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Abstract 

Pinus taeda L. (loblolly pine) is the most economically important tree species in the USA. 

With 30 million acres in plantations in the southern United States alone, it accounts for over 50% of 

the standing pine volume of the region. Over the past sixty years however, Southern Pine Decline 

(SPD) has been causing the premature death of this species. As a management strategy, 

stakeholders are selecting elite loblolly pine families that are currently being screened for tolerance 

to SPD for deployment. However, before deploying these elite families, important wood traits that 

dictate the quality of this essentially new feedstock towards different end uses must be known.  

This study examined the rapid screening of elite loblolly pine families for important wood 

properties and optimum utilization pathways using near infrared spectroscopy (NIR). In addition, 

the genetic variation, site and genotype by site interaction for the wood traits were investigated. 

Apart from its contribution to the conventional forest products industry, loblolly pine will play a role 

in the emerging bioeconomy. As such, this study also demonstrated the potential of NIR, as well as 

Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) in the rapid 

assessment of the heterogeneous loblolly pine biomass. 

NIR was used to rapidly determine the density, strength properties, chemical composition 

and bioenergy potential of the elite loblolly pine families. Three to five latent variables were used in 

the development of NIR-based partial least squares (PLS) models that had R2 values (cross-

validation) of 0.58 to 0.88, and RPD values of 1.54 to 2.48. Validated models were employed in the 

screening of the families.  



iv 
 

The effects of family, site and family by site interaction were tested for the properties. 

Genotype of the loblolly pine families affected all the studied traits. In addition, the interaction 

term was significant for all the properties except for MOE. As such, tree breeders should bear in 

mind that desired traits of the elite families might be unstable on different sites. Further studies 

with more sites would be useful in estimating the extent of the genotype by site interactions. 

Nonetheless, desirable properties of some families remained high on the two forest sites. 

For example, A1, A26, A15, A2 and A9 which had consistently high cellulose contents on the two 

sites also had higher density, modulus of rupture (ultimate strength) and modulus of elasticity 

(stiffness). In addition, the amount of cellulose will affect the yield of pulp or ethanol. On the flip 

side, the strength-related properties of A33 and A21 remained low on both study sites. Apart from 

these two being undesirable for structural applications, their low strength properties could also 

make them more vulnerable to inclement weather on site. 

For the studies on the loblolly pine biomass, NIR and FTIR were used to classify forest 

residue into the plant part components of wood, wood & bark and slash (i.e. tops and limbs). Linear 

discriminant models that were developed with raw NIR and FTIR spectra had classification 

accuracies of over 96% for both tools.  

With respect to the quantitative assessment of biomass, full-cross-validated PLS and 

principal components regression (PCR) models were used. This study demonstrated that TGA 

coupled with chemometrics can be used for the compositional analysis of lignocellulosic biomass. 

The developed methodology enabled the simultaneous prediction of both the chemical and 

proximate properties from a single thermogram. According to the literature, this has not been 

attainable by the conventional deconvolution of TG data. In addition to its rapidity and simplicity, 

this alternative technique allowed the prediction of some monomeric sugars. Further studies will 
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however be necessary to validate the capability of chemometrics to model the thermal degradation 

and quantitative prediction of the individual monomeric sugars. 

Comparing the predictive performance of the three analytical tools investigated in this 

study, the NIR models generally had better diagnostics relative to the FTIR and TGA models in 

predicting the chemical composition and thermal reactivity properties of the heterogeneous loblolly 

pine biomass.  
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Chapter 1 : Introduction and Literature Review 

 

1.1 Timber Production in the United States 

The United States has 304 million hectares of forested land, out of which two-thirds is 

classified as timberland. Of the remaining, 66 million hectares is classed as non-timberland and 30 

million hectares is reserved. The forests of the southeastern region make up 27% of the total forest 

land and 30% of the unreserved forest area. Pinus taeda L. (loblolly pine) and P. enchinata Mill. 

forests cover almost a quarter (i.e. 20 million hectares) of southern forests and accounts for over 

50% of the 38 million hectares of softwood forests in the eastern United States (Smith et al. 2009). 

Seventy-seven percent of timberland is located in the eastern United States. The 

southeastern region, which makes up 55% of the total timberland area accounts for 64% of the total 

timber harvested in the country (Smith et al. 2001). This produces 60% of the wood consumed 

nationally (Wear and Greis 2002) and supplies 18% of the world’s industrial timber, making the 

region the world’s single largest producer of industrial wood (Prestemon and Abt 2002). 

1.2 Loblolly Pine (Pinus taeda L.) 

Loblolly pine is an important tree species in the United States. It dominates on 

approximately 13.4 million ha throughout the southeastern forests, and accounts for over 50% of 

the standing pine volume of this region (Schultz 1997). Loblolly pine is native to fourteen states 

extending from south New Jersey, down to central Florida and west to eastern Texas. Due to its 

adaptability, it has alsobeen successfully planted along the periphery of its natural range, and even 

on other continents (Baker and Langdon 1990). This tree species singularly provides some 110, 000 
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direct and indirect jobs and contributes approximately $30 billion to the economy of the region 

(Schultz 1999). 

1.3 Problem Statement 

Over the last six decades, Southern Pine Decline (SPD) (previously known as Loblolly Pine 

Decline or Pine Decline) has been causing reduced growth, decline and eventual premature deaths 

of loblolly pine especially in the southeastern United States. In a bid to control this disease complex, 

stakeholders would like to select and deploy elite loblolly pine families that are currently being 

screened for tolerance against fungi associated with SPD.  

The southern pine industry is interested in knowing the wood properties of these elite 

loblolly pine families since they are essentially a new feedstock. However, current methods that are 

used to determine wood properties are laborious, costly and usually destructive and will not be 

feasible in tree breeding programs where a large number of trees have to be sampled. There is 

therefore the need for novel analytical tools that can rapidly and cost effectively characterize this 

resource in a non-destructive manner. This will aid in decision making concerning the suitability of 

this resource as a feedstock for specific applications such as paper, structural lumber or engineered 

wood products. 

 In addition to the conventional forest products industry, loblolly pine will play a key role as 

the nation seeks a sustainable bioeconomy (U. S. DOE 2016). The need to shift to a sustainable low-

carbon economy is more pressing now than ever due to increasing negative anthropogenic impacts 

on the planet. One way of attaining such an economy is by using renewable resources to replace 

and/or supplement materials derived from non-renewable sources such as fossil fuels and metal 

ores (Scheffran 2010; White 2010; Perlack et al. 2005). Among the current sources of renewable 

energy, only biomass can be converted into liquid transportation fuels, chemicals, and products that 
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are currently obtained from crude oil (Klass 1998). In addition, it is the only one that can be 

transported to other locations or stored for future utilization. The use of lignocellulosic biomass to 

replace products derived from non-renewable sources will reduce net greenhouse gas emissions 

and persistent toxic materials resulting from the extraction and processing of non-renewable 

resources. This will enhance the health of both mankind and the environment (NRCan 2007), and at 

the same time decrease our dependence on these resources (Mayfield et al. 2007; Tampier et al. 

2004). 

  In the United States, lignocellulosic biomass is primarily sourced from agricultural and 

forestry operations. Biomass from the forest consists of the higher end wood (for timber or 

pulpwood), as well as forest residues and mill residues that have been conventionally considered 

‘waste’. 

Forest residues is a primary resource that consists mostly of logging residues (i.e. tree tops, 

limbs and stumps). It also may include excess biomass removed from fuel treatment and 

commercial thinning; rejected material that does not meet mill specifications such as oversized logs, 

cut off cankers and other defects, tree species that are currently not marketable as timber or 

pulpwood, as well as trees salvaged after being damaged by fire, wind and other types of forest 

disturbances (Bradley 2009; Ralevic et al. 2008). Globally, residues can be up to 60% of the volume 

of a forest harvest operation (FAO 1990). Forest residues generated in the United States and 

Canada are however lower at 13% to 24% and 9% to 14% respectively (U. S. DOE 2011; Smith et al. 

2009). Mill residues on the other hand is a secondary resource generated during the manufacture of 

wood products such as lumber and oriented strand board.  

Whereas mill residues have conventionally been ‘reconstituted’ to produce other wood 

products such as fiber boards and also combusted for heat and power, forest residues are usually 
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left on the forest floor because its small piece size makes it unsuitable and uneconomic for the 

manufacturing of forest products. Although this material provides important ecological functions 

such as nutrient cycling and coarse debris for wildlife habitation, it however also poses a fire risk 

and hazard (White 2010; Patton-Mallory 2008).  

Apart from combustion, forest residues can be gasified in an oxygen-deprived environment 

(about a third of oxygen that would have been needed for conventional complete combustion) to 

produce syngas which can in turn be used in the production of heat, electricity and process steam, 

or further refined to serve as a feedstock for synthetic natural gas and high value chemicals (NRCan-

CETC 2008). Alternatively, forest residues can be processed into bio-oils through the process of fast 

pyrolysis or liquefaction. Bio-oils can be utilized as an alternative fuel, or as a feedstock for the 

production of value-added products such as methane, ethanol, artificial flavors, wood resins and 

fertilizers. Phytochemicals also can be thermally extracted from forest biomass (NRCan 2007). In 

addition, due to the increasing cost of fiber (SCNR 2008), forest residues can be used as 

supplementary fiber in the manufacture of pellets (Bradley 2009) and composite board products.  

As already stated, forest residues are currently an abundant resource that can become 

economically feasible to remove, most likely together with conventional harvest operations where 

the cost of extraction will be borne by the higher end timber and pulpwood as market for bioenergy 

and biofuel feedstocks develop (U.S. DOE 2016). As this emerging industry expands, it is most likely 

that it will compete especially with the pulp and paper industry for pulpwood. For the efficient and 

effective use of this resource as a raw material, its properties must be well understood. Just as in 

the case of the higher end solid wood, time-saving and cost effective analytical tools are needed for 

the rapid characterization of biomass.  
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Over the last two decades, infrared spectroscopy and thermogravimetric analysis have 

gained popularity as high throughput tools that can be used to accurately estimate the properties of 

wood and lignocellulosic biomass.  

1.4 Infrared Spectroscopy 

The infrared region is the wavelength range of 780 nm – 1 mm (wave number range 12820 – 

10 cm-1) that lies between the visible and microwave regions of the electromagnetic spectrum, 

Figure 1.1. It is subdivided into near infrared (NIR), mid infrared (MIR) and far infrared (FIR). The NIR 

region lies between the wavelength range of 780 to 2500 nm (wave number range 12820 – 4000 

cm-1) and the MIR region ranges from 2500 nm to 15380 nm (4000 – 650 cm-1) (Adapa et al. 2009; 

Reich 2005; Sherman Hsu 1997). 

 

Figure 1.1: Infrared region in the electromagnetic spectrum (Adapted and modified from Google 

Images 2013). 

Infrared spectroscopy is the measurement of the wavelength and intensities of the 

absorption and transmittance or reflectance of infrared light by a sample. NIR spectroscopy uses 

near infrared light to detect overtones and combinational vibrations of the molecular constituents 
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of the material under study; while Fourier Transform infrared spectroscopy (FTIR) uses mid infrared 

light to detect primarily functional and fundamental vibrations (Zhou et al. 2011).  

In the NIR region, the measurement of reflectance instead of transmittance is possible 

because of the low molar absorptivity in the region; this low absorption coefficient however 

permits deeper depths of penetration. In transmittance, NIR radiation is detected by the instrument 

after it has passed through the sample, whereas in reflectance, the instrument detects radiation 

reflected by the sample (especially opaque sample) (Benito et al. 2008).  

In the case of FTIR, an interferometer divides radiant beams and generates a difference in 

their optical paths. It then recombines them to produce repetitive interference signals (this contains 

infrared spectral information) which is measured by the detector as a function of the different 

paths (Sherman Hsu 1997). 

Common absorption bands that occur in the NIR and FTIR regions are overtones and 

combinations of fundamental vibrations of C-H, O-H, C=O, N-H, -COOH, aromatic C-H groups and S-

H functional groups in the mid infrared region; and can thus give the chemical and physical 

properties of a sample. In simpler terms, the chemical finger print (in the form of a spectrum) of a 

sample is taken by NIR or FTIR at a specific point in time (NIR Technologies Inc. 2012; Jorgensen and 

Goegebeur 2007; Reich 2005).  

NIR and FTIR have several advantages that justify their widespread use. They can provide 

rapid and accurate analysis of a large number of heterogeneous samples in a non-destructive 

manner (i.e. as-is or with minimal preparation). Infrared spectroscopy also avoids the need of 

chemicals and their subsequent disposal. Furthermore, the cost-per-test is much lower than other 

analytical methods. Some NIR instruments operate on batteries, are lightweight and portable, thus 

making them suitable for field studies. Additional advantages for FTIR include increased optical 
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throughput, and elimination of stray light and emissions (Benito et al. 2008; Mark and Campbell 

2008; Hames et al. 2003). Some common instruments used include photometers, spectrometers, 

Fourier transform spectrophotometers (FT-NIR), acousto-optically tuned filters (AOTF-NIR), 

attenuated total reflectance (ATR)-FTIR and diffuse reflectance infrared Fourier transform 

spectroscopy (DRIFTS)  among others (Heise and Winzen 2002;  Pope 1995).  

Infrared spectroscopy thus has a huge potential as a fast, accurate and non-destructive 

analytical tool to identify and characterize a myriad of products of instantaneous forms in such 

industries as the forestry and agricultural, petrochemicals, polymer and plastics, medical and 

pharmaceutical as well as military research and forensic science. 

NIR and FTIR instruments use the complete spectra of several wavelengths to calculate the 

measurement of interest. Spectra therefore typically have broad ill-defined overlapping bands of all 

the chemical and physical information of an analyte that make it multivariate in nature, also, they 

can be non-linear due to scatter, stray light, path length variation, physical properties of sample 

such as size, inconsistency in instrument response and random noise (Reich 2005; Jorgensen 2000; 

Wold 1995).  Therefore, mathematical, statistical and computer science methods known as 

chemometrics are needed in order to do a quantitative or qualitative analysis (i.e. relate spectral 

variables to the properties of a test sample.  

1.5 Chemometrics and Multivariate Analysis (MVA) 

Chemometrics extracts the relevant information and minimize irrelevant information from 

the chemical measurement data (Varmuza and Filzmoser 2009; Benito et al. 2008; Mark and 

Campbell 2008). It also enables the simultaneous analysis of all variables, and permits an overall 

evaluation of the significance of differences between groups and correlations. Results usually show 

unexpected patterns due to the interactive and synergetic effects of all the variables considered as 
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opposed to conventional analysis that typically consider one or several variables (Jorgensen 2000; 

Wold 1995).   

In order to extract only the relevant information from chemical data, the NIR instrument 

must be ‘calibrated’ to do quantitative or qualitative analysis. Calibration involves the following 

steps: selection of a test set that is representative of the sample; acquisition of spectra and the 

determination of reference property; multivariate modeling to relate spectra to the reference; 

prediction and validation (Reich 2005; Blanco and Villarroya 2002). For quantitative calibration, 

sophisticated mathematical calculations relate measured spectra to known properties (including 

composition) of the samples determined by conventional methods; whereas in qualitative 

calibration (also known as classification), the instrument is trained to automatically identify 

components of an unknown sample by comparing its measurements to those taken on a known 

sample. 

The role of chemometrics is to relate the spectra of all samples that are to be used in 

calibrating the instrument to the components of interest that have been determined by a 

conventional method so that when the spectra of similar samples are measured in the future the 

instrument can calculate their compositions (NIR Technologies Inc. 2012; Benito et al. 2008). 

According to Varmuza and Filzmoser (2009), in spite of the broad definition of 

chemometrics, the most vital aspect of it is the application of multivariate analysis to chemistry-

relevant data; multivariate analysis is powerful in analyzing and structuring IR spectra and 

conventionally acquired chemical data into empirical mathematical models that are capable of 

predicting properties of future measurements and even other properties that are not directly 

measurable. 
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IR spectra is usually pretreated before multivariate analysis due to scatter, stray light, path 

length variation, inconsistency in instrument response and random noise that cause such 

interferences as baseline shifts, vertical displacements, non-uniform slope of individual spectrum 

and curvilinear spectra. Pretreatment is a necessary step that minimizes, standardizes or even 

eliminates the impacts of these interferences on spectra and improves the robustness of calibration 

models to be developed. Commonly used pretreatment methods include standard normal variate 

(SNV) transformation, multiplicative scatter correction (MSC), derivatives and the newer orthogonal 

signal correction (OSC). SNV and MSC both minimize or remove baseline shifts, slope variation and 

intensity differences due to scatter by normalization algorithms. In addition to reducing baseline 

offsets, derivatives also improve the resolution of overlapping peaks. Derivatives however make 

spectra more complex and also amplify noise, thus they are done in conjunction with smoothing 

algorithms such as Savitzky-Golay algorithms. OSC removes latent variables that are orthogonal to 

the response variable (Lande et al. 2009; Blanco and Villarroya 2002; Jorgensen 2000). 

Multivariate modeling means using many measured variables (X1, X2…..Xi) simultaneously to 

quantify a response or target variable (Y); X is NIR spectra and Y is the measured property (Martens 

and Naes 1990). Multivariate calibrations commonly used with IR spectroscopy are multiple linear 

regression (MLR), principal component regression (PCR) and partial least squares (PLS) also known 

as projection of latent squares. 

Multiple linear regression: MLR is based on the inverse of Beer’s law, that is, concentration 

is a function of absorbance (concentration is modeled linearly against combinations of absorbance). 

It assumes the error to be in the component concentrations and thus reduces squared errors in 

concentrations. A significant advantage of this model over the others is that, analysis based on it is 

invariant with respect to the number of chemical components. Even though it is a frequency-limited 



10 
 

method (because many frequencies cause collinearity and reduces precision), quantitative spectral 

analysis can be done even with the concentration of only one known component. 

Principal component regression: PCR is the regression of principal components (i.e. PCA 

followed by a regression step). It is a factor analysis method that combines the many advantages of 

CLS and the ability to perform analysis one chemical component at a time, just like MLR. It also 

gives orthogonal intensities and thus avoids the collinearity seen in MLR. It presumes concentration 

to be a linear function of the intensities it generates in the new full-spectrum. PCR thus considers 

both spectra and concentration during modeling. It however factors the spectral data matrix 

without using information about the concentration, thus there is no assurance that the full-

spectrum basis vectors associated with it will be relevant for predicting concentration. 

Partial least squares: PLS is a generalization of ordinary least squares (OLS) regression that 

correlates subtle changes in spectra with the response variable (i.e. describes the underlying latent 

structure in the two) (Blanco and Villarroya 2002; Martens and Naes 1990).  It has similar 

advantages to PCR. In addition, unlike PCR, PLS ensures a better predictive ability by sacrificing 

some fit of the spectral data so as to achieve better correlations to concentrations. It also gives 

coefficients of regression that can be used to relate chemical features in the spectra to the 

properties of the material. PLS also can predict more than one variable due to the non-iterative PLS 

(NIPALS) algorithm it uses to calculate model parameters. This has therefore made PLS the most 

extensively used with NIR applications in the biomass and bioprocessing industry (Lestander and 

Rhen 2005; Haaland and Thomas 1988). 

The performances of models developed to predict the properties of wood and biomass  are 

determined by such parameters as the standard error of calibration (SEC), standard error of cross-

validation (SECV), coefficient of determination (R2), standard error of prediction (SEP), bias and ratio 
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of preformance to deviation (RDP). The SEC evaluates how precisely the regression line fits the data. 

SECV is used to determine how well the models predicted the samples that are not used to create 

the calibration set.  Bias detects any systematic difference between calibration set and the 

prediction set – thus the closer bias is to zero, the better the model both in fit and predicting ability. 

SEP  measures the precision of a model’s predicting ability corrected for bias during validation. R2 

mesures the total variance between measured and predicted that can be modeled linearly – the 

closer R2 is to one, the better the model, but it not good as the ultimate measure of model 

performance. RDP is the ratio of SEP to standard deviation (SD); it evaluates SEP in terms of SD of 

the reference data (Kelley et al. 2004; Esbensen 2002). 

1.6 Spectroscopic Studies of the Properties of Wood and Lignocellulosic Biomass 

Cooper et al. (2010) partially differentiated the densities of earlywood and latewood with 

NIR and recommended that a large area should be illuminated especially when scanning is being 

done on the tangential surface so as to ensure a better representation of both earlywood and 

latewood. Nkansah et al. (2010) used diffuse reflectance NIR to predict the extractives, 

holocellulose and lignin content of Liriodendron tulipifera L. solid wood blocks (19 x 19 x 50 mm) 

whereas Sykes et al. (2005) used it to predict the properties of wafers (200 μm) sectioned from 

loblolly pine obtained from two sites. The former group noted that the models they developed with 

the full spectra (800 – 2500 nm) had slightly better predictive ability as compared to models they 

built with reduced spectra (1300 – 1800 nm). They had R2 values of 0.84, 0.68 and 0.64 for 

extractives, holocellulose and lignin respectively. The latter group found out that even though 

models developed from samples of one site can be used to predict the cellulose content of wood 

from the other site, the R2 value was lower than those for the individual site predictions and may be 

only sufficient for ranking and selection purposes. In both studies, the R2 values for lignin content 
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were low. Sykes et al. (2005) attributed this result to the generally low variation of lignin content in 

wood and usually large errors associated with lignin determination in the lab.  

Poke and Raymond (2006) also sought to increase the rapidity and cost-effectiveness of 

using NIR to predict the chemical composition of Eucalyptus globulus Labill using 20 x 20 mm test 

stripes. For comparison, they used both solid wood and ground wood for developing their models. 

It was realized that models built from ground wood samples did a poor job of predicting the 

chemical properties of solid wood samples. They however got better R2 values when they used solid 

wood calibrations: extractives - 0.84, cellulose - 0.88 and lignin - 0.74. 

 Fardim et al. (2002) successfully utilized NIR to predict the chemical components of glucan, 

xylan, lignin and uronic acids; as well the the kappa number, viscosity, brightness and degree of 

polymerization of Eucalyptus grandis Hill ex Maiden kraft pulp obtained under different cooking 

parameters. Yet still, Derkyi et al. (2011) were able to determine the tannin content and Stiasny 

number of Pinus caribaea Morelet with the help of NIR and chemometric modeling. Other studies 

that investigated the ability of NIR to predict the chemical properties of lignocellulosic biomass 

include Li et al. (2015), Jones et al. (2006) and Hodge and Woodbridge (2004). 

It is known that the extractives and lignin content have a positive linear relationship with 

the heating value of wood (Demirbas 2001; White 1987). When  So and Eberhardt (2010) used 

reflectance NIR to predict the higher heating values of longleaf pine  considering the effect of lignin 

content and extractives, they found out that the models predicted the HHV of unextracted wood 

samples better than they did extracted samples.  

Not as much work has however been done on the use of NIR to predict the ash content of 

wood, and models generally give low coefficients of ash determination (Fagan et al. 2010; Allison et 
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al. 2008). Such poor results have been attributed to the fact that IR does not interact directly with 

the species that form ash, e.g. calcium, potassium and silica.  

FTIR also has been used in quantitative and qualitative analysis of biomass. Via et al. (2013) 

built models for the HHV, volatile matter, fixed carbon and ash content of torrefied biomass using 

both NIR and ATR-FTIR spectra. They developed a novel 2D technique that made it possible to 

assign key NIR wavenumbers based on mid IR spectra. They were able to explain the 

depolymerization of key functional groups in hemicelluloses, cellulose and lignin by using a 2D 

correlation spectroscopy between NIR and FTIR. They noted however that NIR models performed 

better than FTIR models. Nuopponen et al. (2006) built calibration models of lignin, cellulose, 

extractives and density using fifty clones of Picea sitchensis (Bong.) Carr., twenty-four Ghanaian 

hardwoods and twenty Pinus sylvestris L. from DRIFT-MIR spectra of ground test samples. With 

RMSEP values of models constructed from only Picea sitchensis very similar to those computed 

from all the wood species, they concluded that a calibration model built from a particular species 

could be used to predict the similar properties of other wood species. Furthermore, they stated 

that when they reduced the number of wavelengths from 2386 to only the significant four or five 

(i.e. principal components), their RMSEP values were affected only slightly (lower for cellulose and 

density but higher for lignin); and thus, this advantage should be explored in the development of 

low-cost hand-held devices.  

1.7 Thermogravimetric Analysis (TGA) 

A typical thermogravimetric analyzer is basically made up of a balance, a furnace and its 

associated atmosphere controller, a data recorder and plotter (Price et al. 2000). TGA is a rapid type 

of thermal analysis that measures the change in mass as a function of temperature as a material is 

heated at a fixed rate under a set of conditions. The information provided by TG is inherently 
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quantitative in nature since the mass loss profile of a composite material or polymer usually equals 

the sum of the profiles of the individual components (Earnest 1988). The mass loss gives insight into 

a sample’s chemical composition, thermal stability, number and sequence of reactions and kinetic 

parameters such as the order and activation energy of the chemical and physical reactions 

occurring (Klass 1998; Broido 1969). The activation energy is used to determine the amount of 

energy needed to bring about a chemical change, whereas the order of reaction and pre-

exponential factor are needed in the calculation of the rate of reaction. Such knowledge is essential 

for the design and operation of thermochemical conversion units such as pyrolysis reactors and 

gasifiers (Parthasarathy and Narayanan 2013; Lee and Fasina 2009). 

TGA has been a useful tool for determining the thermal decomposition behavior and kinetic 

parameters of lignocellulosic biomass. It has widely been used in the characterization of forestry 

residues (Lapuerta et al. 2004), softwoods and hardwoods (Grønli et al. 2002), corn stover (Kumar 

et al. 2008) and municipal solid waste (Becidan 2007). TGA also was utilized to study the 

degradation temperatures and kinetic parameters of several understory grasses found in a Pinus 

palustris Mill. ecosystem (Elder et al. 2011). Employing TGA together with differential scanning 

calorimeter (DSC), Owen et al. (2015) determined the rate, kinetics and energy involved in the 

thermal degradation of loblolly pine biomass in both air and nitrogen. In recent times, a couple of 

studies have explored the application of TGA in the quantitative (Carrier et al. 2011; Saldarriaga et 

al. 2015) and qualitative (Francisco-Fernández et al. 2012; Toscano et al. 2015) characterization of 

lignocellulosic biomass. Traditionally, researchers have determined the chemical composition of 

fuels by the deconvolution of derivative thermograms (DTGs), especially in quantitative analysis. 

Systems integrating TGA with other analytical tools such as Fourier transform infrared 

spectroscopy (FTIR), gas chromatography (GC) and mass spectroscopy (MS) also have been used to 
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enable the identification and quantification of the composition and evolution rates of gaseous and 

liquid products during the pyrolysis and gasification of biomass feedstocks (Lee and Fasina 2009; 

Bassilakis et al. 2001; de Jong et al. 2003). Bodirlau and Teaca (2009) used FTIR to investigate the 

chemical reactions that occur during the esterification of wood and its polymers with organic 

anhydrides; and TGA to study the thermal stability of treated wood. FTIR spectra (of a reduced 

range of 1800 cm-1 – 1100 cm-1) analysis showed that the O-H absorption band at 3456 cm-1 had 

reduced intensity, whereas the carbonyl absorption peak at 1735 cm-1 (C=O ester), C-H absorption 

at 1381 cm-1 (C-CH3) and C–O stretching band at 1242 cm-1 were enhanced. The latter results 

confirmed the formation of ester bonds. With the aid of a TGA, they were able to determine the 

initial temperature of decomposition, weight loss, activation energy and the reaction order to 

conclude that chemically modified wood was more thermally stable compared to untreated wood. 

Also, Kalisz et al. (2008) applied FTIR and TGA to characterize cotton, wood and ROFIRE (a 

wood/plastic composite) for pyrolysis and gasification. Using 3-dimensional plots of wavelength, 

absorbance and spectrum at a particular temperature and time in the reactor, they were able to 

follow the characteristic absorption at a specific wavelength of a gas evolving at a given time and 

temperature. 

Furthermore, Dworzanski et al. (1991) developed a TG/FTIR/MS system interfaced with a 

GC/IRD/MS system to characterize Liriodendron tulipifera lignin and Pseudotsuga menziesii (Mirb.) 

Franco. They used a deactivated fused silica cap column to transfer TG effluents into the GC for gas 

separation and subsequent species identification by MS and/or FTIR. Their system enabled them to 

analyze selected spectra for univocal identification and chemical interpretation the thermal 

processes that occur during TG analysis. 
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Chapter 2 : Screening Elite Loblolly Pine Families for Structural Applications using Near 

Infrared Spectroscopy 

2.1 Abstract 

Near infrared (NIR)-based partial least squares (PLS) regression models were developed for 

the density, modulus of rupture (MOR) and modulus of elasticity (MOE) of elite loblolly pine 

families. These properties dictate wood quality for structural/dimensional applications. Moreover, 

the MOE and MOR are valuable traits in standing trees as they reduce mortalities caused by the 

failure of stems and uprooting of trees during inclement weather. 

The mean densities of the families as predicted by NIR ranged from a low of 0.37 g/cm3 (SD 

= 0.02) to a high of 0.5 g/cm3 (SD = 0.07). Families did not necessarily perform the same on the two 

forest sites studied, with the interaction term being significant. The different densities noted 

between the individual families on a particular site were due to genetic variation (P-value < 0.0001). 

The MOR (i.e. strength) of the families studied was between 70 MPa to 116 MPa. MOR determined 

for the sixteen-year old elite families were comparable to what have been reported in the literature 

for older loblolly pine trees with a mean age of 22 years. A plot of density versus MOR showed that 

the former accounted for 41% of the variation noted in the MOR. With respect to the MOE (i.e. 

stiffness), ANOVA testing the effect of family, site and the interaction of family and site on the 

stiffness was only significant for family, with a P-value of < 0.0001. Stiffness values of the families 

ranged from 7782 MPa to 10946 MPa. Unlike for the strength, the relatively higher density of the 

elite families did not have as much impact on their stiffness.  
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As a means of further validating the robustness of NIR models developed in this study, the 

MOE of the loblolly pine families as estimated by NIR were compared to the MOE estimated from 

acoustics data.  A One-way ANOVA gave a P-value of 0.45 at 0.05 significance level; an indication 

that there was no statistical difference between the MOE estimated for the families by the two 

nondestructive tools.  

On the whole, four out of the fourteen screened families; A9, A1, A26 and A2 had high 

density, MOR and MOE values irrespective of site. As such, these should perform well in structural 

applications. On the flip side, using A33 and A21 in structural applications will not produce the 

optimum products due to their low density and strength properties. Moreover the low stiffness of 

these two families could impede their survival rate on site. 
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2.2 Introduction 

As the wood basket of the nation, the southern United States accounts for 64% of the total 

timber harvested in the country (Smith et al. 2001). This produces 60% of the wood consumed 

nationally and contributes 18% to global wood supply (Wear and Greis 2002). Pinus taeda L. 

(loblolly pine) is an important timber species in the nation. The species dominates on approximately 

13.4 million ha throughout the southeastern forests and accounts for over 50% of the standing pine 

volume of this region (Schultz 1997). Economically it generates some 110, 000 direct and indirect 

jobs and contributes approximately $30 billion to the economy of the region (Schultz 1999). 

Unfortunately, Southern Pine Decline (SPD) (previously known as Loblolly Pine Decline or 

Pine Decline), which was first observed in the Talladega National Forest, Alabama back in 1959 has 

been associated with this species (Brown and McDowell 1968). Symptoms of SPD include a 

reduction of radial growth, thinning of foliage, deterioration of lateral roots and a heavy production 

of cones just before premature mortality. In a bid to control this disease complex, stakeholders 

would like to select and deploy elite loblolly pine families that are currently being screened for 

tolerance against root fungi associated with SPD. 

Since the elite families are essentially a new feedstock, the southern pine industry is 

interested in knowing such important properties like the density, modulus of rupture (MOR) and 

modulus of elasticity (MOE) of this material. Furthermore, the stakeholders would like to 

incorporate this information back into tree breeding programs that aim to further improve wood 

quality.  

The basic density of wood is defined as the ratio of its oven dry mass to its green volume. It 

is considered as the most important physical property of wood due to its effect on other wood 

attributes such as the strength properties, the yield of pulp per unit volume and the shrinkage and 
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swelling behavior of wood (Haygreen and Bowyer 1989). The porosity of wood (i.e. the ratio of cell 

wall material to lumen) is the main contributing factor to the basic density. Just like density, the 

strength properties of MOE and MOR dictate the quality of wood for structural applications. MOE 

(also known as the stiffness) is the resistance to deformation or distortion. It is the linear 

relationship between stress applied in bending and the resulting strain. The MOR (also known as 

ultimate strength) is the ultimate resistance of wood to applied loads. It is a measure of the 

maximum load carrying capacity of wood in bending (Green et al. 1999; Ritter 1990; Haygreen and 

Bowyer 1989). Apart from their importance in structural/dimensional timber, the MOE and MOR 

are valuable traits in standing trees. They reduce mortalities resulting from the failure of stems and 

uprooting of trees during inclement weather (Lachenbruach et al. 2011). 

Currently, test methods used to determine the MOE, MOR and density require extensive 

sample preparation and destructive testing. With the large number of trees that have to be 

sampled in tree breeding programs, these conventional methods will not be practical and feasible. 

The industry would thus benefit from rapid, nondestructive and cost effective alternatives.  

Near infrared spectroscopy (NIR) has evolved over the years as a reliable and rapid 

technique in the nondestructive assessment of wood and other forest products. A good number of 

studies have reported on the application of NIR to predict the density, MOE and MOR of wood. 

