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Abstract 

 

The purpose of this work is to assess the overall usage, evaluation, and 

understanding of damping derivatives with a focus on accuracy needs and computational 

efficiency.  With the increased usage of neutrally stable and/or complex airframes, there is 

increasing desire within the aerospace community to improve the accuracy and 

understanding of such terms in order to assess the overall flight performance of a vehicle.  

The current state of the art for damping derivative computations includes the use of semi-

empirical methods based on limited simple configuration experimental data or the use of 

time intensive computational fluid dynamic (CFD) studies. This work proposes that the 

methodologies used for the calculation of damping derivatives focus on the sensitivity of 

the system in question to the overall accuracy of the terms.   In particular for preliminary 

configuration work, more accurate but less computationally intensive approaches are 

desired.  A study of the equations of motion has been used to assess the general impacts of 

damping derivative accuracies for flight vehicles.  With the accuracy requirements and 

sensitivities in mind, new methods and usages have been proposed and developed for the 

expeditious calculation of these terms in the supersonic flight regime.  Theoretical and 

semi-empirical approaches are presented under the assumption that pitch and roll rates are 

quite small, resulting in quasi-steady aerodynamic analysis.  The use of a component 

synthesis approach to computing full configuration damping derivatives has been 

developed as a viable, accurate and expedient approach.  Slender body theory damping 

derivative methodologies have been extended into the supersonic regime to calculate the 

pitch damping derivatives with improved accuracy.  In addition, Evvard’s theory has been 

developed as a compelling approach for determining lifting surface damping derivatives in 

supersonic flight with sufficient fidelity, flexibility, and expediency for use in conceptual, 

preliminary and in some cases final design applications for missile systems.   Traditional 

prediction methodologies, such as semi-empirical codes, CFD, and experimental methods 
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are discussed as comparisons to the new approaches developed in this work.  Focus is given 

to supersonic, low angle of attack configurations with explanations and limitations to the 

various approaches.  The result of this work is a novel, efficient preliminary design 

approach for accurately estimating damping derivatives on a variety of configurations.   

The work increases the methods available to aerospace community for the calculation of 

damping derivatives while illustrating the appropriateness of the various tools for the 

accuracy required.    
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1 Introduction 

During the first six decades of the 20th century, the calculation of aerodynamic loads 

was nearly entirely an analytic endeavor with effective methods developed for the 

estimation of loads for air vehicle design applications.  In about 1960, the digital computer 

began to gradually permeate the aerospace design activity and numerical methods 

increased in usage and entirely numeric techniques such as direct numerical solutions to 

flow equations were developed and matured to an advanced state.  A range of methods 

have been developed to determine the aerodynamic characteristics of a variety of body 

shapes, fin designs, and body and fin configurations.  These efforts have resulted in 

development of numerous codes for rapid and accurate prediction of configuration 

aerodynamics.  However, the majority of this effort has focused on the static aerodynamics 

of a configuration, i.e. the forces and moments acting on a vehicle at a fixed orientation in 

steady flow.  This analysis has become the basis of most theoretical, empirical, 

experimental and computational approaches to aerodynamics.  However, this type of 

analysis does not fully encompass the flight behavior of a moving vehicle.   

In free flight, a vehicle is subjected to six degrees of freedom.  These are translation 

and rotation about the x, y, and z axes.  Although the aerodynamics may be considered 

static over all portions of the flight, the ability to maneuver indicates that dynamic behavior 

must also be analyzed. Specifically for flight simulations, the dynamic behavior of a system 

must be considered.  Flight simulations are increasingly used to assess the performance of 

a flight vehicle as a whole and allowing for issues to be resolved before costly flight testing.  

As flight vehicles and control systems become more complex, non-linear models are 

required for simulations.  This necessitates an understanding of the vehicles response to 

various disturbances (missile simulation).  To fully understand the aerodynamics of a flight 

vehicle such as a missile or airplane, the dynamic properties of the vehicle must also be 

understood.  Such understanding requires knowledge of the vehicles’ response to rotational 
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motion; also known as the damping of the system.  In other words, once disturbed from its 

initial flight path, does the vehicle return to steady state flight?  If so, how quickly does 

that occur? 

In basic terms, static stability is the predisposition of a system to return to or deviate 

from its equilibrium position after a disturbance.  How the system returns to (or deviates 

from) that point is not considered. Dynamic stability, on the other hand, is concerned with 

the entire history of the motion, in particular the rate at which the motion damps out1.  Static 

stability is a requirement for dynamic stability, i.e. a statically unstable airframe cannot be 

dynamically stable.  However, a statically stable aircraft may be dynamically unstable.  In 

other words, certain motions may be amplified rather than damped2.  Knowledge of 

dynamic stability is required in the pitch, roll, and yaw planes; however, motions in two of 

the planes can uncoupled from each other.  Pitching motions do not typically induce rolling 

or yawing motions while rolling and yawing motions do not induce pitching motions.  

While this is technically possible given certain mass, inertia, and aerodynamic 

characteristics, this assumption allows methods to be developed and tested independently. 

Additionally, it allows the aerodynamicist to easily determine which terms are of most 

importance to a given configuration.   

 Damping derivatives or dynamic stability have often been considered a second 

order effect.  As a result, there was little reason to accurately calculate these terms in most 

missile simulations.  However, with the increase in highly maneuverable airframes and low 

inertia systems, dynamic stability calculations is rapidly becoming an area of interest 

within the aerospace community.  One of the inherent issues with the prediction of damping 

derivatives results from the fact that it is an unsteady effect.  The majority of aerodynamic 

prediction codes available to the engineer either do not have the capability to model 

unsteady aerodynamics while computational methods are time intensive in their 

calculations.  However, research has shown that some steady state theoretical methods may 

be expanded to include the calculation of damping derivatives, most notably classic slender 

body theory3. A notable feature of damping derivative calculations is that a build-up 

approach can be used for their calculation.  That is, the body and lifting surfaces can be 

calculated separately with appropriate theories and the results synthesized as they are for 
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static aerodynamics4,5. Although this approach is well verified for static calculations, it has 

not been exploited for dynamic computations.   

 Another consideration in the computation of dynamic stability is an understanding 

of the required accuracy and effects of the dynamic stability on a flight vehicle.  These 

effects are completely dependent on the system under consideration.  With regard to these 

effects, the desired accuracy may be dependent on the computational or experimental 

background of the engineer and could require a shift in the aerospace community 

understanding of these problems.  In particular, it is important to trade the computational 

cost of such calculations with the required accuracy, particularly in the preliminary design 

phase.   

There are several methods currently available to the aerodynamicist for the 

calculation of damping derivatives, each with their own advantages and disadvantages.  

The primary method is a semi-empirical aerodynamic prediction tool, such as Missile 

Datcom, MISL3, or AP096-8.  These codes have exceptionally short run times, allowing the 

engineer to analyze multiple configurations rapidly.  However, the damping methodologies 

in these codes are based on very limited sets of empirical data and therefore have restricted 

applicability to complex configurations.   

Another option is the use of ground based testing.  This includes both free flight 

testing and wind tunnel testing.  For free flight testing, a spark range can be utilized.  In 

this set up, a test article is fired in an indoor range and multiple, high speed images are 

obtained during flight.  From these images, the aerodynamics of the vehicle can be 

determined.  This is the most common method utilized for projectiles in the United 

States9,10.  While useful, there is often a significant amount of scatter in the results, leading 

to high uncertainty.    Wind tunnel testing may have more accuracy as the uncertainties are 

better known and less open to interpretation; however, the test mechanisms are complex 

and expensive, particularly when pitch damping results are desired.  For roll damping tests, 

a free roll sting may be utilized11.  In this type of testing, the model is spun to a 

predetermined rate and allowed to decay over the course of the run.  From the decay, the 

roll damping may be determined.  Pitch damping requires a more complex setup of cables 

or sting testing11-14.  In this type of sting testing, the model is typically forced to oscillate 
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at a given rate and the damping is then calculated.  Due to the complexity of the test 

configurations and models, these methods are seldom used.  

With the advent of faster computers over the last several decades, numerical 

computations have been more popular for the computation of rate damping derivatives.  

These computations include both inviscid and full viscous Navier-Stokes solutions15-22.  

Oftentimes, these methods require complex, time-accurate solutions though some work has 

been done using steady-state methods18,21,22.   The results match well with available test 

data; however, considerable expertise is required in the development of the solution and 

even with today’s high speed processing, results can be time consuming.  Oftentimes, the 

level of precision obtained by these means is not needed by the engineer in the preliminary 

design phase. 

With the existing methods and requirements in mind, the work provides an 

assessment of the usage, evaluation and understanding of damping derivatives with a focus 

on accuracy requirements and computational efficiency. A study of the equations of motion 

has been used to assess the general impacts of damping derivative accuracies for flight 

vehicles.  In addition, new and novel methods and approaches have been proposed and 

developed for the expeditious calculation of these terms for supersonic configurations.  

Theoretical and semi-empirical approaches are developed under the assumption that pitch 

and roll rates are quite small, resulting in quasi-steady aerodynamic analysis.  In particular, 

slender body theory has been expanded to the supersonic regime while Evvard’s theory has 

been developed as a compelling approach for determining damping derivatives.  A body 

build up approach is applied to these methods in order to expedite results while improving 

the accuracy of traditional semi-empirical approaches.  Comparisons between prediction 

methods and experimental data are presented to assess the various approaches developed.  

The present work develops a methodology to provide the engineer with a means to rapidly 

and accurately predict the pitch and roll damping of arbitrary configurations comprised of 

a body and lifting surfaces.  The methods formulated in this work are based in potential 

flow theory and the theories are tailored to the component being analyzed, thereby 

exploiting the body build-up approach.  Semi-empirical methods are also employed to 

improve results where applicable.  With this type of approach come some inherent 



 5 

assumptions.  The primary assumption is that the flow must remain attached, which is a 

necessary requirement for potential flow.  Additionally, pitch and roll rates are relatively 

small so as to represent a quasi-steady state condition rather than a complete unsteady 

analysis of the flow field23. Traditional prediction methodologies, such as semi-empirical 

codes, CFD, and experimental methods are discussed as comparisons to the new 

approaches developed in this work.  Focus is given to supersonic, low angle of attack 

configurations with explanations and limitations to the various approaches.  The result of 

this work is a novel, efficient preliminary design approach for accurately estimating 

damping derivatives on a variety of configurations.   The work increases the methods 

available to aerospace community for the calculation of damping derivatives while 

illustrating the appropriateness of the various tools for the accuracy required.    
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2 Dynamic Stability and Control  

Derivatives are often used to assess the stability properties of a vehicle.  Typically, 

there are three common stability derivatives that are considered by the aerodynamicist. The 

first is static stability derivatives.  These derivatives quantify the change in force and 

moment due to a change in a flight parameter, such as angle of attack.  Terms such as Cmα 

fall into the category of static stability derivatives.  The second type of derivatives are the 

control derivatives, such as Cmδ.  These derivatives quantify the change in forces and 

moments due to small changes in control fin deflection.  The final set of derivatives are the 

focus of this effort and are the dynamic stability derivatives.  They are also referred to as 

the damping derivatives. While important to the overall flight dynamics of a vehicle, these 

terms are often poorly understood and calculated by the engineer.   

In practical terms, the “damping derivatives” are those forces and moments that 

oppose the motion of a vehicle.  As a missile rapidly maneuvers in flight, additional 

velocities are induced on the vehicle thereby inducing an angle of attack2,5.  The moment 

opposing this induced velocity is known as the damping moment.  In general, the pitch 

damping and the roll damping terms are of most interest to the engineer.  The pitch damping 

is comprised of both a change in pitch rate and a change in angle of attack.  The rotations 

are centered about a spanwise axis through the center of gravity of the vehicle.  Thus, 

moving the center of gravity will affect the computation of the pitch damping terms.  The 

roll damping is brought about by a rotation about the vehicles’ longitudinal axis.  Figure 1 

shows a standard axis system as well as the pitch rate (q), change in angle of attack (α) and 

roll rate (p).  This section discusses the basic physics that result in the presence of the 

damping derivatives.   
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Figure 1. Axis System and Notation 

2.1 Roll Damping 

 A rolling motion is defined as a rotation about a vehicles’ longitudinal, or x-axis as 

shown in Figure 1.  The resistance of a vehicle to this rolling motion is known as the roll 

damping, Clp.  Unless very large roll rates are considered, the primary contribution to the 

roll damping is through the lifting surfaces.  However, a roll rate will affect all of the lifting 

surfaces on a vehicle regardless of the rate of rotation.  As the vehicle rolls about its 

longitudinal axis the spanwise angle of attack of the surface is altered, as shown in Figure 

2.  The angle of attack at any span wise location is related to the roll rate through the 

relation py/2V where y is distance from the body centerline to the span location of interest. 
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Figure 2. Change in Local Angle of Attack Due to Roll Rate 

 

As a consequence of the angle of attack variation, the lift is varied along the span of 

the wing.  As long as the flow remains attached, this induced lift will always oppose the 

roll rate, thereby damping the motion2,5,24.  With knowledge of the lift force at each span 

wise location, the roll damping moment can be directly calculated.  In practice, this is 

difficult as the loading is heavily dependent on the aspect ratio, sweep angle, taper ratio, 

and Mach number of the surface.  Methods to calculate the roll damping are the focus of 

this effort and are derived in later sections.  The roll damping may have a significant impact 

on the handling and controllability of a vehicle.  These potential effects are discussed in 

section 4.   

