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Abstract

People spend a significant amount of time in indoor spaces (e.g., office buildings, sub-

way systems, etc.) in their daily lives. Therefore, it is important to develop efficient indoor

spatial query algorithms for supporting various location-based applications. However, indoor

spaces differ from outdoor spaces because users have to follow the indoor floor plan for their

movements. In addition, positioning in indoor environments is mainly based on sensing de-

vices (e.g., RFID readers) rather than GPS devices. Consequently, we cannot apply existing

spatial query evaluation techniques devised for outdoor environments for this new challenge.

Because Bayesian filtering techniques can be employed to estimate the state of a system

that changes over time using a sequence of noisy measurements made on the system, in this

research, we propose the Bayesian filtering-based location inference methods as the basis for

evaluating indoor spatial queries with noisy RFID raw data. Furthermore, two novel models,

indoor walking graph model and anchor point indexing model, are created for tracking object

locations in indoor environments. Based on the inference method and tracking models, we

develop innovative indoor range and k nearest neighbor (kNN) query algorithms. We validate

our solution through extensive simulations with real-world parameters. Our experimental

results show that the proposed algorithms can evaluate indoor spatial queries effectively and

efficiently.
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Part I

Introduction
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Today most people spend a significant portion of their time in indoor spaces such as

subway systems, office buildings, shopping malls, convention centers, etc. In addition, indoor

spaces are increasingly larger and more complex. For instance, the New York City Subway

has 469 stations and 233 miles (375 km) of routes [1]. In 2014, the subway system delivered

over 1.75 billion rides, averaging approximately 5.6 million rides on weekdays [2]. Therefore,

users will have more and more demand for launching spatial queries for finding friends

or Points Of Interest (POI) in indoor places. Moreover, users are usually moving around

when issuing queries. Thus we need to properly support indoor spatial queries continuously,

e.g., reporting nearby friends in a mall when a user is shopping. However, existing spatial

query evaluation techniques for outdoor environments (based on either Euclidean distance or

network distance) [3, 4, 5, 6, 7] cannot be applied in indoor spaces because these techniques

assume that user locations can be acquired from GPS signals, which are not available in indoor

spaces. Furthermore, indoor spaces are usually modeled differently from outdoor spaces. In

indoor environment, user movements are constrained by topology such as doors, walls, and

hallways.

Radio Frequency Identification (RFID) technologies have become increasingly popular

over the last decade with applications in areas such as supply chain management [8], health

care, and transportation. In indoor environments, RFID is mainly employed to support track

and trace applications. Generally, RFID readers are deployed in critical locations where

objects carry RFID tags. When a tag enters the detection range of a reader, the reader

recognizes the presence of the tag and generates a record in the backend database. However,

the raw data collected by RFID readers is inherently unreliable [9], with false negatives as a

result of RF interference, limited detection range, tag orientation, and other environmental

phenomena [10]. In addition, readers cannot cover all areas of interest because of their

high cost or privacy concerns. Therefore, with RFID raw data, we cannot provide reliable

support for commonly used spatial query types, e.g., range and kNN in indoor environments.

Several other types of wireless communication technologies such as WiFi and Bluetooth have
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been employed for indoor positioning [11, 12]. However, each aforementioned technology has

considerable positioning uncertainty. Furthermore, WiFi and Bluetooth are mainly utilized

for locating individual users rather than supporting a centralized indoor location tracking

system. It is too expensive to attach WiFi or Bluetooth transmitters ($5 per device) to

monitored objects. Therefore, we focus on RFID in this research.

In this paper, we consider the setting of an indoor environment where a number of RFID

readers are deployed in hallways. Each user is attached with an RFID tag, which can be

identified by a reader when the user enters the detection range of the reader. Given the

history of RFID raw readings from all the readers, we are in the position to design a system

that can efficiently answer indoor spatial queries. We mainly focus on four types of spatial

queries, range query, kNN query, continuous range query, and continuous kNN query.

Bayesian filtering techniques [13, 14] can be employed to estimate the state of a system

that changes over time using a sequence of noisy measurements made on the system. In

this paper we propose the Bayesian filtering-based location inference methods, the indoor

walking graph model, and the anchor point indexing model for inferring object locations

from noisy RFID raw data. On top of the location inference, indoor spatial queries can be

evaluated efficiently by our algorithms with high accuracy. The contributions of this study

are as follows:

• We design the Bayesian filtering-based location inference methods as the basis for

evaluating indoor spatial queries.

• We propose two novel models, the indoor walking graph model and the anchor point

indexing model, and an RFID-based system for tracking object locations in indoor

environments.

• Indoor spatial query evaluation algorithms for range, kNN, continuous range, and con-

tinuous kNN queries are developed based on the proposed system.
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• We demonstrate the efficiency and effectiveness of our approach by comparing the per-

formance of our system with the symbolic model-based solution [15] through extensive

simulations using real-world parameters.

The rest of this paper is organized as follows. In Section II, we survey previous work

for indoor object monitoring and spatial queries. Background knowledge of particle filters

and the Kalman filter is provided in Section III. In Section IV, we introduce our Bayesian

filter-based indoor spatial query evaluation system. The experimental validation of our design

is presented in Section V. Section VI concludes this paper with a discussion of future work.
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Part II

Related Work
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Chapter 1

Indoor Spatial Queries

Outdoor spatial queries, e.g., range and kNN queries, have been extensively studied

both for Euclidean space [3, 4] and road networks [5, 6, 7]. However, due to the inherent

difference in spatial characteristics, indoor spatial queries need different models and cannot

directly borrow mature techniques from their outdoor counterparts. Therefore, indoor spatial

queries are drawing more and more research attention from industry and academia. To answer

continuous range queries in indoor environments, [16] proposed using the positioning device

deployment graph to represent the connectivity of rooms and hallways from the perspective of

positioning devices. Basically, entities that can be accessed without having to be detected by

any positioning device are represented by one cell in the graph, and edges connecting two cells

in the graph represent the positioning device(s) which separate them. Based on the graph,

initial query results can be easily processed with the help of an indexing scheme also proposed

in [17]. Query results are returned in two forms: certain results and uncertain results. To

reduce the workload of maintaining and updating the query results, [15] further proposed the

concept of critical devices. Only from the ENTER and LEAVE observations of the critical

devices can a query’s results be affected. However, the probability model utilized in [15] is very

simple: a moving object is uniformly distributed over all the reachable locations constrained

by its maximum speed in a given indoor space. This simplified probability model is incapable

of taking advantage of the moving object’s previous moving patterns, such as direction and

speed, which would make the location prediction more reasonable and precise. In addition,

