance, Liverpool, United Kingdom, June 2012.

[13] R. Jayaseelan and T. Mitra, "Temperature aware scheduling for embedded processors," in

22nd International Conference on VLSI Design, New Delhi, India, 2009.

[14] O. Lempel, "2nd generation intel core processor family: Intel core i7, i5," Intel, 2011.

[Online]. Available: http://download.intel.com/newsroom/.

[15] D. Li, H. Chang, H. K. Pyla and K. W. Cameron, "System-level, thermal-aware, fully-

loaded process scheduling," in IEEE International Symposium on Parallel and Distributed

Processing (IPDPS), 2008.

[16] D. Rajan and P. S. Yu, "“On temperature-aware scheduling for single processor systems,"

in 14th International Conference on High Performance Computing (HiPC), Goa,India,

2007.

[17] White Paper, Intel, "Enhanced Intel speedstep technology for the Intel pentium-m

processor," 2004. [Online]. Available:

http://download.intel.com/design/network/papers/30117401.pdf.

[18] R. Uppu, "A novel CPU P-State driver for better thermal control with improved

power/performance trade-off," Auburn University, 14 December 2015. [Online]. Available:

https://etd.auburn.edu/handle/10415/4985.

[19] Wikipedia, "Poole–Frenkel effect," [Online]. Available:

https://en.wikipedia.org/wiki/Poole%E2%80%93Frenkel_effect.

[20] J. König and L. Nordström, "Reliability Analysis of Substation Automation System

Functions," in Reliability and Maintainability Symposium (RAMS), 2012 Proceedings -

Annual, 2012.

[21] M. Finkelstein, "Failure Rate Modelling for Reliability and Risk," Springer Series in

Reliability Engineering, pp. 1-84, 2008.