2.2 Pitch Damping Due to Changes in Pitch Rate 

The pitch damping derivative is actually the sum of two terms, the change in pitching 

moment due to a change in pitch rate (Cmq) and the change in pitching moment due to a 

change in the angle of attack rate (Cmα).  The pitch rate can be thought of as a rotation about 

a spanwise axis passing through center of gravity while the angle of attack remains nearly 

constant, similar to Figure 3.  A steady pitch up or pull up maneuver is typical of this type 

of motion.  As with the rolling motion, all lifting surfaces are affected through a change in 

their local angle of attack.  However, the body can no longer be neglected, particularly for 

missile configurations where it may contribute up to 30 percent of the total damping in 

pitch.  Assuming  a positive vertical change in pitch rate, lifting surfaces fully behind the 

p 
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CG will experience an increase in local angle of attack thereby increasing the normal force 

and ultimately creating a negative (i.e. restoring) pitching moment.  Surfaces closer to the 

CG (such as an airplane wing) can have both an increase and decrease in the local angle of 

attack depending on the relative location to the CG.  These surfaces typically have lower 

contributions to the pitch damping as the moment arm is smaller, but they should not be 

neglected.   

In the analysis of Cmq, it is assumed that the instantaneous forces correspond to 

instantaneous angles of attack.  In other words, any lag due to viscosity is not taken into 

account2,22.  This is done in most analysis to simplify the equations of motion and is an 

additional requirement if potential flow techniques are desired.   

 

 

Figure 3. Illustration of Cmq in Flight2 

2.3 Pitch Damping Due to Changes in Angle of Attack Rate 

The change in pitching moment due to a time rate change of angle of attack 𝐶𝑚�̇� is 

a more complicated term than the change due to pitch rate. This motion is a change in angle 

of attack with constant pitch rate, as depicted in Figure 4.   Its complexity results from the 

fact that it is an inherently unsteady flow condition that makes analysis by quasi steady 

state methods difficult.  Unlike the Cmq term where it was assumed that changes occurred 

instantly, the �̇� derivatives exist because the pressure distribution over a lifting surface 

does not adjust itself instantaneously when the angle of attack is altered2.  Therefore the 

lift has a transient response that is dependent on the Mach number.  Fortunately the 



 10 

characteristic frequencies are usually quite small, making it a lower contribution to the 

overall pitch damping term.   

 

 

 F 

 

Figure 4. Illustration of 𝑪𝒎�̇� in Flight2 
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3 Current Approaches 

The previous section was intended define the damping derivative terms that are the 

focus of this effort.  These terms require both an accurate and flexible approach due to the 

importance of the terms for given flight vehicle designs.  Many of the methods currently 

employed by engineers have several limitations in their application geometries or 

conditions.  However, several may offer ways to expand current damping derivative 

methodologies to evaluate a wider range of configurations.  This section provides a brief 

presentation of the currently available state of the art methods for damping derivatives.  

These methods were used as a starting point in the development of new methodologies for 

damping derivative calculation.  Experimental and computational approaches are presented 

as they will provide the basis for validation of the updated approaches developed for this 

effort.  

3.1 Theoretical and Semi-Empirical Approaches 

Most all of the approaches available to the engineer have their basis in potential flow 

theory.  The velocity potential, φ, is a scalar representation of position and time in a flow.  

Differentiation of the potential yields the velocities.  The velocity potential can be written 

for both compressible and incompressible flows as well as in a non-linear or linearized 

form.  For the purpose of this effort, most theories make use of the linearized equations. 

The following sections present the most common theoretical approaches for calculating the 

damping derivatives.   

3.1.1 Slender Body Theory 

Slender Body Theory is a linearized potential flow solution for calculating the 

aerodynamics of a body of revolution at angle of attack.  By restricting the flow to small 
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perturbations and using both continuity and Newton’s equations of motions, the partial 

differential equation governing flow around a slender body can be written as in equation 

1.7 

 

𝛽2𝜑𝑥𝑥 + 𝜑𝑦𝑦 + 𝜑𝑧𝑧 = 0                                                  (1) 

 

Furthermore, slender body theory prohibits velocity perturbations in the longitudinal 

direction which further reduces the governing equation to Laplace’s equation. 

 

𝜑𝑦𝑦 + 𝜑𝑧𝑧 = 0                                                        (2) 

 

This equation defines the flow conditions in any plane that is perpendicular the longitudinal 

axis.  The resulting flow, and therefore the loading, is independent of Mach number, so 

results are valid across the entire speed regime.   

Slender Body theory is commonly used to calculate the static aerodynamic 

coefficients.  The key result of the theory, as stated by Nielsen25, is that that normal force 

of a slender body is based only on its base area. It also produces a constant value for the 

normal force slope that is again independent of Mach number.   

 

𝐶𝑁 = 2𝛼
𝑆𝑏𝑎𝑠𝑒

𝑆𝑟𝑒𝑓
            𝐶𝑁𝛼 = 2

𝑆𝑏𝑎𝑠𝑒

𝑆𝑟𝑒𝑓
                                          (3) 

 

In this form, slender body theory only accounts for the effects of body thickness and 

angle of attack.  It is not possible to obtain the effects due to pitching motions that are 

required to obtain the damping derivatives.  However, modifications such as the use of 

apparent mass terms have made this possible.  The remainder of this section discusses how 

slender body theory can be utilized to calculate damping derivatives and modifications that 

are available to further improve that theory. 

3.1.2 Bryson’s Slender Body Theory 

Basic slender body theory as defined above does not place any restrictions on the 

shape of a body, provided that flow perturbations resulting from the presence of the body 
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are small.  As a result, calculations from the theory are best for axisymmetric bodies.  

However, the addition of the apparent mass method (or apparent area depending on the 

reference) as developed by Bryson26 extends slender body theory to a wider variety of 

bodies and permits direct calculation of the stability derivatives. Detailed explanation of 

this method is presented by Bryson26 and Nielsen25.  For this method, the inertial properties 

of a cross section must be known.  Several examples for assessing this are provided by 

Nielson.  A coordinate system for the analysis is provided in Figure 5.  

 

 

 

Figure 5. Coordinate System for Apparent Mass Method26 

 

 Bryson26 defined  the kinetic energy per unit length in the η-ζ plane in equation 4 as 

 

𝑇′ =
1

2
𝜌𝑆[𝑣, 𝑤, 𝑝𝐷][𝐴] [

𝑣
𝑤
𝑝𝐷

]                                                 (4) 

 

where v,w, and pD are velocities in the x y and z directions and A is a symmetric matrix 

containing the apparent mass or inertial coefficients.  These are defined as in equation 5.  
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[

𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

] = −
1

𝑆𝑟𝑒𝑓

[
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𝐷
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𝐷
∮𝜑2

𝜕𝜑3

𝜕𝑛
𝑑𝑆

1

𝐷
∮𝜑3

𝜕𝜑3

𝜕𝑛
𝑑𝑆]

 
 
 
 

            (5) 

 

 

These inertia coefficients are specific to a given cross section.  Using this kinetic 

energy, the forces acting on the body can be developed.  A rigorous derivation can be found 

in either Bryson or Nielsen.  Of most interest for this analysis are the normal force and 

pitching moment coefficients.  Additionally, only those terms that are functions of α, q and 

�̇�  are necessary for the calculation of the pitch damping derivatives.  These simplified 

functions are shown in equations 6 and 7.   

 

𝐶𝑁 = −𝐶𝑧 = 2𝐴22 (𝛼 +
𝑞𝐷

𝑈

𝑥𝑏

𝐷
) + 2∫ 𝐴22

𝐿

0
𝑑 (

𝑋

𝐷
) (

𝛼�̇�

𝑈
)                   (6) 

 

𝐶𝑚 = −2
𝑥𝑏

𝐷
𝐴22 (𝛼 +

𝑞𝐷

𝑈

𝑥𝑏

𝐷
) + 2𝛼 ∫ 𝐴22

𝐿

0

𝑑 (
𝑋

𝐷
)

+ 2(
𝛼�̇�

𝑈
−

𝑞𝐷

𝑈
+ 𝛼

𝑈�̇�

𝑈2
) ∫ 𝐴22 (

𝑋

𝐷
)

𝐿

0

𝑑 (
𝑋

𝐷
)

− 2 (
𝑝𝐷

𝑈

𝑞𝐷

𝑈
)∫ 𝐴12 (

𝑋

𝐷
)

2𝐿

0

𝑑 (
𝑋

𝐷
) 

 (7) 

From Nielson25, the apparent mass terms appearing above for a circular body are 

defines in equations 8 and 9, with r equal to the body radius and S equal to the reference 

area.  

𝐴22 =
𝑚22

𝜌𝑆
=

𝜋𝜌𝑟2

𝜌𝑆
= 1                                           (8) 

 

𝐴12 =
𝑚12

𝜌𝑆
= 0                                                  (9) 

 

Recognizing that 𝐶𝑁𝛼 =
𝜕𝐶𝑁

𝜕𝛼
, the basic slender body value of 2 is obtained.  Now, to 

calculate the damping derivatives, equations 10-12 are utilized.   
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𝐶𝑚𝑞 =
𝜕𝐶𝑚

𝜕(
𝑞𝐷

2𝑈
)
= −4(

𝑥𝐵

𝐷
)
2

−
1

3
(

𝑙

𝐷
)
2

(
𝑥𝐵

𝐷
)                             (10) 

 

𝐶𝑚�̇� =
𝜕𝐶𝑚

𝜕(
�̇�𝐷

2𝑈
)
=

1

3
(

𝑙

𝐷
)
2

(
𝑥𝐵

𝐷
)                                       (11) 

𝐶𝑚�̇� = 𝐶𝑚𝑞 + 𝐶𝑚�̇� = −4(
𝑥𝐵

𝐷
)
2

= −4(
𝐿

𝐷
−

𝑋𝑀𝑅𝑃

𝐷
)
2

= −2𝐶𝑁𝛼 (1 −
𝑋𝑀𝑅𝑃

𝐿
)
2

(
𝐿

𝐷
)
2

   (12) 

 

 

 

Note that the factor of 2.0 has been added to account for a consistent normalization of q 

and �̇�.  Bryson normalizes by qD/V while this work normalizes by qd/2V.   

It is clear from these equations that pitch damping derivatives calculated by this 

method will not vary with Mach number.  In practice, the method will not perform well for 

most configurations27.  However, it is an excellent starting point for modified theories.   

3.1.3 Clδ Approach to Roll Damping 

The most common empirical approaches for calculating the roll damping of finned 

vehicles relate the values of Clp and Clδ.  Initial theoretical results from Bolz and 

Nicolades28 produced by the relation shown in equation 13 

 
𝐶𝑙𝑝

𝐶𝑙𝛿
= −0.627

𝑑

𝑏𝑜
                 (13) 

 

where bo refers to the total span including the body.  Subsequently, Adams and Dugan29 

produced a near identical relation, without the diameter to span relation. These approaches 

were never applied to any experimental data and subsequently were found to be insufficient 

for most configurations.   

Eastman30 found the available theoretical approaches insufficient to match the 

experimental data available at the time.  As a result, he expanded on these theoretical 

methods to create a fully empirical approach based on the relation of ClP and Clδ.   His 

method requires knowledge of Y area centroid (Ycent) of the fin.  This distance is measured 

radially from the body centerline to the centroid of the exposed fin.  This empirical 
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correlation was determined from wind tunnel data on configurations shown in Figure 6.  

The graph used for his correlation is also shown in Figure 6. 

 

 

Figure 6.  Eastman’s Empirical Derivation30 
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 His method presents the roll damping as in equation 14. 