[15] also addressed the problem of kNN queries over moving objects in indoor spaces. Unlike

[18] which defines nearest neighbors by the minimal number of doors to go through, they

proposed a novel distance metric, i.e., minimum indoor walking distance, as the underlying
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metric for indoor kNN queries. Moreover, [15] provided the formal definition for Indoor

Probabilistic Threshold kNN Query (PTkNN) as finding a result set with k objects which

have a higher probability than the threshold probability T . Indoor distance-based pruning

and probability threshold-based pruning are proposed in [15] to speed up PTkNN query

processing. Similarly, [17] employs the same simplified probabilistic model, thus suffering

from deficiencies in probability evaluation.
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Chapter 2

RFID-Based Track and Trace

RFID is a very popular electronic tagging technology that allows objects to be automat-

ically identified at a distance using an electromagnetic challenge-and-response exchange of

data [19]. An RFID-based system consists of a large number of low-cost tags that are attached

to objects, and readers which can identify tags through RF communications without a direct

line-of-sight. RFID technologies enable exceptional visibility to support numerous track and

trace applications in different fields [20]. However, the raw data collected by RFID readers

is inherently noisy and inconsistent [21, 9]. Therefore, middle-ware systems are required to

correct readings and provide cleansed data [22]. In addition to the unreliable nature of RFID

data streams, another limitation is that due to the high cost of RFID readers, RFID readers

are mostly deployed such that they have disjoint activation ranges in the settings of indoor

tracking.

To overcome the above limitations, RFID data cleansing is a necessary step to produce

consistent data to be utilized by high-level applications. [23] proposed a probabilistic distance-

aware graph model to handle false negative in RFID readings. The main limitation is that

their generative model relies on the long tracking history to detect and possibly correct RFID

readings. [24] used a sampling-based method called particle filtering to infer clean and precise

event streams from noisy raw data produced by mobile RFID readers. Three enhancements

are proposed in their work to make traditional particle filter techniques scalable. However,

their work is mainly designed for warehouse settings where objects remain static on shelves,

which is quite different from our setting where objects move around in a building. Therefore,

their approach of adapting and applying particle filters cannot be directly applied to our

settings. Another limitation is that they did not explore further utilization of the output
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event streams for high-level applications. [25] employed a different sampling method called

Markov Chain Monte Carlo (MCMC) to infer objects’ locations on shelves in warehouses.

Their method takes advantage of the spatial and temporal redundancy of raw RFID readings,

and also considers environmental constraints such as the capacity of shelves, to make the

sampling process more precise. Their work also focuses on warehouse settings; thus it is not

suitable for our problem of general indoor settings. [26, 27, 28] target settings such as office

buildings, which are similar to our problem. They use particle filters in their preprocessing

module to generate probabilistic streams, on which complex event queries such as "Is Joe

meeting with Mary in Room 203?" can be processed. However, their goal is to answer event

queries instead of spatial queries, which is different from the goal of this research. [29] also

proposed using particle filters for indoor tracing with RFID. however, they assumed a grid

layout of RFID readers instead of only along the hallways. Thus their algorithms cannot be

applied to our problem.
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Part III

Preliminary
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In this section, we briefly introduce the mathematical background of Bayesian filters,

including Kalman filter and particle filter, and location inference based on the two filters.

Notations used in this paper are summarized in Table 2.1.

Table 2.1: Symbolic Notations

Symbol Meaning
q An indoor query point
oi The object with ID i
C A set of candidate objects
D A set of sensing devices
G The indoor walking graph
E The edge set of G
N The node (i.e., intersection) set of G
pi A probability distribution function for oi in terms of all possible locations
api An anchor point with ID i
Ns The total number of particles for an object
umax The maximum walking speed of a person
lmax The maximum walking distance of a person during a certain period of time
UR(oi) The uncertain region of object oi
si The minimum shortest network distance
li The maximum shortest network distance
Areai The size of a given region i
di The ith RFID reader

11



Chapter 3

The Kalman Filter

Kalman filter is an optimal recursive data processing algorithm, which combines a sys-

tem’s dynamics model, known control inputs, and observed measurements to form an optimal

estimate of system states. Note here the control inputs and observed measurements are

not deterministic, but rather with a certain degree of uncertainty. The Kalman filter works

by making a prediction of the future system state, obtaining measurements for that future

state, and adjusting its estimate by moderating the difference between the two. The result

of the Kalman filter is a new probability distribution of system state which has reduced its

uncertainty to be less than either the original predicted values or measurements alone.

To help readers better understand how the Kalman filter works for location estimation, we

use a simple example of one dimensional movement and location estimation. Suppose an object

is moving along a horizontal line, and we are interested in estimating the object’s location

x with the Kalman filter. We assume the object’s speed can be expressed by dx/dt = u+ w,

where u is a constant and w is a Gaussian random variable with a mean of zero and variance

of σ2
w. We also assume the object’s initial location at t0 follows a Gaussian distribution with

mean x̂0 and variance σ2
0. At a later time t1− , just before an observation is made, we get a

prediction of the object’s location x1− which follows a Gaussian distribution:

x̂1− = x̂0 + u ∗ (t1 − t0) (3.1)

σ2
1− = σ2

0 + σ2
w ∗ (t1 − t0) (3.2)

12



As indicated by Equation (3.2), the uncertainty in the predicted location x1 increases

with the time span t1 − t0, since no measurements are made during the time span and the

uncertainty in speed accumulates with time.

After the observation at t1 is made, suppose its value turns out to be z1 with variance

σ2
z1
. The Kalman filter combines the predicted value with the measured value to yield an

optimal estimation with mean and variance:

x̂1 = x̂1− +K1 ∗ (z1 − x̂1−) (3.3)

σ2
1 = σ2

1− −K1 ∗ σ2
1− (3.4)

where K1 = σ2
1−/(σ

2
1− + σ2

z1
). Please refer to [14] for the derivation details.

