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Abstract 

 

 Functional Magnetic resonance imaging (fMRI) is a noninvasive neuroimaging technique 

that measures brain activity by detecting changes associated with blood flow. This technique has 

been widely used in radiology, biomedical research, and clinic diagnostics. Clustering is one of 

the most popular techniques for fMRI data analysis. The goal of clustering is to group objects in 

a way such that objects in the same cluster are similar to each other whereas objects in the 

different clusters are dissimilar. The commonly used k-means clustering and semi-supervised 

clustering methods require the number of clusters to be predefined, which is difficult to be 

determined in the majority of real data. Thus, in this dissertation, three unsupervised clustering 

methods were specifically chosen, which did not require a priori specification of the number of 

clusters. We investigated the feasibility of these methods in three different fMRI studies.  

In the first study, the selected unsupervised methods were adopted on resting-state functional 

magnetic resonance imaging connectivity measures to investigate whether the clinical diagnostic 

grouping of different disorders is grounded in underlying neurobiological and phenotypic 

clusters. A general analysis pipeline was derived along with three supplementary analyses, i.e., 

site-specific analysis, outlier subject elimination, and enrichment analysis. The effectiveness of 

proposed methods were verified on different disorders and the results suggest that 
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neurobiological and phenotypic biomarkers could potentially be used as an aid by the clinician, 

in additional to currently available clinical diagnostic standards, to improve diagnostic precision.  

In the second study, we investigated the perforant pathway between entorhinal cortex and the 

hippocampus during encoding task by applying the selected clustering methods on the functional 

connectivity between cortical layer II of entorhinal cortex and hippocampus. The result showed 

that the functional connectivity between EC layer II and hippocampus parcellated the 

hippocampus into proximal and distal regions along perforant pathway. This parcellation was 

based on our observation of stronger connectivity between layer II of EC with hippocampal 

subfields such as DG/CA4/CA3/CA2 which are proximal to the EC along the perforant pathway, 

compared to subfields such as CA1/Subiculum which are distal. Further, this pattern was true 

more for the left, rather than the right, hippocampus. Our results provide the first direct non-

invasive functional evidence for the perforant pathway in humans.  

In the third study, we employed selected clustering methods on functional connectivity between 

the hippocampus and different layers of the dorsal attention network and the default mode 

network to investigate HERNET (hippocampal encoding/retrieval and network) model, which 

proposed an encoding/retrieval dichotomy with the anterior hippocampus more connected to the 

dorsal attention network during memory encoding, and the posterior portions more connected to 

the default mode network during retrieval. Our results support some predictions of the HERNET 

model including anterior-posterior gradient along the long axis of the hippocampus. While 

preferential relationships between the entire hippocampus and DAN/DMN during 

encoding/retrieval, respectively, were observed as predicted, anterior-posterior specificity in 



 iv 

these network relationships could not be confirmed. The strength and clarity of evidence 

for/against the HERNET model were superior with layer-specific data compared to conventional 

volume data. 
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Chapter 1  
Introduction 

1.1 Overview of fMRI 

Functional magnetic resonance imaging (fMRI) is a noninvasive neuroimaging technique that 

measures brain activity by detecting changes associated with blood flow [1] [2]. This technology 

has been widely used in radiology [3], biomedical research [4] [5], and clinic diagnostics [6] [7]. 

In the early 1990s, fMRI was first introduced to the world [1] and has rapidly become one of the 

most valuable tools in brain mapping research. The reason for this explosion is that fMRI 

provides an unprecedented ability to safely and noninvasively detect brain activity, e.g., it does 

not require people to undergo shots, surgery, or to ingest substances, or to be exposed to ionizing 

radiation, etc. Also, it provides superb spatial resolution and relatively good temporal resolution 

compared to previous methods such as positron emission tomography (PET). 

1.1.1 Blood-oxygen-level Dependent and Hemodynamic Response 

The primary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast, 

discovered by Seiji Ogawa [2]. It works by detecting the changes in blood oxygenation and flow 

that occur in response to neural activity [8]. 

Although brain does not store glucose, it is considered as one of the most critical sources of 

brain's energy. When neurons become active getting them back to their original state requires 

energy, which is produced from glucose, to actively pumping ions back and forth across the 

neuronal cell membranes. More blood flows in to transport more glucose. It also brings in more 
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oxygen in the form of oxygenated hemoglobin (Hb) molecules in red blood cells. This is from 

both a higher rate of blood flow and an expansion of blood vessels. The blood-flow change is 

localized to within 2 or 3 mm of where the neural activity is. Usually, the brought-in oxygen is 

more than the oxygen consumed in burning glucose, and this causes a decrease in deoxygenated 

hemoglobin (dHb). Since dHb is more magnetic than Hb, this difference leads to an improved 

magnetic resonance (MR) signal, which can be used to determine which neurons are active at a 

time. To summarize, neuronal activity and cerebral blood flow are coupled in such a way that 

when neuron fires, it consumes more oxygen and to meet this demand blood flow increases to 

the active neuron. Since the amount of blood that is sent to the neuron is more than the amount 

that is required, it leads to a relative surplus in local blood oxygen. The MR signal measured in 

fMRI depends on this change in oxygenation which is referred to as BOLD signal [2]. 

The changes in MR signal from the neuronal activity is called the hemodynamic response 

(HDR), which is the increase in blood flow that follows a brief period of neuronal activity [2]. 

Figure 1.1 depicts an example of HDR, which shows two obvious behaviors. First, there is a 

latency (about 1-2 sec) between HDR and neuronal events, since it takes that long for the 

vascular system to respond to the brain's need for glucose. Second, after rises to a peak (about 5 

sec), it drops down below the baseline (which is called undershoot) and last for 15-20 sec to 

return to the baseline. There is some evidence that continuous metabolic requirements in a brain 

region contribute to this undershoot.  

1.1.2 Spatial and Temporal Resolution 

The spatial resolution of an fMRI image refers to how well it discriminates between nearby 

locations. It is measured by the size of voxels, which is a three-dimensional rectangular cuboid, 
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whose dimensions are determined by several factors, e.g., the slice thickness, the area of a slice, 

etc. The spatial resolution usually ranges from 1 to 5mm. A full brain scan uses larger voxels 

while a region of interest (ROI) study within the brain typically uses smaller voxels. Novel 

techniques have been developed to improve the spatial resolution. Ultra-high-resolution MRI or 

MR spectroscopy works at a resolution of tens of micrometers [9]. It uses 7T fields, small-bore 

scanners that can fit small animals and external contrast agents. Parallel imaging is another 

technique to improve spatial resolution [10]. It uses multiple coils for excitation and reception. 

Spatial resolution improves as the square root of the number of coils used.   

 

Figure 1.1 An example of the hemodynamic response. 

Temporal resolution is the smallest time period of neural activity reliably separated out by 

fMRI. One element deciding this is the sampling time (TR). For every TR, a 3D volume image is 

generated by the scanner. All 3D images generated during the scan can be put together to form a 

4D volume image. Nowadays, the temporal resolution can reach to as small as 200ms.  The 

temporal resolution of fMRI is limited by multiple factors, e.g., recovering time for net 

magnetization, a long latency for blood-flow operation, etc. Many techniques have been 
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proposed to address these issues. One method is to use multiple coils to speed up acquisition 

time [11]. Another technique is to decide which parts of the signal matter less and drop those 

[12]. 

1.1.3 fMRI Analysis 

The analysis of fMRI data is made complex by a number of factors. First, the data are affected 

by many artifacts, e.g., head movement, respiration, etc. Second, there are a variety of sources of 

variability in the data, including variability between individuals and variability across time 

within individuals. Third, the dimensionality of the data is very large, which causes a number of 

challenges in comparison to the small datasets that many scientists are accustomed to working 

with.   

The main components of fMRI analysis are described below. 

• Quality control: ensure the data is not corrupted by artifacts. 

• Distortion correction: the correction of spatial distortions. 

• Motion correction: the realignment of scans across time to correct head motion. 

• Slice timing correction: the correction of differences in timing across different slices in 

the image. 

• Spatial normalization: the alignment of data from individuals into a common spatial 

framework so that they can be compared in a group analysis.  

• Temporal filtering: the filtering of the data in time to remove high-frequency noise. 

• Statistical inference: the estimation of statistical significance of the results, correcting for 

a large number of statistical tests performed on the brain. 
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• Clustering and classification: the partition of the brain or a group of subjects based on 

homogeneous and heterogeneous characteristics. 

• Visualization: Visualization of the results and estimation of effect sizes. 

In the early days of fMRI, there is no open source fMRI software, which can be used to 

analyze fMRI data systematically. Nowadays, there are many comprehensive software packages 

for fMRI analysis, each of which has its pros and cons.  

Statistical Parametric Mapping (SPM) was the first widely used and openly distributed 

software package for fMRI analysis, which was developed by Karl Friston and colleagues in the 

lab at University College London [13]. SPM started in the early 1990s as a program for analysis 

of PET data and was then adapted in the mid-1990s for analysis of fMRI data. It remains the 

most popular software package for fMRI analysis. SPM was built in MATLAB, which makes it 

accessible for a very broad range of computer platforms. In addition, MATLAB code is 

relatively readable, which makes it easy to check the code and understand thoroughly what has 

been done by the programs. Even if one does not use SPM as a primary analysis package, many 

of the MATLAB functions in the SPM package are useful for processing data, reading and 

writing data files, etc. SPM is also extensible through its toolbox functionality, and a large 

number of extensions are available via the SPM Web site. One unique feature of SPM is its 

connectivity modeling tools, including psychophysiological interaction and dynamic causal 

modeling. The visualization tools available with SPM are relatively limited, and many users take 

advantage of other packages for visualization. 

FMRIB Software Library (FSL) is one of the most popular software package in recent years, 

which was developed by Stephen Smith and colleagues at Oxford University in 2000 [14]. It has 
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several desired characteristics. First, FSL has been at the front edge of statistical modeling for 

fMRI data, developing and implementing a number of novel modeling, estimation, and inference 

techniques that are implemented in their FEAT, FLAME, and RANDOMISE modules. Second, 

FSL includes a robust toolbox for independent components analysis (ICA), which has become 

very popular both for artifact detection and for modeling of resting-state fMRI data. Third, FSL 

includes a sophisticated set of tools for analysis of diffusion tensor imaging data, which is used 

to analyze the structure of white matter. FSL includes an increasingly powerful visualization tool 

called FSLView, which includes the ability to overlay a number of probabilistic atlases and to 

view time series as a movie. Another major advantage of FSL is its integration with grid 

computing, which allows for the use of computing clusters to greatly speed the analysis of very 

large datasets. 

Analysis of Functional NeuroImages (AFNI) was created by Robert Cox and his colleagues, 

first at the Medical College of Wisconsin and then at the National Institutes of Mental Health 

[15]. Its primary strength is in its very powerful and flexible visualization abilities, including the 

capacity to integrate visualization of volumes and cortical surfaces using the SUMA toolbox. 

AFNI's statistical modeling and inference tools have historically been less sophisticated than 

those available in SPM and FSL. However, recent work has integrated AFNI with the R 

statistical package, which allows a use of more sophisticated modeling techniques available 

within R. 

Although there are a variety of software packages that can be adopted for fMRI analysis, the 

overall processing stream looks similar. Figure 1.2 depicts the general processing stream for 

SPM, FSL and AFNI in fMRI data analysis. From the figure, it can be seen that SPM spatial 
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normalization is applied prior to statistical analysis, whereas in FSL and AFNI it is applied to the 

output of the statistical analysis. However, the major procedures are the same between these 

packages.   

1.1.4 Preprocessing fMRI Data 

The 4D volume fMRI data acquired from the scanner cannot be used directly for brain 

functionality analysis. A preprocessing pipeline needs to be applied to detect and repair potential 

artifacts in the data, or prepare the data for later processing. Although preprocessing of fMRI 

data varies between using different software packages, there is a standard set of methods to be 

chosen from. 

Distortion Correction 

Due to the inhomogeneity of the main magnetic field caused by the air-tissue interfaces, the 

acquisition of fMRI suffers from two forms of artifacts, which are referred to as dropout and 

geometric distortion. Dropout is seen as reduced signal in the brain areas adjacent to air-tissue 

interfaces. Once the data has been acquired, there is no way to recover data from dropout area. 

Thus, it is necessary to develop a method to reduce dropout. In addition to the signal loss, fMRI 

images can also be spatially distorted in the same regions. When gradients are applied to encode 

spatial information in the MRI image, the inhomogeneity in the magnetic field results in errors in 

the location of structures in the resulting images. These distortions make it difficult to align 

fMRI data with structural images.  



 8 

 

Figure 1.2 Processing stream of fMRI analysis using different software packages. 

One of the most effective ways to correct inhomogeneity of magnetic field is to apply a field 

map [16]. The field map can be computed by comparing the phase difference between two fMRI 

images obtained at two echo times. By inverting this map, the original location of the data in 

each voxel can be easily determined. Pass-band balanced-steady-state free procession (b-SSFP) 

fMRI is another developed method to minimize dropout and spatial distortion [17]. It utilizes 

rapid radio frequency excitation pulses combined with fully balanced gradient pulses during each 

excitation repetition interval.  
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Figure 1.3 A depiction of interleaved MRI acquisition. The slices are acquired in the order 1-7-2-

8-3-9-4-10-5-11-6. 

Slice Timing Correction 

Most of the fMRI data are collected using two-dimensional MRI acquisition, in which the data 

are acquired one slice at a time either in ascending/descending order or by acquiring the odd 

slices followed by the even slices (referred to as interleaved acquisition; see Figure 1.3). Thus, 

data in different part of the image are acquired at different times. These differences in the 

acquisition time of different voxels can cause huge problems for fMRI analysis. For example, 

using these data to create a statistical model can lead to a mismatch between the model and the 

data that varies across the brain. To avoid this issue, slice timing correction was developed [18] 

by interpolating the data in all slices to match the timing of a reference slice (Figure 1.4). 

Different data interpolation methods have been proposed for slice timing correction including 

linear, sinc and cubic spline interpolation.  
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Figure 1.4 A depiction of slice timing correction. The blue line corresponds to the original time 

series from a single voxel in the slice acquired at the beginning of each volume acquisition. The 

red line reflects the interpolated timecourse that would be obtained to correct this slice to match 

the center slice. 

Motion Correction 

Motion correction of fMRI data is a commonly used procedure prior to data analysis. There are 

two major effects of head motion: it leads to a mismatch of the location of subsequent images 

obtained at different times, and it can result in disruption of the MRI signal. These effects can be 

corrected by using a rigid-body registration, i.e., translations in three directions and rotations in 

three directions. Each image in the fMRI time series is aligned to a reference image, and the 

images are then resliced to create realigned versions of the original data.  A lot of registration 

algorithms have been developed, e.g., Roger Woods' automated image registration (AIR) method 

[19] [20], Jiang's Prospective Acquisition CorrEction (PACE) method [21], Ostuni's 3D sync-

interpolation method [22], etc. 
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Coregistration and Normalization 

Most fMRI studies try to reach a generic conclusion that is applicable to not only the study 

itself, but also other studies. This requires coregistration and normalization to integrated fMRI 

images across individuals. Coregistration refers to the alignment between functional and 

structural images from the same subject, which is often done by mapping functional images into 

anatomical spaces. On the other hand, normalization, which refers to the alignment of image to a 

standard template, is to eliminate the variability of brain shape from different. Coregistration and 

normalization differ in the transformation algorithm. Coregistration usually adopts rigid-body 

transformation with six parameters to register images, whereas normalization uses a nine-

parameter transformation with another three additional parameters accounting for scaling 

differences on x, y, and z axis. Although the algorithms employed in these two procedures may 

different, the basic idea is similar, i.e., defining a cost function with the goal to minimize the 

differences on image parameters among images. The cost function can be the mutual 

information, entropy correlation coefficient, or sum of the squared difference plus membrane 

energy of the deformation field. Different templates can be selected as a target for individual 

images alignment. One of the commonly used templates for normalization is the Montreal 

Neurological Institute (MNI) template, which was developed to provide an MRI-based template 

that would allow automated registration rather than landmark-based registration [23].  

Temporal Filtering 

Temporal filtering aims to remove or attenuate noise and artifacts within the raw signal, which 

may come from thermal noise, physiological noise from heart beat and breathing, or magnetic 

field shifting, etc. The idea is to decide which frequencies band are noise so that they can be 
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removed by using a filter (low-pass, high-pass, or band-pass; see figure 1.5) corresponding to 

that band. 

Spatial Smoothing 

Spatial smoothing is the idea of averaging the intensities of nearby voxels to produce a smooth 

spatial map of intensity across the image. This equals to apply a low-pass filter on the image so 

that high frequencies of the signal are removed while enhancing low frequencies. This procedure 

leads to a blurred image and spatial correlation within the image is more pronounced. The 

standard procedure of spatial smoothing is employed by convolving the fMRI image with a 

Gaussian function of a specific width, which is called Gaussian kernel. The width of the kernel 

determines how much the data is smoothed (see Figure 1.6), which is usually expressed as Full 

Width at Half Maximum (FWHM). 

 

Figure 1.5 An example of filters applied to fMRI image. The low-pass filter blurs the image 

whereas a high-pass filter enhances the edges in the image. 

1.2 Overview of Clustering 

Original                                              Low Pass                                           High Pass
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Machine learning is a subfield of computer science, which gives the computers the ability to 

learn without being explicitly programmed [24]. It explores statistical models and construction of 

algorithms that can derive from and make predictions on data. In the past decade, machine 

learning has been employed in various areas, e.g., self-driving car, practical speech recognition, 

effective web search, gene expression, etc. Machine learning tasks are typically classified into 

three broad categories--supervised learning, reinforcement learning, and unsupervised learning--

depending on the nature of the learning data available to a learning system. In supervised 

learning, the training data given to the computer corresponds to the desired label. A supervised 

learning algorithm analyzes the training data and produces an inferred function, which can be 

used for mapping new examples. In reinforcement learning, the machine interacts with its 

environment by producing actions. These actions affect the state of the environment, which in 

turn results in the machine receiving some scalar rewards. The goal of the machine is to learn to 

act in a way that maximizes the feature rewards it receives over its lifetime. In unsupervised 

learning, a machine is trained to discover hidden structure from data. In contrast to supervised 

learning and reinforcement learning, the data given to the learner are unlabeled, i.e., there is no 

error or reward signal to evaluate a potential solution. The most common unsupervised learning 

method is clustering, which is used for exploring the unknown nature of data through the 

separation of a finite dataset, with little or no ground truth, into a finite and discrete set of 

“natural” hidden data structures [25] [26]. 

1.2.1 Clustering Definition 

Given a set of data, the target of clustering is to group them into a certain number of clusters so 

that data in the same cluster are similar to each other while data in different clusters are 
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dissimilar (Figure 1.7). Due to the inherent subjectivity of clustering, there is no universally 

agreed-upon definition of the term cluster. Thus, no criterion has been established to evaluate the 

effectiveness of all clustering techniques [27]. Depending on the problems and data properties, 

the definition of cluster differs from one to another. Despite this difficulty, several definitions are 

still valid: 

 

Figure 1.6 The effect of spatial smoothing on fMRI image with different width of Gaussian 

kernel. 

• A cluster is a set of data objects that are similar to each other while data objects in 

different clusters are different from one another. 

Original                                                4mm FWHM 

6mm FWHM                                             8mm FWHM 
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• A cluster is a set of data objects such that the distance between an object in a cluster and 

the centroid of the cluster is less than the distance between this object to the centroids of 

any other clusters. 

• A cluster is a set of data objects such that the distance between any two objects in the 

cluster is less than the distance between any object in the cluster and any object not in it. 

• A cluster is a continuous region of data objects with a relatively high density, which is 

separated from other such dense regions by low-density regions. 

 

Figure 1.7 An example of clustering. Given some data points (left), the target of clustering is to 

group them into different clusters (right). In this case, three clusters and noise are marked using 

different colors. 

From the above definitions, it can be seen that the internal homogeneity and external 

separation are the two emphasized conditions in the clustering [28]. 

1.2.2 Clustering Procedure 
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In general, clustering analysis consists of the following four basic steps, i.e., feature selection, 

clustering algorithm selection, validation, result interpretation, which are equally important and 

closely related.  

Feature selection or extraction. Feature selection picks distinguishing features from a set of 

candidates, whereas feature extraction uses some transformations to create new features from the 

original ones [29] [30]. Feature extraction is potentially capable of generating features that could 

be of better use in separating dataset. However, those features may not be physically 

interpretable and therefore are difficult to understand. In contrast, feature selection assures the 

retention of the original physical meaning of the selected features.  

1) Clustering algorithm selection. The selection of the clustering algorithm is usually 

accompanied with two questions: what type of distance measure should be used and what 

kind of optimization function should be selected. Intuitively, data objects are grouped 

into different clusters according to whether they are similar with each other or not in 

terms of distance. Almost all clustering algorithms are explicitly or implicitly related to 

some specific definition of distance measures. Some algorithms even work directly on the 

distance matrix. Once the distance measure is determined, clustering analysis could be 

considered as an optimization problem with a specific criterion function. 

2) Validation. Given an input dataset, the clustering algorithm always produces a separation 

ever if there is no structure in the data. Moreover, different clustering algorithms usually 

lead to different clustering results. Even for the same algorithm, the selection of a 

parameter or the presentation order of input data may affect the final results. Therefore, 

effective evaluation criteria are critically important to the entire clustering process. 
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3) Result interpretation. This step can be easily ignored, although it is as important as the 

other three steps as the ultimate goal of clustering is to provide a better understanding of 

the data. 

1.2.3 Distance (Similarity) Measures 

Clustering algorithms are derived based on the distance measures of data object, each 

described by a set of features, denoted as a multidimensional vector. The features can be 

quantitative or qualitative, continuous or discrete, which leads to different measure mechanisms.  

Given two data objects 𝒁!  and 𝒁! , 𝒁! = 𝑍!!,  𝑍!!,⋯ ,𝑍!"  ∈  ℝ! , where 𝑑  equals to the 

number of features. The commonly used distance measures are described below. 

Distance Measures of Numeric Data 

When the dimension of data object is numeric, the general distance measure is called the 

Minkowski (or 𝐿! 𝑛𝑜𝑟𝑚) distance [31], which is defined as, 

                                         𝐷 𝒁! ,𝒁! =  ( |𝑍!" − 𝑍!"|!!
!!! )!/!                                        (1.1) 

When 𝑝 = 1, this is equivalent to Manhattan distance, whereas when 𝑝 = 2, this is equivalent 

to Euclidean distance. This measure is independent of the underlying data distribution, thus it has 

been widely used in different clustering algorithms, e.g., fuzzy c-means, k-means, etc [32] [33] 

[34]. 

Minkowski distance measure, although taking into consideration the distribution of each 

feature dimension, assumes that the feature dimensions are independent of each other. However, 

if feature dimensions have some correlations with each other, this measure might affect 
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clustering result. To consider the correlations among different feature dimensions, Mahalanobis 

distance measures [35] can be used, which is defined as, 

                                              𝐷 𝒁! ,𝒁! =  𝒁! ,𝒁!
!𝑺!! 𝒁! ,𝒁!                                          (1.2) 

Where 𝑺 represents the within-cluster covariance matrix. Mahalanobis distance measure has 

been used ellipsoidal ART clustering and hyper-ellipsoidal clustering algorithms [36] [37]. When 

features are not correlated, this measure is equivalent to squared Euclidean distance measure.  

Cosine similarity [38] is another commonly used distance measure when the direction of the 

data is mainly considered rather than the magnitude of the data. The definition of Cosine 

similarity between two data objects is shown below: 

                                                        𝐷 𝒁! ,𝒁! =  𝒁!
!𝒁!

| 𝒁! | ||𝒁!||
                                                 (1.3) 

Cosine similarity measures normalized inner product between data objects, which is commonly 

used in document clustering [39]. 

Distance Measures of Categorical data 

There is no ordering between categorical values, thus only the similarity can be measured, i.e., 

the overlap between two categorical data objects. Hamming distance [40] is one of the most 

popular distance measures of categorical data, which counts the number of attributes that need to 

be changed in order to match one another. The ratio of number of changes to number of all 

attributes can then be used to determine the similarity between two data objects.  

Jaccard similarity [41] is another commonly used measure, which is defined as  
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                                   𝐷 𝒁! ,𝒁! =  !"#$(𝒁!∩ 𝒁!)
!"#$(𝒁!∪𝒁!)

                                                   (1.4) 

Where 𝒁! ∩  𝒁! computes the intersection between two objects, whereas 𝒁! ∪  𝒁! computes the 

union between two objects.  

1.2.4 Clustering Algorithms 

Different clustering algorithms are derived based on different cluster models, which include 

connectivity model, centroid model, distribution model, density model, subspace model, group 

model, and graph-based model. The most appropriate clustering algorithm for a particular 

problem often needs to be chosen experimentally. Also, an algorithm that is designed for one 

particular model has no chance to work on a data set that contains a radically different kind of 

model [42].  

Connectivity-based Clustering 

Connectivity based clustering, also known as hierarchical clustering [43] [44], organizes 

objects into a hierarchical tree structure, where each node in the tree represents a cluster. It can 

be performed either from singleton clusters to a cluster including all objects or vice versa. The 

former is known as agglomerative hierarchical clustering, and the latter is called divisive 

hierarchical clustering. Compared with agglomerative clustering, divisive clustering is more 

computationally expansive. Thus, agglomerative clustering is often preferred [45]. However, 

divisive clustering provides clearer insights into the main structure of the data. This is because 

that the larger clusters are generated at the early stage of the clustering process and are less likely 

to suffer from the accumulated erroneous decisions, which cannot be corrected by the successive 

process [46].  
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In both agglomerative and divisive algorithm, the distance between two clusters is determined 

by linkage criterion. There are three commonly used linkage criterion--single linkage, complete 

linkage, and average linkage [47]. The single linkage defines the distance between two clusters 

as the distance between their two closest objects. It may cause the chaining problem, which 

forces clusters together due to single objects being close to each other. Complete linkage uses the 

maximum distance between two clusters as their distance. It is useful if objects are in high-

dimensional space. However, it is unsuitable for dataset with a lot of noise, since outliers are 

given more weight in the cluster decision. Average linkage takes the mean distance between all 

pairs of objects in two clusters. It is more computationally intensive than other two linkages, but 

it can avoid the chaining problem without giving larger weight to outliers.    

Hierarchical clustering is one of the most popular clustering methods due to the fact that 

clusters can be navigated at different levels. However, the time complexity and space complexity 

of this algorithm are very high. Also, errors in merging clusters cannot be undone and will affect 

the result.  

Centroid-based Clustering 

In centroid-based clustering, clusters are characterized by a center vector. With the fixed 

number of clusters (k), each object is assigned to one specific cluster. Centroid-based clustering 

can be constructed as an optimization problem with a pre-specified cost function.  

The k-means algorithm is one of the best-known centroid-based clustering algorithms [48] 

[49]. It is based on an iterative optimization procedure to seek an optimal k partition of data with 

k predefined. K-means works well for many practical problems, particularly when the resulting 

clusters are compact and hyperspherical in shape. Meanwhile, the time complexity of k-means is 
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relatively low compared to hierarchical clustering, which is a critical factor in large scale data 

clustering. However, as k-means is based on a hill-climbing method for optimization, the 

inherent limitations cause it to suffer from several major drawbacks, such as easy trapping in 

local minima and sensitivity to the initial setting of centroids. Another major drawback lies in the 

requirement of determining the parameter k, which is usually seen as part of the unknown natural 

structure in the data and has to be estimated empirically or using cluster analysis. 

Distribution-based Clustering 

Distribution-based clustering directly relates to the use of distribution models in statistics [50] 

[51]. Clusters are defined based on how likely the objects included are likely to belong to the 

same distribution. Although the theoretical foundation of this kind of clustering is valid, it suffers 

from overfitting problem unless constraints are put on the complexity of the model. A more 

complex model will usually be able to explain the data better, which makes choosing the 

appropriate model complexity inherently difficult. One prominent method is known as 

expectation-maximization algorithm [52] [53]. The dataset is modeled by a fixed number of 

Gaussian distributions that are initialized randomly, and the parameters of these Gaussian 

distributions are iteratively tuned to fit better to the dataset.  

Distribution-based clustering can provide information beyond the cluster assignments of 

objects, such as correlation and dependence between attributes. However, this algorithm does not 

work if there is no mathematical model inherent in the dataset for the model to optimize. 

Moreover, assuming that data adhere to Gaussian distribution models can cause fatal problems. 
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Density-based Clustering 

In density-based clustering [54] [55], clusters are defined as areas of higher density than the 

remainder of the data. Objects in the sparse areas are usually considered to be noise and border 

points, which are used to separate clusters. The most popular density based clustering method is 

DBSCAN [56]. Given a radius, each object of a cluster has to contain at least a minimum 

number of neighborhoods within the radius. Objects not assigned to any cluster are considered as 

noise. DBSCAN can discover clusters of arbitrary shapes and is resistant to noise. However, the 

clustering results highly depend on the user-specified parameters: radius and a minimum number 

of neighborhoods. OPTICS [57] is a generalization of DBSCAN that removes the need to choose 

an appropriate value for the radius and produces a hierarchical result related to that of 

hierarchical clustering.  

Advantages of density-based clustering include the ability of find clusters with arbitrary shapes 

and time efficiency. Also, it does not require a user-specified number of clusters. However, this 

method requires some kind of density drop to detect cluster borders which may not be the case in 

real problems. Also, it cannot detect intrinsic cluster structures which are prevalent in the 

majority of real life-data. 

1.2.5 Determination of Number of Clusters 

The number of clusters (k) is often required as a predefined parameter or many clustering 

algorithms, e.g., k-means, expectation-maximization, etc. Other algorithms such as hierarchical, 

DBSCAN, and OPTICS do not require the specification of this parameter. However, other 

different parameters need to be determined in these algorithms, e.g., cutting level for hierarchical 

clustering, radius and a minimum number of neighborhoods for DBSCAN and OPTICS, which 
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can result in a different number of clusters. Thus, it is critical to define a criterion to determine 

the optimal values for these parameters. 

One of the commonly used methods is called elbow criterion [58]. It looks at the percentage of 

variance explained as a function of the number of clusters and select a number of clusters as the 

optimal one so that adding another cluster does not provide a much larger percentage of variance 

explained. As shown in Figure 1.8, the percentage of variance explained by the clusters is plotted 

as a function of the number of clusters. As the number of clusters increases from 1 to 4, the curve 

increases dramatically. However, after the number of clusters increases beyond 4, the increase 

rate drops down, which shows an angle in the figure. The optimal number of clusters is then 

chosen at this point. The main drawback of this method is that “elbow” point cannot always be 

unambiguously identified [59], e.g., the elbow may not be pronounced, or the graph may have 

multiple elbows.   

The average silhouette of the clustering is another useful criterion for assessing the natural 

number of clusters [60]. The silhouette of a clustering result is a measure of how closely it is 

matched to objects within its cluster and how loosely it is matched to objects of the neighboring 

cluster, i.e., the cluster whose average distance from the object is lowest. The range of silhouette 

varies between -1 and 1. If a silhouette is close to 1, it implies that objects are assigned to 

appropriate clusters. If a silhouette is close to -1, it implies that most of the objects are assigned 

to wrong clusters. A silhouette close to zero means that the objects are one the border of two 

clusters.  