 

𝐶𝑙𝑝 = −2.15
𝑌𝑐𝑒𝑛𝑡

𝐷
𝐶𝑙𝛿     (14) 

 

 

The simplicity of the calculation lends itself for use when wind tunnel data is 

available and the configuration is simple.  There is no need to vary the method for different 

Mach regimes.  However, its simplicity is also its limiting factor.  Although the 

configurations used for correlation are widely varied, the available data appears to be small.  

Additionally, it is only applicable to configurations with a single fin set, thereby 

eliminating its use for a wide variety of missile variations.   

3.2 Experimental and Computational Approaches 

The standard state of the art metric for the assessment of rapid prediction methods is 

the use of experimental data.  Typically this includes wind tunnel test or flight data.  There 

are several methods for wind tunnel testing that will be briefly discussed in this section.  

The purpose of this section is to provide an overview of the methods.  References are 

provided for a more exact discussion of the procedures used in determine the damping 

derivatives from these experimental setups.   

3.2.1 Wind Tunnel Testing  

For most aerodynamicists, wind tunnel testing represents the “gold standard” for 

obtaining accurate aerodynamic characteristics and data.  While most wind tunnel tests are 

performed to obtain static aerodynamic data, there are a variety of ways to obtain dynamic 

data in the wind tunnel.  However, with cost as a driver this approach is not usually taken 

unless the dynamic derivatives are considered critical to understanding the overall behavior 

of the flight vehicle.  Most dynamic tests are focused on aero elastic effects rather than 

damping derivatives due to the relative importance of the terms31. 

The “easiest” dynamic stability term to obtain in the wind tunnel is the roll damping.  

The most common method to measure roll damping is through the use of a spin rig.  In this 
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type of setup, the model is mounted to a sting as is typical of most missile wind tunnel set 

ups; however, the body is allowed to roll freely around the balance.   The test article is 

mechanically spun and a tachometer is used to measure the spin rate variation over the 

course of a wind tunnel run.  With this information, it is possible to determine the roll 

damping via the following equation. 

 

𝐶𝑙𝑝 =
2𝑉(𝐼𝑥𝑥�̇�−𝐶𝑙𝑥𝑞∞𝑆𝑟𝑒𝑓𝑑𝑟𝑒𝑓−𝐿𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑓𝑟𝑖𝑐𝑖𝑡𝑖𝑜𝑛)

𝑝𝑞∞𝑆𝑟𝑒𝑓𝑑𝑟𝑒𝑓
2                                   (15) 

 

In equation 15, Ixx represents the x (or roll) axis moment of inertia of the body, �̇� is 

the tachometer measure roll rate, Clx is the static rolling moment of the vehicle, and 

Lbearing_friction is the rolling resistance measured on the bearings for the spin rig.  

Pitch damping is more complicated to obtain in the wind tunnel.  There are two 

primary approaches: Free-oscillation testing and forced-oscillation testing.13, 14, 31  In free-

oscillation testing, the model is mounted on a 1 degree of freedom small amplitude sting.  

Stable models are perturbed using a forced air approach to disturb the setup while unstable 

vehicles are allowed to freely move on the sting with increasing amplitude.  Oscillations 

are measured with a tachometer and pitch damping is obtained in a method similar to that 

described for the roll damping.   

In forced oscillation testing, the model is mechanically driven to a specific oscillating 

frequency.  This method is more complex than the free-oscillation setup; however, it allows 

for more precise control over the pitching amplitudes.   This method moves the model at a 

constant angular motion and the torque inputs required to generate the motion are used to 

calculate the damping.  References 13 and 14 provide detailed descriptions of these two 

method for calculating pitch damping.  It should be noted, however, that each approach 

actually determines the sum 𝐶𝑚�̇� = 𝐶𝑚𝑞 + 𝐶𝑚�̇�.  It is not possible to separate the two 

terms.  It is also important to note that wind tunnels operate at a constant speed.  However, 

as previously noted, the phugoid mode of a vehicle experiences wide variations in velocity.  

Therefore, for systems in which this mode dominates, it may be difficult or impossible to 

accurately obtain this information in the wind tunnel32.   

Cabling systems such as those used for aeroelestic testing may be used for damping 
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derivatives, however, the resulting analysis is more complex than the oscillatory fixed sting 

testing.  As an additional complexity to calculation of damping derivatives in the wind 

tunnel, most model suspension systems allow for freedom in pitch, yaw, and vertical 

translation, but are limited in other dimensions.  This precludes the calculation of roll 

damping, with has been shown previously to be of most interest for many missile systems.   

Aside from cost, there are other downsides to determining damping derivatives within 

the wind tunnel.  While damping derivatives can be obtained through dynamic wind tunnel 

testing, typical dynamic experiments are focused on the dynamic behavior dominated by 

rigid body motions or aeroelastic effects32.   As evidenced by the equations of motion, 

inertia matters for dynamic derivative computation.  Typical wind tunnel test models are 

subscale to fit in a desired wind tunnel facility.  For a static test, the model, typically 

fabricated from metal, is scaled in size, but weight and density are not considered.  As long 

as Mach number and Reynolds number can be matched, the composition of the model is 

not considered beyond meeting the facility safety requirements.  However, for dynamic 

testing, aerodynamic scaling must also be applied to the inertia and rotation rates.  This can 

result in a substantially more complex and expensive model.   

There is yet another problem with the use of wind tunnel testing.  Until recently, all 

dynamic testing for damping derivatives was focused on the low speed regime due to the 

availability of mounting structures.  As higher speeds show an increased need for damping 

accuracy, this is a problem that is currently being worked within the ground testing 

community.  In particular, NASA Langley is updating their facilities to accommodate 

higher speed testing12.   

3.2.2 Aeroballistic Range Testing 

Most of the historical damping data available was obtained through aeroballistic 

range or spark range testing5,9,10,.  This technique is typically used for artillery rounds, most 

of which do not have fins.  As a result, this data was extensive used in the development of 

body alone semi-empirical predictions. There is however, a very limited set up data for 

configurations with fins.  These test ranges are free flight facilities that utilize high speed 

photography to capture the orientation of a projectile along its flight path10.  Proper data 
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reduction requires accurate measurements of the angular orientation (both in roll and in 

pitch) and the linear position of the projectile.  In order to obtain these measurements, 

shadowgraph images are taken at multiple discrete locations along the trajectory.  In order 

to properly orient the fins, locator pins are often used so that they can be easily identified 

in the images.  By examining the changes in the orientation of the missile at each 

photographic station, it is possible to determine the static and dynamic (i.e. damping) 

characteristics of the vehicle. Details of the data reduction process in use at these facilities 

can be found in references 9 and 10.   

3.2.3 Computational Approaches 

With the advent of faster computers, computational approaches appear to be replacing 

the use of spark ranges and wind tunnels for the determination of damping derivatives.  

Significant efforts have been invested to improve the capabilities and accuracies of the 

various computations15.   

In its infancy, CFD was focused solely on attached flow and understanding the 

various flow fields.  As computers and methods progressed, CFD began to analyze more 

complex flows and obtain force and moment coefficients for such flows.  There are 

however, several challenges with respect the use of CFD for dynamic stability 

computations.  Despite the accuracy and capability of the various computational 

approaches, the results are very computer resource intensive and may require long set-up 

and computation times.  For a configuration that is late in its development cycle, this is 

often acceptable.  However, for configurations that are early in the design phase or where 

the damping terms must be approximately known, faster methodologies are desired.  

Additionally, dynamic stability problems often present separated flows which can pose a 

problem for certain CFD codes.  Often very high grid resolution is necessary in these 

regions to accurately capture the flow15. Regardless, significant work is being done for 

quasi steady flows that represent a reasonable prediction of the damping derivatives.   
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4 Sensitivity Analysis 

One of the primary, and often most difficult, tasks for the engineer is to determine 

when a solution is “good enough”.  This is particular true for damping derivatives as the 

methodologies for prediction are often very simple or very complex.  The flows that 

generate the damping derivatives are complex, and as such, do not generally have a closed 

form solution.  As such, the engineer must have some knowledge about which assumptions 

are acceptable and how the accuracy will affect the overall results.  The idea of “good 

enough” may also be applicable to the background engineer.  For some stability and control 

engineers, an answer of the approximate magnitude might be good enough.  A computation 

expert however, might wish to have a complete understanding of the flow field and 

accuracy to tenths of a percent.  Figure 7 presents a humorous illustration of this issue.  

 

Figure 7.  Engineering Accuracy Thoughts15 

 

For practical missile design, accuracy requirements typically lie somewhere between 
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both of these schools of thought.  To gain some insight into this problem, a sensitivity 

analysis is beneficial. Typically, such analysis is not conducted prior to the computation of 

compelx derivatives.  In such an analysis, the term of interest is set to a nominal value.  For 

this study, values of Clp, Cmq and/or 𝐶𝑚�̇� as calculated by a common aerodynamic 

prediction tool were used for the nominal value.  This value is then varied from the nominal 

value and changes in the flight characteristics are noted.   

There are several ways that a sensitivity analysis could be performed.  Upon initial 

consideration, the use of a six degree of freedom (6-DOF) simulation appears to be the 

most obvious answer.  Such a simulation would “virtually” fly the vehicle through a 

complete trajectory.  The aerodynamic coefficients, including the damping terms, are 

obtained from tables as a function of orientation and velocity.  The damping terms could 

be varied to determine the impact on range, time of flight, etc.  While it appears this 

methodology would provide the most useful information, there are a few inherent 

limitations.  In general, 6-DOF simulations for a guided vehicle are not generic.  They are 

specifically designed for a given vehicle and a properly developed autopilot is used.  

Additionally, the control laws used in the autopilot are based on the aerodynamics 

provided.  As a result, altering the aerodynamics in the tables would result in a situation 

where the autopilot was no longer properly tuned.  It would be difficult to determine if 

changes in flight characteristics were the result of variations in the damping terms or the 

result of a poorly tuned autopilot.   

Two additional options involve examining the equations of motion of a vehicle.  The 

first methodology analyzes the equations and determines the change in acceleration due to 

varying values of the damping derivatives and/or angular rates (velocities).  These 

equations allow for a quick, linear, analysis of variations in the damping terms.  The 

alternate approach is to evaluate the stability matrices that are developed from the 

equations, as shown in Etkin.2 These matrices provide information about the modes and are 

used for autopilot development.  Variations to the damping terms provide information 

about changes in the damping ratio, natural frequencies, time-to-half, the period, and 

stability of a given flight mode.  The analysis and results of these two approaches are 

provided in the following sections.    
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4.1 Acceleration Analysis 

The acceleration analysis is really an analysis of the equations of motion.  The 

damping terms are varied such that changes in the vehicle acceleration are determined.  For 

this study, the equations 16-18 from Roskam33 were utilized. The equations and 

assumptions applied to the analysis will be discussed in depth in the appropriate section, 

however, it is prudent to first examine the equations for the roll acceleration and the two 

pitch accelerations, as shown in equations 16-18, respectively.  

 

𝐼𝑥𝑥�̇� − 𝐼𝑥𝑧�̇� = 𝑄𝑆𝑑 {𝐶𝑙𝛽𝛽 + 𝐶𝑙𝑝
𝑝𝑑

2𝑉
+ 𝐶𝑙𝑟

𝑟𝑑

2𝑉
+ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑡𝑒𝑟𝑚𝑠}          (16) 

 

𝐼𝑦𝑦�̇� = 𝑄𝑆𝑑 {(𝐶𝑚𝑢 + 2𝐶𝑚1)
𝑢

𝑉
+ (𝐶𝑚𝑡𝑢 + 2𝐶𝑚𝑡1)

𝑢

𝑉
+ 𝐶𝑚𝛼𝛼 + 𝐶𝑚𝑡𝛼𝛼 + 𝐶𝑚�̇�

𝛼�̇�

2𝑉
+

𝐶𝑚𝑞
𝑞𝑑

2𝑉
+ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑡𝑒𝑟𝑚𝑠}                                            (17)  

 

𝑚(�̈� − 𝑉𝑞) = −𝑚𝑔𝜃 sin 𝜃 + 𝑄𝑆 {−(𝐶𝐿𝑈 + 2𝐶𝐿1) − (𝐶𝐿𝛼 + 𝐶𝐷1)𝛼 − 𝐶𝐿�̇�
�̇�𝑑

2𝑉
− 𝐶𝐿𝑞

𝑞𝑑

2𝑉
+

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑡𝑒𝑟𝑚𝑠}                                                   (18) 

 

Since the values of Cmq, 𝐶𝑚�̇�, and Clp are of interest to this work, it would stand to 

reason that the values of �̇�, �̈�, and �̇� would be of interest to this sensitivity study.  However, 

upon examination of the equations of motion it is clear that �̈� is a function of the force 

derivatives and not the desired moment derivatives.  However, the effect of Cm on the 

pitching acceleration is still examined.   