Kothiyal and Raturi (2011) related NIR spectra collected from the radial and tangential surfaces of 

five-year old Eucalyptus tereticornis Sm. to its specific gravity, MOE and MOR. They reported that 

PLS regression models from these two wood surfaces performed equally well in property prediction 

– with R2 values ranging from 0.58 to 0.77. Cooper et al. (2011) have however pointed out that 

surface roughness of the material can affect the spectra. The researchers thus recommended that 

NIR spectra should be collected on similar surfaces that have ideally been planed. Furthermore, 
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they suggested that a large area should be illuminated especially when scanning is being done on 

the tangential surface so as to ensure a better representation of both earlywood and latewood. In 

an earlier study, Via et al. (2003) modeled the density, MOE and MOR of Pinus palustris mature 

wood, juvenile wood and pith wood. The authors attributed the poor performance of the 

developed models for predicting the strength properties of the pith wood to the narrow range of 

the MOE and MOR of the material used in their study. Another explanation they gave was that, the 

high concentration of extractives in the pith area although had a positive correlation with density, 

did not contribute to the strength. Several other researchers have employed NIR to estimate the 

density (Alves et al. 2011; Hein 2010; Gindl et al. 2001), as well as the MOE and MOR of solid wood 

and composite wood products (Adedipe and Dawson-Andoh 2008; Rails et al. 2002; Thumm and 

Meder 2001). 

Even though a good number of studies have used NIR to estimate the density and strength 

properties of wood and wood-based products, the current study focuses on elite loblolly pine 

families, thus an essentially new resource. The objectives of this study were (i) to develop NIR-

based PLS models to rapidly predict the density, MOE and MOR of loblolly pine families, and (ii) to 

screen out the elite loblolly pine families based on the understudied properties for the optimum 

structural applications.   

2.3 Materials and Methods 

2.3.1 Materials 

Loblolly pine were acquired from two genetic research plantations established in 1998. 

Study Site 1 was located near Nahunta, Brantley County, Georgia (N 31o 12’16’’ W 81o 58’56’’) and 

Site 2 was located near Yulee, Nassau County, Florida (N 30o 63’ W 81o 57’). Each site was 

partitioned into fifteen blocks. Eighty trees representing eighty half-sib families were planted on 
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each block. Fifteen of these elite families were selected to be used; thus a total of 450 trees (i.e. 

fifteen families with one replication on each block per site) were earmarked for the study.  

Firstly, cores were sampled at breast height from thirteen-year old trees during the spring 

and summer of 2011. Three hundred and fifty five tree cores were obtained because some trees 

were dead at time of sampling. The cores were stored in a walk in freezer (temperature: 4 oC) until 

time for further processing.  

The second set of material comprised whole trees that were harvested from the selected 

families in 2014 and 2015. One tree per family was destructively sampled from each of the sites, 

thus a total of thirty trees. The DBH of trees ranged from 11.5 cm to 23.4 cm, with an average of 

17.4 cm and standard deviation of 3.2 cm. Trees were crosscut into 1.5 m lengths along the bole, 

from which 50 cm bolts were cut from the basal end. Three disks representative of the butt, mid 

and top sections of each tree were selected to be further processed. For smaller diameter logs, two 

disks representing a section had to be processed. To hinder the rate of drying, the ends of 

boltswere coated with wax (Anchorseal Green Wood Sealer, U. C. Coatings Corp. Buffalo, NY, USA) 

in the field before they were transported to the laboratory. They were also stored in a walk in 

freezer (temperature: 4 oC) until time of processing. 

The last set of material were nominal 2 x 4-in southern pine boards acquired from West 

Fraser Inc., a commercial sawmill located in Opelika AL. This is representative of material that is 

currently being processed and sold as lumber in the region. 

Test samples that were processed from the harvested loblolly pine families and the 

commercial southern pine boards were used in NIR model calibration and validation. 
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2.3.2 Specimen Preparation and Determination of Wood Properties 

Loblolly pine bolts and the commercial southern pine material were processed for three-

point bending tests as specified in ASTM D143. Clear wood test specimens were cut to final 

dimensions of 2.5 x 2.5 x 41 cm and conditioned to an average moisture content (MC) of 9% in a 

control chamber (temp: 22 oC; relative humidity: 55%). Prior to destructive testing, the mass of a 

sample was measured and the dimensions obtained with calipers. This was used to compute the 

basic density as the ratio of the mass of a test specimen to its volume. Test samples were then 

loaded into a Zwick-Roell load frame equipped with 10KN load cell and a computer controlled 

screw-drive crosshead, and force applied at 1.3 mm/min on the tangential face. The span for the 

testing was 36 cm. The MOE (i.e. stiffness) was computed as the slope of the linear portion of the 

load-deflection curve. The MOR was calculated as 

MOR = 
1.5 P∗L

(b∗h^2)
        

Where: P is the ultimate load, L is the span, b is the width and h is the height of test specimen. 

Experiments were run in triplicates for density, MOE and MOR. 

After destructive testing, each specimen was sawed into smaller blocks. Two of these cut 

pieces were used to determine the moisture content of the sample. The remaining materials were 

stored in airtight zip lock bags in a conditioning chamber until they were needed for further 

analysis. 

2.3.3 Near Infrared Spectroscopy (NIR) 

 Cores obtained from the standing trees were dried in a conditioning chamber (temp: 22 oC; 

relative humidity: 55%) until the average moisture content (MC) was around 9%. The dried material 

was ground in a Wiley mill to pass an 80-mesh screen to be used for spectra collection. In addition, 

wood blocks saved after the destructive strength testing were first chipped using a chisel and 
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hammer, and then also ground to pass an 80-mesh screen. NIR spectra of test samples were 

collected on this material with a PerkinElmer Spectrum Model 400 NIR spectrometer (Waltham, 

MA, USA). The wavenumber range of the instrument is from 10000 cm-1 to 4000 cm-1. A sample was 

scanned thirty-two times at a resolution of 4 cm-1 and averaged into one spectrum for analysis. 

Spectrum of a Spectralon standard was taken as the background reference sample every 20 minutes 

to correct for potential drifts with time.  

2.3.4 Multivariate Data Analysis  

 PerkinElmer Spectrum Quant+ software (Waltham, MA, USA) was used to develop Partial 

Least Squares regression (PLS) models. The first derivatives of raw spectra were used for PLSmodel 

construction. The PLS procedure used the NIPALS algorithm to extract successive linear 

combinations of the predictors (i.e. NIR spectra) such that variations in both response and 

predictors were optimally explained. These linear combinations are known as factors, components 

or latent vectors. In extracting the first factor, If X = X0, and Y = Y0 are the centered matrix of the 

predictors and responses respectively, NIPALS starts with a linear combination t = X0w of the 

predictors where t is called a score vector and w is its associated weight vector. NIPALS predicts 

both X0 and Y0 by regressing them on t:  

X0 = tp’, where p’ = (t’t)-1t’ X0; and Y0 = tc’, where c’ = (t’t)-1t’ Y0. The vectors p and c are known as the 

X- and Y-loadings respectively. The specific linear combination t = X0w is the one with maximum 

covariance t’u with some response linear combination u = t = Y0q. Also, the X- and Y-weights w and 

q are proportional to the first left and right singular vectors of the covariance matrix X’0 Y0. The 

second factor is extracted in a similar way but X0 and Y0 are replaced with the X- and Y-residuals 

(called deflated X and Y blocks) from the first factor: X1 = X0 - X0; Y1 = Y0 - Y0. The process of extracting 

a score vector and deflating the data matrices is iterated for as many factors as are desired. 
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 A total of two hundred and sixty samples were used in model calibration and validation. 

Samples were randomly assigned to either the calibration or test set. One hundred and ninety 

samples (i.e. 120 from the loblolly pine families and 70 from the southern pines stock) were used 

for model calibration and full cross-validation. The remaining 70 samples were used as an 

independent test set for external validation. The performance of validated models were evaluated 

using the standard error of calibration (SEC), standard error of cross-validation, standard error of 

prediction (SEP), coefficient of determination (R2) and the residual predictive deviation / ratio of 

performance to deviation (RPD). Models that had the lowest error values were chosen and used to 

predict the basic density, MOE and MOR of the elite loblolly pine families. 

 In addition, the PROC GLM procedure in SAS (SAS Institute, Inc. Cary, NC, USA) was used in 

the analysis of variance (ANOVA) for the three properties of the different families. Tukey-HSD tests 

with alpha set to 0.05 were conducted when needed to further investigate pair-wise comparison 

between the treatments. All graphics and tables were produced with MS Excel (Microsoft Corp. 

Redmond, WA, USA). 

2.4 Results and Discussion 

2.4.1 NIR Model Calibration and Evaluation 

Descriptive statistics of the density and strength properties of samples used in model 

training and validation are presented in Table 2.1. For the total sample set, the MOE ranged from 

2380 MPa to 17300 MPa. The highest MOE measured for loblolly pine used in this study is however 

lower than what has been reported in the literature (So et al. 2002). Minimum and maximum values 

were respectively 25 MPa and 148 MPa for MOR and 0.37 g/cm3 and 0.79 g/cm3 for the density. 

Wide ranges observed in the dataset help to improve the robustness of models and in their 

predicting properties of future unknowns (Haartveit and Flæte 2006; Via 2003). Good overlaps were 
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noted between the means of the calibration and independent validation dataset for all three 

properties. The average MOE was 8923 MPa (SD = 2534 MPa) for the training set and 8643 MPa (SD 

= 3759 MPa) for the test set.  

Table 2.1: Descriptive statistics of the basic density, MOE and MOR of southern pine wood. 

 Property Mean SD Min Max SE 

Total set 

n = 260 

MOE (MPa) 8848 2909 2380 17300 180 

MOR (MPa) 82 25 25 148 2 

Density (g/cm3) 0.52 0.09 0.37 0.79 0.01 

Training set 

n = 190 

MOE (MPa) 8923 2534 2380 15100 184 

MOR (MPa) 82 21 26 132 2 

Density (g/cm3) 0.52 0.08 0.37 0.75 0.01 

Test set 

n = 70 

MOE (MPa) 8643 3759 2540 17300 449 

MOR (MPa) 81 33 25 148 4 

Density (g/cm3) 0.55 0.12 0.39 0.79 0.01 

Loblloly pine 

families 

n = 180 

MOE (MPa) 8433 3128 2380 17300 180 

MOR (MPa) 82 28 35 148 2 

Density (g/cm3) 0.54 0.09 0.37 0.79 0.01 

Commercial 

lumber  

n = 80 

MOE (MPa) 9782 2084 5780 14300 233 

MOR (MPa) 81 15 41 112 2 

Density (g/cm3) 0.49 0.06 0.39 0.63 0.01 
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Results obtained via the conventional methods were used as the response variables (i.e. Y-

variables) whereas NIR spectra was used as the predictor variables (i.e. X-variables) in PLS modeling 

of properties. In Figure 2.1, a characteristic NIR spectra of pine wood is presented together with its 

1st-derivatives.  

Figure 2.1: Characteristic NIR spectra of loblolly pine wood. 
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The absorption bands in NIR spectra arise when different organic functional groups absorb 

NIR light at different wavenumbers that equal the energy of their vibrations. As such, providing 

some insight about the chemical makeup of wood (or any other organic material). The most 

common absorption bands that occur in the near infrared region are overtones and combinations of 

fundamental vibrations of C-H, O-H, C=O, N-H, -COOH and aromatic C-H groups.  

Table 2.2: Absorption bands associated with NIR spectra of wood. 

Wavenumber (cm-1) Bond Vibration Chemistry Assignment 

8368 - 8217 C-H str. 2nd OT Cellulose, methyl groups in lignin 

7140 - 6250 O-H vib. 1st OT Cellulose, hemicelluloses 

7092 O-H str 
Phenolic hydroxyl groups in lignin and 
extractives 

7027 - 6789 O-H str. 1st OT 
Amorphous or semi-crystalline regions of 
cellulose 

6875 O-H str. 1st OT Phenolic groups in lignin 

5596 C-H str. 1st OT 
Semi-crystalline or crystalline regions of 
cellulose 

5291 - 4951 O-H str. 
Interactions between hydroxyls in 
carbohydrates and water 

5205 O-H asym. str. & def Water 

4765 O-H and C-H str. & def vib Cellulose (and xylan) 

4545 C-H  and C=O str. Lignin 

       Note: Str = stretching, OT = overtone, asym = asymmetric, def = deformation, vib = vibration. 
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For instance, absorbance peaks occur from 4000 cm-1 - 5000 cm-1 as combination bands due 

mostly to the interactions of C-H, O-H and N-H. Some peaks associated with specific wood 

components are presented in Table 2.2 (Alves et al. 2012; Kohan et al. 2012; Derkyi et al. 2011; 

Schwanninger et al. 2011; Kelley et al. 2004). 

NIR is able to model non-chemistry secondary traits such as density and strength properties 

of wood because the chemical composition affects these traits. For instance, the fiber tracheid of 

wood, which is responsible for the strength of wood is made up of cellulose, hemicelluloses and 

lignin. The linear orientation and high degree of polymerization of cellulose makes it the primary 

contributor to strength; whereas lignin, in addition the binding the fibers together also serves as a 

stiffening agent. Hemicelluloses on the other hand acts as a matrix for cellulose as well as link the 

fibrous cellulose to the amorphous lignin. In the case of density, the ratio of cell wall material (i.e. 

cellulose, hemicelluloses and lignin) to lumen is a major determinant (Haygreen and Bowyer 1989; 

Winandy and Rowell 1984). 

Results from PLS models that correlated 1st–derivative NIR spectra to a single property are 

presented in Table 2.3. Four latent variables (LVs) were used in the construction of the optimum 

model for MOE and MOR, and three were used in developing the density model. The standard error 

of cross-validation (i.e. SECV), which estimates the errors that will be associated with a model’s 

ability of predicting future unknown samples were 1267 MPa, 11 MPa and 0.04 g/cm3 for MOE, 

MOE and density respectively. The coefficient of determination for the cross-validated models was 

least for density (i.e. R2 = 0.70) and highest for MOE (i.e. R2 = 0.75). The RPD, a measure of 

robustness was used to evaluate the predictive accuracy of cross-validated models. The relatively 

lower errors of PLS models compared to the standard deviation of the reference data produced 

models with good RPDs. For all the three properties, the RPD of models was greater than the 1.5 
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criteria required in order for a model to be considered as a preliminary screening tool (Hein et al. 

2009). Schimleck et al. (2005) conducted a similar study using NIR to estimate the density, MOE and 

MOR of loblolly pine (mean age of 22) obtained from eighty-one plantations across the southern 

United States. The SEC and SECV obtained by the researchers were very similar to what was 

determined in this study (i.e. SEC = 0.03 g/cm3, 1460 MPa and 8.6 MPa; and SECV = 0.03 g/cm3, 

1480 MPa and 9.5 MPa for density, MOE and MOR respectively). The authors however reported 

higher R2 (0.82 – 0.89) and RPD values (2.3 – 2.6) for their cross-validated models.  

Table 2.3: Calibration and prediction statistics of NIR-based PLS models. 

  Density (g/cm3) MOR (MPa) MOE (MPa) 

Number of LVs 3 4 4 

SEC 0.036 9.59 1100 

SECV 0.042 11.33 1267 

R2
cv 0.7 0.71 0.75 

RPDcv  1.81 1.87 2 

SEPiv 0.065 19.4 2011 

R2
iv 0.19 0.41 0.45 

Note: Subscript cv means cross-validation; iv means independent validation. 

When the optimum cross-validated models were used in predicting the three properties for 

an independent test set (n = 70), the larger errors consequently reduced the coefficients of 

determination to 0.19 for density, 0.41 for MOR and 0.45 for MOE. The SEP values were 0.07 g/cm3, 

19 MPa and 2011 MPa for density, MOR and MOE respectively. Errors that are associated with the 

prediction of an independent dataset is usually larger since it factors in how much worse a model 

performs when applied to this test set not originally used in model training. In addition, this 

performance might have resulted from the diverse composition of the samples in the test set. 
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 Regression plots relating the measured and NIR-predicted properties are shown in Figures 

2.2, 2.3 and 2.4. 

 

Figure 2.2: Relationship between measured and NIR–predicted basic density. 

 
Figure 2.3: Relationship between measured and NIR–predicted MOR. 
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Figure 2.4: Relationship between measured and NIR–predicted MOE. 

With the expected variations between the families, the predicted test samples were 

separated out into their respective families and a One-way ANOVA (α = 0.05) conducted to test for 

equality of means between NIR-predicted and measured property. The results showed no 

statistically significant differences (i.e. P-value > 0.05) between NIR-predicted values and measured 

values for density, MOR and MOE for each of the fifteen elite families, Appendix A.  
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2.4.2 Prediction and Screening of Loblolly Pines Families 

2.4.2.1 Density 

Descriptive statistics for the density of the elite families on the two forest sites are 

presented in Table 2.4 and 2.5. 

Table 2.4: NIR-estimated densities of loblolly pine families on Georgia site. 

Family Mean SD SE COV MIN MAX N 

A1 0.46 0.06 0.02 12.85 0.36 0.61 15 

A2 0.46 0.05 0.01 10.70 0.39 0.58 14 

A5 0.40 0.05 0.01 11.67 0.36 0.51 13 

A9 0.50 0.07 0.02 13.69 0.39 0.61 14 

A10 0.44 0.07 0.02 15.48 0.36 0.56 14 

A13 0.39 0.05 0.01 13.17 0.32 0.52 15 

A15 0.45 0.07 0.02 15.54 0.37 0.59 12 

A21 0.44 0.06 0.02 13.32 0.32 0.52 15 

A26 0.49 0.07 0.02 13.38 0.39 0.62 15 

A33 0.38 0.02 0.01 6.47 0.34 0.44 13 

A34 0.44 0.08 0.02 18.47 0.34 0.58 14 

A37 0.41 0.05 0.01 12.86 0.34 0.53 15 

F17 0.43 0.05 0.01 11.86 0.36 0.54 13 

F23 0.45 0.05 0.01 11.01 0.36 0.54 14 
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Table 2.5: NIR-estimated densities of loblolly pine families on Florida site. 

Family Mean SD SE COV MIN MAX N 

A1 0.49 0.06 0.02 12.11 0.39 0.58 11 

A2 0.46 0.04 0.01 8.40 0.40 0.52 10 

A5 0.43 0.02 0.01 4.95 0.40 0.47 11 

A9 0.47 0.03 0.01 6.87 0.42 0.51 10 

A10 0.46 0.04 0.01 8.43 0.39 0.51 12 

A13 0.37 0.03 0.01 7.19 0.31 0.40 7 

A15 0.42 0.02 0.01 5.43 0.39 0.47 8 

A21 0.39 0.03 0.01 6.87 0.36 0.43 12 

A26 0.45 0.03 0.01 6.21 0.40 0.50 12 

A33 0.40 0.03 0.01 7.04 0.35 0.47 12 

A34 0.44 0.04 0.01 8.49 0.36 0.50 10 

A37 0.41 0.01 0.00 3.25 0.39 0.43 12 

F17 0.40 0.04 0.01 9.05 0.36 0.47 12 

F23 0.39 0.03 0.01 8.38 0.34 0.44 11 

 

The mean densities of the families ranged from a low of 0.38 g/cm3 (SD = 0.02 g/cm3) to a 

high of 0.50 g/cm3 (SD = 0.07 g/cm3) on the Georgia site. For the Florida site, the range was from 

0.37 g/cm3 (SD = 0.03 g/cm3) to 0.49 g/cm3 (SD = 0.06 g/cm3). The range of density predicted by NIR 

is comparable to the 0.44 g/cm3 to 0.51 g/cm3 reported for 10-year old loblolly pine trees by 

Belonger et al. (1997) using X-ray densitometry; as well as the 0.39 g/cm3 to 0.56 g/cm3 determined 

for 12-year old loblolly pine trees by Jones et al. (2008). A Two-way ANOVA (α = 0.05) showed that 
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the families differed significantly in their densities on the two sites. In addition, the interaction term 

had a P-value of less than 0.05, Table 2.6.  

Table 2.6: ANOVA F-Test values and P-values of density by treatment. 

Treatment df F-value P-value 

Family 13 9.24 < 0.0001 

Site 1 4.79 0.0294 

Family x Site 13 2.34 0.0055 

 

 From Figure 2.5, families A9 and A26 had the highest densities on the Georgia site. These 

were statistically higher than the densities of families A37, A5, A13 and A33. On the Florida site, 

families with the highest densities were A1 > A9> A10> A2 > A26, Figure 2.6. The densities of A1, A9, 

A10 and A2 were statistically higher than the densities predicted for A33, F17, A21, F23 and A13. 

 

Figure 2.5: Rank of loblolly pine families for density on Georgia site. *Bars with different letters are 

significantly different at 95% confidence level (Tukey’s HSD Test). 
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Figure 2.6: Rank of loblolly pine families for density on Florida site. *Bars with different letters are 

significantly different at 95% confidence level (Tukey’s HSD Test). 
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years (i.e. juvenile wood or core wood) is usually inferior to wood that will be formed in later years 

(i.e. mature wood). For instance juvenile wood cells are shorter and are thin walled. Furthermore, 

juvenile wood has a lower proportion of latewood to earlywood. All these factors contribute to the 

lower density of wood found in the core as compared to the outerwood. Within a species, density 

has been reported to vary based on such factors as site conditions and genetic sources (Haygreen 

and Bowyer 1989). As Zobel and van Buijtenen (1989) pointed out, the properties of wood are a 

result of the interaction between the genetic potential of the tree with its growing environment. 

The different densities noted between the individual families on a particular site are due to 

the genetic variation (P-value < 0.0001), Table 2.6. On the other hand, differences noted within an 

individual family on the two forest site are a function of the environment, as also observed by 

Jordan et al. (2008). According to the authors, the differences in wood properties is probably due to 

the duration of juvenile wood production which increases as one moves north-west from the South 

Atlantic region. Also, the occurrence of moisture, especially in the summer promotes the 

production of latewood, thus higher density. This was however not the case for all the families 

investigated in this study. 

Even though there was  a site effect on density and most families didn’t rank the same on 

the two site, some families including A9, A1, A26 and A2 did consistently well on both sites. On the 

flip side, the densities of families A13, A33, F17 and A37 were low on the different sites. 
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2.4.2.2 Modulus of Rupture (Bending Strength) 

The range of predicted MOR values for the elite families were narrower on the Georgia site 

(i.e. 47 MPa to 143 MPa), Table 2.7, compared to the Florida site (i.e. 34 MPa to 150 MPa), Table 

2.8. A9 had the highest MOR (Mean = 109 MPa; SD = 28) on Georgia site, whereas A1 was the 

strongest on Florida site (Mean = 116 MPa; SD = 28 MPa). Conversely, the lowest MOR were 

recorded for A33 on the Georgia site, and for A21 on the Florida site.  

Table 2.7: NIR-estimated MOR of loblolly pine families on Georgia site. 

Family Mean SD SE COV MIN MAX N 

A1 102.7 20.6 5.3 20.1 54.7 134.1 15 

A2 99.4 10.5 2.8 10.6 82.3 117.5 14 

A5 91.9 32.4 9.0 35.3 48.0 143.3 13 

A9 108.6 28.4 7.6 26.2 52.2 139.9 14 

A10 96.0 30.0 8.0 31.3 47.7 143.4 14 

A13 92.4 18.8 5.0 20.4 61.8 115.6 15 

A15 95.9 16.4 4.7 17.1 73.7 128.1 12 

A21 88.3 20.7 5.4 23.5 47.0 110.6 15 

A26 98.2 18.7 4.8 19.0 59.7 117.7 15 

A33 69.6 12.7 3.5 18.3 52.0 100.0 13 

A34 83.7 21.7 5.8 25.9 59.0 124.5 14 

A37 83.0 19.6 5.1 23.7 59.4 115.7 15 

F17 94.7 17.3 4.8 18.2 70.8 128.1 13 

F23 101.0 14.7 3.9 14.5 70.8 117.5 14 
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Table 2.8: NIR-estimated MOR of loblolly pine families on Florida site. 

Family Mean SD SE COV MIN MAX N 

A1 116.1 27.7 8.4 23.9 68.4 159.3 11 

A2 109.1 16.9 5.3 15.5 72.3 126.5 10 

A5 86.9 10.2 3.1 11.8 71.2 100.3 11 

A9 105.6 10.2 3.2 9.7 94.2 122.9 10 

A10 103.1 19.1 5.5 18.5 72.3 136.9 12 

A13 77.2 16.8 6.4 21.8 50.5 96.8 7 

A15 92.6 27.4 9.7 29.5 43.5 122.7 8 

A21 76.9 20.4 5.9 26.5 34.1 103.5 12 

A26 100.7 21.2 6.1 21.1 58.5 123.3 12 

A33 80.2 14.4 4.1 17.9 46.6 97.1 12 

A34 104.4 20.9 6.6 20.0 64.2 124.7 10 

A37 110.5 12.1 3.5 10.9 86.5 127.2 12 

F17 92.1 18.4 5.3 20.0 66.7 120.5 12 

F23 78.5 15.6 4.7 19.8 49.3 95.0 11 
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According to the ANOVA results in Table 2.9, there were significant differences in the MOR 

of families tested. Furthermore, the family x site interaction was significant. However, the effect of 

site was not statistically significant.  

Table 2.9: ANOVA F-Test values and P-values of MOR by treatment. 

Treatment df F-value P-value 

Family 13 5.7 < 0.0001 

Site 1 0.79 0.3747 

Family x Site 13 2.94 0.0005 

 

On the Georgia site, A9, A1, F23, A2 and A26 had MOR values that were statistically higher 

than the MOR of A33. Meanwhile on the Florida site, A1, A37 and A2 are significantly stronger than 

A33, F23, A13 and A21. On the whole, the MOR of A1, A2, A9 and A26 ranked high on the two sites, 

whereas A33, A21 and A5 were among the least strong on both sites, Figure 2.7, Figure 2.8. 

 

Figure 2.7: Rank of loblolly pine families for MOR on Georgia site. *Bars with different letters are 

significantly different at 95% confidence level (Tukey’s HSD Test). 
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Figure 2.8: Rank of loblolly pine families for MOR on Florida site. *Bars with different letters are 

significantly different at 95% confidence level (Tukey’s HSD Test). 

Reviewing the results, rankings of families based on MOR seem to generally follow the ranks 

determined for the density. For instance, on the Georgia site, A9 had the highest density and MOR, 

with A33 having the lowest values for the two properties. A plot of density versus MOR showed 

that, the former was able to explain 41% of the variation noted in MOR, Figure 2.9. This result is 

similar to what has been reported in the literature about the correlation of density with MOR (Hein 

et al. 2013). 

30

60

90

120

A1 A37 A2 A9 A34 A10 A26 A15 F17 A5 A33 F23 A13 A21

P
re

d
ic

te
d
 M

O
R

 (
M

P
a)

Families 

a

ab

bc
bcbc

ab

bc
bc

bcbc

cd
dcdcd



41 
 

 

Figure 2.9: Correlation between the density and MOR of wood. 
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increased density may be attributed to the cell characteristics rather than extraneous depositions. 

Further studies of the anatomical features of the elite families will however be required in 

ascertaining this occurence.   

2.4.2.3 Modulus of Elasticity (Stiffness) 

ANOVA testing the effect of family, site and the interaction of family x site on the stiffness 

was only significant for family, Table 2.10. As such, replicates of families from the two sites were 

pooled together for further analysis. 

Table 2.10: ANOVA F-Test values and P-values of MOE by treatment. 

Treatment df F-value P-value 

Family 13 3.45 <0.0001 

Site 1 0.34 0.5625 

Family x site 13 0.93 0.5198 

 

The descriptive statistics for the MOE of pine families are presented in Table 2.11. The range 

of MOE values predicted was from 2981 MPa to 15830 MPa. The MOE for the elite families was 

highest for A9 (Mean = 10946 MPa; SD = 2703) and lowest for A33 (Mean = 7782 MPa; SD = 2237).  
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Table 2.11: NIR-estimated MOE of loblolly pine families. 

Family Mean SD SE COV MIN MAX N 

A1 10801 2424 475 22 4984 14200 26 

A2 10453 1713 350 16 5999 14170 24 

A5 9369 3092 631 33 4741 14890 24 

A9 10946 2703 552 25 5329 15210 24 

A10 10473 2894 567 28 5904 15830 26 

A13 9561 2509 547 26 5321 13950 21 

A15 10023 2396 536 24 4006 13200 20 

A21 8909 2565 494 29 2981 12070 27 

A26 10560 2247 441 21 5874 13570 27 

A33 7782 2237 439 29 3791 12970 26 

A34 9759 2688 549 28 5145 13460 24 

A37 9285 2145 413 23 5259 12110 27 

F17 10258 2217 435 22 6675 13640 26 

F23 10805 1775 355 16 6813 13280 25 

 

NIR-predicted MOE of loblolly pine in this study was comparable to the 2500 MPa - 15327 

MPa reported by Kelley et al. (2004). However, the maximum MOE for the elite families were lower 

than the 23 000 MPa with a Silviscan for loblolly pine aged between twenty-one to twenty-six years 

(Jones et al. 2005). The upward shift of MOE with age is due to the fact that the proportion of 

juvenile wood (which has thin-walled shorter cells, as well as a higher proportion of earlywood to 

latewood) is inversely related to age. For instance, Zobel and Blair (1976) stated that 15-year old 
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loblolly pine has about 85% of its wood as juvenile wood but this proportion decreased drastically 

to 19% by age 40. Apart from the presence of juvenile wood adversely affecting the density, it also 

has large microfibril angles and excessive spiral grain. 

Compared to the MOR, density accounted for less of the variation in MOE (R2 = 0.2), Figure 

2.10. Similar results were reported by Burdon et al. (2001) when they investigated the relation of 

density to the MOR and MOE of Pinus radiata D Don. Several studies have shown that the 

microfibril angle (MFA) has a greater influence on the MOE than density (Ivkovic et al. 2009; Evans 

and Ilic 2001; Tsehaye et al. 1998). Also, it has been reported that the MFA correlates to the MOR to 

a lesser extent than it does to MOE (Hein et al. 2013). As in the case of density, the MOE of loblolly 

pine increases from the pith towards the bark, but decrease as one moves further up the tree 

(Zobel and Sprague 1998). 

 

Figure 2.10: Correlation between the density and MOE of wood. 
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Thus, the MFA of the families, which is under moderate to strong genetic control, might 

have mainly contributed to the differences noted in the MOE of elite families. In terms of ranking, 

the MOE of families A9, F23, A1, A26, A10, A2 and F17 were all statistically different from the 7782 

MPa predicted for A33. Figure 2.11. 

 

Figure 2.11: Rank of loblolly pine families for MOE. *Bars with different letters are significantly different 

at 95% confidence level (Tukey’s HSD Test). 

2.4.3 Validation of NIR- predicted MOE using Acoustics-predicted MOE 

To further corroborate the robustness of the developed NIR-based models, the acoustic-

MOE (MOEac) of the elite loblolly pine families were computed from their tree velocities and 

densities. Acoustic data was collected with a FAKOPP Microsecond Timer (Fakopp Enterprise, 

Agfalva, Hungary) which operates based on the Time-of-Flight (ToF) principle. For data collection, a 

transmitter and receiver probe were positioned 120 cm apart on the same side of a side of the tree, 
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ensuring that the midway of these probes is at breast height. A stress wave was then generated 

with the strike of a steel hammer at a steady force (Essien et al. 2016; Wang et al. 2007). The tree 

velocity (VT) was computed as the ratio of the distance (m) between the probes (in m) and the time 

(s) it takes the stress wave to travel from the transmitter to the receiver. The MOEac was calculated 

as: 

MOEac = (VT)2  x density. 

With an F-value of 0.58 and P-value of 0.45 (α = 0.05), results of the One-way ANOVA 

comparing the two tools showed no statistical difference between NIR-predicted MOE and 

acoustics-predicted MOE of loblolly pine families from the two forest sites. However, for better 

insight, the NIR-predicted versus acoustics-predicted was plotted for each of the families separately 

for the two sites. From Figures 2.12 and 2.13, the MOE of the families were estimated more or less 

equally by the two nondestructive techniques. However, NIR consistently underestimated the 

stiffness of A33. It has been determined earlier on that this family was among those with low 

densities. As such, the MFA might be a bigger contributor to the MOE (Ivkovic et al. 2009; Evans and 

Ilic 2001; Tsehaye et al. 1998) of this particular family than density. However, as already stated, 

further studies of the anatomical features of the elite families will be required to test this 

hypothesis. The underestimation of the MOE of this family on both study sites by NIR might be an 

indication of the limitation of the tool in being less sensitive to the MFA.  
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Figure 2.12: MOE of the loblolly pine families as predicted by NIR and Acoustics on the Florida site. 

 

 

Figure 2.13: MOE of the loblolly pine families as predicted by NIR and Acoustics on the Georgia site. 
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2.4 Conclusions 

NIR-based PLS-models were developed for the density, modulus of rupture (MOR) and 

modulus of elasticity (MOE). Models were then used to partition out fourteen elite loblolly pine 

families based on the aforementioned properties that dictate wood quality in structural 

applications. 

Cross-validated models calibrated with 1st-derivative treated NIR spectra had R2 values 

ranging from a low of 0.7 for density to a high of 0.75 for MOE. Constructed models for the three 

properties all had their RPD values greater than 1.5; as such, they could be employed in the 

preliminary screening of the loblolly pine families.  

The mean densities of the families as predicted by NIR was from 0.37 g/cm3 (SD = 0.02) to 

0.5 g/cm3 (SD = 0.07). A Two-way ANOVA showed an effect of family, site and family x site 

interaction on density. Density variation in wood is known to be controlled by genetic factors such 

as the ratio of earlywood to latewood, cell size and wall thickness, and the length of juvenile wood 

production. However, these traits can be influenced by site conditions (i.e. the environment). In 

spite of the effect of site on density, families A9, A1, A26 and A2 had consistently high densities on 

the two study sites. Conversely, the densities of A13, A33, F17 and A37 were low on the two sites. 

