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Abstract 
 

 
The many complex problems facing researchers and engineers demand innovative solutions. 

Machine learning techniques are growing in popularity due to their versatility and power. 

However, challenges remain. Popular machine learning algorithms such as Artificial Neural 

Networks are difficult to train, and require many designer choices that heavily impact the 

performance of the network. Furthermore, the randomized starting point of most ANN variants 

means that even if optimal choices are made, it may still take multiple trials to obtain satisfactory 

results. Fuzzy Systems are also widely used, but cannot tackle high dimensional problems or 

produce outputs of similar quality to neural networks. A novel defuzzification routine based on 

cubic splines seeking to improve the performance of FS is introduced, and compared to many 

state of the art machine learning techniques. The experimental results show the proposed 

algorithm performs competitively with popular machine learning methods, while not requiring a 

lengthy training process. 
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Chapter 1 Introduction 

Computers dominate our daily lives. Over the course of the last half century, they have 

evolved from massive, multi-room mainframes to personal computers, laptops, smart phones, 

tablets, and, recently, wearable computing devices such as smart watches and glasses, all with 

exponentially more power and capabilities than their vacuum tube forebears. This evolution has 

been driven by the continual shrinking of silicon process technology, with each reduction of the 

size of transistors allowing more devices to be packed into the same area. As computing power 

has grown, applications that once seemed like science fiction have become first possible, then 

feasible, and eventually commonplace. Despite this incredible progress, there are specific 

problems and classes of problems that remain intractable with conventional computing. Tasks 

that appear simple to humans—from moving through space, to making educated guesses based 

on incomplete information, to dealing with unexpected events—pose incredible difficulty to 

traditional digital computing. 

Machine learning seeks to leverage the power of modern computers to solve these difficult 

problems. This family of algorithms can be broadly described as attempting to imitate the 

abilities of organic life to solve problems. The traits that get imitated vary between paradigms, 

and include movement, evolution, learning, reasoning, etc. Two of the more popular techniques, 

Artificial Neural Networks (ANN) and Fuzzy Systems (FS) attempt to emulate learning and 

reasoning, respectively. In theory, ANN and FS can approximate any function to an arbitrary 

degree of accuracy[1], [2]. In practice, both technologies have strengths and weaknesses. 

Fuzzy systems are frequently used in the literature for nonlinear system modelling in which 

the problems are difficult to describe with mathematical models[3]–[6]. Fuzzy systems are also 

often used in industry for adaptive control algorithms[7]–[14]. The inherent drawbacks of fuzzy 
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membership functions result in approximations that lack smoothness. In addition, the process of 

designing FS can be difficult even for an experienced designer. 

Traditional ANNs have recently been joined by radial basis function (RBF) networks, which 

are often trained by Support Vector Regression (SVR) or by Extreme Learning Machine (ELM) 

algorithms. Far better results can be obtained with ISO[15] and ErrCor[16] algorithms, which are 

capable of producing RBF networks more than 10 to 30 times smaller than SVM or ELM. These 

smaller networks are more suitable for hardware implementation. 

There is also recent progress in ANN. It is much easier to train shallow architectures with a 

single hidden layer than it is to train deep networks[17]. But again, these shallow architectures 

often require network sizes 10 to 100 times larger than special deep architectures[18]. 

Unfortunately, these special ANN architectures, such as fully connected cascade (FCC) or 

bridged multilayer perceptron (BMLP), cannot be trained by commonly-available software, and 

a special NBN algorithm[19] for arbitrarily connected neural networks must be used. 

With advanced training algorithms there is a loss of transparency in the relationship between 

trainable parameters and system output. A simple and transparent relationship—such as in a 

TSK[20]–[22] fuzzy system—is crucial for creation of adaptive systems. In traditional TSK 

fuzzy systems, for each selected area of operation, a specific value of the output is defined. This 

makes TSK systems very popular—especially with simple triangular membership functions—

because this direct relationship between area of operation and desired output can easily be 

adjusted by a single parameter associated with the area. 

The purpose of this work is to examine several state-of-the-art machine learning algorithms, 

and compare their performance to a new, improved defuzzification technique for zero-order TSK 

fuzzy systems. The proposed modification seeks to address one of the deficiencies of classic 
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TSK systems—the rawness of the output surfaces—while maintaining several desirable traits. 

Specifically, the modification maintains a transparent input-output relationship that allows for 

easy adjustments. In addition, the proposed approach does not require a lengthy and complicated 

training process. This has several benefits, including the ability to incorporate new data without 

necessitating retraining of the system. The newly-developed defuzzification scheme is based on 

spline-like local third-order polynomials. This local approach was developed to avoid the more 

complex computation required by global cubic splines [23]. 