For this analysis, a generic missile configuration was examined.  The configuration 

is often referred to as the Army-Navy finner.  This configuration was chosen as there is a 

significant amount of damping derivative data available in open literature34-39.  The 

configuration, shown in Figure 8, consists of a basic 10 caliber body with a 2 caliber conical 

nose and a 4 fins located with the fins aligned at the base of the body.  The fins are square 

in planform with a 1 caliber root chord, tip chord and exposed semi-span. 
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Figure 8. Basic Finner Configuration 

 

4.1.1 Lateral Analysis 

For the purpose of this analysis, a simplified solution of equation 16 neglecting the 

control terms will be utilized.  For the fully symmetric configuration considered in this 

analysis, the values of Ixz is neglected.  The problem could also be approached assuming 

that the vehicle is in pure roll with no yaw rates present, which would also drop the Ixz 

term.  Furthermore, for this analysis, the sideslip angle and yaw rate are assumed to be 

zero.  This leads to equations 19 and 20. 

 

𝐼𝑥𝑥�̇� = 𝑄𝑆𝑑 {𝐶𝑙𝑝
𝑝𝑑

2𝑉
}                                                         (19) 
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�̇� =
𝑄𝑆𝑑

𝐼𝑥𝑥
{𝐶𝑙𝑝

𝑝𝑑

2𝑉
}                                                          (20) 

 

From these simplified equations, it is quite evident that the roll acceleration (or 

deceleration for a stable system) is depended on the vehicle size (d, S, and Ixx) and flight 

conditions (V, Q, and p).  For this analysis, the values of roll rate and Mach number 

(velocity) are varied for a range of Clp values for the basic finner.  The actual Missile 

Datcom6 predicted values of Clp are shown in Table 1.  The value of Ixx obtained from 

literature5,36,39 is 0.0098 slug-ft2.  

 

Table 1. Missile Datcom Predicted Values of Clp 

Mach Clp (per radian) 

M=0.25 -25.9 

M=0.5 -26.8 

M=0.8 -28.7 

M=1.25 -35.1 

M=2.0 -19.6 

 

 

Figure 9 shows the variation in �̇� with variations in Clp, and Mach number.  

Examining the equation, this result is quite obvious as the roll rate is simply a multiplier to 

the slope.  Thus, the slope for a 3Hz roll rate will be exactly 3 times the slope for a 1 Hz 

roll rate.  As a result, only a nominal 3 Hz limit is displayed.  For the purposes of this 

analysis, the variations in CLP represent the accuracy with which the value is predicted.  

As previously noted, except for rare cases, the values of a Clp for a finned body will always 

be negative, or stable2.  In other words, motion will be damped, not amplified.  This is 

evident from the negative (or decelerating) values of  �̇�.  At low Mach numbers the vehicle 

is relatively insensitive to the roll damping values.  That is the roll deceleration does not 

vary significantly with changes in the roll damping coefficient.  For the case of Mach 0.25 

and a 1 Hz roll rate, the slope of the line is 0.00294, or nearly zero.  In contrast, as Mach 

number increases, the value of �̇� becomes more sensitive to the Clp accuracy.  At Mach 2 
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and 1 Hz, the slope of the line is 0.2361, considerably higher than at Mach 0.25.  

Additionally, as roll rate increases the vehicle sensitivity to Clp accuracy increases.   

 

 

 

Figure 9.  Roll Deceleration Variation with CLP 

 

As an added exercise, the inertia was varied while the Clp value was held at the Datcom 

prediction. These results are shown in Figure 10.  Due to Ixx appearing in the denominator 

of the equation, as the inertia is reduced, the roll acceleration begins to increase rapidly.  

What is of note is that there is a substantial effect of inertia on the roll acceleration of the 

system.   
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Figure 10. Roll Deceleration Variation with Ixx 

 

These results are important as they indicate how much effort is required to obtain the 

values of Clp.  At low Mach numbers and low roll rates where the vehicle is relatively 

insensitive to Clp, a full CFD solution might not be required and lower order methods are 

sufficient.  However, as Mach number increases, increased fidelity methods used to 

calculate Clp might become necessary as accuracy is more important.  Of additional 

importance is the inertia of the vehicle.  For very low inertia systems, particularly those 

flying at high Mach numbers, the vehicle may be very sensitive to roll damping accuracy 

and as such more thorough analysis should be performed.   

4.1.2 Longitudinal Analysis  

As previously presented, the pitching equation is shown in equation 17.  The �̈� 

equation is not presented as it is not a direct function of the Cmq and 𝐶𝑚�̇�that are desired.  

However, both q and �̇� effect the pitch acceleration/deceleration term, �̇�.   



 28 

As with the roll equation, some simplifying assumptions are made for the pitch 

equation.  The control terms are again neglected, the thrust terms are neglected and the u 

velocity is assumed to be negligibly small. These assumptions result in the following 

equations. 

 

𝐼𝑦𝑦�̇� = 𝑄𝑆𝑑 {𝐶𝑚𝛼𝛼 + 𝐶𝑚�̇�
𝛼�̇�

2𝑉
+ 𝐶𝑚𝑞

𝑞𝑑

2𝑉
}                                    (21) 

 

�̇� =
𝑄𝑆𝑑

𝐼𝑦𝑦
{𝐶𝑚𝛼𝛼 + 𝐶𝑚�̇�

𝛼�̇�

2𝑉
+ 𝐶𝑚𝑞

𝑞𝑑

2𝑉
}                                       (22) 

 

In the case of the pitch equation, it is more difficult to isolate the individual effects 

of the damping terms as most aircraft fly with a slight angle of attack.  As such, a small, 2 

degree angle of attack is considered for this analysis.  Additionally, a nominal 0.1 Hz pitch 

rate will be considered when �̇� is varied, and conversely, a nominal 0.1 Hz angle of attack 

rate is considered when q is varied.  This is still a linear equation of the form y=mx+b.  The 

damping term under consideration and the angular rate for that term drive the slope of the 

line.  Keeping the values of Cmα and the other damping term constant will merely effect the 

intercept value.   

As with the roll damping analysis, the basic finner configuration was utilized with 

this analysis.  Table 2 provides the Missile Datcom6 predicted aerodynamic coefficients. 

The inertia, Iyy, was found to be 0.00294 slug-ft2 in the available literature5,36,29. 

 

Table 2. Missile Datcom Longitudinal Predictions 

Mach Cmα 𝐶𝑚�̇� Cmq 

0.25 -24.735 -32.276 -277.3 

0.5 -25.887 -30.7 -289.918 

0.8 -29.5 -28.739 -318.145 

1.25 -39.138 -18.224 -464.669 

2.0 -11.75 -13.47 -304.992 

 

Figures 11 and 12 illustrate the effect of Cmq and 𝐶𝑚�̇�  accuracy on the pitch 

deceleration.  As is obviously expected, the results are linear with the slope being driven 
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by the Mach number and pitch rate, q.  As with the roll rate, the value of q is just a multiplier 

to the slope so that a rate of 3 Hz produces a slope 3 times higher than a rate of 1 Hz.    Also 

as with the roll rate, the sensitivity to variations in Cmq and 𝐶𝑚�̇� increase with increasing 

Mach number. The system appears much more sensitive to variations in Cmq than in 𝐶𝑚�̇�; 

however, further examination is needed before drawing conclusions.  Since the same rates 

are used for q and �̇�, the slopes of the two lines are actually the same.  However, Predicted 

values of 𝐶𝑚�̇� are typically much smaller than values of Cmq, which leads to inherently 

smaller rates of �̇�.  If the same range of damping values were utilized for Cmq and 𝐶𝑚�̇� 

there would be much more similarity in the results. However, due to its larger value, Cmq 

accuracy will likely have a much larger impact on a system than 𝐶𝑚�̇� accuracy. 

 

 

 

 

Figure 11. �̇� Variations with CMq 
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Figure 12. �̇� Variations with 𝑪𝒎�̇� 

 

As with the roll damping, the effects of inertia were also considered by varying the 

system inertia while maintaining constant damping derivative values.  As expected, the 

lower the inertia values, the more sensitive the system will be to pitch damping.  This fact 

would be increasingly important to flying wing type designs where the inertia is typically 

small in relation to longer vehicles. These results are illustrated in Figure 13. 
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Figure 13. �̇� Variations with Inertia 

4.2 Stability Mode Analysis  

The results of the previous section give an overall idea about the effects of stability 

derivative accuracy, but they do not provide a complete picture.  Clearly, the equations do 

contain all of the aerodynamic properties of the configuration.  By undertaking an 

examination of the stability modes, more insight can be gained into the sensitivity of a 

system to the dynamic derivatives.  The effect of a given derivative on the stability of a 

system be determined by analyzing the undamped natural frequency (ωn), damping ratios 

(ζ), and/or time properties (time to half or double) of a system as a function of varying 

values of the selected stability derivative.  The vales of ωn, ζ, and time to half (or double) 

are calculated through an eigenvalue analysis of the appropriate stability matrix.  The 

derivation of the matrices used for this analysis is found in Etkin2, with the lateral and 

longitudinal matrices given in the following equations.  Note that for this analysis, a 

controls-free approach was taken to simplify the analysis. 
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The lateral state equation is shown in equation 23 in matrix form.  An eigenvalue 

analysis of the stability matrix results in three modes of motion for a typical system.  These 

modes are the dutch roll mode, the spiral mode, and the rolling mode.  The dutch roll mode 

is oscillatory motion consisting of roll and yaw coupling.  The other two modes are non-

oscillatory in nature which the spiral mode characterized by yawing at negligible sideslip 

and the rolling mode characterized by rotation about the longitudinal axis.  A complete 

definition of these modes is provided in Etkin2 or Roskam33.   
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The longitudinal state equation is shown in equation 24 in matrix form.    For most 

systems, two modes result from the analysis of the longitudinal state matrix.  The first mode 

is the phugoid mode.  This mode is characterized by a near constant pitch angle with 

changes in speed.  The second mode is the short period mode, which is characterized by 

constant speed and rapid pitch changes.   

Etkin2 offers a simplification for the longitudinal analysis.  Within this simplification, 

the pitch damping terms do not affect the phugoid mode.  This is in line with results from 

other references.  Instead, Cmq and  𝐶𝑚�̇� affect only the short period mode.  As such, the 

longitudinal state matrix can be reduced to the following  

[
�̇�
�̇�
] = [

𝑍𝛼

𝑚
𝑢0

1

𝐼𝑦𝑦
[𝑀𝛼 +

𝑀�̇�𝑍𝛼

𝑚
]

1

𝐼𝑦𝑦
[𝑀𝑞 + 𝑀�̇�𝑢𝑜]

] [
𝑤
𝑞]                              (24) 

 

The analysis simplifies to equations 25 through 31 to determine the eigenvalues. 
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𝜆2 + 𝐵𝜆 + 𝐶 = 0                                                       (25) 

 

𝐵 = −
1

𝑡∗ [
𝐶𝑍𝛼

2𝜇
+

1

𝐼�̂�
(𝐶𝑚𝑞 + 𝐶𝑚�̇�)]                                          (26) 

𝐶 = −
1

𝑡∗2𝐼�̂�
(𝐶𝑚𝛼 −

𝐶𝑚𝑞𝐶𝑧𝛼

2𝜇
)                                                    (27) 

  

𝑡∗ =
𝑐

2𝑢0
                                                                (28)  

 

𝜇 =
𝑚

1

2
𝜌𝑆𝑐

                                                                 (29) 

 

𝐼�̂� =
𝐼𝑦𝑦

𝜌𝑆(
1

2
𝑐)

3                                                            (30) 

 

𝐶𝑧𝛼 = −𝐶𝑁𝛼                                                          (31) 

 

For each analysis (lateral and longitudinal) the eigenvalues, λ, are computed using a 

simple computer script.  Then, for each mode (short period for longitudinal stability, 

rolling, spiral and dutch roll for lateral stability) the values of ωn, ζ, and time to half (or 

double) are computed from equations 32 through 35. 

 

𝜆 = 𝑛 ± 𝑖𝜔                                                           (32)  

 

𝜔𝑛 = (𝜔2 + 𝑛2)
1

2⁄                                                    (33) 

 

𝜍 = −
𝑛

𝜔𝑛
                                                              (34) 

 

𝑡ℎ𝑎𝑙𝑓 𝑜𝑟 𝑡𝑑𝑜𝑢𝑏𝑙𝑒 =
0.693

|𝑛|
                                                 (35) 

 

The eigenvalues for each mode are used to develop transfer functions.  By definition, 

a transfer function is the ratio of output to inputs of a linear system and is expressed in the 

LaPlace transform variable, s.  The transfer functions are used in autopilot development to 
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determine the dynamic response characteristics of a system together with the associated 

control system and autopilot.  For oscillatory modes, the transfer functions take on the form 

shown in equation 36.   