With respect to the MOR, NIR-predicted means for the families ranged from a low of 70 

MPa for A33 on the Georgia site, to a high of 116 MPa for A1 on the Florida site. The treatments of 

family and family by site interaction had significant effects on MOR. MOR values of the loblolly pine 

families were noted to be comparable to what have been reported in the literature for older loblolly 

pine trees; suggesting that the elite families have improved strength. Within the scope of the 

current study, the relatively high MOR of the families could be attributed to the density. Further 

studies will however be needed at the anatomical level to determine other causes of this apparent 
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improvement in MOR since density accounted for only for 41 % of the variation in MOR. On the 

whole, the MOR of A1, A2, A9 and A26 ranked high on the two sites, while A33, A21 and A5 were 

among the least strong on both sites. 

Analysis of variance testing the effect of family, site and the interaction of family x site on 

the stiffness was only significant for family, which had a P-value of < 0.0001. A9 had the highest 

stiffness (Mean = 10946 MPa; SD = 2703 MPa) while A33 had the lowest (Mean = 7782 MPa; SD = 

2237). Unlike for the strength, the relatively higher density of the loblolly pine families did not 

impact the stiffness. In fact, regression analysis showed density could explain an even lesser 

proportion of the variation in the MOE (i.e. 20 %) compared to the MOR. As such, other factors such 

as the MFA and slope of grain would have to make up for the difference. A study of the anatomical 

features of the elite families will help clarify this. For the family ranking, the MOE of A9, F23, A1, 

A26, A10, A2 and F17 were all statistically different from that of A33. 

In addition, NIR-predicted MOE was compared to acoustics-predicted MOE for the elite 

families. A One-way ANOVA gave a P-value of 0.45 at 0.05 significance level; an indication that there 

was no statistical difference between the MOE predicted for the loblolly pine families by the two 

nondestructive tools. This results further corroborated the robustness of NIR-based models 

developed in this study. 

Finally, families A9 and A1, as well as A26 and A2 will perform better in structural 

application because they had higher density, MOR and MOE irrespective of site. On the other hand, 

using A33 and A21 in structural applications might not produce the optimum products due to their 

low density and strength properties. Apart from that, their low stiffness could impede their survival 

on site due to inclement weather such as storms. 
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Chapter 3 : Screening Elite Loblolly Pine Families for Chemical and Bioenergy Applications 

using Near Infrared Spectroscopy 

3.1 Abstract 

Near infrared (NIR) spectroscopy coupled with partial least squares (PLS) regression was 

used to rapidly estimate the chemical composition and bioenergy potential of select loblolly pine 

families. The chemical composition of wood impacts other wood properties, as well as the 

processing and quality of final products that will be derived; whether it be pulp and paper, bio-

composites, lumber or biofuel. Also, knowledge about the bioenergy potential of this essentially 

new feedstock will be valuable in the emerging bioeconomy. 

PLS models were developed using the first derivatives of NIR spectra as the independent 

variables (i.e. X-variables) and data obtained via conventional laboratory methods as the dependent 

variables (i.e. Y-variables). One hundred and ninety samples were used in model calibration and full 

cross-validation. An additional test set made up of 60 samples were used for external validation. 

Validated models that had the lowest error values were used to predict the extractives, lignin, 

cellulose, glucose, hemicelluloses, volatile matter, fixed carbon, ash and energy contents of elite 

loblolly pine families obtained from two forest sites. 

R2 values for cross-validated models ranged from 0.84 to 0.73 for the chemical traits; and 

from 0.88 to 0.58 for the bioenergy related properties. Models for all the properties studied had 

RPD values greater than 1.5, as such, they could be employed in the preliminary screening of the 

elite loblolly pine families. Property means of the families as predicted by NIR-based PLS models 

were as follows: extractives – 5.5% (SD = 1.1%), lignin – 30.7% (SD = 1.3%), glucose – 44.7%      
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(SD = 1.7%), hemicelluloses – 20.5% (SD = 0.4%), volatile matter – 84.2% (SD = 0.8%), fixed carbon – 

14.9% (SD = 0.8%), ash – 0.2% (SD = 0.03%) and HHV 19.0 MJ/kg (SD = 0.2 MJ/kg). 

The genotype of loblolly pine families affected the chemical, proximate and energy traits 

studied. The genetic variation detected for cellulose was the largest (P-value < 0.0001). Considering 

that the cellulose content has strong correlations with other properties, selecting and breeding for 

cellulose can generate gains. However, the family by site interaction was significant for all 

understudied properties, indicating the general instability of the elite families across different sites. 

Nonetheless, the cellulose contents of families A1, A26, A15, A2 and A9 were consistently higher on 

the two sites. High cellulose content implies that these families will be good choices for pulp and 

paper applications, or for cellulosic ethanol production. On the other hand, the relatively high 

volatile matter contents of F23, F17, A37 and A9 in spite of the significant interaction between 

genotype and environment make them good candidates for the production of bio-oil and syngas via 

thermochemical conversion processes.  

Knowledge of the chemistry and bioenergy potential of these elite families will aid in 

decision making processes that optimize the suitability of this feedstock to support the 

conventional forest products industry as well as the emerging bioeconomy. Furthermore, making 

this information available to tree breeders will help in decisions about planting certain genotypes 

with desirable traits in different environments. 
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3.2 Introduction 

Timber harvested in the southern United States accounts for 60% of the wood consumed 

nationally and 18% of global wood consumption (Wear and Greis 2002). The majority of this 

production is sourced from plantation grown loblolly pine. This widely grown tree species 

dominates on approximately 13.4 million ha throughout the southeastern forests and accounts for 

more than 50% of the standing pine volume in the region (Schultz 1997). As the most economically 

important tree species in the United States, loblolly pine provides some 110, 000 direct and indirect 

jobs and contributes approximately $30 billion to the economy of the southeastern United States 

(Schultz 1999). 

For efficient utilization of loblolly pine, knowledge of its chemical properties will be valuable. 

Chemically, wood is principally composed of carbon (C), oxygen (O), and hydrogen (H). These three 

elements combine into the three structural components of cellulose, hemicelluloses and lignin. 

Cellulose is the most abundant and can make up 40% to 50% of the dry weight of wood. The 

percentage of hemicelluloses in the dry weight of wood ranges between 15% to 35%, and for lignin 

18% to 35% (Haygreen and Bowyer 1989; Farmer 1967). Wood also has non-structural components 

known as extraneous compounds - examples of which include carotenoids, sterols, flavonoids, 

tannins, waxes essential oils and phenolics (Fengel and Wegener 1984). The fraction of extranoues 

compounds that can be extracted with polar and non-polar organic solvents are known as extractives. 

Extractives usually make up 1% to 5% of the dry weight of wood but can be as much as 14% in pines 

(Sjostrom 1981) and contribute to the natural durability of most tree species. Furthermore, several 

mineral elements also are present in wood. These mineral elements occur either as primary elements 

or trace elements (Ragland et al. 1991; Hakkila and Parikka 2002). Most of the trace elements occur 

in wood and plant biomass not because plants need them but because they are found in the soil. The 
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chemical composition of wood impacts other wood properties, as well as the quality of final products. 

For example, the lignin and extractives content that may be desirable to a degree because they impart 

durability against biological agents in lumber products are problematic in pulp and paper applications 

due to their adverse effects on the pulping process. Similarly, the chemical composition affects traits 

such as density and strength; two important properties that dictate the quality of wood for structural 

applications.  

In addition to the conventional forest products industry, loblolly pine will form an important 

component of the renewable energy portfolio as the United States seeks national and energy 

security as well as environmental sustainability. In recent years, interest has been growing in the 

use of loblolly pine as a renewable energy feedstock due to existing knowledge of intensive 

southern pine plantation management, favorable production economics and high yields (U. S. DOE 

2016; Jernigan et al. 2016).  

Several loblolly pine energy plantations concepts have been proposed. One approach is 

through dual-cropping whereby a pine stand is established and managed to intentionally produce 

conventional sawtimber and pulpwood as well as bioenergy. The timber crop is planted in widely 

spaced rows; in between these, trees are planted in tightly spaced rows for bioenergy (Scott and 

Tiarks 2008). An alternative to this approach is to have more efficient fast growing dedicated pine 

plantations at higher densities and shorter rotations (Jernigan et al. 2016). However, fast-growing, 

densely planted short rotation pine plantations will be susceptible to endemic organisms such as 

fusiform rust, pine beetles, pine tip moths and seedling debarking weevils (Zalesny et al. 2011; 

Baker and Langdon 1990). As such disease tolerance should be of prime consideration in the 

establishment of pine energy plantations.  
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Just as for the conventional applications, the chemical composition will affect the yield and 

quality of bio energy/fuel products. For instance, in the production of ethanol, wood with a high 

concentration of cellulose is desirable for high yields. On the flip side, high amounts of extractives 

and lignin will inhibit the bioconversion process. In addition to the chemical properties, knowledge 

about the bioenergy potential (i.e. proximate composition and energy content) of loblolly pine is 

necessary in bio energy/fuel applications. The proximate composition of volatile matter, fixed carbon 

and ash give an indication of the thermal reactivity of a fuel (McKendry 2002). A fuel with high volatile 

matter content is easier to ignite and yield higher quantities of liquid products; whereas a higher fixed 

carbon content gives more solid products. For example, poplar, which has a 75% volatile matter 

content has an ignition temperature of 235 oC, whereas the volatile matter content and ignition 

temperature of eucalyptus has has been reported to be 64% and 285 oC respectively (Basu 2010). The 

mineral elements usually form particulates known as ash during combustion or gasification. 

As such, knowing the chemical composition, proximate composition and energy content of 

loblolly pine could aid in the decision making process with regards to the suitability of this feedstock 

to support the conventional forest products industry as well as the emerging bioeconomy.  

However, current methodologies employed for determining wood properties are laborious, 

costly and usually destructive. Alternative analytical tools that can be used to rapidly and cost 

effectively estimate these important properties will thus be invaluable to stakeholders. 

Near infrared spectroscopy (NIR) has emerged over the years as a rapid and reliable tool for 

the nondestructive estimation of the properties of wood and other forest products. A good number 

of research studies have reported on the application of NIR to predict the chemical composition, 

proximate composition and energy content of wood and other lignocellulosic materials. 
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Sykes et al. (2005) used NIR to predict the properties of loblolly pine wafers obtained from 

two sites. The researchers determined that although models developed from samples of one site 

could be used to predict the cellulose content of wood from the other site, the R2 value was lower 

than those for the individual site predictions and may thus be only applicable for ranking and 

selection purposes. Nkansah et al. (2010) also used NIR to predict the extractives, holocellulose and 

lignin content of Liriodendron tulipifera solid wood blocks employing the full (800 nm – 2500 nm) 

and reduced (1300 nm -1800 nm) NIR spectra. Their best models were those calibrated with the full 

NIR range; reporting R2 values of 0.84 for extractives, 0.68 for holocellulose and 0.64 for lignin. In 

both studies, the models developed for lignin content had low predictive power. Sykes et al. (2005) 

attributed this result to the generally low variation of lignin content in wood and usually large 

errors associated with lignin determination in the laboratory.  

In another study comparing NIR calibration models developed from solid and ground 

Eucalyptus globulus wood, Poke and Raymond (2006) noted that models built from ground wood 

samples did a poor job of estimating the chemical properties of solid wood samples. Jiang et al. 

(2012) however demonstrated that decreasing particle size improved the precision of NIR-based 

models when predicting the chemical composition of southern pines.  

Several studies also have reported the proximate composition and energy content of wood 

as determined with NIR. According to the literature, extractives and lignin content have a 

proportional relationship with the heating value of wood (Demirbas 2001; White 1987). So and 

Eberhardt (2010) for instance used reflectance NIR to predict the higher heating value of Pinus 

palustris considering the effect of lignin content and extractives. They reported that the models 

predicted the HHV of unextracted wood samples better than they did acetone-extracted samples. In 
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addition, graphs of the regression coefficients showed similar plots for the HHV and extractives 

content; an implication that the two properties have similar molecular features.  

With respect to the ash content of wood, NIR-based models generally give low coefficients 

of determination. For example, the model developed by Fagan et al. (2010) to determine the ash 

contents of two dedicated energy crops had an R2 value of 0.58. These poor results have been 

attributed to the fact that NIR does not interact directly with the compounds that form ash, e.g. 

calcium, potassium and silica. 

In this current study, NIR was used to rapidly determine the extractives, lignin, cellulose, 

glucose and hemicelluloses content (i.e. chemical composition) of elite loblolly pine families (i.e. an 

essentially new resource). In addition, the proximate analysis and energy content of these select 

families were also estimated to ascertain the bio energy/fuel potential of this feedstock. Developed 

NIR-based models were then used to partition out the pine families for optimum applications. 

Moreover, the stakeholders will be provided with this knowledge so that it can be incorporated 

back into tree breeding programs that aim to improve wood quality for different end users. 
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3.3 Materials and Methods 

3.3.1 Material  

Southern pine wood samples that were loaded until failure in structural testing were used 

(Chapter 2). Materials had been sawn into smaller blocks after destructive testing and stored in 

airtight zip lock bags in a conditioning chamber until they were needed for further analysis. Prior to 

subsequent analysis, wood blocks were first chipped using a chisel and hammer. For each sample, a 

Wiley mill was used to grind a portion to pass a 40-mesh screen, and the remaining was ground to 

pass an 80-mesh screen. The 40-mesh sample were used to determine the chemical and proximate 

composition as well as the energy content of pine wood. NIR spectra were collected from the 

materials that were ground to pass the 80-mesh screen.   

3.3.2 Chemical Analysis 

Laboratory experiments following conventional standards were used to determine the 

chemical composition of loblolly pine wood. Extractives content was determined following 

NREL/TP-510-42619 (Sluiter et al. 2008). Using a Soxhlet Apparatus, 150 ml of industrial grade 

acetone was used to extract 5 g of test sample for 6 hours. An additional 2 g of the sample was 

taken at this time for moisture content (MC) determination. Acetone was evaporated from the 

extract using a rotary evaporator. Extract was then dried at 40 oC for 24 hours in a vacuum oven and 

the final mass measured for extractives content determination.  

The amount of total lignin and carbohydrates in samples were determined as described in 

NREL/TP-510-42618 (Sluiter et al. 2012). Air dried extractive-free test sample (0.5 g) was weighed 

into a dry pressure bottle and 5 ml of 72% sulfuric acid was added. Employing a two-step procedure 

to ensure complete hydrolysis of sugars, test sample was first placed in a water bath set at 30 oC +/- 
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3 oC and incubated for one hour. Afterwards, the mixture was diluted to a concentration of 4% with 

deionised water and placed in an autoclave set at 121 oC for another hour.  

The total lignin was computed as the sum of acid soluble lignin (ASL) and acid insoluble 

lignin (AIL). ASL was determined with a UV – Visible spectrophotometer immediately after 

hydrolysis. Absorbance of a test sample was measured at the recommended wavelength of 240 nm, 

ensuring that the absorbance ranged between 0.7 – 1.0. 

Monomeric sugars (i.e. glucose, xylose, galactose, arabinose and mannose) in test samples were 

determined via High Performance Liquid Chromatography (HPLC) using a Biorad Aminex HPX-87P 

column equipped with the appropriate guard column at a column temperature of 85 oC and run 

time of 35 minutes. Holocellulose was computed as the sum of all monomeric sugars; cellulose was 

computed as glucose − (
1

3
∗ mannose) and hemicelluloses computed as the difference between 

holocellulose and cellulose (Jiang et al. 2014). 

3.3.3 Proximate Analysis and Energy Content Determination 

Proximate analysis was conducted to determine the thermal reactivity of pine wood 

samples. The volatile matter of samples was determined as specified in CEN/TS 15148 (CEN 2005) 

using a furnace (VMF Carbolite, model 10/6/3216P, England). Empty crucibles with their lids were 

first heated to 900 oC ± 10 oC for 7 minutes. Crucibles were allowed to cool to room temperature in 

a desiccator before filling with 1 g ± 0.1 g of test material. These were then returned to the furnace 

for 7 minutes ± 5 seconds. They were removed from the furnace and allowed to cool in a desiccator. 

The volatile matter content was determined using the equation 

% Volatile matter = {100 (M2 – M3) / (M2 – M1) – MC} X {100 / (100 – MC)} 

M1 is the mass (g) of the empty crucible and lid; 
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M2 is the mass (g) of the crucible and lid and test portion before heating; 

M3 is the mass (g) of the crucible and lid and contents after heating; 

MC is the moisture content on wet basis. 

Ash content was determined following NREL/TP-510-42622 (Sluiter et al. 2008). Crucibles 

were dried in a muffle furnace (Thermoscientific, model F6020C, Waltham, MA, USA) set at 575 oC ± 

25 oC for four hours. Crucibles were then taken out and allowed to cool for one hour. They were 

filled with 0.5 g ± 0.1 g of test samples and placed back into the furnace set at 105 oC. This 

temperature was held isothermal for twelve minutes before ramping to 250 oC at 10 oC/min. After 

holding for thirty minutes at 250 oC, the temperature was increased to 575 oC at a rate of 20 oC/min 

and then held isothermal for 180 minutes. Furnace was allowed to cool down to 105 oC before 

samples were removed. The ash content of pine wood was determined using the equation: 

% Ash = {(M3 – M1) / (M2)} X {100 / (100 – MC)} 

Where:  

M3 is the final mass (g) of crucible with ash after completion of experiment  

M1 is the mass (g) of empty crucible 

M2 is the initial mass (g) of test sample 

MC is the moisture content on wet basis 

 The fixed carbon content of wood was determined as the sum of the percentages of 

moisture, volatile matter and ash deducted from 100.   
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The energy of test samples was determined according to ASTM D5865 (ASTM 2013) using an 

IKA C-200 bomb calorimeter (IKA Works Inc., model C200, Wilmington, NC, USA). Approximately 0.5 

g of test sample was pelletized and completely combusted in an oxidative environment. 

3.3.4 Near Infrared Spectroscopy (NIR) 

 NIR spectra of test samples were collected using a PerkinElmer Spectrum Model 400 NIR 

spectrometer (Waltham, MA, USA). The wavenumber range of the instrument was from 10000 cm-1 

to 4000 cm-1. Each sample was scanned thirty-two times at a resolution of 4 cm-1 and averaged into 

one spectrum for analysis. Spectrum of a Spectralon standard was taken as the background 

reference sample every 20 minutes to correct for potential drifts with time.  

3.3.5 Multivariate Data Analysis 

 PerkinElmer Spectrum Quant+ software (Waltham, MA, USA) was used to develop Partial 

Least Squares regression (PLS) models. The first derivatives of raw spectra were used for PLS1 

model construction.  

 A total of two hundred and fifty samples were used in model calibration and validation. 

Samples were randomly assigned to the either the calibration or test set. One hundred and ninety 

samples were used for model calibration and full cross-validation. The remaining 60 samples were 

used as an independent test set for external validation. The performance of validated models were 

evaluated using the following five statistics: standard error of calibration (SEC), standard error of 

cross-validation (SECV), standard error of prediction (SEP), coefficient of determination (R2) and the 

residual predictive deviation / ratio of performance to deviation (RPD). Models that had the lowest 

error values were selected and used to predict the chemical and thermochemical properties under 

study. 
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 The PROC GLM procedure in SAS (SAS Institute, Inc. Cary, NC, USA) was used to conduct 

analysis of variance (ANOVA). Tukey-HSD tests with alpha set to 0.05 were conducted when needed 

to further investigate pair-wise comparison between the treatments. All diagrams and tables were 

produced with MS Excel (Microsoft Corp. Redmond, WA, USA). 

3.4 Results and Discussion 

3.4.1. Chemical Composition, Proximate Composition and Energy Content 

The descriptive statistics of the chemical composition determined via conventional 

laboratory methods are presented in Table 3.1. The mean extractives content of southern pines 

used in this study was 3.06% (SD = 1.59%), with minimum and maximum values of 0.37% and 9.44% 

respectively. Percent extractives determined for the commercially acquired southern pine samples 

were slightly higher than that measured for the elite loblolly pine families (i.e. 3.8% versus 2.77%). 

The range of extractives content determined for pine samples in this study were low compared to 

some of what have been stated in the literature. Kelley et al. (2004) reported a range of 2.8% to 

26.9% for loblolly pine whereas So and Eberhardt (2010) reported a range of 0.0% to 20.6% for 

Pinus palustris. 

In the case of total lignin content, values ranged from a low of 26.72% to a high of 34.96%. 

The mean lignin content of the loblolly pine families were more similar to that of the southern pines 

-- 31.74% (SD = 1.52%) and 3.11% (SD = 1.64%) respectively. For the carbohydrates, wider ranges 

were recorded for the loblolly pine families than for the southern pines. For instance, cellulose 

ranged from 29.36% to 47.16% for the former but 30.42% to 42.76% for the latter. The mean 

cellulose, glucose and hemicelluloses of all samples were 37.2% (SD = 2.92%), 40.29% (SD = 3.07%) 

and 22.88% (SD = 1.57%) respectively.  
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Table 3.1: Descriptive statistics of the chemical composition of southern pine wood. 

  

% Extractives % Lignin % Cellulose % 
Glucose 

% 
Hemicelluloses 

Calibration set 
(n = 190) 

Mean 3.01 31.29 37.35 40.43 22.71 

SD 1.57 1.53 2.97 3.10 1.60 

Min 0.37 26.72 30.42 33.33 19.01 

Max 9.44 34.70 47.16 50.16 25.85 

Test set 
(n = 60) 

Mean 3.20 32.47 36.73 39.86 23.39 

SD 1.64 1.39 2.73 2.97 1.36 

Min 0.74 29.79 29.36 31.48 20.13 

Max 7.61 34.96 41.90 45.78 25.79 

Total set 
(n = 250) 

Mean 3.06 31.56 37.20 40.29 22.88 

SD 1.59 1.57 2.92 3.07 1.57 

Min 0.37 26.72 29.36 31.48 19.01 

Max 9.44 34.96 47.16 50.16 25.85 

Loblolly pine 
families 
(n = 180) 

Mean 2.77 31.74 37.26 40.39 23.13 

SD 1.27 1.52 3.13 3.26 1.50 

Min 0.37 27.11 29.36 31.48 19.43 

Max 7.61 34.96 47.16 50.16 25.85 

Commercial 
lumber 
(n = 70) 

Mean 3.80 31.11 37.04 40.03 22.21 

SD 2.03 1.64 2.32 2.51 1.56 

Min 0.38 26.72 30.42 33.33 19.01 

Max 9.44 34.33 42.76 46.30 24.73 

 



63 
 

In the literature, Sykes et al.  (2005) reported the lignin and cellulose contents of 11-year old 

loblolly pine to range from 24.1% to 32.63%, and 35.6% to 55.2% respectively. Jones et al. (2006) 

also determined the mean chemical composition of loblolly pine aged between 21 to 25 years as 

follows: glucan – 39.2%, cellulose – 35.9%, hemicelluloses – 23.3% and lignin – 28.3%.  

Results obtained from proximate analysis and bomb calorimetry are shown in Table 3.2. 

Percent volatile matter determined for all the southern pine wood samples ranged from a high of 

87.05% to a low of 80.86%, with a mean of 83.55% and SD of 1.16. Also, the mean fixed carbon 

content of all test samples was 16.21% (SD = 1.17%); whereas % ash was between 0.14 – 0.59%. The 

mean percent volatile matter, fixed carbon and ash determined for southern pine wood in this 

study were similar to the respective 85.6%, 14.1% and 0.32% reported by Owen et al. (2016) for 

loblolly pine stemwood.  

Although the range of calorific value determined for southern pine in this study was 

relatively wider (i.e. 17.0 – 22.65 MJ/kg) than what have been usually reported for clean wood, the 

overall mean value of 17.9 MJ/kg (SD = 0.6) was lower nonetheless. So and Eberhardt (2010) 

presented a narrower HHV range of 20.2 – 23.26 MJ/kg for unextracted Pinus palustris, which 

reduced further after extracting samples with acetone. Notwithstanding, wide calorific values 

ranges have been reported of lignocellulosic biomass comprising of needles, twigs and bark of 

conifers, broad leaved trees, shrubs and grasses (Gillon et al. 1997).  
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Table 3.2: Descriptive statistics of the proximate composition and energy content of southern pine 
wood. 

  

% Volatile 

matter 

% Fixed 

carbon 

% Ash HHV 

(MJ/kg) 

Calibration set 

(n = 190) 

Mean 83.63 16.12 0.25 17.84 

SD 1.14 1.15 0.09 0.46 

Min 80.86 12.62 0.14 17.02 

Max 87.05 18.84 0.59 19.26 

Test set 

(n = 60) 

Mean 83.27 16.48 0.25 18.10 

SD 1.21 1.20 0.10 0.90 

Min 81.31 12.72 0.15 17.01 

Max 86.93 18.32 0.54 22.65 

Total set 

(n = 250) 

Mean 83.55 16.21 0.25 17.90 

SD 1.17 1.17 0.09 0.60 

Min 80.86 12.62 0.14 17.01 

Max 87.05 18.84 0.59 22.65 

Loblolly pine families 

(n = 180) 

Mean 83.43 16.32 0.26 17.88 

SD 1.17 1.18 0.10 0.66 

Min 80.86 12.72 0.14 17.01 

Max 86.93 18.84 0.59 22.65 

Commercial lumber 

(n = 70) 

Mean 83.85 15.92 0.22 17.96 

SD 1.10 1.10 0.07 0.42 

Min 81.48 12.62 0.14 17.22 

Max 87.05 18.32 0.43 19.26 

 

Generally, wide ranges with good overlaps were noted among the training/cross-validation 

and independent datasets. These have been known to help improve the robustness of models when 

applied in predicting properties of future unknowns (Haartveit and Flæte 2006; Esteves and Pereira 

2008).  
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3.4.2. NIR-Model Calibration and Evaluation for Chemical Composition 

Partial least squares regression models were developed using the first derivatives of NIR 

spectra as the independent variables (i.e. X-variables) and the data obtained via the conventional 

laboratory methods were used as the dependent variables (i.e. Y-variables). One hundred and 

ninety samples were used in model calibration and full cross-validation. An additional test set made 

up of 60 samples were used for external validation. Calibrations obtained for the chemical 

components are summarized in Table 3.3. Using four or five latent variables, good calibration 

coefficients were obtained for all the properties with R2
cv values greater than 0.7 (Williams 2004). 

Also, relatively small differences were observed between the errors of calibration (SEC) and cross-

validation (SECV). This is an indication that the selected model did a good job of predicting the 

properties of the single-element test set at each iteration (Sanderson et al. 1996). The strong 

correlation (R = 0.99) between glucose and cellulose was reflected in their similar fit statistics. The 

relatively lower errors associated with NIR-based PLS models relative to the standard deviation of 

the laboratory determined reference data generated models with good RPDs. RPD values of cross-

validated models ranged from a low of 1.58 for % hemicelluloses to a high of 2.48 for % glucose.  

Table 3.3: Calibration and prediction statistics of NIR-based PLS models for chemistry. 

 % Extractives % Lignin % Glucose % Cellulose % Hemicelluloses 

LVs 4 4 5 5 4 

SEC 0.66 0.78 1.15 1.10 0.87 

SECV 0.76 0.89 1.25 1.20 1.01 

R2
cv 0.77 0.78 0.84 0.84 0.73 

RPD  2.07 1.73 2.48 2.47 1.58 

SEP 1.29 1.41 2.46 2.28 1.72 

R2
iv 0.43 0.23 0.47 0.46 0.04 

Note: Subscript cv means cross-validation; iv means independent validation. 
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According to the literature, this qualified all developed models to be used as a preliminary 

screening tool (Via 2013; Hein et al. 2009).  

The model statistics for the chemical components were comparable to what was 

determined by Jones et al. (2006) for lignin (SEC = 0.48%; SECV = 0.92%; R2 = 0.85), cellulose (SEC = 

1.03%; SECV = 1.86%; R2 = 0.8), glucan (SEC = 1.09%; SECV = 1.96%; R2 = 0.82) and hemicelluloses 

(SEC = 0.92%; SECV = 1.24%; R2 = 0.59) of loblolly pine wood.  

In a more similar study, Sykes et al. 2005 sought to use NIR to predict some chemical 

properties of 14 full-sib loblolly pine families obtained from two different sites. The study 

developed several models using the latewood, earlywood, growth rings three and eight, as well as 

separate models using materials from the two sites. For α-cellulose models, the researchers 

reported an R2 value range of between 0.56 to 0.63 for the different wood types and rings, which 

increased to 0.75 (i.e. SEC = 2.4%; SECV = 2.0%) when the whole core was used in modeling. Their 

lignin models however had bad performances, with for instance, the site B model having an R2 value 

of 0.16 and the model developed with the complete data set having an R2 of 0.37.  

When models developed in this study were applied in predicting the chemical properties of 

an independent test set, the errors (i.e. SEP) increased as expected and consequently affected the 

R2
iv values adversely; especially for % hemicelluloses. This poor performance can be attributed to 

two reasons. Firstly, a model usually performs much worse on an independent test data not 

originally included in model training. Secondly, the test data set was made up of fifteen different 

loblolly pine families. In the previous study (i.e. Chapter 2), with similarly low R2
iv, the predicted test 

samples were separated out into the individual elite families and a One-way ANOVA (α = 0.05) 

conducted to test for equality of means between NIR-predicted and lab-measured property. The 
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results showed no statistically significant differences (i.e. p > 0.05) between NIR-predicted values 

and measured values for all the three properties understudied for each of the fifteen families, 

Appendix A.   

3.4.3. NIR-Model Calibration and Evaluation for Proximate Composition and Energy Content 

Calibrations that were obtained for the bio energy/fuel related properties are presented in 

Table 3.4. Between three to five latent variables were used in the construction of PLS models. The 

best cross-validated models were for % volatile matter (SECV = 0.4%; R2
cv = 0.88; RPD = 2.23) and 

HHV (SECV = 022%; R2
cv = 0.83; RPD = 2.04). Three latent variables were used in building the model 

for ash which gave an R2
cv value of 0.58 and RPD value of 1.54. Contrasting results have been 

reported in the literature about the capability of infrared spectroscopy to model the ash content of 

lignocellulosic biomass. For instance, whereas the models developed by Lestander and Rhen (2005) 

performed very well in predicting the ash content of Norway spruce wood, those by Fagan et al. 

(2010) had varying prediction success based on the wavenumber range and spectral pretreatment 

technique used.  

Table 3.4: Calibration and prediction statistics of NIR-based PLS models for bioenergy. 

 % Volatile matter % Fixed carbon % Ash HHV (MJ/kg) 

LVs 5 3 3 4 

SEC 0.37 0.55 0.04 0.20 

SECV 0.40 0.68 0.06 0.22 

R2
cv 0.88 0.65 0.58 0.83 

RPD  2.23 1.68 1.54 2.04 

SEP 0.95 0.65 0.08 0.32 

R2
iv 0.09 0.10 0.20 0.44 

Note: Subscript cv means cross-validation; iv means independent validation 
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Among the four properties modeled, the prediction errors (i.e. SEP) for volatile matter was 

the highest – actually more than twice the SECV. In contrast, the SEP of the model for % fixed 

carbon was slightly lower than its SECV. Although errors associated with a model is generally 

expected to increase when used for predicting future unknown, this is not always the case 

(Workman Jr. 2011). As is apparent for the fixed carbon model in this study and others studies 

(Jones et al. 2006; Kelley et al. 2004). Except for the model for HHV, the others did not perform well 

when used to predict properties of the independent testset. 

3.4.4 Prediction and Screening of the Elite Loblolly Pine Families for Chemistry 

Validated models that had the lowest error values were used to predict the chemical 

composition of loblolly pine families obtained from two forest sites.  

Results of Two-way ANOVA testing the effect of family, site and family x site  interaction are 

summarized in Table 3.5. The chemical composition of the loblolly pines families were generally 

differernt due to the variation in their genetic makeup.  

Table 3.5: ANOVA P-values per treatment for the chemical constituents. 

Property Family Site Family x Site 

% Extractives 0.0077 < 0.0001 0.0435 

% Lignin 0.0186 < 0.0001 < 0.0001 

% Cellulose < 0.0001 0.0001 0.0252 

% Glucose 0.001 0.0327 < 0.0001 

% Hemicelluloses 0.0773 < 0.0001 0.0356 
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In addition, the significant interaction term for all properties studied indicates that the 

chemical composition of a family could also vary dependng on the environment. As stated by Zobel 

and van Buijtenen (1989), the properties of wood are a consequent of the interaction between a 

tree’s genetic potential and growing environment. 

Descriptive statistics for the chemistry of the elite pine families on the two forest sites are 

presented in Table 3.6 and Table 3.7. 

Table 3.6: Chemical composition of loblolly pine families on the Florida site. 

Family N % Extractives % Lignin % Glucose % Cellulose % Hemicelluloses 

A1 14 3.81 (1.2) 32.07 (0.92) 45.90 (2.79) 39.67 (2.31) 20.50 (0.66) 

A2 10 4.69 (1.33) 32.36 (1.23) 44.60 (2.69) 38.89 (2.40) 20.71 (1.17) 

A5 11 4.60 (1.27) 32.00 (0.90) 42.22 (1.60) 37.05 (1.51) 20.66 (0.81) 

A9 10 4.30 (1.12) 31.61 (1.18) 42.38 (1.89) 39.70 (1.75) 20.99 (0.43) 

A10 12 4.94 (1.98) 32.01 (1.23) 47.83 (5.24) 38.61 (3.96) 21.14 (0.60) 

A13 7 4.18 (1.05) 32.22 (1.51) 45.86 (2.99) 39.97 (2.81) 21.12 (0.76) 

A15 8 4.34 (1.45) 31.40 (0.61) 42.66 (2.05) 40.34 (2.16) 21.20 (1.20) 

A21 12 4.03 (1.03) 31.63 (0.87) 43.23 (1.59) 39.90 (1.92) 21.01 (0.90) 

A26 12 5.02 (1.84) 32.61 (0.95) 42.61 (1.37) 39.57 (2.26) 21.18 (0.67) 

A33 13 4.33 (1.16) 32.04 (0.89) 43.77 (2.28) 38.27 (1.97) 20.62 (0.78) 

A34 10 4.71 (1.22) 31.68 (0.70) 44.46 (2.48) 38.89 (2.11) 20.56 (0.71) 

A37 12 5.25 (0.73) 30.51 (0.93) 45.84 (1.71) 39.88 (1.40) 20.40 (0.47) 

F17 13 6.69 (0.87) 32.48 (0.65) 45.17 (2.38) 39.29 (2.10) 20.74 (0.80) 

F23 12 4.70 (1.42) 31.75 (75) 43.43 (2.58) 37.32 (2.42) 21.10 (0.91) 
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Table 3.7: Chemical composition of loblolly pine families on the Georgia site. 