The Calinski-Harabasz criterion (CH) is defined as a ratio between within-cluster variance and 

between-cluster variance [61]. A well-defined clustering result has a large between-cluster 
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variance and a small within-cluster variance. Thus, the optimal number of clusters is indicated by 

the peak of the CH. 

Finally, a priori theory can be used as a non-statistical tool for determining the number of 

clusters [62]. Although a priori theory is not central to exploratory research, it does provide a 

benchmark for assessing the results of the theory-testing inquiry. For example, comparison of 

emergent clusters with a theory-based typology can provide evidence regarding the typology's 

descriptive validity [63].   

 

Figure 1.8 An example of determination of number of clusters using elbow criterion. The elbow 

is indicated by the red circle, which means in this case the optimal number of clusters is 5. 
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There are different kinds of clustering algorithms, and each of them has various features. To 

evaluate a clustering algorithm's suitability for a problem, a general set of desirable features is 

applied [64]. 

• Scalability: the runtime and memory requirement. 

• Robustness: ability to detect noise, which is defined as objects that are distant from rest 

of data. 

• Order independence: the key to ensure reproducibility of results. 

• Minimum user-specified input: parameters, such as the number of clusters, can 

significantly affect the result. 

• Arbitrary-shaped clusters: ability to find arbitrary shaped clusters. 

Regarding to these evaluation criteria, the commonly used clustering methods (see Table 1.1) 

are compared. 

Algorithm Time 
Complexity Robustness Order 

Independency Input Parameters Arbitrary Shape 

K-means 𝑂(𝑡𝑘𝑁) No No 1, 4 No 

K-medoids 𝑂(𝑡𝑘𝑁) Yes No 1 No 

Fuzz k-means 𝑂(𝑡𝑘𝑁) No No 1 Yes 

K-modes 𝑂(𝑡𝑘𝑁) No No 1 No 

CLARANS 𝑂(𝑁!) Yes Yes 1 Yes 

Hierarchical 𝑂(𝑁!𝑙𝑜𝑔𝑁) Yes Yes 5 Yes 

BIRCH 𝑂(𝑁) Yes Yes - No 

Spectral 𝑂(𝑁) No Yes 5 No 

HIERDENC 𝑂(𝑁) Yes Yes - No 

MULIC 𝑂(𝑁!) Yes No - No 
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DBSCAN 𝑂(𝑁𝑙𝑜𝑔𝑁) Yes Yes 2, 3 Yes 

OPTICS 𝑂(𝑁𝑙𝑜𝑔𝑁) Yes Yes 2, 5 Yes 

DENCLUE 𝑂(𝑁!) Yes No 3 Yes 

DPC 𝑂(𝑁!) Yes Yes 10, 11 Yes 

EM 𝑂(𝑁𝑙𝑜𝑔𝑁) Yes No 1, 6 No 

SOMs 𝑂(𝑁!) No No 1, 5, 7 Yes 

COBWEB 𝑂(𝑁𝑑!) Yes No - No 

BILCOM 𝑂(𝑁!) Yes No 5 No 

MCODE 𝑂(𝑁𝑑!) No Yes 8 No 

MCL 𝑂(𝑁!) Yes Yes 9 No 

Table 1.1 Comparison of different clustering algorithms. Parameters: k = number of clusters, N = 

sample size, d = feature dimensions, t = number of iterations. User-specified input parameters 

include: 1. number of clusters, 2. density threshold, 3. radius distance, 4. stop criterion, 5. 

threshold cutoff, 6. distribution parameters, 7. training data as background knowledge, 8. degree, 

9. matrix inflation, 10. minimum distance with higher density, 11. local density. 

In this proposal, we want to apply clustering methods on fMRI data where the feature 

dimension is large and the data structures are unknown. Thus, the selected clustering algorithms 

must satisfy following requirements: 1) The number of clusters does not need to be pre-defined, 

2) the ability to identify arbitrary-shaped clusters, and 3) high efficiency including the order 

independence and low complexity. Based on these requirements, three clustering methods are 

selected: hierarchical, OPTICS, and DPC. Although DBSCAN is qualified, since it cannot 

identify clusters with various densities (which has been resolved in OPTICS), it was dropped out 

from the selected methods. 
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1.2.7 Application of Clustering on fMRI Analysis 

Application of clustering algorithms in fMRI data analysis is ubiquitous, with typical examples 

including time series analysis, brain parcellation, and brain network analysis.  

Time Series Analysis 

Clustering is one the most useful method to analyze fMRI time series. One may want to group 

a collection of voxels or region of interests (ROIs) based upon similarities in BOLD time series 

using some distance measures. Clustering is applied to either raw time series or to a function of 

the time series. For example, Baumgartner [65] demonstrated that fuzzy clustering was a robust, 

model-independent method to extract functional information in time and space. By applying 

fuzzy clustering on raw fMRI time series, he showed that intertrial reproducibility of cortical 

activation is significantly improved. Goutte [66] used two clustering methods, k-means and 

hierarchical clustering, to detect similarities in activation between voxels. Rather than using the 

raw fMRI time series, a cross-correlation function was applied as a feature space. The results 

showed that clustering can effectively identify regions of similar activations. Mezer [67] applied 

k-means clustering on the cortex, sub-cortical regions and white matter using both raw time 

series of resting state fMRI (rs-fMRI) signal as well as its Fourier transform.  

Functional Parcellation of fMRI Data 

Analysis and interpretation of fMRI data often require one to divide the whole brain into a 

number of regions with homogeneous characteristics. While predefined brain atlases do not 

adapt to the signal in the individual subject images, parcellation approaches use clustering 
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methods to divide the brain into a set of non-overlapping regions with homogeneous 

functionality.  

K-means is one of the most popular clustering methods that has been used in different brain 

parcellation studies [68] [69] [70]. Most of these studies applied k-means clustering on fMRI 

voxels without considering their spatial coordination. An alternative approach is using 

hierarchical clustering [71] [72]. Among different hierarchical agglomerative algorithms, the 

ward's hierarchical clustering [73] was demonstrated with minimum variances. Spectral 

clustering [74] [75] is often done by performing k-means clustering on a representation of the 

data that preserves the spatial coordination and the similarity of functional features. This 

representation is typically obtained by using the first eigenvectors of the Laplacian matrix of the 

graph that encodes the spatial relationships weighted by the functional features similarity 

between adjacent locations. A model-based dense clustering [76] method was also developed 

based on the assumption that activation in brain maps is fundamentally based on spatial 

continuity and spatial variance. 

Brain Network Analysis 

The brain is a network, which consists of spatially distributed but functionally linked regions 

that continuously share information with each other [77]. In the past decade, a lot of 

neuroimaging studies have started to explore functional brain connections of specific brain 

regions and overall organization of functional communication in the whole-brain networks. A 

variety of methods have been proposed to analyze these connections, e.g., seed methods [78], 

principal component analysis [79], independent component analysis [80], etc., and clustering is 

one the most popular techniques.   
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Several studies have been proposed that use clustering on rs-fMRI data to exam the existence 

and extent of functional connections between brain regions. For example, Cordes [81] used a 

hierarchical clustering method on rs-fMRI data to detect similarities of low-frequency 

fluctuations. Thirion [74] proposed a generic framework based on clustering to study resting-

state activity networks obtained in fMRI systematically. In addition, model-free methods based 

clustering have been developed, which can be used to explore connectivity patterns of whole-

brain without the need for defining a seed region. In contrast to seed-based methods, model-free 

methods are designed to look for general patterns of unique connectivity across brain regions. 

Several clustering-based methods have been successfully applied to fMRI data. For example, 

Salvador [82] adopted multivariate analysis by hierarchical clustering to investigate large-scale 

systems organization of the whole human brain using fMRI data. Heuvel [77] proposed a voxel-

based model-free normalized cut graph clustering approach with whole-brain coverage for group 

analysis of rs-fMRI data, and found seven resting state networks that showed a large overlap 

with others previous results.  

1.3 Dissertation Structure 

The rest of dissertation is organized as follows. Chapter 2 introduces work that proposes a 

general pipeline to identify different brain-based disorders along with several supplementary 

analyses, e.g., site-specific analysis, elimination of outlier subjects, etc. The effectiveness of 

proposed pipeline is verified on five different disorders: ADHD, AD, ASD, PTSD and PCS. 

Chapter 3 and Chapter 4 discuss works that relate to hippocampal clustering. Specifically, 

Chapter 3 validates the major pathway, i.e., perforant pathway, between entorhinal cortex and 

hippocampus using the connectivity between layer II of entorhinal cortex with different subfields 
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of the hippocampus during an encoding task. Chapter 4 follows with work that validates the 

HERNET model by clustering the connectivity between different layers of default mode network 

and dorsal attention network, and different regions of the hippocampus during encoding and 

retrieval tasks. Finally, Chapter 5 concludes with works completed so far and outlines future 

works. 
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Chapter 2  
Investigating the Correspondence of Clinical Diagnostic Grouping with Underlying 

Neurobiological and Phenotypic Clusters Using Unsupervised Learning 

Many brain-based disorders are traditionally diagnosed based on clinical interviews and 

behavioral assessments, which are recognized to be largely imperfect. Therefore, it is necessary 

to establish neuroimaging-based biomarkers to improve diagnostic precision. Resting-state 

functional magnetic resonance imaging (rs-fMRI) is a promising technique for the 

characterization and classification of varying disorders. However, most of these classification 

methods are supervised, i.e., they require a priori clinical labels to guide classification. In this 

study, we adopted various unsupervised clustering methods using static and dynamic rs-fMRI 

connectivity measures to investigate whether the clinical diagnostic grouping of different 

disorders is grounded in underlying neurobiological and phenotypic clusters. In order to do so, 

we derived a general analysis pipeline for identifying different brain-based disorders using 

genetic algorithm-based feature selection, and unsupervised clustering methods using four 

different datasets; three of them – ADNI, ADHD-200, and ABIDE – which are publicly 

available, and a fourth one – PTSD and PCS – which was acquired in-house. Using these 

datasets, the effectiveness of the proposed pipeline was verified on different disorders: Attention 

Deficit Hyperactivity Disorder (ADHD), Alzheimer’s Disease (AD), Autism Spectrum Disorder 

(ASD), Post-Traumatic Stress Disorder (PTSD), and Post-Concussion Syndrome (PCS). For 

ADHD and AD, highest similarity was achieved between connectivity and phenotypic clusters, 

whereas for ASD and PTSD/PCS, highest similarity was achieved between connectivity and 

clinical diagnostic clusters. For multi-site data (ABIDE and ADHD-200), we report site-specific 
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results, as well as the effect of elimination of outlier subjects. Overall, our results suggest that 

neurobiological and phenotypic biomarkers could potentially be used as an aid by the clinician, 

in additional to currently available clinical diagnostic standards, to improve diagnostic precision. 

2.1 Introduction 

A brain-based or neuropsychiatric disorder is a condition of affect, cognition, and behavior 

with underlying cerebral dysfunction. There are many factors that contribute to these disorders, 

e.g., genes, family history, substance abuse, traumatic brain injury, life experience, etc. 

Conventional diagnosis mainly consists of clinical interviews and standardized testing, which are 

recognized to be largely imperfect [83] [84] [85]. Because neuropsychiatric pathologies are 

complex, which can lead to inconsistencies between clinicians’ diagnoses, there is increasing 

interest in identifying non-invasive neuroimaging biomarkers. The most commonly used 

approach for achieving this is by employing supervised learning models such as support vector 

machines [86] [87], artificial neural networks [88], and decision trees [89], wherein the model 

learns the associations between patterns in the data and diagnostic labels using a training data set. 

This model can then be tested on an independent validation data set. However, the problem with 

this approach is that the model itself is based on clinical labels, and hence, it cannot be used to 

uncover novel structures and groupings from the data. This can be achieved by employing 

unsupervised models. Unsupervised models have been used to uncover clusters of subjects with 

similar patterns of imaging data, with applications in identifying disease clusters [24] [90] as 

well as sub-clusters [91] within a disease. Most of these studies use k-means or hierarchical 

clustering [92] [93]. However, these approaches are besieged with methodological issues such as 

(i) a priori choice of clusters needed in k-means, (ii) a stopping criterion needed in hierarchical 
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clustering, and (iii) the large dimensionality of imaging data necessitates some type of 

dimensionality reduction for clustering to work properly, and this step is either not carried out 

[94] or carried out by preselecting features not from the structure in the data, but by some 

external considerations such as previous findings in a given disorder [95] [96]. Such approaches 

rob the method of its advantages of being truly data-driven in that (iv) the clusters obtained from 

imaging data are seldom compared to data obtained from clinical diagnostic criteria and related 

behavioral phenotypes. This is important because disease clusters obtained from any method, be 

it imaging or another diagnostic tool, should be linked with the behavioral phenotype. In this 

study, we address the above shortcomings using resting state functional magnetic resonance 

imaging (rs-fMRI) data obtained from five different neuropsychiatric disorders: Attention Deficit 

Hyperactivity Disorder (ADHD), Alzheimer’s Disease (AD), Autism Spectrum Disorder (ASD), 

Post-Concussion Syndrome (PCS) and Post-Traumatic Stress Disorder (PTSD).  

Attention Deficit Hyperactivity Disorder 

ADHD is a psychiatric disorder characterized by impulsiveness, inattention, and hyperactivity. 

This condition affects about 5% of children and adolescents worldwide [97]. Symptoms include 

difficulty staying focused and paying attention, difficulty controlling behavior, and hyperactivity. 

ADHD has three subtypes: ADHD hyperactive-impulsive (ADHD-H), ADHD inattentive 

(ADHD-I), and ADHD combined hyperactive-impulsive and inattentive subtype (ADHD-C). 

Because symptoms vary from person to person, ADHD can be difficult to identify. Also, there 

has been a debate that ADHD is over-diagnosed in children and adolescents by current clinical 

criterion [98]. 

Alzheimer’s disease 
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AD is the most commonly diagnosed type of dementia in elderly patients [99], which is 

characterized by memory dysfunction, cognitive decline, etc. Before the onset of dementia, 

patients may develop an intermediate stage of dysfunction known as mild cognitive impairment 

(MCI). Patients with MCI have a higher risk of progressing to AD [100]. There are a variety of 

clinical diagnoses of AD, each with varying degrees of accuracy. According to results from the 

Honolulu-Asia Aging Study [101], as many as one-third of all Alzheimer’s diagnoses may 

actually be false positive. In addition, the diagnostic boundary between AD and MCI is not well 

established. 

Autism Spectrum Disorder 

ASD is a pervasive developmental disorder clinically characterized by social and 

communication impairments as well as restricted interests and repetitive behaviors [83]. While 

the boundaries between ASD, its comorbidities, and neurotypicals with sub-clinical ASD-like 

traits are blurred, several diagnostic subcategories within ASD were defined: autism, Asperger’s 

disorder, and pervasive developmental disorder-not otherwise specified (PDD-NOS). It has been 

often argued that the Asperger’s disorder criteria is problematic [102] [103]. In the latest DSM-V 

classification, Asperger’s and PDD-NOS were eliminated, in favor of the so called “dimensional 

assessment” of the autism spectrum [104]. This highlights the confusion in the field due to lack 

of objective biomarkers based on underlying neurobiology. 

Post-Traumatic Stress Disorder 

PTSD is a disabling condition in individuals exposed to a traumatic event, such as war, violent 

crime, and motor vehicle accidents [105]. PTSD is characterized by intrusive, avoidance, 

negative alterations in cognitions and mood, and alterations in arousal and reactivity [106]. 



 35 

PTSD is associated with compromised functioning of the amygdala, hippocampus, insula, and 

regions of the prefrontal cortex such as the ventromedial PFC [107] [108] [109]. Although 

cognitive decrements are associated with PTSD, there is evidence that they are mediated by 

symptoms of the disorder (e.g., depression and anxiety) [110]. 

Post-Concussion Syndrome 

PCS is a syndrome following a mild traumatic brain injury or concussion that includes a 

constellation of symptoms which can be categorized as vestibular, cognitive, affective, and 

somatosensory [111] [112] [113]. Symptoms can last for weeks and even months. In military 

service members, diagnosis can be more complex since there is a high co-morbidity with PTSD 

and homogeneity of symptomatology between the two disorders [114].  

In summary, although the neuropsychiatric disorders delineated have well established 

diagnostic criteria, there still exists overlapping symptoms as well as some potential 

commonalities in implicated neuroanatomy. Also, diagnostic categories often do not adequately 

capture the spectrum of symptom and impairments ranging from mild to severe. Further, 

categorization of subgroups within many disorders have yet to be fully characterized. Thus, 

neuroimaging-based biomarkers can improve our understanding of subgroups within a specific 

neuropsychiatric disorder and eventually improve diagnostic precision.  

Resting-state functional magnetic resonance imaging (rs-fMRI) is a promising technique for 

identification of different neuropsychiatric disorders [115] [116] [117] [118] [119] [120]. It 

measures spontaneous fluctuations in blood oxygen level-dependent (BOLD) signal without 

performing any explicit task [121] [122]. A common methodology is to apply supervised 

classification methods using functional connectivity. For example, some studies [88] used 
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support vector machine (SVM) and artificial neural network (ANN) on different brain 

connectivity measures to identify ADHD. Khazaee et al [85] combined a graph theoretical 

approach with SVM to classify patients with AD and mild cognitive impairment from healthy 

controls. Plitt and colleagues [84] applied different classification methods, e.g., K-Nearest 

Neighbor (KNN), Linear Support Vector Machines (L-SVM), Gaussian Kernel support vector 

machines (rbf-SVM), L1-regularized logistic regression, on rs-fMRI connectivity measures to 

establish biomarkers for Autism spectrum disorders (ASD). However, these methods all require 

a priori clinical diagnoses to guide classification. Also, the majority only targeted diagnosing 

one specific illness [94]. There are very few studies using unsupervised clustering on rs-fMRI to 

identify different neuropsychiatric disorders [83].  

In this work, we attempt to address the four challenges in supervised models of MRI data 

enumerated above by deriving a general analysis pipeline for identifying different 

neuropsychiatric disorders using unsupervised clustering methods. The main idea of clustering is 

to group objects in such a way that objects in the same group are more similar to each other than 

to those in other groups. Three clustering methods were specifically chosen, i.e., hierarchical 

clustering [123], ordering points to identify the clustering structure (OPTICS) [57], and density 

peak clustering (DPC) [124], since they did not require a priori specification of the number of 

clusters. The commonly used k-means clustering [125] [126] was not considered in this study 

due to the uncertainty of the number of clusters and sensitivity to outliers. Since clustering 

accuracy is often lower in high dimensional feature space, feature selection methods were 

applied. Most existing feature selection algorithms in the machine learning literature focus on 

heuristic search such as sequential forward searching (SFS) [127], non-linear optimization [128], 

genetic algorithm (GA) [127], etc. Bradley et al. proposed a non-linear optimization using a 
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nonlinear kernel support vector machine. Although this method provides high accuracy, it can 

only be used in the supervised learning context. SFS was proposed based on a greedy algorithm, 

which follows the problem-solving heuristic of making the locally optimal decision at each step. 

Similar to SFS, here we propose a sequential feature ranking (SFR) method by applying 

ANOVA test among different groups (e.g., control group, disease subgroups) and then 

sequentially selecting features from the original dataset based on the p-value of each feature. 

Although SFS and SFR can be applied in unsupervised learning, they do not guarantee an 

optimal solution. Therefore, we propose GA as a robust feature selection method for 

unsupervised learning approaches to identification of disease clusters from resting state 

functional connectivity by maximizing the similarity between connectivity and clinical 

diagnosis, and between connectivity and behavioral phenotypes, respectively. The identified 

clusters are then compared with those obtained from clinical diagnostic criteria and behavioral 

phenotypes. 

2.2 Materials and Methods 

In this work a general pipeline has been derived (Figure 2.1) for identifying different brain-

based disorders using unsupervised clustering methods along with several supplementary 

analyses, i.e., site-specific analysis for multi-site data, elimination of outlier subjects, and 

enrichment analysis. The details of each step in the pipeline are described below. 

2.2.1 Participants and Non-Imaging Measures 

a) ADHD: 487 subjects with complete phenotypic data were selected from ADHD-200 sample 

(http://fcon_1000.projects.nitrc.org/indi/adhd200/), including 272 healthy controls (HC), 118 

ADHD-C, and 97 ADHD-I. The total number of subjects for ADHD-H was too small, and 
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therefore ADHD-H was not considered in this work. The subjects were scanned at one of these 

three different sites: Peking University, Kennedy Krieger Institute (KKI), and New York 

University Child Study Center (NYU).  

Figure 2.1 Illustration of proposed pipeline for identifying different brain-based disorders using 

unsupervised clustering methods. The main pipeline is depicted in purple color along with two 

supplementary analyses, site-specific analysis in salmon color and outlier subject elimination in 

green color. 

Peking University subjects with diagnosis of ADHD were initially identified using the 

Computerized Diagnostic Interview Schedule IV [C-DIS-IV] [129]. All participants (ADHD and 

HC) were evaluated with the Schedule of Affective Disorders and Schizophrenia for Children—
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Present and Lifetime Version [KSADS-PL] [130] with one parent for the establishment of the 

diagnosis for study inclusion. The ADHD Rating Scale [ADHD-RS-IV] [131] [132] was 

employed to provide dimensional measures of ADHD symptoms. Intelligence was evaluated 

with the Wechsler Intelligence Scale for Chinese Children-Revised [WISCC-R] [133]. 

In the KKI sample, psychiatric diagnoses were based on evaluations with the Diagnostic 

Interview for Children and Adolescents, Fourth Edition [DICA-IV] [134], a structured parent 

interview based on DSM-IV criteria; the Conners’ Parent Rating Scale-Revised, Long Form 

[CPRS-R] [135], and ADHD-RS-IV. Intelligence was evaluated with the Wechsler Intelligence 

Scale for Children-Fourth Edition [WISC-IV] [136] and academic achievement was assessed 

with the Wechsler Individual Achievement Test-II [137]. 

In the NYU sample, psychiatric diagnoses were based on evaluations with KSADS-PL 

administered to parents and children and CPRS-R. Intelligence was evaluated with the Wechsler 

Abbreviated Scale of Intelligence [WASI] [138].  

Phenotypic/Genetic Variables 
Selected Variables 

DPC OPTICS Hierarchical 

ADHD index score ✓   

Inattentive score ✓ ✓ ✓ 

Hyper/Impulsive score ✓ ✓ ✓ 

VIQ  ✓ ✓ 

PIQ   ✓ 

FIQ ✓  ✓ 

Table 2.1 Phenotypic variables selected by GA with different clustering methods (ADHD). 
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Six Phenotypic variables were measured for all sites (Table 2.1), i.e., three ADHD measures 

including ADHD index score, Inattentive score, and Hyper/Impulsive score [139], and three IQ 

measures including Verbal IQ [VIQ], Performance IQ [PIQ], and Full Scale IQ [FIQ] [140].    

b) AD: Rs-fMRI data from Alzheimer’s disease neuroimaging initiative (ADNI) database 

(htpp://adni/loni.ucla.edu) was analyzed in this study. The sample consisted of subjects with 

three progressive stages of cognitive impairment – early MCI [EMCI] (n = 23), late MCI [LMCI] 

(n = 29), and AD (n = 13) – along with matched HC (n = 31).  

The patients with AD had a Mini-Mental State Examination [MMSE] [141] score of 14-26, a 

Clinical Dementia Rating [CDR] [142] of 0.5 or 1.0 and met the National Institute of 

Neurological and Communicative Disorders and Stroke and the Alzheimer’s disease and Related 

Disorders Association [NINCDS/ADRDA] criteria [143] for probable AD. The patients with 

MCI had MMSE scores between 24 and 30, a memory complaint, objective memory loss 

measured by education adjusted scores on Wechsler Memory Scale Logical Memory II, a CDR 

of 0.5, absence of significant levels of impairment in other cognitive domains, essentially 

preserved activities of daily living and an absence of dementia [85]. 

Phenotypic/Genetic Variables 
Selected Variables 

DPC OPTICS Hierarchical 

APOE A1 and A2  ✓ ✓ 

NPI    

GDS    

MMSE ✓ ✓ ✓ 

CDR ✓ ✓ ✓ 

FAQ ✓ ✓ ✓ 

Table 2.2 Phenotypic variables selected by GA with different clustering methods (AD). 
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Eight phenotypic variables, i.e., neuropsychiatric inventory [NPI] score [144], geriatric 

depression scale [GDS] [142], MMSE, CDR and functional assessment questionnaire [FAQ] 

[145], and one genetic variable i.e., apolipoprotein [APOE] A1 and A2 genotypes [146], were 

measured (Table 2.2). Except for AD dataset, all other three datasets (ADHD, ASD, and PTSD) 

only have phenotypic variables. Thus, we just refer to these variables as phenotypic variables 

henceforth. 

c) ASD: 454 subjects with complete phenotypic data were selected from the Autism Brain 

Imaging Data Exchange (ABIDE) database 

(http://fcon_1000.projects.nitrc.org/indi/abide/index.html). The sample consisted of 256 HC, 166 

Autism, and 32 Asperger’s. Including PDD-NOS and “Asperger’s or PDD-NOS” would make 

the whole dataset a lot more unbalanced, and therefore these two subgroups were not considered 

in this study. Each of subjects was scanned at one of the following seven different sites: 

California Institute of Technology (Caltech), Carnegie Mellon University (CMU), NYU Langone 

Medical Center (NYU), University of Pittsburgh School of Medicine (Pitt), San Diego State 

University (SDSU), Trinity Center for Health Sciences (Trinity), and University of California 

Los Angeles (UCLA). 

For most of sites, diagnosis of ASD was consistent with Diagnostic and Statistical Manual of 

Mental Disorders, Fourth Edition, Text Revision [DSM-IV-TR] criteria [147], and classification 

of either autism or Asperger’s was made by a clinician based on the Autism Diagnostic 

Observation Schedule [ADOS] [148] and Autism Diagnostic interview-Revised [ADI-R] [149]. 

HC subjects were screened through a self-report history questionnaire to rule out neurological 

disorders, such as ASD, ADHD, or Tourette's Disorder. 
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Ten phenotypic variables were measured (Table 2.3) for all sites including three IQ measures, 

i.e., FIQ, VIQ, PIQ, four ADI_R measures, i.e., Reciprocal Social Interaction Subscore 

[ADI_R_SOCIAL], Abnormalities in Communication Subscore [ADI_R_VERBAL], Restricted, 

Repetitive, and Stereotyped Patterns of Behavior Subscore [ADI_RRB], Abnormality of 

Development Evident at or Before 36 Months Subscore [ADI_R_ONSET], and three ADOS 

measures, i.e., Classic Total ADOS Score [ADOS_TOTAL], Communication Total Subscore of 

the Classic ADOS [ADOS_COMM], and Social Total Subscore of the Classic ADOS 

[ADOS_SOCIAL].  

Phenotypic/Genetic Variables 
Selected Variables 

DPC OPTICS Hierarchical 

FIQ ✓ ✓ ✓ 

VIQ ✓   

PIQ ✓   

ADI_R_SOCIAL ✓ ✓  

ADI_R_VERBAL  ✓ ✓ 

ADI_RRB  ✓  

ADI_R_ONSET    

ADOS_TOTAL   ✓ 

ADOS_COMM  ✓ ✓ 

ADOS_SOCIAL ✓  ✓ 

Table 2.3 Phenotypic variables selected by GA with different clustering methods (ASD). 

d) PTSD and PCS: Eighty-seven active-duty male U.S. Army Soldiers were recruited from 

Fort Benning, GA, USA and Fort Rucker, AL, USA to participate voluntarily in the current 

study. The subjects were grouped into 17 having PTSD, 42 having both PCS and PTSD 

(PCS+PTSD) and 28 combat controls (all groups matched in age, race, deployment history and 

education), all having combat experience in Iraq (Operation Iraqi Freedom [OIF]) and/or 
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Afghanistan (Operation Enduring Freedom [OEF]). The study protocol and procedures were 

approved by the Auburn University Institutional Review Board (IRB) and the Headquarters U.S. 

Army Medical Research and Material Command, IRB (HQ USAMRMC IRB).  

Subjects were grouped using symptom severity in PTSD using the ‘PTSD Checklist-5’ [PCL5] 

score [150], symptom severity in PCS using the ‘Neurobehavioral Symptom Inventory’ [NSI] 

score [151] and medical history. i) Subjects with no history of mTBI in the last five years, a total 

score ≥ 38 on PCL5 and < 26 on NSI were grouped as PTSD. ii) Subjects with a history of 

medically documented mTBI, post-concussive symptoms, and scores ≥38 on PCL5 and ≥26 on 

NSI were grouped as the comorbid PCS+PTSD. iii) Subjects with a score <38 on PCL5 and <26 

on NSI, no DSM-IV-TR or DSM-V diagnosis of a psychotic disorder (e.g. schizophrenia), no 

mTBI within the last 5 years, and no history of a moderate-to-severe TBI were grouped as 

combat controls. The post-concussive symptom (NSI) scores were significantly different 

between the PCS+PTSD group and the PTSD and control groups combined (p = 1.32 × 10-29). 

Also the PCL5 scores were significantly different between the control group and the PTSD and 

PCS+PTSD groups combined (p = 3.64 × 10-44). 

Scores from 32 measures were included in the analysis as phenotypic variables.  They 

consisted of 10 primary Neurocognitive measures CNS-Vital Signs® [CNS-VS] measures, 7 

derived CNS-VS domain scores, 8 self-report psychological health measures, and 7 

neurocognitive measures from a second battery, the Automated Neuropsychological Assessment 

Metric (ANAM 4.0) (Table 2.4). CNS-VS [152] is a computerized neurocognitive assessment 

battery. The 10 primary CNS-VS measures were Symbol Digit Coding [SDC; correct responses], 

Stroop Test [ST] (simple and complex), Shifting Attention Test (SAT), Continuous Performance 
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Test [CPT; correct responses and reaction time, RT], Dual-Task Test [DTT; correct responses and 

RT], and Digit Span Test [DST]. The following domain scores were calculated from the subtests 

to derive domain scores: verbal memory [VM], complex attention [CA], reaction time [RT], 

processing speed [PS], cognitive flexibility [CF], and executive functioning [EF]. Domain scores 

were standardized to have a mean of 100 and standard deviation of 15. In addition, domain 

scores were averaged to form a single score called neurocognitive composite index [NCI].  

Additionally, data from the ANAM seven subtests were included - Coded Digit Substitution 

[CDS], Coded Digit Substitution-Delayed [CDD], Matching to Sample [MTS], Mathematical 

Processing [MP], Procedural Reaction Time [PRT], Simple Reaction Time [SRT], and Simple 

Reaction Time-Delayed [SRT2]. Effort was also assessed to improve the validity of our 

assessment data. To this end, the Test of Memory Malingering (TOMM; Tombaugh, 2003) was 

administered, which consists of two learning trials and a retention trial that uses pictures of 

common, everyday objects (e.g., chair, pencil). A cut-off score (<45 correct) for the first two 

learning trials was used to determine eligibility for participation in the study. 

Psychological health was assessed using five self-report measures - Perceived Stress Scale 

[PPS], Pittsburgh Sleep Quality Index [PSQI], Epworth Sleepiness Scale [ESS], Zung Anxiety 

Scale [ZAS] and Zung Depression Scale [ZDS]; and three exposure/injury descriptive measures - 

Combat Exposure Scale [CES], lifetime concussions [LC], and Life Events Checklist [LEC]. 