𝐾

𝑠2+2𝜍𝑤𝑛+𝑤𝑛
2                                                            (36) 

 

In the above equation, the gain is defined by 𝐾/𝑤𝑛
2 and the transfer function is the 

denominator2.  It is in this capacity that the sensitivity to the damping derivative accuracy 

becomes apparent.   

For non-oscillatory modes, such as those typically seen in the lateral stability 

analysis, there is clearly no natural frequency to measure.  In the case of these modes, it is 

the time constant, T, that is of primary interest2,23.  This value is defined as the negative 

inverse of the corresponding eigenvalue and is a measure of how quickly the system 

responds to an input.  A smaller time constant will respond faster to a given disturbance.  

In other words, a heavily damped system should have a very low time constant.  Again, the 

basic finner missile was used as a test case due to the amount of data available in the 

literature.   

4.2.1 Lateral Stability Analysis of a Generic Missile 

As previously mentioned, the generic configuration analyzed for this sensitivity study 

was the basic finner missile.  Unlike with the acceleration analysis, a considerable amount 

of aerodynamic data is needed to perform the complete matrix analysis of the airframe.  

These aerodynamic coefficients were obtained from Missile Datcom.  Table 3 lists the 

aerodynamic coefficients used for the analysis. 
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Table 3. Lateral Aerodynamics of the Basic Finner 

Mach Clβ Clp Clr Cnβ Cnp Cnr Cyβ Cyp Cyr 

0.25 0.0 -25.9 0.0 30.573 0.0 -361.8 -12.7683 0.0 106.0 

0.5 0.0 -26.8 0.0 31.91 0.0 -374.6 -13.1186 0.0 107.4 

0.8 0.0 -28.7 0.0 36.24 0.0 -408.2 -14.3481 0.0 116.16 

1.25 0.0 -35.1 0.0 47.67 0.0 -575.5 -17.2151 0.0 143.181 

2.0 0.0 -19.6 0.0 17.19 0.0 -364.4 -10.6225 0.0 88.819 

 

Analysis of the lateral stability matrix showed no variation on the dutch roll or spiral 

modes of the vehicle.  This trend resembles results in literature that indicate the Clp will 

have a noticeable impact on the rolling mode only2,23.  The rolling mode time constant for 

variations in Clp are shown in figure 14.  As Clp decreases toward 0 (i.e. no damping), the 

time constant begins to increase exponentially.  The plots have been limited to a Clp of -10 

in order to permit easier visual analysis.  The system is most sensitive at low Mach 

numbers, as evidence by the larger variations in time constant at the lower Mach numbers.  

At Mach 0.25, a deviation of 20 percent in the predicted Clp can result in a 10 second change 

in the time constant.  At Mach 0.5, the same deviation results in an approximate 8 second 

change, while at Mach 2 the difference is on the order of 2 seconds.   
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Figure 14. Basic Finner Rolling Mode Time Constant Variation with Clp 

 

4.2.2 Longitudinal Stability Analysis of a Generic Missile 

The aerodynamic properties used to conduct the analysis of the basic finner are shown 

in table 4.  These are identical to the values used in the previous linear analysis, with the 

addition of CLα and CD0, which are necessary to complete the short period stability matrix 

analysis. 

 

Table 4.  Basic Finner Longitudinal Aerodynamics 

Mach Cmα 𝐶𝑚�̇� Cmq CLα CD0 

0.25 -24.735 -32.276 -277.3 12.925 0.228 

0.5 -25.887 -30.7 -289.918 13.269 0.1991 

0.8 -29.500 -28.739 -318.145 14.467 0.2375 

1.25 -39.138 -18.224 -464.669 17.283 0.5641 

2.0 -11.75 -13.47 -304.992 10.5908 0.4127 
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Figures 15 and 16 indicate that there is essentially no variation in the short period 

mode characteristics with variations in Cmq for this configuration.  There is slight variation 

in the damping ratio resulting from the variation in the damping term, but overall, this is a 

very small change and has no appreciable effect on any of the periodic qualities of the 

mode. 

 

 

Figure 15. Undamped Natural Frequency Variation with Cmq 
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Figure 16. Damping Ratio Variation with Cmq 

 

The results of varying 𝐶𝑚�̇�for this configuration are shown in figures 17 and 18.  As 

with the Cmq variations, the changes are negligible. The damping ratio shows even less 

variation than what was noted with changing Cmq.  This effect is to be expected if the short 

period equations are examined closely.  The 𝐶𝑚�̇� term appears only as an additive value to 

Cmq.  The Cmq term however, appears as a single term in the matrix.  This coupled with the 

fact that 𝐶𝑚�̇�is approximately an order of magnitude smaller than Cmq leads to the 

reasonable conclusion that 𝐶𝑚�̇�should have less of an effect on the mode characteristics 

than Cmq.  
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Figure 17. Undamped Natural Frequency Variation with 𝑪𝒎�̇� 

 

 

 

Figure 18. Damping Ratio Variation with 𝑪𝒎�̇� 
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It should be noted that the results presented in this section apply only to the missile 

configuration presented.  As such, it may be difficult to generalize the significance of the 

results.  It is also noted that this configuration consists only of a body an aft mounted tail.  

These facts make it a highly stable configuration, and as such, it is expected to be heavily 

damped in the pitch plane.  One would expect that a more unstable configuration or one 

with less inertia in the pitch plane would exhibit more sensitivity to accuracies in pitch 

damping. However, the results presented in this section indicate that a sensitivity analysis 

performed prior to the calculation of the damping derivatives can drive the engineer to a 

suitable prediction code.  A high fidelity CFD code is simply not necessary for the 

computation of a value that has minimal impact on the overall performance of a system.    

The results in this section also confirm the need for methodologies to compute the 

damping characteristics of a variety of configurations.  The exact importance of a given 

derivative is highly configuration dependent as evidenced by the effects of inertia on the 

basic finner system.  It should also be noted that the analysis done in this section focused 

on a One Factor at a Time (OFAT) sensitivity analysis.  This approach is computationally 

fast and gives a good overview of the relative sensitivities.  However, it does not provide 

a complete analysis of all interactions.  To obtain this information, a complete design of 

experiments (DOE) approach would be valuable but is outside the scope of this effort.   
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5 Development of Prediction Methods 

This section describes the methodologies developed within this work to predict the 

pitch and roll damping characteristics of arbitrary flight vehicle configurations.  This work 

represents novel approaches to the currently available techniques in order to expeditiously 

calculate the damping derivative terms while maintaining or increasing accuracy of the 

currently available semi-empirical or theoretical approaches.   

5.1 Modified Slender Body Theory 

The work of Ericsson40-43 has been fundamental in understanding the longitudinal 

damping terms.  Most of his work was centered on developing a rapid method for 

computing the pitch damping on both ballistic missiles and the Space Shuttle Orbiter. 

Ericsson uses a body build-up type approach whereby the body and fins may be analyzed 

separately if so desired.  The approach he uses is also tailored to the speed regime in which 

he is operating.  Several of his approaches centered on modifying slender body theory and 

this work further expands slender body theory.   

The method presented in this section develops another version of modified slender 

body theory.  In calculating the body pitch damping at subsonic Mach numbers, Ericcson 

utilized a modified form of slender wing (or body theory) to account for variations in Mach 

number.  As it was developed from a delta wing configuration, it was titled slender wing 

theory in various references43,43. In practice, the method derived by Bryson26 is applicable 

to both slender wings and bodies, thus the terms may be used interchangeably. The method 

described in the following section further improves the overall development of the method.   

5.1.1 Development of Mach Correlation 

Per slender wing theory the pitch damping sum can be defined as in equation 

37.25,42,43 
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𝐶𝑚�̇� = −2𝐶𝑁𝛼𝑐𝑜𝑠𝛼 (
𝑙

𝐷
)
2

(√𝐾𝑚 −
𝑋𝑐𝑔

𝑙
)
2

                      (37) 

Again, a factor of two is added to account for proper normalization.  The term KM is a 

Mach correction factor that is empirically derived.  If KM is equal to 1, the results of Bryson 

would be obtained.  The slender body CNα must also be modified with this Mach correction 

factor.  Rewriting the above equation with the sonic value of CNα yields the results in 

equations 38 and 39.   

𝐶𝑁𝛼 = 𝐾𝑚(𝐶𝑁𝛼)𝑆𝐵 = 2𝐾𝑚                                        (38) 

 

𝐶𝑚�̇� = −4𝐾𝑚𝑐𝑜𝑠𝛼 (
𝑙

𝐷
)
2

(√𝐾𝑚 −
𝑋𝑐𝑔

𝑙
)
2

                            (39) 

 

The term Km is empirically derived from body alone data.  In equation 40, Ericsson derived 

the subsonic correlation to be43   

 

Km = (1-0.23β2)                                                         (40) 

 

 There was no information provided on the lengths or characteristics of the bodies used to 

derive this correlation.   

Equation 40 is valid only for subsonic Mach numbers.  However, slender body theory 

is actually Mach number independent as seen in previous sections.  It stands to reason, 

then, that an empirical correlation could be developed for supersonic flow in much the 

same way as Ericsson’s subsonic approach. Equation 41 was used as a starting point for 

the methodology developed in this work. 

 

𝐶𝑚�̇� = −2(𝐶𝑁𝛼)𝑆𝐵𝐾𝑚𝐾𝐸𝑐𝑜𝑠𝛼 (
𝑙

𝐷
)
2

(√𝐾𝑚 −
𝑋𝑐𝑔

𝑙
)
2

=

−4𝐾𝑚𝐾𝐸𝑐𝑜𝑠𝛼 (
𝑙

𝐷
)
2

(√𝐾𝑚 −
𝑋𝑐𝑔

𝑙
)
2
                                       (41) 

 

The Mach correlation factor needed to be derived from available supersonic body 

alone data.  To derive the supersonic correlation, experimental data on a variety of bodies 

of revolution was used44.  This database contains wind tunnel data of various circular 
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bodies at subsonic and supersonic Mach numbers and is more extensive than the data used 

in previous efforts.  To obtain the correlation, the value of Cnα was calculated for bodies of 

varying length and nose shape as a function of Mach number as shown in Figures 19 and 

20.  The data for each body was curve fit so that the value at β=0 (or M=1) was 2 to satisfy 

the slender body theory requirements.   

 

 

 
 

Figure 19. 7 Caliber Centerbody Curve Fits 
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Figure 20. 9 Caliber Centerbody Curve Fits 

 

In the above analysis, Mach number was limited to 3.  As higher Mach numbers were 

included, it was increasingly difficult to obtain reasonable curve fits.  This observed Mach 

limit appears to fall in line with Ericsson’s analysis that stated the slender wing Mach 

number limit was approximately 2.840-43.  Averaging all of the equations above, with the 

removal of the maximum presented value, the following correlation is determined.   

 

𝐾𝑚 = −0.13006𝛽2 + 0.5627𝛽 + 1                                  (42) 

 

5.1.2 Development of Empirical Correlation 

As all but the basic slender body theory (Bryson’s approach) are semi-empirical in 

nature it is not unrealistic that a correction factor would be required with the current 

modified approach.  For this work, an empirical correction factor, KE, was included in 

equation 41 as a possible means for improving the results from this method.  By using 
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equations 41 and 42 to calculate 𝐶𝑚�̇� for several configurations, it was determined that a 

correction factor of 0.5 yielded the best results.  Figure 21 shows an example 7 caliber body 

with multiple correction factors applied at several CG locations.  
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MRP=3.25 calibers 

 

MRP=4.036 calibers 

 

MRP=4.818 calibers 

 

Figure 21.  KE Values Determined from a 7 Caliber Body 
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From Figure 21, it is clear that the results are sensitive to shifts in the CG location.  

More explicitly, the sensitivity appears to be to the distance between the body volume 

centroid and the CG.  This appears consistent with the derivation of the individual pitch 

damping terms in the ESDU reference45.  In that derivation, both terms contain the 

difference, XVC-XCG, although the term drops when the sum is calculated.  While a 

correction factor of 0.5 appears to be a good compromise amongst the data presented in 

figure 5, a more accurate solution would be to determine the correction factor as a function 

of the distance between the CG and the volume centroid.   