Family N % Extractives % Lignin % Glucose % Cellulose % Hemicelluloses 

A1 15 6.33 (1.76) 28.98 (1.27) 46.92 (3.58) 41.97 (3.13) 19.93 (0.25) 

A2 14 4.41 (1.94) 29.21 (0.77) 46.79 (1.30) 41.86 (1.44) 20.09 (0.38) 

A5 13 6.67 (2.12) 29.90 (1.45) 43.73 (3.86) 38.94 (3.09) 20.22 (0.26) 

A9 14 6.65 (2.04) 29.14 (1.16) 45.64 (3.53) 40.65 (3.00) 20.24 (0.48) 

A10 14 6.38 (2.63) 29.38 (1.35) 44.09 (3.42) 39.23 (2.79) 20.33 (0.43) 

A13 14 6.86 (1.62) 29.55 (1.23) 45.42 (3.29) 40.49 (2.68) 20.13 (0.19) 

A15 12 5.98 (2.35) 29.10 (1.07) 46.01 (3.91) 41.02 (3.52) 20.13 (0.41) 

A21 15 4.34 (2.50) 29.60 (1.51) 45.03 (3.70) 40.29 (3.16) 20.15 (0.33) 

A26 15 6.57 (2.24) 28.97 (1.13) 46.13 (4.13) 41.48 (3.97) 19.79 (0.54) 

A33 13 6.94 (1.57) 30.82 (0.82) 40.80 (2.71) 36.69 (2.20) 20.10 (0.12) 

A34 14 5.97 (2.24) 29.74 (1.48) 44.58 (4.42) 39.98 (3.99) 20.12 (0.48) 

A37 15 7.36 (2.20) 30.16 (1.25) 43.57 (3.49) 38.96 (2.92) 20.17 (0.24) 

F17 13 6.83 (1.76) 29.21 (1.64) 44.62 (4.07) 39.83 (3.39) 20.14 (0.40) 

F23 14 6.24 (1.74) 28.69 (0.88) 46.82 (2.38) 41.82 (2.28) 19.93 (0.36) 

 

The extractives content of the elite loblolly pine families ranged between 3.81 to 7.35%, 

Table 3.6 and Table 3.7. This is comparable to what was reported by Shupe et al. (1997). The 

researchers determined an extractives range of 2.5 to 6.98% for loblolly pine wood obtained from 

five stands with different silvicultural treatments. They noted the innerwood contained a relatively 

higher amount (i.e. 5.23 to 6.98%) of alcohol-benzene extractives compared to the outerwood (i.e. 

2.5 to 4.53%). Via et al. (2007) also reported similar results whereby the extractives content of Pinus 
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palustris decreased as one moved from the pith towards the back and also from the butt higher up 

the stem.  

On the Florida site, the lowest extractives content was determined for A1 (Mean = 3.81%; 

SD = 1.2%) and the highest estimate was for F17 (Mean = 6.69%; SD = 0.87%). Except for A37, A2 

and A13, the extractives content of F17 was statistically higher than that predicted for the other 

families. For the Georgia site, the highest of 7.36% (SD =2.2) predicted for A37 was however 

statistically significant from only A21 (Mean = 4.35; SD = 2.5) and A2 (Mean = 4.41; SD = 1.94).  

As can be seen in Table 3.5, the differences in the extractives content between the families 

on a site is a function of genotypic variation; whereas differences within a single family on the two 

sites is a to response to environmental conditions such as the presence of biological degraders or 

silvicultural treatments that aim to increase tree growth (Eckhardt et al. 2009; Pettersen 1984). In 

spite of the effect of environment on the concentration of extractives, some families including A2, 

A21 and F17 had similar values on the two sites. 

Extractives in wood impart decay resistance. They also are however responsible for several 

issues related with the utilization of wood. For instance, extractives can contribute to the corrosion 

of metals in contact with wood, inhibit the setting of adhesives and finishes, as well as affect the 

swelling, shrinking, chemical treatability / permeability, light stability and flammability of wood 

(Larson et al. 2001). Furthermore, extractives cause various problems during papermaking (Sithole 

and Allen 2002).  

Means for the lignin content of the loblolly pine families ranged from a low of 28.69% for 

F23 on the Georgia site to 32.61% for A26. The range of lignin content predicted by NIR for the elite 

families is consistent with what has been reported in the literature as the natural variation of lignin 

in juvenile loblolly pine (Sykes et al. 2003). Generally, trees growing on the Georgia site had a lower 
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lignin content (Mean = 29.46%; SD = 0.56%) than those from the Florida site (Mean = 31.88%; SD = 

0.53%), Table 3.5.  

The NIR-predicted lignin of 30.5% for A37 was no different than the estimated 31.8% for F23 

on the Florida site. Similarly for the Georgia site, the 30.2% determined for A37 also was statistically 

the same as the 28.5% for F23. In addition, no significant variations were noted among F23, A34, 

A21, A9, A15 and A37 on both sites with respect to the lignin content.  

The cellulose content estimated for the elite families ranged from 36.7% to 42.0%. Even 

though cellulose content of the families fall within what has been reported in the literature, the 

range determined is narrower (Jones et al. 2006; Sykes et al. 2005). It also was noted that, the NIR-

estimated cellulose content of the juvenile loblolly pine families were higher than that measured for 

the commercially acquired southern pine samples; i.e. respective means of 39.3% (SD= 3.1%) and 

37.0% (SD = 2.32%).  

On the Florida site, the predicted cellulose content of A5 was similar to those of all the 

other families except for A1. Meanwhile on the Georgia site, the cellulose content estimated by NIR 

models for A1, A2, F23, A26, A15 and A9 all varied significantly from that of A33. Although the 

family by site effect was significant, some families ranked similarly high or low on the two sites. 

Examples of such include A1, A15, A26 and A9 on the high end; and A5, A33 and A34 on the low 

end. The cellulose content of wood is highly correlated pulp yield. Material with a higher 

percentage of cellulose would increase the efficiency of pulp and paper mills and reduce associated 

pulping costs (Kube and Raymond 2002). Furthermore, the amount of cellulose have close 

relationships with the density and strength of wood (Haygreen and Bowyer 1989; Megraw 1985; 

Winandy and Rowell 1984). Results from this study were consistent with what have been reported 
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in the literature. The loblolly pine families that had higher concentrations of cellulose also were 

determined to have higher density, modulus of rupture (ultimate strength) and modulus of 

elasticity (stiffness) values (Chapter 2). 

For the hemicelluloses, the highest value of 21.2% was determined for A15 on the Florida 

site, and the lowest value of 19.8% was determined for A26 on the Georgia site. No statistical 

differences were determined among the hemicelluloses content of the elite loblolly pine families on 

the Florida site. Meanwhile on the Georgia site, only A10 differed significantly from A26.  

Percent glucose estimated was 42.2% to 47.8% for the families on the Florida site and 40.8% 

to 46.9% for families on the Georgia site. The 47.8% of glucose determined for A13 was statistically 

higher than the 42.2% predicted for A5, as well as the 43.8% predicted for A33 on the Florida site. 

Similarly, on the Georgia site, the glucose content of 40.8% estimated for A33 differed statistically 

from the glucose contents of A1, F23, A2, A26, A15, A9 and A13.  

As expected, there was a strong correlation (r = 0.99) between the glucose and cellulose 

content of the loblolly pine families. For some families such as A15, A37 and A10 on the Florida site 

and A1, A2, F23 and A26 on the Georgia site, high glucose corresponded with high cellulose; and the 

inverse was true for A33, A5, A37 and A10 on the Georgia site. In certain cases, a high glucose 

content didn’t necessarily yield high cellulose, suggesting that more of the glucose was locked in the 

hemicelluloses such as for A13. On the other hand, certain families although having a low glucose 

content also had relatively high cellulose content, indicating that more of of the glucose was 

probably bonded in the cellulose, thus maybe less hemicelluloses; as noted in A1 and A2 on the 

Florida site. 
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Graphical representations of how the elite loblolly pine families ranked in their chemical 

composition on the two forest sites are presented in Figure 3.1 through Figure 3.5. 

 

Figure 3.1: Rank of loblolly pine families for extractives content. *Bars with different letters are 

significantly different at 95% confidence level (Tukey’s HSD Test). 
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Figure 3.2: Rank of loblolly pine families for lignin content. *Bars with different letters are significantly 

different at 95% confidence level (Tukey’s HSD Test). 
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Figure 3.3: Rank of loblolly pine families for cellulose content. *Bars with different letters are 

significantly different at 95% confidence level (Tukey’s HSD Test). 
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Figure 3.4: Rank of loblolly pine families for glucose content. *Bars with different letters are significantly 

different at 95% confidence level (Tukey’s HSD Test). 
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Figure 3.5: Rank of loblolly pine families for hemicelluloses content. *Bars with different letters are 

significantly different at 95% confidence level (Tukey’s HSD Test). 

Unlike for cellulose (P-value < 0.0001) and glucose (P-value = 0.001) contents, less variations 
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hemicelluloses content (P-value = 0.0773). Sykes et al. (2003) reported similar results for 11-year 

old full-sib loblolly pine families. The effect of site was generally more pronounced for the chemical 

composition of the loblolly pine families than genetics in this study. Table 3.5.  
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3.4.5 Prediction and Screening of the Elite Loblolly Pine Families for Bioenergy Potential 

Two-way ANOVA results testing the effect of family, site and family x site  interaction on 

proximate composition and energy content are summarized in Table 3.8. With the  interaction term 

for all the understudied properties being significant, the loblolly pine families were separated based 

on the two sites for further analysis. 

Table 3.8: ANOVA P-values per treatment for the proximate composition and energy content. 

Property Family Site Family x Site 

% Volatile matter 
<.0001 0.4749 <.0001 

% Fixed carbon  
0.0029 0.7237 <.0001 

% Ash 
0.1107 < 0.0001 0.0009 

HHV (MJ/kg) 
0.0002 0.0166 0.0007 

 

Descriptive statistics for the bioenergy potential of the elite families on the two forest sites 

are presented in Table 3.9 and Table 3.10. The mean volatile matter content for the families as 

estimated by NIR was highest for A34 (Mean = 85.7%; SD = 0.3) on the Florida site and lowest for 

A33 (Mean = 82.6%; SD = 1.5%). Meanwhile, the highest fixed carbon content was determined for 

A33 to be 17.1% (SD = 1.1%) on the Georgia site, whereas A37 on the Florida site had the lowest of 

13.6 (SD = 0.3%). Relatively smaller within-family variations in the volatile matter and fixed carbon 

contents of trees on the Florida site resulted to more significant differences between the families. 

On this site, A10, A15, A2 and A5 all had significantly lower volatile matter content compared to 

A34, F17, F23, A37, A26 and A13. The amount of volatile matter were consistently high on both 

sites for F17, F23, A37, A9 and A1; while that of A1 and A15 remained low on the two sites. During 

pyrolysis and gasification, the families with higher concentrations of volatile matter will yield bio-oil 
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and syngas and lesser amounts of char (Owen et al. 2015). The trade-off between % volatile matter 

and % fixed carbon was evident in this study. For instance on the Florida site, A34, F17 F23 and A37 

all of which had high volatile matter contents also had consequently low fixed carbon contents. 

Similarly, when the volatile matter content was low, a high fixed carbon content resulted, as noted 

in A5, A2, A15, A10 and A21. A similar trend occurred among these proximate components for the 

loblolly pine families on the Georgia site.  

Table 3.9: Proximate composition and energy content of loblolly pine families on the Florida site. 

Family  N % Volatile matter % Fixed carbon % Ash HHV (MJ/kg) 

A1 14 84.00 (1.64) 14.54 (2.05) 0.24 (0.04) 19.11 (0.42) 

A2 10 83.02 (1.16) 15.98 (0.85) 0.24 (0.04) 18.69 (0.49) 

A5 11 82.80 (1.42) 15.43 (1.07) 0.24 (0.03) 18.83 (0.46) 

A9 10 84.22 (0.86) 15.18 (0.67) 0.24 (0.03) 18.80 (0.56) 

A10 12 83.47 (1.07) 15.53 (0.70) 0.24 (0.03) 18.83 (0.49) 

A13 7 84.36 (0.76) 14.84 (0.89) 0.27 (0.06) 18.93 (0.70) 

A15 8 83.04 (0.49) 15.76 (0.32) 0.24 (0.03) 18.54 (0.83) 

A21 12 83.84 (1.37) 15.40 (0.97) 0.24 (0.06) 19.22 (0.55) 

A26 12 84.44 (0.60) 15.21 (0.39) 0.20 (0.04) 18.78 (0.29) 

A33 13 84.16 (0.68) 14.04 (0.54) 0.21 (0.03) 19.06 (0.42) 

A34 10 85.74 (0.29) 13.75 (0.51) 0.20 (0.02) 18.96 (0.44) 

A37 12 84.53 (0.39) 13.57 (0.34) 0.21 (0.02) 19.10 (0.54) 

F17 13 85.72 (0.81) 13.97 (0.53) 0.23 (0.03) 19.52 (0.46) 

F23 12 85.06 (1.20) 14.44 (0.68) 0.24 (0.04) 19.17 (0.30) 
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Table 3.10: Proximate composition and energy content of loblolly pine families on the Georgia site. 

Family N % Volatile matter % Fixed carbon % Ash HHV (MJ/kg) 

A1 15 83.95 (2.00) 14.47 (2.11) 0.19 (0.04) 19.09 (0.40) 

A2 14 84.61 (2.37) 14.63 (1.85) 0.20 (0.05) 18.94 (0.39) 

A5 13 84.04 (1.95) 14.16 (2.28) 0.18 (0.04) 19.20 (0.42) 

A9 14 84.65 (2.20) 14.39 (2.28) 0.19 (0.05) 19.07 (0.43) 

A10 14 85.33 (1.27) 14.24 (1.90) 0.18 (0.03) 19.00 (0.40) 

A13 14 84.56 (1.65) 14.31 (1.90) 0.19 (0.02) 19.11 (0.32) 

A15 12 83.90 (1.83) 15.89 (1.76) 0.19 (0.04) 19.04 (0.22) 

A21 15 84.39 (1.64) 15.04 (1.67) 0.20 (0.03) 18.84 (0.35) 

A26 15 83.52 (1.66) 15.09 (1.75) 0.19 (0.05) 19.10  (0.59) 

A33 13 82.59 (1.45) 17.13 (1.14) 0.21 (0.02) 19.54 (0.19) 

A34 14 84.03 (2.20) 15.40 (2.28) 0.20 (0.04) 18.97 (0.31) 

A37 15 84.74 (1.46) 14.71 (1.62) 0.19 (0.04) 19.25 (0.43) 

F17 13 84.76 (1.58) 14.53 (2.02) 0.19 (0.03) 19.11 (0.42) 

F23 14 84.96 (1.47) 14.49 (1.90) 0.18 (0.04) 18.90 (0.39) 

 

The mean ash content estimated for the families on the Florida site was highest for A13 

(Mean = 0.27%; SD = 0.06%) and lowest for A26 (Mean = 0.20%; SD = 0.04%). For the Georgia site, 

A33 and A10 contained the most and least amounts of ash respectively, Table 3.10. The average ash 

content determined for families on the Florida site was significantly higher than what was 

determined for the families on the Georgia site (P-value < 0.0001) due to soil contamination on the 

former site. Even though the mean ash contents of the families were different on the Georgia site, 

none was statistically significant due to the relatively narrower range couple with the large within-

family variations. On the Florida site, the ash contents of A37, A33, A34 and A26 were all 
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significantly lower than that of A13. In spite of the significant effect of the family by site interaction, 

similar ash contents were determined for some families on the two forest sites.  

Inherently, wood has very little ash compared to other plant parts of tree species, energy 

grasses and agricultural residues (Owen et al. 2015; Acquah et al. 2015; Allison et al. 2009; Naik et 

al. 2010). From Table 3.8, the effect of family on ash was not significant (P-value = 0.1107) whereas 

that of site was significant (P-value < 0.0001). Environmental factors that have been known to 

increase the ash content of lignocellulosic biomass includes soil and fertilizer treatments (Allison et 

al. 2009), operational practices (Owen et al. 2015) and storage (White et al. 1986).  

With respect to the calorific value, the range estimated for the elite families was from 19.5 

MJ/kg to 18.5 MJ/kg, with a mean of 19.0 MJ/kg (SD = 0.21 MJ/kg). The determined mean energy 

content of the loblolly pine families is consistent with what has been reported in the literature for 

loblolly pine and hybrid poplar (Owen et al. 2015; Acquah et al. 2015; Maranan and Laborie 2007); 

but the range is narrower than the 20.2 to 23.6 MJ/kg reported for Pinus palustris by So et al. 

(2012). Such relatively small variations is to be expected as the energy content of wood from 

different tree species has been reported to vary by less than 15% (Senelwa and Sims 1999).  

On the Florida site, the HHV of F17 was significantly higher than the HHVs of A26, A2 and 

A15; and on the Georgia site, the energy content of A33 varied significantly from what were 

estimated for A10, A34, A2, F23 and A21. Despite the positive interaction of family and site (P-value 

= 0.0007), the energy content determined for F17, A1, A37 and A33 were high on both sites, 

whereas that of A2 and A10 were low on the two site.  

Although this did not hold in all cases, some families seemed to be consistent with the 

literature about how ash adversely affects (Acquah et al. 2016), but extractives and lignin boost 
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(Demirbas 2001; White 1987) the calorific value of lignocellulosic biomass. For example, on the 

Georgia site, Families A33, A37 and A5 which had relatively high percentages of extractives and 

lignin also had higher HHVs. Meanwhile on the Florida site, A9 which had lower extractives and 

lignin together with high ash content had the lowest energy content among the families. 

Furthermore, high amounts of ash in biomass hinder the production of liquid and organic yields 

during thermochemical conversion (Fahmi et al. 2008). It was also noted that families that had 

higher extractives content also mostly had a higher energy content, compared to families that had 

higher lignin content. Similar results were reported by So et al. (2012) about how the extractives 

content had a stronger correlation with the energy content compared to the lignin content. 

Plots of how the elite loblolly pine families ranked on energy potential on the two forest 

sites are presented in Figure 3.6 through Figure 3.9. 
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Figure 3.6: Rank of loblolly pine families for volatile matter content. *Bars with different letters are 

significantly different at 95% confidence level (Tukey’s HSD Test). 
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Figure 3.7: Rank of loblolly pine families for fixed carbon content. *Bars with different letters are 

significantly different at 95% confidence level (Tukey’s HSD Test). 
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Figure 3.8: Rank of loblolly pine families for ash content. *Bars with different letters are significantly 

different at 95% confidence level (Tukey’s HSD Test). 
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Figure 3.9: Rank of loblolly pine families for energy content. *Bars with different letters are significantly 

different at 95% confidence level (Tukey’s HSD Test). 
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3.5 Conclusions 

NIR-based PLS models were developed to rapidly predict the chemical composition of elite 

loblolly pine families. The chemistry of this essentially new feedstock will influence the processing 

and quality of final products that will be derived; whether it be pulp and paper, bio-composites, 

lumber or biofuel. In addition, the proximate composition and energy content were estimated to 

ascertain the bioenergy potential of these families for the emerging bioeconomy.   

Models were calibrated with 1st-derivative treated NIR spectra using three to five latent 

variables. For the chemistry, R2 values for cross-validated models ranged from 0.84 to 0.73. 

Meanwhile for the bioenergy related properties, the R2 values of developed models ranged from a 

high of 0.88 to a low of 0.58. Models for all the nine properties studied had RPD values greater than 

1.5, as such, they could be employed in the preliminary screening of the loblolly pine families.  

NIR-predicted means of the loblolly pine families for the chemical and bioenergy traits 

studied are as follows: extractives – 5.5% (SD = 1.1%), lignin – 30.7% (SD = 1.3%), cellulose – 39.7% 

(SD = 1.4%), glucose – 44.7% (SD = 1.7%), hemicelluloses – 20.5% (SD = 0.4%), volatile matter – 

84.2% (SD = 0.8%), fixed carbon – 14.9% (SD = 0.8%), ash – 0.2% (SD = 0.03%) and HHV 19.0 MJ/kg 

(SD = 0.2 MJ/kg). 

The genotype of loblolly pine families affected the chemical, proximate and energy traits 

studied. The genetic variation detected for cellulose was the largest (P-value < 0.0001). Considering 

that the cellulose content has strong correlations with other properties, selecting and breeding for 

cellulose can generate some gains. However, the family by site interaction was significant for all 

understudied properties, indicating the general instability of the elite families across different sites. 

Further studies with more sites would be helpful in estimating the extent of the family by site 
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interaction. Such knowledge would be valuable for tree breeders in decisions to plant families with 

desired traits in certain environments. 

Nonetheless, for this study, the cellulose contents of families A1, A26, A15, A2 and A9 were 

consistently higher on the two sites. High cellulose content implies that these families will be good 

choices for pulp and paper applications, or for cellulosic ethanol production. On the other hand, the 

relatively high volatile matter contents of F23, F17, A37 and A9 in spite of the significant interaction 

between genotype and environment make them good candidates for the production of bio-oil and 

syngas via thermochemical conversion processes.  
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Chapter 4 : Identifying Plant Part Composition of Forest Logging Residue using Infrared 

Spectral Data and Linear Discriminant Analysis1 

4.1 Abstract 

 
As new markets, technologies and economies evolve in the low carbon bioeconomy, forest 

logging residue, a largely untapped renewable resource will play a vital role. The feedstock can 

however be variable depending on plant species and plant part component. This heterogeneity 

can influence the physical, chemical and thermochemical properties of the material, and thus the 

final yield and quality of products. Although it is challenging to control compositional variability of 

a batch of feedstock, it is feasible to monitor this heterogeneity and make the necessary changes 

in process parameters. Such a system will be a first step towards optimization, quality assurance 

and cost-effectiveness of processes in the emerging biofuel/chemical industry. 

The objective of this study was therefore to qualitatively classify forest logging residue 

made up of different plant parts using both near infrared spectroscopy (NIR) and Fourier transform 

infrared spectroscopy (FTIR) together with linear discriminant analysis (LDA). Forest logging 

residue harvested from several Pinus taeda (loblolly pine) plantations in Alabama, USA, were 

classified into three plant part components: clean wood, wood and bark and slash (i.e. limbs and 

foliage). Five-fold cross-validated linear discriminant functions had classification accuracies of over 

96% for both NIR and FTIR based models. An extra factor/principal component (PC) was however 

needed to achieve this in FTIR modeling.
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Analysis of factor loadings of both NIR and FTIR spectra showed that, the statistically 

different amount of cellulose in the three plant part components of logging residue contributed to 

their initial separation. This study demonstrated that NIR or FTIR spectroscopy coupled with PCA 

and LDA has the potential to be used as a high throughput tool in classifying the plant part makeup 

of a batch of forest logging residue feedstock. Thus, NIR/FTIR could be employed as a tool to rapidly 

probe/monitor the variability of forest biomass so that the appropriate online adjustments to 

parameters can be made in time to ensure process optimization and product quality. 
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4.2 Introduction 

Lignocellulosic biomass is a renewable and largely untapped source of feedstock that can be 

converted into biopower, liquid and gas fuels, and other biobased products via thermochemical and 

biochemical conversion pathways. The development of economically and environmentally sustainable 

sources of biomass can help countries to reduce their dependence of imported fossil fuels and 

diversify their energy portfolios. 

Bioenergy accounts for 4% of the total primary energy consumption in the USA. The country 

utilizes approximately 200 million dry tons of biomass that is mostly sourced from forestlands for 

energy. In addition to this volume, some 93 million dry tons of forest biomass that is made up of 68 

million dry tons of logging residue and 25 million dry tons of other removal residue are  however, 

currently left onsite annually. It is estimated that the USA has the potential to harvest an amount of 

239 to 251 million dry tons of forest biomass on an environmentally and economically sustainable 

basis by 2030 as new markets and technologies emerge (U. S. DOE 2011; White, 2010). 

Forest logging residue is mostly made up of tops, branches and limbs of merchantable trees, 

salvageable dead trees and small unmerchantable trees. Owing to the different plant part 

components, there is variability in the composition and quality of this resource. The heterogeneity 

of forest logging residue can influence important properties that dictate feedstock quality for 

specific applications. These physical, chemical and compositional characteristics can either setback 

or boost biomass conversion processes. A good understanding of these properties is crucial in the 

establishment of a successful biomass conversion facility.  

 

  

                                                                                         . 

Reprinted from Sensors. doi:10.3390/s16091375  
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Furthermore, an ability to monitor the properties of the feedstock entering the process and 

accordingly making the necessary online adjustments in process parameters will be essential in the 

optimization, quality assurance and cost-effectiveness of conversion technologies in the emerging 

biofuel/chemical industry. A first step in this direction will be a system that can probe the variability 

in the composition of a batch of feedstock. Such a system should work in processing/online 

conditions, provide rapid and accurate analysis of a large number of heterogeneous samples in a 

non-destructive manner, be easy to use and be cost-effective. Infrared spectroscopy has been 

shown to have the potential for use in process optimization applications. 

Infrared spectroscopy is the measurement of the absorption, transmittance or reflectance of 

infrared light by a sample. The infrared region is the wavelength range of 780 nm–1 mm (i.e. wave 

number range of 12,820 cm−1 – 10 cm−1) that lies between the visible and microwaves regions of the 

electromagnetic spectrum. The region is subdivided into near infrared (NIR), mid infrared (MIR) and 

far infrared (FIR). NIR region lies between the wavelength range of 780 nm to 2500 nm (i.e. 12,820 

cm−1 to 4000 cm−1); and MIR from 2500 nm to 15380 nm (4000 – 650 cm-1) (i.e. 4000 cm−1 to 650 

cm−1) (Adapa et al. 2009; Benito et al. 2008; Hsu, 1997). Near infrared spectroscopy (NIR) uses near 

infrared light to detect overtones and combinational vibrations of the molecular constituents of the 

material under study; whereas Fourier transform infrared spectroscopy (FTIR) uses mid infrared 

light to detect primarily functional and fundamental vibrations. Absorption bands that commonly 

occur in the NIR region and MIR region are overtones and combinations of fundamental vibrations 

of O-H, C=O, N-H, -COOH, C-H, aromatic C-H groups and S-H functional groups; and can, thus, give 

the chemical and physical properties of a material (Stuart 2004; Reich 2015; Jorgensen and 

Goegebeur 2007). 
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NIR and FTIR have mostly been used for quantitative analysis in the forest products industry 

and emerging bioeconomy. In an earlier study, we employed NIR in the prediction of some 

important properties of forest logging residue for bioenergy, fuel and chemical applications (Acquah 

et al. 2015). It has also been used in the quantitative prediction of cellulose, cellulose crystallinity, 

hemicellulose, lignin and extractives in wood and lignocellulosic biomass (Poke and Raymond 2006; 

Jiang et al. 2007; Gierlinger et al. 2002; Sykes et al. 2005; Derkyi et al. 2011). In addition, NIR has 

successfully been used to model secondary properties that correlate well with wood chemistry 

including density (Via et al. 2003.), compression wood (McLean et al. 2014), tracheid morphology 

(Jones et al. 2005), mechanical properties (Acquah et al. 2016), kraft pulp yield (Downes 2009) and 

energy content (So and Eberhardt 2010). Although NIR does not interact directly with inorganic 

species, some recent studies have been able to predict the ash content of wood and biomass with 

varying degrees of success (Fagan et al. 2011; Allison et al. 2009). 

Just like NIR, FTIR has been used to predict the density of loblolly pine (Via et al. 2011). Models 

were also built for the higher heat value (HHV), volatile matter, fixed carbon and ash content of 

torrefied biomass using ATR-FTIR spectra (Via et al. 2013). Nuopponen et al. (2006) used DRIFT-FTIR 

spectra to model lignin, cellulose, extractives and density using fifty clones of Sitka spruce, twenty-

four Ghanaian hardwoods and twenty Scots pines. In an earlier study, Tucker et al. (2000) used 

partial least squares models developed with FTIR spectra to quantify the glucose, mannose, 

galactose, xylose, acetic acid and 5-hydroxymethyl-2-furfural (HMF) of dilute acid pretreated 

biomass. 

With respect to the utilization of infrared spectroscopy for qualitative analysis, different wood 

species were separated using principal component analysis (PCA) and partial least squares 

discriminant analysis (PLS-DA) on NIR spectra (Yang et al. 2015). The researchers were however not 
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as successful in their attempt to distinguish between wood samples from different locations. Other 

studies classified wood thermally treated under different conditions (Bächle et al. 2012), 

herbaceous biomass  (Labbé et al. 2008), botanical fractions of cornstover (Ye et al. 2008) and 

wood-based materials (Tsuchikawa et al. 2003) using NIR coupled with chemometric methods such 

as soft independent modeling of class analogies (SIMCA), Mahalanobis’ generalized distance, Kernel 

PLS and PCA among others. Similarly, FTIR has been used in the discrimination and classification of 

wood and wood-based materials (Carballo-Meilan et al. 2014; Chen et al. 2010; Rana et al. 2010; 

Hobro et al. 2010). 

It is hypothesized that, since infrared light is sensitive to the chemical composition of a sample, 

NIR and/or FTIR spectra can be used to separate out materials that have different chemistry. 

The objective of this study was, therefore, to use both near infrared spectroscopy (NIR) and 

Fourier transform infrared spectroscopy (FTIR) together with PCA and linear discriminant analysis 

(LDA) in the qualitative classification of Pinus taeda (loblolly pine) forest logging residue made up of 

different plant parts in a comparative study. As mentioned earlier, forest logging residue is a largely 

untapped resource that can play a key role in the bioeconomy as technologies advance in biomass 

supply chain logistics and new markets emerge for biofuel and other bioproducts. 
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4.3 Materials and Methods 

4.3.1 Materials 

Forest biomass was obtained during harvesting operations on loblolly pine plantations located 

on several forest tracts in Greenville, Alabama, (31°49′52.583′′ N, 86°37′39.241′′ W) and Georgiana, 

Alabama (31°38′24.313′′ N, 86°44′21.991′′ W). The stands were between 10 and 18 years old, and 

the diameter at breast height (DBH) of trees ranged from 10 to 20 cm. Biomass was made up of 

‘Clean wood’, ‘Slash’ and ‘Wood & bark’. Clean wood was sampled from either debarked disks that 

were removed at 5 feet interval along the main stem or from the whole debarked stems of loblolly 

pine trees. All disks from a tree were combined into a single sample. Slash material is the limbs and 

foliage of delimbed loblolly pine trees. For ‘Wood and bark’, material was sampled from the wood 

and bark of southern pines (mostly loblolly pine) whole stems. Except for the debarked disks that 

were transported and chipped at Auburn University, AL, all other materials were sampled onsite 

from chip streams at chipper discharge. A sampling pipe was raised into a chip stream 8–10 times 

per load. Final representative subsamples were obtained in the lab through coning and quartering. 

Harvesting, chipping and sampling of biomass spanned several months; from November 2010 to 

March 2012. 

Material used in this study is representative of biomass feedstock that will most likely be used 

in a bioprocessing plant located in this region. It is typical of feedstock material a manufacturing 

facility will be acquiring either as pre-commercial thinnings, whole tree utilization of loblolly pine 

dedicated as an energy crop, or pulpwood chips. 
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4.3.2 Methods 

4.3.2.1 Determination of Chemical Composition and Ash Content 

The major chemical components of biomass, i.e. cellulose, hemicellulose, lignin and extractives, 

were measured via conventional wet chemistry and High Performance Liquid Chromatography 

(HPLC) (Shimadzu Corporation, Kyoto, Japan). Samples were prepared for analysis by grinding 

through a 40-mesh screen using a Wiley Mill (Thomas Scientific, model 3383-L10, Swedesboro, NJ, 

USA).  

Extractive content of forest logging residue was determined following NREL/TP-510-42619 and 

TAPPI T-204. Test samples were extracted in 150 ml of industrial grade acetone for 6 hours in a 

Soxhlet Apparatus. The amounts of carbohydrates and total lignin were determined as described in 

NREL/TP-510-42618. After a two-step acid hydrolysis of extractive-free samples, HPLC was 

employed in the measurement of monomeric sugars (i.e. glucose, xylose, galactose, arabinose and 

mannose). The sum of all monomeric sugars gave the holocellulose content. Cellulose was 

computed as  glucose − (
1

3
x mannose) and hemicelluloses computed as the difference between 

holocellulose and cellulose. The total lignin was calculated as the sum of acid soluble lignin (ASL) 

and acid insoluble lignin (AIL). ASL was determined with a UV-Visible spectrophotometer 

immediately following hydrolysis. Absorbance of a test sample was measured at the recommended 

wavelength of 240 nm, ensuring that it ranged between 0.7 and 1.0. The ash content of forest 

logging residue was determined as residue after dry oxidation of test samples at 575 °C, as specified 

in NREL/TP-510-42622. 

For each plant part/group, the chemical composition and ash content was determined using 

ten of the seventeen samples (i.e. n = 10). Experiments were run in duplicate for each sample. 



98 
 

Knowledge of the chemical composition and ash content of the different plant parts will be useful in 

the interpretation and elucidation of PC and discriminant analysis. 