As we can see from Equation (3.3), the optimal estimate x̂1 is the optimal predicted

value before the measurement plus a correction term. The variance σ2
1 is smaller than either

σ2
1− or σ2

z1
. The optimal gain K1 gives more weights to the better value (with lower variance),

so that if the prediction is more accurate than the measurement then x̂1− is weighted more,

otherwise z1 is weighed more.

13



Chapter 4

The Particle Filter

Particle filter is a method that can be applied to nonlinear recursive Bayesian filtering

problems [13]. The system under investigation is often modeled as a state vector xk, which

contains all relevant information about the system at time k. The observation zk at time k is

nonlinear to the true system state xk, also the system evolves from xk to xk+1 in a nonlinear

fashion.

The objective of the particle filter method is to construct a discrete approximation

to the probability density function (pdf) p(xk|z1:k) by a set of weighted random samples.

We denote the weight of the ith particle at time k by wi
k. According to the equations of

particle filter [13], the new weight wi
k is proportional to the old weight wi

k−1 augmented by

the observation likelihood p(zk|xik). Thus, the particles that are more likely to result in an

observation consistent with the true observation zk will gain higher weights than the others.

The posterior filtered density p(xk|z1:k) can be approximated as:

p(xk|z1:k) ≈
Ns∑
i=1

wi
kδ(xk − xik) (4.1)

Resampling is a method to solve the degeneration problem in particle filters. Degenera-

tion means that with more iterations only a few particles would have dominant weights while

the majority would have weights nearly zero. The basic idea of resampling is to eliminate low

weight particles, replicate high weight particles, and generate a new set of particles {xi∗k }
Ns
i=1

with equal weights. Our work adopts sampling importance resampling filters, which performs

the resampling step at every time index.
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In our application, particles update their locations according to the object motion model

employed in our work. Briefly, the object motion model assumes objects move forward with

constant speeds, and can either enter rooms or continue to move along hallways. Weights of

particles are updated according to the device sensing model [30] used in this research. An

example of applying particle filters to the problem of RFID-based indoor location inferences

can be found in [31].
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Part IV

System Design

16



In this section, we will introduce the design of an RFID-based indoor range and kNN

query evaluation system, which incorporates four modules: event-driven raw data collector,

query aware optimization module, Bayesian filtering-based preprocessing module, and query

evaluation module. In addition, we introduce the underlying framework of two models: indoor

walking graph model and anchor point indexing model. We will elaborate the function of each

module and model in the following subsections.

Event-Driven
Data Collector

Query Aware
Optimization

Bayesian Filter
Preprocessing

Query
Evaluation

Figure 4.1: Overall system structure

Figure 4.1 shows the overall structure of our system design. Raw readings are first fed into

and processed by the event-driven raw data collector module, which then provides aggregated

readings for each object at every second to the Bayesian filtering-based preprocessing module.

Before running the preprocessing module, the reading data may be optionally sent to the query

aware optimization module which filters out non-candidate objects according to registered

queries and objects’ most recent readings, and outputs a candidate set C to the Bayesian

filtering-based preprocessing module. The preprocessing module cleanses noisy raw data for

each object in C, stores the resulting probabilistic data in a hash table, and passes the hash

table to the query evaluation module. At last, the query evaluation module answers registered

queries based on the hash table that contains filtered data.

17



Chapter 5

Event-Driven Raw Data Collector

In this subsection, we describe the event-driven raw data collector which is the front end

of the entire system. The data collector module is responsible for storing RFID raw readings

in an efficient way for the following query processing tasks. Considering the characteristics of

Bayesian filtering, readings of one detecting device alone cannot effectively infer an object’s

moving direction and speed, while readings of two or more detecting devices can. We define

events in this context as the object either entering (ENTER event) or leaving (LEAVE event)

the reading range of an RFID reader. To minimize the storage space for every object, the data

collector module only stores readings during the most recent {ENTER, LEAVE, ENTER}

events, and removes earlier readings. In other words, our system only stores readings of up to

the two most recent consecutive detecting devices for every object. For example, if an object

is previously identified by di and dj, readings from di and dj are stored in the data collector.

When the object is entering the detection range of a new device dk, the data collector will

record readings from dk while removing older readings from di. The previous readings have

negligible effects on the current prediction.

The data collector module is also responsible for aggregating the raw readings to more

concise entries with a time unit of one second. RFID readers usually have a high reading rate of

tens of samples per second. However, Bayesian filtering does not need such a high observation

frequency. An update frequency of once per second would provide a good enough resolution.

Therefore, aggregation of the raw readings can further save storage without compromising

accuracy.

18



Chapter 6

Indoor Walking Graph Model and Anchor Point Indexing Model

This subsection introduces the underlying assumptions and backbone models of our

system, which forms the basis for understanding subsequent sections. We propose two novel

models in our system, indoor walking graph model and anchor point indexing model, for

tracking object locations in indoor environments.

6.1 Indoor Walking Graph Model

we assume our system setting is a typical office building where the width of hallways

can be fully covered by the detection range of sensing devices (which is usually true since the

detection range of RFID readers can be as long as 3 meters), and RFID readers are deployed

only along the hallways. In this case the hallways can simply be modeled as lines, since from

RFID reading results alone, the locations along the width of hallways cannot be inferred.

Furthermore, since no RFID readers are deployed inside rooms, the resolution of location

inferences cannot be higher than a single room.

Based on the above assumptions, we propose an indoor walking graph model. The indoor

walking graph G〈N,E〉 is abstracted from the regular walking patterns of people in an

indoor environment, and can represent any accessible path in the environment. The graph G

comprises a set N of nodes (i.e., intersections) together with a set E of edges (i.e., hallways).

By restricting object movements to be only on the edges E of G, we can greatly simplify

the object movement model while at the same time still preserving the inference accuracy of

Bayesian filtering. Also, the distance metric used in this paper, e.g., in kNN query evaluations,

can simply be the shortest spatial network distance on G, which can then be calculated by

many well-known spatial network shortest path algorithms [5, 6], as shown in Figure 6.1.
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Figure 6.1: Example of filtering out kNN query non-candidate objects.