The empirical correlation factors were calculated for several Army Navy Spinner 

Rocket (ANSR)46 configurations, shown in figure 22.  Each of the three bodies had three 

CG locations, for a total of nine points.  The determined correlation factors were plotted 

against the value (𝑋𝑣𝑐 − 𝑋𝑐𝑔) 𝐷⁄  and the results were nearly linear in nature as shown in 

Figure 23.  A linear curve fit was applied, resulting in equation 43. 

 

𝐾𝐸 = −0.097
𝑋𝑣𝑐−𝑋𝑐𝑔

𝐷
+ 0.4404                                        (43) 
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Figure 22. ANSR Configurations46 

 

 

 

Figure 23. KE as a Function of Xcg Location 
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Unlike the Mach correlation factor, this empirical factor was developed with a very 

limited data set.  As a result, this should not be taken as the final form of the equation.  

However, lack of experimental data makes it difficult to obtain more certain forms of the 

equation.  Another point of interest in this development was the dependence of KE on the 

length of the body.  As body length increased, there was less variation in KE as a function 

of (𝑋𝑉𝐶 − 𝑋𝐶𝐺) 𝐷⁄ .  This trend is evident in Figure 24.  The data points are identical to 

Figure 23 but they have been separated by body length.  Over the CG ranges for the bodies, 

the KE values for the 5 caliber configuration varies by approximate 0.2 while the values 

for the 9 caliber configuration vary by approximately 0.13.  This seems to indicate that as 

the body becomes sufficiently long, it is not necessary to present KE as a function of XCG 

location.  Due to the lack of data, it is not possible to determine where this break point will 

occur.  As a result, the two forms of KE presented in this section will be utilized in the 

following section.  This will result in the equations 44 and 45 for 𝐶𝑀�̇�. 

 

𝐶𝑚�̇� = −2𝐾𝑚𝑎𝑐𝑜𝑠𝛼 (
𝑙

𝑑
)
2

(√𝐾𝑚𝑎 −
𝑋𝑐𝑔

𝑙
)
2
    (𝑓𝑜𝑟 𝐾𝐸 = 0.5)         (44) 

 

𝐶𝑚�̇� = −4𝐾𝑚𝑎(−0.097
𝑋𝑣𝑐−𝑋𝑐𝑔

𝐷
+ 0.4404)𝑐𝑜𝑠𝛼 (

𝑙

𝑑
)
2

(√𝐾𝑚𝑎 −
𝑋𝑐𝑔

𝑙
)
2
   (45)      
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Figure 24.  KE Variation with Body Length 

 

Since CNα was calculated from slopes at low angles of attack, the results are valid 

only at low angles of attack.  However, future efforts will examine ways to obtain the high 

angle of attack pitch damping terms. Comparisons with experimental data are presented in 

the following section.   

5.2 Evvard’s Theory 

Evvard’s theory, as it is referred to in modern representations of the theory, is an 

extremely powerful, but often overlooked, means of calculating the loading on a supersonic 

lifting surface47-56.  It is a purely theoretical approach based on the supersonic, linearized 

potential flow equations.  In its original form, the theory is impractical for use in the 

calculation of damping derivatives for realistic configurations including wings and bodies.  

This is due to the fact that the theory does not account for the wing body junction.  Although 

several efforts have been made to reduce Evvard’s theory to simplified equations for 

standard wing shapes, this again limits the use for arbitrary configurations.  This section 

details the updates and advancements made to Evvard’s theory to develop and expand its 
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applicability to arbitrary wing body configurations while maintaining efficient 

calculations.   

Evvard’s theory makes use of the Mach lines that divide a thin supersonic wing into 

sections, as shown in figure 25.  In each region, the velocity potential can be determined 

as a constant function of the x and y locations on the surface.   

 

 

 

 

 

 

 

 

Supersonic Leading Edges 

 

 

Subsonic Leading Edges 

 

Figure 25.  Mach Line Divisions 

 

Evvard’s theory represents a potential flow solution for a point source distribution 

over a thin, planar wing in supersonic flow.  The initial method has been extended by 

several researchers to account for varying wing shapes and flow conditions49-58.  These 

flow conditions include steady angle of attack, steady changes in angle of attack (�̇�), steady 

pitching (q), and steady rolling (p).  Many researchers have used Evvard’s theory to 

develop exact equations for roll and pitch damping on various wing shapes.  However, 

there are inherent difficulties with using the method in these formats.  The most obvious 

1 

2 
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issue is that the equations are developed for very specific geometries thereby limiting their 

use for generic wing planform designs.  Additionally, Evvard’s theory is derived for a wing 

joined at the centerline.  This makes it difficult, if not impossible, to use the exact equations 

for the practical problem of a wing in the presence of a body.  This is due to a Mach line 

emanating from the wing body joint rather than the centerline of the wing alone system.  

Finally, visual observation shows that the equations are lengthy and cumbersome.  

Therefore, a more generic form of Evvard’s equations where the aerodynamic coefficients 

are calculated from the pressure coefficient has been developed as a more practical and 

efficient use of the methodology.   

In this theory, the wings are covered with a point source distribution5 that prevents 

flow from passing through the wing.   From this source distribution, the velocity potential 

at any point on the wing can be determined. From this potential, it is then possible to 

calculate the differential pressure on the wing from equation 4653,54. 

  

∆𝐶𝑝 =
4

𝑉∞

𝜕𝜑

𝜕𝑥
                                                             (46) 

 

The differential pressure represents the difference in loading between the upper and 

lower surfaces of the thin wing and is a function only of the single flow type that is being 

considered (i.e. p, q, α, etc).  A separate ΔCp can be determined for each type of motion a 

wing is undergoing at a given instant.  Previous research53,54 has shown that the contribution 

from each type of motion can be summed to get the total loading on the fin. In other words, 

the pressure coefficient can be written as in equation 47.   

 

∆𝐶𝑝 = ∆𝐶𝑝|𝛼 + ∆𝐶𝑝|𝑝 + ∆𝐶𝑝|𝑞 + ∆𝐶𝑝|�̇� + ⋯                             (47) 

 

It is evident from this equation that this is a viable means for computing the damping 

derivatives that are of interest in this work.  Since a given motion does not affect any other 

terms, it is possible to isolate the effect of the desired motion. 

Because Evvard’s theory is concerned with supersonic flow, only the portion of the 

wing in the upstream running Mach cone can affect any particular control point.  Figure 26 
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illustrates the Mach cone emanating from a control point and the shaded region represents 

the area that can affect the loading at the control point. Points behind the Mach cone are 

contained in the zone of silence and therefore do not affect the loading at the control point. 

 

Figure 26. Schematic of Region of Influence for an Arbitrary Control Point53 

 

5.2.1 Roll Damping 

In order to determine the roll damping coefficient using Evvard’s theory, it is 

necessary to define the differential pressure coefficient due to a rolling motion.  From this 

value, it is then possible to calculate the roll damping coefficient from the following 

equation. 

 

𝐶𝑙𝑝 =
1

𝑆𝑑(
𝑝𝑑

2𝑉⁄ )
∬ Δ𝐶𝑝,𝑝𝑦𝑑𝑥𝑑𝑦                                    (48) 

 

Note that in equation 48, ΔCp,p represents the differential pressure coefficient due 

only to the rolling motion.  A closed form equation for each region of the wing as divided 

by the Mach lines has been developed by various researchers.  The equations for the 

supersonic leading edge and subsonic leading edge divisions are shown in tables 5 and 6, 

respectively.  These equations have been developed from the original theory into a 

formulation that is practical for an engineering level prediction.   

 

X

Y

0      0
X , Y
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Table 5.  Differential Pressure Equations Due to Rolling Motion, Supersonic 

Leading Edge53 

 

Region ΔCp 

1 4𝑝𝑚2𝑥(𝛽2𝑚2𝜐−1)

𝑉(𝛽2𝑚2−1)
3

2⁄
                                          (49) 

2 4𝑝𝑚2𝑥

𝜋𝑉(𝛽2𝑚2−1)
3

2⁄
[(1 + 𝛽𝑚𝜈) cos−1 (1+𝛽𝑚𝜈)

𝛽𝑚(1+𝜈)
− (1 −

𝛽𝑚𝜈) cos−1 (1−𝛽𝑚𝜈)

𝛽𝑚(1−𝜈)
] (50) 

3 4𝑝𝑚2𝑥(𝛽2𝑚2𝜐−1)

𝑉(𝛽2𝑚2−1)
3

2⁄
+

4𝑝𝑚2𝑥(𝛽𝑚𝜈−1)

𝜋𝑉(𝛽2𝑚2−1)
3

2⁄
{(𝑚𝑥𝑎 − 𝛽𝑚𝑦𝑎 −

𝑏

2
(1 −

𝛽𝑚𝜈) cos−1 𝑚𝑥𝑎−𝑦𝑎(1−2𝛽𝑚)+𝑏

𝑚𝑥𝑎+𝑦𝑎+𝑏
−

2𝛽𝑚√−𝑦𝑎(𝛽𝑚 − 1)(𝑚𝑥𝑎 + 𝛽𝑚𝑦𝑎 + 𝑏)}     (51) 

4 4𝑝𝑚2𝑥

𝜋𝑉(𝛽2𝑚2−1)
3

2⁄
[(1 + 𝛽𝑚𝜈) cos−1 (1+𝛽𝑚𝜈)

𝛽𝑚(1+𝜈)
− (1 −

𝛽𝑚𝜈) cos−1 (1−𝛽𝑚𝜈)

𝛽𝑚(1−𝜈)
] +

4𝑝𝑚2𝑥(𝛽𝑚𝜈−1)

𝜋𝑉(𝛽2𝑚2−1)
3

2⁄
{(𝑚𝑥𝑎 − 𝛽𝑚𝑦𝑎 −

𝑏

2
(1 −

𝛽𝑚𝜈) cos−1 −[𝑚𝑥𝑎+(2𝛽𝑚+1)]

𝑚𝑥𝑎−𝑦𝑎
− 2𝛽𝑚√−𝑚𝑦𝑎(𝑥𝑎 + 𝛽𝑦𝑎 + 𝑏)}                         

(52) 

5 4𝑝𝑚2𝑥

𝜋𝑉(𝛽2𝑚2−1)
3

2⁄
{[𝑚𝑥𝑎 + 𝛽2𝑚2𝑦𝑎 +

𝑏

2
(𝛽2𝑚2 +

1)] cos−1 𝑚𝑥𝑎−𝑦𝑎(1−2𝛽𝑚)+𝑏

𝑚𝑥𝑎+𝑦𝑎+𝑏
−

2𝛽𝑚√−𝑦𝑎(𝛽𝑚 − 1)(𝑚𝑥𝑎 + 𝛽𝑚𝑦𝑎 + 𝑏)}                      (53) 
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Table 6.  Differential Pressure Equations Due to Rolling Motion, Subsonic Leading 

Edge53 

Region ΔCp 

1 2𝑝𝜃2

𝑉
(

𝑥𝜈

√1−𝜈2
)

2(1−𝑚2)

(2−𝑚2)−𝑚2
                           (54) 

2 

−
8𝑝

𝑉𝜋
[
𝜃[3𝜃𝑥+𝑦(1−2𝑚)−

𝑏

2
(1+𝑚)]√

𝑏

2
−𝑦

3(1+𝑚)√𝑥+𝑦)(1+𝑚)
]                (55) 

 

Equations 49 through 55 neglect one important contribution to the wing loading – the 

body carryover load.  Although the roll loading on the body itself is considered 

insignificant for the roll loads commonly experienced by missiles, the body still imparts a 

load to the wing that must be considered.  The basic forms of Evvard’s theory do not 

account for the presence of the body as they were developed for wings alone.  However, 

other researchers have developed methods to handle the wing body carry-over by 

modifying the source distribution at the body. In particular, Tucker and Piland28 have 

developed an alteration to the region 2 pressure loading when the wing is in the presence 

of the body. However, this distribution has not previously been used to approximate the 

roll damping derivatives in a practical manner.   To apply their alteration the following 

equation is used for control points in region 2 in place of the equation 50. 