2.2.2 Data Acquisition 

a) ADHD: Subjects were scanned on different MRI scanners (KKI: Philips 3T, Peking: 

SIEMENS MAGNETOM Trio 3T, NYU: SIEMENS MAGNETOM Allegra 3T) using standard 

T2* weighted echo-planar imaging sequence with the following parameters at resting state: For 
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KKI, TR=2500ms, TE=30ms, FA=75˚, slice thickness=3mm, number of slices=47. For Peking, 

TR=2000ms, TE=30ms, FA=90˚, slice thickness=3mm, number of slices=33. For NYU, 

TR=2000ms, TE=15ms, FA=90˚, slice thickness=4mm, number of slices=33. 

Phenotypic/Genetic Variables 
Selected Variables 

DPC OPTICS Hierarchical 

Primary CNS-
VS Measures 

SDC Correct  ✓ ✓ 

ST Simple    

ST Complex    

SAT Correct    

SAT RT    

CPT Correct    

CPT RT    

DTT Percent Box    

DTT Correct    

DST    

Derived CNS-
VS Measures 

NCI    

RT    

VM    

CA    

CF    

EF    

PS    

Self-report 
Measures 

LC    

PSS    

PSQI    

ESS    

ZDS ✓ ✓ ✓ 

ZAS ✓   

CES ✓ ✓ ✓ 

LEC  ✓ ✓ 

 
 

CDD_SS   ✓ 

CDS_SS    
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Other 
Psychometric 

Measures 

MTS    

MP    

PRT    

SRT2    

SRT    

Table 2.4 Phenotypic variables selected by GA with different clustering methods (PTSD). 

b) AD: Data were acquired using a Philips 3T MRI scanner. A total of 140 volumes 

(TR=3000ms, TE=30ms, FA=80˚, and slice thickness=3.3mm, number of slices=48) were 

obtained. For each subject, the first 7 volumes were discarded for signal equilibrium and to allow 

the participant’s adaptation to the circumstances. 

c) ASD: For Caltech, data were acquired using a 3T MAGNETOM Trio scanner with 

TR=2000ms, TE=30ms, FA=75˚, slice thickness=3.5mm, number of slices=34. For CMU, data 

were acquired using a 3T MAGNETOM Verio scanner with TR=2000ms, TE=30ms, FA=73˚, 

slice thickness=3.0mm, number of slices=34. For NYU, data were acquired using a 3T 

MAGNETOM allegra scanner with TR=2000ms, TE=15ms, FA=90˚, slice thickness=4.0mm, 

number of slices=33. For Pitt, data were acquired using a 3T MAGNETOM allegra scanner with 

TR=1500ms, TE=25ms, FA=70˚, slice thickness=4.0mm, number of slices=29. For SDSU, data 

were acquired using a GE 3T MR750 scanner. A total of 180 volumes (TR=2000ms, TE=30ms, 

FA=90˚, slice thickness=3.4mm) were obtained. For Trinity, data were acquired using a Philips 

3T Achieva MRI scanner with TR=2000ms, TE=28ms, FA=90˚, slice thickness=3.5mm, number 

of slices=38. For UCLA, data were acquired using a 3T MAGNETOM Trio scanner with 

TR=3000ms, TE=28ms, FA=90˚, slice thickness=4.0mm, number of slices=34. 
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d) PTSD/PCS: Participants were scanned in a 3T MAGNETOM Verio scanner (Siemens 

Healthcare, Erlangen, Germany) at Auburn University using T2* weighted multiband echo-

planar imaging (EPI) sequence in resting state (the participants were asked to keep their eyes 

open and fixated on a white cross displayed with dark background on the screen using an Avotec 

projection system and not think of anything specific), with TR=600ms, TE=30ms, FA=55˚, 

multiband factor=2, voxel size=3×3×5 mm3, 1000 volumes and two sessions (cerebellum was 

excluded). 

For all sites, the data acquisition protocol was approved by local Institutional Review Boards 

(IRBs), the experiments were performed in compliance with internationally accepted ethical 

standards and all subjects provided informed consent.  

2.2.3 Preprocessing 

Standard pre-processing of fMRI data was performed in different datasets, including slice 

timing correction, motion correction, realignment, normalization to MNI space, and regressing 

out nuisance variance (six head motion parameters, white matter signal, cerebrospinal fluid 

signal and global mean signal regression). Below, we elaborate on pre-processing steps specific 

to each dataset. For ADHD dataset, preprocessing was performed by Athena pipeline using 

AFNI [15] and FSL [153] while DPARSF toolbox [154] and SPM8 package 

(http://www.fil.ion.ucl.ac.uk/spm) was used to preprocess other datasets. 

2.2.4 Connectivity Measures 

Given the high dimensionality of whole-brain data, each rs-fMRI image was partitioned into 

200 (for ADHD, AD, and ASD) or 125 (for PTSD/PCS) functionally homogenous regions of 



 48 

interests (ROIs) using normalized cut spectral clustering [cc200 template] [155]. Even though 

the same parcellation was used on all data, we ended up with only 125 regions for the PTSD/PCS 

dataset because we had limited coverage. The mean time series for each ROI was subsequently 

extracted and deconvolved using the method proposed by Wu et al [156] to obtain hidden 

neuronal time series [157] [158] [159] [160]. Deconvolution was performed because inter-

subject and spatial variability of the HRF could potentially give rise to false connectivity 

estimates [161] [86] [162]. Then, four connectivity matrices—statistic functional connectivity 

(SFC), variance of dynamic functional connectivity (vDFC) [163], statistic effective connectivity 

(SEC) [164] [165] [166] [167], and variance of dynamic effective connectivity (vDEC) [168] 

[169] [170]—were computed using the latent neuronal time series. 

 Functional connectivity (FC) measures the functional interrelationship between pairs of brain 

regions. We evaluated SFC using Pearson’s correlation, which gives a single measure of 

connection strength between two time series. Most studies investigate SFC, assuming 

connectivity to be temporally stationary. Dynamic fluctuations of connectivity are not captured 

when using static connectivity. It has been shown that dynamic changes in FC are relevant to 

neuropathology [171] as well as behavioral performance in different cognitive domains in 

healthy individuals [172]. For a comprehensive overview of DFC of resting state fMRI see 

Hutchison et al. [173]. DFC was evaluated using a sliding windowed Pearson’s correlation with 

variable window length determined adaptively by timeseries stationarity assessed through the 

augmented Dickey-Fuller test (ADF test), as in our earlier study [172]. This procedure searches 

for the optimal window length within a specified range using stationarity of the signal as the 

criteria for optimization. We have used a liberal range of 20 to 140 data points. The justification 

for using this range for resting state fMRI data is provided in Jia et al. [172].  
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While FC is a non-directional quantity, another approach to brain connectivity modeling is 

effective connectivity (EC), which characterizes directional interactions in the brain. It gives 

characteristically different information from FC, i.e. the former characterizes causal influences 

while the latter captures synchronization, both of which have been acknowledged to be modes of 

communication in the brain. We evaluated SEC using Granger causality [174] [86] [175], which 

quantifies the directional influence of one region over the other. We also evaluated its time-

varying version, called DEC [176] [177] [178] [179], using time-varying Granger causality 

evaluated in a dynamic Kalman filter framework [180] [181] [182] [183]. 

SFC, DFC, SEC and DEC values were obtained between all pairs of brain regions. Variance of 

DFC and DEC were computed to obtain vDFC and vDEC. Significant group differences were 

obtained in four matrices using one way ANOVA, and only the top significant features (p<0.01) 

were used in further clustering analysis. 

2.2.5 Clustering 

In order to verify whether clinical diagnostic grouping grounded in underlying neurobiological 

and phenotypic clusters, the three clustering methods were applied on three types of features: (i) 

connectivity-based features: SFC, SEC, vDFC, and vDEC, (ii) clinical diagnostic labels, and (iii) 

phenotypic and genetic (when available) variables. Let 𝒁 = {𝒁!,⋯ ,𝒁! ,⋯ ,𝒁!} represent a set of 

𝑁 objects, i.e., number of subjects in the dataset. 𝒁! = 𝑍!!,  𝑍!!,⋯ ,𝑍!"  ∈  ℝ!, where 𝑝 equals 

to the number of selected features. Assume the data is partitioned into k clusters. Each cluster is a 

set of indexes from {1,⋯ ,𝑁}, and each object 𝒁! belongs to exactly one cluster.  
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a) Hierarchical Clustering (HC; Agglomerative): The main idea of hierarchical clustering 

[184] [185] [123] is that objects that are more related to nearby objects than to objects farther 

away in terms of Euclidean distance are clustered together. A brief description of the procedure 

is as follows: 

1) Assign each object 𝒁! in a cluster of its own. 

2) Calculate the distance between any two clusters and merge the closest pair of clusters. 

3) Repeat step 2-3 until all 𝒁! are in one big cluster. 

 

Figure 2.2 Dendrogram derived from hierarchical clustering. The final clustering result is 

obtained by cutting the tree at defined level. The two clusters are shown by different colors (red 

and cyan) 

The results of hierarchical clustering are usually depicted by a tree-like structure, the 

dendrogram (Figure 2.2). The root of the dendrogram represents the entire data, each leaf 

represents one object, and the height of the dendrogram represents the distance between each 

Cutting''
Height

Root

Leaf
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pair of clusters. Different data partitions can be obtained by cutting the dendrogram at different 

levels. Note that the distance between two clusters can be measured in a variety of ways, referred 

to as linkage methods. The single linkage [186] calculates the shortest distance between two 

clusters, the complete linkage [186] calculates the longest distance, and the average linkage 

[186] calculates the mean distance. The single linkage method can handle non-elliptical shape of 

clusters, but can be affected by noise and outliers. The complete linkage method is less sensitive 

to noise and outliers but tends to break large clusters. The average linkage is a compromise 

between single-linkage and complete linkage methods. Thus, the average linkage method was 

employed in this work. 

b) Ordering Points to Identify the Clustering Structure (OPTICS): OPTICS [57] is one of 

the most popular density-based clustering methods [55]. Similar to hierarchical clustering, it is 

based on grouping objects within certain distance thresholds (𝜀). However, in OPTICS each 

cluster has to contain at least a minimum number of objects (𝑀𝑖𝑛𝑃𝑡𝑠), which is not the case in 

hierarchical clustering. OPTICS can discover clusters with arbitrary shapes and allow “noise” 

objects that do not belong to any of the clusters.  

There are two critical values for each object: core-distance and reachability-distance. Let 

𝑁!(𝒁!) represent the number of neighborhood objects within 𝜀 (called 𝜀 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑), and 

𝑀𝑖𝑛𝑃𝑡𝑠 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝒁!) represent the distance from 𝒁!  to its MinPts’ neighbor. An object 𝒁!  is 

a core object if at least 𝑀𝑖𝑛𝑃𝑡𝑠 objects are found with its 𝜀 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑. The core distance 

of 𝒁!  is defined as: 
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Figure 2.3 Illustration of OPTICS. (a) Original simulated dataset, (b) reachability plot obtained 

from OPTICS, and (c) clustering result. Each cluster corresponds to one valley in the reachability 

plot. 

	 𝑐𝑜𝑟𝑒 − 𝑑𝑖𝑠𝑡!,!"#$%& 𝒁! =
𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑             𝑖𝑓 𝑁! 𝒁! < 𝑀𝑖𝑛𝑃𝑡𝑠
𝑀𝑖𝑛𝑃𝑡𝑠 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝒁!         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	 (2.1) 

Which is the smallest distance between 𝒁!  and an object in its 𝜀 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 such that 

𝒁!  would be a core object. The reachability-distance of object 𝒁!  with respect to object 𝒁! is 

defined as: 

Reachability

Threshold

(a)

(b)

(c)
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	 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑑𝑖𝑠𝑡!,!"#$%& 𝒁! ,𝒁!

=
𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑                                           𝑖𝑓 𝑁! 𝒁! < 𝑀𝑖𝑛𝑃𝑡𝑠
𝑚𝑎𝑥 (𝑐𝑜𝑟𝑒 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝒁! ,𝑑𝑖𝑠𝑡(𝒁! ,𝒁!))       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(2.2) 

Where 𝑑𝑖𝑠𝑡 (𝒁! ,𝒁!) is the distance between 𝒁!  and 𝒁!. The complete procedure of OPTICS is 

described below: 

1) Choose one object 𝒁!  arbitrarily. 

2) Retrieve the 𝜀 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑  of 𝒁! , determine the core-distance, and set the 

reachability-distance to undefined.  

3) If 𝒁! is not a core object, go to step 5. Otherwise, go to step 4. 

4) For each object 𝒁!  in the 𝜀 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 of 𝒁!, update its reachability-distance from 

𝒁! and insert 𝒁! into an OrderSeeds list if it has not been processed yet. 

5) If the input dataset is fully consumed and the OrderSeeds list is empty, go to step 6. 

Otherwise, move on to the next object in the OrderSeeds list (or the input list, if the 

OrderSeeds list is empty) and go to step 2. 

6) Output core-distance, reachability-distance of each object, and processed order. 

The data objects are plotted in the processed order together with their respective reachability-

distance (called reachability plot) depicting the hierarchical structure of the clusters. Since 

objects belonging to a cluster have a low reachability-distance to their nearest neighbor, the 

clusters show up as valleys in the reachability plot (see Figure 2.3). The ultimate data partition 

can be obtained by using a threshold on the reachability plot. 
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c) Density Peak Clustering (DPC): DPC method [124] is a relatively new method which was 

proposed based on the idea that cluster centers can be characterized by two criteria: it has a 

higher density than its neighbors and a relatively large distance from objects with higher 

densities. Like OPTICS, this method can detect clusters with arbitrary shapes and spot outliers. 

Also, DPC outperforms commonly used clustering methods, e.g., k-means and hierarchical 

clustering, when the dataset contains complicated features such as narrow bridges between 

clusters, uneven-sized clusters, clusters with high overlap, etc. 

 

Figure 2.4 Illustration of DPC method. Plot of δ as a function of ρ for each object. Objects with 

larger ρ and δ are cluster centers and objects with smaller ρ, and larger δ are outliers. 

For each object 𝒁!, two quantities are computed: local density 𝜌(𝒁!) and minimum distance 

with higher density 𝛿(𝒁!). 𝜌(𝒁!) is defined as: 

	 𝜌 𝒁! =  𝜒(𝑑𝑖𝑠𝑡 𝒁! ,𝒁! −  𝑑!)
!

	 (2.3) 

Where 𝑑! is a cutoff distance, and 𝜒(𝑥) can be computed by, 

ρ

δ

X

Y

Outlier

Cluster'
Centers
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(b)
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	 𝜒 𝑥 =  1       𝑖𝑓 𝑥 < 0
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	 (2.4) 

From Equation (2.3) and Equation (2.4), it can be seen that 𝜌(𝒁!) equals to the number of 

objects within 𝑑! with respect to object 𝒁!.  𝛿(𝒁!) is measured by, 

	 𝛿(𝒁!) =  𝑚𝑖𝑛
!:! 𝒁! !!(𝒁!)

𝑑𝑖𝑠𝑡(𝒁! ,𝒁!)	 (2.5) 

For the object with highest density, 𝛿(𝒁!) is conventionally set to, 

	 𝛿 𝒁! = 𝑚𝑎𝑥
!
𝑑𝑖𝑠𝑡(𝒁! ,𝒁!)	 (2.6) 

Note that if 𝒁! is local or global maxima in the density, 𝛿(𝒁!) will be much larger than its 

typical nearest neighbor. Thus, objects with larger 𝜌 and 𝛿 are considered as cluster centers. 

Objects with smaller 𝜌 and larger 𝛿 are considered as outliers. Other objects are assigned to the 

same cluster as their nearest neighbor of higher density (see Figure 2.4). 

d) Input Parameter Optimization: In each clustering method, there are several user-specified 

input parameters, which can affect clustering results significantly. For hierarchical method, the 

cutting height of the dendrogram needs to be specified. For OPTICS, 𝜀 can simply be set to the 

maximum possible value, and Ankerst and colleagues [57] showed that for 𝑀𝑖𝑛𝑃𝑡𝑠 using values 

between 10 and 20 would always lead to good results. However, the threshold for the 

reachability plot, which is used to extract clusters, still needs to be properly determined. For 

DPC, 𝑑! can be chosen based on the rule that the average number of neighbors is around 1-2% of 

the total number of objects in the data set [124]. A threshold for 𝜌 and 𝛿 needs to be defined to 

distinguish cluster centers and outliers. To find the optimal value of these parameters, the 
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Calinski-Harabasz (CH) index [61] was applied in this work. Given a clustering result with 

identified K clusters. Let 𝐶!  represents the center of cluster 𝑘, where 1 ≤ 𝑘 ≤ 𝐾, and let 𝐶 

represent the center of entire data set, then the CH index is defined as: 

	 𝐶𝐻 =
𝐵/(𝐾 − 1)
𝑊/(𝑁 − 𝐾)	 (2.7) 

Where the between-cluster variation 𝐵 is computed by, 

	 𝐵 = 𝐶! − 𝐶 !
!

!!!

	 (2.8) 

And the within-cluster variation 𝑊 is computed by: 

	 𝑊 = 𝒁! − 𝐶!
!

𝒁!∈!"#$%&'!!

!

!!!

	 (2.9) 

Based on the definition of clustering, we want to minimize 𝑊 and maximize 𝐵. Thus, the 

optimal parameters are determined by maximizing the CH index. The optimal number of clusters 

can be identified, simultaneously. Specifically, for hierarchical clustering, we started with a 

relatively high cutting height for the dendrogram. In each iteration, the cutting height was 

reduced by a small amount and the CH index was computed and recorded based on the current 

data partition. The iteration continued until the cutting height was smaller than a specified 

baseline (e.g., the average height of the dendrogram). The optimal height was determined as the 

one with the largest CH index. The same iterative procedure was applied to OPTICS to 

determine optimal threshold of reachability plot, and to DPC to determine the optimal threshold 
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of 𝜌 and 𝛿. This iterative method is referred to as “grid search” [187], which has been commonly 

used for hyper-parameter optimization. 

2.2.6 Feature Selection and Cluster Identification 

The clustering accuracy is often lower in high dimensional feature space, because most of the 

features may be irrelevant, redundant, or sometimes may even misguide results. Moreover, a 

large number of features make the clustering results difficult to interpret. Therefore, it is 

necessary to select a minimum subset of relevant features to achieve a better clustering result. 

For supervised learning, feature selection can be trivial, i.e., only the features that are related to 

the given cluster labels are maintained. Nevertheless, for unsupervised learning, the cluster labels 

are unknown. Thus, finding the relevant subset of features and clustering the subset of the data 

must be accomplished simultaneously. To evaluate the result for both feature selection and 

clustering, a “similarity criteria” was also applied by computing the similarities of diagnostic 

clusters obtained by the following pairs of features using Torres’ method [188]: (i) clinic 

diagnostic labels and connectivity, and (ii) phenotypic variables and connectivity.  

Let 𝐶 = {𝐶!,𝐶!,⋯ ,𝐶!}  and 𝐷 = {𝐷!,𝐷!,⋯ ,𝐷!}  represent two clustering results. The 

similarity matrix for C and D is an 𝑚 × 𝑛 matrix defined as: 

	

𝑆!,! =

𝑆!!
 
𝑆!!

 
𝑆!!

 

…
 …
 
…

 

𝑆!!
⋮
𝑆!"
⋮
𝑆!"

 

…
 …
 
…

 

𝑆!!
 
𝑆!"

 
𝑆!"

	 (2.10) 
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Where 𝑆!" = 𝑖/𝑢, which is Jaccard’s Similarity Coefficient with 𝑖 being the size of intersection 

and 𝑢 being the size of the union of cluster sets 𝐶! and 𝐷!. The similarity of clustering 𝐶 and 𝐷 is 

then defined as: 

	 𝑆𝑖𝑚 𝐶,𝐷 =  
𝑆!"!!!,!!!

𝑚𝑎𝑥 (𝑚,𝑛)	
(2.11) 

From Equation (2.10) and Equation (2.11), it can be seen that 0 ≤ 𝑆𝑖𝑚 (𝐶,𝐷)  ≤ 1, and 

𝑆𝑖𝑚 𝐶,𝐷 = 1 when two clustering results are identical. 

Assuming d to be the initial number of features, an exhaustive search of 2! possible subsets is 

computationally intractable. Thus, three alternative methods are proposed in our framework, i.e., 

SFR, SFS, and GA, to find the optimal subset of features. 

a) Sequential Feature Ranking (SFR): We propose a new feature selection method by 

ranking all features based on statistical significance in descending order. Each time, a feature 

was added to the subset from the sorted list, and the corresponding value of similarity criterion 

was computed. The iteration stopped when all features were added to the subset. The optimal 

subset of features was determined to be the one resulting in largest similarity between (i) clinic 

diagnostic labels and connectivity, and (ii) phenotypic variables and connectivity, respectively. 

SFR is derived based on an intuitive thinking that statistically significant features can lead to 

better clustering results. However, as the statistical significance of individual feature does not 

necessarily guarantee cluster separation when they are combined, SFR does not guarantee a 

global optimum. 
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b) Sequential Forward Searching of Greedy Algorithm (SFS): SFS is one of commonly 

used heuristic methods for finding an optimal solution [127]. Specifically, when used for feature 

selection, the method started with zero features in the “optimal subset” and sequentially added 

one feature at a time. The feature added was the one that provided the largest similarity criterion 

value when used in combination with the features chosen previously. The iteration continued 

until adding more features did not increase the similarity criterion value. Although SFS 

converges faster than other heuristic methods, it does not guarantee a global optimum. We used 

this method in comparison with GA. 

 

Figure 2.5 Flowchart of GA for feature selection. In the 𝑀!-by-𝑁! matrix, each row represents a 

candidate solution, describing a subset of selected features. Each of the 𝑁!  bits in a row 

represents whether a feature is selected (1) or discarded (0). 
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c) Genetic Algorithm (GA): GA is also a search heuristic method inspired by stochastic 

evolution theory that is routinely used in generating solutions to optimization and searching 

problems [189] [190]. GA maintains a set of candidate solutions (𝑀!) called “population”. It is 

an iterative process of selecting “survival solutions” for the next iteration. The survival solutions 

were those with larger values of similarity criteria, which were generated from the crossover and 

mutation operations. Crossover was applied to produce new solutions by randomly combining 

two current solutions, and mutation was applied on newly generated solutions with a small 

probability. The iteration continued until the maximum similarity among candidate solutions did 

not increase any further. 

In this study, an array of 𝑁! bits was used to represent the selected subset of features, where 

𝑀! is the total number of significant features used in clustering analysis (see Connectivity 

Measure). Each bit in the array indicates the activation status of one specific feature: 1 indicates 

selected and 0 indicated discarded. The complete procedure of GA is described below (Figure 

2.5): 

1) Initialization: 400 candidate solutions were generated by randomly setting 1 or 0 for each 

bit in vectors.  

2) Crossover: two candidate solutions A and B were randomly selected from the current 

population. A value v between 1 and 𝑁! was randomly selected. Then a new solution was 

formed by combining the feature bits 1 to v from A and feature bits v + 1 to 𝑁! from B.  

3) Mutation: for each new generated new solution, a mutation was applied by reversing bits 

in the vector with a probability of 0.1. 

4) Evaluation: the value of similarity criteria for all candidate solutions was computed. 



 61 

5) Selection: 280 solutions with higher similarity were selected and 120 solutions from the 

rest of the solutions were randomly selected to increase the diversity of the solution. 

6) If the largest similarity did not converge, we iterated back to step 2. Otherwise, the 

clustering results with the largest similarity and the corresponding selected subset of 

features were saved as outputs. 

2.2.7 Site-specific Analysis 

As discussed in section 2.2.2, ADHD and ASD datasets were obtained from different sites 

using different scanners, which might introduce inter-site variance and affect the clustering 

accuracy. To eliminate this variance, site-specific feature selection and clustering were 

individually applied on data acquired at each site. Let 𝑆! = {𝐹!,𝐹!,⋯ ,𝐹!}  and 

S! = {F!, F!,⋯ , F!} represent connectivity features selected by the proposed feature selection 

and clustering framework from site 1 and site 2, respectively. The intersection between 𝑆! and 𝑆! 

was then used as the new “selected features” for the whole dataset.   

2.2.8 Elimination of Outlier Subjects 

Real-world data always suffer from different sources of noise, which can introduce outliers in 

the feature space. The accuracy of clustering depends vitally on the quality of the input data. 

Accordingly, the most feasible and direct way to improve the effectiveness is to eliminate outlier 

subjects from the data.   
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Figure 2.6 Illustration of outlier subject elimination process (using upper triangular connected 

pairs). 𝑥!, 𝑥!,⋯ , 𝑥! are six representative subjects used in the illustration. 

In this study, three different clustering methods based on three distinct principles were used for 

revealing hidden structures in the data. For the same input data, different clustering methods will, 

in general, result in different partitions in terms of the number of clusters, or the membership of 

clusters, and it is difficult to find a single clustering method that can handle different datasets. 

However, it has been demonstrated that by combining results from different clustering methods 

into a “co-association” matrix (CM) [191] [192], true underlying data membership can be 

identified. Inspired by this theory, we propose a new outlier subject elimination method by 
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x4 1 0.25 0.5 1 0.25 0.5
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applying the union-find algorithm [193] on the co-association matrix so that isolated outlier 

subjects can be identified, considered as noise in the dataset and eliminated from the analysis. 

Given M different partitions for a given dataset with N subjects. The 𝑁 × 𝑁 co-association 

(CM) matrix is then defined as: 

                                          𝐶𝑀 =  

𝐶𝑀!!
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                                               (2.12)  

Each element in CM matrix is computed by: 

                                                                  𝐶𝑀!" =  !!"

!
                                                         (2.13)                                                                                                                           

where 𝐶𝑀!" is the number of times subjects i and j are assigned to the same cluster among the 

M partitions. 

With CM matrix we define subjects i and j as a connected pair with condition 𝐶𝑀!" = 1, which 

indicates that subjects i and j are always grouped together among the M partitions. Note that CM 

is a symmetric matrix, thus only upper triangular (or lower triangular) connected pairs need to be 

considered. A union-find algorithm is then applied so that connected subjects are merged 

together. Given N subjects and its corresponding CM matrix, the union-find algorithm is 

illustrated below (Figure 2.6): 

1) Initially, each subject was considered as a singleton tree with only itself in it. 

2) By looking up CM matrix, the connected pairs were identified. 
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3) For one connected pair a and b, where a belongs to tree A and b belongs to tree B, a “find” 

operation was applied to find the root of tree A and root of tree B, respectively. 

4) A union operation was then applied to merge trees A and B. 

5) Step 3 and 4 were repeated for all connected pairs. 

The output of union-find algorithm was a set of trees, and those trees with only one node in it 

were considered as outlier subjects. 

2.2.9 Functional Interpretation of Selected Connectivity Features—Enrichment Analysis   

Functional interpretation of large-scale neuroimaging finds, e.g., brain connectivity analysis, is 

often done by associating identified regions or connections to previous studies. Such an approach 

is developed based on a subjective visual inspection or on percent of overlap with existing maps 

without any statistical justification. Therefore, it has potential risk to discover false positive 

results and overlooking additional results. In this study, to avoid these shortcomings, a novel 

functional interpretation method—enrichment analysis [194]—was employed, which provides a 

quantitative statistical measure on the association between selected connectivity features and pre-

defined functional brain networks. 

Let us define the following: 1) a background set S with m predefined ROIs, i.e., 200 ROIs (for 

ADHD, AD, and ASD) or 125 ROIs (for PTSD/PCS), and 2) a group of n selected connectivity 

features 𝐴 = { 𝑝!, 𝑞! , 𝑝!, 𝑞! ,⋯ , 𝑝!, 𝑞! }, where each 𝑝! and 𝑞! represents ROIs. Two disjoint 

subsets of S, C and D (with size 𝑚! and 𝑚!), were generated by enrichment analysis, each of 

which constitutes a known brain network identified in previous studies. A group B was then 

generated with all possible ROI pairs (i.e., connectivity features) between C and D. The size of B 

was determined by 𝐾 =  𝑚!  × 𝑚! . Let x represent the intersection between A and B. The 
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significance of x is the probability of having x or more elements in the intersection, which can be 

calculated by,  

                                             𝑝 = 𝐹 𝑥 𝑀,𝑛,𝐾 =
!
!

!!!
!!!
!
!

!"# (!,!)
!!!                                     (2.14)                                                                                                                           

where 𝑀 =  !(!!!)
!

 is the total pairs of ROIs in the background set S. Equation (2.14) is the so 

called the hypergeometric (HG) cumulative distribution, which is equivalent to a one-tailed 

Fisher’s exact test. The underlying null hypothesis of this test is that A was randomly selected 

from the set of all groups of ROI pairs with the same number of connectivities n over the same 

set of ROIs. By using this method, the statistically significant brain network-to-network (N2N) 

connections can be verified and quantified with corresponding p-values. 

The entire pipeline for identifying different brain-based disorders along with several 

supplementary analyses, i.e., site-specific analysis, elimination of outlier subjects, and 

enrichment analysis, is illustrated in Figure 2.1.  

Disease Name 
DPC OPTICS Hierarchical 

𝜌 𝛿 Reachability Threshold Cutting Height 

ADHD 46.93 1.22 1.03 1.15 

AD 6.37 1.17 1.11 1.17 

ASD 22.65 1.06 1.18 1.16 

PTSD/PCS 12.05 1.17 0.42 1.16 

Table 2.5 Estimated optimal values of each input parameter in clustering for Clinical vs. 

Connectivity comparison. 



 66 

Disease Name 
DPC OPTICS Hierarchical 

𝜌 𝛿 Reachability Threshold Cutting Height 

ADHD 37.64 1.19 1.21 1.14 

AD 6.00 1.18 1.18 1.16 

ASD 26.54 1.02 1.11 1.16 

PTSD/PCS 14.89 1.11 0.40 1.08 

Table 2.6 Estimated optimal values of each input parameter in clustering for Phenotypic vs. 

Connectivity comparison. 

2.3 Results 

The optimal values of each input parameter determined for the three clustering methods are 

presented in Table 2.5 and Table 2.6. Different feature selection methods were compared in 

terms of peak similarity obtained for the different neuropsychiatric disorders. From Table 2.7-

Table 2.10, it can be seen that the minimum subset of features selected by GA consistently 

resulted in highest similarity between clusters obtained from the clinical diagnoses, fMRI-based 

connectivity and phenotypic variables. Using GA, the average and maximum similarities 

between connectivity and clinical diagnosis were 80.59% and 100% respectively. The average 

and maximum similarities between connectivity and phenotypic variables were 76.72% and 

80.38%, respectively. The average and maximum similarities between clinical diagnosis and 

phenotypic variables were 73.06% and 76.62% respectively. SFS was less reliable than GA in 

that the average and maximum similarities achieved between connectivity and clinical diagnosis 

were 72.20 and 100%, respectively; and the average and maximum similarities between 

connectivity and phenotypic variables were 66.95% and 72.22%, respectively. For similarity, the 

number of features determined by SFS was larger than that selected by GA. For instance, in the 
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PTSD/PCS dataset, although the peak similarities obtained by using SFS and GA with OPTICS 

were similar, the number of features selected by these two methods were 84 and 15, respectively. 