6.2 Anchor Point Indexing Model

the indoor walking graph edges E are by nature continuous. To simplify the represen-

tation of an object’s location distribution on E, we propose an effective spatial indexing

method: anchor point-based indexing. We define anchor points as a set AP of predefined

points on E with a uniform distance (such as 1 meter) to each other. An example of anchor

points is shown in Figure 6.1. In essence, the model of anchor points is a scheme of trying to

discretize objects’ locations. After Bayesian filtering is finished for an object oi, its location

probability distribution is aggregated to discrete anchor points. Specifically, for the Kalman

filter, an integration of an object’s bell-shaped location distribution between two adjacent

anchor points is calculated. For particle filters, suppose apj is an anchor point with a nonzero

number n of particles, pi(oi.location = apj) = n/Ns, where pi is the probability distribution

function that oi is at apj and Ns is the total number of particles for oi.
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A hash table APtoObjHT is maintained in our system with the key to be the coordi-

nates of an anchor point apj and returned value the list of each object and its probabil-

ity at the anchor point 〈oi, pi(apj)〉. For instance, an entry of APtoObjHT would look like:

(8.5, 6.2), {〈o1, 0.14〉, 〈o3, 0.03〉, 〈o7, 0.37〉}, which means at the anchor point with coordinate

(8.5, 6.2), there are three possible objects o1, o3, and o7, with probabilities of 0.14, 0.03, and

0.37, respectively. With the help of the above anchor point indexing model, the query evalu-

ation module can simply refer to the hash table APtoObjHT to determine objects’ location

distributions.
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Chapter 7

Query Aware Optimization Module

To answer every range query or kNN query, a naive approach is to calculate the probability

distribution of every object’s location currently in the indoor setting. However, if query ranges

cover only a small fraction of the whole area, then there will be a considerable percentage

of objects who are guaranteed to not be in the result set of any query. We call those objects

that have no chance to be in any result set "non-candidate objects". The computational cost

of running Bayesian filters for non-candidate objects should be saved. In this subsection we

present two efficient methods to filter out non-candidate objects for range query and kNN

query, respectively.

7.1 Range Query

To decrease the computational cost, we employ a simple approach based on the Euclidian

distance instead of the minimum indoor walking distance [15] to filter out non-candidate

objects. An example of the optimization process is shown in Figure 7.1. For every object oi,

its most recent detecting device d and last reading time stamp tlast are first retrieved from

the data collector module. We assume the maximum walking speed of people to be umax.

Within the time period from tlast to the present time tcurrent, the maximum walking distance

of a person is lmax = umax ∗ (tcurrent − tlast). We define oi’s uncertain region UR(oi) to be

a circle centered at d with radius r = lmax + d.range. If UR(oi) does not overlap with any

query range then oi is not a candidate and should be filtered out. On the contrary, if UR(oi)

overlaps with one or more query ranges then we add oi to the result candidate set C. In

Figure 7.1, the only object in the figure should be filtered out since its uncertain region does

not intersect with any range query currently evaluated in the system.
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Figure 7.1: Example of filtering out range query non-candidate objects.

7.2 kNN Query

By employing the idea of distance-based pruning in [17], we perform a similar distance

pruning for kNN queries to identify candidate objects. We use si(li) to denote the minimum

(maximum) shortest network distance (with respect to the indoor walking graph) from a

given query point q to the uncertain region of oi:

si = min
p∈UR(oi)

dshortestpath(q, p)

li = max
p∈UR(oi)

dshortestpath(q, p)

(7.1)

Let f be the kth minimum of all objects’ li values. If si of object oi is greater than f ,

object oi can be safely pruned since there exist at least k objects whose entire uncertain

regions are definitely closer to q than oi’s shortest possible distance to q. Figure 6.1 is an

example pruning process for a 2NN query: There are 3 objects in total in the system. We

can see l1 < l2 < l3 and consequently f = l2 in this case; s3 is greater than f , so o3 has no

chance to be in the result set of the 2NN query. We run the distance pruning for every kNN

query and add possible candidate objects to C.

Finally, a candidate set C is produced by this module, containing objects that might be

in the result set of one or more range queries or kNN queries. C is then fed into the Bayesian

filtering-based preprocessing module which will be explained in the next subsection.
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Chapter 8

Bayesian Filtering-based Preprocessing Module

The preprocessing module estimates an object’s location distribution according to its

two most recent readings, calculates the discrete probability on anchor points, and stores the

results to the hash table APtoObjHT. We introduce two preprocessing approaches based on

two famous algorithms in the Bayesian Filtering family: the Kalman filter and the Particle

filter.

8.1 Kalman Filter-Based Preprocessing Module

In this section, we extend the basic 1-D example of the Kalman filter in Section 3 to

be suitable for more complex 2D indoor settings. Due to the irregularity of indoor layout,

the main challenge here is that an object’s moving path may diverge to multiple paths. For

example, in Figure 8.1, assume that an object was detected first by reader d1 at t1 then by

reader d2 at t2, it could have entered R2 or R6 before proceeding to d2. When we conduct

a prediction with the Kalman filter, we need to consider all possible paths, each of which

will give a separate prediction. Algorithm 1 formulates our approach of applying the Kalman

filter to estimate objects’ locations, which is elaborated in the rest of this subsection with

the example in Figure 8.1.

The Kalman filter algorithm starts by first retrieving most recent readings for each

candidate from the data collector module. Line 5 of Algorithm 1 restricts the Kalman filter

from running more than 60 seconds beyond the last active reading, otherwise its location

estimation will become dispersed over too large a area and the filtering result will become

unusable.
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Figure 8.1: Example of Kalman filter-based prediction.

We assume objects’ speed v is a Gaussian variable with mean µ = 1m/s and variance σ =

0.1, and the time of an object staying inside a room troom also follows Gaussian distribution.

From line 6 to 11, we assume that objects rarely enter the same room more than once.

Suppose there are m rooms from d1 to d2, then there are m+ 1 different predictions x̂2− =

x̂1 + v ∗ (t2 − t1 − i ∗ µtroom) where i = 0, . . . ,m represents the number of rooms the object

entered during t1 to t2. Note that we simplify x̂2− by replacing troom with its mean value

µtroom .

When the observation at t2 is made, we combine the observation with only reasonable

predictions to get a final estimation. By "reasonable", we mean predictions with a good

portion of pdf overlapping with d2’s reading range. For example, in Figure 8.1, the two

predictions for the two paths entering R2 and R6 respectively are hardly overlapping with

d2’s reading range, so we can safely prune them and only consider the rightmost prediction.