Chapter 2 Machine Learning Overview 

The purpose of this section is to provide a conceptual review of popular machine learning 

techniques in order to give context to the research presented later. This review will focus on 

artificial neural networks and fuzzy systems. 

2.1 Artificial Neural Networks 

One of the defining features of life is the ability to adapt to changing environmental 

circumstances, which can be viewed as a form of problem solving. For simple organisms, natural 

selection is the primary adaptation mechanism. Natural selection is a slow process, requiring 

many generations for beneficial mutations or adaptions to occur and be propagated throughout 

the gene pool. In higher animals, the ability to learn new behaviors provides an alternative way 

of adapting to new challenges. Higher animals possess brains made up of many nerve cells. Very 

simplistically, nerve cells, or neurons, are specialized cells that can transmit electrical signals to 

other cells via connections called synapses. A neuron that receives sufficient input stimulus will 

fire in turn, thus propagating the signals. There are two features of neurons that are important to 

this discussion. The first is that a single neuron can form connections with many other neurons, 

all of which have their own connections and collectively form what is known as a neural 
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network. The second important feature is that repeated firing of a particular neuron has an effect 

on the connected neurons. In general, the effect is either excitatory or inhibitory, meaning that 

the connected neurons will either become more or less likely to fire. In this way, a neural 

network can adapt to produce responses to repeated stimuli. The power of biological neural 

networks is readily apparent when examining the complex behavior of higher animals, with the 

most striking example being humans. Recreating this ability for use in computers has many 

applications. 

An artificial neural network (ANN) is a biologically inspired machine learning paradigm. As 

the name implies, ANNs attempt to replicate the process by which biological neural networks 

adapt and learn in order to solve problems. Rather than try to model all of the incredibly complex 

biological and chemical interactions, ANNs are an approximation of biological neural networks. 

Figure 2.1.1 shows a standard artificial neuron, called a perceptron, with N inputs ଵܺ, ܺଶ, …ܺ௡. 

Each input ௜ܺ has an associated weight ݓ௜, which get multiplied together to produce the value 

actually seen by the neuron. The total or net input to the neuron is calculated as a weighted sum 

of all the inputs (2.1-1). The output ଵܱ is then computed as the result of the activation function 

݂ሺܻሻ operating on the net. 

ܻ ൌ ଵݓଵݔ ൅⋯൅ ௜ݓ௜ݔ ൅ ⋯൅ ௡ݓ௡ݔ ൌ෍ݓ௜ݔ௜

௡

௜ୀଵ

 
(2.1-1)
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Figure 2.1.1: An artificial neuron with inputs N weighted inputs, activation function ݂ሺܻሻ, and 

one output. 

Early artificial neuron models such as the McCullough-Pitts[24] neuron employed “hard” 

activation functions (essentially a step function). Hard activation functions are either unipolar 

(2.1-2) or bipolar (2.1-3). While the threshold can be variable, in practice most neurons will have 

an additional input connected to a constant value which is used to bias the net input for a 

threshold of 0 or 0.5 for bipolar and unipolar neurons, respectively. 

ଵܱ ൌ ൜
1 ݂݅ ܻ ൒ ܶ
0 ݂݅ ܻ ൏ ܶൠ 

(2.1-2)

 

ଵܱ ൌ ൜
1 ݂݅ ܻ ൒ ܶ
െ1 ݂݅ ܻ ൏ ܶൠ 

(2.1-3)

 

Hard activation functions emulate the all-or-nothing firing mechanism of biologic neurons 

and can implement basic logic functions such as AND, OR, and NOT, as well as solve other 

small problems with at most a single layer of neurons. Neurons with hard activation functions 

present a problem for training multiple layers in that they are opaque. Incremental changes to the 
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weights do not have a corresponding effect on the output. This is why “soft” sigmoidal activation 

functions are used in place of step functions. Sigmoidal activation functions behave the same in 

the limit as step functions, and can also be unipolar (2.1-4) or bipolar (2.1-5), but have a gradual 

transition that makes the neuron (or network) transparent for training, which can be seen in 

Figure 2.1.2. Note that ߣ is a constant that controls the slope of the activation function. 

ଵܱ ൌ
1

1 ൅ ሻܻߣሺെ݌ݔ݁
 

(2.1-4)

ଵܱ ൌ
2

1 ൅ ሻܻߣሺെ݌ݔ݁
െ 1  

(2.1-5)
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Figure 2.1.2: Typical activation functions. a) Hard unipolar. b) Hard bipolar. c) Soft unipolar. d) 

Soft bipolar. 

As with biological neurons, a single artificial neuron is not particularly useful, and must be 

connected together in networks before any kind of learning can take place. The discussion here 

will be limited to feedforward networks, although there are special types of networks that make 

use of recurrent connections, such as Hopfield Networks[25]. Figure 2.1.3 shows a typical 

artificial neural network configured in a Multi-Layer Perceptron (MLP) architecture. This 

architecture has a number of what are called “hidden layers” in between the inputs and the 

network output. 