The similarities obtained by SFR were much lower than that obtained by SFS and GA, and the 

number of clusters determined using SFR was different from that using SFS and GA in all 

datasets. The convergence of SFR, SFS, and GA were also compared. In Figure 2.7, the 

similarity between connectivity and phenotypic variables obtained using hierarchical clustering 

and different feature selection methods was plotted as a function of the number of iterations in 

ADHD dataset. The shape of the curve looks comparable between connectivity and clinical 

diagnosis for the different clustering methods, but the amplitude may be different. With GA and 

SFS, a clearly step-wise convergence was observed. Although SFS converged faster than GA, a 

lower similarity was achieved after the curve became stable. With SFR, no clear convergence 

was observed (i.e., the curve oscillated dramatically).  

The performance of the different clustering methods varied across the datasets. Hierarchical 

clustering gave higher similarity in ADHD (Table 2.7) and ASD (Table 2.8) datasets. OPTICS 

performed better in AD (Table 2.9) and PTSD/PCS (Table 2.10) datasets. DPC also resulted in a 

higher similarity in PTSD/PCS. The computation time of DPC was longer than hierarchical and 

OPTICS. For example, using 2.3 GHz Intel Core i7 processor, the computing time for one 

iteration using the PTSD dataset were as follows: hierarchical clustering took 0.27 sec, OPTICS 

took 0.42 sec, and DPC took 5.22 sec, due to the fact that more input parameters (𝜌 and 𝛿) were 

required to be optimized in DPC than that in hierarchical (cutting height) and OPTICS (threshold 

of reachability plot). More parameters result in larger searching space. 
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Figure 2.7 Similarity between connectivity and phenotypic variables obtained from different 

iterations using hierarchical clustering and different feature selection methods: (a) SFR, (b) SFS, 

and (c) GA. 

Feature 
Selection 
Method 

Clustering 
Method 

Clinical v.s. Phenotypic Clinical v.s. Connectivity Phenotypic v.s. Connectivity 

Peak 
Sim. (%) 

# of 
Features 

# of 
Clusters 

Peak Sim. 
(%) 

# of 
Features 

# of 
Clusters 

Peak Sim. 
(%) 

# of 
Features 

# of 
Clusters 

SFR 

DPC 66.19 2 3 48.91 3 2 49.94 3 2 

OPTICS 64.19 2 2 56.10 4 3 58.22 4 3 

Hierarchical 61.41 3 2 51.38 195 2 51.84 18 2 

SFS 

DPC 66.19 2 3 58.36 37 3 68.30 17 3 

OPTICS 64.19 2 2 58.40 13 3 66.46 26 3 

Hierarchical 67.23 3 3 59.32 54 3 69.79 51 3 

GA 

DPC 73.51 4 3 62.48 72 3 63.83 63 3 

OPTICS 70.52 3 3 64.44 122 3 64.42 25 3 

Hierarchical 69.29 5 3 69.34 83 3 74.61 121 3 



 69 

Table 2.7 Peak similarity (highlighted), corresponding number of features, and number of 

clusters obtained using SFR, SFS, and GA with different clustering methods for ADHD dataset. 

Feature 
Selection 
Method 

Clustering 
Method 

Clinical v.s. Phenotypic Clinical v.s. Connectivity Phenotypic v.s. Connectivity 

Peak Sim. 
(%) 

# of 
Features 

# of 
Clusters 

Peak Sim. 
(%) 

# of 
Features 

# of 
Clusters 

Peak Sim. 
(%) 

# of 
Features 

# of 
Clusters 

SFR 

DPC 64.46 2 4 56.68 61 4 57.99 175 3 

OPTICS 64.16 2 3 66.35 84 4 60.48 84 4 

Hierarchical 64.46 2 4 67.63 241 4 57.20 241 4 

SFS 

DPC 57.05 3 4 59.26 2 4 56.30 4 4 

OPTICS 65.93 4 4 64.03 20 4 57.58 12 4 

Hierarchical 65.14 4 5 64.82 155 4 60.26 193 5 

GA 

DPC 62.53 3 4 63.52 44 4 74.55 97 4 

OPTICS 65.93 4 4 64.23 116 4 76.75 58 4 

Hierarchical 65.14 4 5 66.65 74 4 73.28 124 5 

Table 2.8 Peak similarity (highlighted), corresponding number of features, and number of 

clusters obtained using SFR, SFS, and GA with different clustering methods for AD dataset. 

Feature 
Selection 
Method 

Clustering 
Method 

Clinical v.s. Phenotypic Clinical v.s. Connectivity Phenotypic v.s. Connectivity 

Peak Sim. 
(%) 

# of 
Features 

# of 
Clusters 

Peak Sim. 
(%) 

# of 
Features 

# of 
Clusters 

Peak Sim. 
(%) 

# of 
Features 

# of 
Clusters 

SFR 

DPC 66.67 9 2 58.91 5 3 61.23 5 3 

OPTICS 74.75 10 3 62.14 10 3 64.53 99 3 

Hierarchical 75.81 9 3 61.04 681 2 60.64 336 2 

SFS 

DPC 66.20 2 2 64.41 33 3 63.79 42 3 

OPTICS 76.00 8 3 64.50 144 3 61.75 2 3 

Hierarchical 76.00 5 3 64.79 85 3 65.52 143 3 

GA 

DPC 75.85 5 3 72.45 60 3 68.98 50 3 

OPTICS 76.46 5 3 79.18 103 3 74.47 70 3 

Hierarchical 76.63 5 3 89.20 101 3 75.66 54 3 

Table 2.9 Peak similarity (highlighted), corresponding number of features, and number of 

clusters obtained using SFR, SFS, and GA with different clustering methods for ASD dataset. 
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Feature 
Selection 
Method 

Clustering 
Method 

Clinical v.s. Phenotypic Clinical v.s. Connectivity Phenotypic v.s. Connectivity 

Peak Sim. 
(%) 

# of 
Features 

# of 
Clusters 

Peak Sim. 
(%) 

# of 
Features 

# of 
Clusters 

Peak Sim. 
(%) 

# of 
Features 

# of 
Clusters 

SFR 

DPC 63.82 6 2 66.67 9 2 61.38 9 2 

OPTICS 69.20 4 3 66.67 16 2 76.15 18 3 

Hierarchical 61.89 6 2 66.67 6 2 57.31 4 2 

SFS 

DPC 74.25 3 3 73.01 2 3 70.40 4 3 

OPTICS 69.76 7 3 100 84 3 66.39 2 3 

Hierarchical 69.35 3 3 75.30 2 3 72.22 2 3 

GA 

DPC 74.25 3 3 100 40 3 77.25 25 3 

OPTICS 76.15 4 3 100 15 3 80.38 8 3 

Hierarchical 70.15 5 3 77.65 2 3 64.70 1 3 

Table 2.10 Peak similarity (highlighted), corresponding number of features, and number of 

clusters obtained using SFR, SFS, and GA with different clustering methods for PTSD dataset. 

Site Name HC Autism Asperger’s 

Caltech 19 13 0 

CMU 13 14 0 

Pitt 27 30 0 

UCLA 45 44 0 

SDSU 23 2 5 

Trinity 24 10 6 

NYU 105 53 21 

Table 2.11 Number of subjects provided by each site in the ASD sample. 

Site-specific analysis was applied on the ADHD dataset. We could not apply this analysis on 

ASD dataset since there was only one site that had enough samples for HC and disease 

subgroups (Table 2.11) whereas AD and PTSD datasets were obtained on the same scanner. For 

ADHD dataset, NYU and Peking had more than 30 samples for control, ADHD-C, and ADHD-I 

(Table 2.12). Thus, a site-specific analysis was applied on these two sites, individually. 
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The peak similarity obtained between clinical diagnostic and phenotypic clusters, between 

clinical diagnostic and connectivity clusters, and between phenotypic and connectivity clusters 

for site-specific analysis are shown in Table 2.13. Compared with previous results presented in 

Table 2.7 using feature selection and clustering on the entire dataset across different sites, the 

similarity was increased by applying site-specific analysis for Peking and NYU, individually. 

The similarity was reduced by applying clustering on the whole datasets with commonly selected 

features from these two sites. 

Site Name HC ADHD-C ADHD-I 

NYU 98 73 43 

Peking 116 29 49 

KKI 58 16 5 

Table 2.12 Number of subjects provided by each site in the ADHD sample. 

Site 
Name 

Clinical v.s. Phenotypic Clinical v.s. Connectivity Phenotypic v.s. Connectivity 

Hier. OPTICS DPC Hier. OPTICS DPC Hier. OPTICS DPC 

NYU 74.32 75.87 77.02 100 100 79.38 87.02 87.02 74.55 

Peking 78.99 66.67 82.18 74.66 89.02 88.83 82.32 89.84 88.42 

Whole 
Dataset 63.27 65.14 66.95 62.92 58.37 54.69 71.54 59.38 54.79 

Table 2.13 Similarity achieved using data from individual sites and for the whole dataset using 

features commonly selected by NYU and Peking. 

For ADHD and AD, highest similarity was achieved between connectivity and phenotypic 

clusters and the corresponding similarity between clinical diagnostic and phenotypic clusters was 

lower. On the other hand, for ASD and PTSD/PCS, highest similarity was achieved between 

connectivity and clinical diagnostic clusters. This suggests that diagnostic criteria for ASD and 



 72 

PTSD/PCS are mapped well onto underlying neurobiological clusters, while that was not the 

case for ADHD and AD. Consequently, for ADHD and AD, we reassigned diagnostic labels 

based on those generated by connectivity clusters to form new neurobiologically-informed 

groups. In order to verify whether this new grouping is valid, we estimated the statistical 

separation of phenotypic variables based on the traditional diagnostic grouping as well as with 

the new neurobiologically-informed groups. The results shown in Figure 2.8 and Figure 2.9 

indicate that almost all p-values were smaller with the new grouping by applying 2-sample t-test. 

This suggests that when traditional diagnostic groups do not map well onto underlying 

neurobiological clusters, connectivity can be used to regroup the subjects so that they map better 

onto the behavioral phenotypes. 

 

Figure 2.8 Statistical significance (p-value) of selected phenotypic/genotypic variables with both 

the old clinical diagnostic grouping and the new connectivity grouping. The results are shown 

here for the ADHD dataset. Logarithmic scale is used for the y-axis of p-values. 
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Figure 2.9 Statistical significance (p-value) of selected phenotypic/genotypic variables with both 

the traditional clinical diagnostic grouping and the new connectivity-based grouping. The results 

are shown here for the AD dataset. Logarithmic scale is used for the y-axis of p-values. 

The peak similarity obtained with and without outlier subject elimination was compared and is 

shown in Table 2.14. Consistently higher similarity was achieved by removing the identified 

outlier subjects from the dataset. Moreover, in AD dataset, the number of clusters identified by 

hierarchical clustering was changed from 5 to 4 with outlier elimination (highlighted in Table 

2.14), which matched with the grouping obtained using clinical diagnosis. The data in ADHD 

and ASD datasets comprised of data acquired at different sites using different scanners, which 

might explain the fact that the number of outliers identified in ADHD and ASD were generally 

greater than the other two datasets. 
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Disease 
Name 

Clustering 
Method 

With Outlier Subjects Removed Including All Subjects 

Clinical v.s. Connectivity Phenotypic v.s. 
Connectivity 

Clinical v.s. 
Connectivity 

Phenotypic v.s. 
Connectivity 

p p (%) sim k p p (%) sim k sim k sim k 

ADHD 

DPC 

54 11.09 

69.72 3 

38 7.80 

64.86 3 62.48 3 63.83 3 

OPTICS 69.79 3 68.92 3 64.44 3 64.42 3 

Hierarchical 69.62 3 75.66 3 69.34 3 74.61 3 

AD 

DPC 

14 14.58 

65.33 4 

9 9.38 

76.70 4 63.52 4 74.55 4 

OPTICS 65.88 4 77.75 4 64.23 4 76.75 4 

Hierarchical 69.68 4 78.38 4 66.65 5 73.28 5 

ASD 

DPC 

15 3.30 

72.65 3 

49 10.79 

71.95 3 72.45 3 68.98 3 

OPTICS 79.83 3 73.63 3 79.18 3 74.47 3 

Hierarchical 89.84 3 76.05 3 89.20 3 75.66 3 

PTSD 

DPC 

3 3.45 

100 3 

5 5.57 

77.57 3 100 3 77.25 3 

OPTICS 100 3 81.54 3 100 3 80.38 3 

Hierarchical 80.60 3 72.54 3 77.65 3 64.70 3 

Table 2.14 Comparison of peak similarity obtained with and without elimination of outlier 

subjects. p: number of outliers, k: number of clusters, sim: clustering similarity. In AD dataset, 

the number of clusters identified by hierarchical clustering was changed from 5 to 4 with outlier 

elimination (highlighted), which matched with the grouping obtained using clinical diagnosis. 

2.4 Discussion 

In this work, we have proposed a general analysis pipeline for characterizing different 

neuropsychiatric disorders using unsupervised learning methods. First, we discuss the selected 

brain connectivity features and phenotypic variables for each disorder and compare our results 

with previous studies. Second, elaborate on the implications of results obtained within specific 

sites in comparison to those obtained from the entire ADHD dataset. Third, we discuss the 
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reassignment of diagnostic labels based on those generated by connectivity clusters. Finally, 

delineate the role of outlier subject elimination in unsupervised leaning methods as applied to 

neuroimaging. 

2.4.1 Connectivity Features Important for Clustering 

After applying clustering, the selected connectivity features were split into two networks, i.e., 

1) a network in which functional/effective connectivities and temporal variability of constituent 

paths were significantly (p<0.05, FDR corrected) larger in the control group, and 2) a network in 

which functional/effective connectivities and temporal variability of the constituent paths were 

significantly (p<0.05, FDR corrected) larger in the disease group. Here, “disease group” refers to 

all pathological subgroups combined. This was done since all disease groups have two or more 

pathological sub-groups and it becomes increasingly complex to interpret all pairwise 

differences. Then, these two networks were mapped back to the image space and overlaid on an 

anatomical glass brain [using BrainNet Viewer [195]] for the visualization, respectively. The 

identified brain networks were then qualitatively interpreted and compared with previous studies 

using enrichment analysis [194]. 

Intrinsic connectivity networks (ICNs) denote groups of brain regions that show correlated 

spontaneous activities at “resting” state [196]. It has been shown that ICNs reflect strong 

coupling of spontaneous fluctuations in ongoing activity and remain robust under different 

mental states, e.g., sleep, loss of consciousness, etc. [197]. ICNs provide a common 

neurofunctional framework for investigating cognitive dysfunction in different neuropsychiatric 

disorders. There are many stable ICNs that have been identified in the human brain so far. Five 

of them—default mode network (DMN), visual network (VN), basal ganglia network (BGN), 
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sensory motor network (SMN), and the semantic cognition and attention (SCAN)—have been 

demonstrated to be particularly important for understanding higher cognitive function and 

dysfunction, and provide useful models for identifying rs-fMRI connectivity patterns. Below, we 

discuss the significance of each of these networks to provide a context for presenting alterations 

in the interactions within and between these networks observed in neuropsychiatric disorders.  

DMN is one of the most well-known ICNs, which is a distributed network anchored in the 

posterior cingulate cortex [PCC], the medial prefrontal cortex [mPFC], the medial temporal lobe 

[MTL], the precuneus, the anterior cingulate cortex [ACC], the inferior parietal lobe [IPL], and 

the medial orbital gyrus [MOG] [198]. PCC, hippocampus, and angular gyrus are typically 

associated with episodic memory retrieval [199] [200], autobiographical memory [201], and 

semantic memory related to internal thought [202]. mPFC has been demonstrated to be 

associated with self-related and social cognitive processes [203], value-based decision making 

[204], and emotion regulation [205]. Together, the entire DMN comprises an integrated system 

involving episodic memory, autobiographical memory, and self-related mental processes.  

VN [206] involves the occipital and bilateral temporal regions including the middle occipital 

gyrus, the inferior temporal gyrus [ITG], the fusiform gyrus, the cuneus, etc., which is involved 

in visual processing and mental imagery [207] [208]. The middle occipital gyrus, ITG, and the 

fusiform gyrus are primarily involved in the higher functions of vision processing, e.g., 

distinguishing objects among different categories, face recognition, visual words recognition, 

representation of complex object features, etc. [209] [210]. The cuneus has been demonstrated to 

be involved in basic visual processing, which receives visual information from retina [211]. 
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BGN is predominantly located in the basal ganglia including the striatum (which is subdivided 

into the caudate nucleus and putamen), the globus pallidus or pallidum, the substantia nigra and 

the thalamus [212]. BGN is associated with a variety of functions including control of voluntary 

motor movements [213], procedural learning, eye movements [214], cognition [215], emotion 

[216], etc. 

SMN involves the precentral gyrus, the postcentral gyrus, cerebellum, the posterior insula, and 

part of the frontal gyrus corresponding to the primary sensory motor cortex and the 

supplementary motor area [SMA] [217] [218]. Studies have indicated that this network is 

processing somatosensory stimuli, executing motor movements and sensorimotor integration 

[219] [220].  

SCAN is defined as regions associated with semantic cognition network and attention network, 

which is a network of lateral structures in frontal and parietal cortices, as well as some temporal 

regions. The semantic cognition network is primarily made up of three regions, Broca’s area, 

Wernicke’s area, as well as parts of the middle temporal gyrus [MTG] [221] [222]. Broca’s area 

is generally defined as comprising Brodmann areas 44 and 45. Area 44 (the posterior part of the 

inferior frontal gyrus [IFG]) is involved in phonological processing and language production 

whereas area 45 (the anterior part of the IFG) engages in the semantic aspects of language. 

Together, Broca’s area plays an important role in processing of verbal information [223]. 

Wernicke’s area is traditionally thought to be located in the posterior part of the superior 

temporal gyrus [STG], which is involved in the comprehension or understanding of written and 

spoken language [224]. Some studies have showed that MTG is involved in the retrieval of 

lexical syntactic information [225]. The attention network is commonly segregated into two 
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distinct networks: a bilateral dorsal attention network (DAN), which includes the dorsal frontal 

and parietal cortices, and the ventral attention network (VAN), largely right-lateralized, which 

includes the ventral frontal and parietal cortices [199] [226]. DAN has been associated with goal-

directed, top-down attention processes as inhibitory control, working memory and response 

selection, whereas the VAN is related with salience processing and mediates stimulus-driven, 

bottom-up attention processes [227]. Moreover, it is relevant to note that dorsal and ventral 

systems appear to interact not only during cognitive tasks [228] [229] but also during 

spontaneous activity [230]. Previous literature suggests that semantic cognition and attention are 

intimately related. This is also borne out by the fact that many disorders such as ADHD and ASD 

have simultaneous deficits in semantic cognition and attention. Therefore, we considered this as 

one network. 

A qualitative as well as quantitative interpretation of alterations of these INCs and other related 

brain regions in different neuropsychiatric disorders are discussed below. For each pathology, we 

chose the features that gave us highest similarity between clusters obtained from clinical labels, 

connectivity features and phenotypic features. For ADHD and AD, highest similarity was 

obtained between connectivity and phenotypic clusters while for ASD and PTSD/PCS, highest 

similarity was obtained between clinical labels and connectivity clusters. Therefore, the features 

obtained in these two different scenarios have different implications. For ADHD and AD data 

sets, it suggests that traditional clinical diagnostic grouping may not neatly map onto 

neurobiological and neurobehavioral clusters. This may be because of uncertainty in clearly 

identifying differences between disease sub-groups in ADHD (ADHD-C and ADHD-I) and AD 

(EMCI, LMCI and AD). Contrarily, for ASD and PTSD/PCS data sets, it suggests that traditional 

clinical diagnostic grouping may in fact map well onto at least neurobiological clusters.  
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Figure 2.10 SFC, vDFC, SEC, and vDEC features selected by GA and hierarchical (ADHD). 

Selected features were split into two groups, i.e., 1) control > disease (ADHD-C and ADHD-I) 

and 2) disease > control. DMN: Default mode network, VN: Visual network, BGN: Basal 

ganglia network, SMN: Sensory motor network, SCAN: Semantic cognition and attention 

network. 

These facts are borne out by computing the purity of clusters obtained from connectivity 

features for disease sub-groups within each data set. To measure cluster purity, the clusters 

obtained using connectivity features were regrouped using the diagnostic label, and each object 

was assigned to majority class in the current cluster. Then the accuracy was measured by 

counting the number of correctly assigned objects within each cluster and took the average. The 

cluster purity for ADHD, AD, ASD, and PTSD/PCS were 0.73, 0.75, 0.94, and 1.00, respectively. 

It can be seen that ASD and PTSD/PCS data sets had high purity while for ADHD and AD, the 

purity of clusters for disease subgroups was comparatively lower. 

a) ADHD: 121 relevant connectivity features were selected by GA and hierarchical clustering 

(since this combination gave highest similarity between connectivity and phenotypic features), 

which were 26 SFC, 14 vDFC, 53 SEC, and 28 vDEC. These features include connections in all 

lobes of the brain (Figure 2.10). With enrichment analysis, two N2N interactions were selected 

for SFC, i.e the interactions within BGN and the interaction between VN and SMN, including 

connections between cerebellum and occipital lobe, between insula and fusiform, and between 

caudate and thalamus. In addition, two N2N interactions were selected for SEC, i.e. from BGN 

to VN, and from SCAN to SMN, including connections from caudate to occipital lobe and ITG, 
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from IFG and middle frontal gyrus [MFG] to posterior insula, from IFG to postcentral gyrus, and 

from STG to cerebellum (Table 2.15). 

Feature Type Comparison P-Value Selected Features 

SFC Control > Disease 0.006 BGN—BGN 

SFC Disease > Control 0.04 VN—SMN 

SEC Control > Disease 0.03 BGNàVN 

SEC Control > Disease 0.007 SCANàSMN 

Table 2.15 Network-to-network interactions selected by enrichment analysis for ADHD dataset. 

Most of the rs-fMRI studies have demonstrated atypical functional activations in frontal, 

temporal, parietal lobes, and cerebellar regions [231] [232] [233] in ADHD. Multiple studies 

have found aberrant functional connectivity among the brain regions of the DMN, SCAN, and 

BGN [234] [235] [236] [237]. Abnormal functional activations in the orbitofrontal cortex [OFC] 

have been suggested to influence behavioral inhibition in children with ADHD [238]. Resting-

state fMRI studies have frequently reported disrupted functional connectivity between ACC and 

PCC in ADHD [239] [236]. Significantly decreased activations have been reported in PFC, SPL, 

and IFG in ADHD, during multiple cognitive performance tasks and in resting-state [240] [241] 

[242]. One fMRI study conducted in adults with childhood ADHD showed reduced activations in 

bilateral IFG, left parietal lobe, caudate, and thalamus [243]. Another study found reduced 

functional connectivity between thalamus and other BGN areas (e.g., putamen, caudate) with 

ADHD [237]. Some studies have also identified reduced activations in IFG [232] and STG [244] 

in ADHD patients. Kessler and colleagues [245] observed reduced connectivity between SCAN 

and SMN and increased connectivity within VN by applying joint independent component 

analysis on the ADHD-200 sample. On the other hand, increased functional connectivity in 
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DMN, BGN, SMN, and VN has been observed in some studies [246] [240]. Significantly 

increased functional connectivity between ACC and the thalamus, cerebellum, and insula have 

been shown during resting-state in children with ADHD, compared to controls [247] [236] [248]. 

Li and colleagues [249] found increased connectivity between the right pulvinar and occipital 

regions, during a visual sustained attention task-based fMRI study. Hale and colleagues [250] 

also observed reduced activations in VN and DMN, during letter and location judgment tasks. 

The features selected by GA for maximizing the similarity between connectivity and phenotypic 

clusters and the subset of significant N2N interactions determined by enrichment analysis are in 

agreement with previous literature implicating the very same regions and connections in ADHD. 
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Figure 2.11 SFC and vDFC features selected by GA and hierarchical (AD). Selected features 

were split into two groups, i.e., 1) control > disease (AD, LMCI and EMCI) and 2) disease > 

control. DMN: Default mode network, VN: Visual network, BGN: Basal ganglia network, SMN: 

Sensory motor network, SCAN: Semantic cognition and attention network. 

b) AD: 58 features were selected by GA and OPTICS (since this combination gave highest 

similarity between connectivity and phenotypic features), including 32 vDFC features and 26 

SFC features. Most of features were related to DMN, VN, SMN, and SCAN (Figure 2.11). With 

enrichment analysis, two N2N interactions were selected for SFC, i.e., the interaction between 

DMN and SMN, and that between DMN and VN, including connections between ACC and 

middle occipital gyrus, between PFC and fusiform, between IPL and ITG, between SFG and 

insula, between hippocampus and SMA, between cerebellum and SFG, and between cerebellum 

and PFC. In addition, two N2N interactions were selected for vDFC, i.e., the interactions within 

SCAN, and between DMN and SCAN, including connections between MTG and STG, between 

PFC and IFG, between precuneus and IFG, between precuneus and MTG, between PFC and 

STG, and between MTG and IPL (Table 2.16).  

Feature Type Comparison P-Value Selected Features 

SFC Disease > Control 0.036 DMN—SMN 

SFC Control > Disease 0.01 DMN—VN 

vDFC Control > Disease 0.01 SCAN—SCAN 

vDFC Disease > Control 0.04 DMN—SCAN 

Table 2.16 Network-to-network interactions selected by enrichment analysis for AD dataset. 

Several previous studies have indicated dysfunctions in different regions of DMN, VN, SMN 

and SCAN in the AD and MCI populations [251] [252]. Some studies have observed decreased 
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connectivity in DMN coupled with an increased connectivity within prefrontal regions [253] 

[254] [255]. Significant alterations of connectivity in MTG, the PCC, hippocampus, and the 

angular gyrus, have been observed in AD [256], [200]. The dysfunction in the MTG, which is 

referred to as a central hub of SCAN [257], is suggested as an early feature of AD [258]. A lesser 

degree of MTG activation has been observed in MCI [259] [260] compared to controls. The 

medial parietal cortex, including the PCC and precuneus, are selectively vulnerable to amyloid 

deposition in AD [257], and studies of cortical metabolism using positron emission tomography 

and single photon emission computed tomography in AD suggest that abnormalities in the PCC 

and precuneus are early features of AD [258]. A voxel-based study showed that AD patients had 

both decreased activity of the right MFG and an increased activity of the right parietal cortex 

[261]. Reduced connectivity in the temporal lobe was also observed in different rs-fMRI studies 

[252] [254]. Multiple studies have suggested that the insula is involved in AD [262] [263] [264] 

and some of the behavioral abnormalities in AD may reflect insular pathology. Brier and 

colleagues [116] observed reduced anti-correlations between DMN and SMN, and between 

DMN and SCAN, during a resting state fMRI study. Li and colleagues [265] also found aberrant 

connectivity between DMN and SCAN, as well as between DMN and SMN. These previous 

studies seem to support our findings regarding features which are important for unsupervised 

clustering of control, EMCI, LMCI and AD groups. 
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Figure 2.12 SFC, vDFC, SEC, and vDEC features selected by GA and hierarchical (ASD). 

Selected features were split into two groups, i.e., 1) control > disease (autism and asperger’s) and 



 86 

2) disease > control. DMN: Default mode network, VN: Visual network, BGN: Basal ganglia 

network, SMN: Sensory motor network, SCAN: Semantic cognition and attention network. 

Feature Type Comparison P-Value Selected Features 

SFC Control > Disease 0.033 DMN—DMN 

SFC Control > Disease 0.015 DMN—VN 

vDFC Control > Disease 0.04 BGN—SCAN 

SEC Disease > Control 0.025 DMNàSMN 

Table 2.17 Network-to-network interactions selected by enrichment analysis for ASD dataset. 

c) ASD: 76 features were selected using GA and hierarchical (since this combination gave 

highest similarity between connectivity features and clinical diagnosis)—30 SFC, 11 vDFC, 27 

SEC, and 9 vDEC—involving frontal, parietal, temporal lobes, and cerebellar regions (Figure 

2.12). With enrichment analysis, two N2N interactions were selected for SFC, i.e., the interaction 

within DMN, and between DMN and VN, including connections between PFC and angular 

gyrus, between SFG and angular gyrus, between ACC and parahippocampal gyrus, between 

MOG and parahippocampal gyrus, between ACC and fusiform, between SFG and ITG, and 

between ACC and ITG. One N2N interaction was selected for vDFC, i.e., the interaction 

between BGN and SCAN, including connections between caudate and MTG, and between 

thalamus and STG. In addition, one N2N interaction was selected for SEC, i.e., from DMN to 

SMN, including connections from MOG to precentral, form hippocampus to posterior insula, and 

from precuneus to cerebellum (Table 2.17). 

Several recent studies have observed abnormal connectivity in DMN, SCAN, SMN, BGN and 

VN in the pathophysiology of ASD [266] [267]. A recent meta-analysis showed alterations in 

MTG, hippocampus, as well as the posterior medial cortex in ASD [268], which were suggested 
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to be related to deficits in social information processing. It has been shown that PCC and mPFC 

in ASD are hypoactive compared with healthy controls [269]. Decreased connectivity between 

the PCC and the SFG, the PCC and the temporal lobes, as well as the PCC and the 

parahippocampal gyri were observed, which were associated with poor social skills [270]. 

Dysfunction in the SCAN has been shown to be related to deficits in language and 

communication in individuals with ASD. Reduced activation and functional connectivity in 

frontal-temporal SCAN were observed by Mody et al [271]. A recent rs-fMRI study found a 

marked loss of functional connectivity between the right cerebellar region and regions in SCAN 

[272]. Weaker connection between the SMA and ventral premotor cortex was found in the ASD 

group compared with controls, which has been hypothesized to underlie the initiation of speech 

motor actions [273]. Decreased connectivity between BGN and the occipital region and 

prefrontal cortical regions was also found by Prat et al. [274]. A meta-analysis identified 

posterior insula as a consistent locus of hypoactivity in ASD [269]. Other fMRI studies have also 

suggested that insula is one possible key dysfunctional area in ASD [275]. In contrast, a recent 

rs-fMRI study [276] observed stronger functional connectivity within several large-scale brain 

networks in children with ASD compared with controls, including DMN, SCAN, SMN, BGN, 

and VN. It has been suggested that developmental trajectories in ASD can be both heterogeneous 

and aberrant compared to neurotypicals and hyper- or hypo-connectivity is observed depending 

on when the data is acquired during development [276]. Our results are in broad agreement with 

previous fMRI literature in ASD discussed above. 
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Figure 2.13 SFC, vDFC, SEC, and vDEC features selected by GA and hierarchical (PTSD/PCS). 

Selected features were split into two groups, i.e., 1) control > disease (PTSD and PTSD/PCS) 

and 2) disease > control. DMN: Default mode network, VN: Visual network, BGN: Basal 

ganglia network, SMN: Sensory motor network, SCAN: Semantic cognition and attention 

network. 

d) PTSD/PCS: 15 features were selected by GA and OPTICS (since this combination gave 

highest similarity between connectivity features and clinical diagnosis); 2 SFC, 5 vDFC, 2 SEC, 

and 6 vDEC. These features were mainly located in DMN, BGN, and SCAN (Figure 2.13). With 

enrichment analysis, one N2N interaction between DMN and BGN was selected for both SFC 

and vDFC. This involved connections between ACC and caudate, and between parahippocampal 

gyrus and caudate. In addition, one N2N interaction from DMN to BGN was selected for vDEC, 

which included the connection from parahippocampal gyrus to caudate (Table 2.18). 