After pruning, the average of remaining predictions is used to calculate the object’s location

estimation at t2 according to Equations (3.3) and (3.4).

From the latest detected time t2 to current, the object can take every possible path

from d2 going forward. Line 15 uses recursion to enumerate all the possibilities and line 16

calculates the probability distribution of x̂min− by counting the number of cases of the object

in a particular room or at a particular location along the hallway divided by the total number

of cases. At last, from line 18 to 21, we calculate the integration of the object’s location

probability distribution function from the current anchor point to its adjacent point, and
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Algorithm 1 Kalman Filter(C)
1: for each object oi of C do
2: retrieve oi’s aggregated readings from the data collector module
3: t1, t2 = the starting/ending time of the aggregated readings
4: d1, d2 = the second most/most recent detecting devices for oi
5: tmin = min(t2 + 60, tcurrent)
6: m = number of rooms from d1 to d2
7: for i = 0, . . . ,m do
8: x̂2− = x̂1 + v ∗ (t2 − t1 − i ∗ µtroom)
9: σ22− = σ21 + σ2v ∗ (t2 − t1)

10: prune if this distribution’s overlap with d2’s range is below threshold
11: end for
12: average all the predictions
13: calculate x̂2 and σ22 by employing Equations 3.3 and 3.4
14: recursively enumerate all possible paths from x̂2 going forward until tmin

15: estimate oi’s location x̂min− by counting
16: σ2min− = σ22 + σ2v ∗ (tmin − t2)
17: for each anchor point apj with a nontrivial probability under estimated location distribution

do
18: calculate probability pi(oi.location = apj)
19: update Hash Table APtoObjHT
20: end for
21: end for

store the discrete probability of the object’s location being on a certain anchor point to

APtoObjHT.

8.2 Particle Filter-Based Preprocessing Module

The particle filter method consists of 3 steps: initialization, particle updating, and particle

resampling. In the first step, a set of particles are generated and uniformly distributed on the

graph edges within the detection range of d2, and each particle picks its own moving direction

and speed as in line 5. In our system, particles’ speeds are drawn from a Gaussian distribution

with mean µ = 1 m/s and σ = 0.1. In the location updating step in line 9, particles move

along graph edges according to their speed and direction, and will pick a random direction

at intersections; if particles are inside rooms, they continue to stay inside with probability

0.9 and move out with probability 0.1. After location updating, in line 16 particles’ weights

are updated according to their consistency with reading results. In other words, particles
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Algorithm 2 Particle Filter(C)
1. for each object oi of C do
2. retrieve oi’s aggregated readings from the data collector module
3. t1, t2 = the starting/ending time of the aggregated readings
4. d1, d2 = the second most/most recent detecting devices for oi
5. initialize particles with random speed and direction within d2.activationRange
6. tmin = min(t2 + 60, tcurrent)
7. for every second tj from t1 to tmin do
8. for every particle pm of oi do
9. pm updates its location
10. end for
11. retrieve the aggregated reading entry reading of tj
12. if reading.Device=null then
13. continue
14. else
15. for every particle pm of oi do
16. update pm’s weight
17. end for
18. normalize the weights of all particles of oi
19. Resampling()
20. end if
21. end for
22. assign particles of oi to their nearest anchor points
23. for each anchor point apj with a nonzero number of particles n do
24. calculate probability pi(oi.location = apj) = n/Ns

25. update Hash Table APtoObjHT
26. end for
27. end for

within the detecting device’s range are assigned a high weight, while others are assigned a

low weight. In the resampling step, particles’ weights are first normalized as in line 18. We

then employ the Resampling Algorithm [31] to replicate highly weighted particles and remove

lowly weighted particles as in line 19. Lines 23 to 26 discretize the filtered probabilistic data

and build the hash table APtoObjHT as described in Section 6.
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Chapter 9

Query Evaluation

In this subsection we are going to discuss how to evaluate range and kNN queries

efficiently with the filtered probabilistic data in the hash table APtoObjHT. For kNN queries,

without loss of generality, the query point is approximated to the nearest edge of the indoor

walking graph for simplicity.

9.1 Indoor Range Query

To evaluate indoor range queries, the first thought would be to determine the anchor

points within the range, then answer the query by returning objects and their associated

probabilities indexed by those anchor points. However, with further consideration, we can

see that since anchor points are restricted to be only on graph edges, they are actually the

1D projection of 2D spaces; the loss of one dimension should be compensated in the query

evaluation process. Figure 9.1 shows an example of how the compensation is done with

respect to two different types of indoor entities: hallways and rooms.

In Figure 9.1, query q is a rectangle which intersects with both the hallway and room R1,

but does not directly contain any anchor point. We denote the left part of q which overlaps

with the hallway as qh, and the right part which overlaps with R1 as qr. We first look at how

to evaluate the hallway part of q. The anchor points which fall within q’s vertical range are

marked red in Figure 9.1, and should be considered for answering qh. Since in our assumptions

no differentiation along the width of hallways can be inferred about an object’s true location,

objects in hallways can be anywhere along the width of hallways with equal probability. With

this assumption, the ratio of wqh (the width of qh) and wh (the width of the hallway) will

indicate the probability of objects in hallways within the vertical range of q being in qh. For
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Figure 9.1: Example of indoor range query.

example, if an object oi is in the hallway and in the vertical range of q with probability p1,

which can be calculated by summing up the probabilities indexed by the red anchor points,

then the probability of this object being in qh is pi(oi.location ∈ qh) = p1 ∗ wqh/wh.

Then we look at the room part of q. The anchor points within room R1 should represent

the whole 2D area of R1, and again we assume objects inside rooms are uniformly distributed.

Similar to the hallway situation, the ratio of qr’s area to R1’s area is the probability of an

object in R1 happening to be in qr. For example, if oi’s probability of being in R1 is p2, then

its probability of being in qr is pi(oi.location ∈ qr) = p2 ∗ Areaqr/AreaR1 , where p2 can be

calculated by summing up the indexed probabilities of oi on all the anchor points inside R1

and Areai stands for the size of a given region i.

Algorithm 3 summarizes the above procedures. In line 15, we define the multiply op-

eration for resultSet to adjust the probabilities for all objects in it by the multiplying

constant. In line 16, we define the addition operation for resultSet to be: if an object

probability pair 〈oi, p〉 is to be added, we check whether oi already exists in resultSet. If so,

we just add p to the probability of oi in resultSet; otherwise, we insert 〈oi, p〉 to resultSet.