 

∆𝐶𝑝 =
4𝑝

𝜋𝑉
[(2

𝑟𝑏

ℎ
− 1)

√𝑥2−𝛽2𝑦2

𝛽2−𝑘2
+

√𝑥2−𝛽2𝑦2

𝛽2−𝑘2
+

𝑎

√𝛽2−𝑘2
[cos−1 kx−β

2y

𝛽(𝑥−𝑘𝑦)
+

cos−1 kx+β
2y

𝛽(𝑥+𝑘𝑦)
] +

𝛽2𝑦−𝑘𝑥

(𝛽2−𝑘2)
3

2⁄
cos−1 kx−β

2y

𝛽(𝑥−𝑘𝑦)
− (2

𝑟𝑏

ℎ
− 1)

𝛽2𝑦+𝑘𝑥

(𝛽2−𝑘2)
3

2⁄
cos−1 kx+β

2y

𝛽(𝑥+𝑘𝑦)
] (56) 

 

 

𝑘 = tan Λ                                                (57) 

 

ℎ = 𝐶𝑟 tan 𝜇 + 𝑟𝑏                                           (58) 
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The value of h in the above equation is the distance from the body centerline to the 

point where the root chord Mach line crosses the trailing edge.  Using this carryover 

estimation places another restriction on the use of Evvard’s theory for roll damping.   In 

this case, the root chord Mach line may not intersect the tip chord. It must cross the trailing 

edge at some point along the span.  Although this carryover equation was developed for 

rectangular and triangular wings, there is no limitation for its use with arbitrary planforms 

provided this restriction is met.  The results of this usage are shown in subsequent sections.   

5.2.2 Pitch Damping Due to Pitch Rate 

Two terms contribute to the overall pitch damping of a vehicle: the damping due to a 

pitch rate and the damping due to a rate of change in angle of attack.  By altering the 

boundary conditions, Evvard’s theory is capable of modeling both terms of the pitch 

damping coefficient.  The equations presented are limited to fins with straight tips and 

Mach numbers that divide the wing into no more than 4 sections.  Carryover loading from 

the body to the wing is not considered in these equations.   

The pitch damping due to a pitch rate is defined equation 59. 

 

𝐶𝑚𝑞 = −
1

𝑞𝑐

2𝑣
𝑆𝑐

∬ 𝑥Δ𝐶𝑝𝑑𝑥𝑑𝑦
𝑆

                                                (59)  

 

As with the roll damping coefficient, Evvard’s theory defines the change in pressure 

coefficient due to the pitch rate – not the actual pitch damping term.  The actual value of 

ΔCp varies depending on the location of the wing.  Table 7 defines the values of ΔCp based 

on the region of the wing for a supersonic leading edge.  Subsonic leading edges are not 

considered for the pitch damping as no experimental data exists to verify the results.  

Additionally, alternate computational approaches are not of sufficient accuracy to verify a 

new method.   

 

 

 

 



 57 

 

Table 7. Pressure Coefficient Due to a Pitching Rate57 

Region ΔCp 

1 
2𝑞

𝑉(𝛽2𝑚2−1)
3

2⁄
[2𝑚𝑥(𝛽2𝑚2 − 2) + 2𝑦]                    (60) 

2 4𝑞

𝜋𝑉
{
2𝑚√𝑥2−𝛽2𝑦2

𝛽2𝑚2−1
+

2𝑚𝑥(𝛽2𝑚2−2)−2𝑦

2(𝛽2𝑚2−1)
3

2⁄
cos−1 𝑥+𝛽2𝑚𝑦

𝛽𝑚𝑥+𝛽𝑦
+

2𝑚𝑥(𝛽2𝑚2−2)+2𝑦

2(𝛽2𝑚2−1)
3

2⁄
cos−1 𝑥−𝛽2𝑚𝑦

𝛽𝑚𝑥−𝛽𝑦
}               (61) 

3 4𝑞

𝜋𝑉
[
2𝑚𝑥𝑎(𝛽2𝑚2−2)+2𝑦𝑎+𝑏(𝛽2𝑚2−1)

2(𝛽2𝑚2−1)
3

2⁄
cos−1 𝑚𝑥𝑎+(2𝛽𝑚+1)𝑦𝑎

𝑚𝑥𝑎−𝑦𝑎
−

2(1+𝛽𝑚−𝛽2𝑚2)

𝛽2𝑚2−1
√

−𝑚𝑦𝑎(𝑥𝑎+𝛽𝑦𝑎)

𝛽𝑚−1
]             (62) 

4 
2𝑞

2𝑉
{

2𝑚𝑥𝑎(𝛽2𝑚2−2)+2𝑦𝑎+𝑏(𝛽2𝑚2−1)

2(𝛽2𝑚2−1)
3

2⁄
[cos−1 𝑚𝑥𝑎+(2𝛽𝑚+1)𝑦𝑎

𝑚𝑥𝑎−𝑦𝑎
−

cos−1
−𝑚𝑥𝑎+𝛽2𝑚2𝑦𝑎+

𝑏

2
(𝛽2𝑚2−1)

𝛽𝑚(𝑚𝑥𝑎−𝑦𝑎)
] −

2(1+𝛽𝑚−𝛽2𝑚2)

𝛽2𝑚2−1
√

−𝑚𝑦𝑎(𝑥𝑎+𝛽𝑦𝑎)

𝛽𝑚−1
+

2√(𝑚𝑥𝑎+
𝑏

2
)
2
−𝛽2𝑚2(𝑦𝑎+

𝑏

2
)
2

𝛽2𝑚2−1
+

2𝑚𝑥𝑎(𝛽2𝑚2−2)−2𝑦𝑎+𝑏(𝛽2𝑚2−3)

2(𝛽2𝑚2−1)
3

2⁄
cos−1

𝑚𝑥𝑎+𝛽2𝑚2𝑦𝑎+
𝑏

2
(𝛽𝑚+1)

𝛽𝑚(𝑚𝑥𝑎+𝑦𝑎+𝑏)
  } (63) 

  

5.2.3 Pitch Damping Due to Change in Angle of Attack  

The pitch damping due to the rate of change in angle of attack is defined as follows 

in equation 64.   

𝐶𝑚�̇� = −
1

�̇�𝑐

2𝑣
𝑆𝑐

∬ 𝑥Δ𝐶𝑝𝑑𝑥𝑑𝑦
𝑆

                                 (64) 

The change in pressure coefficient due to a rate of change in angle of attack is defined 

as follows in table 8.  Again, these equations have been modified from the original in order 

to allow practical application of the theory. 
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Table 8.  Pressure Coefficient Due to a Rate of Change in Angle of Attack58 

Region ΔCp 

1 −
4�̇�(𝑚𝑥−𝑦)(𝑚2+1)

𝑉(𝛽2𝑚2−1)
3

2⁄
                                     (65) 

2 
4�̇�

𝑉𝛽2𝜋(𝛽2𝑚2−1)
3

2⁄
{2𝑀2𝑚√(𝑥2 − 𝛽2𝑦2)(𝛽2𝑚2 − 1) −

𝛽2(𝑚2 + 1) [(𝑚𝑥 + 1) cos−1 𝑥+𝛽2𝑚𝑦

𝛽(𝑚𝑥+𝑦)
+ (𝑚𝑥 −

𝑦) cos−1 𝑥−𝛽2𝑚𝑦

𝛽(𝑚𝑥−𝑦)
]}                          (66) 

3 
4�̇�

𝑉𝛽2𝜋(𝛽2𝑚2−1)
3

2⁄
{[𝛽(𝛽2𝑚2 − 𝛽𝑚 − 1) −

𝑚]√(𝑏 − 2𝑦)(𝛽𝑚 + 1)[2𝑚(𝑥 + 𝛽𝑦) − 𝑏(𝛽𝑚 + 1)] −

𝛽(𝑚𝑥 − 𝑦)(𝑚2 + 1) cos−1 𝑚𝑥−𝑏(𝛽𝑚+1)+𝑦(2𝛽𝑚+1)

𝑚𝑥−𝑦
}       (67) 

4 ∑(𝑟𝑒𝑔𝑖𝑜𝑛 2 + 𝑟𝑒𝑔𝑖𝑜𝑛 3 − 𝑟𝑒𝑔𝑖𝑜𝑛 1)            (68) 

  

As noted in the previous section, subsonic leading edges are again not examined.  In 

addition to the lack of comparative data, the sensitivity analysis presented in previous 

sections indicates a lack of relevancy for the majority of applications.  Instead, these 

equations are presented for reference.   

5.2.4 Practical Application of Evvard’s Theory 

The ability to use Evvard’s theory on arbitrary wing shapes for body wing 

configurations is the crux of the work done under this effort.  Direct application of Evvard’s 

theory requires that the wings are separate panels joined at the root chord47,48.  The resulting 

Mach lines will originate from the apex of the wing junction.  However, for most missile 

and aircraft configurations, the wings are not joined at the centerline and Mach lines 

originate from the wing body junction.  This means that the wing must be extended into 

the body as shown in Figure 2753,54.  Points that are contained within the body diameter are 

given a pressure loading of zero so that they do not affect the overall loading the fins.  

However, the Mach lines will emanate from this joint at the center line of the body.  As a 

result, for certain configurations, the discrepancy in the theoretical versus actual Mach lines 
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may significantly alter the loading.  This discrepancy may be alleviated if the wing is 

extended into the body but the Mach lines are shifted to the wing body junction. An 

example is shown in Figure 28 for the basic finner wing.   This essentially treats the wing 

itself as a single panel, but utilizes the coordinate system with the origin along the body 

centerline.  This distinction is important for the determination of the proper value of the y 

coordinate.  In particular, the roll loading varies with distance from the roll axis, in this 

case the body centerline, the y coordinates on the wing must originate from that point.    

 

 

 

 

Figure 27. Fin Extension into the Body 
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Mach Lines originating at wing body juncture 

 
Mach Lines originating at the body centerline 

 

Figure 28.  Mach Line Orientations 
 

To apply Evvard’s theory, a wing semi-span is divided into discrete panels with a 

control point located in each panel.  The region in which a control point resides must be 

determined so that the proper pressure loading equation is utilized.  This is done by defining 

the following variables, with y originating at the body centerline. Equations 69-71 define 

the Mach line locations at each chordwise (x) location on the fin.   

 

𝑥1 = (𝑦 − 𝑟𝑏)𝛽                                                       (69) 

 

𝑥2 = tanΛ + 𝛽(1 − 𝑦)                                                (70) 

 

𝑥3 = 𝛽(2 − 𝑦 − 𝑟𝑏)                                                    (71) 

 

Next, equations 72-76 are used to determine which region a control point is in based 

on the x location of the control point.  This setup is shown graphically in Fig. 2959. 

 

Region 1:  x < x1 and x < x2                                          (72) 

 

Region 2: x > x1 and  x < x2                                         (73) 

 

Region 3: x > x2 and  x < x1                                         (74) 

 

Region 4: x > x1 and  x > x2 and x < x3                          (75) 
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Region 5: x > x3                                                   (76) 

 

 

  

Figure 29. Control Point Determination 

 

With proper region determined, the value of ∆𝐶𝑝 is calculated using the equations in 

Table 5.  The values of ∆𝐶𝑝 are summed over the entire wing and the process is repeated 

for all wing in a given fin set.  The value of roll damping is then calculated from the 

following equation. 

 

𝐶𝑙𝑝 =
𝑉𝑏

4𝑝
∑ ∑

∆𝐶𝑝∗𝑑𝑎∗𝑦

𝑠𝑟𝑒𝑓∗𝑑

𝑛𝑓𝑖𝑛𝑠
1                                                (77) 

 

In the above equation, da refers to the incremental area of the panel in which a control 

point is located.  It should be noted that the Evvard equations derive∆𝐶𝑝 and thus Clp as a 

function of the wing span.  This effort converts the value of Clp to be normalized by the 

reference length as is common in missile configurations.   

5.3 Angle of Attack Effects 

The methods developed in this effort has been limited strictly to zero angle of attack.  

In practicality, the results presented would be valid at low angles of attack in order to 

adhere to the principles of potential flow.  It is noted that the equations presented are not 
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functions of angle of attack due to this linear assumption.  Additionally, the driving 

principle behind Evvard’s theory is the fact that angle of attack effects can be separated 

from the effects induced by motion, as shown in equation 47.  As a result, according to 

Evvard’s theory, the damping terms are not functions of angle of attack. For the purpose 

of most missile flight, the high angles of attack presented are not necessary and the results 

may be of questionable importance.   

This fact however, does not mean that damping derivatives are not functions of angle 

of attack.  There has been recent work done in the area of high angle attack and non-linear 

damping derivatives presented by Moore60,61.  Moore used two approaches to improve the 

non-linear, or high angle of attack, methods for both pitch and roll damping in his 

Aeroprediction code.  The first was to improve the linear zero angle of attack predictions 

of both static and dynamic aerodynamics already inherent in the code by using new 

experimental data to improve the empirical methods.  The second was to develop a 

correlation between the zero angle of attack damping derivatives and limited high angle of 

attack data.  These methods are strictly empirical and have not been thoroughly validated 

as noted by Moore himself.    Figures 30 and 31 illustrate the work of Moore and the limited 

datasets available for correlation.   