Feature Type Comparison P-Value Selected Features 

SFC Disease > Control 0.001 DMN—BGN 

vDFC Control > Disease < 0.001 DMN—BGN 

vDEC Control > Disease 0.016 DMNàBGN and 
DMNßBGN 

Table 2.18 Network-to-network interactions selected by enrichment analysis for PTSD dataset. 

Several resting-state studies of PTSD have showed aberrant connectivity within brain 

structures associated with DMN [277] [278] [279]. The parahippocampal gyri and hippocampus 

are critical structures in the DMN, which have been shown to be essential for memory functions, 

especially memorizing facts and events, and memory consolidation [280]. A previous rs-fMRI 

study found decreased functional connectivity in the hippocampal regions in PTSD patients 
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[281]. BGN has also been reported to be associated with PTSD [282] [283] [284]. PTSD has 

been linked with abnormal activation of different BGN regions, brain stem, and limbic regions 

compared with control group [107] [285] [286]. The connectivity between DMN and BGN and 

between DMN and VN have been observed to be impacted in PTSD in many functional 

connectivity studies [287] [288]. Lanius and colleagues [287] found increased connectivity 

between ACC and caudate, PCC, the right parietal lobe, and the right occipital lobe, during a 

resting-state fMRI study using subjects with PTSD. Stark and colleagues found changes in 

connectivity between DMN and BGN, e.g., connections between ACC and caudate, between 

parahippocampal gyri and caudate, etc., by applying a systematic, quantitative meta-data analysis 

on previous studies. SCAN has also been demonstrated to be linked to PTSD. Reduced 

connectivity was observed in MTG, MFG and several BGN regions in the PTSD group, 

compared with controls [289]. Yin and colleagues [290] also found reduced connectivity in MTG 

and lingual gyrus, during a resting-state fMRI study. It is interesting to note that increased static 

connectivity and reduced variability of dynamic connectivity between the hippocampal 

formation and BGN regions such as caudate has been recently reported in PTSD and PCS [291] 

and our results seem to confirm these findings and show that those aberrations are important for 

unsupervised clustering of subjects into these groups.   

From above discussions, it can be seen that for each individual neuropsychiatric disorder, 

connectivity features selected by GA with optimal clustering method are consistent with previous 

studies, which suggest the effectiveness of our general pipeline for identifying different brain-

based disorders using unsupervised learning. 

2.4.2 Phenotypic Features Important for Clustering 
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The phenotypic variables important for clustering were selected for each psychiatric disease. 

Below, we discuss the relevance of these variables in the context of existing literature on those 

measures.  

a) ADHD: Four phenotypic variables were selected by GA and DPC including ADHD index 

score, Inattentive score, Hyper/Impulsive score (all are subscales in ADHD-RS), and FIQ in 

intelligence scale. ADHD-RS has been considered as an effective clinical diagnostic tool for 

assessing the severity of ADHD in children and adolescents [292] [293]. It gathers information 

on the severity and frequency of symptoms, the establishment of childhood onset of symptoms, 

the chronicity and pervasiveness of symptoms, and the impact of symptoms on major life 

activities. Intelligence scale has been demonstrated to be helpful in predicting symptomatology 

and outcome in children with ADHD [294]. A meta-analysis showed that FIQ was lower in 

adults with ADHD compared to HC [140].  

b) AD: Three phenotypic variables, i.e., MSE, CDR, and FAQ, and one genotypic variable, 

i.e., APOE were selected by GA and OPTICS. APOE is considered as the major genetic risk 

factor for AD [146]. Although the presence of APOE does not necessarily entail the development 

of AD, this genetic isoform probably accelerates the rate of AD conversion and progression 

[295]. The MMSE is the most commonly used instrument for screening memory problems and 

other deficits related to cognitive aging. It has been widely used to screen for dementia [141]. 

CDR is a global scale developed to clinically denote the presence of AD and stage its severity 

[296]. Several methods have been derived based on CDR to identify AD accurately [297] [298]. 

FAQ is a standardized assessment of instrumental activities of daily living, which delineates the 

clinical distinction between MCI and AD [299].  
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c) ASD: Five phenotypic variables were selected including ADOS_TOTAL, ADOS_COMM 

and ADOS_SOCIAL (all makeup ADOS test), FIQ in intelligence scale, and ADI-R_VERBAL 

in ADI_R test. ADOS has been extensively used in the clinic for diagnosing ASD [300] [301]. It 

consists of a series of structured and semi-structured presses for an interaction of specific target 

behaviors associated with particular tasks and by general ratings of the quality of behaviors. 

Further, several studies have observed higher VIQ and FIQ in ASD compared to neurotypicals 

[302] [303]. ADI-R is a structured interview conducted with the parents of the referred 

individual and covers the subject’s full developmental history [304]. The communication and 

language score, as one of the three content areas in ADI-R, is useful in assessing the presence 

and severity of delay or total lack of language. 

d) PTSD/PCS: Four phenotypic variables—SDC correct, ZDS, CES, and LEC—were selected 

by GA and OPTICS. SDC is a test of psychomotor performance, visual-motor coordination, 

sustained attention, and motor and mental speed, which has been shown to be related to PTSD 

[305]. ZDS is a short self-administered survey to quantify the depressed status of a patient. 

Burriss and colleagues (2008) showed that PTSD was associated with general learning and 

memory impairments, and depression was considered as a mediator of these deficits. [306] In 

addition, Dretsch and colleagues (2012) revealed that depressive symptoms in individuals with 

PTSD account for working memory impairments. CES was constructed to measure the 

subjective report of wartime stressors experienced by combatants [307]. It has been 

demonstrated that CES is a useful tool for diagnosing PTSD [308]. LEC, a measure of exposure 

to potentially traumatic events, was developed for diagnosing PTSD as well. In a clinical sample 

of combat veterans, a significantly correlated relationship between LEC and PTSD symptoms 

was observed [309]. 
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It can be seen from the discussion above that the phenotypic (and genotypic in case of AD) 

variables selected by GA for maximizing the similarity of clusters obtained from them and from 

connectivity features indicates that they are clinically meaningful and relevant to the behavioral 

deficits observed in each disorder. 

2.4.3 Site-specific Analysis 

Modern machine learning systems often integrate data from several different sources. Usually, 

these sources provide data of a similar type but collected under different circumstances. For 

example, the ADHD dataset used in this study was collected from different sites. Although fMRI 

images provided by these sites had similar qualities, these images were obtained from different 

scanners with different scanning parameters. The accuracy of machine learning algorithms can 

be affected by the heterogeneity of input data. To address this issue, we performed a site-specific 

analysis. By applying feature selection and clustering on data obtained from each individual site, 

the cluster similarity was increased considerably (see Table 2.7 and Table 2.13). However, as 

when we applied clustering on whole dataset with commonly selected features from individual 

sites, the similarity was reduced. Due to inter-site variance, it is difficult for us to translate high 

accuracy obtained for individual site into the whole dataset. It also affects the diagnostic 

precision obtained from brain connectivity measures. This calls for data acquisition standards 

and homogenization of data acquired from different scanners. 

2.4.4 Connectivity-based Reassignment of Diagnostic Labels 

Many brain-based disorders are highly heterogeneous, and categorization of subgroups within 

many disorders is yet to be completely established. Traditionally, brain-based disorders are 

diagnosed by clinical interviews associated with different behavioral assessments. However, it is 
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widely acknowledged that current clinical criteria are insufficient to clearly identify most of the 

brain-based disorders, separate them from healthy subjects and identify sub-groups within them. 

Therefore, it is necessary to develop brain imaging based models for understanding how, 

precisely, neural circuits generate flexible behaviors and their impairments give rise to 

psychiatric symptoms [91]. In this study, we used unsupervised learning algorithms to discover 

brain connectivity-based clusters, which were not limited to existing diagnostic criteria. Instead, 

it focused on separating subjects into isolated clusters with maximized inter-cluster variance and 

minimized intra-cluster variance. After clustering, we reassigned diagnostic labels based on 

those generated by connectivity clusters. Compared with clinical diagnostic groups, the 

neurobiologically-informed groups provided better mapping from subjects to the behavioral 

phenotypes. This result indicates that it might be possible to view brain-based disorders from the 

perspective of brain connectivity measures, establishing neuroimaging-based biomarkers for 

different neuropsychiatric disorders.  

2.4.5 Outlier Subject Elimination 

The overarching aim of healthcare is personalized medicine. However, basing individualized 

treatments on brain imaging characteristics is in the nascent stages, i.e., some subjects will 

deviate considerably from the normative population distribution and it becomes easier to assess 

population level characteristics when such subjects are eliminated from the analysis. As shown in 

this study, with the proposed subject outlier elimination process, the precision of clustering was 

improved. Note that, the inter-individual variability may be introduced not just by the variability 

in the underlying neuropathology, but also by non-neural sources of variance such as different 

scanners and/or different scanning parameters. Until a standard data acquisition process is 
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established, outlier subject elimination will serve to homogenize the data and make better 

inferences at the population level. 

2.5 Conclusion 

    Many neuropsychiatric disorders are conventionally diagnosed based on clinical interviews 

and behavioral assessments. Inherent limitations of specific measures and clinical judgement 

contribute to a far from perfect process. Therefore, it is necessary to establish neuroimaging-

based biomarkers to improve diagnostic precision and accuracy. Rs-fMRI has been used as a 

promising technique for characterization and classification of different disorders. However, these 

approaches are besieged with methodological issues such as (i) a priori choice of clusters needed 

in k-means, (ii) a stopping criterion needed in hierarchical clustering, (iii) the large 

dimensionality of imaging data necessitates some type of dimensionality reduction for clustering 

to work properly and this step is either not carried out, or carried out by preselecting features not 

from the structure in the data, but by some external considerations such as previous findings in a 

given disorder, and (iv) the clusters obtained from imaging data are seldom compared by those 

obtained from clinical diagnostic criteria or behavioral phenotypes. 

To address these four issues, a general pipeline was derived on identifying different brain-

based disorders using unsupervised clustering methods. In addition, site-specific analysis and 

elimination of outlier subjects were also applied to improve clustering accuracy. Three selected 

clustering methods were adopted on three types of features: 1) fMRI connectivity measures, 2) 

clinical diagnostic labels, and 3) phenotypic variables. GA based feature selection method was 

also applied to improve clustering accuracy. The accuracy of the clustering and feature selection 

was assessed by computing the similarity of clusters between all three types of features. The 
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effectiveness of proposed pipeline was verified on five different disorders: ADHD, AD, ASD, 

PTSD and PCS. For ADHD and AD, highest similarity was achieved between connectivity and 

phenotypic clusters, whereas for ASD and PTSD/PCS, highest similarity was achieved between 

connectivity and clinical diagnostic clusters. The result suggests that neurobiological and 

phenotypic biomarkers could potentially be used as an aid by the clinician, in additional to 

currently available subjective markers, to improve diagnostic precision. 
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Chapter 3  

Noninvasive Characterization of Layer-specific Perforant Pathway between Entorhinal 

Cortex and Hippocampus using Ultra High Field fMRI at 7T 

The medial temporal lobe houses several brain structures necessary for learning and memory. 

Two of these structures, the hippocampus and the entorhinal cortex (EC), are connected via the 

perforant pathway. Specifically, the signal from the superficial layers of the EC project to 

DG/CA4 and CA3, and from there to CA1 and the subiculum. In this study, we investigated this 

pathway non-invasively in humans using ultra-high-field functional magnetic resonance imaging 

(fMRI) data acquired during memory encoding. We found that the functional connectivity 

between EC layer II and hippocampus, when clustered in an unsupervised way, parcellated the 

hippocampus into proximal and distal regions along perforant pathway. This parcellation was 

based on our observation of stronger connectivity between layer II of EC with hippocampal 

subfields such as DG/CA4/CA3/CA2 which are proximal to the EC along the perforant pathway, 

compared to subfields such as CA1/Subiculum which are distal. Further, this pattern was true 

more for the left, rather than the right, hippocampus. Our results provide the first direct non-

invasive functional evidence for the perforant pathway in humans.  

3.1 Introduction 

The medial temporal lobe is an important brain region consisting of the hippocampus and the 

entorhinal cortex (EC) among several other regions, and plays important roles in various brain 

functions including episodic memory and spatial navigation [310] [311] [312]. The medial 

temporal lobe has been implicated in many neuropsychiatric and neurological disorders, 
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including Alzheimer’s disease [313] [314] [315], major depression [316] [317] [318] [319], post-

traumatic stress disorder [320] [321], and schizophrenia [322] [323] [324]. Therefore, a better 

understanding of the functional microcircuits connecting the hippocampus and EC within the 

medial temporal lobe has the potential to lead to transformative advances in our understanding of 

these disorders. 

Like the cerebral cortex, the hippocampus is a paired structure, with mirror-image halves in the 

left and right sides of the brain. The hippocampus consists of many subfields including the cornu 

ammonis (CA) and the subiculum. The CA is composed of thin stacked layers that are 

distinguishable from each other histologically by their differing cell types and cell densities 

[325] [326]. These layers are the stratum pyramidale, which is further sub-divided into CA1, 

CA2, CA3, and DG (or CA4), stratum radiatum (SR), stratum lacunosum (SL), and stratum 

moleculare (SM) [325]. Note that, CA4 is in fact the deep, polymorphic layer of the DG [327]. 

Thus, in this study, DG and CA4 are considered as one subfield in the hippocampus. 

The entorhinal cortex (EC), also located in the medial temporal lobe, constitutes the major 

gateway between the hippocampus and neocortex [328]. As part of the hippocampal memory 

system, the EC plays an important role in declarative memories and spatial memories [329]. 

Similar to other cortical regions, the EC is organized into cytoarchitectonically distinct layers 

[328]. The superficial layer (layer I) is relatively free of neurons, which contains a dense band of 

transversely oriented fibers. The outermost cell layer (layer II) mainly contains so-called 

“stellate” or “modified pyramidal cells”, which are fairly large, making them distinctly different 

from the adjacent cortical regions. Layer III is a wide layer of loosely arranged, large to medium 

sized cells that are predominantly of the pyramidal type. The layer V is clearly stratified and 



 99 

sometimes subdivided into a superficial layer of large to medium-sized, darkly stained pyramidal 

cells, which is referred to as layer IV in primates. Subsequent deeper portions of layer V have an 

overall stratified appearance and mainly consist of rather small pyramidal cells with moderately 

dense packing. The deepest layer, i.e., layer VI, is delineated by the white matter [328]. 

 

Figure 3.1 Perforant pathway from the entorhinal cortex and the hippocampus. 

Subfields of the hippocampus are connected to different cortical layers of EC through 

anatomically well-characterized circuits [330]. During an encoding task, the major pathway from 

the EC to the hippocampus is the perforant path, wherein layer II of EC projects to DG (also 

referred to as CA4) and CA3 and from there to CA1 and subiculum [331] (Figure 3.1). While 

other pathways between EC and hippocampus do exist (such as the “indirect” pathway from 

layer III of EC to CA1 and Subiculum) [332], the performant pathway is the most dominant one, 

and hence the one likely to be detectable with fMRI. The involvement of EC and hippocampus in 

the perforant pathway has been supported by many previous studies [330] [331] [333] [334]. Suh 
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et al. [333] applied spatial working-memory tasks on a transgenic mouse and showed that the 

projection to CA3 and DG in mice is primarily from layer II of EC. Witter et al. [334] studied the 

anatomical organization of the hippocampal memory system in rats and confirmed the perforant 

pathway. Nevertheless, our understanding of the EC-hippocampal structural wiring as well as 

functional layer-specific microcircuits underlying memory encoding in the perforant pathway has 

primarily relied on invasive techniques such as anatomical tract tracing and single unit 

recordings in animals, respectively. While such approaches are clearly useful, being able to carry 

out such investigations using non-invasive methods such as functional magnetic resonance 

imaging (fMRI) allows us to characterize EC-hippocampal functional microcircuitry in both 

healthy and clinical human populations. However, such attempts have been extremely scarce in 

the literature given that it is feasible only using very high spatial resolution images acquired at 

ultra-high fields (≥7 Tesla) coupled with an appropriate analysis strategy. Recently, Maass et al. 

[331] measured encoding-related activation in layers of the EC and sub-regions of the 

hippocampus using high resolution fMRI at 7T. They provided evidence that activation in 

superficial layers (layer II and probably parts of layer III) of EC was specifically correlated with 

activity in DG/CA2-3, as well as with the SR/SL/SM of CA1, the latter being compatible with 

input from the EC to CA1 via the perforant pathway. Furthermore, they demonstrated that the 

perforant pathway input from EC to hippocampus was associated with “novelty response” 

(stronger fMRI activation for novel as compared with familiar stimuli) during encoding process. 

Notwithstanding the study discussed above, non-invasive modalities including fMRI have 

typically lacked the spatial resolution to resolve layers at conventionally used field strengths (3 

Tesla). Here, we overcome this issue by acquiring fMRI data with very high resolution at ultra-

high fields (7 Tesla). This technique provides several advantages over conventional field 
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strengths, such as improvements in spatial resolution from few millimeters to sub-millimeter, 

increases signal-to-noise ratios (SNR) [335] [336], increase in T2
* contrast [337] [338], etc. 

Importantly, sub-millimeter voxels make it feasible to reasonably resolve different cortical 

layers, albeit with some partial voluming effects. Several fMRI studies on laminar specific 

activation have been reported, both in animals [339] [340] [341] and in humans [342] [343] 

[344] [338] [345]. In contrast to investigating the BOLD response (aka activation) in specific 

layers, our focus is on the layer specific connectional architecture of the EC-hippocampal 

microcircuits.  

The present study sought to investigate the functional perforant pathway using functional 

connectivity between superficial layers of EC with different subfields of the hippocampus during 

an encoding task. Specifically, we hypothesized that functional connectivity between layer II of 

EC and the hippocampus, when clustered in an unsupervised way, must parcellate the 

hippocampus into proximal and distal regions along the performant pathway, with stronger 

connectivity between layer II of EC with hippocampal subfields such as DG/CA4/CA3/CA2 

(which are proximal to the EC along the performant pathway) compared to subfields such as 

CA1/Subiculum (which are distal to the EC along the performant pathway). In order to test these 

hypotheses, fMRI data was acquired from healthy subjects performing a memory encoding task 

involving objects, faces and words in the 7T scanner. Ultra-high resolution anatomical data was 

also acquired to resolve layers in the EC. Functional connectivity between layer II of EC and 

hippocampal voxels was computed. In order to unravel connectivity patterns between EC layers 

and hippocampal subfields in a data driven way, different unsupervised clustering methods were 

applied on functional connectivity estimates. The main idea of clustering is to group objects in 

such a way that objects in the same group are more similar to each other than to those in other 
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groups. Three clustering methods were specifically chosen, i.e., hierarchical clustering [123], 

ordering points to identify the clustering structure (OPTICS) [57], and density peak clustering 

(DPC) [124]. These methods were specifically chosen since they did not require a priori 

specification of the number of clusters. The commonly used k-means clustering [125] [126] 

method was not considered in this study due to the uncertainty of the number of clusters (which 

needs to be pre-specified) and sensitivity of the method to outliers. Since clustering accuracy is 

often lower in high dimensional feature space, feature selection methods were employed. Most 

existing feature selection algorithms in the machine learning literature focus on heuristic search 

such as sequential forward searching (SFS) [127], non-linear optimization [128], genetic 

algorithm (GA) [127], etc. Bradley et al proposed non-linear optimization using a nonlinear 

kernel support vector machine. Although this method provides high accuracy, it can only be used 

in the supervised learning context. SFS was proposed based on a greedy algorithm, which 

follows the problem-solving heuristic of making the locally optimal decision at each step. 

Although SFS can be applied in unsupervised learning, it does not guarantee a globally optimal 

solution. Therefore, we propose GA as a robust feature selection method for selecting specific 

functional connections between EC layers and hippocampal voxels which can then be clustered 

by unsupervised learning approaches.  

It is noteworthy that our task did not involve spatial memory typically used in navigation, 

which preferentially recruits the right hippocampus [346]. Rather, our task involved factual 

memories of objects, pictures of scenes and words, which likely preferentially recruits the left 

hippocampus [346] [347] [348]. Therefore, we predicted that our hypothesis will hold true more 

for the left, rather than the right, hippocampus during an encoding task. 
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Figure 3.2 Illustration of proposed analysis pipeline for investigating the perforant pathway 

between layer II of EC and subfields of the hippocampus.  
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3.2 Materials and Methods 

In this work the functional perforant pathway was investigated by applying unsupervised 

clustering methods on the functional connectivity between layer II of the EC with different 

subfields of the hippocampus during an encoding task. The identified functional clusters of the 

hippocampus were then compared with well-known anatomical parcellation of the hippocampus. 

The entire analysis pipeline is illustrated in Figure 3.2 and will be elaborated below. 

3.2.1 Data Acquisition 

Thirty-one healthy individuals (26 right-handed, 12 males, 19 females, age =21.13±1.43) were 

recruited for the study. The Internal Review Board (IRB) at Auburn University approved the 

study, subjects provided informed consent and the experimental procedures were performed in 

accordance with internationally accepted ethical standards. Echo-planar imaging (EPI) data were 

acquired on the Auburn University MRI Research Center (AUMRIRC) Siemens 7T 

MAGNETOM scanner outfitted with a 32-channel head coil by Nova Medical (Wilmington, 

MA). The sequence was optimized for the hippocampus (37 slices acquired parallel to the AC-

PC line, 0.85mm×0.85mm×1.4mm voxels, TR/TE: 3000/28ms, 70° flip angle, base/phase 

resolution: 234/100, A→P phase encode direction, iPAT GRAPPA acceleration factor = 3, 

interleaved acquisition, 123 time points, total acquisition time of 6 minutes). During encoding 

task, the participants were asked to view a series of faces, pictures of scenes and words. Each 

trial lasted for 30 seconds in which the subjects were presented 10 images of the same category 

for 3 seconds each. These trials were interspersed with a 6 second inter-trial interval. A whole-

brain high-resolution 3D MPRAGE sequence was used to acquire anatomical data (256 slices, 

0.63mm x 0.63mm x 0.60mm, TR/TE: 2200/2.8, 7° flip angle, base/phase resolution 384/100%, 
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collected in an ascending fashion, acquisition time = 14:06) for extracting different cortical 

layers in the entorhinal cortex and for registration purposes. 

3.2.2 Preprocessing 

 a) Hippocampal data: Standard pre-processing steps were carried out using SPM8 [349] 

including brain extraction, slice timing correction, temporal band-pass filtering (0.01 to 0.10), 

regression of motion and physiological artifacts (using CompCor), registration to anatomical 

space, and normalization to MNI standard space.  

 

Figure 3.3 Hippocampus and EC ROIs used in this study. 

The left and right hippocampal ROIs were defined using the Harvard-Oxford Structural 

Probability Atlas distributed with the FSL neuroimaging analysis software package 

(http://www.fmrib.ox.ac.uk/fsl/fslview/atlas-descriptions.html#ho). Each ROI was thresholded at 

75%, which yields an accurate anatomical representation. The mean probability for the voxels in 

the left (M ± SD: 86.41% ± 7.10%) and right hippocampal ROIs (87.75% ± 7.39%), which 

belong to the hippocampus, was over 87%. The probability that the voxel centroid for each ROI 
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belonged to the left (MNI coordinates [−26, −18.8, −17.2]) and right (MNI coordinates [27.52, 

−18.2, −16.8]) hippocampus was 97% and 97.3%, respectively. The total volume for the left and 

right hippocampus was 1880 mm3 and 2072 mm3, respectively (Figure 3.3). 

b) Cortical layer-specific EC data: Data extracted from the whole brain was first 

preprocessed using SPM8. To preserve high spatial resolution, no spatial filtering was applied. 

After intensity normalization, registration to MNI space, and skull stripping, the interface 

between the cortical gray matter and the underlying white matter (white-gray interface) and the 

interface between the cortical gray matter and the pial surface (gray-pial interface) were 

automatically generated from the anatomical image using FreeSurfer [350]. In order to 

reconstruct cortical layers, cortical thickness maps need to be derived. The cortical thickness was 

calculated as the average of the distance from the white-gray interface to the closest possible 

point on the gray-pial interface, then from that point back to the closest point on the white-gray 

interface again. To improve accuracy, surface smoothing and automatic topology correction were 

also applied [351] [352] [353] [354]. Six cortical layers were then reconstructed within the 

cortical gray matter at fixed relative distances between the white and pial surfaces determined 

from the cortical thickness, i.e., the first layer was located at 96% of the cortical thickness away 

from the white matter, the second layer at 80%, the third layer at 64%, the forth layer at 48%, the 

fifth layer at 32%, and the six layer at 16% (Figure 3.4). The laminar layers were derived from 

the anatomical image, so it was necessary to align the EPI volume to these layers. Since the layer 

specific analysis of EC is the primary goal in this study, a boundary-based registration method 

[355] was employed, which aligns the EPI image to the anatomical image by maximizing the 

intensity gradient across interfaces (i.e., white-gray interface, gray-pial interface). The entire 

cortical surface was automatically divided into 34 cortical ROIs in each of the individual 



 107 

hemispheres based on the Desikan-Killany atlas in Freesurfer [356]. Since EC is one of those 34 

regions in the atlas, vertices in layer II of the entorhinal cortex were then identified. It is 

noteworthy that voxels in the volume become vertices on surfaces. 

 

Figure 3.4 Cortical layer reconstruction with FreeSurfer. The surface reconstructions, i.e, the 

white-gray interface (black) and gray-pial interface (orange), and cortical layers reconstruction. 

Six cortical layers were reconstructed within the cortical gray matter at fixed relative distances 

between the white and pial surfaces determined from the cortical gray matter. 
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3.2.3 Connectivity Measures 

 Functional connectivity (FC) was estimated between the hippocampal voxels and vertices in 

layer II of EC using time series extracted from them in individual subjects. FC measures the 

functional interrelationship between pairs of brain regions by estimating Pearson’s correlation. 

3.2.4 Layer Specific Clustering 

Three clustering methods were applied on the FC computed between the hippocampal voxels 

and vertices in layer II of EC. The same process was repeated on the left and right hemisphere, 

separately. Let 𝑿 = {𝑿!,⋯ ,𝑿! ,⋯ ,𝑿!} represent a set of 𝑁 objects, i.e., number of hippocampal 

voxels. 𝑿! = 𝑋!!,  𝑋!!,⋯ ,𝑋!"  ∈  ℝ!, where 𝑑 equals to the number of FC features. Let us 

assume that the N objects are to be partitioned into k clusters. Each cluster is a set of indexes 

from {1,⋯ ,𝑁}, and each object 𝑿! belongs to exactly one cluster. In this formulation, we sought 

to parcellate the hippocampus based on the functional connectivity between vertices in layer II of 

EC and hippocampal voxels. 

a) Hierarchical Clustering (Agglomerative): The main idea of hierarchical clustering [184] 

[185] [123] is to build a binary tree structure that iteratively merges two closest clusters (in terms 

of Euclidean distance) together. A brief description of the procedure is as follows: 

1) Initially, each object 𝑿! is assigned to a cluster with only itself in it. 

2) Euclidean distance between any two clusters is estimated and the closest pair of clusters 

are merged. 

3) Step 2-3 are repeated until all 𝑿! are in one big cluster. 



 109 

 

Figure 3.5 Illustration of hierarchical clustering. a) Original simulated dataset, b) Dendrogram 

derived from hierarchical clustering, and c) Clustering results obtained with a specific cutting 

height. Two clusters that were identified are marked with different colors. 

The resulting tree structure is usually referred to as the dendrogram (Figure 3.5). The root of 

the dendrogram represents the entire data, each leaf represents one object, and the height of the 

dendrogram represents the distance between each pair of clusters. Different data partitions can be 

obtained by cutting the dendrogram at different levels. Note that the distance between two 

clusters can be measured in a variety of ways, referred to as linkage methods. The single linkage 
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[186] calculates the shortest distance between two clusters, the complete linkage [186] calculates 

the longest distance, and the average linkage [186] calculates the mean distance. The single 

linkage method can handle non-elliptical shape of clusters, but can be affected by noise and 

outliers. The complete linkage method is less sensitive to noise and outliers but tends to break 

large clusters. The average linkage is a compromise between single-linkage and complete 

linkage methods. Thus, the average linkage method was employed in this work. 

b) Ordering Points to Identify the Clustering Structure: OPTICS [57] is one of the most 

popular density-based clustering methods [55]. Given a distance threshold (𝜀) and the minimum 

number of objects required to form a cluster (𝑀𝑖𝑛𝑃𝑡𝑠), objects in high-density regions are 

grouped together, whereas objects in low-density regions are marked as outliers. OPTICS can 

discover clusters with arbitrary shapes and has the ability to identify outlier objects that do not 

belong to any of the clusters.  

In OPTICS, two variables are computed for each object in the dataset: core-distance and 

reachability-distance. Let 𝑁!(𝑿!)  represent the number of nearby objects within 𝜀 (called 

𝜀 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 ), and 𝑀𝑖𝑛𝑃𝑡𝑠 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑿!)  represent the distance from 𝑿!  to its 

𝑀𝑖𝑛𝑃𝑡𝑠’ neighbor. An object 𝑿!  is a core object if at least 𝑀𝑖𝑛𝑃𝑡𝑠 objects are found with its 

𝜀 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑. The core-distance of 𝑿!  is defined as: 

 
𝑐𝑜𝑟𝑒 − 𝑑𝑖𝑠𝑡!,!"#$%& 𝑿! =

𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑             𝑖𝑓 𝑁! 𝑿! < 𝑀𝑖𝑛𝑃𝑡𝑠
𝑀𝑖𝑛𝑃𝑡𝑠 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑿!         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         (3.1) 

which is the smallest distance between 𝑿!  and an object in its 𝜀 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 such that 

𝑿!  would be a core object.  
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The reachability-distance of object 𝑿!  with respect to object 𝑿! is defined as: 

 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑑𝑖𝑠𝑡!,!"#$%& 𝑿! ,𝑿!

=
𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑                                           𝑖𝑓 𝑁! 𝑿! < 𝑀𝑖𝑛𝑃𝑡𝑠
𝑚𝑎𝑥 (𝑐𝑜𝑟𝑒 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑿! ,𝑑𝑖𝑠𝑡(𝑿! ,𝑿!))       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(3.2) 

Where 𝑑𝑖𝑠𝑡 (𝑿! ,𝑿!) is the distance between 𝑿!  and 𝑿!. The complete procedure of OPTICS is 

described below: 
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Figure 3.6 Illustration of OPTICS clustering. a) Original simulated dataset, b) reachability plot 

obtained from OPTICS, and c) clustering results. Two clusters were identified corresponding to 

valleys in the reachability plot. 

1) Choose one object 𝑿!  arbitrarily. 

2) Retrieve the 𝜀 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑  of 𝑿! , determine the core-distance, and set the 

reachability-distance to undefined.  

3) If 𝑿! is not a core object, go to step 5. Otherwise, go to step 4. 

4) For each object 𝑿!  in the 𝜀 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 of 𝑿!, update its reachability-distance from 

𝑿! and insert 𝑿! into an OrderSeeds list if it has not been processed yet. 

5) If the input dataset is fully consumed and the OrderSeeds list is empty, go to step 6. 

Otherwise, move on to the next object in the OrderSeeds list (or the input list, if the 

OrderSeeds list is empty) and go to step 2. 

6) Output core-distance, reachability-distance of each object, and processed order. 