For instance, suppose resultSet originally contains {(o1, 0.2), (o2, 0.15)}, and result stores
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Algorithm 3 Indoor Range Query(q)
1. resultSet=∅
2. cells=getIntersect(q)
3. for every cell in cells do
4. if cell.type=HALLWAY then
5. anchorpoints=cell.getCoveredAP(q)
6. ratio=cell.getWidthRatio(q)
7. else if cell.type=ROOM then
8. anchorpoints=cell.getInsideAP()
9. ratio=cell.getAreaRatio(q)
10. end if
11. result=∅
12. for each ap in anchorpoints do
13. result=result+APtoObjHT.get(ap)
14. end for
15. result=result*ratio
16. resultSet=resultSet+result
17. end for
18. return resultSet

{(o2, 0.1), (o3, 0.05)}. resultSet is updated to be {(o1, 0.2), (o2, 0.25), (o3, 0.05)} after the

addition in line 16.

9.2 Indoor kNN Query

For indoor kNN queries, we present an efficient evaluation method with statistical accu-

racy. Unlike previous work [15, 32], which involves heavy computation and returns multiple

result sets for users to choose, our method is user friendly and returns a relatively small

number of candidate objects. Our method works as follows: starting from the query point

q, anchor points are searched in ascending order of their distance to q; the search expands

from q one achor point forward per iteration, until the sum of the probability of all objects

indexed by the searched anchor points is no less than k. The result set has the form of

〈(o1, p1), (o2, p2), . . . , (om, pm)〉 where
∑m

i=1 pi ≥ k. The number of returned objects will be at

least k. From the sense of statistics, the probability pi associated with object oi in the result

set is the probability of oi being in the kNN result set of q. The algorithm of the indoor kNN

query evaluation method in our work is shown in Algorithm 4.
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Algorithm 4 Indoor kNN Query(q, k)
1. resultSet=∅
2. ninj=find_segment(q)
3. vector V=〈(ni, q), (nj , q)〉 // elements in V have the form (node, prevNode)
4. for every entry e in V do
5. anchorpoint=find_nextAnchorPoint(e) // return the next unsearched anchor point from

e.prevNode to e.node
6. if anchorpoint=∅ then
7. remove e from V
8. for each unvisited adjacent node nx of e.node do
9. add (nx, e.node) to V
10. end for
11. continue
12. end if
13. resultSet=resultSet+APtoObjHT.get(anchorpoint)
14. probtotal=resultSet.getTotalProb()
15. if probtotal >= k then
16. break
17. end if
18. end for
19. return resultSet

In Algorithm 4, lines 1 and 2 are initial setups. Line 3 adds two entries to a vector V ,

whose elements store the edge segments expanding out from query point q. In the following for

loop, line 5 finds the next unvisited anchor point further away from q. If all anchor points are

already searched on an edge segment e, lines 6 to 12 remove e and add all adjacent unvisited

edges of e.node to V . Line 13 updates the result set by adding 〈object ID, probability〉 pairs

indexed by the current anchor point to it. In lines 14 to 17, the total probability of all objects

in the result set is checked, and if it equals or exceeds k, the algorithm ends and returns the

result set. Note that the stopping criteria of our kNN algorithm do not require emptying the

frontier edges in V .

An example kNN query is shown in Figure 9.2, which is a snapshot of the running status

of Algorithm 4. In Figure 9.2, red arrows indicate the searching directions expanding from

q, and red anchor points indicate the points that have already been searched. Note that the

edge segment from q to n3 is already removed from V and new edges n3n4, n3n5 are currently
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Figure 9.2: Example of indoor kNN query.

in V as well as n2q. The search process is to be continued until the total probability of the

result set is no less than k.

9.3 Continuous Indoor Range Query

In this subsection, we aim to solve the problem of continuous indoor range query on

filtered probabilistic data. To efficiently monitor the result set, we use a similar concept

critical device as in [17], which can save considerable computations rather than constantly

repeating the snapshot algorithm. We define critical devices for a query to be only the set of

devices whose readings will affect the query results. Our continuous monitoring algorithm is

distinct from Yang’s work [17] in two aspects: first, we leverage the Indoor Walking Graph to

simplify the identification process of critical devices; second, the probability updating process

is Bayesian filter-based, which is more accurate and very different from Yang’s approach in

nature.

To identify critical devices for a range query, we propose an approach consisting of two

steps, mapping and searching. For the mapping step, we categorize two different cases:
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Case 1 the whole query range is contained within one room or adjacent rooms, then we

project from the doors of end rooms to E along hallways. For example, q1 in Figure 9.3

is fully contained in room R1, so it is projected to a point (the red point) on E through

the door of R1.

Case 2 the query range overlaps with both rooms and hallways, then the endpoints of

mapped edge segment(s) should take whichever makes the covered segment longer

among projected points of query range ends and end rooms’ doors. q2 in Figure 9.3

is an example of this case. It is mapped to an edge segment, ab, along the hallway as

marked in red. Point a, room R1 door’s projected point, is chosen instead of c, the

query range end projected point. Similarly, point b is chosen instead of d.

For the searching step, an expansion starting from the mapped endpoint(s) is performed

along E until the activation range of an RFID reader or deadend is reached.

Figure 9.3: Mapping process to identify critical devices.

For the initial evaluation of a query, we change the optimization algorithm in Section

7 of the snapshot query to fully take advantage of critical devices. For an object to be in

the query range, it must be most recently detected by a critical device or any device that is
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bounded by the critical devices. Other than the difference in identifying the candidate object

set, other parts of the initial evaluation algorithm are the same as its snapshot counterpart.

After initial evaluation, we continuously monitor the candidate set by performing Bayesian

filters for them at every time step.

During the lifetime of a query, the candidate set may change due to candidates moving

out or non-candidates moving into the critical device bounded region. If a candidate object

is detected by a critical device, or the object’s probability of still residing in the bounded

region falls to 0, then we assume that it is moving out and should be removed from the

candidate set. On the other hand, if a non-candidate object enters the detection range of a

critical device, we assume it is moving into the bounded region and should be added to the

candidate set.