 

 

Figure 30.  Updated Rolling Damping Calculations by Moore60 
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Figure 31.  Updated Pitch Damping Calculations by Moore61 
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6 Verification and Discussion 

Previous sections have presented standard and newly developed methodologies for 

calculating the supersonic pitch and roll damping derivatives for arbitrary body, wing, and 

wing and body combinations.  The follow section compares the results from these 

methodologies with experimental data and/or other available approaches.  Available 

supersonic pitch damping data is extremely limited.  The basic finner and modified basic 

finner encompass most of the available data; however, the data is at angles of attack and 

Mach numbers beyond the scope of this effort.    

6.1 Body Alone Verification 

The five caliber ANSR consists of a two caliber secant ogive with a 3 caliber 

cylindrical body.  This is clearly not a slender body, however, it was used as a test case 

since there is a limited amount of data available. The results are shown in Figures 32 and 

33.  Experimental and CFD results were obtained from Park62 for Mach numbers 1.8 and 

2.5 at three discrete moment reference point locations.  The ESDU results were obtained 

directly from the reference45 for this configuration though the moment reference points are 

slightly different.  The ESDU results provide the best match to the CFD and experimental 

results.  This is to be expected as this modification of slender body theory was developed 

for bodies of this size.  Basic Slender body theory provides the worst approximation, while 

Datcom6 and the current effort improve the basic theory.  The value of KE greatly impacts 

the current method though one is not necessarily an improvement over the other.  Datcom 

typically provides a better estimate than either of the KE approaches.  This is likely due to 

the value of KM being developed for longer bodies.  If shorter configurations were 

considered, the current approach(es) may show better accuracy. The lack of verifiable data 

for shorter configurations precluded such analysis.   
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Figure 32.  5 Caliber ANSR Results, Mach 1.8 

 

3  

 

Figure 33. 5 Caliber ANSR Results, Mach 2.5 
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The 7 caliber ANSR configuration is a 2 caliber secant ogive nose and a 5 caliber 

body.  Though still not a true slender body, it is a better representation than the previous 

configuration.  Experimental and CFD data was obtained from DeSpirito63.  Data was given 

as a function of Mach number for three different moment reference point locations:  3.25 

cal, 4.036 cal, and 4.818 cal aft of the nose.  Comparisons are presented in figures 34-36.  

ESDU results are not presented for the 3.25 caliber CG. location as the F1 correction factor 

was not defined by the reference.  Additionally, Datcom values of CNα are used for the 

ESDU computation at the other CG locations as it was not possible to obtain values from 

the reference.   

 It is clear from these results that the limitation of basic slender body theory lies in 

its Mach independency.  All of the modified slender body methods provide some degree 

of correction for Mach number variation.   The accuracy of each method is dependent on 

CG location and Mach number.   Unlike with the 5 caliber configuration, the ESDU 

approach is the worst approximation.  This is expected given the empirical correlations 

were developed for shorter bodies.  Datcom is typically within 20 percent of the 

experimental values, although that accuracy degrades with rearward shifts in CG location.  

Regardless of KE value, the accuracy of the current approach improves with rearward shift 

in the CG location.  At the center CG location, predictions are within 5 percent of the CFD 

data when KE values tied to the CG location is used.    Although there are some points that 

are slightly higher,  using a KE value tied to the CG location typically produces results 

within 10 percent of the experimental values while the constant  KE value is typically 

within 15 to 20 percent of experimental values.  
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Figure 34.  7 Caliber ANSR Results, XCG=3.25 Calibers Aft of Nose 

 

 

 

Figure 35.  7 Caliber ANSR results, XCG=4.036 Calibers Aft of Nose 
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Figure 36.  7 caliber ANSR Results, XCG=4.818 Calibers Aft of Nose 

 

The 9 caliber ANSR is a 2 caliber secant ogive with 7 caliber centerbody and is most 

typical of a slender body configuration.  Results are presented in figures 37 and 38 Again, 

experimental data was obtained from Park19.  ESDU results are not presented for this 

configuration as it is outside the range of the empirical correlations for that theory. For this 

configuration, the methods developed in this paper provide a significant improvement over 

both basic slender body theory and Missile Datcom.  Regardless of KE value, the current 

effort is within 10 percent of the experimental results.  Using a value of KE that varies with 

CG location provides an even better estimate.  The fact the current method works best for 

this configuration is not a surprise as it is closest to the body lengths used to develop Km.   
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Figure 37. 9 Caliber ANSR Results, Mach 1.8 

 

 

 

Figure 38.  9 Caliber ANSR Results, Mach 2.5 
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6.2 Complete Configuration Verification 

As with the individual component analysis, there is a limited amount of test data 

available for comparison.  It should be noted that the majority of the data is derived from 

historical wind tunnel data for which statistical analysis is not available of possible.  

Therefore, comparisons are presented only for roll damping as this is the most widely 

verified data set.   

 Basic Finner is a standard research configuration for which extensive test data 

exists34-39,64,65.  This makes it an ideal configuration for evaluating roll damping 

methodologies.  For the comparisons shown in this section, experimental results from 

references 68 and 69 were used.  Reference 64 provided roll damping uncertainties of ±2.5-

±3.5 percent for the data range considered and Mach number accuracy of ±1 percent.  Data 

uncertainty was not available for reference 65.  The slender body theory and Eastman30 

equations presented in Section 3 were used to obtain their representative curves.  In order 

to calculate the value of Clδ needed for the Eastman calculation, the 2011 version of Missile 

Datcom6 was used. A 5 degree roll deflection was applied to each fin and the value of Clδ 

was obtained using the following equation. 

 

𝐶𝑙𝛿 =
𝐶𝑙 𝛿=5−𝐶𝑙 𝛿=0

𝛿
      (105) 

 

The value of the y centroid of the fin was found from a Missilelab66 analysis of the 

fin geometry.  Since a plain hexagonal cross section was used to model the fin, it is possible 

that the y centroid is slightly off and may skew the results slightly.  

It is noted in the comparisons that there is a slight scatter in the experimental data.  

Still it is possible to see a general trend of decreasing roll damping with increasing Mach 

number.  With the exception of slender body theory, all of the methods presented in Figure 

39 show this same trend.  Slender body theory is by definition invariant with Mach number, 

but seems to provide the best match near Mach 2.5.  Eastman’s method follows the trend 

quite well, though the roll damping is under predicted by approximately 10-15 percent 
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across the Mach range.  Given that basic finner is one of the test cases for Eastman’s theory, 

the accuracy is not surprising.  The Evvard methodology provides a slightly better 

approximation of the roll damping.  The values are slightly under predicted if body upwash 

is excluded and near exact to slightly over predicted if the upwash is included.  Since the 

effect of the upwash is to increase the pressure loading near the fin body junction, this 

increase in damping is to be expected.  Additionally, as Mach number increases, the effect 

of adding the upwash decreases.  This is due to the decrease in the Mach angle and therefore 

the decrease in the region over which the upwash is acting.      

 

 

 

 

Figure 39. Results for Basic Finner Roll Damping 

 

 

  

The modified basic finner is another configuration for which a significant amount of 

damping data exists38,65.  The body of the modified finner configuration is identical to the 

basic finner; however the fin has been altered.  The fin area of the modified finner is 



 72 

roughly half that of the basic finner.  The dimensions of the fin are shown in Fig. 40.  

Experimental data for the modified finner were obtained from reference 38 and 65.  As 

with the basic finner data from this reference, no indication of the data uncertainty was 

provided.   

 

 

 

 

 
 

Figure 40.  Modified Finner Geometry 

 

 

 

Results for the modified basic finner are shown in Figure 41.  As seen with the basic 

finner configuration, slender body theory is the least accurate method for obtaining the roll 

damping.  In this instance, Eastman’s method tends to over predict the roll damping across 

the range evaluated in this effort.  As this configuration was also one of Eastman’s test 

cases, this difference could be caused by inaccuracies in the value of Clδ or ycent, which 

were again obtained via Missile Datcom6 and MissileLab66. 

Evvard’s analysis provides the most accurate approximation of the roll damping 

given the methods under consideration.  As Mach number increases, Evvard’s theory tends 
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to slightly over predict the roll damping values.  This is slightly different than the trends 

seen for basic finner where Evvard’s theory under predicted the damping if upwash was 

excluded.   

 It is noted that body upwash is not considered for this particular configuration.  

Recalling that the root leading edge Mach line may not intersect the wing, the body upwash 

calculations are not valid until the Mach number exceeds 2.8.  This value is well beyond 

the range of available experimental data for this configuration.  Even at this Mach number, 

the root Mach line will intersect the fin very close to the tip.  This trend is true of most low 

aspect ratio configurations.  As such, the upwash characteristics need to be considered for 

fins of this nature.  Even without the upwash, Evvard’s theory provides a more accurate 

approximation to the damping than the other easily available methods.   

 

 

 

 

Figure 41.  Modified Finner Clp 
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7 Conclusions and Recommendations 

The work presented in this dissertation provides the engineer with a new and unique 

approach to calculating the damping derivatives of supersonic configurations with a basis 

in potential flow aerodynamics. New semi-empirical methods have been added to expand 

classical slender body theory to a wider subset of body alone configurations.  The use of 

Evvard’s theory to calculate the lifting surface terms represent a novel and easily accessible 

means of determine the derivatives for arbitrary configurations.  Applying a configuration 

synthesis approach further expands the usefulness to the community at large.  The results 

are on par with more computationally expensive CFD results.  Additionally, the results are 

an improvement over the standard semi-empirical results produced in typical engineering 

level design tools.   The result is a higher degree of accuracy in damping derivative 

calculation at less expense.   This makes the methods developed a desirable approach for 

preliminary design work as well as production level work for systems possessing low 

sensitivity. 

The purpose of this work is to assess the overall usage, evaluation, and understanding 

of damping derivatives with a focus on accuracy needs and computational efficiency.  

Although much progress has been made with regard to static aerodynamics with both 

accuracy and efficiency of calculation, dynamic stability has lagged behind due to the 

complex nature of the aerodynamics and the variable sensitivity of the system to variations 

in the terms.  As a result, a methodology was developed to assess the importance of the 

derivatives for a given configuration and new methods were developed for computation of 

the body and fin derivative separately in order to provide a configuration synthesis 

computation.  A generic missile configuration, the basic finner, was used as the vehicle for 

many of the calculations and comparisons in this effort.  Although more complex vehicles 

are desired, the lack of investments in dynamic stability calculations has led to a lack of 

available test data to compare existing and new approaches.   There are no limitations to 
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the methods that would preclude their use on more complex systems, assuming flow 

attachment and Mach number constraints are met.   

As part of this effort, a sensitivity analysis was conducted to give a surface level 

understanding of the importance of damping derivatives.  This was by no means an 

exhaustive evaluation of the overall sensitivity.  Such an analysis would be extremely 

specific to a given vehicle and flight regime.  It is recommended, however, that more 

attention be provided to the sensitivity of a system to various aerodynamic terms.  Such an 

approach would lead to more efficient allocation of computational and experimental 

resources in a budget constrained environment.  A complete design of experiments 

approach while developing a new configuration would lend significant insight to the 

importance of such terms and the investment that should be given toward their 

development.   

The methodologies examined developed under this effort provide a means for the 

calculation of pitch and roll damping for supersonic Mach numbers.  Results and trends 

compare favorably with existing, limited experimental data.  The methodologies presented 

offer improvements in both accuracy and ease of use over existing empirical means for 

calculating damping derivatives.  However, the methodologies presented in this study have 

limitations that should be expanded under future efforts.  In particular, all of the methods 

are limited to zero degrees angle of attack.  This was done due to the complexity of the 

flowfields and angle of attack, a lack of available experimental data, and an uncertainty in 

the importance of the damping derivatives at moderate to high angles of attack.  

Additionally, vortex lattice approaches were considered as an alternate approach for these 

calculations.  Due to the nature of the problem and the complexity of configurations, the 

method was abandoned for this effort. However, this does not preclude the use of vortex 

lattice approached for the calculation of damping derivatives.  This is yet another area 

where future work may benefit the community.  Also not addressed under this effort are 

the implications and analysis of transonic flight.  As this is often a region of interest for 

many missile configurations, it should be considered under future efforts.   

Another limitation of this effort is a lack of experimental data.  Reliable data for 

varied conditions exists only for a limited subset of configurations.  Although it is unlikely 
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that wind tunnel resources will be expended to increase the available data set, CFD is 

rapidly becoming a reliable means to obtain dynamic aerodynamic terms.  As a result, it 

may be used as a means to prove the accuracy of the faster, lower order potential flow 

methodologies presented under this effort.   Additionally, as resources improve, it will 

become a necessary method for dynamic stability and control approaches, particularly for 

systems that require highly accurate calculations of these terms.   
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