The data objects are plotted in the processed order together with their respective reachability-

distance (called reachability plot) depicting the hierarchical structure of the clusters. Since 

objects belonging to a cluster have a low reachability-distance to their nearest neighbor, the 

clusters show up as valleys in the reachability plot (see Figure 3.6). The final data partition can 

be obtained by using a threshold on the reachability plot. 

c) Density Peak Clustering: DPC method [124] is a novel density-based clustering method. 

In DPC, cluster centers are characterized by two criteria: it has a higher density than its 

neighbors and a relatively large distance from objects with higher densities. Like other density-

based clustering methods, e.g., OPTICS, it has ability to detect arbitrarily shaped clusters and 
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spot outlier objects. Moreover, DPC outperforms commonly used clustering methods, e.g., k-

means and hierarchical clustering, when the dataset contains complicated features such as narrow 

bridges between clusters, uneven-sized clusters, clusters with high overlap, etc. 

For each object 𝑿!, two quantities are computed: local density 𝜌(𝑿!) and minimum distance 

with higher density 𝛿(𝑿!). 𝜌(𝑿!) is defined as: 

 𝜌 𝑿! =  𝜒(𝑑𝑖𝑠𝑡 𝑿! ,𝑿! −  𝑑!)
!

 (3.3) 

where 𝑑! is a cutoff distance, and 𝜒(𝑥) can be computed by, 

 𝜒 𝑥 =  1       𝑖𝑓 𝑥 < 0
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.4) 

From Equation (3.3) and (3.4), it can be seen that 𝜌(𝑿!) equals to the number of objects within 

𝑑! with respect to object 𝑿!.  𝛿(𝑿!) is measured by, 

 𝛿(𝑍!) =  𝑚𝑖𝑛
!:! 𝒁! !!(𝒁!)

𝑑𝑖𝑠𝑡(𝑿! ,𝑿!) (3.5) 

For the object with highest density, 𝛿(𝑿!) is conventionally set to, 

 𝛿 𝑿! = 𝑚𝑎𝑥
!
𝑑𝑖𝑠𝑡(𝑿! ,𝑿!) (3.6) 

Note that if 𝑿! is local or global maxima in the density, 𝛿(𝑿!) will be much larger than its 

typical nearest neighbor. Thus, objects with larger 𝜌 and 𝛿 are considered as cluster centers, 

whereas objects with smaller 𝜌 and larger 𝛿 are considered as outliers. Other objects are assigned 

to the same cluster as their nearest neighbor of higher density (see Figure 3.7). 
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Figure 3.7 Illustration of DPC clustering. a) Original simulated dataset, b) Plot of δ as a function 

of ρ for each object. Objects with larger ρ and δ are cluster centers and objects with smaller ρ, 

and larger δ are outliers. c) Clustering results. Two clusters were identified corresponding to two 

cluster centers in the decision graph.  

d) Input Parameter Optimization: In each clustering method, there are several user-specified 

input parameters, which can affect clustering results significantly. For hierarchical method, the 

cutting height of the dendrogram needs to be specified and the number of clusters varies with 

different cutting heights. For OPTICS, 𝜀 can simply be set to the maximum possible value, and 

Ankerst and colleagues [57] showed that for 𝑀𝑖𝑛𝑃𝑡𝑠 using values between 10 and 20 would 
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always lead to good results. However, the threshold for the reachability plot, which is used to 

extract clusters, still needs to be properly determined. For DPC, 𝑑! can be chosen based on the 

rule that the average number of neighbors is around 1-2% of the total number of objects in the 

data set [124]. A threshold for 𝜌 and 𝛿 needs to be defined to distinguish cluster centers, borders, 

and outliers. To find the optimal values of these parameters, the silhouette index [60] was 

applied in this work. Assume the data have been clustered via any clustering algorithm, such as 

hierarchical clustering, into K clusters. For each object 𝑿! , let 𝑎(𝑿!) represent the average 

distance of 𝑿! with all other object in the same cluster, and 𝑏(𝑿!) represent the smallest average 

distance of 𝑿! to any other cluster, of which 𝑿! does not belong to. Then the silhouette index of 

𝑿! is defined as: 

 
𝑠(𝑿!) =

𝑏 𝑿! − 𝑎(𝑿!)
max {𝑎 𝑿! , 𝑏(𝑿!)}

 (3.7) 

From Equation (3.7) it is clear that 𝑠(𝑿!) is bounded between -1 and 1. More specifically, if 𝑿! 

has been assigned to an appropriate cluster, i.e., 𝑎 𝑿! ≪ 𝑏 𝑿! , 𝑠(𝑿!) will be close to 1. On the 

contrary, 𝑠(𝑿!) is close to -1, if 𝑠(𝑿!) has been assigned to a “wrong” cluster. A 𝑠(𝑿!) near zero 

indicate 𝑿! is located on the border of two natural clusters. The average 𝑠(𝑿!) over all objects in 

the entire dataset measures how appropriately the dataset has been clustered. Thus, we want to 

maximize this average value identifying dense and well-separated clusters. 

Based on the above definition, the optimal parameters can be determined by maximizing the 

average 𝑠(𝑿!)  over the entire dataset. The optimal number of clusters can be identified, 

simultaneously. For example, for hierarchical clustering, we started with a relatively high cutting 

height for the dendrogram. In each iteration, the cutting height was reduced by a small amount 
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and the average 𝑠(𝑿!) was computed and recorded based on the current data partition. The 

iteration continued until the cutting height was smaller than a specified baseline (e.g., the 

average height of the dendrogram). The optimal height was determined as the one with the 

largest average 𝑠(𝑿!). The same iterative procedure was applied to OPTICS to determine 

optimal threshold of reachability plot, and to DPC to determine the optimal threshold of 𝜌 and 𝛿. 

This iterative method is referred to as “grid search” [187], which has been commonly used for 

hyper-parameter optimization. 

3.2.5 Feature Selection and Cluster Identification 

The clustering accuracy is often lower in high dimensional feature space, which is referred to 

as the “dimensional curse”. This is due to the fact that most of features in the dataset may be 

irrelevant, redundant, or sometimes may even misguide results. Moreover, a large number of 

features make the clustering results difficult to interpret. Therefore, a feature selection method is 

required to improve the clustering accuracy. For supervised learning, feature selection can be 

trivial, i.e., only the features that are related to the given cluster labels are maintained. 

Nevertheless, for unsupervised learning, the cluster labels are unknown. Thus, finding the 

relevant subset of features and clustering the subset of the data must be accomplished 

simultaneously. To evaluate the result for feature selection and clustering, the same optimization 

criterion, i.e., the average silhouette index, was applied.  

Assuming d to be the initial number of features, an exhaustive search of 2! possible subsets is 

computationally intractable. Thus, an alternative GA method was employed in our framework to 

find the optimal subset of features. 
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Figure 3.8 Flowchart of GA for feature selection. In the 𝒎-by-𝒅 matrix, each row represents a 

candidate solution, describing a subset of selected features. Each of the 𝒅 bits in a row represents 

whether a feature is selected (1) or discarded (0). 

GA is a search heuristic method inspired by stochastic evolution theory that is routinely used 

in generating solutions to optimization and searching problems [189] [190]. Initially, a set of 

candidate solutions were randomly generated and maintained during the entire process. This 

solution set is referred to as “population” in GA. In each iteration, “survivor solutions” with 

larger values of similarity criteria, i.e., the average silhouette index, were selected for the next 
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iteration. The survival solutions were generated from the crossover, which produced new 

solutions by randomly combining two current solutions, and mutations resulting in randomly 

changing new solutions with a small probability, or from the initial population. The iteration 

continued until the maximum similarity among candidate solutions did not increase any further. 

In this study, an array of 𝑑 bits was used to represent the selected subset of features and the 

population size is represented using 𝑚. Each bit in the array indicates the activation status of one 

specific feature: 1 indicates selected and 0 indicated discarded. The complete procedure of GA is 

described below (Figure 3.8): 

1) Initialization: 400 candidate solutions were generated by randomly setting 1 or 0 for each 

bit in vectors.  

2) Crossover: two candidate solutions A and B were randomly selected from the current 

population. A value v between 1 and 𝑑 was randomly selected. Then a new solution was 

formed by combining the feature bits 1 to v from A and feature bits v + 1 to 𝑑 from B.  

3) Mutation: for each new generated new solution, a mutation was applied by reversing bits 

in the vector with a probability of 0.1. 

4) Evaluation: the clustering methods were applied on each candidate solution (i.e., a subset 

of features) and the average silhouette index was computed on each data partition. 

5) Selection: 280 solutions with higher average silhouette index were selected and 120 

solutions from the rest of the solutions were randomly selected to increase the diversity of 

the solution. 
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6) If the highest average silhouette index did not converge, we iterated back to step 2. 

Otherwise, the clustering results with the highest average silhouette index and the 

corresponding selected subset of features were saved as outputs. 

3.2.6. Volume Level Clustering 

In order to determine whether characterizing layer-specific microcircuits using ultra-high field 

fMRI provides any advantages over conventionally computed voxel-level connectivity, we 

performed the clustering procedure enumerated above using FC computed between hippocampal 

and EC voxels. Specifically, let 𝑿 = {𝑿!,⋯ ,𝑿! ,⋯ ,𝑿!} represent a set of 𝑁 objects, i.e., number 

of hippocampal voxels. 𝑿! = 𝑋!!,  𝑋!!,⋯ ,𝑋!"  ∈  ℝ!, where 𝑑 equals to the number of FC 

features computed between hippocampal voxels and voxels in EC. Subsequently, the same 

clustering and feature selection process was repeated on the left and right hemisphere, separately. 

3.2.7. Validation of Identified Clusters 

In this study, clusters were identified from EC-hippocampal functional connectivity during an 

encoding task. This provided a functional parcellation of the hippocampus which were compared 

with the well-known anatomical parcellation of the hippocampus. Specifically, the percentage of 

overlap between functional and anatomical parcels were computed, which provides quantitative 

insights into the layer-specific connectional architecture of the EC-hippocampus microcircuits.  

Neuroanatomically, the hippocampus is subdivided into several subfields with intricate 

morphologies and complex three-dimensional relationships. Recent studies have utilized high-

field MRI techniques to identify the hippocampal subfields [357] [358]. However, most of them 
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provided a segmentation protocol that only included a part of the hippocampus rather than the 

complete anterior-posterior hippocampal axis.  

In this study, a recent hippocampal atlas proposed by Winterburn et al was utilized [359]. This 

atlas provides five clearly identified subfields, i.e., DG/CA4, CA1, CA2/CA3, subiculum, and 

SR/SL/SM (Figure 3.9). The SR, SL, and SM cannot be distinguished from each other, and they 

were combined into one region. CA2 and CA3 were also combined into one to minimize 

anatomical inaccuracies. This atlas was downloaded from the following website: 

http://cobralab.ca/atlases/Hippocampus-subfields/, and normalized into MNI space.  

 

Figure 3.9 3D visualization of the entire hippocampal atlas in sagittal view. Each subfield is 

represented by a different color. 

Let 𝐴 = {𝐴!,𝐴!,⋯ ,𝐴!}  represent M anatomical parcels, and 𝐹 = 𝐹!,𝐹!,⋯ ,𝐹!  denote 

functional parcels identified by applying clustering methods on FC features. The percentage of 

overlap between any pair of anatomical and functional parcels, 𝐴! and 𝐹!, was computed by, 
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                                             𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝐴! ,𝐹! =  !"#$%(!!,!!)
!!

 × 100                                        (3.8) 

where 𝑖𝑛𝑡𝑒𝑟(𝐴! ,𝐹!) is the intersection size between 𝐴! and 𝐹!, and 𝑚!  is the total number of 

voxels in 𝐴!. 

The proposed analysis pipeline for investigating perforant pathway, including feature selection, 

layer-specific clustering, volume level clustering, and validation of identified clusters, are 

illustrated in Figure 3.2. 

3.3 Results 

The optimal values of each input parameter determined for the three clustering methods are 

presented Table 3.1. Using each clustering method, the hippocampal voxels were clustered into 

two different functional parcels based on their functional connectivity with layer II of the EC 

during an encoding task. This was true across methods and for both left and right hippocampi. 

The obtained clusters were then mapped back to the image space and the resulting hippocampal 

parcels were overlaid on the anatomical image for the visualization.  

These functional clusters had highest overlap with the following two anatomical parcels: 

CA2/CA3 and CA4/DG together (which belong to perforant pathway), and CA1 and subiculum 

together. Therefore, while comparing functional and anatomical hippocampal parcels, we 

considered CA2/CA3 and CA4/DG together as one anatomical parcel and CA1 and subiculum 

together as another anatomical parcel as shown in Figure 3.10. 
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Method Name Parameter 

Optimal Value 

Left Right 

Layer II Volume Layer II Volume 

DPC 
𝜌 7.54 8.92 7.56 8.45 

𝛿 0.21 3.01 0.06 1.87 

Hierarchical Cutting Height 1.15 1.16 1.15 1.16 

OPTICS Reachability 
Threshold 0.01 0.20 0.04 0.02 

Table 3.1 Estimated optimal values of each input parameter in clustering. 

 

Figure 3.10 Anatomical parcellation of the hippocampus used in this study. (Coordinates are in 

MNI space) 
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Comparison Side Similarity 

DPC v.s. OPTICS 
L 0.93 

R 0.78 

DPC v.s. Hierarchical 
L 0.94 

R 0.84 

OPTICS v.s. Hierarchical 
L 0.98 

R 0.81 

Table 3.2 Cluster similarity between different clustering methods for layer-specific analysis. For 

the same input data, the similarity of clusters obtained using different clustering methods were 

measured using Torres’ method [188]. 

Similar hippocampal parcellations were discovered using their functional connectivity with EC 

layer II using different clustering methods and the corresponding cluster similarity is quantified 

as shown in Table 3.2. For illustration, the clustering results obtained using the DPC method are 

shown in Figure 11. The clustering results obtained using hierarchical clustering and OPTICS are 

shown in Supplementary Information Figure A.1 and Figure A.2. From Figure 3.11, it can be 

seen that the parcellation of the left hippocampus was consistent with the gradient shown in the 

anatomical parcellation (Figure 3.10). However, the right hippocampus did not show this pattern, 

as evidenced by much lower % of overlap with the DG/CA4/CA3/CA2 cluster. Figure 3.12 

visually depicts the overlap between anatomical subfields of the hippocampus and functional 

parcels obtained from clustering (using DPC method) of hippocampal voxels based on their 

functional connectivity with layer II of EC during an encoding task. 
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Figure 3.11 Clusters of hippocampal voxels determined (using the DPC method) based on their 

functional connectivity with layer II of the entorhinal cortex during the encoding task. 

(Coordinates are in MNI space) 
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Figure 3.12 Overlap between anatomical subfields of the hippocampus and functional parcels 

obtained from clustering (using DPC method) of hippocampal voxels based on their functional 

connectivity with layer II of EC during an encoding task.  

To quantitatively characterize the identified clusters, the overlap between our functionally 

obtained hippocampal parcels and anatomically defined parcels (CA2/CA3 and CA4/DG 

together as one anatomical parcel and CA1 and subiculum together as another anatomical parcel 

as shown in Figure 3.10) was computed. The mean correlation between hippocampal voxels and 

selected vertices (using GA-based feature selection method) in layer II of EC was also computed 

within each cluster along with p-values indicating the statistical significance of those correlations 

(Table 3.3). 

For the left hippocampus, the percentage of overlap was consistently high with different 

clustering methods. The average overlap between DG/CA4/CA3/CA2 and functional cluster I 

was 83.61%, whereas the average overlap between CA1/subiculum and functional cluster II was 

72.99%, respectively. In addition, a significant positive mean correlation (p-value < 0.001) was 

consistently observed within cluster I, whereas a significant negative correlation (p-value < 

0.001) was obtained within cluster II.  

For the right hippocampus, most of voxels were clustered into functional cluster II. Thus, high 

overlap was obtained between CA1/subiculum and functional cluster II, but the overlap between 

DG/CA4/CA3/CA2 and functional cluster I was quite low. The average overlap between 

DG/CA4/CA3/CA2 and functional cluster I was 30.69%, whereas the average overlap between 

CA1/subiculum and functional cluster II was 76.90%. Compared to the left hippocampus, mean 
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correlation within cluster I and cluster II on the right hippocampus was lower, i.e., the 

corresponding p-value was greater than 0.05.  

Method Side 
Percentage of Overlap (%) Mean Correlation P-Value 

CA2/CA3/CA4 CA1/Subiculum Cluster I Cluster II Cluster I Cluster II 

DPC 
L 83.61 74.07 0.457 -0.301 < 0.001 < 0.001 

R 38.61 71.29 -0.090 0.090 0.121 0.118 

Hierarchical 
L 83.61 73.15 0.400 -0.325 < 0.001 < 0.001 

R 32.67 77.23 -0.120 0.064 0.062 0.244 

OPTICS 
L 83.61 71.76 0.349 -0.338 < 0.001 < 0.001 

R 20.79 82.18 -0.201 0.054 0.072 0.316 

Table 3.3 Quantitative characterization of the overlap between functional clusters (obtained from 

layer-specific analysis) and anatomical subfields. The percentage of overlap between each pair of 

corresponding clusters, the mean correlation and corresponding p-values obtained within each 

cluster using different clustering methods are shown. Functional cluster I corresponds to 

anatomical subfields CA2/CA3/CA4/DG and functional cluster II corresponds to anatomical 

subfields CA1/subiculum. 

For volume level analysis, i.e. clustering of hippocampal voxels based on their functional 

connectivity with voxels in EC volume (as opposed layer II of EC as before), similar structures 

were discovered using different clustering methods on the left hippocampus, whereas the pattern 

identified on the right hippocampus using DPC method was different from that obtained using 

hierarchical clustering and OPTICS. The cluster similarity was quantified as shown in Table 3.4. 

For illustration, the clustering results using DPC was shown in Figure 3.13, and the clustering 

results using hierarchical clustering and OPTICS are shown in supplementary information Figure 

A.3 and Figure A.4. 
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Comparison Side Similarity 

DPC v.s. OPTICS 
L 0.95 

R 0.68 

DPC v.s. Hierarchical 
L 0.96 

R 0.67 

OPTICS v.s. Hierarchical 
L 0.99 

R 0.96 

Table 3.4 Cluster similarity between different clustering methods for volume level analysis. For 

the same input data, the similarity of clusters obtained using different clustering methods was 

measured using Torres’ method [188]. 
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Figure 3.13 Clusters of hippocampal voxels determined (using DPC method) based on their 

functional connectivity with voxels in the entorhinal cortex volume during the encoding task. 

(Coordinates are in MNI space) 

 

Figure 3.14 Overlap between anatomical subfields of the hippocampus and functional parcels 

obtained from clustering (using DPC method) of hippocampal voxels based on their functional 

connectivity with voxels in EC volume during an encoding task. 

As shown in Figure 3.13, we obtained two clusters on each side of the hippocampus as well. 

The structures obtained on the left and right hippocampus were different from the patterns 
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for visualization of overlap), mean correlation and corresponding p-value were also computed 
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inconsistency across methods. For DPC, the overlap between both functional clusters with 

proximal and distal anatomical clusters were qualitatively low. On the other hand, for 

Hierarchical and OPTICS clustering methods, the functional clusters within the right 

hippocampus showed qualitatively larger overlap with the proximal cluster (DG/CA4/CA3/CA2) 

with notably low overlap with the distal cluster (CA1/subiculum) The functional connectivity 

between EC voxels and hippocampal voxels within both functional clusters I and II approached 

zero and the corresponding p-value was greater than 0.05. 

Method Side 
Percentage of Overlap (%) Mean Correlation P-Value 

CA2/CA3/CA4 CA1/Subiculum Cluster I Cluster II Cluster I Cluster II 

DPC 
L 81.97 58.33 -0.014 0.050 0.593 0.498 

R 58.91 61.39 0.019 0.013 0.398 0.629 

Hierarchical 
L 86.89 56.94 -0.025 0.045 0.604 0.467 

R 83.17 21.29 0.118 -0.047 0.457 0.666 

OPTICS 
L 88.52 56.48 -0.006 0.048 0.591 0.489 

R 82.18 23.27 0.106 -0.055 0.488 0.627 

Table 3.5 Quantitative characterization of the overlap between functional clusters obtained from 

volume-level analysis and anatomical subfields. The percentage of overlap between each pair of 

corresponding clusters, and the mean correlation obtained within each cluster using different 

clustering methods are shown. Functional cluster I corresponds to anatomical subfields 

CA2/CA3/CA4/DG and functional cluster II corresponds to anatomical subfields 

CA1/subiculum. 

3.4 Discussion 

In this work, we investigated functional connectivity between the hippocampus and the 

entorhinal cortex during an encoding task by characterizing layer-specific microcircuits between 
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layer II of EC and the hippocampus using ultra high field fMRI. Given known perforant 

anatomical pathways between layer II of EC and the hippocampus, we hypothesized that 

functional connectivity between them, when clustered in an unsupervised way, must parcellate 

the hippocampus into proximal and distal regions along the performant pathway, with stronger 

connectivity between layer II of EC with proximal hippocampal subfields such as 

DG/CA4/CA3/CA2 compared to distal subfields such as CA1/Subiculum. Further, given that our 

task involved factual memory encoding of faces, objects and words which preferentially recruits 

the left hippocampus, rather than spatial memory typically used in navigation which 

preferentially recruits the right hippocampus, we predicted that our hypothesis will hold true 

more for the left, rather than the right, hippocampus during an encoding task. We found support 

for our hypotheses stated above and we discuss the same below. The discussion of results is 

organized as follows. First, we discuss the results obtained by the characterization of layer-

specific functional microcircuits between the EC and hippocampus during an encoding task. 

Second, we discuss the functional hemispheric specialization of the hippocampus. Finally, we 

discuss the importance of ultra-high filed functional neuroimaging in developing accurate and 

robust models of functional connectivity in layer-specific microcircuits of the human brain. 

3.4.1 Layer-specific functional perforant pathway from EC to the hippocampus  

The topologically arranged circuitry between the EC and hippocampus has been historically 

studied by many researchers [360] [361] [362]. During an encoding task, the more superficial 

layers (layer II and III) of EC project to DG/CA4, CA3, CA2, and from there to CA1 and 

subiculum. This organization is referred to as the “perforant pathway”, which is considered as 

the major pathway from the EC to the hippocampus during memory encoding. Maass et al. [331] 
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used 7T high resolution fMRI to show layer-specific activation during memory encoding as 

predicted by the perforant pathway. However, the perforant pathway has never been directly 

investigated using connectivity based non-invasive methods in humans, although invasive 

studies in animals have demonstrated the existence of this pathway [363].  

In this study, we investigated the functional perforant pathway using functional connectivity 

between layer II of EC with voxels in different subfields of the hippocampus during a memory 

encoding task. For the left hippocampus, our results yielded a parcellation which consistently 

overlapped with two anatomical clusters, i.e., DG/CA4/CA3/CA2 and CA1/subiculum, to a great 

extent. Meanwhile, the identified proximal subfields (DG/CA4/CA3/CA2) showed a significant 

positive correlation with layer II of EC, whereas the distal subfields (CA1/subiculum) exhibited a 

significant negative correlation with EC. Together, these findings demonstrate that during a 

memory encoding task, layer II of EC is more correlated with DG/CA4/CA3/CA2, than with 

CA1/subiculum. This result makes sense because the direction of information flow in the 

perforant pathway fits the following pattern: EC layer II→DG→CA4→CA3→CA2 

→CA1→subiculum. Consequently, layer II in EC must be more correlated with proximal 

subfields compared to distal subfields of the hippocampus. 

3.4.2 Functional Hemispheric Specialization 

Recent neuroimaging results have been suggested that there is distinct structural and functional 

specialization between the left and right hippocampus. Shipton et al. [364] conducted experiment 

on mice and found evidence for hemispheric dissociation of CA3 of the hippocampus. 

Papanicolaou et al. [365] and Burgess et al. [346] also found functional differentiation between 

the left and right hippocampus in humans as well. More specifically, the left hippocampus is 
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associated with more verbal, factual and procedural memory processes, whereas the right 

hippocampus is involved in more spatially-dependent memory processes typically used in 

navigation [346] [355]. Therefore, hemispheric specialization in the hippocampus seems to be an 

evolutionarily preserved feature. In this study, we found evidence for hemispheric specialization 

with a memory encoding task involving faces, objects and words. For the left hippocampus, the 

functional parcellation was consistent with the anatomical parcellation, i.e., DG/CA4/CA3/CA2 

and CA1/subiculum. However, we did not find a similar pattern in the right hippocampus. These 

results indicate that the left and right hippocampus have substantially different functional roles.  

3.4.3 High-resolution Functional Imaging 

Recent advances in ultra-high field fMRI have provided a non-invasive way of investigating 

cortical columns. This technique provides several advantages over conventional field strengths, 

e.g., improved spatial resolution, increased signal to noise ratio, etc. More importantly, this 

technique makes it feasible to examine layer-specific brain activation across different brain 

areas. Several recent studies have showed that investigating changes in fMRI activation as a 

function of laminar depth can lead to more precise result [342] [343] [344]. In this study, we 

estimated EC-hippocampus functional connectivity during a memory encoding task using time 

series from layer II of EC as well as those from voxels in EC (which corresponds to conventional 

volume level analysis). As we expected, the hippocampal parcellation obtained using layer-

specific connectivity data were more closely related to the anatomical parcellation of 

hippocampal subfields, which was not the case using volume level data. Also, the functional 

connectivity obtained between EC and hippocampal voxels did not conform to our prior 

expectations about this circuitry during memory encoding. Therefore, it is important to note the 
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relevance of high-resolution functional neuroimaging as the field progresses toward developing 

accurate and robust models of functional connectivity.  

3.4.4 Limitations and Future Works 

We note a few limitations of the present study which may be addressed in future research. 

First, before performing layer-specific fMRI connectivity analysis, different cortical layers need 

to be precisely delineated. Existing methods include the equidistant model and the Laplace 

model. The former one, which was used in our study, constructs laminar profiles that preserve a 

relatively fixed distance to the cortical boundaries [366]. The latter one solves the Laplace 

equation within the boundaries of the cortex and generates cortical profiles along the gradient of 

the solution [367]. Previous studies indicates that both these two models may fail to precisely 

follow anatomical layers all long the cortex [368]. To solve this issue, a novel equivolume model 

was proposed [368], which was derived based on the theory that the cortical segments preserve 

their volume, while layer thickness changes to compensate cortical folding. Future work should 

investigate the feasibility of this novel equivolume model and assess how well the cortical 

profiles can be constructed by using different methods. If found to be superior, our findings need 

to be replicated with more accurate reconstructions of cortical layers. 

Second, our results indicate that the functional parcellation in the left hippocampus in line with 

the anatomical parcellation. Our results do make sense given that our parcellation was based on 

functional connectivity in the perforant pathway during a memory encoding task. However, other 

studies have shown an anterior-posterior gradient along the long axis in the hippocampus [369] 

[370] [371], with the head and body of the hippocampus mainly constituting the anterior parcel 

and the tail of the hippocampus representing the posterior parcel. This indicates that gradients 
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within the hippocampus are dependent on the neurocognitive context in which they are 

investigated. This factor must be kept in mind while interpreting our results and likely forms a 

basis for future research as well. 

Third, the present study investigated the dominant performant pathway between the 

hippocampus and layer II in EC during memory encoding. According to previous studies, there 

are some other pathways between different layers of EC and subfields of the hippocampus during 

encoding and retrieval processes [330] [331]. For example, a laminar specific activity analysis 

[331] indicates that the retrieval process is dependent on activation of deeper layers of EC and 

CA1 of the hippocampus. Our study demonstrates the possibility to investigate layer-specific 

microcircuits in both healthy and clinical human populations, using non-invasive ultra-high 

fields fMRI. Thus, further fine-grained investigation can be applied in the future research. 

3.5 Conclusion 

As main component in the medial temporal lobe, the hippocampus and the EC are involved in 

encoding and retrieving processes. There is anatomical and electrophysiological evidence that 

during an encoding task, superficial layers of EC appear to be connected to different subfields of 

the hippocampus through anatomically characterized circuits so called perforant pathway. This 

pattern has been supported by previous studies. However, a comprehensive understanding of 

circuit-level mechanisms underlying encoding task in the perforant pathway has not been 

resolved.  

In this study, we investigated the functional perforant pathway using the connectivity between 

layer II of EC with different subfields of the hippocampus during an encoding task. We found 

that when the functional connectivity between EC layer II and hippocampus, when clustered in 
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an unsupervised way, parcellated the hippocampus into proximal and distal regions along 

perforant pathway. This parcellation was based on our observation of stronger connectivity 

between layer II of EC with hippocampal subfields such as DG/CA4/CA3/CA2 which are 

proximal to the EC along the perforant pathway, compared to subfields such as CA1/Subiculum 

which are distal.  

In addition, we used a verbal memory task and only the left hippocampus showed this dorsal 

and ventral pattern. This result suggests that there is a functional hemispheric specialization 

between the left and right hippocampus, and the left hippocampus is associated with more verbal 

memory task. 

Finally, we applied the same clustering and feature selection process on volume level data in 

comparison with layer-specific data. As we expected the volume level data failed to reveal a 

dorsal-ventral pattern, and the identified structures did not match well with anatomical 

parcellation. This result suggests that examining functional connectivity as a function of laminar 

depth can lead to more precise and robust result. 
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Chapter 4  

Functional Parcellation of the Hippocampus based on its Connectivity with Default Mode 

and Dorsal Attention Networks 

Recent neuroimaging evidence suggests that there might be an anterior-posterior functional 

differentiation of the hippocampus along the long-axis. The HERNET (hippocampal 

encoding/retrieval and network) model proposed an encoding/retrieval dichotomy with the 

anterior hippocampus more connected to the dorsal attention network (DAN) during memory 

encoding, and the posterior portions more connected to the default mode network (DMN) during 

retrieval. Evidence both for and against the HERNET model has been reported. In this study, we 

test the validity of the HERNET model non-invasively in humans by computing functional 

connectivity (FC) in layer-specific cortico-hippocampal microcircuits. This was achieved by 

acquiring sub-millimeter functional magnetic resonance imaging (fMRI) data during 

encoding/retrieval tasks at 7T. Specifically, FC between infra-granular output layers of DAN 

with hippocampus during encoding and FC between the hippocampus and supra-granular input 

layers of DMN with during retrieval were computed to test the predictions of the HERNET 

model. Our results support some predictions of the HERNET model including anterior-posterior 

gradient along the long axis of the hippocampus. While preferential relationships between the 

entire hippocampus and DAN/DMN during encoding/retrieval, respectively, were observed as 

predicted, anterior-posterior specificity in these network relationships could not be confirmed. 

The strength and clarity of evidence for/against the HERNET model were superior with layer-

specific data compared to conventional volume data.  
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4.1 Introduction 

The hippocampus, located in the medial temporal lobe (MTL), plays important roles in many 

brain functions including episodic memory and spatial navigation [310] [311] [312]. 

Investigation of functional specialization within the hippocampus has received increased 

attention in neuroimaging. The abnormalities of the hippocampus have been identified in many 

neuropsychiatric disorders, including Alzheimer’s disease [313] [314] [315], major depression 

[316] [317] [318] [319], post-traumatic stress disorder [320] [321], and schizophrenia [322] 

[323] [324]. Therefore a better understanding of the functional specialization within the 

hippocampus has the potential to lead to a better understanding of these disorders.  