The proposed continuous indoor range query is formalized in Algorithm 5. Lines 1 to 6

initialize the critical devices and candidate set for query q. In line 4 we use a new hash table

DtoObj, which maps a device to objects whose most recent readings are from this device.

Lines 9 to 20 update the candidate set according to the readings of critical devices, and also

objects’ probabilities of presence within the bounded region. Line 21 executes Algorithms 1

or 2 to update candidate objects’ location distribution probabilities. Line 22 calculates the

result set using Algorithm 3. Note that for Algorithm 3 there is no need to recompute anchor

point set since it remains unchanged until the query is unregistered from the system.

9.4 Continuous Indoor kNN Query

Similar to continuous indoor range query, how to update the candidate set of continuous

indoor kNN query is crucial. To reduce the overhead of computing the candidate set at every

time step, we buffer a certain number of extra candidates, and only recompute the candidate

set according to the optimization approach in Section 7 when the total number of candidates

is less than k.
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Algorithm 5 Continuous Range Query(q)
1. Dcd = getCriticalDevices(q)
2. C = ∅
3. for every reader in or bounded by Dcd do
4. C = C

⋃
DtoObj(reader)

5. end for
6. Bayesian Filter(C)
7. Rinit=Indoor Range Query(q)
8. for every time step from treg to tunreg do
9. for every oi detected by any reader in Dcd do
10. if oi ∈ C then
11. C.remove(oi)
12. else
13. C.add(oi)
14. end if
15. end for
16. for every oi ∈ C do
17. if p(oi.location ∈ boundedregionofDcd) = 0 then
18. C.remove(oi)
19. end if
20. end for
21. Bayesian Filter(C)
22. R=Indoor Range Query(q)
23. end for

Recall from Section 7, by examining the minimum (si)/maximum (li) shortest network

distance from the query point q to an object’s uncertain region, the snapshot optimization

approach excludes objects with si > f . Note that the candidate set identified by this method

contains at least k objects (usually more than k). Based on this snapshot optimization

approach, we extend it to include at least k + y candidates where y is a user configurable

parameter. Obviously, y represents a tradeoff between the size of candidate set and the

recomputation frequency. We accomplish this by calculating the (k + y)-th minimum li

among all objects, and use this value as a threshold to cut off non-candidate objects.

During continuous monitoring, we need to make sure that the candidate set gets updated

accordingly when objects move away or towards q. We still use critical devices to monitor

candidates, but now the critical devices may change each time the candidate set is recomputed.

The identification process of critical devices goes like the following: after calculating the
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Algorithm 6 Continuous kNN Query(q, k, y)
1. C = getCandidateObjects(k + y)
2. Dcd = getCriticalDevices(C)
3. Bayesian Filter(C)
4. Rinit=Indoor kNN Query(q, k)
5. for every time step from treg to tunreg do
6. for every oi detected by any reader in Dcd do
7. if oi ∈ C then
8. C.remove(oi)
9. else
10. C.add(oi)
11. end if
12. end for
13. if C.count < k then
14. C = getCandidateObjects(k + y)
15. Dcd = getCriticalDevices(C)
16. end if
17. Bayesian Filter(C)
18. R=Indoor kNN Query(q, k)
19. end for

candidate set, a search is performed from q along E to cover all the uncertain regions of

candidate objects, until reaching readers (critical devices) or deadend. As we can see, critical

devices form a bounded region where at least k + y candidate objects are for sure inside it.

The proposed continuous indoor kNN query is formalized in Algorithm 6. Note that in

lines 13 to 16, when the total number of candidates falls below k, we need to recompute a

new candidate set of at least k + y objects, and identify new critical devices accordingly.
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Part V

Experiment
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In this section, we evaluate the performance of the proposed Bayesian filtering-based

indoor spatial query evaluation system using the data generated by real-world parameters and

compare the results with the symbolic model-based solution [15]. The proposed algorithms

are implemented in C++. All the experiments were conducted on an Ubuntu Linux server

equipped with an Intel Xeon 2.4GHz processor and 16GB memory. In our experiments, the

floor plan, which is of the second floor of the Haley Center on Auburn University campus,

includes 30 rooms and 4 hallways on a single floor, in which all rooms are connected to one or

more hallways by doors. A total of 19 RFID readers are deployed on hallways with uniform

distance to each other.
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Chapter 10

Simulator Implementation

Figure 10.1: The simulator structure.

The whole simulator consists of six components, including true trace generator, raw read-

ing generator, Bayesian filter module, symbolic model module, ground truth query evaluation,

and performance evaluation module. Figure 10.1 shows the relationship of different compo-

nents in the simulation system. The true trace generator module is responsible for generating

the ground truth traces of moving objects and recording the true location of each object

every second. Each object randomly selects its destination, and walks along the shortest path

on the indoor walking graph from its current location to the destination node. We simulate

the objects’ speeds using a Gaussian distribution with µ = 1 m/s and σ = 0.1. The raw

reading generator module checks whether each object is detected by a reader according to

the deployment of readers and the current location of the object. Whenever a reading occurs,

the raw reading generator will feed the reading, including detection time, tag ID, and reader

ID, to the query evaluation modules (Bayesian filter module and symbolic model module).

The ground truth query evaluation module forms a basis to evaluate the accuracy of the

results returned by the two aforementioned query evaluation modules.

The query results are evaluated by the following metrics:
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1. For range queries, we employed Kullback-Leibler (KL) divergence [33] to measure the

accuracy of query results from the two modules based on their similarity with the true

result. KL divergence is a metric commonly used to evaluate the difference between

two probability distributions. The discrete form of KL divergence of Q from P given in

Equation (10.1) measures the information loss when Q is used to approximate P . As a

result, in the following experiments, smaller KL divergence indicates better accuracy

of the results with regard to the ground truth.

DKL(P ||Q) =
∑
i

P (i) ln
P (i)

Q(i)
(10.1)

2. For kNN queries, KL divergence is no longer a suitable metric since the result sets

returned from the symbolic model module do not contain object-specific probability

information. Instead, we simply count the hit rates of the results returned by the two

modules over the ground truth result set. We only consider the maximum probability

result set generated by the symbolic model module when calculating hit rate.

In all the following experimental result figures, we use PF, KF, and SM to represent

the curves of the particle filter-based method, Kalman filter-based method, and symbolic

model-based method, respectively. The default parameters of all the experiments are listed

in Table 10.1.