4.3.2.2 Infrared Spectra Collection 

Spectra of forest biomass were acquired with a PerkinElmer Spectrum 400 FT-IR/FT-NIR 

Spectrometer (Waltham, MA, USA). The FT-IR unit was equipped with a diamond crystal attenuated 

total reflectance device (i.e. ATR-FTIR) and a torque knob to ensure consistent application of 

pressure to samples during spectra collection. Samples were ground to pass an 80-mesh screen and 

oven dried for 4 hours before spectra acquisition. Spectra were collected at 1 cm−1 interval from 

10,000 cm−1 to 4000 cm−1 for near infrared and from 4000 cm−1 to 650 cm−1 for mid infrared. This 

resulted in 6000 and 3500 data points/variables for NIR and FTIR respectively. A sample was 

scanned thirty-two times at a resolution of 4 cm−1 and averaged into one spectrum for analysis. For 

NIR, spectrum of a Spectralon standard was taken as the background reference sample every 10 

min to correct for potential drifts with time. In the case of FTIR, the background was spectrum of a 

clear window. Due to the very high dimension of these data sets, spectra were compressed to 10 

cm−1 interval before exporting to SAS (SAS Institute, Inc. Cary, NC, USA) for further analysis. An 

earlier study by Via et al. (2011) showed that such compressing/averaging allows the analysis of 

large data matrices without compromising the integrity of results. 

4.3.2.3 Multivariate Data Analysis 

Principal Component Analysis (PCA) 

PCA is a widely used statistical technique which attempts to explain the covariance structure of 

data by using a small number of components. These components are linear combinations of the 

original variables, and often allow for an interpretation and a better understanding of the different 

sources of variation. PCA is concerned with data reduction. Therefore, it is commonly used for the 

analysis of high-dimensional data which arise frequently in chemometrics, computer vision, 
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engineering, genetics and other fields. PCA is, thus, used as a preliminary step of data analysis, 

followed by further multivariate statistical methods. 

As an initial step, PCA was employed to reduce dimension of the data (p = 600 wavelengths for 

NIR spectra and p = 335 for FTIR spectra). PCA takes a set of correlated variables (as is the case in IR 

spectra) and transforms them into a smaller set of uncorrelated variables known as principal 

components (PCs) while maintaining as much of the information in the original data as possible. In 

other words, assuming that there are n observations Xij on p correlated variables X1, X2, …, Xp, i = 1, 

…, n, j = 1, …, p, PCA finds new uncorrelated Z1, Z2,…,Zp that are linear combinations of X1, X2, …,Xp as 

Zi = ei1X1i + ei2X2i + ……+ eipXpi & Var(Zi) = λi, i = 1, …, p  

where λis (λ1 > λ2 > … > λp) and ei are the eigenvalues and the corresponding eigenvectors of the 

covariance matrix of data matrix X (n by p). The coefficient, eij is a measure of the importance of the 

jth original variable to the ith PC irrespective of the other variables. The coefficients, known as 

component loadings or eigenvectors are proportional to the correlation between Zs and Xs and can 

be used in interpreting PCs. The values of the ith principal component are called the PC scores. 

The first PC (i.e. Z1) corresponds to the direction in which the projected observations have the 

largest variance (i.e. Var(Z1) = λ1, which is the largest eigenvalue). The second component is then 

orthogonal to the first and again maximizes the variance of the data points projected on it. 

Continuing in this way produces all the principal components, which correspond to the eigenvectors 

of the covariance matrix of the data matrix X. In order to determine the number of components, the 

Proportion of Explained Variance (>99.5%) was used. 

For model calibration and validation, a 5-fold cross validation was utilized due to the relatively 

small sample size (i.e. n = 51). The data set was randomly split into five blocks prior to PCA. Then, 

PCA was performed on standardized variables by using the correlation matrix of raw NIR and FTIR 
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spectra by employing the PRINCOMP procedure in SAS (SAS Institute, Inc. Cary, NC, USA). Four 

blocks were used together at a time as the training data for calibration and the remaining one block 

as the test data for validation. This was repeated until each of the five blocks was used as an 

independent test data (i.e. five total runs). As such, for each run, the data used for validation was 

independent/exclusive of the data used in developing the classification function. For each run, 

component loadings of the training data set were used to score the test data set. 

Linear Discriminant Analysis (LDA) 

Scores of retained PCs were used as input data for linear discriminant analysis. LDA is a 

supervised pattern recognition technique that seeks to find one or several linear functions or 

discriminants of the dependent variables that can be used to separate out classes/groups. Groups 

to which observations belong to are known and are defined by the multivariate data structure of its 

observations. LDA uses these structures to establish rules that allow new unknown samples to be 

assigned to one or another class (Varmuza and Filzmoser 2009; Johnson and Wichern 2007). Before 

classification, there is the natural probability (i.e. prior probabilities) that samples belong to one of 

the labeled groups and after classification there is also a probability (i.e. posterior probabilities) that 

samples belong to a group. The difference in prior and posterior probabilities enables the allocation 

of objects to one of the groups. Performances of discriminant functions were evaluated by their 

error rates or misclassification probabilities. The DISCRIM Procedure in SAS (SAS Institute, Inc. Cary, 

NC, USA) was used for LDA. 
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4.4 Results and Discussion 

The major chemical composition and ash content as determined in the three plant part 

components of forest logging residue is presented in Figure 4.1. There were statistical differences 

(significance level of 0.05) between the plant parts for all properties measured. Clean wood and 

Slash were the most different, while the chemical make-up of Wood and bark was generally more 

like Clean wood. For instance, Slash had the highest amount of lignin (44%), with Wood and bark 

and Clean wood having 36% and 34% respectively. Additionally, the 2% ash in Slash was statistically 

higher than the 1.6% in Wood and bark and 0.4% in Clean wood. 

 

Figure 4.1: Chemical composition and ash content of forest logging residue. 

4.4.1 Infrared Spectra 

Averaged NIR and FTIR spectra of the three plant part components of forest logging residue used in 

this study are presented in Figure 4.2. There was a general trend in the absorbance of near infrared 

and mid infrared by the plant parts. There were however variations in the intensity of light 
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absorbed. For both NIR and FTIR, Slash absorbed the most. Clean wood absorbed the lowest 

amount of energy for a good portion of the near infrared region, but in the mid infrared region, its 

absorbance values were slightly higher or lower than the values for Wood and bark.  

Figure 4.2: Raw NIR (A) and FTIR (B) spectra of the different types of forest logging residue. 
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Large baseline shifts noted in the 7100 to 10,000 cm−1 region might have resulted from the 

different ash contents of the three biomass types, Figure 4.1 (Sanderson et al. 1996). Although 

infrared light interacts directly with only organic compounds in materials, these interactions may be 

influenced by the presence of their associated inorganic species (Ono et al. 2003). 

In the near infrared region (Figure 4.2A), the absorbance peaks occurring from 4000 cm−1 to 

5000 cm−1 are as a result of the interactions of O-H, C-H and N-H functional groups interacting with 

one another (i.e. combination bands). Peaks have also been ascribed to specific chemical 

constituents of lignocellulosic biomass: (a) 4765 cm−1 results from O-H and C-H stretching and 

deformation vibration of cellulose (and xylan); (b) 5205 cm−1 is due to the asymmetric stretching 

and/or deformation of O-H in water; and (c) 5845 cm−1 credited to the first overtone stretching of C-

H in hemicelluloses. In addition, the peak at (d) 6875 cm−1 has been attributed to the first overtone 

of O-H stretching of phenolic groups in lignin (Derkyi et al. 2011; Schwanninger et al. 2011). 

As in the near infrared region, peaks arise in the mid infrared region due to the presence of 

functional groups in biomass. Although this region ranges from 4000 to 600 cm−1, the fingerprint 

region (1800 to 600 cm−1) is usually used for analysis because it contains the most spectral 

information pertaining to the molecular/chemical composition of a material (Figure 4.2B). 

According to the literature, bands at (e) 1270 cm−1; (f) 1365 cm−1; (g) 1505 cm−1 and (h) 1435 cm−1 

have been associated with lignin; (e) and (f) result from guaiacyl ring breathing and syringyl ring 

breathing respectively, whereas (g) is due to the aromatic skeletal vibration with C=O stretch. For 

the carbohydrates, C=O stretch of unconjugated ketones mostly in hemicellulose generate bands at 

(i) 1025 cm−1 and (j) 1735 cm−1; whereas the peaks at (k) 1154 cm−1 and (l) 895 cm−1 result 

respectively from C-O-C stretching and P-chains of cellulose. Furthermore, the peak at (m) 2935 cm−1 

outside the fingerprint range (Figure 4.2B) have been associated with the bending and stretching of C-
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H, as well as its aromatic ring vibration in lignin, while that occurring at (n) 3345 cm−1 is due to N-H 

stretching. Spectra of Slash had a very prominent peak at (o) 1635 cm−1 compared to Clean wood 

and Wood and bark. This has been attributed to C-O stretching of conjugated or aromatic ketones 

and/or C=O stretching vibration in flavones (Allison et al. 2009; Nuopponen et al. 2006; Chen et al. 

2010; Hobro et al. 2010). 

4.4.2 Principal Component Analysis 

Partial results from PC analysis showing the first ten PCs are presented in Table 4.1. A preset 

criteria for the number of PCs to include in further analysis was that the eigenvalue of a PC should 

be more than 0.7 (i.e. PCA on the correlation matrix) and the cumulative variance should be greater 

or equal to 99.5%. In addition, the Scree Test Criterion was used. A Scree diagrams plots λi against i 

for i = 1,…,q; and λ is the eigenvalues. The point at which the curve begins to straighten out 

indicates a cut-off point. Based on Table 4.1 and the Scree plots, the first six PCs were tentatively 

retained for linear discriminant analysis. 

The first six PCs out of the possible 600 for NIR and 335 for FTIR were able to account for over 

99.5% of the total variation in the data. For NIR, PC 1 and PC 2 accounted for 76% and 16%, 

respectively, of the spectra data; in the case of FTIR, they were 81% and 15%, respectively. 

Employing PCA as a preliminary classification tool, scores of the retained PCs were plotted 

against each other. In Figure 4.3, a graph of the scores of raw near infrared spectra for PC 1 and PC 

2 is presented. Separation was better along PC 1; Clean wood clustered furthermost from Slash, 

with Wood and bark in between the two classes. 
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Table 4.1: Eigenvalues of the correlation matrix. 

  NIR   FTIR  

PC Eigenvalue PVE (%) CV (%) Eigenvalue PVE (%) CV (%) 

1 454.4 (4.8) 74.1 74.1 271.0 (5.2) 80.9 80.9 

2 95.4 (3.7) 15.9 92.0 49.9 (4.0) 14.9 95.8 

3 41.8 (4.5) 4.0 98.9 9.6 (3.6) 2.9 98.7 

4 3.6 (1.3) 0.6 99.5 1.8 (0.3) 0.6 99.2 

5 1.3 (0.1) 0.6 99.7 1.3 (0.2) 0.4 99.6 

6 0.85 (0.08) 0.14 99.88 0.29 (0.04) 0.09 99.68 

7 0.36 (0.03) 0.06 99.94 0.16 (0.03) 0.05 99.73 

8 0.13 (0.01) 0.02 99.96 0.09 (0.01) 0.03 99.76 

9 0.06 (0.01) 0.01 99.97 0.07 (0.01) 0.02 99.78 

10 0.04 (0.01) 0.01 99.98 0.06 (0.01) 0.02 99.80 

Note: Values are the means of the five folds used as training data sets; SD values in brackets; PVE is 

the Proportion of Variance Explained and CV is the Cumulative Variance. 
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Figure 4.3: NIR scores plot of PC 1 versus PC 2. 

According to the loadings plot of PC 1 (Figure 4.4), cellulose content (peaks at 4605 and 

7325 cm−1) was a good initial separator of the different plant parts as it had higher coefficient 

values. This could be backed by results from the conventional chemical analysis. Reviewing 

Figure 4.1, Clean wood had the highest percentage of cellulose (43%), followed by Wood and 

bark (39%), then Slash (25.2%). Thus, on the PC 1 axis, the three biomass types separated from 

left to right due to decreasing cellulose content. Other significant coefficients noted in NIR 

spectra loadings that contributed to the classification of the three groups of forest logging 

residue were at 7095 cm−1 in PC 3, which is attributed to the phenolic groups in lignin and/or 

extractives and a peak at 5835 cm−1 in PC 4 occurring due to C-H stretching in hemicelluloses. 

Again, results from PC analysis were buttressed and elucidated by chemical composition 

determined via conventional laboratory methods. 
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Figure 4.4: NIR loadings plot of PC 1 showing significant peaks. 

In the case of FTIR, a plot of PC1 against PC5 (Figure 4.5) gave the best initial separation 

with better separation along PC 1. This was however not as distinct especially between Clean 

wood and Wood and bark as was seen in the scores plot of NIR spectra. A characteristic 

cellulose peak occurring at 1725 cm−1 was again observed in the loadings of PC 1, Figure 4.4. In 

addition, the large loadings coefficients of 1485 cm−1 suggests that vibrations attributed to 

both lignin and polysaccharides also contributed to the initial distinction of different biomass 

types in the mid infrared region. 
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Figure 4.5: FTIR scores plot of PC 1 versus PC 5. 

Figure 4.6: FTIR loadings plot of PC 1 showing significant peaks. 
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4.4.3 Linear Discriminant Analysis (LDA) 

The first six PCs retained (chosen based on the eigenvalue, variance explained and Scree 

Test Criteria) were used in LDA. Examining the effect the inclusion of PCs had on errors associated 

with classification (Figure 4.7), the discriminant functions (Table 4.2) developed with four and five 

PCs were chosen as the optimum for NIR and FTIR, respectively. These selections were made 

because the difference in errors for the training data set and test data were the least. Furthermore, 

standard deviations of the five folds used in model calibration were smallest for the selected 

number of PCs. 

 

Figure 4.7: Effect of changing number of PCs on classification error. 

Calibration errors were computed using the Lachenbruch’s Holdout procedure, whereby all 

samples except the first sample were used in building the discrimination function to classify the 
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validation of the test set, errors estimates by the Lachenbruch’s Holdout procedure (i.e. a leave-

one-out cross-validation technique) may be overoptimistic due to the exclusivity of the one-sample 

test data. Up until inclusion of the fifth PC, errors associated with FTIR-based discriminant functions 

were very high. For instance, while the model built from NIR spectra using four PCs had only 4% and 

3% as misclassification errors of cross-validation for the respective training data and test data, 

errors for FTIR were 40% and 48% respectively. Studies that have been conducted to compare NIR 

and FTIR in the quantitative or qualitative analysis of lignocellulosic biomass and plant-based 

materials have reported differing results mostly in favor of the latter, albeit slightly (Via et al. 2013; 

Lupoi et al. 2014; Olale et al. 2013; Sankaran and Ehsani 2013; So et al. 2012).  

Table 4.2: Linear discriminant functions used for classifying plant part components.  

 NIR FTIR 

Variable CW SL WB CW SL WB 

Constant -6.13 (0.71) -9.29 (3.51) -2.14 (0.36) -6.89 (1.73) -10.34 (3.96) -2.02 (0.51) 

PC1 -0.39 (0.08) 0.51 (0.17) -0.11 (0.04) -0.4 (0.08) 0.56 (0.16) -0.14 (0.03) 

PC2 0.42 (0.03) -0.43 (0.04) 0.02 (0.06) -0.16 (0.06) 0.2 (0.07) -0.05 (0.04) 

PC3 -0.04 (0.06) 0.07 (0.05) -0.03 (0.01) 0.21 (0.23) -0.41 (0.35) 0.22 (0.13) 

PC4 1.23 90.35) -2.35 (0.66) 1.07 (0.19) -3.06 (1.74) 3.94 (1.52) -1.12 (0.39) 

PC5 - - - 6.56 (1.66) -7.59 (2.84) 0.78 (0.41) 

Note: CW means Clean wood; SL means Slash; WB means Wood and bark. 

 
Better performance of FTIR relative to NIR have been attributed to the fundamental vibrations 

in the MIR region as opposed to overlapping and weaker overtone and combination bands observed 

in the NIR region. The abundance of absorption bands especially in the fingerprint region of the 

former make identification/ qualification of molecular structures easier. On the other hand, 
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chemometric techniques are usually required in order to extract relevant information in the latter 

(Stuart 2004). 

The generalized squared distance (Table 4.3) gives an indication of the degree of separation 

between classes in space. A new/unknown sample is classified into a group if it is similar enough to 

the other members, otherwise it is rejected. According to Table 4.4, Slash was most distinct from 

Clean wood and less so from Wood and bark. These results are in agreement with that from PCA, as 

can be seen in Figures 4.3 and 4.5 when PC scores were plotted. 

Table 4.3: Generalized squared distances of the three plant part components of forest logging residue. 

 NIR FTIR 

From/Into CW SL WB CW SL WB 

CW 2.2 (0.3) 52.5 (12.9) 10.6 (1.6) 2.2 (0.3) 59.9 (14.8) 11.1 (1.7) 

SL 52.5 (12.9) 2.2 (0.3) 28.2 (8.2) 59.9 (14.8) 2.2 (0.3) 30.2 (4.3) 

WB 10.6 (1.6) 28.2 (8.2) 2.2 (0.3) 11.1 (1.7) 30.3 (4.3) 2.2 (0.3) 

Note: CW means Clean wood; SL means Slash; WB means Wood and bark. 

From the error count estimate in Table 4.4, the performance of developed functions in 

predicting the class of independent test samples were computed. 

Table 4.4: Five-fold cross-validation summary of error count estimates (%) for plant part component. 

 NIR FTIR 

 CW SL WB Total CW SL WB Total 

Rate 0% 3.3% 6.7% 3.2% 0% 3.3% 8.3% 3.4% 

Note: Values are averages of the five groups of test samples used in validation; CW means Clean wood; 

SL means Slash; WB means Wood and bark. 

As seen in Table 4.5, linear discriminant functions developed with NIR and FTIR spectra were 

able to classify the plant part components of logging residue with over 96% overall accuracy. Clean 

wood was the easiest to identify, while Wood and bark generally had the highest misclassification 
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rate. This was to be expected considering the plant part makeup of the three materials studied. 

Moreover, from the chemical and ash content analysis, it was determined that the properties of 

Wood and bark were more similar to the other two plant part components. 

Table 4.5: Classification rates for forest logging residue. 

 NIR FTIR 

 Plant part component 

 CW SL WB Total %CC  CW SL WB Total %CC 

CW 17 0 0 17 100 17 0 0 17 100 

SL 0 16 1 17 96.7 0 16 1 17 96.7 

WB 1 0 16 17 93.3 2 0 15 17 91.7 

% Total 
Accuracy 

    96.7 (3.3)     96.1 (4.2) 

Note: Classification rates calculated based on error count estimates in Table 4.4. SD values in 

brackets. CW means Clean wood; SL means Slash; WB means Wood and bark; %CC is the % correct 

classification. 

 

4.4.4. Remarks 

Ideally, samples used in model validation should be independent of the training dataset. 

However, this cannot always be the case due to limited resources. When sample size is small, 

researchers have employed cross validation (CV) to test the performance of calibration models 

instead of splitting up the data into a single training set and test set. A commonly used technique is 

the leave-one-out CV method. In this procedure, n − 1 samples are used in training a model that is 

validated with the held out sample. This is repeated n times until each observation has been used as 

validation data. The advantage of this approach is that, it uses the maximum available data in both 

model training and validation. However, due to the exclusivity of the one-sample test data, the 

errors estimates may be overoptimistic. To overcome this potential problem, the current study 
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opted for a five-fold cross validation. This ensured that a test dataset comprised of observations 

with varying backgrounds—for instance, different age, DBH or site. Additionally, taking the average 

of five repetitions instead of just one experimentation gives a significantly better estimate of the 

errors. 

Another strength of the developed classifier lies in the range of samples used. Materials used in 

this study are representative of biomass feedstock that will most likely be used in a bioprocessing 

plant located in this region. Loblolly pine (and southern pine on one site) that were 10 to 18 years 

old, with a DBH range of 10 – 20 cm  from several forest sites were used. This is typical of feedstock 

material a manufacturing facility will be getting either from pre-commercial thinnings, loblolly pine 

dedicated as an energy crop or pulpwood chips. Thus, models constructed in this study are robust 

and will perform well in classifying similar feedstock in this region. 

The aim of this study was to demonstrate that NIR and FTIR can be used to rapidly identify 

what a batch of feedstock is made up of, as this, as is known will influence the chemical 

composition. A traditional way to do this is probably by visual inspection. Compared to this, 

NIR/FTIR has a higher throughput, and will have fewer errors, especially for comminuted feedstock. 

With this information, on-time adjustments could be made in the process parameters so that 

product yield and quality can be optimized/assured. Such information could also be used in future 

feedstock acquisition. 

Any processing plant employing NIR/FTIR as a classification tool will first have to calibrate their 

system with samples that is within the range of materials characteristic to their locality. Apart from 

this qualitative probing/monitoring, a facility’s system could also be trained to provide quantitative 

information, such as the cellulose, lignin, ash or energy content of feedstock coming into the 

process. 
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4.5 Conclusions 

This study demonstrated that NIR or FTIR spectroscopy coupled with PCA and LDA has the 

potential to be used as a high throughput tool in classifying the plant part makeup of a batch of 

forest logging residue feedstock. Peaks noted at 4605 and 7325 cm−1 (i.e. NIR) in the loading plot of 

PC 1 suggested that the significantly different amount of cellulose contributed to the initial 

separation of the different plant parts. In the mid infrared region (i.e. FTIR) preliminary separation 

was made possible due to the varying concentrations of lignin and polysaccharides. Both NIR and 

FTIR based linear discriminant functions had very good classification accuracies (i.e. 94%) even 

though an extra variable/PC was needed to achieve this with FTIR modeling. 

Applications for this study include its use as a rapid tool to probe/monitor the variability of 

forest logging residue so that the appropriate online adjustments to parameters can be made in 

time to ensure process optimization and product quality. 
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Chapter 5 : Nondestructive Prediction of the Properties of Forest Biomass for Chemical and 

Bioenergy Applications using Near Infrared Spectroscopy2 

 

5.1 Abstract 

Forest biomass will play a key role as a feedstock for bioproducts as the bioeconomy 

develops. Rapid assessment of this heterogeneous resource will help determine its suitability as 

feedstock for specific applications, aid in feedstock improvement programs and enable better 

process control that will optimize the biorefinery process. In this study, near infrared spectroscopy 

coupled with partial least squares regression was used to predict important chemical and thermal 

reactivity properties of biomass made up of needles, twigs, branches, bark and wood of Pinus taeda 

(loblolly pine). 

 Models developed with the raw spectra for property prediction used between 3 and 8 

factors to give R² values ranging from a low of 0.34 for higher heat value (HHV) to a high of 0.92 for 

volatile matter. Pre-treating the raw spectra with 1st derivatives improved the fit statistics for all 

properties (i.e. min – 0.57, max – 0.92; with 2 or 3 factors). The best performing models were for 

extractives, lignin, glucose, volatile matter and fixed carbon (R2 > 0.81). This study provided the 

capacity to predict multiple chemical and thermal/energy traits from a single spectrum across an 

array of materials that differ considerably in chemistry type and distribution. Models developed 

should be able to rapidly predict the studied properties of similar biomass types. This will be useful 

in rapidly allocating feedstocks that optimize biomass conversion technologies. 
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5.2 Introduction 

The use of biomass as an alternative source of energy, fuels and chemicals derived from fossil 

fuel will reduce our dependence on non-renewable resources and also minimize net greenhouse 

gas emissions. Biomass is mostly sourced from forestry and agricultural sources in the USA, and 

other countries. It is estimated that some 93 million dry tons of forest biomass is available per year; 

out of which 73% is logging residues comprising of tops, branches and limbs, salvageable dead trees 

and small trees (U.S. DOE 2011). Even though most of this resource is currently left on site, a 

significant portion of it will become economically feasible for removal as new markets for bioenergy 

and bioproducts emerge (Greene et al. 2011). In addition to the conventional combustion of forest 

biomass for heat and power, it can also be thermochemically converted into syngas or bio oils that 

can further be refined into high value fuels and chemicals; biochemically converted into ethanol, 

artificial flavors and phytochemicals, or used as supplementary fiber in the manufacture of pellets 

and composite board products (Acquah 2010). 

Forest biomass is a heterogeneous feedstock that has its properties dependent on such factors 

including species and plant-part composition, harvesting time and procedures, region and climate 

(Acquah 2010). Like any other resource, the properties of forest biomass must be well understood. 

The aim of this research is to have a system that will give complete and systematic characterization 

of this potential resource to determine its suitability as a feedstock for specific applications, aid in 

feedstock improvement programs and enable better process control that will optimize the 

biorefinery process.   

                                                                                                                                                                                         . 

2 Reprinted with permission from the Journal of Near Infrared Spectroscopy. doi: dx.doi.org/10.1255/jnirs.1153 
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Conventional methods used to measure properties of biomass have been time consuming, 

expensive and usually destructive; thus the need for rapid and cost-effective analytical tools is 

necessary. One such tool is near infrared reflectance (NIR) spectroscopy. The most common 

absorption bands that occur in the NIR region are overtones and combinations of fundamental 

vibrations of C-H, O-H, C=O, N-H, -COOH, aromatic C-H groups and S-H functional groups in the mid 

infrared region, and can thus give the chemical and physical properties of a sample. In simpler 

terms, the chemical finger print (in the form of a spectrum) of a sample is taken by NIR at a specific 

point in time. NIR spectra typically exhibit broad ill-defined overlapping bands of the chemical 

information of an analyte. Mathematical, statistical and computer science methods, often called 

chemometrics, are used to extract relevant information and minimize irrelevant signals from the 

chemical measurement data during quantitative or qualitative analysis (Mark and Campbell 2008; 

Reich 2005). According to Varmuza and Filzmoser (2009), in spite of the broad definition of 

chemometrics, the most vital aspect of it is the application of multivariate analysis (MVA) to 

chemistry-relevant data. MVA -- such as partial least squares (PLS) regression, principal components 

regression (PCR) and multiple linear regression (MLR)-- is useful in analyzing and structuring NIR 

spectra and conventionally acquired chemical data into empirical mathematical models that are 

capable of predicting properties. 

In recent times, there has been a lot of work on the potential use of NIR to estimate the 

properties of biomass. Several researchers used NIR to monitor the moisture content (MC) of wood 

samples and distinguish between capillary condensed and adsorptive water (Defo et al. 2007; 

Lestander and Rhen 2005). Cooper et al. (2011) developed partial least squares (PLS) regression 

models that predicted the average MC within less than 5% total error for samples with a range 

between oven dry to 80%. They reported that NIR was less capable of detecting differences in the 
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quantity of free water in wood as compared to differences of MC below the fiber saturation point. 

They were also able to partially differentiate the difference in density between earlywood and 

latewood with NIR and recommended that a large area should be illuminated especially when 

scanning is being done on the tangential surface so as to ensure a better representation of both 

earlywood and latewood.  

Others developed NIR models to predict the chemical composition including extractives, 

cellulose, hemicellulose and lignin content of wood (Derkyi et al. 2011; Nkansah et al. 2010; Sykes et 

al. 2005; Gierlinger et al. 2002). Nkansah et al. (2010) used diffuse reflectance NIR to predict the 

extractives, holocellulose and lignin content of yellow poplar solid wood blocks (19 x 19 x 50 mm) 

whereas Sykes et al. (2005) used it to predict the properties of wafers (200 μm) sectioned from 

loblolly pine from two sites. The former group noted that the models they developed with the full 

spectra (4000 to 12500 cm-1) had slightly better predictive ability as compared to models they built 

with reduced spectra (5555 to 7695 cm-1). They witnessed R2 values of 0.84, 0.68 and 0.64 for 

extractives, holocellulose and lignin respectively. Sykes et al. (2005) on the other reported low R2 of 

0.37 for lignin content. The authors attributed this to the lower variation of lignin content in wood 

coupled with larger errors during wet chemistry determination. They also found out that models 

developed from samples at one site could be used to predict the cellulose content of wood from 

another site, even though the R2 values were lower than those for the individual site predictions.  

Poke and Raymond (2006) sought to increase the rapidity and cost-effectiveness of using NIR to 

predict the chemical composition of Eucalyptus using 20 x 20 mm test stripes. For comparison, they 

used both solid wood and ground wood for developing their models. The authors reported that the 

models built from ground wood samples did not do as well as models developed from solid wood. 

For instance, ground wood models gave R2 of 0.27 and 0.63 for Klason lignin and cellulose 
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respectively. However, for the solid wood models, the R2 value was 0.78 for Klason lignin and 0.88 

cellulose. Jiang et al. (2014) investigated the effect of particle size on NIR spectra quality and model 

precision using lumber, 3-mm chips and wood flour ground to pass an 80-mesh screen. They 

concluded that size reduction improved the stability of spectra, and consequently, the predictive 

diagnostics of models developed. Hein et al. (2010) also had a similar conclusion, but they added 

that the difference between lumber and milled wood was more significant than the difference 

between particle sizes of milled wood. 

NIR has also been utilized in the prediction of secondary traits that correlate to wood chemistry 

such as density and mechanical properties (Via et al. 2003), microfibril angle (Hein et al. 2010), 

compression wood (McLean et al. 2014), pulp yield (Downes et al. 2009) and energy content (So and 

Eberhardt 2010). When So and Eberhardt (2010) used reflectance NIR to predict the higher heat 

value (HHV) of Pinus palustris considering the effect of lignin content and extractives, models they 

developed to predict the HHV of unextracted wood samples performed better than those 

developed using extracted samples. Their plots of the regression coefficients showed similar peaks 

for the HHV and extractives content, implying that the two properties have similar molecular 

features. Not as much work has been done on the use of NIR to predict the ash content of wood, 

and models generally give low coefficients of ash determination. These poor results have been 

attributed to the fact that NIR does not interact directly with the species that form ash, e.g. calcium, 

potassium and silica.  

 Most of the literature did work on clean wood, an expensive resource that is currently used 

for higher end products. However as already stated, biomass from the forest that will be feasibly 

available as feedstock for the emerging bioenergy and bioproducts market is the 96 million dry tons 

of logging residues and other removals. Thus, the objective of this study was to use NIR coupled 



120 
 

with PLS to rapidly estimate the monomeric sugars, cellulose, hemicelluloses, holocellulose, lignin, 

extractives, HHV, ash, volatile matter and fixed carbon of Pinus taeda (loblolly pine) forest biomass. 

Loblolly pine was used because it is the most important tree species in the USA accounting for some 

30 million acres in plantations in the southeastern US alone (Conner and Hartsell 2002). 

5.2 Materials and Methods 

5.3.1 Material 

Logging residues were acquired from several loblolly pine plantations in the Greenville area 

in the State of Alabama. Residues were made up of whole tree, wood and bark, slash (i.e. limbs and 

foliage) and clean wood chips, Figure 5.1. A total of forty biomass sets (ten from each biomass type) 

were sampled. 

Figure 5.1: Loblolly pine logging residues: (a) whole, (b) wood & bark, (c) slash and (d) wood. 
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5.3.2 Methods 

5.3.2.1 Conventional Laboratory Methods 

Laboratory experiments following conventional standards were used to determine the 

chemical composition, energy content and thermal reactivity of biomass. Test samples ground with 

a Wiley Mill to pass through a 40-mesh screen were used in all experiments which were ran in 

duplicates (ASTM D-1106). 

 Wet laboratory chemistry was used to determine the chemical composition of logging 

residues. Extractives content was determined following NREL/TP-510-42619 and TAPPI T- 204. 

Using a Soxhlet Apparatus, 150 ml of industrial grade acetone was used to extract 5 g of test sample 

for 6 hours. An additional 2 g of the sample was taken at this time for moisture content (MC) 

determination. Acetone was evaporated from the extract using a rotary evaporator. Extract was 

then dried at 40 oC for 24 hours in a vacuum oven and the final mass measured for extractives 

content determination.  

The amount of total lignin and carbohydrates in biomass samples were determined as 

described in NREL/TP-510-42618. Air dried extractive-free test sample (0.5 g) was weighed into a 

dry beaker and 5 ml of 72% sulfuric acid was added. Employing a two-step procedure to ensure 

complete hydrolysis of sugars, test sample was first placed in a water bath set at 30 oC +/- 3 oC and 

incubated for one hour. Afterwards, the mixture was diluted to a concentration of 4% with 

deionised water and placed in an autoclave set at 121 oC for another hour.  

The total lignin was computed as the sum of acid soluble lignin (ASL) and acid insoluble 

lignin (AIL). ASL was determined with a UV – Visible spectrophotometer immediately after 

hydrolysis. Absorbance of a test sample was measured at the recommended wavelength of 240 nm, 

ensuring that the absorbance ranged between 0.7 – 1.0. 
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Monomeric sugars (i.e. glucose, xylose, galactose, arabinose and mannose) in biomass 

samples were determined via High Performance Liquid Chromatography (HPLC) using a Biorad 

Aminex HPX-87P column equipped with the appropriate guard column at a column temperature of 

85oC and run time of 35 minutes. Holocellulose was computed as the sum of all monomeric sugars; 

cellulose was computed as glucose − (
1

3
∗ mannose); and hemicelluloses computed as the 

difference between holocellulose and cellulose (Jiang et al. 2014). 

 The HHV of biomass samples was determined according to ASTM D5865 using an IKA C-200 

bomb calorimeter.  

Proximate analysis was conducted to determine the thermal reactivity of biomass samples. 

Ash content was determined following NREL/TP-510-42622. Test sample weighing 1.0 g was put 

into a dry crucible and heated at 105 oC for 12 minutes. The temperature was increased to 250 oC 

and held constant for 30 minutes (in order to avoid flaming). Afterwards, temperature was 

increased to 575 oC and held isothermal for an additional 180 minutes. The volatile matter of 

biomass was determined as specified in CEN 15148/ ISO 562 using a furnace. The fixed carbon of 

biomass is a calculated value. It is the summation of the percentage of moisture, volatile matter and 

ash deducted from 100.  The R software was used to perform Tukey pairwise comparison tests 

between the four biomass types (α = 0.05). 

5.3.2.2 NIR Spectra Acquisition 

Spectra were collected over a wavenumber range of 10000 to 4000 cm-1 with a Perkin Elmer 

Spectrum model 400. Sample preparation for NIR spectra acquisition included grinding to pass an 

80-mesh screen (Jiang et al. 2014) and oven drying for 4 hours. Each sample was scanned 32 times 

at a resolution of 4 cm-1 and averaged into one spectrum for analysis (Via et al. 2014). A background 
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spectrum (Spectralon reference sample) was taken every 10 minutes to correct for any potential 

drifts with time. 