Recently, many studies have posited that there may be a functional differentiation along the 

long-axis of the hippocampus [372] [373]. Lepage et al. [374] performed a meta-analysis of 

positron emission tomography (PET) of episodic memory and discovered an orderly functional 

anatomic pattern in the hippocampus. More specifically, the anterior portions were primarily 

activated with episodic memory encoding, whereas the posterior portions were primarily 

associated with episodic memory retrieval. This model is referred to as HIPER (hippocampus 

encoding/retrieval) model.  

The HIPER model has received support from many recent studies. Spaniol et al. [375] 

conducted meta-analyses of event-related fMRI studies of episodic memory and revealed an 

anterior-posterior gradient in the hippocampal activations associated with encoding and retrieval. 

Nadel [376] and his colleagues compared the anterior and posterior hippocampal activations 

during retrieval of different types of spatial information. They found that there is a functional 

differentiation along the longitudinal axis of the hippocampus with the posterior hippocampus 
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being crucial for precise spatial behavior, and the anterior hippocampus being involved in 

context coding. Baumann and Mattingley [377] examined retrieval-related activity in the taxi 

drivers’ hippocampus using fMRI data and found that taxi drivers with a small anterior 

hippocampus had difficulty encoding new spatial associations. Moreover, Kim [378] conducted a 

meta-analysis and revealed that the encoding of sensory input involved mainly the anterior 

hippocampus and the external attention network, whereas retrieval engaged mainly the posterior 

hippocampus and the internal attention network. This model was referred to as the HERNET 

(hippocampal encoding/retrieval and network) model. 

Memory encoding is inherently linked with external attention, whereas retrieval is intrinsically 

related to internal attention [379] [380]. Many studies have identified two brain networks, i.e., 

the dorsal attention network (DAN) and default mode network (DMN), that are closely 

associated with external and internal attention, respectively [198] [381]. Therefore, the HERNET 

model predicts that the anterior hippocampus and regions of the DAN co-activate during 

encoding while the posterior hippocampus and regions of the DMN co-activate during encoding. 

In fact Kim’s [378] meta-analysis confirms this prediction. However, evidence conflicting the 

HERNET model also exists. This includes meta-analyses of imaging studies which contradict 

Kim’s findings [382], suggestions that the anterior hippocampus is activated by novelty (which is 

purportedly mistaken for encoding since encoding tasks typically use novel stimuli) [383] [384] 

[385] [386] [387] and alternative models of functional specialization which attribute “hot” 

processing (emotion/motivation) to anterior hippocampus and “cold” processing (cognition) to 

the posterior part [388] [370] [371]. Given this state of affairs, we set out to directly test the 

HERNET model using functional connectivity between the hippocampus and DAN/DMN 

regions during memory encoding and retrieval tasks. Unlike previous studies which employed 
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voxel-level analysis from data obtained at conventional field strengths (≤ 3T), we employed 

fMRI data with ultra-high spatial resolution (sub-millimeter) obtained at 7T. This allowed us to 

investigate layer-specific microcircuits between DMN/DAN regions and the hippocampus with 

the hypothesis that they would provide a finer grained characterization of the connectivity 

between them, which in turn may provide more definitive evidence for or against the HERNET 

model. 

Previous invasive studies in animals have shown that the connections between the 

hippocampus and DAN/DMN primarily involve cortical layers II and V, with layer V of the 

higher order cortex (frontal and parietal cortices) projecting to the hippocampus, whereas layer II 

of higher order cortex receiving the signal back from the hippocampus [360] [389]. This layer-

specific pathway between the hippocampus and DAN/DMN is not exclusive since pathways 

which originate/terminate in other layers of the cortex may also contribute to the hippocampal 

input or output. This is not surprising given the highly complex underlying microcircuitry and 

given that signals between any two brain regions can relay via multiple structures including the 

thalamus. However, the pathways between the hippocampus and layers II and V of the 

DMN/DAN seem to be the dominant ones based on prior invasive animal literature [390] [391].  

The present study sought to investigate the HIPER/HERNET model using the functional 

connectivity between the hippocampus and 1) deeper layers of DAN/DMN during an encoding 

task, and 2) superficial layers of DAN/DMN during a retrieval task. Specifically, we 

hypothesized that during a memory encoding task, clustering hippocampal voxels based on their 

functional connectivity with layer V of the DAN must parcellate the hippocampus in an anterior-

posterior gradient along the long axis. Similarly, during a memory retrieval task, clustering 
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hippocampal voxels based on their functional connectivity with layer II of the DMN must also 

show an anterior-posterior segmentation. Second, during an encoding task, the hippocampal 

voxels must have stronger connectivity with layer V of the DAN than with layer V of the DMN. 

Contrarily, during a retrieval task, the hippocampal voxels must have stronger connectivity with 

layer II of the DMN than with layer II of the DAN. Third, considering the directionality of signal 

projection, during an encoding task, layer V of the DAN mush show stronger correlation with 

anterior hippocampal regions than with posterior hippocampal regions, whereas during retrieval 

task, layer II of the DMN must exhibit stronger correlation with posterior hippocampal regions 

than with anterior hippocampal regions. Finally, we predicted that using layer-specific data 

would lead to more definitive results than using conventional volume-level data while 

investigating the connection between the hippocampus and the DAN/DMN. All four hypotheses, 

based on predictions from the HERNET model, are illustrated in Figure 4.1. Here it is 

noteworthy that although we intend to test these hypotheses using fMRI data extracted from 

layers II and V of DAN/DMN regions, some partial volume effects are expected for the spatial 

resolution of our data. Therefore, signal from layer II broadly represents those from supra-

granular layers with dominant contribution from layer II. Likewise, signal from layer V broadly 

represents those from infra-granular layers with dominant contribution from layer V.  

In order to test these hypotheses, fMRI data was acquired from healthy subjects performing 

memory encoding and retrieval tasks with faces, pictures of scenes and words in the 7T scanner. 

Ultra-high resolution anatomical data was also acquired to resolve layers in the DAN/DMN. 

Unsupervised clustering methods were applied, which groups objects in a data driven way 

without using any labels to guide the results, to parcellate the hippocampal voxels based on their 

connectivity with different layers in the DAN/DMN. Three clustering methods were specifically 
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chosen, i.e., hierarchical clustering [123], ordering points to identify the clustering structure 

(OPTICS) [57], and density peak clustering (DPC) [124], since they did not require a priori 

specification of the number of clusters. Since clustering accuracy is often lower in high 

dimensional feature space, a genetic algorithm (GA) based feature selection method was also 

employed, which is less prone to local optimum [127], comparing with other existing feature 

selection methods, e.g., sequential forward searching [127], non-linear optimization [128], etc.  

 

Figure 4.1 Illustration of our hypotheses based on predictions from the HERNET model as well 

as known anatomical pathway between different layers of DAN/DMN and hippocampus: a) 

anatomical pathway between hippocampus and different layers of DAN/DMN during 
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encoding/retrieval processes, b) illustration of proposed first hypothesis, c) illustration of 

proposed second hypothesis, and d) illustration of proposed third hypothesis. 

 

Figure 4.2 Illustration of proposed analysis pipeline for investigating hippocampal parcellation 

based on its layer-specific connectivity with DAN/DMN ROIs. The same process was repeated 
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for encoding and retrieval tasks, separately, as well as with conventional volume data (as 

opposed to layer-specific data). 

4.2 Materials and Methods 

In this work the connectivity between the hippocampus and the DAN/DMN were investigated 

by clustering hippocampal voxels, in an unsupervised way, based on their connectivity with 1) 

layer V of DAN/DMN during an encoding task, and 2) layer II of DAN/DMN during a retrieval 

task. The identified functional clusters of the hippocampus were then compared with an 

anatomical anterior-posterior segmentation [369]. The entire analysis pipeline is illustrated in 

Figure 4.2 and will be elaborated below. 

4.2.1 Data Acquisition 

Thirty-one healthy individuals (26 right-handed, 12 males, 19 females, age =21.1±1.4) were 

recruited for the study. The Internal Review Board (IRB) at Auburn University approved the 

study, subjects provided informed consent and the experimental procedures were performed in 

accordance with internationally accepted ethical standards. Echo-planar imaging (EPI) data were 

acquired on the Auburn University MRI Research Center (AUMRIRC) Siemens 7T 

MAGNETOM scanner outfitted with a 32-channel head coil by Nova Medical (Wilmington, 

MA). The sequence was optimized for the hippocampus (37 slices acquired parallel to the AC-

PC line, 0.85mm×0.85mm×1.4mm voxels, TR/TE: 3000/28ms, 70° flip angle, base/phase 

resolution: 234/100, A→P phase encode direction, iPAT GRAPPA acceleration factor = 3, 

interleaved acquisition, 123 time points, total acquisition time 6 minutes). During encoding task, 

the participants were asked to view a series of faces, pictures of scenes and words. Each trial 

lasted for 30 seconds in which the subjects were presented 10 images of the same category for 3 
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seconds each. These trials were interspersed with a 6 second inter-trial interval. The paradigm for 

the retrieval task was identical to the encoding task with the exception that the subjects were 

provided with an MR-compatible button box to indicate, via button presses, whether the they 

recognize the image as having seen during the encoding task or not. A whole-brain high-

resolution 3D MPRAGE sequence was used to acquire anatomical data (256 slices, 0.63mm x 

0.63mm x 0.60mm, TR/TE: 2200/2.8, 7° flip angle, base/phase resolution 384/100%, collected in 

an ascending fashion, acquisition time = 14:06) for extracting different cortical layers in the 

DAN/DMN ROIs and for registration purposes. 

4.2.2 Preprocessing 

  a) Hippocampal data: Standard pre-processing steps were carried out using SPM8 [349] 

including brain extraction, slice timing correction, temporal band-pass filtering (0.01 to 0.10), 

regression of motion and physiological artifacts (using CompCor [392]), registration to 

anatomical space, and normalization to MNI standard space.  

 

Figure 4.3 Hippocampal ROI used in this study. Only the left hippocampus was considered in 

this study. 

Sagittal Coronal Axial
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The Harvard-Oxford Structural Probability Atlas distributed with the FSL neuroimaging 

analysis software package (http://www.fmrib.ox.ac.uk/fsl/fslview/atlas-descriptions.html#ho) 

was used to define hippocampal ROIs. Our task did not explicitly involve spatial memory 

typically used in navigation, which is primarily associated with the right hippocampus [346]. 

Therefore, only the left hippocampus was considered in this study. In order to determine a 

conservative anatomical representation, the hippocampal ROI was thresholded at 75%. The mean 

probability for the voxels in the hippocampal ROIs belonging to the hippocampus (M±SD: 

86.41%±7.10%) and the voxel centroid (MNI coordinates [−26, −18.8, −17.2]) belonging to the 

hippocampus was > 86% and 97.1%, respectively. The identified hippocampal ROIs are 

illustrated in Figure 4.3 with a total volume of 1880 mm3. 

b) Cortical layer-specific data of the DAN/DMN: Data extracted from the whole brain was 

first preprocessed using SPM8. To preserve high spatial resolution, no spatial filtering was 

applied. The cortical layers were then reconstructed using FreeSurfer [350]. Specifically, two 

interfaces, i.e., the cortical gray matter and the underlying white matter (white-gray interface) 

and the interface between the cortical gray matter and the pial surface (gray-pial interface), were 

automatically reconstructed from the anatomical image. Then, the cortical thickness was 

calculated as the average of the distance from the white-gray interface to the closest possible 

point on the gray-pial interface, then from that point back to the closest point on the white-gray 

interface again. To improve accuracy, surface smoothing and automatic topology correction were 

also applied [351] [352] [353] [354]. From the cortical thickness map, six cortical layers were 

then reconstructed within the cortical gray matter at fixed relative distance between the white and 

pial surfaces determined from the cortical thickness, i.e., the first layer was located at 96% of the 

cortical thickness away from the white matter, the second layer at 80%, the third layer at 64%, 
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the fourth layer at 48%, the fifth layer at 32%, and the six layer at 16% (Figure 4.4). The laminar 

layers were derived from the anatomical image, so it was necessary to align the EPI data to these 

layers. A boundary-based registration method [355] was employed, which aligns the EPI image 

to the anatomical image by maximizing the intensity gradient across white-gray interface and 

gray-pial interface. The entire cortical surface was automatically divided into 34 cortical ROIs in 

each of the individual hemispheres based on the Desikan-Killany atlas in Freesurfer [356]. The 

major DAN regions, i.e., frontal eye field [FEF], inferior temporal cortex [ITC], inferior frontal 

gyrus [IFG], and superior parietal lobe [SPL], and major DMN regions, i.e., anterior cingulate 

cortex [ACC], medial prefrontal cortex [mPFC], inferior parietal lobe [IPL], posterior cingulate 

cortex [PCC], and precuneus, were identified from those 34 ROIs, and vertices (voxels in the 

volume become vertices on surfaces) in layer II and layer V of these regions were then 

identified.  

4.2.3 Connectivity Measures 

 FC measures the functional interrelationship between pairs of brain regions by estimating 

Pearson’s correlation between time series representing those brain regions. Functional 

connectivity (FC) was estimated between the hippocampal voxels and 1) vertices in layer V of 

the DAN/DMN during the encoding task, and 2) vertices in layer II of the DAN/DMN during the 

retrieval task.  
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Figure 4.4 Cortical layer reconstruction with FreeSurfer. Six cortical layers were reconstructed 

within the cortical gray matter at fixed relative distances between the white and pial surfaces. 

4.2.4 Layer Specific Clustering 

The hippocampal voxels were parcellated using three clustering methods based on their FC 

with 1) vertices in layer V of the DAN/DMN during the encoding task, and 2) vertices in layer II 

of the DAN/DMN during the retrieval task. The same process was repeated on DAN and DMN 

ROIs, separately. Let 𝒀 = {𝒀!,⋯ ,𝒀! ,⋯ ,𝒀!}  represent a set of 𝑁  objects, i.e., number of 

hippocampal voxels. 𝒀! = 𝑌!!,  𝑌!!,⋯ ,𝑌!"  ∈  ℝ!, where 𝑑 equals to the number of FC features. 

Assume the N objects are separated into k clusters. Each cluster is a set of indexes from 

{1,⋯ ,𝑁}, and each object 𝒀! belongs to exactly one cluster.  
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a) Hierarchical Clustering (Agglomerative): As one of the most commonly used 

connectivity-based clustering method, the hierarchical clustering [184] [185] [123] groups 

objects into different clusters by building a hierarchical tree structure. The procedure of this 

method is illustrated below: 

1) Initially, each object 𝒀! is assigned to a cluster with only itself in it. 

2) Distance between any two clusters is measured. Then, the closest pair of clusters are 

merged. 

3) Step 2-3 are repeated until all 𝒀! are in one big cluster. 

 

(a) (c)

Cutting Height

(b)

Root

Leaf



 149 

Figure 4.5 Illustration of hierarchical clustering. a) Original simulated dataset, b) Dendrogram 

derived from hierarchical clustering, and c) Clustering results obtained with a specific cutting 

height. Two clusters that were identified are marked with different colors. 

The resulting tree structure is usually referred to as the dendrogram (Figure 4.5). The root of 

the dendrogram represents the entire data, each leaf node represents one single object, and the 

height of the dendrogram represents the distance between each pair of clusters. Different data 

partitions can be obtained by cutting the dendrogram at different heights. Note that there are 

three linkage criterions, single-linkage, complete linkage, and average-linkage, which have been 

widely used in measuring distance between two clusters. The single linkage [186] calculates the 

shortest distance between two clusters, the complete linkage [186] calculates the longest 

distance, and the average linkage [186] calculates the mean distance. The single linkage method 

can handle non-elliptical shape of clusters, but can be affected by noise and outliers. The 

complete linkage method is less sensitive to noise and outliers but tends to break large clusters. 

The average linkage is a compromise between single-linkage and complete linkage methods. 

Thus, the average linkage method was employed in this work. 



 150 

 

Figure 4.6 Illustration of OPTICS clustering. a) Original simulated dataset, b) reachability plot 

obtained from OPTICS, and c) clustering results. Two clusters were identified corresponding to 

valleys in the reachability plot. 

b) Ordering Points to Identify the Clustering Structure: OPTICS [57] is one of the most 

popular density-based clustering methods [55] Given a distance threshold (𝜀) and the minimum 

number of objects required to form a cluster (𝑀𝑖𝑛𝑃𝑡𝑠), objects in high-density areas are grouped 

together, whereas objects in sparse areas, which are required to separate clusters, are usually 

considered to be noise or outliers. OPTICS can discover clusters with arbitrary shapes and has 

the ability to identify outlier objects that do not belong to any of the clusters.  

(a) (c)

(b)

Threshold
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In OPTICS, two variables are computed for each object in the dataset: core-distance and 

reachability-distance. Let 𝑁!(𝒀!)  represent the number of nearby objects within 𝜀 (called 

𝜀 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑), and 𝑀𝑖𝑛𝑃𝑡𝑠 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝒀!) represent the distance from 𝒀!  to its 𝑀𝑖𝑛𝑃𝑡𝑠’ 

neighbor. An object 𝒀!  is a core object if at least 𝑀𝑖𝑛𝑃𝑡𝑠  objects are found with its 𝜀 −

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑. The core-distance of 𝒀!  is defined as: 

 𝑐𝑜𝑟𝑒 − 𝑑𝑖𝑠𝑡!,!"#$%& 𝒀! = 𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑             𝑖𝑓 𝑁! 𝒀! < 𝑀𝑖𝑛𝑃𝑡𝑠
𝑀𝑖𝑛𝑃𝑡𝑠 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝒀!         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            (4.1) 

,which is the smallest distance for 𝒀!  to have 𝑀𝑖𝑛𝑃𝑡𝑠 in its 𝜀 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑. 

The reachability-distance of object 𝒀!  with respect to object 𝒀! is defined as: 

 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑑𝑖𝑠𝑡!,!"#$%& 𝒀! ,𝒀!

=
𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑                                           𝑖𝑓 𝑁! 𝒀! < 𝑀𝑖𝑛𝑃𝑡𝑠
𝑚𝑎𝑥 (𝑐𝑜𝑟𝑒 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝒀! ,𝑑𝑖𝑠𝑡(𝒀! ,𝒀!))       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(4.2) 

Where 𝑑𝑖𝑠𝑡 (𝒀! ,𝒀!) is the distance measure (e.g., Euclidean distance) between 𝒀!  and 𝒀!. The 

complete procedure of OPTICS is described below: 

1) Choose one object 𝒀!  arbitrarily. 

2) Retrieve the 𝜀 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 of 𝒀!, determine the core-distance of 𝒀!, and set the 

reachability-distance of each object 𝒀!  in the 𝜀 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 of 𝒀! to undefined.  

3) If 𝒀! is not a core object, go to step 5. Otherwise, go to step 4. 

4) For each object 𝒀!  in the 𝜀 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 of 𝒀!, update its reachability-distance from 

𝒀! and insert 𝒀! into an OrderSeeds list if it has not been processed yet. 
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5) If the input dataset is fully consumed and the OrderSeeds list is empty, go to step 6. 

Otherwise, move on to the next object in the OrderSeeds list (or the input list, if the 

OrderSeeds list is empty) and go to step 2. 

6) Output core-distance, reachability-distance of each object, and processed order. 

The data objects are plotted in the processed order together with their respective reachability-

distance (called reachability plot) depicting the hierarchical structure of the clusters. Since 

objects belonging to a cluster have a low reachability-distance to their nearest neighbor, the 

clusters show up as valleys in the reachability plot (see Figure 4.6). The final data partition can 

be obtained by using a threshold on the reachability plot. 

c) Density Peak Clustering: recently Rodriguez and Laio [124] proposed a novel density-

based clustering method (referred to as DPC) based on the idea that the cluster centers are 

characterized by a higher density than their neighbors and by a relatively large distance from 

objects with higher densities. Like other density-based clustering methods, e.g., OPTICS, it has 

ability to detect arbitrarily shaped clusters and spot outlier objects. Moreover, DPC outperforms 

commonly used clustering methods, e.g., k-means and hierarchical clustering, when the dataset 

contains complicated features such as narrow bridges between clusters, uneven-sized clusters, 

clusters with high overlap, etc. 

For each object 𝒀!, two quantities are computed: local density 𝜌(𝒀!) and minimum distance 

with higher density 𝛿(𝒀!). 𝜌(𝒀!) is defined as: 

 𝜌 𝒀! =  𝜒(𝑑𝑖𝑠𝑡 𝒀! ,𝒀! −  𝑑!)
!

 (4.3) 
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where 𝑑! is a cutoff distance, and 𝜒(𝑦) can be computed by, 

 𝜒 𝑦 =  1       𝑖𝑓 𝑦 < 0
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.4) 

From Equation (4.3) and (4.4), it can be seen that 𝜌(𝒀!) equals to the number of objects within 

𝑑! with respect to object 𝒀!.  𝛿(𝒀!) is measured by, 

 𝛿(𝑌!) =  𝑚𝑖𝑛
!:! 𝒀! !!(𝒀!)

𝑑𝑖𝑠𝑡(𝒀! ,𝒀!) (4.5) 

For the object with highest density, 𝛿(𝒀!) is conventionally set to, 

 𝛿 𝒀! = 𝑚𝑎𝑥
!
𝑑𝑖𝑠𝑡(𝒀! ,𝒀!) (4.6) 

Note that if 𝒀! is local or global maxima in the density, 𝛿(𝒀!) will be much larger than its 

typical nearest neighbor. Thus, objects with larger 𝜌 and 𝛿 are considered as cluster centers, 

whereas objects with smaller 𝜌 and larger 𝛿 are considered as outliers. Other objects are assigned 

to the same cluster as their nearest neighbor of higher density (see Figure 4.7). 
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Figure 4.7 Illustration of DPC clustering. a) Original simulated dataset, b) Plot of δ as a function 

of ρ for each object. Objects with larger ρ and δ are cluster centers and objects with smaller ρ, 

and larger δ are outliers. c) Clustering results. Two clusters were identified corresponding to two 

cluster centers in the decision graph. 

d) Input Parameter Optimization: In each clustering method, there are several user-specified 

input parameters, which can significantly affect the shape of the cluster and the number of the 

cluster (Figure 4.8). For hierarchical method, the cutting height of the dendrogram needs to be 

specified and the number of clusters varies with different cutting heights. For OPTICS, 𝜀 can 

simply be set to the maximum possible value, and Ankerst and colleagues [57] showed that for 

𝑀𝑖𝑛𝑃𝑡𝑠 using values between 10 and 20 would always lead to good results. However, the 

(a) (c)

(b)

Cluster Center

Border/Outlier
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threshold for the reachability plot, which is used to extract clusters, still needs to be properly 

determined. For DPC, 𝑑! can be chosen based on the rule that the average number of neighbors 

is around 1-2% of the total number of objects in the data set [124]. A threshold for 𝜌 and 𝛿 needs 

to be defined to distinguish cluster centers, borders, and outliers. In this study, the average 

silhouette index [60] was employed to determine the optimal values of these parameters. Assume 

the data have been clustered via any clustering algorithm, such as OPTICS, into K clusters. For 

each object 𝒀!, let 𝑎(𝒀!) represent the average distance of 𝒀! with all other object in the same 

cluster, and 𝑏(𝒀!) represent the smallest average distance of 𝒀! to any other cluster, of which 𝒀! 

does not belong to. Then the silhouette index of 𝒀! is defined as: 

 
𝑠(𝑿!) =

𝑏 𝒀! − 𝑎(𝒀!)
max {𝑎 𝒀! , 𝑏(𝒀!)}

 (4.7) 

From Equation (4.7), it can be seen that 𝑠(𝒀!) is bounded between -1 and 1. If  𝒀! has been 

assigned to a “correct” cluster, 𝑠(𝒀!) will be close to 1. Contrarily, if 𝒀! has been assigned to a 

“wrong” cluster, 𝑠(𝒀!) will be close to -1. 𝑠(𝒀!) will be close to 0, if 𝒀! is located on the border 

of two natural clusters. By computing the average 𝑠(𝒀!) over all objects in the entire dataset, the 

accuracy of the clustering results can be quantified. 

With the average silhouette index as the optimization criterion, a “grid search” [187] method 

was applied on determining the optimal value of each parameter. The optimal number of clusters 

can be determined simultaneously. For example, in OPTICS, we started with a relatively high 

threshold for the reachability-plot. In each iteration, the threshold was reduced by a small amount 

and the average 𝑠(𝒀!) was computed and recorded based on the current partition. The iteration 

continues until the threshold was smaller than a specified baseline, e.g., the average reachability-
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distance of the reachability-plot. The optimal threshold was then determined as the one with the 

largest average 𝑠(𝒀!). The same iterative procedure was applied to hierarchical clustering to 

determine optimal cutting height of dendrogram, and to DPC to determine the optimal threshold 

of 𝜌 and 𝛿. 

 

Figure 4.8 Illustration of dependency of clustering results on input parameters. Take hierarchical 

clustering as an example. With a relatively high cutting height (a), two clusters (red and blue) 

were identified (b). As cutting height was reduced (c), one big cluster (red) was separated into 

two smaller clusters (d). 

(a)

Cutting Height

(c)

(b)

(d)

Cutting Height
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4.2.5 Feature Selection and Cluster Identification 

The clustering accuracy is often lower in high dimensional feature space, which may due to the 

fact that most of features in the dataset may be irrelevant, redundant, or sometimes may even 

misguide results. Moreover, a large number of features make the clustering results difficult to 

interpret. Therefore, a feature selection method is required to improve the clustering accuracy. 

For supervised learning, feature selection can be trivial, i.e., only the features that are related to 

the given cluster labels are maintained. Nevertheless, for unsupervised learning, the cluster labels 

are unknown. Thus, finding the relevant subset of features and clustering the subset of the data 

must be accomplished simultaneously.  

   Assuming d to be the initial number of features, an exhaustive search of 2! possible subsets 

need to be examined, which is computationally expensive. Therefore, in this study an alternative 

GA based method was applied to determine the optimal subset of features, as well as the optimal 

clustering results. The average silhouette index was used as the optimization criteria. 

As one of the most popular search heuristic methods, GA has been widely used in generating 

solutions to optimization and searching problems [189] [190]. Different from single-state 

methods (only one solution is evaluated at a time), e.g., simulated annealing, hill climbing, etc., 

GA is a “population” method that maintains a set of solutions evolving toward an optimal 

solution. The evolution usually starts from a population of randomly generated solutions. In each 

iteration (or so called “generation”), “survivor solutions” with larger values of optimization 

criteria, i.e., the average silhouette index, are selected to form a new generation of solutions. 

These survival solutions can be generated from the crossover, which produced new solutions by 

randomly combining two current solutions, mutations, which randomly changes new solutions 
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with a small probability, or from the initial population. The new generation of solutions is then 

used in the next iteration of the algorithm. Conventionally, the algorithm terminates when the 

best solution cannot be improved any further. 

 

Figure 4.9 Flowchart of GA for feature selection. In the 𝑀-by-𝑑 matrix, each row represents a 

candidate solution, describing a subset of selected features. Each of the 𝑑 bits in a row represents 

whether a feature is selected (1) or discarded (0). 

In this study, an array of 𝑑 bits was used to represent the selected subset of features and the 

population size is represented using 𝑀. Each bit in the array indicates the activation status of one 
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specific feature: 1 indicates selected and 0 indicated discarded. The complete procedure of GA is 

described below (Figure 4.9): 

1) Initialization: 400 candidate solutions were generated by randomly setting 1 or 0 for each 

bit in vectors.  

2) Crossover: two candidate solutions A and B were randomly selected from the current 

population. A value v between 1 and 𝑑 was randomly selected. Then a new solution was 

formed by combining the feature bits 1 to v from A and feature bits v + 1 to 𝑑 from B.  

3) Mutation: for each new generated solution, a mutation was applied by reversing bits in 

the vector with a probability of 0.1. 

4) Evaluation: the clustering method was applied on each candidate solution (i.e., a subset of 

selected features), and the average silhouette index was computed for each obtained 

partition. 

5) Selection: 280 solutions resulting in high average silhouette index were selected along 

with 120 solutions randomly selected from the rest of the solution (to increase the 

diversity of the population). 

6) If the result did converge, i.e., the average silhouette index of the best solution in the 

population keep increases, we iterated back to step 2. Otherwise, the clustering result 

with the largest average silhouette index and the corresponding selected subset of features 

were saved as the output. 

4.2.6. Volume Level Clustering 

In order to determine whether characterizing layer-specific microcircuits using ultra-high field 

fMRI provides any advantages over conventionally computed voxel-level connectivity, the same 
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clustering procedure enumerated above was also performed on the FC computed between 

hippocampal and DAN/DMN voxels during encoding/retrieval tasks. Specifically, let 𝒀 =

{𝒀!,⋯ ,𝒀! ,⋯ ,𝒀!}  represent a set of 𝑁  objects, i.e., number of hippocampal voxels. 𝒀! =

𝑌!!,  𝑌!!,⋯ ,𝑌!"  ∈  ℝ! , where 𝑑  equals to the number of FC features computed between 

hippocampal voxels and voxels in the DAN/DMN, respectively. Subsequently, the same 

clustering and feature selection process was repeated on encoding and retrieval tasks, DAN and 

DMN ROIs, separately. 

4.2.7 Comparison with Anatomical Anterior-Posterior Segmentation 

In this study, clusters were identified based on the DAN/DMN-hippocampal FC during 

encoding/retrieval tasks, respectively. This provided a functional parcellation of the 

hippocampus, which was compared with anatomically delineated anterior and posterior 

hippocampal segments. 

 

Anterior -4

Posterior
!

!

x = -30 x = -28 x = -26 x = -24 x = -22

Sagittal Coronal Axial
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Figure 4.10 Anatomical anterior-posterior segmentation used in this study. (Coordinates are in 

MNI space) 

The hippocampus can be anatomically separated into head, body, and tails, with the head and 

body being considered as anterior, and the tail being considered as the posterior part. Various 

methods, such as landmark-based segmentation [369], percentile-based axis segmentation [393] 

[394], a Talairach/MNI coordinate-based segmentation [369],  have been used to define the 

anterior and posterior regions of the hippocampus. We employed the Talairach/MNI coordinate-

based segmentation [369] which chose y = -21 in MNI space (y = -20 in Talairach space) as the 

border between anterior and posterior segmentations as shown in Figure 4.10. This coordinate 

corresponds to the uncal apex, which is considered as the end of the posterior portion of the 

hippocampus [395].  

Let 𝐴 = {𝐴!,𝐴!,⋯ ,𝐴!} represent m anatomical parcels, and 𝐹 = 𝐹!,𝐹!,⋯ ,𝐹!  denote n 

functional parcels identified by applying clustering methods on FC features. The similarity 

between these two parcellations was then quantified using Torres’ method [188]. The similarity 

matrix for A and F is an 𝑚 × 𝑛 matrix defined as: 

	

𝑆!,! =

𝑆!!
 
𝑆!!

 
𝑆!!
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…

 

𝑆!!
⋮
𝑆!"
⋮
𝑆!"
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𝑆!!
 
𝑆!"

 
𝑆!"

	 (4.8) 

where 𝑆!" = 𝑖/𝑢, which is Jaccard’s Similarity Coefficient with 𝑖 being the size of intersection 

and 𝑢 being the size of the union of cluster sets 𝐴! and 𝐹!. The similarity of parcellations 𝐴 and 𝐹 

is then defined as: 
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	 𝑆𝑖𝑚 𝐴,𝐹 =  
𝑆!"!!!,!!!