Table 10.1: Default values of parameters.

Parameters Default Values
Number of particles 64
Query window size 2%

Number of moving objects 200
k 3

Activation range 2 meters
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Chapter 11

Effects of Parameters

11.1 Effects of Query Window Size

We first evaluate the effects of query window size on the accuracy of range queries. The

window size is measured by percentage with respect to the total area of the simulation space.

100 query windows are randomly generated as rectangles at each time stamp, and the results

are averaged over 100 different time stamps. As shown in Figure 11.1, their accuracy is not

significantly affected by the query window size. However, the KL divergence of the particle

filter-based method is lower than both of the Kalman filter-based and symbolic model-based

methods.
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Figure 11.1: Effects of query window size.

11.2 Effects of k

In this experiment we evaluate the accuracy of kNN query results with respect to the

value of k. We choose 100 random indoor locations as kNN query points and issue queries on
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these query points at 100 different time stamps. As k goes from 2 to 9, we can see in Figure

11.2 that the average hit rates of Kalman filter-based and symbolic model-based methods

grow slowly. As k increases, the number of objects returned by the methods increase as well,

resulting in a higher chance of hits. On the contrary, the average hit rate of the particle filter-

based method is relatively stable with respect to the value of k, and the particle filter-based

method always outperforms the other two methods in terms of the average hit rate.
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Figure 11.2: Effects of k

11.3 Effects of Number of Particles

From the mathematical analysis of particle filters in Section 4, we knew that if the number

of particles is too small, the accuracy of particle filters will degenerate due to insufficient

samples. On the opposite, keeping a large number of particles is not a good choice either since

the computation cost may become overwhelming, as the accuracy improvement is no longer

obvious when the number of particles is beyond a certain threshold. In this subsection, we

conduct extensive experiments to exploit the effects of the number of particles on query result

accuracy in order to determine an appropriate size of the particle set for the application of

indoor spatial queries.

As shown in Figure 11.3, we can see that when the number of particles is very small,

the particle filter-based method has a larger KL divergence for range queries and a smaller
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Figure 11.3: The impact of the number of particles.

average hit rate for kNN queries than the other two methods. As the number of particles

grows beyond 16, the performance of the particle filter-based method exceeds the other two.

However, the performance gain with more than 64 particles slows down as we already have

around 90% accuracy. Therefore, we conclude that in our application, the appropriate size of

the particle set is around 60, which guarantees a good accuracy while not costing too much

in computation.

11.4 Effects of Number of Moving Objects
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Figure 11.4: The impact of the number of moving objects.
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In this subsection, we evaluate the scalability of our proposed algorithms by varying the

number of moving objects from 200 to 1000. All the result data are collected by averaging

an extensive number of queries over different query locations and time stamps. Figure 11.4

shows that the KL divergence of the three methods is relatively stable, while the average hit

rate of kNN queries decreases for all the methods. The decrease of kNN hit rate is caused by

increasing density of objects. A finer resolution algorithm is required to accurately answer

kNN queries. In all, our solution demonstrates good scalability in terms of accuracy when

the number of objects increases.

11.5 Effects of Activation Range
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Figure 11.5: The impact of activation range.

In this subsection, we evaluated the effects of reader’s activation range by varying the

range from 50 cm to 250 cm. The results are reported in Figure 11.5. As the activation range

increases, the performance of all the three methods gets better because uncertain regions not

covered by any reader essentially get reduced. In addition, even when the activation range is

small (e.g., 100 cm), the particle filter-based method is still able to achieve relatively high

accuracy. Therefore, the particle filter-based method is more suitable than the other two

methods when the physical constraints limit readers’ activation ranges.
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11.6 Continuous Query Performance Evaluation

The previous subsections show the performance of snapshot queries, i.e., queries at a

specific time stamp. This subsection demonstrates our algorithms’ performance across a

duration of time. The application scenarios are described as follows:

1. For continuous range query, a user registers a query window at time t0, and unregisters

at t1. During the time interval (between t0 and t1), we keep updating the user of the

objects in the query window whenever a change is detected.

2. For continuous kNN query, a user registers a query point q on the walking graph (a

query point which is not on the walking graph can be projected to its closest edge of

the graph) at t0, and unregisters at t1. During the time interval, every time there is a

change in the k nearest neighbor query result set, we will update the user with the new

query result.

We develop two criteria to measure the performance

Change Volume It is defined as the number of changes of objects in the query range

between two consecutive time stamps, including departing and arriving objects.

Suppose at t0, the objects in the query range are {a, b, c}; at t1, the result set

changes to {a, b, d}, then the number of changes equals to 2, because one of the

objects, c, is departing and another object, d, just arrived. The rationale behind

this is that higher change volume could potentially impair query result accuracy.

Query Duration It is the interval between t0 and t1, where t0 denotes the time a user

registers a continuous query, and t1 denotes the time a user unregisters the query.

The rationale for this criteria is that the proposed algorithms can be evaluated as

stable and reliable if they can maintain a satisfactory accuracy for a long duration.

Figure 11.6 shows the performance of our proposed algorithms with different number of

changes. It is clear from the figure that our algorithms’ accuracy is not heavily influenced by
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Figure 11.6: The impact of number of changes.

the change volume, although there are some fluctuations. Furthermore, Figure 11.7 shows

the accuracy of our algorithms against the query duration. Once the system is stable, the

accuracy of our algorithms is not affected by the duration of query time.
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Figure 11.7: The impact of query duration.
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Part VI

Conclusion
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In this paper, we introduced a Bayesian filtering-based RFID data cleansing method

in order to support accurate indoor spatial queries with noisy RFID data. In addition we

proposed the indoor walking graph model and the anchor point indexing model to simplify

the Bayesian filtering process. After the cleansing, indoor range query and kNN query can be

evaluated efficiently and effectively via our algorithms. Our extensive experiment with data

generated by real-world parameters demonstrates that our solution outperforms the symbolic

model-based method by large margin in query result accuracy.

There are, however, a few limitations in our current solutions which will be addressed

in our future work. For example, current solution are evaluated on synthesized data, We

plan to conduct further analysis of our system with real data collected in the RFID lab. In

addition, we intend to extend our framework to support more spatial query types such as

spatial skyline, spatial joins, closest-pairs, etc.
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