5.3.2.3 Multivariate Data Analysis 

Partial least squares (PLS) regression models were developed with raw or pre-treated NIR 

spectra as regressors and conventional lab results as responses using Perkin Elmer Spectrum 

Quant+ software. The emphasis of models was on predicting one response at a time (i.e. PLS1) and 

not necessarily on trying to understand the underlying relationships between the variables since the 

regressors are many and highly collinear. Both regressors and responses were centered so as to 

enable equal comparison of loadings across different wavenumbers and also ensure that the 

criterion for choosing successive factors is based on how much variation they explain, in either the 

regressors or the responses or both. In addition, centering reduces the effect of multicollinearity in 

the highly dependent spectra. PLS, using the iterative NIPALS algorithm was used to extract 

successive linear combinations of the regressors (called factors, components, latent vectors or 

latent variables) such that variations in both response and regressors were optimally explained. In 

extracting the first factor, If X = X0, and Y = Y0 are the centered matrix of the regressors and 

responses respectively, NIPALS starts with a linear combination t = X0w of the regressors where t is 

called a score vector and w is its associated weight vector. NIPALS predicts both X0 and Y0 by 

regressing them on t:  

X0 = tp’, where p’ = (t’t)-1t’ X0; and Y0 = tc’, where c’ = (t’t)-1t’ Y0. The vectors p and c are known as the 

X- and Y-loadings respectively. The specific linear combination t = X0w is the one with maximum 

covariance t’u with some response linear combination u = t = Y0q. Also, the X- and Y-weights w and 

q are proportional to the first left and right singular vectors of the covariance matrix X’0 Y0. The 

second factor is extracted in a similar way but X0 and Y0 are replaced with the X- and Y-residuals 
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(called deflated X and Y blocks) from the first factor: X1 =X0 -X0; Y1 = Y0 -Y0. The process of extracting a 

score vector and deflating the data matrices is iterated for as many factors as are desired. 

A leave-one-out cross validation was used to validate the models (Mevik and Cederkvist 

2004). In this technique, all samples except the first sample were used in building a model to predict 

the first, then the second is held out and the process repeated until all samples have been used as 

single-element test sets.  

The performances of models developed to predict the properties of biomass were assessed 

with the standard error of calibration (SEC), standard error of cross validation (SECV), bias, 

coefficient of cross validation (R2) and and residual predictive deviation / ratio of performance to 

deviation (RPD). SEC evaluates how precisely the regression line fits the data, bias detects any 

systematic difference between calibration set and the prediction set, SECV measures the precision 

of a model’s predicting ability corrected for bias during validation, and R2 measures the total 

variance between measured and predicted that can be modeled linearly (Kelley et al. 2004). SECV is 

synonymous to standard error of prediction (SEP) in this study because there was no validation with 

an independent test set. The RPD is a general indicator of the predictive adequacy of a model. It is 

used to evaluate SEP in terms of SD of the reference data. 

5.4 Results and Discussion 

5.4.1 NIR Spectra 

Raw NIR spectra characteristic of the whole tree, wood and bark, slash and clean wood 

chips are shown in Figure 5.2. Even though a general pattern was observed in all spectra, there 

were variations in the amount of NIR light absorbed by the different biomass types. Slash generally 

absorbed the most, with wood and bark absorbing the least. Especially large baseline shifts were 
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noted in the 7100 to 10000 cm-1 region. Baseline shifts have primarily been attributed to density, 

particle size and ash content.  

 

 

Figure 5.2: Characteristic NIR spectra of the different types of forest biomass for (a) raw and (b) 1st 

derivative spectra. 
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According to the Beer Lambert’s Law, generally, a denser material or larger particle tends to 

absorb more infrared light than less dense or smaller particles (Via et al. 2013; Jones et al. 2006). 

Since there were no significant differences in the bulk densities of test samples ground to pass a 6-

mesh screen -- whole tree {229 kgm-3(11 kgm-3)}; wood and bark {241 kgm-3(25 kgm-3)}; slash {234 

kgm-3(9 kgm-3)} and wood chips {227 kgm-3 (8 kgm-3)} -- baseline shifts may be attributed to the 

differences in ash contents of the biomass types (Sanderson et al. 1996). The absorbance peaks 

seen from 4000 cm-1 to 5000 cm-1 arise when C-H, N-H and O-H functional groups interact with one 

another (i.e. combination bands)  (Derkyi et al. 2011; Jones et al. 2006; Schwanninger et al. 2011). 

Peaks have also been assigned to specific components of biomass: 4545 cm-1 is associated with the 

C-H and C=O stretching in lignin; 6250 to 7140 cm-1 has been assigned to the first overtone of O-H 

vibrations in cellulose and hemicellulose; and  4950 to 5291 cm-1 has been attributed to the 

interaction of O-H in carbohydrates and water. 

To correct for baseline shifts, the raw spectra were pretreated with 1st-derivatives (Via et al. 

2013). Treating with 1st derivatives is also known to reduce non-linearity and multicollinearity 

between factors. First derivative spectra for the different biomass types can be seen in Figure 5.2. 

5.4.2 Chemical Properties 

Descriptive statistics of the chemical components of forest biomass samples determined by 

conventional wet chemistry are presented in Table 5.1. The chemical composition of whole tree, 

wood and bark, slash and clean wood chips were different (α = 0.05) except for galactose. As was 

expected, most of the significant differences were noted between the slash and clean wood. Lignin 

was highest in slash (44%) but lowest in clean wood chips (34%). On the other hand, wood 

contained the highest amount of cellulose at 43% whereas slash had only 25%. Slash also contained 

the most extractives at 10% with wood and bark having the least at 2%. 
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Table 5.1: Descriptive statistics of the chemical composition of whole tree, wood & bark, slash and 

wood. All values are expressed on percent oven-dry basis. 

Property Whole Wood & Bark Slash Wood 

Extractives 4.2 (0.7) 2.1 (1.2) 10.1 (1.9) 3.1 (0.3) 

Lignin 37.3 (1.6) 35.9 (2.0) 43.7 (1.7) 33.5 (1.6) 

Glucose 33.7 (2.4) 41.3 (3.6) 27.2 (2.4) 45.1 (2.5) 

Mannose 8.2 (1.5) 7.2 (1.9) 6.1 (1.2) 7.3 (0.3) 

Galactose 4.7 (2.1) 5.3 (1.7) 5.7 (2.1) 4.4 (0.5) 

Arabinose 2.6 (0.4) 2.0 (0.4) 3.3 (0.5) 1.7 (0.1) 

Xylose 5.7 (1.1) 6.0 (1.4) 4.9 (1.6) 4.5 (0.2) 

Cellulose 31.0 (2.4) 38.9 (3.8) 25.2 (2.4) 42.7 (2.4) 

Hemicelluloses 24.1 (2.2) 22.8 (2.8) 22.1 (5.2) 20.3 (0.9) 

Holocellulose 55.0 (3.9) 61.8 (3.4) 47.2 (5.7) 63.0 (3.0) 

Note: All values are expressed on percent oven-dry basis.  

All 40 biomass samples were pooled together for NIR model calibration and validation using 

the leave-one-out cross validation technique. Models developed with the raw spectra performed 

worse than models built with 1st derivative treated spectra, in that, they gave lower correlation 

coefficients using more latent variables (LVs). For raw spectra models, the model developed to 

predict extractives content performed best (SEC = 1.08%, SECV = 1.23%, R2 = 0.91, LVs = 4), while 

the model for predicting the galactose content of forest biomass performed worst (SEC = 1.51%, 

SECV = 2.06%, R2 = 0.40, LVs = 8), Table 5.2.  
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Table 5.2: PLS model statistics for the chemical properties of forest biomass using (i) raw spectra and (ii) 

first-derivative-treated spectra. 

 
Range SEC Bias LVs SECV R2 RPD  

 i ii i ii i ii i ii i ii i ii 

Ext. 1.1 - 
13.1 

1.08 0.99 -0.04 0.03 4 2 1.23 1.23 0.91 0.92 2.71 2.71 

Lig. 30.8 - 
45.9 

1.55 1.77 0.07 0.01 4 2 1.75 2.09 0.87 0.83 2.38 2.0 

Glu. 22.2 - 
50.3 

3.34 3.3 -0.1 -0.12 4 2 3.37 3.95 0.82 0.82 2.22 1.9 

Man. 3.1 - 
10.8 

1 0.63 -0.02 -0.1 8 3 1.45 1.6 0.65 0.84 1.04 0.94 

Gal. 1.6 -
9.2 

1.52 0.97 -0.06 0 8 3 2.06 2.05 0.4 0.71 0.84 0.85 

Ara. 1.5 -
4.1 

0.37 0.36 -0.02 0 4 2 0.42 0.42 0.76 0.77 1.73 1.73 

Xyl. 4.9 - 
9.3 

0.92 0.73 -0.01 0.05 5 3 1.19 1.23 0.57 0.71 1.1 1.06 

Cel. 19.9 - 
47.8 

3.45 3.4 0.1 -0.14 4 2 3.87 4.09 0.81 0.8 1.92 1.81 

Hem. 13.7 - 
28.4 

2.61 1.78 0.13 0 8 3 3.66 3.4 0.41 0.68 0.83 0.89 

Hol. 40.0 - 
68.1 

4.04 3.73 -0.11 -0.15 4 2 4.53 4.44 0.73 0.75 1.62 1.65 

Note: Ext. – Extractives; Lig. – Lignin; Glu. – Glucose; Man. – Mannose; Gal. – Galactose; Ara. – 

Arabinose, Xyl. – Xylose; Cel. – Cellulose; Hem. – Hemicelluloses. Hol. – Holocellulose.  

SEC - Standard error of calibration; LVs - Latent variables (Factors); SECV - Standard error of cross 

validation; R2 - Coefficient of cross validation. 

 

 Calibration models developed using 1st derivative spectra to predict extractives, lignin, 

cellulose, glucose and mannose had strong calibration coefficients Table 5.2. The highest R2 value of 

0.92 (SEC = 0.99, SECV = 1.23%) was obtained for extractives. Models for the other four 

components gave R2 greater than 0.8. Model statistics for the remaining chemical constituents were 

also quite good, with the worst performance by hemicelluloses (R2 = 0.68, SEC = 1.78%, SECV = 

3.40). According to Williams (2004), models with R2 from 0.92 to 0.96 can be used for most 



129 
 

application including quality assurance, while R2 from 0.83 to 0.9 can be used for most applications 

but with some level of caution. He also stated that approximate calibration can be done with 

models with R2 range of 0.66 to 0.81, rough screening done with 0.5 to 0.64, but models with R2 less 

than 0.5 are non-usable in any NIR calibration. 

Another parameter used to evaluate developed models was the RPD. Except for glucose, the 

RPDs of all the other carbohydrates were less than 2, with hemicelluloses having the lowest of 0.83, 

Table 5.2. A higher RPD is an indication of a robust model; a model with an RPD between 1.5 and 

2.5 is expected to be successful in preliminary screening (Via 2013). 

  Error values noted in this study are comparable to the errors of models that were 

developed by So et al. (2012) to predict the extractives content of Pinus palustris (SEC = 1.78%, SECV 

= 3.33%). Sykes et al. (2005) also obtained an SEC of 2.42% and SECV of 2.13% for models they 

developed to predict the α-cellulose content of loblolly pine clean wood. Work done by Jones et al. 

(2006) to predict the monomeric sugars of loblolly pine wood gave similar SECs and SECVs as 

obtained in this study. For example, glucose: SEC = 1.12%, SECV = 1.78%, xylose: SEC = 0.16, SECV = 

0.41%, and mannose: SEC = 0.30%, SECV = 0.64%. It should however be noted that, their models 

were developed with more factors (i.e. 4, 6 and 5 as against 2, 3, 3 respectively), and as observed by 

Kelley et al. (2004), this usually reduce the SEC, SECV and SEP. It is also worth mentioning that they 

used a more homogenous material comprising of only clean wood, as opposed to the relatively 

heterogeneous mixture of biomass types used in this study. A more comparable study in terms of 

type of biomass might be that by Ono et al. (2003). When they used select NIR wavelengths and 

multiple linear regression to predict the extractives, lignin and holocellulose of fresh leaves, litterfall 

and organic matter of softwoods and hardwoods from subtropical and boreal forests in Japan, the 

SEC and SECV of their models were generally higher than those for models in this study. Their 
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model for extractives had an SEC of 2.9%, SEP of 3.4% and an R2 of 0.82. For lignin and 

holocellulose, the respective SECs and SEPs were 5.0% & 3.5%, and 5.0% & 3.5%. They reported 

0.78 and 0.83 as the respective correlation coefficients between measured and NIR-predicted 

chemistry. Furthermore, the biomass they used had very wide chemical ranges. For instance, lignin 

in their samples ranged from 5.6 to 53.7% and holocellulose was from 20.4 to 68.4%.  

Another indicator for good models is when SEC and SECV are comparable (Derkyi et al. 2011; 

Mevik and Cederkvist 2004). A small difference between calibration and validation errors is an 

indication that the test sets were well predicted by calibration models. According to Sanderson et 

al. (1996), a model having its SECV lesser or equal to 1.3 times its SEC has a good performance. Even 

though differences in SEC and SECV seemed large for models developed for chemical property 

predictions, only those for mannose, galactose, xylose and hemicelluloses exceeded this 1.3 limit. 

The performance of prediction models for these monomeric sugars and consequently the 

hemicelluloses may be due to overlapping signals caused by high concentrations of relatively similar 

sugars that vary only with respect to the location of H and OH groups on the cyclical 6 carbon 

structure. Other researchers have however hypothesized that, since the different sugars have 

specific ratios to one another after polymerization and result in different functional groups in the 

different types of hemicelluloses, this should not cause a problem but instead improve the 

diagnostics of predictive models (Ono et al. 2003). Plots relating laboratory determined properties 

to NIR-predicted properties are presented in Figure 5.3 and Figure 5.4. 
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Figure 5.3: Regression plots of measured versus NIR-predicted values for (a) extractives, (b) lignin, (c) 

cellulose and (d) hemicelluloses of forest biomass. 
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Figure 5.4: Regression plots of measured versus NIR-predicted values for (a) glucose, (b) mannose, (c) 

arabinose and (d) xylose of forest biomass. 
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5.4.3. Thermal Reactivity Properties  

The thermal reactivity properties of volatile matter, fixed carbon and ash, as well as HHV 

were determined by proximate analysis and bomb calorimetry are shown in Table 5.3. As in the 

case of the chemical properties, some significant differences were noted in the thermal properties 

of the different types of forest biomass. For instance, the 1.9% of ash measured in slash was 

significantly higher than the 0.4% determined for wood. In reverse, the volatile matter content of 

wood (85.7%) was significantly higher than that of slash (77.3%). Also, HHV of wood and bark was 

significantly lower than that of slash; whereas the highest fixed carbon determined in slash (16.2%) 

was significantly different from that in the other biomass types.  

Table 5.3: Regression plots of measured versus NIR-predicted values for (a) glucose, (b) mannose, (c) 

arabinose and (d) xylose of forest biomass. 

 Whole Wood & Bark Slash Wood 

Volatile matter (%)  81.1 (1.4) 82.3 (0.8) 77.3 (0.6) 85.7 (0.5) 

Fixed carbon (%) 9.8 (1.2) 9.7 (1.4) 16.2 (0.8) 8.9 (0.7) 

Ash (%) 1.8 (0.7) 1.5 (1.6) 1.9 (0.2) 0.4 (0.1) 

HHV (MJ/kg) 20.2 (0.4) 19.8 (0.5) 20.6 (0.7) 20.4 (0.3) 

 

As in the case of chemical properties, thermal reactivity models developed using the 1st 

derivative spectra performed better than models developed with the raw spectra (Table 5.4). 

Calibration models developed using the PLS1 algorithm on 1st derivative treated spectra to predict 

volatile matter and fixed carbon used two latent variables in both models to give SECs of 1.0 and 

1.27 respectively. When models were used to predict the single-element test sets, the SECVs were 
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comparable to the SECs (i.e. 1.15 and 1.51); the R2 values were high, and their respective RPDs were 

2.46 and 2.09. 

Table 5.4: PLS model statistics for the thermal reactivity properties of forest biomass using (i) raw 

spectra and (ii) first-derivative-treated spectra. 

 
 % Volatile matter % Fixed carbon % Ash HHV (MJ/kg) 

Range  76.3 - 85.5 6.6 - 17.2 0.2 - 5.8 18.9 - 21.5 

SEC 
i 0.82 1.45 0.87 0.48 

ii 1 1.27 0.61 0.37 

Bias 
i 0.06 0.05 -0.01 0 

ii -0.02 0.01 0 0.01 

LVs 
i 4 4 3 5 

ii 2 2 3 2 

SECV 
i 0.93 1.65 0.92 0.54 

ii 1.15 1.51 0.97 0.48 

R2 
i 0.92 0.81 0.36 0.34 

ii 0.88 0.85 0.68 0.57 

RPD 
i 3.04 1.91 1.14 1.02 

ii 2.46 2.09 1.08 1.14 

Note: SEC - Standard error of calibration; LVs - Latent variables (Factors); SECV - Standard error of cross 

validation; R2 - Coefficient of cross validation. 

 

The HHV of lignocellulosic biomass has been related to its chemical composition, ultimate 

and proximate data. Thus, even though HHV is not a direct chemical property, it can be estimated 

and predicted with NIR y which is known to interact with overtones and combinations of 

fundamental vibrations of C-H, O-H, C=O, N-H, aromatic C-H groups and S-H functional groups 

(Schwanninger et al. 2011; Gillon et al. 1997). Similarly, NIR can be used to indirectly predict the 
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inorganic ash based on how they bound to organic moieties or how they affect some absorption 

bands (Lestander and Rhen 2005; Windham et al. 1991). 

The HHV and ash content were however not predicted as well in this study as can be seen in 

Table 5.4. The range of HHV measured for test samples used in this study was relatively small (18.9 

to 21.5 MJ/kg) compared to for instance, those measured by Gillon et al. (1997)  (i.e. 17.1 to 25.6 

MJ/kg) for biomass made up of leaves, needles, twigs and bark of conifers, broad leaved trees, 

shrubs and grasses. They had very good diagnostic statistics for their models; SEC = 0.42 MJ/kg, 

SECV = 0.50 MJ/kg, R2 = 0.92. Even though prediction was not as strong in this study, the SEC and 

SECV were comparable to theirs. The models by So and Eberhardt (2010) to predict the HHV of 

unextracted and acetone-extracted Pinus palustris wood did not do as well either. They reported an 

SEC of 0.32 MJ/kg, SECV of 0.41 MJ/kg and R2 of 0.72 for the unextracted biomass, and an SEC of 

0.21 MJ/kg, SECV of 0.24 MJ/kg and a very poor R2 of 0.05 for the extracted biomass. 

Three prinicipal components were used in building the model that predicted ash with a R2 of 

0.68. Plots relating laboratory determined properties to NIR-predicted properties are presented in 

Figure 5.5. Models with better predictive capabilities were developed for stem and branch wood of 

Norway spruce by Lestander and Rhen (2005) using raw mean centered spectra or spectra 

pretreated with orthogonal signal correction (OSC) from select wavelengths. In all cases, the R2 

values were 0.98.  
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Figure 5.5: Regression plots of measured versus NIR-predicted values for (a) volatile matter, (b) fixed 

carbon, (c) ash and (d) HHV of forest biomass. 

 

The performance of models developed in this study are promising considering the fact that, 

very different forest biomass types made up of needles, bark, twigs, stemwood and branchwood 

were used. Furthermore, errors associated with using models to predict the properties under study 

were mostly lesser than errors encountered when the various properties were measured in the 

laboratory using conventional methods. 
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5.5 Conclusions 

 NIR coupled with PLS was successfully used to predict important chemical and thermal 

reactivity properties of heterogeneous forest biomass comprising of whole tree, wood & bark, 

slash, and clean wood. Models developed to predict extractives, lignin, glucose, arabinose, 

cellulose, holocellulose, volatile matter and fixed carbon contents of forest biomass were strong 

with a minimum R2 of 0.75. Their good performances were further supported by their RPD values 

which passed the 1.5 threshold for preliminary screening. Even though the coefficient of cross 

validation between lab measured and NIR-predicted mannose (R2 > 0.80) was also high, its RPD 

made the adequacy of this model questionable. Further studies will be needed to improve the 

robustness and accuracy of this model, in addition to the models used in predicting galactose, 

xylose, hemicelluloses, HHV and ash.
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.  

 

Chapter 6 : Rapid Quantitative Analysis of Forest Biomass using Fourier Transform Infrared 

Spectroscopy (FTIR) and Partial Least Squares (PLS) Regression3 

 

6.1 Abstract 

Fourier transform infrared reflectance spectroscopy (FTIR) has been used to predict 

properties of forest logging residue, a very heterogeneous feedstock material. Properties studied 

included the chemical composition, thermal reactivity and energy content. The ability to rapidly 

determine these properties is vital in the optimization of conversion technologies for the successful 

commercialization of bio-based products.  

Partial least squares regression of first derivative treated FTIR spectra had good correlations 

with the conventionally measured properties. For the chemical composition, constructed models 

generally did a better job of predicting the extractives and lignin content than the carbohydrates. In 

predicting the thermochemical properties, models for volatile matter and fixed carbon performed 

very well (i.e. R2 > 0.80, RPD > 2.0). The effect of reducing the wavenumber range to the fingerprint 

region for PLS modeling and the relationship between the chemical composition and higher heating 

value of logging residue were also explored.  

This study is new and different in that, it is the first to use FTIR to quantitatively analyze 

forest logging residue, an abundant resource that can be used as a feedstock in the emerging low 

carbon economy. Furthermore, it provides a complete and systematic characterization of this 

heterogeneous raw material. 
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6.2 Introduction 

Lignocellulosic biomass is the only renewable resource that can be used in the production of 

biofuels and platform chemicals in addition to bioenergy. As the most abundant carbon neutral 

resource, using biomass instead of fossil fuels can help mitigate environmental pollution. However, 

many physical, chemical and structural factors can hinder the conversion of biomass into fuels and 

chemicals. A better understanding of the properties of biomass will be important in the allocation 

of feedstock to the appropriate end use. An ability to determine these properties in a timely 

manner is also necessary in the optimization of conversion technologies for the successful 

commercialization of biomass-based products. There is thus a need for high throughput methods 

and equipment in the monitoring and characterization of the raw feedstock as conventional 

methods have been laborious and destructive. 

Fourier transform infrared reflectance spectroscopy (FTIR) has been used as a powerful 

analytical tool for the rapid characterization of lignocellulosic biomass. Since FTIR determines the 

presence of fundamental molecular vibrations that are characteristic of a chemical compound or 

class of compounds, it has widely been used in the qualitative elucidation of changes in biomass 

structure during and/or after treatment with processes. For instance, FTIR was used to study 

trembling aspen extracted with supercritical methanol (Grandmaison et al. 1987) and also to 

monitor the physical and chemical changes that result as corn stover undergoes ammonia fiber 

expansion (AFEX) and iconic liquid (IL) pretreatments (Li et al. 2011). With the advancement of 

multivariate data analysis, researchers are now coupling FTIR with chemometric methods for rapid 

quantitative of biomass feedstock.  

                                                                                                                                                             . 

3 Reprinted from the Journal of Analytical Methods in Chemistry. doi: dx.doi.org/10.1155/2016/1839598 

http://dx.doi.org/10.1155/2016/1839598
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FTIR-based partial least squares (PLS) models were constructed to quantify the monomeric 

sugars, acetic acid and 5-hydroxymethyl-2-furfural (HMF) of dilute acid pretreated biomass (Tucker 

et al. 2013). The tool has also been used to model the ash, volatile matter, fixed carbon and higher 

heating value (HHV) of sweetgum, loblolly pine and switchgrass torrefied at different temperatures 

(Via et al. 2013). For some studies on the raw biomass, FTIR was employed in characterizing several 

agricultural residues and their extractives content (Naik et al. 2010), in the qualitative analysis of 

lignin from five timber species (Rana et al. 2010) and in predicting the chemical composition of 

hardwoods (Zhou et al. 2015). FTIR based models have also been employed for discriminant and 

classification analysis of biomass feedstocks and plant materials (Acquah et al. 2016; Carballo-

Meilan et al. 2014; Chen et al. 2010; Hobro et al. 2010; Meng et al. 2015).  

Most of the studies using FTIR were conducted on biomass that has been subjected to some 

kind of pretreatment; surprisingly, not very much was found on the raw resource.  

In the USA, about 1.3 million dry tons of biomass can be sourced annually from forestry (27%) 

and agricultural (77%) operations, capable of replacing a third of the country’s current fuel 

consumption (Perlack et al. 2005). Forest biomass includes logging residues, pre-commercial 

thinnings, fuel treatments, residues from primary and secondary mill processing and urban wood 

wastes. According to Smith et al. (2009), some 68 million dry tons of logging residues are currently 

produced in the USA, most of which is left onsite. Using logging residue as a raw material will 

ensure a more complete and sustainable utilization of trees. In addition, several studies have shown 

that the sustainable removal of logging residues can improve forest health, enhance replanting 

efforts and regeneration, and control forest fires (Spellman and Beiber 2011; Hacker 2005; 

Leinonen 2004).  
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Qualitative and quantitative analysis of biomass with FTIR can be quite precise when material 

vary considerably in chemical structure. For example, woody tissue could be easily differentiated 

from bark resulting in an easy calculation of bark content in aspen and birch (Brink et al. 2010) and 

beech could be differentiated from pine due to considerable differences in syringyl and guiaicyl 

moieties (Pandey and Pitman 2003). Such differentiation was less discriminative for the same tree 

species with tissue obtained from the juvenile and mature wood (Via et al. 2003). However when 

perturbations such as temperature (Via et al. 2013) and chemical treatments (Jiang et al. 2014) are 

introduced then model robustness for identification and/or concentration determination becomes 

more superior. The objective of this study was to employ FTIR coupled with partial least squares 

(PLS) regression to rapidly predict the chemical composition, thermal reactivity and energy content 

of logging residue of loblolly pine, the most economically important tree species in the USA. This 

study attempts to take advantage of the wide differences in bark, needle, and woody tissue 

chemistry that should allow for an easy discrimination and quantification. The accurate estimation 

of for instance the concentration of carbohydrates is important since it is directly proportional to 

the yield of biofuels; and having prior knowledge of the inorganic fraction will enable the 

anticipation of slagging or the extent to which the calorific value may be impacted.  

6.3 Materials and Methods 

6.3.1 Materials 

Lignocellulosic biomass acquired during harvesting operations on several loblolly pine 

plantations in southern Alabama, USA were used for this study. Material comprised of Whole tree, 

Wood and bark, Slash (i.e. limbs and foliage) and clean Wood chips. Ten biomass sets were sampled 

for each of the four biomass types.   
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6.3.2 Methods 

6.3.2.1 Conventional Laboratory Methods 

Conventional standard methods were used to determine the chemical makeup, thermal 

reactivity and energy content of biomass. 

The chemical composition of biomass samples was determined via wet chemistry. Extractive 

content was determined as specified in NREL/TP-510-42619 and TAPPI T- 204. 5 g of a test sample 

ground to pass a 40-mesh screen was extracted in 150 ml of acetone for 6 hours in a Soxhlet 

Apparatus. Afterwards, the acetone was allowed to evaporate before drying the extract in a 

vacuum oven at 40 oC for 24 hours. Air-dried extractive-free samples were used to determine lignin 

and carbohydrates following NREL/TP-510-42618. Test samples were first hydrolyzed with 72% 

sulfuric acid. This primary hydrolysis was carried out at 30 oC ± 3 °C for an hour. Then, the 

concentration of acid was diluted to 4% with deionized water and a secondary hydrolysis carried 

out in an autoclave at 121 °C for another hour. Hydrolyzed samples were allowed to cool before 

filtering through tared glass crucibles. An aliquot of this filtrate was collected to be used for 

determining the acid-soluble lignin (ASL) and monomeric sugars. The solid residue was thoroughly 

washed with distilled water, oven dried at 105 °C overnight, and the final weight used for 

calculating the acid-insoluble lignin (AIL) content of biomass. The ASL was determined with a UV/vis 

spectrophotometer immediately after hydrolysis. Total lignin was calculated as the sum of ASL and 

AIL. The monomeric sugars (i.e. arabinose, glucose, galactose, mannose and xylose) in test samples 

were measured using a Biorad Aminex HPX-87P column equipped HPLC. Holocellulose content was 

calculated as the sum of monomeric sugars; the cellulose content was computed as glucose − (
1

3
∗

mannose), and the difference between holocellulose and cellulose designated as hemicelluloses.  
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Bomb calorimetry, as specified in ASTM D5865 was used in calorific value determination; 

whereas proximate analysis was conducted following NREL/TP-510-42622 (for ash content) and 

CEN/TS 15148 (for volatile matter content).  

Analysis of Variance (ANOVA) followed by Tukey pairwise comparison tests between the 

four biomass types (α = 0.05) was performed using the R Stats Package. Duplicates experiments 

were ran for each test sample. 

6.3.2.2 Collection of Spectra  

Mid infrared spectra were collected over a wavenumber range of 4000 cm-1 to 650 cm-1 

using a PerkinElmer Spectrum 400 FT-IR/FT-NIR spectrometer equipped with a diamond crystal 

attenuated total reflectance device (i.e. ATR-FTIR) and a torque knob to ensure that consistent 

pressure is applied to samples during spectra collection. Prior to spectra acquisition, samples were 

ground to pass an 80-mesh screen to improve model properties through light scatter reduction and 

oven dried at 40 oC for 4 hours. Each test sample was placed on the diamond plate, a pressure of 70 

± 2 psi applied using the torque knob, then scanned thirty-two times at a resolution of 4 cm-1. The 

average of the thirty-two spectra is corrected for background absorbance by subtracting the 

spectrum of the empty ATR crystal and used for analysis.  

6.3.3.3 Partial Least Squares (PLS) Regression  

PLS regression is a statistical technique for developing predictive models of multivariate 

data that otherwise have high collinearity. The iterative NIPALS algorithm used extracted successive 

linear combinations of the predictors (called factors or latent vectors) such that variations in both 

predictors (i.e. MIR spectra) and responses (i.e. property under study) were optimally accounted 

for. A more detailed description of the procedure can be found elsewhere (Acquah et al. 2015).  
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PLS models were developed with PerkinElmer’s Spectrum Quant+ software using spectra of 

the full mid infrared region (i.e. 4000 – 650 cm-1) as well as the fingerprint region (1800 – 650 cm-1). 

Spectra were pretreated with derivatives (1st order, 5-point) for baseline correction and also to help 

reduce non-linearity and multicollinearity among variables. 2nd derivatives were not used due to the 

generally lower signal to noise ratio. Both predictors and responses were mean centered prior to 

modeling. Due to the relatively small sample size (n = 40), the leave-one-out cross validation 

modeling method was employed. In this technique, for each run, 39 out of the 40 samples are used 

as training dataset for calibrating a model that is used to predict the 1-sample test dataset. This is 

iterated forty times until all samples are used as independent single-element test datasets.   

Developed models were evaluated using such statistics as the standard error of calibration 

(SEC), standard error of cross-validation (SECV), coefficient of determination (R2) and ratio of 

preformance to deviation (RPD).  

6.4 Results and Discussion 

6.4.1. FTIR Spectra 

MIR spectra characteristic of the four biomass sets understudied are presented in Figure 1. 

Even though this region encompasses the 4000 to 650 cm-1 wavenumber range, the fingerprint 

region (1800 to 650 cm-1) is usually of particular interest because it contains the most spectral 

information pertaining to the molecular/chemical composition of a material (Fig 6.1-I). In the 

literature, several bands have been linked to carbohydrates due to their associated functional 

groups. Within the fingerprint region, peaks that result due to the polysaccharides include: (P1) 897 

cm-1 and (P2) 1030 cm-1 from the C-H deformation in cellulose and C-O stretch in polysaccharides 

respectively, (P3) 1157 cm-1 from C-O-C vibration, (P4) 1239 cm-1 from C-O stretch and O-H in plane 

in polysaccharides, (P5) 1465 cm-1 from C-H deformation and (P6) 1740 cm-1 from the C=O 
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stretching of unconjugated ketones mostly in the hemicelluloses. In the case of lignin, the peak at 

(L1) 1122 cm-1 occurs due to aromatic skeletal and C-O stretch. A guaiacyl ring breathing with C-O 

stretching causes a peak to arise at (L2) 1270 cm-1 and syringyl ring breathing creates the peak at 

(L3) 1365 cm-1. The strong peak at (L4) 1505 cm-1 is attributed to the C=C stretch characteristic of 

aromatic skeletal compounds in lignin and extractives. Outside the fingerprint range (Figure 6.1-II), 

the peak occurring at (T1) 2935 cm-1 have been associated with the bending and stretching of C-H, 

as well as its aromatic ring vibration in lignin; whereas that at (T2) 3345 cm-1 has been assigned to 

bonded O-H (Grandmaison et al. 1987; Rodrigues et al. 1998; Faix 1992; Hergert 1971; Harrington et 

al. 1964). 

The four biomass types followed a similar absorbance pattern in the mid infrared region. 

Slash generally had the highest absorbance values, followed by Wood, Whole then Wood & bark. 