𝑚𝑎𝑥 (𝑚,𝑛)	
(4.9) 

From Equation (4.8) and (4.9), it can be seen that 0 ≤ 𝑆𝑖𝑚 (𝐴,𝐹)  ≤ 1, and 𝑆𝑖𝑚 𝐴,𝐹 = 1 

when two parcellations are identical. 

The entire analysis pipeline proposed for investigating functional differentiation of the 

hippocampus and layer-specific microcircuitry between the hippocampus and the DAN and 

DMN during encoding/retrieval tasks are illustrated in Figure 4.2. 

4.3 Results 

The optimal values of each input parameter determined for the three clustering methods are 

presented Table 4.1 and Table 4.2 for layer-level and volume-level clustering, respectively. 

Using each clustering method, the hippocampal voxels were clustered into two different 

functional parcels based on their FC with 1) layer V of the DAN/DMN during the encoding task, 

and 2) layer II of the DAN/DMN during the retrieval task. This was true across methods. The 

obtained clusters were then mapped back to the image space and the resulting hippocampal 

parcels were overlaid on the anatomical image for the visualization.  

Similar hippocampal parcellations were discovered using their FC with layer V of the 

DAN/DMN during the encoding task and layer II of the DAN/DMN during the retrieval task, 

and the average cluster similarity between DPC and hierarchical clustering, between DPC and 

OPTICS, and between hierarchical clustering and OPTICS, were 0.93, 0.95, and 0.92, 

respectively. For illustration, the clustering results obtained using the DPC method are shown in 

Figure 4.11. The clustering results obtained using hierarchical clustering and OPTICS are shown 

in Supplementary Information Figure B.1 and Figure B.2. From Figure 4.11, it can be seen that 
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the hippocampus showed an anterior-posterior gradient along the long-axis, which is consistent 

with the anatomical anterior-posterior segmentation (Figure 4.10). 

Method Name Parameter 

Left Hippocampus 

DAN DMN 

Encoding 
Layer V 

Retrieval 
Layer II 

Encoding 
Layer V 

Retrieval 
Layer II 

DPC 
𝜌 9.03 7.13 8.29 8.50 

𝛿 3.15 2.82 3.14 3.04 

Hierarchical h 1.16 1.15 1.15 1.15 

OPTICS s 0.55 0.50 0.53 0.25 

Table 4.1 Estimated optimal values of each input parameter in layer-specific clustering. h: 

cutting height, and s: reachability threshold. 

Method Name Parameter 

Left Hippocampus 

DAN DMN 

Encoding Retrieval Encoding Retrieval 

DPC 
𝜌 7.59 6.38 5.61 7.93 

𝛿 0.09 0.13 0.18 0.12 

Hierarchical h 1.15 1.15 1.16 1.15 

OPTICS s 0.39 0.06 0.002 0.03 

Table 4.2 Estimated optimal values of each input parameter in volume-level clustering. h: cutting 

height, and s: reachability threshold. 
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Figure 4.11 Clusters of hippocampal voxels determined (using the DPC method) based on their 

functional connectivity with 1) layer V of the DMN/DAN during the encoding task, and 2) layer 

II of the DMN/DAN during the retrieval task. (Coordinates are in MNI space) 

Clustering 
Method 

Feature 
Type Task Name 

DAN DMN 

Correlation 
Sim. 

Correlation 
Sim. 

Anterior Posterior Anterior Posterior 

DPC 

Layer-
specific 

Encoding 
(Layer V) -0.36 0.36 0.70 -0.13 0.16 0.70 

Retrieval 
(Layer II) 0.09 -0.06 0.73 -0.39 0.31 0.77 

Volume-
level 

Encoding 0.20 0.04 0.69 0.02 0.12 0.69 

Retrieval 0.30 0.33 0.74 -0.01 -0.02 0.74 

Hier. Layer-
specific 

Encoding 
(Layer V) -0.36 0.35 0.70 -0.13 0.16 0.70 
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Retrieval 
(Layer II) -0.14 0.11 0.63 -0.41 0.34 0.77 

Volume-
level 

Encoding 0.48 -0.17 0.68 0.51 -0.18 0.69 

Retrieval 0.08 -0.05 0.72 0.01 0.02 0.74 

OPTICS 

Layer-
specific 

Encoding 
(Layer V) -0.35 0.34 0.70 -0.09 0.10 0.70 

Retrieval 
(Layer II) -0.14 0.07 0.73 -0.36 0.27 0.77 

Volume-
level 

Encoding 0.51 -0.18 0.69 0.02 0.03 0.71 

Retrieval -0.33 0.41 0.57 0.21 -0.09 0.74 

Table 4.3 Cluster similarity between functional and anatomical anterior-posterior parcellations 

using different clustering methods and mean correlation obtained within each cluster on the left 

side of the hippocampus. 

To quantitatively characterize the identified clusters, the cluster similarity between our 

functionally obtained hippocampal parcels and anatomically defined anterior-posterior parcels 

(Figure 4.10) was computed. The mean correlation between hippocampal voxels and selected 

vertices (using GA-based feature selection method) in layer V of the DAN/DMN (during the 

encoding task) and the layer II of the DAN/DMN (during the retrieval task) was also computed 

within anterior and posterior hippocampal regions (Table 4.3). 

For the left hippocampus, during the encoding task, the average cluster similarity, over 

different clustering methods, between functional and anatomical parcellations for layer V of the 

DAN and DMN was 0.70 and 0.70, respectively. The absolute correlation observed between 

layer V of the DAN and the hippocampus was significantly larger than that between layer V of 

the DMN and the hippocampus as the p-values shown in Table 4.4, which is in line with our 

second hypothesis. A one-tailed 2-sample t-test was conducted to test whether the correlation of 
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layer V of the DAN with the anterior hippocampal regions was significantly larger than that with 

the posterior hippocampal regions. The p-values obtained for different clustering methods were 

all close to 1, which did not provide evidence to support our third hypothesis for DAN part. 

During the retrieval task, the average cluster similarity between functional and anatomical 

parcellations for layer II of the DAN and DMN was 0.70 and 0.77, respectively. The absolute 

correlation obtained between layer II of the DMN and the hippocampus was significantly larger 

than that between layer II of the DAN and the hippocampus as the p-values shown in Table 4.5, 

which was consistent with our second hypothesis. In addition, the correlation between layer II of 

the DMN and the posterior hippocampal regions was significantly larger than that with the 

anterior hippocampal regions (one-tailed 2-sample t-test; p < 0.001 for different clustering 

methods), considering the sign of the correlation. This result was in line with our third 

hypothesis for DMN part.  

Feature Type Clustering 
Method 

Left Hippocampus 

Mean Absolute Correlation 
P-value 

DAN DMN 

Anterior Posterior Anterior Posterior Anterior Posterior 

Layer-
specific 

(Layer V) 

DPC 0.39 0.39 0.34 0.35 < 0.001 0.005 

Hierarchical 0.38 0.39 0.34 0.35 0.004 0.009 

OPTICS 0.37 0.38 0.34 0.35 0.002 0.007 

Volume-
level 

DPC 0.51 0.18 0.51 0.18 0.500 0.500 

Hierarchical 0.48 0.17 0.51 0.18 0.750 0.564 

OPTICS 0.51 0.18 0.45 0.19 0.170 0.507 

Table 4.4 Comparison of the absolute correlations obtained between the DAN with the 

hippocampus and the DMN with the hippocampus during the encoding task by conducting one-
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tailed two-sample t-test (𝐻!: correlation of DAN and the hippocampus ≤ correlation of the DMN 

and the hippocampus). 

Feature Type Clustering 
Method 

Left Hippocampus 

Mean Absolute Correlation 
P-value 

DAN DMN 

Anterior Posterior Anterior Posterior Anterior Posterior 

Layer-
specific 

(Layer II) 

DPC 0.37 0.37 0.51 0.41 < 0.001 0.002 

Hierarchical 0.34 0.38 0.51 0.41 < 0.001 0.023 

OPTICS 0.45 0.28 0.50 0.40 0.015 < 0.001 

Volume-
level 

DPC 0.32 0.30 0.35 0.24 0.298 0.932 

Hierarchical 0.23 0.27 0.31 0.28 0.053 0.444 

OPTICS 0.33 0.41 0.32 0.26 0.540 0.973 

Table 4.5 Comparison of the absolute correlations obtained between the DMN with the 

hippocampus and the DAN with the hippocampus during the retrieval task by conducting one-

tailed two-sample t-test (𝐻!: correlation of the DMN with the hippocampus ≤ correlation of the 

DAN and the hippocampus). 

For volume level analysis, i.e. clustering of hippocampal voxels based on their FC with voxels 

in DAN/DMN volume (as opposed to layer II and layer V of the DAN/DMN as before), similar 

parcellations were discovered using different clustering methods, and the average cluster 

similarity between DPC and hierarchical clustering, between DPC and OPTICS, and between 

hierarchical clustering and OPTICS, were 0.96, 0.88, and 0.87, respectively. For illustration, the 

clustering results using DPC are shown in Figure 4.12, and the clustering results using 

hierarchical clustering and OPTICS are shown in supplementary information B.3 and B.4.  
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Figure 4.12 Clusters of hippocampal voxels determined (using the DPC method) based on their 

functional connectivity DMN/DAN volume during encoding and retrieval tasks. (Coordinates are 

in MNI space) 

As shown in Figure 4.12, an anterior-posterior gradient was obtained as well. The cluster 

similarity between functional and anatomical parcellations, and the mean correlation within 

anterior and posterior regions were also computed for volume level clustering. As shown in 

Table 4.3, the average cluster similarity for the DAN (during the encoding task) and the DMN 

(during the retrieval task) were 0.69 and 0.74, respectively, which were qualitatively less than the 

value obtained using the layer-specific data. During the encoding task, the correlation between 

DAN and the hippocampus was not significantly greater than the correlation between DMN and 

the hippocampus (p > 0.05) for all three clustering methods (Table 4.4), whereas during the 

retrieval task, the correlation between DMN and the hippocampus was not significantly greater 
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than the correlation between DAN and the hippocampus for all three methods (Table 4.5). This 

result was different from the result obtained using layer-specific data. It was also contradictory to 

our second hypothesis. The correlations between anterior and posterior hippocampal regions with 

DAN/DMN for encoding/retrieval tasks were also compared using one-tailed 2-sample t-test. 

During the encoding task, the p-values obtained for DPC, hierarchical, and OTPICS were 0.019, 

< 0.001, and 0.02, respectively, whereas during the retrieval task, the p-values obtained for these 

three methods were 1, 1, and 0.436, respectively. This result provided evidence for our third 

hypothesis for only the DAN part considering the sign of the correlation, not for the DMN part.  

4.4 Discussion 

In this work, we investigated functional differentiation of the hippocampus and the 

connectivity between the hippocampus and DAN/DMN regions during encoding/retrieval tasks. 

Given the predictions obtained from the HIPER/HERNET model and known anatomical 

pathways between these networks and the hippocampus, we tested four hypotheses as described 

in Introduction section. In order to do so, we investigated the connectivity between the 

hippocampus and layer V of the DAN during the encoding task, and between the hippocampus 

and layer II of the DMN during the retrieval task. The proposed first, second and fourth 

hypotheses were confirmed, whereas the third hypothesis was partially confirmed for DMN part 

(considering sign of the correlation), not for DAN part. The discussion of results is organized as 

follows. First, we discuss the results obtained by the validation of the anterior-posterior 

differentiation of the hippocampus using the FC between 1) hippocampal voxels and layer V of 

the DAN during the encoding task, and 2) hippocampal voxels and layer II of the DMN during 

the retrieval task. Second, we discuss the connectivity between the hippocampus and the 

DAN/DMN during encoding/retrieval tasks. Third, we discuss the layer-specific functional 
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microcircuits between the layer V of the DAN and the hippocampus during the encoding task, 

and between the layer II of the DMN and the hippocampus during the retrieval task. Forth, we 

discuss the importance of ultra-high field functional neuroimaging in developing accurate and 

robust models of functional connectivity. Finally, we discuss the functional differentiation of the 

hippocampus along the long-axis.  

4.4.1 Anterior-Posterior Functional Differentiation of the Hippocampus 

The idea that the anterior and posterior parts of the hippocampus may serve different functions 

emerged half a century ago [372] [373]. More recently, Robinson et al. [370] conducted meta-

analyses and found an anterior-posterior long-axis segmentation on both the left and right 

hippocampi. Duarte et al. [396] studied functional specialization of the hippocampus using fMRI 

and a virtual reality 3D paradigm. They found a functional dichotomy whereby the 

anterior/posterior hippocampus shows antagonistic processing patterns for spatial encoding and 

retrieval of 3D spatial information. Prince et al. [397] also provided evidence for an anterior-

posterior parcellation that corresponded to encoding/retrieval processes.  

In this study, the functional specialization of the hippocampus has been investigated by using 

unsupervised clustering of functional connectivity between the hippocampus and layer II/V of 

the DAN/DMN during encoding/retrieval processes, respectively. Our results yielded a 

consistent anterior-posterior long-axis parcellation, which showed high cluster similarity across 

clustering methods based on completely different principles. This result indicates that during the 

encoding/retrieval processes, there is a robust anterior-posterior functional differentiation along 

the long-axis of the hippocampus.  
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4.4.2 Layer-specific Connectivity Between the DAN/DMN and Hippocampus  

The anatomical pathways between the hippocampus and DAN/DMN have been studied using 

invasive animal models by many researchers [398] [389] [391]. During an encoding task, deeper 

infra-granular layers (specifically, layer V) of the DAN project to the hippocampus, whereas the 

hippocampal output reaches primarily more superficial supra-granular layers (specifically, layer 

II) of the DMN. This layer-specific organization has been studied by many anatomical studies. 

However, it has never been directly investigated using connectivity based non-invasive methods 

in humans.  

This layer-specific pathway between the hippocampus and DAN/DMN is not exclusive since 

pathways which originate/terminate in other layers of the cortex may also contribute to the 

hippocampal input or output. This is not surprising given the highly complex underlying 

microcircuitry and given that signals between any two brain regions can relay via multiple 

structures including the thalamus. However, the pathways between the hippocampus and layers 

II and V of the DMN/DAN seem to be the dominant ones based on prior invasive animal 

literature [390] [391] and therefore we have chosen to test them in this study. 

We investigated the connectivity between the hippocampus and the DAN/DMN using FC 

between layer V of the DAN/DMN and the hippocampus during the encoding task, and between 

layer II of the DAN/DMN and the hippocampus during the retrieval task. During the encoding 

task, the correlation observed between layer V of the DAN and the hippocampus was 

significantly larger than that between layer V of the DMN and the hippocampus. Contrarily, 

during the retrieval task, the correlation obtained between layer II of the DMN and the 

hippocampus was significantly larger than that between layer II of the DAN and the 
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hippocampus. Together, these findings provide evidence that the output from layer V of the 

DAN likely drives the hippocampus during encoding, whereas during a retrieval task, the output 

from the hippocampus is likely relayed as inputs to layer II of the DMN. Given that Pearson’s 

correlation is a directionless quantity, our inference of directionality is indirect at best, based on 

known directionality of the underlying anatomical projections. It is also noteworthy that we have 

downplayed the sign of the correlation and have made inferences primarily based on its 

magnitude considering the fact that Hippocampus ↔ DAN/DMN microcircuits are complex and 

we do not have sufficient spatial resolution or sensitivity to take phase delays into account which 

can likely lead to strong negative correlations wherein signals are strongly related, and yet out of 

phase. 

4.4.3 Layer-specific Functional Pathway Between the DAN/DMN and Hippocampus 

Considering the directionality of signal projection during encoding/retrieval processes and the 

HERNET model, the information flow between different layers of the DAN/DMN and different 

regions of the hippocampus should follow the pattern: layer V of the DAN → anterior 

hippocampus → posterior hippocampus → layer II of the DMN. Thus, we hypothesized that 

during an encoding task, layer V of the DAN mush show stronger correlation with anterior 

hippocampal regions than with posterior hippocampal regions, whereas during retrieval task, 

layer II of the DMN must exhibit stronger correlation with posterior hippocampal regions than 

with anterior hippocampal regions. Our results provide partial support for this hypothesis, i.e., 

only the DMN part was confirmed during retrieval task considering the sign of the correlation 

(negative in anterior, positive in posterior), but not for DAN part during encoding task. However, 

if we only consider the magnitude of the correlation ignoring its sign, the third hypothesis was 

not true for both the DAN and DMN part. The linear association between signals is important 
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and we cannot over-emphasize the sign of the correlation between signals given that two signals 

may have a strong linear relationship and yet may exhibit negative correlation due to phase 

differences.  

4.4.4 High-resolution Functional Imaging 

Recent advances in ultra-high field fMRI have provided a non-invasive way of investigating 

cortical columns. This technique provides several advantages over conventional field strengths, 

e.g., improved spatial resolution, increased signal to noise ratio, etc. More importantly, this 

technique makes it feasible to examine layer-specific brain activation across different brain 

areas. Several recent studies have showed that investigating changes in fMRI activation as a 

function of laminar depth can lead to more precise results [342] [343]. In this study, we 

investigated functional differentiation of the hippocampus along the long-axis using 

unsupervised clustering of layer-specific functional connectivity between the hippocampus and 

the DAN/DMN regions. The same clustering process was also applied on the functional 

connectivity between the hippocampus and the DAN/DMN volume. As we expected, the layer-

specific data led to more definitive results, i.e., the proposed first, second and forth hypotheses 

were confirmed, whereas the third hypothesis was partially confirmed for DMN part 

(considering sign of the correlation), not for DAN part. However, using volume-level data, only 

the first hypothesis was confirmed and the third hypothesis (only for DAN part with sign of the 

correlation being considered) was partially confirmed. Therefore, it is important to note the 

relevance of high-resolution functional neuroimaging as the field progresses toward developing 

more accurate and robust network models of brain function in general and hippocampal function 

in specific.  
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4.4.5 Long-axis Differentiation of the Hippocampus 

Recent evidence has suggested that there is an anterior-posterior functional differentiation of 

the hippocampus along the long-axis. In Lepage’s HIPER model [374] and more recently Kim’s 

HERNET mode [378], the anterior and posterior hippocampus are posited to be more associated 

with encoding and retrieval process, respectively. This encoding/retrieval dichotomy faced 

conflicting evidence from some meta-analyses and studies. Schacter’s [382] reviewed data from 

diverse fMRI studies and observed that both the anterior and posterior hippocampal regions were 

associated with the encoding activation. Kumaran [383], Peppen [384], and Zweynert [385] 

found that most encoding studies used novel stimuli, which were associated with the anterior 

hippocampus. On the other hand, Poppenk [386] [387] observed that familiar stimuli were 

associated with the posterior hippocampus and superior source memory. Together, these studies 

suggest that the encoding/retrieval differentiation cannot rely on findings that link the 

anterior/posterior hippocampus to novel/familiar stimuli.  

Although the encoding/retrieval dichotomy is predominant in humans, many alternative 

specializations have also been proposed. A motivational processing model has been proposed 

with the anterior hippocampus is mainly engaged in “hot” processing (emotion/motivation), 

whereas the posterior hippocampus is mainly associated with “cold” processing (cognition) 

[388]. Robinson et al also found support for this hypothesis based on hippocampal parcellations 

obtained from meta-analyses, resting state fMRI connectivity and diffusion tensor imaging [370] 

[371]. However, Wolosin [399] found that the posterior hippocampus also contributed to 

negative emotional memory. Some other studies have proposed that the posterior hippocampus is 

especially important for spatial processing, whereas the anterior hippocampus may be important 



 175 

for episodic memory or other functions [400] [401]. This model was undercut by evidence that 

the anterior hippocampus also plays a spatial role [402].  

In this study, our results provided partial support for HIPER/HERNET model. The strength of 

evidence in favor of the HERNET model was superior with layer-specific data compared to 

conventional volume data. A consistent anterior to posterior long-axis segmentation was found 

during encoding/retrieval tasks. We also found that during an encoding task, the hippocampus 

was more correlated with the layer V of the DAN, whereas during a retrieval task, the 

hippocampus was more associated with layer II of the DMN. However, we did not find support 

for stronger correlation of layer V of the DAN and the anterior portions during the encoding task. 

Our results also did not support the prediction of stronger correlation of layer II of the DMN and 

the posterior hippocampal segments during the retrieval task (ignoring the sign of the 

correlation). Together, these results suggest that the underlying neurophysiology of the 

hippocampus and its interaction with the neocortex under various neurocognitive contexts is far 

more complex than relatively simplistic models currently available. Our study demonstrates that 

it will take better quality data in terms of spatial-temporal resolution in order to build better 

models of hippocampal function and specialization.  

4.5 Limitation and Future Works 

Present study has a few limitations that may be addressed in future research. First, in this study 

the cortical layers were delineated using equidistant model [366], i.e., the cortical layers were 

reconstructed at a relatively fixed distance to the cortical interface, assuming the thickness of 

cortical layers maintains the same between different layers. An alternative way is to solve the 

Laplace equation within the interfaces of the cortex and generate cortical profiles along the 
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gradient of the solution. This model was so called “Laplace model”, which was proposed by 

Jones et al. [367]. Recently, Waehnert et al. [368] proposed a novel equivolume model, which 

was claimed to have better performance than equidistant model and Laplace model. Future work 

should evaluate the performance of this equivolume model. If found to be superior, the results 

presented in this work need to be replicated with more accurate reconstructions of cortical layers. 

Second, our results consistently showed an anterior-posterior gradient in the left hippocampus 

by using the functional connectivity between the hippocampus and layer II/V of DAN/DMN 

ROIs during encoding/retrieval processes, respectively. This pattern was consistent with 

encoding/retrieval dichotomy that was proposed by HIPER/HERNET model. However, this 

pattern faced conflicting evidence from other studies [382]. In addition, many alternative 

specializations have also been proposed, explaining the anterior-posterior segmentation in 

different perspectives, e.g., motivational processing model [388], etc. Given the complexity of 

underlying neurophysiology of the hippocampus and its interaction with neocortex under various 

neurocognitive contexts, it might be beneficial to find a way to reconcile different hippocampal 

models.  

Third, in this study all hypotheses were validated only on the left hippocampus. Our task 

involved factual memories of objects, pictures of scenes, and words, which likely preferentially 

recruits the left hippocampus [346] [347]. However, it is necessary to replicate the same process 

on the right hippocampus to obtain more comprehensive and complete results. This should be 

done in future work. 
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4.6 Conclusion 

As one of the most important components in the brain of different species, the hippocampus 

plays crucial role in episodic memory and spatial navigation. Recent neuroimaging evidences 

have suggested that there may be an anterior-posterior functional specialization of the 

hippocampus along the long-axis. Moreover, Lepage’s HIPER model and Kim’s HERNET 

model indicated that the anterior and posterior hippocampal regions were associated with 

memory encoding and retrieval, respectively. This model received supports from many meta-

analyses studies, but it also faced conflicting evidence from the outset. 

In this study, we investigated the functional differentiation of the hippocampus using their 

functional connectivity with layer II/V of the DAN/DMN ROIs during encoding and retrieval 

processes. Given HIPER/HERNET model and anatomical layer-specific connection between the 

hippocampus and the DAN/DMN, four hypotheses were also proposed. Our results revealed a 

consistent anterior-posterior pattern, which showed high cluster similarity with an anatomical 

anterior-posterior segmentation. Meanwhile, the results demonstrated that during an encoding 

task, the hippocampus was more correlated with the layer V of the DAN, whereas during a 

retrieval task, the hippocampus was more associated with layer II of the DMN. However, we did 

not find support for stronger correlation of layer V of the DAN and the anterior portions during 

the encoding task, neither with stronger correlation of layer II of the DMN and the posterior 

portions during the retrieval task (ignoring the sign of the correlation).  

The same clustering process was also applied on volume-level data in comparison with layer-

specific data. As we expected, the results provided by layer-specific data were more definitive, 
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which suggested that it is necessary to use a better quality data, in terms of spatial-temporal 

resolution, to build more precise and robust models of hippocampal function. 
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Chapter 5  

Conclusion and Future Work 

5.1 Conclusion 

Unsupervised clustering is one of the most popular techniques for fMRI analysis. The 

commonly used k-means clustering and semi-supervised clustering methods require the number 

of clusters to be predefined, which is difficult to be determined in the majority of real data. Thus, 

in this dissertation, three unsupervised clustering methods were specifically chosen, which did 

not require a priori specification of the number of clusters. We investigated the feasibility of 

these three methods in three different fMRI studies.  

Study 1: many brain-based disorders are conventionally diagnosed based on clinical interviews 

and behavioral assessments, which are recognized largely imperfect. Therefore it is necessary to 

establish neuroimaging-based biomarkers to improve diagnostic precision and accuracy. Rs-

fMRI have been used as a promising technique for characterization and classification of different 

disorders. However, most of existing methods are besieged with several methodological issues 

such as a priori choice of clusters needed in k-means, a stop criterion needed in hierarchical 

clustering, etc. To address these issues, a general pipeline was derived to identify different brain 

based disorders using selected unsupervised clustering methods along with two supplementary 

analyses, i.e., site-specific analysis and outlier subject elimination, to improve the clustering 

accuracy. The effectiveness of proposed pipeline was verified on five different disorders: 

ADHD, AD, ASD, PTSD, and PCS. For ADHD and AD, highest similarity was achieved 

between connectivity and phenotypic clusters, whereas for ASD and PTSD/PCS, highest 
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similarity was achieved between connectivity and clinical diagnostic clusters. The result suggests 

that neurobiological and phenotypic biomarkers could potentially be used as an aid by the 

clinician, in additional to currently available subjective markers, to improve diagnostic precision.  

Study 2: the connection between the hippocampus and EC has been investigated by previous 

studies. There is anatomical and electrophysiological evidence that during an encoding task, 

superficial layers of EC appear to be connected to different subfields of the hippocampus through 

anatomically characterized circuits, which is referred to as perforant pathway. In this study, we 

investigated the functional perforant pathway using the connectivity between layer II of EC with 

different subfields of the hippocampus during an encoding task. The hippocampus was 

parcellated into proximal and distal regions along perforant pathway. This parcellation was based 

on our observation of stronger connectivity between layer II of EC with hippocampal subfields 

such as DG/CA4/CA3/CA2 which are proximal to the EC along the perforant pathway, 

compared to subfields such as CA1/Subiculum which are distal. In addition we found evidence 

for hemisphere specialization with the left hippocampus is associated with more verbal memory 

task. The result also suggests that examining functional connectivity as a function of laminar 

depth can lead to more precise and robust result. 

Study 3: recent neuroimaging evidences have suggested that there may be an anterior-posterior 

functional specialization of the hippocampus along the long-axis. Moreover, Kim’s HERNET 

model indicates the anterior hippocampus is more connected to the DAN during memory 

encoding, and the posterior portions are more connected to the DMN) during retrieval. In this 

study, the functional specialization of the hippocampus was investigated using their connectivity 

with layer II/V of the DAN/DMN ROIs during encoding/retrieval processes. Our results support 
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some predictions of the HERNET model including anterior-posterior gradient along the long-

axis of the hippocampus. While preferential relationships between the entire hippocampus and 

DAN/DMN during encoding/retrieval, respectively, were observed as predicted, anterior-

posterior specificity in these network relationships could not be confirmed. The strength and 

clarity of evidence for/against the HERNET model were superior with layer-specific data 

compared to conventional volume data.  

5.2 Future Work 

The works in this dissertation have a few limitations. This chapter discusses possible solutions 

to address them as an extension of this research in the future. 

In Chapter 3 and Chapter 4, different cortical layers were delineated using equidistant model 

[366], i.e., the cortical layers were reconstructed at a relatively fixed distance to the cortical 

interface, assuming that the thickness maintains the same between different cortical layers. An 

alternative way is to solve Laplace equation within the interfaces of the cortex and generate 

cortical profiles along the gradient of the solution. This model is referred to as “Laplace model” 

[367]. Previous study indicates that both these two models may fail to precisely follow 

anatomical layers all along the cortex [368]. To solve this issue, a novel equivolume model has 

been proposed [368], which showed potentials of better performance than previous equidistant 

model and Laplace model. Future work should evaluate the accuracy of this novel model. If it is 

found to be superior, the results presented in Chapter 3 and Chapter 4 need to be replicated with 

more accurate layer reconstruction model. 

In chapter 3, the major pathway, i.e. perforant pathway, between the hippocampus and EC 

during the encoding process was investigated. Previous studies have shown that there are some 
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other pathways, e.g., indirect pathway, between different layers of EC and subfields of the 

hippocampus during encoding and retrieval processes [330] [331]. This study demonstrates the 

possibility to investigate layer-specific microcircuits in both healthy and clinical human 

populations, using non-invasive ultra-high fields fMRI. Thus, further fine-grained investigation 

can be applied in the future research. 

In chapter 4, we produced partial results to support HERNET model. A consistent anterior-

posterior gradient has been found in the left hippocampus by applying clustering FC between 

hippocampus and layer II/V of DAN/DMN during encoding/retrieval processes. In addition, it 

has been demonstrated that the hippocampus is primarily associated with layer V of the DAN 

during the encoding, whereas the hippocampus is mainly related to layer II of the DMN during 

the retrieval. However, we did not find evidence to support the proposed third hypothesis. 

Together, these results suggest that the underling neurophysiology of the hippocampus and its 

interaction with DAN/DMN is far more complex than existing simplistic models. Therefore, it 

might be beneficial to find a way to reconcile different hippocampal specializations. Moreover, 

all proposed hypotheses were validated only on the left hippocampus. Our encoding task 

involved factual memories of objects, pictures of scenes, and works, which likely preferentially 

recruits the left hippocampus [346] [347]. However, it is necessary to replicate the same 

procedure on the right hippocampus to generate more comprehensive and complete results. 

These can be part of the future work.  
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Appendix A  

 

Figure A.1 Clusters of hippocampal voxels determined (using the hierarchical clustering method) 

based on their functional connectivity with layer II of the entorhinal cortex during the encoding 

task. (Coordinates are in MNI space) 
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Figure A.2 Clusters of hippocampal voxels determined (using the OPTICS method) based on 

their functional connectivity with layer II of the entorhinal cortex during the encoding task. 

(Coordinates are in MNI space) 
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Figure A.3 Clusters of hippocampal voxels determined (using the hierarchical clustering method) 

based on their functional connectivity with voxels in the entorhinal cortex volume during the 

encoding task. (Coordinates are in MNI space) 
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Figure A.4 Clusters of hippocampal voxels determined (using the hierarchical clustering method) 

based on their functional connectivity with voxels in the entorhinal cortex volume during the 

encoding task. (Coordinates are in MNI space). 
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Appendix B  

 

Figure B.1 Clusters of hippocampal voxels determined (using the hierarchical method) based on 

their functional connectivity with 1) layer V of the DMN/DAN during the encoding task, and 2) 

layer II of the DMN/DAN during the retrieval task. (Coordinates are in MNI space) 
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Figure B.2 Clusters of hippocampal voxels determined (using the OPTICS method) based on 

their functional connectivity with 1) layer V of the DMN/DAN during the encoding task, and 2) 

layer II of the DMN/DAN during the retrieval task. (Coordinates are in MNI space) 
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Figure B.3 Clusters of hippocampal voxels determined (using the DPC method) based on their 

functional connectivity DMN/DAN volume during encoding and retrieval tasks. (Coordinates are 

in MNI space) 
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Figure B.4 Clusters of hippocampal voxels determined (using the OPTICS method) based on 

their functional connectivity DMN/DAN volume during encoding and retrieval tasks. 

(Coordinates are in MNI space) 
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