The spectra of Slash had prominent peaks at (L5) 1635 cm-1 and (T1) 2935 cm-1 compared to the 

other biomass types. The former has been attributed to C-O stretching of conjugated or aromatic 

ketones and/or C=O stretching vibration in flavones, and the latter results from the aromatic ring 

vibration in lignin (Allison et al. 2009; Nuopponen et al. 2006; Padney 1998). These high peaks could 

thus be explained by the significantly high contents of extractives and lignin in Slash, Figure 6.1. 
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Figure 6.1: FTIR spectra of the different types of forest biomass. I – Fingerprint region; II – Full MIR 

range. 
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These assignments provide some insight into the chemical moieties present in the different 

biomass types. However, the overlapping peaks makes it challenging to tease out subtle difference 

by simple visual inspection sometimes (Stuart 2004). As such, the application of multivariate data 

analytical techniques to the spectra of lignocellulosic biomass help to extract relevant information 

and structure spectra and conventionally acquired chemical data into empirical mathematical 

models that are capable of predicting properties of future measurements and even other properties 

that are not directly measurable (Varmuza and Filmoser 2009). Scatter, stray light, path length 

variation, inconsistency in instrument response and random noise can cause interferences such as 

baseline shifts, vertical displacements, and non-uniform slope in infrared spectra. Pretreatment 

methods including standard normal variate (SNV) transformation, multiplicative scatter correction 

(MSC), derivatives and orthogonal signal correction (OSC) are therefore usually used to minimize, 

standardize or even eliminate the impacts of these interferences on IR spectra before multivariate 

data analysis to improve the robustness of calibration models. In this study, the first derivatives of 

spectra were used to reduce baseline offsets and improve the resolution of overlapping peaks 

(Heise and Winzen 2002). 

6.4.2 PLS Modeling of the Chemical Composition of Forest Logging Residue 

The chemical composition of forest logging residue determined via conventional methods 

are summarized in Figure 6.2. Some significant differences (α = 0.05) were noted among the four 

biomass types. The mean concentration of extractives ranged from a low of 2% for Wood & bark to 

a high of 10% for Slash. The percentage of glucose was significantly lower in Slash (27%) and Whole 

(34%) compared to Wood & bark (41%) and Wood (45%). This pattern was unsurprisingly followed 

by the amount of cellulose in the four types of forest logging residue. Whole had the highest 
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amount of hemicelluloses, and this was statistically similar to the concentrations found in Slash and 

Wood & bark. 

 

Figure 6.2: Descriptive statistics of the chemical composition of forest logging residue. *Bars represent ± 

standard error. 

Using spectra as the independent variable and a measured property as the dependent 

variable, all forty biomass samples were employed in the calibration and cross validation of PLS 

predictive models. Models were developed using raw or 1st derivative spectra of first the entire MIR 

range, then the fingerprint region. As is generally the case, models built with 1st-derivative treated 

spectra have better predictive capabilities compared to those calibrated with untreated spectra, 

thus, only results of the former are presented in this paper (Table 6.1). Optimum models were 
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The SECV (which is a better  measure of a model’s predicting ability of future unknowns) is usually 

larger than the SEC (a statistic that evaluates how precisely the regression line fits the training data) 

because it also takes into consideration how much worse a model performs on an independent test 

data not originally included in model calibration. However, the SECV ideally should be no greater 

than 1.3 times the SEC (Sanderson et al. 1996). A big difference in SEC and SECV results when 

calibration models do a poor job of predicting the property under study for samples that were used 

in cross validation. 

Table 6.1: Performance evaluation of PLS models developed using 1st derivative treated spectra of the 

full (i) and fingerprint (ii) regions for predicting chemical composition. 

Constituent (%) LVs SEC SECV R2 RPD 

  i ii i ii i ii i ii i ii 

Extractives 2 2 0.93 1.03 1.4 1.18 0.93 0.91 2.34 2.83 

Lignin 2 2 1.58 1.77 2.02 2.04 0.86 0.83 2.06 2.04 

Cellulose 2 2 3.89 4.04 6.1 4.58 0.74 0.72 1.46 1.61 

Hemicelluloses 3 3 1.32 1.61 3.58 3.46 0.82 0.74 0.85 0.87 

Glucose 2 2 3.71 3.88 4.6 4.4 0.77 0.75 1.63 1.7 

Arabinose 2 2 0.36 0.4 0.46 0.46 0.77 0.72 1.57 1.6 

Galactose 3 3 1.09 1.03 1.87 2.05 0.64 0.67 0.93 0.85 

Mannose 3 3 0.85 0.82 1.87 1.84 0.71 0.73 0.81 0.84 

Xylose 2 2 0.74 0.76 1.13 1.06 0.7 0.68 1.16 1.24 

Holocellulose 2 2 3.92 4.25 6.05 4.79 0.73 0.68 1.45 1.53 

 

Two or three LVs were used in the development of models that had R2 values ranging from a 

low of 0.64 for galactose, to a high of 0.93 for extractives Table 1. Although the R2 is an indicator of 

a good model (when greater than 0.5), it was not used as the sole assessor of models because it 

usually has a direct relationship with the number of LVs used in model development. When more 
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LVs are added in calibration, a model continues to fit random errors until every source of variation 

is accounted for in the training data (Bjorsvik and Martens 2011). The RPD, which is computed as 

the ratio of standard deviation of the validation set to the standard error of prediction (SEP) was 

used to compare the predictive ability of models. Except for galactose, xylose and hemicelluloses, 

the RPD values of models developed to predict the chemical components of forest logging residue 

fell within the preliminary screening criteria (i.e. 1.5 – 2.5) (Hein et al. 2009). The model for 

extractives was the most robust, having an RPD of 2.3.  

PLS modeling of MIR spectra did a better job of predicting the extractives and lignin content 

of loblolly pine logging residue compared to the structural carbohydrates and their associated 

monomeric sugars in this study. The best performing models were for glucose and arabinose both 

of which had R2 of 0.77 and RPD of 1.6; whereas the worst performing models were for galactose 

and mannose, the other two hexoses. Poor prediction of monomeric sugars have been attributed to 

similar conformation of sugars that only differ in the orientation of some hydroxyl groups. In a 

previous study by Acquah et al. (2015), galactose, mannose, xylose and consequently 

hemicelluloses were also poorly predicted by near infrared (NIR)-based PLS models. Similarly poor 

performing models were obtained by Jones et al. (2006) for galactose (R2 = 0.11, RPD = 0.8) and 

hemicelluloses (R2 = 0.30, RPD = 1.0). Since FTIR detects fundamental molecular vibrations as 

opposed to the overlapping and usually weaker combination bands in NIR, PLS models developed in 

this study were expected to do a better job of predicting the monomeric sugar content of forest 

logging residue, but this unfortunately was not the case.  

The entire MIR range and fingerprint region were also used to model the lignin, cellulose 

and extractives of wood samples including Scots pine, Sitka spruce and tropical hardwoods from 

Ghana (Nuopponen et al. 2006). The authors reported the performance statistics of PLS models as 
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follows -- cellulose: R2 = 0.65, SEC = 1.8, SEP = 3.3; lignin: R2 = 0.65, SEC = 1.8, SEP = 3.3 and 

extractives: R2 = 0.93, SEC = 0.3, SEP = 0.4. The seeming trend of infrared-based PLS models 

predicting the lignin and extractives of biomass relatively better than the polysaccharides was 

noted in this study also; and again in (Meder et al. 1999) when both diffuse reflectance (DRIFT) and 

transmission FTIR spectra were used in PLS modeling. A possible explanation of this trend could be 

the distinctive chemical structures of lignin and extractives, as opposed to the relative abundance of 

carbohydrates that have similar molecular makeup. Another study that quantitatively characterized 

the chemical composition of untreated wood was by (Tiovnen and Alen 2006). The researchers 

developed DRIFT-PLS models for lignin (R2 = 0.66, SEP = 1), extractives (R2 = 0.97, SEP = 0.9), 

arabinose (R2 = 0.79, SEP = 0.1), galactose (R2 = 0.80, SEP = 0.3), glucose (R2 = 0.57, SEP = 1.7), 

mannose (R2 = 0.63, SEP = 0.8) and xylose (R2 = 0.73, SEP = 0.5). The standard deviation of the 

training data and prediction errors of monomeric sugars reported by the authors were low, even 

though the R2 values are similar compared to what was obtained in current study.  

For a fairer comparison of model performance, the same number of LVs that were retained 

as optimum for full spectra (4000 – 650 cm-1) models were used in developing reduced spectra 

(1800 – 650 cm-1) models. Reducing the wavenumber range to the fingerprint region did not 

adversely affect the performance of PLS models Table 6.1. In fact, this generally decreased the 

errors associated with cross-validation (employed as the SEP in current study) and improved RPD 

values for all models except that for lignin (Full: SECV = 2.02, RPD = 2.06; Reduced: SECV = 2.04, RPD 

= 2.04) and galactose (Full: SECV = 1.87, RPD = 0.93; Reduced: SECV = 2.05, RPD = 0.85) Table 6.1. 

Lowered SECV and improved RPD values is an indication that a model’s predictive capability is 

reduced when irrelevant wavenumbers are included in model construction.  
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 The relationship between laboratory reference data and FTIR-predicted chemical 

constituents are presented in Figure 6.3. 

  

Figure 6.3: A regression plot of wet chemistry-measured versus FTIR-predicted values for chemical 

composition. (a) Modeled with full spectra; (b) - modeled with fingerprint region. 
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6.4.3 PLS Modeling of Thermal Reactivity and Energy Content of Forest Logging Residue 

Summary statistics from proximate analysis and bomb calorimetry are presented in Figure 

6.4. Ash content was significantly lower in Wood compared to the other three biomass types as 

expected. In contrast, Wood had the highest amount of volatile matter. Fixed carbon ranged from a 

low of 8.9% in Wood to a high of 16.2% in Slash. Among the four biomass types, Whole and Wood & 

bark samples were more similar in their thermal reactivity and energy content. The higher heating 

value (HHV), which is the maximum amount of energy that can be potentially recovered when fuel 

is completely combusted under adiabatic conditions ranged from 19.8 (MJ/kg) to 20.6 (MJ/kg) for 

loblolly pine logging residue. 

 

Figure 6.4: Descriptive statistics of the thermal reactivity and energy content of forest logging residue. 

*Bars represent ± standard error. 
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Two or three LVs were used in PLS modeling of the full or reduced MIR spectra. Fit statistics 

of cross-validated models calibrated with the 1st derivative of spectra are presented in Table 6.2.   

Table 6.2: Performance evaluation of PLS models developed using 1st derivative treated spectra of the 

full (i) and fingerprint (ii) regions for predicting thermal reactivity and energy content. 

Constituent LVs SEC SECV R2 RPD 

  i ii i ii i ii i ii i ii 

Ash (%) 3 3 0.49 0.6 1.07 1.09 0.8 0.7 0.98 0.96 

Fixed carbon (%) 2 2 1.26 1.35 1.6 1.54 0.85 0.83 1.96 2.04 

Volatile matter (%) 2 2 1.07 1.03 1.31 1.15 0.87 0.88 2.17 2.31 

HHV (MJ/kg) 2 2 0.34 0.38 0.53 0.44 0.64 0.54 1.03 1.23 

 

For the reduced spectra of volatile matter content, two LVs gave the lowest values of SEC 

(1.03%) and SECV (1.15) falling within the ideal difference range. This optimized model had an R2 of 

0.88 and an RPD of 2.3. This was a 6% improvement over the RPD value of the model developed 

using the full MIR range. Similarly, utilizing the fingerprint region slightly improved the RPD value of 

the model for predicting percent fixed carbon. Correlation of ash content with spectra data were 

quiet high, although the RPD values were less than 1. Unlike for the organic components of forest 

biomass, developing models with the reduced spectra for the inorganic ash increased both the SEC 

and SECV, and reduced the R2 and RPD values. Poor performance was also reported for full spectra 

FTIR-based PLS models constructed to predict the ash content of two energy crops (SEC - 1.02, SECV 

– 1.08, R2 – 0.48) (Brink et al. 2010). However, Via et al. (2013) were able to better model the ash 

content of torrefied biomass. Simple monoatomic inorganic compounds do not produce any 
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vibrations in the mid (or near) infrared region. However, these form complexes with organic species 

to produce characteristic bands. As such, FTIR and NIR spectroscopy have been capable of 

quantitative and qualitative analysis of the ash in biomass, polymers, etc. (Stuart 2004). 

Energy content is known to be influenced by the chemical composition of biomass. Lignin, 

(which can have as much as twice the calorific value of the carbohydrates) and extractives are 

mostly credited for this (FAO 1990). Consequently, FTIR which is sensitive to chemical signals has 

been used to model the HHV of biomass. PLS models constructed in this study to predict the HHV 

however did not perform very well. The R2 values of models were 0.64 and 0.54; and RPD values 

were 1.03 and 1.23 using the full and reduced spectra respectively, Table 6.2.  

Simple linear regression models were developed to explore the relationship between the 

chemical composition of forest logging residue and HHV. Only the extractive content had some 

meaningful linear correlation with HHV (R2 = 0.31, P-value < 0.05); suggesting that the correlation 

between FTIR spectra and HHV is a secondary function of the correlation between the extractives 

and spectra. There have been conflicting reports in the literature about how especially lignin 

correlate with energy content (Demirbas 2002; Zhou et al. 2011). Comparing the regression spectra 

of extractives to that of HHV showed some common wavenumbers/peaks that made significant 

contributions in the prediction of the two properties; supporting results from the regression 

analysis, Figure 6.6. Peaks were noted at 1620 cm-1 (skeletal aromatic C=C in-plane vibration), 1440 

cm-1 (C-O stretching, plus OH deformation of carboxylic acids or C-C stretching of aliphatic 

aldehydes) and 1190 cm-1 (C-O stretching of higher esters) (Parker 1983). However, unlike for the 

extractives, the peaks occurring in the regression spectrum of HHV could not account for as much of 

its variation, thus, the bad prediction performance of this model.   
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Figure 6.5: Regression spectra showing some common wavenumbers that made significant contribution 

to the modeling of extractives (%) (a) and HHV (MJ/kg) (b). 
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A scatter plot of how FTIR-based PLS models predicted the thermal reactivity and HHV as 

compared to results determined via proximate analysis and bomb calorimetry are presented in 

Figure 6.6.  

 

Figure 6.6: Regression plot of measured versus FTIR-predicted values for thermal reactivity and energy 

content. (a)  Modeled with full spectra; (b) modeled with fingerprint region. Percent except for HHV. 
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6.5 Conclusions 

FTIR spectra of forest logging residue made up of Whole tree, Wood & bark, Slash and 

Wood were acquired and related to the chemical, thermal reactivity and energy content of the 

biomass. PLS models were developed with the raw and 1st derivative of spectra spanning the entire 

MIR region or the fingerprint region. For chemical composition, developed models generally did a 

better job of predicting the extractives and lignin content than the carbohydrates; for the 

thermochemical properties, models for volatile matter and fixed carbon performed very well (i.e. R2 

> 0.80, RPD > 2.0). Reducing the wavenumber range to the fingerprint region for PLS modeling did 

not compromise the predictive ability of models. In fact, this mostly reduced the errors associated 

with prediction and improved the RPD values.  

This study demonstrated that the chemical and thermochemical properties of forest logging 

residue can be predicted with FTIR coupled with PLS. The accuracies of prediction models 

constructed for this very heterogeneous biomass feedstock were comparable to that measured via 

lengthy and laborious conventional methods. The suite of important biomass properties 

understudied were predicted from a single FTIR spectrum without having to do any extra work for 

each of the properties. Thus FTIR can be employed as a high throughput tool for monitoring and 

characterizing this largely untapped resource to optimize processes in biorefineries that will depend 

on logging residues as new markets emerge and conversion technologies advance in the low carbon 

bioeconomy. 
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Chapter 7 : Chemometric Modeling of Thermogravimetric Data for the Compositional Analysis 

of Forest Biomass 

 

7.1 Abstract 

The objective of this study was to examine the use of chemometric modeling of 

thermogravimetric (TG) data as an alternative approach to estimate the chemical and proximate 

composition of lignocellulosic biomass. A capability to rapidly determine these properties is crucial 

in the optimization of bioconversion technologies.  

The 38-minute long methodology developed in this study enabled the simultaneous 

prediction of both the chemical and proximate properties from the same TG data. Conventionally, 

two separate experiments had to be conducted to obtain such information. In addition, the 

chemometric models developed with normalized TG data outperformed models constructed via the 

traditional deconvolution of TG data. PLS and PCR models were especially robust in predicting the 

volatile matter (R2 = 0.92, RPD = 3.58) and lignin (R2 = 0.82, RPD = 2.40) contents of forest-derived 

biomass. The application of chemometrics to TG data also made it possible to predict some 

monomeric sugars. Moreover, the elucidation of PC loadings obtained from chemometric models 

provided some insights into the thermal decomposition behavior of the chemical constituents of 

lignocellulosic biomass. Further studies will however be necessary to validate the capability of 

chemometrics to model the thermal degradation and quantitative prediction of the individual 

monomeric sugars. 
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7.2 Introduction 

The use of lignocellulosic biomass for energy and to replace other products derived from fossil 

fuel will reduce net greenhouse gas emissions and persistent toxic materials that result during the 

extraction and processing of fossil fuels. Furthermore, because of its widespread distribution, 

biomass utilization can present an opportunity for localities to develop new and innovative 

industries (NRCan 2007). Ligno-cellulosics may be herbaceous (annual) or non-herbaceous 

(perennial) and is made up of mainly cellulose, hemicellulose and lignin (Basu 2010).  

The chemical composition of lignocellulosic biomass to a large extent determines the optimal 

conversion methodology and also affects the distribution and yield of products. The chemical 

compositional distribution can be complex due to presence of needles, bark or woody tissues 

(Acquah et al. 2015). Because of the recalcitrance of lignin during biochemical conversion 

processes, lignocellulosic biomass is usually converted via thermochemical conversion methods 

such as combustion, gasification and pyrolysis (Celikbag and Via 2016). When biomass is to be used 

as a source of energy or fuel, information about its proximate composition is necessary. Proximate 

analysis gives an indication of the thermal reactivity of biomass (McKendry 2002). It is used to 

measure the mass fraction of water, volatile matter, ash and fixed carbon (by difference) in 

lignocellulosic biomass. Biomass with high volatile matter content are easier to ignite and yield 

higher quantities of liquid products; whereas a higher fixed carbon gives more solid products. Ash is 

formed from incombustible minerals in biomass, and is increased when material is contaminated 

with soil during harvesting. Apart from decreasing the available energy, ash content also influences 

the choice of conversion pathway, the overall cost of processing and also creates pollution 

concerns. The chemical and proximate characteristics of a fuel feedstock impact the kinetics of 

degradation, thus, the efficiency and emission parameters of a processing plant. 
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Consequently, knowledge of the chemical and proximate composition of biomass is crucial in 

the optimization of conversion processes. Considering the heterogeneity of biomass, efficient 

operation of a bioconversion plant will require real time adaption of process parameters to the 

characteristics of the feedstock. In addition, the ability to determine these properties using rapid 

and cost-effective techniques will be necessary in the successful commercialization of bio-based 

products. 

One technique with this potential is thermogravimetric analysis (TGA). TGA is a rapid type of 

thermal analysis that measures the change in mass as a function of temperature as a material is 

heated at a fixed rate under a set of conditions. The mass loss gives insight into a sample’s chemical 

composition, thermal stability, number and sequence of reactions and kinetic parameters such as 

the order and activation energy of the chemical and physical reactions occurring (Klass 1998; Broido 

1969). TGA has been a useful tool for determining the thermal decomposition behavior of biomass 

and the kinetic parameters required for the design and operation of thermochemical conversion 

equipment. It has widely been used in the characterization of forestry residues (Lapuerta et al. 

2004), softwoods and hardwoods (Gronli et al. 2002), corn stover (Kumar et al. 2008) and municipal 

solid waste (Becidan 2007). TGA was also utilized to study the degradation temperatures and kinetic 

parameters of several understory grasses found in a Pinus palustris ecosystem (Elder et al. 2011). 

Employing TGA together with differential scanning calorimeter (DSC), Owens et al. (2015) 

determined the rate, kinetics and energy involved in the thermal degradation of loblolly pine 

biomass in both air and nitrogen. Systems integrating TGA with other analytical tools such as 

Fourier transform infrared spectroscopy (FTIR), gas chromatography (GC) and mass spectroscopy 

(MS) have also been used to enable the identification and quantification of the composition and 
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evolution rates of gaseous and liquid products during the pyrolysis and gasification of biomass 

feedstocks (Lee and Fasina 2009; Bassilakis et al. 2001; Dworzanski et al. 1991). 

In recent times, a couple of studies have explored the application of TGA in the quantitative 

(Carrier et al. 2011; Saldarriaga et al. 2015) and qualitative (Francisco-Fernandez et al. 2012; 

Toscano et al. 2015) characterization of lignocellulosic biomass. Traditionally, researchers have 

determined the chemical composition of fuels by the deconvolution of derivative thermograms 

(DTGs), especially in quantitative analysis.  

Chemometrics uses mathematical and statistical tools to extract pertinent information from 

chemical data (Varmuza and Filzmoser 2009). It has been used to determine the concentration of 

compounds in mixtures, identify substructures in unknown chemical compounds and predict their 

properties. The hypothesis is that, because the mass loss that occurs during TGA gives an indication 

of a material’s chemical composition, chemometrics can be applied to TG data (also known as 

thermograms - TGs) to determine and then predict the thermo-chemical properties of 

lignocellulosic biomass. The objective of this study was to employ chemometric modeling of TG data 

as an alternative approach to estimate the chemical and proximate composition of biomass. 

7.3 Materials and Methods 

7.3.1 Sample Preparation 

Biomass samples were obtained during harvesting operations on several Pinus taeda 

(loblolly pine) plantations in southern Alabama, USA. Materials acquired included the whole tree, 

wood and bark, slash (i.e. limbs and foliage) and clean wood chips of loblolly pine. Ten biomass sets 

were sampled for each of the four biomass types. In preparation for analysis, chipped materials 

were first ground to pass a 1/8 in. screen of a hammer mill, followed by further grinding in a Wiley 
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mill to pass a 40-mesh screen size. Test samples were stored in airtight plastic vials until time of 

analysis. 

7.3.2 Methods 

7.3.2.1 Compositional Analysis 

The major chemical constituents of forest biomass (i.e. hemicellulose, cellulose and lignin) 

were determined via wet chemistry as specified in NREL LAP (2012). Air-dried extractive-free 

material was hydrolyzed with sulfuric acid in a two-step procedure.  

The proximate composition was determined according to conventional standards. For ash 

determination, 1 g of test sample was weighed into a dry crucible and heated for 12 minutes at 105 

oC. The temperature was raised to 250 oC, held isothermal for 30 minutes and then ramped up to 

575 oC. The final temperature was maintained for another 180 minutes. The ash content was 

computed as given in NREL LAP (2008). Volatile matter content of biomass samples were 

determined as specified in CEN 15148 (2005) using a furnace (VMF Carbolite, model 10/6/3216P, 

England). Empty crucibles with their lids were first heated to 900 oC ± 10 oC for 7 minutes. After 

allowing to completely cool in a desiccator, they were filled with 1 g of test material, covered with 

lids and placed again in the furnace for 7 minutes. Unlike ash and volatile matter, fixed carbon of 

biomass is a calculated value. It is the summation of the percentage of moisture, volatile matter and 

ash deducted from 100.   

Analysis of Variance (ANOVA) followed by Tukey pairwise comparison tests between the 

four biomass types (α = 0.05) was performed using the R Stats Package. Duplicates experiments 

were ran for each test sample. 

  



164 
 

7.3.2.2 Thermal Analysis 

Thermal decomposition of biomass samples was done in a Pyris 1 TGA thermogravimetric 

analyzer (PerkinElmer, Waltham, MA, USA) using different heating cycles. For the proximate 

analysis, adopting an earlier study by Acquah (2010) and ASTM E 872-82, 7 mg ± 2 mg of air dried 

test sample was heated from 30 oC to 105 oC at a rate 20 oC/min in an atmosphere of nitrogen. The 

temperature was held at 105 oC for 5 minutes, later ramped up to 800 oC at 50 oC/min and then 

held isothermal for 7 minutes. Next, air was introduced and maintained at 800 oC for an additional 

10 minutes. The other method involved heating test samples from 30 oC to 800 oC at a rate of 20 

oC/min in the presence of nitrogen. Both methods took approximately 38 minutes.  

The TGs of samples were exported into excel for initial analysis. Several studies have been 

conducted in which the derivative of TG data have been used to show how the major chemical 

components thermally degrade in inert atmosphere at different temperature ranges. The 

amorphous, branched and lower molecular mass hemicelluloses is the first to decompose at mild 

temperatures (150 oC – 360 oC), followed by the linear, higher molecular mass cellulose (250 oC – 

440 oC). The thermal degradation of lignin, a complex 3-dimensional polymer has been reported to 

occur over a wider range; from as low as 180 oC, or high as 300 oC, to 900 oC (Fasina and Lee 2009; 

Carrier et al. 2011; Naik et al. 2010; Yang et al. 2006; Garcia et al. 2013). The mass loss from room 

temperature to about 180 oC has been attributed to the loss of water and lower molecular mass 

volatiles. Several studies in recent times have also sought to determine the proximate composition 

(i.e. volatile matter, fixed carbon and ash contents) of biomass from thermogravimetric data 

(Acquah 2010; Garcia et al. 2013; Saldarriaga et al. 2015). 
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Based on the literature, two degradation regimes were adopted to be used for the 

quantitative computation of hemicellulose, cellulose and lignin. The following equations were 

employed: the chemical components were computed as follows: 

% Hemicellulose = {(B – C) / A} * 100        (1) 

% Cellulose = {(C – D) / A} * 100                (2) 

% Lignin = {D / A} * 100                              (3) 

For the first regime (Naik et al. 2010) which will be known as KIN-1 henceforth, A is the mass 

of test sample remaining after 130 oC, B is the mass after 250 oC, C is the mass after 350 oC, and D is 

the mass after 500 oC. For the second regime (Lee and Fasina 2009), dubbed KIN-2, A is the mass 

after 180 oC, B is the mass after 360 oC, C is the mass after 440 oC, and D is the sample mass after 

440 oC.  

Similarly, a degradation regime (i.e. KIN-3) was adopted (Acquah 2010) and used to 

calculate the amount of volatile matter, fixed carbon and ash using TG data. The computations were 

as follows: 

% Volatile matter = {(A – B)/A} * 100 

% Ash = {C/A} * 100 

% Fixed carbon = 100 – {% Volatile matter + % Ash} 

where A is the dry mass of test sample; B is mass at 800 °C after holding for 7 minutes in the 

presence of nitrogen and C is the residual mass after complete combustion in air. 

Simple linear regression models were then developed to evaluate how these estimated 

properties compared to values experimentally obtained. 
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7.3.2.3 Chemometric Modeling 

Chemometrics involve the application of multivariate analysis (MVA) to chemistry-relevant 

data. MVA uses many measured variables (X1, X2…..Xi) simultaneously to quantify a response or 

target variable (Y) (Martens and Naes 1990). In this case, X is thermogravimetric data and Y is the 

measured property. The PROC PLS package in SAS (SAS Institute, Inc. Cary, NC, USA) was used to 

develop both principal component regression (PCR) and partial least squares regression (PLS) 

models.  

PCR is a two-step process involving principal component analysis (PCA) and multiple linear 

regression (MLR). PCA reduces the dimensionality of a dataset by taking a set of correlated X variables 

and transforming them into a smaller set of uncorrelated variables known as principal components 

(PC) scores. In other words, assuming that there are n observations Xij on p correlated variables X1, 

X2,…,Xp, i = 1,…,n, j = 1,…, p, PCA finds new uncorrelated Z1, Z2,…,Zp that are linear combinations of  

X1, X2, …,Xp as 

Zi = ei1X1i + ei2X2i + …….+ eipXpi  & Var(Zi) = λi , i=1,…,p 

where λis (λ1 >λ2 >…>λp ) and ei are the eigenvalues and the corresponding eigenvectors of the 

covariance matrix of data matrix X (n by p). The coefficient, eij is a measure of the relevance of the jth 

original variable to the ith PC irrespective of the other variables. The coefficients, which are also 

known as eigenvectors or component loadings are proportional to the correlation between Zs and 

Xs; thus they can be used in the elucidation and interpretation of models. The values of the ith 

principal component are called the PC scores (i.e. Zs). PCR then regress the PC scores against a 

response variable, Y.  
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The model structure for PLS is similar to that of PCR. However, unlike PCR, PLS takes the Y variable 

into consideration and generate latent variables scores (LVs, synonymous to PCs in PCA) in such a 

way that the covariance between X and Y is maximized.  

Before exporting TG data into SAS (SAS Institute, Inc. Cary, NC, USA) for model construction, 

they were normalized to the dry mass (i.e. the temperature range associated with the loss of water: 

30 °C to 105 °C were excluded). A total of forty samples (i.e. 10 of each biomass type) were used in 

the calibration and full-cross validation (also known as leave-one-out cross validation) of 

chemometric models. The PROC PLS procedure, using either the NIPALS (i.e. non-iterative PLS) or 

PCR algorithm gave the optimum models as those with the absolute minimum predicted residual 

sum of squares (PRESS). The final optimum models were chosen as those that used a lesser number 

of LVs or PCs to give a PRESS value that was not statistically different (Hotelling’s T2
; p > 0.1) from 

the lowest PRESS value achieved with a higher number of LVs or PCs. The predictive performances 

of models were also assessed with the standard error of cross-validation (SECV), coefficient of 

determination (R2) and ratio of preformance to deviation (RPD).  

The chemical and proximate composition of forest residue used in this study is presented in 

Table 7.1.  
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Table 7.1: Properties of Loblolly Pine Biomass. 

 Lignin Cellulose 

Hemi-

celluloses Ash 

Volatile 

matter 

Fixed 

carbon 

Whole 37.3 a 31.0 a 24.1 a 1.8 a 81.4 a 9.8 a 

Wood & bark 35.9 a 38.9 b 22.8 a b 1.5 a 82.3 a 9.7 a 

Slash 43.7 b 25.2 c 22.1 a b 1.9 a 77.3 b 14.2 b 

Wood 33.5 c 42.7 d 20.3 b 0.4 b 84.7 c 8.9 a 

All 37.6 (4.2) 34.4 (7.4) 22.3 (3.0) 1.4 (1.0) 81.4 (2.8) 11.1 (3.1) 

All values are expressed on % oven-dry basis. Statistically different [Tukey Test, P<0.05] properties noted 

with different letters. Mean values (SD in bracket). N = 10 for each group. 

7.4 Results and Discussion 

7.4.1 Thermogravimetric Analysis 

Figure 7.1 shows representative TGs obtained for each biomass type when volatilized with 

the two temperature programs. The thermograms are an average (n = 10) for each of the four 

biomass types. In Figure 7.1(A), at about 150 oC, the devolatilization process starts, causing mass 

loss. The decomposition is steep until about 450 oC, after which the rate is more gradual. Maximum 

mass loss occurs approximately between 300 oC and 450 oC. The pyrolysis process removed 70% to 

80% of the dry mass of forest biomass. The residual mass decreased drastically when air was 

introduced to facilitate combustion, Figure 7.1(B). Under both pyrolytic and combustive 

environments, wood had the least residual mass whereas slash had the highest. These results could 

be attributed to slash having a significantly higher percentage of the more thermally stable lignin 

and incombustible inorganics; while wood had the least, Table 7.1. The relatively more similar 
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chemical and proximate composition of whole and wood and bark were made evident in their 

overlapping thermograms.    

 

Figure 7.1: Mass loss from thermal decomposition of forest biomass in (A) nitrogen and (B) nitrogen plus 
air. 

A DTG curve is a plot of the rate at which mass changes within a time range versus 

temperature (Bahadur and Sastry 2005). It can be used to determine the point at which mass loss is 

most apparent. From to the DTG curves in Figure 7.2, the highest rate of mass loss occurred at a 

slightly higher temperature for whole, wood & bark and wood (i.e. 420 oC) than it was for slash (400 

oC). This behavior of slash could be as a result of the significantly higher concentration of easily 

volatilized amorphous extractives compared to the other biomass types (i.e. whole = 4%, wood & 

bark = 2%, slash = 10%, wood = 3%) (Chow and Pickles 1971). The bulk of mass loss happened from 

150 oC to 550 oC as portrayed in the negative peak of the DTG. 
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Figure 7.2: DTG curves of forest biomass in nitrogen plus air. 

According to literature, this peak results from the overlap of the degradation of 

hemicellulose and celluloses. The presence of acetyl groups in the amorphous and branched 

hemicelluloses contribute to their relatively low thermal stability (Carrier et al. 2011; Yang et al. 

2006; Saldarriaga et al. 2005). The smaller shoulder peak at (350 oC) attributed to the 

decomposition of hemicelluloses was not as prominent in whole, wood & bark and slash, as it was 

in wood, and other studies reported in the literature. When a similar occurrence was encountered 

by Owen et al. (2015) the researchers attributed it to higher ash content of the samples. 

Degradation of lignin has been reported to occur over a wider temperature range, with significant 

mass loss occurring after 550 oC. This gives the flat tail in the DTG of lignocellulosic biomass, Figure 

7.2. There was a general upward shift in the temperature ranges that have been reported to 
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correspond to the degradation of the major chemical constituents of lignocellulosic biomass. This 

could be a consequence of the relatively high lignin content of samples used in this study, Table 7.1.  

7.4.2 Chemometric Modeling for Property Prediction  

Normalized TGs were used in the construction of PLS and PCR models. The PCR algorithm 

generally utilized more PCs to obtain the absolute minimum PRESS because the Y variables were not 

considered in the computations of PCs, Table 7.2. Considering parsimony, the final optimum models 

for prediction were chosen as those that used fewer LVs/PCs to give a PRESS value that was 

statistically the same as the absolute minimum PRESS; usually only two or three LVs/PCs could 

accomplish this. In the modeling of volatile matter, the minimizing number of factors and the 

smallest number of factors with p > 0.1 were the same. Once the final optimum LVs/PCs were 

chosen, both the PLS and PCR algorithms gave similar SEC and PRESS values, Table 7.2. This gave the 

assurance that the most stable and robust models had been selected. 

Table 7.2: Calibration statistics of TG-based chemometric models. 

 

PLS PCR 

 

SEC 

LVs 

(Opt) 

LVs 

(Sig) 

Press 

(Sig) SEC 

PCs 

(Opt) 

PCs 

(Sig) 

Press 

(Sig) 

Lignin 1.63 6 2 0.48 1.63 10 2 0.48 

Cellulose 3.44 3 2 0.58 3.45 4 2 0.58 

Volatile matter 0.78 2 2 0.31 0.78 2 2 0.31 

Fixed carbon 1.33 7 3 0.58 1.22 7 5 0.54 

Ash 0.49 3 2 0.86 0.51 3 3 0.83 
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The predictive statistics of the constructed models are presented in Table 7.3. The PLS 

models performed slightly better in predicting the understudied properties than PCR models 

because LVs are extracted in a way that optimally explains the variation in both predictor and 

response variables (Varmuza and Filmoser 2009; Martens and Naes 1990). The R2 -- which measures 

the degree of linear association between measured and predicted -- for cross-validated models 

ranged from a low of 0.32 (ash) to a high of 0.92 (volatile matter). Also, the RPD -- which gives an 

indication of the predictive adequacy of a model -- of models were from 0.59 (ash) to 3.58 (volatile 

matter). In the literature, a chemometric model with an R2 greater than 0.5 could be used in several 

applications ranging in sensitivity; from rough screening to quality assurance (Nkansah et al. 2010). 

Likewise, a model that has an RPD of 1.5 or greater can be employed for preliminary prediction and 

screening (Hein et al. 2009).  

  For the major chemical constituent, TG-based models were especially able to predict the 

lignin content of forest biomass (R2 – 0.82; RPD – 2.37 for both PLS and PCR), Table 7.3. The 

hemicelluloses were however poorly modeled when chemometrics was applied to TG data. 

Nonetheless, Carrier et al. (2011) were able to better estimate the hemicelluloses content of 

biomass by the deconvolution of DTGs. Their computations assumed a multi-component pyrolysis 

model in which hemicelluloses, cellulose and lignin have independent parallel reactions. However, 

as Cozzani et al. (1997) pointed out, these macro-components are intricately linked and the 

occurrence of their interactions during thermal degradation cannot be entirely overruled.  
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 Table 7.3: Predictive performance of TG-based chemometric models.  

 

PLS PCR 

 

SECV R2 RPD SECV R2 RPD 

Lignin 1.76 0.82 2.37 1.76 0.82 2.37 

Cellulose 4.01 0.70 1.85 4.02 0.70 1.85 

Volatile matter 0.79 0.92 3.58 0.79 0.92 3.58 

Fixed carbon 1.47 0.78 2.14 1.32 0.82 2.39 

Ash 1.39 0.32 0.59 0.82 0.37 1.28 

Note: Models developed with the smallest number of LVs/PCs that gave PRESS values statistically not 

different form the absolute minim PRESS. 

Chemometric models constructed for the volatile matter content of biomass had the best 

predictive performance (R2 – 0.92; RPD – 3.58). The predictive power for both PLS and PCR models 

for fixed carbon were also good. Unfortunately, models constructed for the ash content prediction 

didn’t do as well. As TGs are a function of the mass loss of organics as samples are heated, the 

incombustibility of the inorganics might not have been adequately captured, as such, the poor 

performance of the ash models.  

The performance of TG-based models developed in this study is similar to what have been 

reported in the literature for other widely utilized high throughput tools such as near infrared 

spectroscopy (NIR) (Acquah et al. 2015b; Ono et al. 2003) and Fourier transform infrared 

spectroscopy (FTIR) (Allison et al. 2009; Nuoponnen et al. 2006). TGA-based PLS models were 

constructed by Lande et al. (2010) to predict the furfuryl alcohol polymer content of Pinus sylvestris 

treated in a commercial plant. Depending on the pretreatment method used, as much as 94% of the 

variance could be accounted for. Comparing to NIR-based models, the authors concluded that both 
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tools had similar predictive powers; although more LVs were required in TGA models to attain this 

parity.  

Regression coefficients of PCs (i.e. obtained from PCR) were investigated to identify 

temperatures that were important in modeling the various thermo-chemical constituents. PCs 

instead of LVs were employed for model interpretation because as mentioned earlier, the PCR 

algorithm only regards the X data when extracting its factors; as such most of the information in the 

original data is preserved. Also in an earlier study, we had determined that PC loadings worked 

better than LV loadings for model interpretation (Via et al. 2014). A plot of the regression 

coefficients is presented in Figure 7.3. Peaks were noted at about 320 oC and 410 oC for cellulose 

and lignin respectively. This is a suggestion that these temperatures had significant influence in the 

thermal degradation of the two chemical components. In the kinetic studies of TG/DTG of 

lignocellulosic biomass, thermal decomposition of cellulose have been determined to occur from 

250 oC to 440 oC, while lignin degrades over a wider range (180 oC – 900 oC). Yang et al. (2006) 

reported that the maximum mass loss was obtained at 355 oC during the pyrolysis of pure cellulose. 

The authors could however not pinpoint the exact temperature at which the mass loss rate of lignin 

was highest. Instead, they noted that up until 700 oC, the rate of lignin degradation was slow (< 0.5 

wt%/oC) and this rate doubled at temperatures above 750 oC. 
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Figure 7.3: A plot of coefficients showing temperatures that had significant contribution in the 

prediction of thermochemical properties. 

The loadings plot of volatile matter was identical to that of cellulose and those for fixed 

carbon and lignin also looked similar. This suggests common latent variables are shared between 

these chemical and thermal reactivity properties. These findings buttress what has been reported in 

the literature that the thermally less stable polysaccharides are responsible for the volatile matter 

while the lignin with its higher percentage of elementary carbon and low oxygen contributes to the 

yield of fixed carbon (Yang et al. 2006; Periera et al. 2013; Williams and Besler 2013). A simple 

regression of cellulose versus volatile matter and lignin versus fixed carbon provided strong linear 

correlations between these properties (cellulose vs. volatile matter: R2 = 0.7, p < 0.05: lignin vs. 

fixed carbon: R2 = 0.77, p < 0.05), reinforcing the literature. 
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7.4.3 Comparing Chemometric and Kinetic Models  

Evaluation results of the performance of chemometric models compared to the kinetic 

models developed with temperature regimes adopted and modified from deconvolution studies 

reported in the literature are presented in Table 7.4.  

Table 7.4: Predictive performance of TG-based chemometric models versus kinetic models. 

  

SEC SECV RPD R2 

Lignin 

PCR 1.63 1.76 2.37 0.82 

KIN-1 1.72 4.56 0.63 0.83 

KIN-2 1.72 2.65 1.57 0.81 

Cellulose 

PCR 3.45 4.02 1.85 0.7 

KIN-1 3.28 14.56 0.45 0.76 

KIN-2 3.22 5.95 1.25 0.71 

Volatile matter 

PCR 0.78 0.79 3.58 0.92 

KIN-3 0.74 1.45 1.57 0.90 

Fixed carbon 

PCR 1.22 1.32 2.39 0.82 

KIN-3 1.07 3.42 0.59 0.73 

Ash 

PCR 0.51 0.82 1.28 0.37 

KIN-3 0.40 0.91 0.58 0.46 

 

Although the calibration errors associated with the two modeling approaches were similar, 

the cross validation errors were quiet high for the kinetic models; an indication that these models 

will poorly predict the understudied properties of future unknowns.  
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Between the kinetic models for chemistry, cellulose and lignin contents were better 

estimated with KIN-2 (i.e. cellulose as the mass loss occurring between 360 oC - 440 oC and lignin as 

the mass after 440 oC) than with KIN-1 (cellulose: 350 oC to 500 oC; lignin: after 500 oC). As can be 

seen from Table 7.4, the chemometric models outperformed the kinetic models in all instances. In 

addition to the superior predictive capability of TG-based chemometric models over the 

conventional deconvolution of DTG curves for quantitative analysis of biomass, chemometric 

modeling has several other advantages. 

Usually when TGA has been used in proximate analysis, heating regimes include 

temperature ramps and isothermal conditions in both inert and reactive gaseous atmospheres 

(Acquah 2010; Garcia et al. 2013). On the other hand, when TGA is used in kinetic studies for 

chemical composition estimation, samples are typically heated at a constant rate in an inert 

environment (Yang et al. 2006; Carrier et al. 2011). As such, in order to estimate the chemical and 

proximate composition of biomass, two separate experiments have conventionally been conducted. 

Using thermograms acquired under the inert conditions (total run time of 38 minutes), this 

study demonstrated that the chemical and thermal reactivity properties can be determined 

simultaneously when chemometrics is employed. In a recent study, Saldarriaga et al. (2015) were 

also able to determine several properties of lignocellulosic biomass from a single TG/DTG 

employing deconvolution and empirical modeling. The authors reported about a TGA procedure 

that occurred in both inert and oxidative environments. However, their methodology took over 240 

minutes of run time per sample. Thus, the 38 minute procedure developed in this current study 

presents a big improvement in time saving. 



178 
 

Furthermore, the application of chemometrics to TG data enabled the quantitative 

modeling of some monomeric sugars. This has not been possible with the deconvolution of DTGs. 

The fit statistics of models for predicting hemicellulose and its associated monomeric sugars is 

presented in Table 7.5. The predictive performance of the glucose model was good, with R2 of 0.77 

and RPD of 2.11; thus meeting the criteria for preliminary screening. This was however not the case 

for mannose and galactose. Apart from these two hexoses having similar chemical structures to that 

of glucose (i.e. epimers), these also combine to form galactoglucomannans, the major 

hemicelluloses of softwoods. As such, analytical tools such as TGA might have some difficulty in 

distinguishing / predicting them. However, by employing chemometrics in this study, elucidation of 

the PC loadings gave some insight into their thermal degradation.  

Table 7.5: Chemometric model statistics for monomeric sugars, hemicelluloses and holocellulose. 

 

PCs SEC SECV RPD R2 R2 
Adj 

Glucose 3 3.17 3.51 2.14 0.78 0.77 

Galactose 2 0.69 1.55 1.12 0.19 0.17 

Mannose 2 0.63 1.31 1.15 0.22 0.20 

Xylose 2 0.66 0.97 1.34 0.43 0.42 

Arabinose 3 0.33 0.38 1.92 0.72 0.72 

Hemicelluloses 3 0.98 2.81 1.08 0.11 0.09 

Holocellulose 2 3.43 4.09 1.76 0.67 0.66 
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A plot of the PC loadings is presented in Figure 7.4. PC 2 and PC 4 were essential in 

estimating the three sugars. The position of the peak in PC 2 suggests that significant 

devolatilization of these hexoses occurred at 338 oC. For mannose, PC 4 accounted for the most 

variation. PC 4 showed a more rounded peak ranging from 334 – 372 oC; with a maxima at 358 oC. 

This temperature shift could be due to the fact that mannose is the major component of the more 

stable backbone of galactoglucomannans (i.e. 0.1 - 1:1: 3 - 4) (Teleman 2009).  

TGA performed better at predicting the five-ringed sugars of xylose and arabinose. The 

errors associated with the arabinose model were lower probably because this sugar is less similar to 

the abundant glucose, compared to xylose. PCs 2 and 4 once again made significant contributions in 

the modeling of this pentose. Xylose, which has been used in TGA kinetic studies to represent 

hemicelluloses was predicted with lesser success (R2 = 0.43, RPD = 1.3). Unlike for the other 

monomeric sugars, PC 3 and PC 5 subsequently explained most of the variation in the thermal 

degradation of xylose, Figure 7.4. Decomposition of xylose started at a much lower temperature, 

with maximum mass loss occurring at 288 oC, Figure 7.4. Also, when Biagini et al. (2006) modeled 

commercial xylan as a model for hemicelluloses, they reported an onset degradation temperature 

of 253 oC, with bulk mass loss occurring at 299 oC. However, Werner et al. (2004) found out in their 

study that xylan decomposed in two stages, with significant mass loss at 243 oC - 292 oC. Results 

from the monomeric sugars chemometric models indicate that, thermal decomposition of 

hemicelluloses range from 282 oC to 372 oC. These are consistent with what have been reported in 

the literature using the deconvolution of thermograms (Fasina and lee 2009; Carrier et al. 2011; 

Naik et al. 2010; Yang et al. 2006). 
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Figure 7.4: Loadings of PCs showing temperatures that had significant contribution in the prediction of 

chemical composition. 

The poor prediction of the composite hemicelluloses could be a consequent of the difficulty 

in modeling mannose and galactose. However, TG-based chemometric models adequately 

predicted the holocellulose content of biomass. The holocellulose content could thus be used 

together with predicted cellulose content to provide a rough estimation of the hemicelluloses.  

7.5 Conclusions 

This study has demonstrated that chemometric modeling of thermogravimetric data can be 

used as an alternative approach to rapidly estimate the chemical and proximate composition of 

lignocellulosic biomass. Developed chemometric models had superior predictive capabilities than 

models constructed using the conventional deconvolution of TGs. PLS and PCR models calibrated 

with normalized TG data performed very well in predicting especially the lignin (R2 - 0.82; RPD - 
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2.37) and volatile matter (R2 - 0.92; RPD - 3.58) contents of forest-derived biomass. Examination of 

the loadings plots of PCR models suggested that significant degradation of cellulose and lignin 

occurred at around 320 oC and 410 oC respectively. Furthermore, these plots showed that common 

latent variables were shared between cellulose and volatile matter content; and between lignin and 

fixed carbon content.  

The methodology developed in this study involved a 38-minutes procedure that allowed the 

simultaneous estimation of the chemical and proximate composition of lignocellulosic biomass from 

the same TG data. In addition to its rapidity and simplicity, this approach enabled the prediction of 

some monomeric sugars. Moreover, elucidation of PC loadings suggested that the thermal 

degradation of xylose started at a much lower temperature, with significant mass loss occurring at 

288 oC, compared to the other monomeric sugars in lignocellulosic biomass. According to the 

literature, these have not been attainable by the conventional deconvolution of DTGs obtained 

from the composite lignocellulosic biomass. Further studies will be necessary to validate the 

capability of chemometrics to model the thermal degradation and quantitative prediction of the 

individual monomeric sugars. 
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Chapter 8 : Summary and Conclusions 

 

8.1 Screening Elite Loblolly Pine Families for Structural, Chemical and Bioenergy Applications 

using NIR 

Near infrared spectroscopy coupled with partial least squares was used to rapidly determine 

the density, strength properties, chemical composition and bioenergy potential of elite loblolly pine 

families. These properties will affect the processing of this essentially new feedstock, as well as the 

yield and quality of products to be derived. Furthermore, stakeholders would like to incorporate 

this information back into tree breeding programs that aim to further improve wood quality for 

different end users. 

The loblolly pine families were obtained from two genetic research plantations established 

in 2000. Cross-validated models developed with 1st-derivative treated NIR spectra and 

conventionally-acquired laboratory data to predict the density, MOE and MOR of the elite families 

had R2 values ranging from a low of 0.7 for density to a high of 0.75 for MOE; and the RPD values of 

all three models were higher than 1.5, the threshold that qualifies them as preliminary screening 

tools.  

Genotype of the loblolly pine families affected density, MOR and MOE. The interaction of 

family and site was significant for density and MOR, but not for MOE. The range of density, MOR 

and MOE as predicted by NIR for the elite families were: 0.37 g/cm3 (SD = 0.02) to 0.5 g/cm3 (SD = 

0.07); 34 MPa (SD = 10.2 MPa) to 150 MPa (SD = 14.4 MPa) and 7782 MPa (SD = 2237 MPa) to 

10946 MPa (SD = 2703 MPa) respectively.
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The MOR determined for the loblolly pine families were comparable to what has been 

reported in the literature for older loblolly pine trees, and the density higher than commercially 

sourced southern pines lumber. These results suggest that the elite families have improved the 

density and MOR. Further studies of the anatomical features of these families will however be 

required to ascertain these results.  

The robustness of NIR-based models developed were buttressed when One-way ANOVA 

comparing NIR-predicted MOE and acoustics-predicted MOE of loblolly pine families from the two 

forest sites showed no statistical difference. 

Finally, in spite of the significant family by site interaction, the structural-related properties 

of some families were consistently high or low irrespective of site. The density, MOR and MOE of 

A9, A1, A26 and A2 remained high whereas that of A33 and A21 remained low on the two study 

sites. Apart from the latter group being undesirable for structural applications, their low stiffness 

could also make them more vulnerable to inclement weather. 

For the chemical and bioenergy potential of the elite loblolly pine families, NIR-predicted 

means for the studied properties were as follows: extractives – 5.5% (SD = 1.1%), lignin – 30.7% (SD 

= 1.3%), cellulose – 39.7% (SD = 1.4%), glucose – 44.7% (SD = 1.7%), hemicelluloses – 20.5% (SD = 

0.4%), volatile matter – 84.2% (SD = 0.8%), fixed carbon – 14.9% (SD = 0.8%), ash – 0.2% (SD = 

0.03%) and HHV 19.0 MJ/kg (SD = 0.2 MJ/kg).   

Just as for the structural-related properties, genotype affected the chemical, proximate and 

energy traits of the elite loblolly pine families. Unlike for cellulose (P-value < 0.0001) and glucose (P-

value = 0.001) contents, less variations were noted among the families with respect to the contents 

of lignin (P-value = 0.0186), hemicelluloses (P-value = 0.0773) and extractives (P-value = 0.0077). 

The genetic variation detected for cellulose was the the largest (P-value < 0.0001). Considering that 
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the cellulose content (which is under strong genetic control) has very good correlations with other 

properties, selecting and breeding for cellulose could generate some gains. For instance it was 

determined that, families that had higher concentrations of cellulose also had higher density, 

modulus of rupture (ultimate strength) and modulus of elasticity (strength). In addition, the amount 

of cellulose will affect the yield of pulp or ethanol. However, tree breeders must bear in mind that 

the desired traits of the elite families might be unstable on different sites. Further studies with 

more sites would thus help estimate the extent of this family by site interaction.  

8.2 Rapid Assessment of Forest Biomass using NIR, FTIR and TGA 

 Apart from the contribution of loblolly pine wood to the conventional forest products 

industry, logging residues that will be available after harvest operations will play a key role in the 

emerging bioeconomy as new markets and technologies evolve.  

 NIR and FTIR were used to classify forest logging residue into the plant part components of 

wood, wood & bark, and slash. Being able to probe/monitor the variability of this feedstock means 

that the appropriate online adjustments to parameters could be made in time to ensure process 

optimization and product quality as biomass heterogeneity can influence its physical, chemical and 

thermochemical properties; and thus the final yield and quality of products. In addition, NIR and 

FTIR were used to determine the chemical composition, thermal reactivity and energy content of 

this resource. The ability to rapidly estimate these properties is vital in the optimization of 

conversion technologies for the successful commercialization of bio-based products.  

 Also, thermogravimetric analysis was used as another high throughput tool for the 

compositional analysis for forest-derived biomass. However, unlike the conventional kinetic 

modeling that is usually employed, this study explored the application of chemometric modeling of 
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thermogravimetric (TG) data as an alternative approach to estimate the chemical and proximate 

composition of lignocellulosic biomass.      

 For the qualitative analysis, five-fold cross-validated linear discriminant models that were 

developed with raw NIR and FTIR spectra had classification accuracies of over 96% in both cases. An 

extra factor/principal component (PC) was however needed to achieve this in FTIR modeling. 

Elucidation of factor loadings of both NIR and FTIR spectra showed that the statistically different 

amount of cellulose in the three plant part components of logging residue contributed to their 

initial separation. 

 For the quantitative assessment of biomass, partial least squares (PLS) regression models 

were used. In FTIR modeling, using only the fingerprint region (i.e. reduced spectra range) for model 

calibration did not compromise the predictive ability of models; instead, this mostly reduced the 

errors associated with prediction and improved the RPD values. 

 In predicting the chemical composition of the heterogeneous forest biomass, two or three 

latent variables were used in the development of models that had R2 values ranging from 0.68 to 

0.92, and RPD values of 0.87 to 2.83. The two tools had similar trends in their predictive capabilities. 

For instance in both cases, the models developed to predict the extractives content had better 

diagnostics whereas the models for predicting the hemicelluloses did not perform as well. In 

addition, the two tools did a better job of predicting the extractives and lignin content of forest 

biomass compared to the polysaccharides. 

 The energy content of biomass, a secondary trait which has been shown to have good 

correlation with the chemical components – especially extractives and lignin—where not predicted 

as well by both NIR and FTIR in this study. Likewise, PLS models developed for ash did not perform 

very well.  
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 Comparing the FTIR regression spectra for the models for extractives and energy content, 

some common wavenumbers/peaks were noted to have made significant contributions in the 

prediction of the two properties, thus supporting the literature about the proportional relationship 

between these two properties.   

 With respect to using TGA for the compositional analysis of lignocellulosic biomass, the 

alternative approach of applying chemometrics to thermogravimetric data enabled the 

simultaneous prediction of both the chemical and proximate properties from a single thermogram. 

In addition, chemometrics made it possible to quantitatively model some monomeric sugars. These 

have not been achievable with the conventional deconvolution of TG data. PLS and principal 

components regression (PCR) models (i.e. the chemometric models) constructed with normalized 

TG data both outperformed models developed via the conventional deconvolution of TG data. PLS 

and PCR models were especially robust in predicting the volatile matter (R2 = 0.92, RPD = 3.58) and 

lignin (R2 = 0.82, RPD = 2.40) contents of forest-derived biomass. Between the two chemometric 

models, PLS performed slightly better in predicting some of the understudied properties than PCR. 

Examination of the loadings plots of PCR models suggested that significant thermal 

degradation of cellulose and lignin occurred at around 320 oC and 410 oC respectively; whereas 

xylose started to decompose at a much lower temperature compared to the other sugars and lignin, 

with a significant mass loss occurring at 288 oC. 

When the predictive performance of PLS models developed with TG data, NIR spectra and 

FTIR spectra were compared for some chemical components and the thermal reactivity properties, 

the NIR models generally had better diagnostics. For example, the coefficient of determination (R2) 

between laboratory-measured and tool-predicted was higher for the NIR for % glucose, % cellulose 
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and % fixed carbon, Figure 8.1. Lastly, with the exception of ash content, the RPD values of models 

developed with all three analytical tools met the 1.5 preliminary screening criteria. 

 

Figure 8.1: R2 values of measured versus tool-predicted property. 
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8.3 Final Conclusions and Novelties 

Near infrared spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric 

analysis were used to rapidly and non-destructively determine several important properties that 

dictate the quality of wood and forest biomass as a feedstock for different utilization pathways. 

The first focus of this study was on the screening of elite loblolly pine families, an essentially 

new resource for their structural integrity as well as for their chemical and bioenergy potential. This 

study is the first to determine an array of important wood traits from a single chemistry-sensitive 

data. With the developed methodology, it was possible to sample a large number of trees, a 

necessary requirement in tree breeding programs. Of the eleven wood traits studied, it was 

determined that genotype affected all. In addition, it was established that there were significant 

interactions between the families and the sites studied. This is valuable information for land owners 

and tree breeders as they keep in mind that a family with a desirable trait might not perform 

consistently when planted on different forest sites. Apart from the practical application of this 

information in the short term during the establishment of loblolly pine plantations, tree breeders 

can also use this information to further improve desirable traits in superior families in the long 

term.  

The second emphasis of this dissertation was on forest biomass, an abundant but largely 

untapped resource. Prior to this current study, not much was known about the properties of this 

feedstock that has been projected to be a key contributor to the bioenergy portfolio as the United 

States strives for energy and national security. Moreover, apart from the more systematic 

characterization of this renewable resource, this study is the first to employ three high throughput 

analytical tools on the same materials with similar testing conditions and modeling techniques. As 

such, providing a more leveled comparison of the capabilities of these tools in the rapid assessment 
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of lignocellulosic biomass. Another novelty of this study is that, it demonstrated the potential of the 

chemometric modeling of thermogravimetric data. The developed methodology enabled the 

simultaneous prediction of both the chemical and proximate properties from data obtained in a 

single experimental run; this presents a significant gain in time savings. 

This study made important first steps in the development of standard methodologies that 

can be leveraged towards the other hundreds of loblolly pine families in tree improvement 

programs, as well as other types of lignocellulosic biomass. Consequently, the right feedstock can 

rapidly be made available to support the conventional forest products industry, as well as new 

biofuels and chemical production initiatives. 
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Appendices 

A: ANOVA results of NIR-predicted values and laboratory-measured values for density, MOR and 

MOE  

Density 
 
A1      

Source of Variation SS df MS F P-value 

Between Groups 0.028825 1 0.028825 3.95315 0.093943 

Within Groups 0.04375 6 0.007292   

      
Total 0.072575 7       

      
A2      

Source of Variation SS df MS F P-value 

Between Groups 0.047204 1 0.047204 5.204026 0.062694 

Within Groups 0.054424 6 0.009071   

      
Total 0.101629 7       

      
A5      

Source of Variation SS df MS F P-value 

Between Groups 0.044113 1 0.044113 4.585885 0.075996 

Within Groups 0.057716 6 0.009619   

      
Total 0.10183 7       

      
A9      

Source of Variation SS df MS F P-value 

Between Groups 0.016409 1 0.016409 1.474253 0.270293 

Within Groups 0.066781 6 0.01113   

      
Total 0.083189 7       
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A10      
Source of Variation SS df MS F P-value 

Between Groups 0.01497 1 0.01497 0.897913 0.379927 

Within Groups 0.10003 6 0.016672   

      
Total 0.115 7       

      
A15      

Source of Variation SS df MS F P-value 

Between Groups 0.004369 1 0.004369 0.4264 0.537963 

Within Groups 0.061481 6 0.010247   

      
Total 0.06585 7       

      
A21      

Source of Variation SS df MS F P-value 

Between Groups 0.001499 1 0.001499 0.124985 0.73578 

Within Groups 0.071937 6 0.011989   

      
Total 0.073435 7       

      
A26      

Source of Variation SS df MS F P-value 

Between Groups 0.000429 1 0.000429 0.043704 0.841323 

Within Groups 0.05891 6 0.009818   

      
Total 0.059339 7       

      
A33      

Source of Variation SS df MS F P-value 

Between Groups 0.029819 1 0.029819 1.74127 0.235092 

Within Groups 0.10275 6 0.017125   

      
Total 0.132569 7       
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A34      
Source of Variation SS df MS F P-value 

Between Groups 0.000121 1 0.000121 0.014088 0.909394 

Within Groups 0.051394 6 0.008566   

      
Total 0.051514 7       

      
A37      

Source of Variation SS df MS F P-value 

Between Groups 0.010682 1 0.010682 1.032314 0.348822 

Within Groups 0.062086 6 0.010348   

      
Total 0.072768 7       

      
F3      

Source of Variation SS df MS F P-value 

Between Groups 0.000364 1 0.000364 0.048237 0.833441 

Within Groups 0.045255 6 0.007542   

      
Total 0.045618 7       

      
F17      

Source of Variation SS df MS F P-value 

Between Groups 0.016059 1 0.016059 0.921044 0.374262 

Within Groups 0.104614 6 0.017436   

      
Total 0.120673 7       

      
F18      

Source of Variation SS df MS F P-value 

Between Groups 0.001141 1 0.001141 0.062523 0.810893 

Within Groups 0.109494 6 0.018249   

      
Total 0.110635 7       

      
F23      

Source of Variation SS df MS F P-value 

Between Groups 0.001753 1 0.001753 0.149634 0.712233 

Within Groups 0.070276 6 0.011713   

      
Total 0.072029 7       
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Lumber      
Source of Variation SS df MS F P-value 

Between Groups 0.003614 1 0.003614 4.606622 0.04573 

Within Groups 0.01412 18 0.000784   

      
Total 0.017734 19       

 

Modulus of rupture 

A1      
Source of Variation SS df MS F P-value 

Between Groups 445.4366 1 445.4366 0.402023 0.54944 
Within Groups 6647.929 6 1107.988   
      
Total 7093.366 7       

      
A2      

Source of Variation SS df MS F P-value 

Between Groups 1139.029 1 1139.029 1.446991 0.27432 
Within Groups 4723.023 6 787.1706   
      
Total 5862.052 7       

      
A5      

Source of Variation SS df MS F P-value 

Between Groups 1229.088 1 1229.088 1.154562 0.323896 
Within Groups 6387.297 6 1064.55   
      
Total 7616.386 7       

      
A9      

Source of Variation SS df MS F P-value 

Between Groups 166.5404 1 166.5404 0.158628 0.704209 
Within Groups 6299.29 6 1049.882   
      
Total 6465.83 7       

      
A10      

Source of Variation SS df MS F P-value 

Between Groups 166.586 1 166.586 0.082914 0.783074 
Within Groups 12054.83 6 2009.139   
      
Total 12221.42 7       
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A15      
Source of Variation SS df MS F P-value 

Between Groups 56.04758 1 56.04758 0.085869 0.779367 
Within Groups 3916.273 6 652.7122   
      
Total 3972.321 7       

      
A21      

Source of Variation SS df MS F P-value 

Between Groups 3.499335 1 3.499335 0.00214 0.964605 
Within Groups 9811.897 6 1635.316   
      
Total 9815.397 7       

      
A26      

Source of Variation SS df MS F P-value 

Between Groups 3.608641 1 3.608641 0.003042 0.957805 
Within Groups 7117.345 6 1186.224   
      
Total 7120.953 7       

      
A33      

Source of Variation SS df MS F P-value 

Between Groups 286.3225 1 286.3225 0.263673 0.625962 
Within Groups 6515.406 6 1085.901   
      
Total 6801.729 7       

      
A34      

Source of Variation SS df MS F P-value 

Between Groups 36.88546 1 36.88546 0.048685 0.832684 
Within Groups 4545.802 6 757.6336   
      
Total 4582.687 7       

      
A37      

Source of Variation SS df MS F P-value 

Between Groups 555.7945 1 555.7945 0.577899 0.475937 
Within Groups 5770.506 6 961.751   
      
Total 6326.301 7       

      
F3      

Source of Variation SS df MS F P-value 

Between Groups 194.8338 1 194.8338 0.229359 0.648953 
Within Groups 5096.825 6 849.4709   
      
Total 5291.659 7       
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F17      
Source of Variation SS df MS F P-value 

Between Groups 15.32088 1 15.32088 0.009217 0.926643 
Within Groups 9973.401 6 1662.234   
      
Total 9988.722 7       

      
F18      

Source of Variation SS df MS F P-value 

Between Groups 292.6869 1 292.6869 0.143433 0.717931 
Within Groups 12243.52 6 2040.587   
      
Total 12536.21 7       

      
F23      

Source of Variation SS df MS F P-value 

Between Groups 351.7348 1 351.7348 0.311472 0.596972 
Within Groups 6775.594 6 1129.266   
      
Total 7127.328 7       

 

Lumber      
Source of Variation SS df MS F P-value 

Between Groups 3876137 1 3876137 1.517728 0.233815 

Within Groups 45970333 18 2553907   

      
Total 49846470 19       

 

Modulus of elasticity 
 
A1      

Source of Variation SS df MS F P-value 

Between Groups 2054060 1 2054060 0.131798 0.729022 

Within Groups 93509762 6 15584960   

      
Total 95563822 7       

      

A2      
Source of Variation SS df MS F P-value 

Between Groups 2480433 1 2480433 0.320575 0.591793 

Within Groups 46424660 6 7737443   

      
Total 48905092 7       
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A5      
Source of Variation SS df MS F P-value 

Between Groups 2358249 1 2358249 0.294351 0.606994 

Within Groups 48070106 6 8011684   

      
Total 50428355 7       

      
A9      

Source of Variation SS df MS F P-value 

Between Groups 6715196 1 6715196 0.687279 0.43882 

Within Groups 58624199 6 9770700   

      
Total 65339395 7       

      
A10      

Source of Variation SS df MS F P-value 

Between Groups 1717082 1 1717082 0.076639 0.791195 

Within Groups 1.34E+08 6 22404863   

      
Total 1.36E+08 7       

      
A15      

Source of Variation SS df MS F P-value 

Between Groups 13415.22 1 13415.22 0.001231 0.973147 

Within Groups 65373203 6 10895534   

      
Total 65386618 7       

      
A21      

Source of Variation SS df MS F P-value 

Between Groups 679020.3 1 679020.3 0.030532 0.867036 

Within Groups 1.33E+08 6 22239668   

      
Total 1.34E+08 7       
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A26      
Source of Variation SS df MS F P-value 

Between Groups 12403.13 1 12403.13 0.000707 0.979644 

Within Groups 1.05E+08 6 17533856   

      
Total 1.05E+08 7       

      
A33      

Source of Variation SS df MS F P-value 

Between Groups 347944.8 1 347944.8 0.033852 0.860083 

Within Groups 61670343 6 10278390   

      
Total 62018288 7       

      
A34      

Source of Variation SS df MS F P-value 

Between Groups 131430.6 1 131430.6 0.009931 0.923866 

Within Groups 79409397 6 13234900   

      
Total 79540828 7       

      
A37      

Source of Variation SS df MS F P-value 

Between Groups 26576.65 1 26576.65 0.003408 0.955343 

Within Groups 46790173 6 7798362   

      
Total 46816749 7       

      
F3      

Source of Variation SS df MS F P-value 

Between Groups 292344.8 1 292344.8 0.019875 0.8925 

Within Groups 88254050 6 14709008   

      
Total 88546395 7       

      
F17      

Source of Variation SS df MS F P-value 

Between Groups 270480.1 1 270480.1 0.011315 0.918755 

Within Groups 1.43E+08 6 23905020   

      
Total 1.44E+08 7       
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F18      
Source of Variation SS df MS F P-value 

Between Groups 509444.2 1 509444.2 0.028292 0.871951 

Within Groups 1.08E+08 6 18006772   

      
Total 1.09E+08 7       

      
F23      

Source of Variation SS df MS F P-value 

Between Groups 10333058 1 10333058 0.664763 0.446033 

Within Groups 93263825 6 15543971   

      
Total 1.04E+08 7       

 

Lumber      
Source of Variation SS df MS F P-value 

Between Groups 435.2445 1 435.2445 2.885759 0.106584 

Within Groups 2714.849 18 150.8249   

      
Total 3150.094 19       

 