 

Figure 2.1.3: A Multi-Layer Perceptron artificial neural network. 

Artificial neural networks require several design decisions to be made, specifically: what 

architecture will be used, how large will the network be, and what algorithm will be used for 

training. These decisions will have an enormous impact on the network performance. 
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2.1.1 Neural Network Size 

The size (number of neurons) and their configuration (the architecture or topology) have a 

direct impact the power of a neural network. Intuitively, the more neurons in a network, the more 

complex problems it can solve. This is easily confirmed experimentally in Figure 2.1.4(a)-(f) 

where a simple sinusoid is approximated by an ANN with increasing numbers of neurons. As the 

number of neurons increases, the output of the network more closely matches the desired 

sinusoid. 

(a) (b) 

(c) (d) 
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(e) (f) 

Figure 2.1.4: Results of training a neural network to approximate a sinusoid as number of 

neurons n increases. a) ݊ ൌ 1 b) ݊ ൌ 2 c) ݊ ൌ 3 d) ݊ ൌ 4 e) ݊ ൌ 5 f)	݊ ൌ 6 

However, it is readily apparent that the best results are produced by the network with three 

neurons, and adding more past that causes undesirable oscillations between the training points. 

These are similar to the oscillations that occur when using a high order polynomial for 

interpolation. Past the optimal number of neurons, the network will match the training points 

very closely, but the generalization ability suffers, as shown by the errors in Table I. Notice that 

the training errors decrease as more neurons are added, with the largest network producing the 

smallest training error. The testing errors verify what can be seen visually in Figure 2.1.4, with 

the errors decreasing as more neurons are added, reaching a minimum with three neurons, and 

then beginning to increase. 

Table I: Tabulated training and testing errors as the number of neurons increases. 

n 
Training 
RMSE 

Testing 
RMSE 

1 0.3431 0.2736 
2 0.2454 0.2000 
3 0.0153 0.0219 
4 0.0086 0.0327 
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5 0.0039 0.0469 
6 5.6417e-04 0.1078 

In general, the best neural network results will be produced by a network that uses the fewest 

number of neurons possible while still meeting a minimum training error threshold[17], [19]. 

Such compact networks maintain good generalization capabilities when presented with inputs 

that were not used in training. The tradeoff for this performance is that smaller networks are 

harder to train than an overprovisioned network, and can even fail to converge. 

2.1.2 Neural Network Architecture 

In theory, there are an infinite number of ways to connect a given number of neurons, some 

subset of which will be optimal for a particular problem. In practice, there are several reasons 

why standardized architectures are preferred. First, not all training algorithms can handle 

arbitrarily connected networks. Second, standardized architectures make evaluating the effects of 

different network sizes and initial starting weights feasible. A comparison of the power of 

various architectures was done in [17]. The different architectures were evaluated based on their 

ability to solve parity-N problems. This problem has been demonstrated as an effective 

benchmark for comparing neural network efficiency[26]. The parity-N problem is a 

generalization of the XOR problem for n inputs, where the output is zero if there are an even 

number of one’s in the input string, and one if there is an odd number. Table II shows the input 

patterns for the parity-3 problem. 

Table II: Input patterns for the parity-3 problem. 

Binary Input  Output 

000  0 
001  1 
010  1 
011  0 
100  1 
101  0 
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110  0 
111  1 

The Multilayer Perceptron architecture shown in the previous section (Figure 2.1.3) is the 

simplest architecture, and also one of the most popular. The defining property of an MLP 

network is that the neurons are organized into discreet layers, with no cross layer connections. 

Although there can be any number of layers, the special case of one hidden layer (known as a 

Single Layer Feedforward Network (SLFN)) shown in Figure 2.1.5 is widely used. The largest 

parity problem that can be solved by a SLFN is given by (2.1-6), where k is the number of 

neurons, and N is the degree of the parity problem. 

ܰ ൌ ݇ െ 1 (2.1-6)

 

 

Figure 2.1.5: A Single Layer Feedforward Network (SLFN). 

If cross layer connections are allowed, the Multilayer Perceptron becomes the Bridged 

Multilayer Perceptron (BMLP) architecture. A BMLP network with a single hidden layer is 

shown in Figure 2.1.6. The cross layer connections of the BMLP make it more powerful than the 

MLP, requiring fewer neurons to solve the same parity-N problem (2.1-7). 
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ܰ ൌ 2݇ െ 1 (2.1-7)

 

Figure 2.1.6: A BMLP network with a single hidden layer. 

Multiple hidden layers can also be used in the BMLP architecture, and the network diagrams 

can quickly become difficult to follow, as shown in Figure 2.1.7, which only has two hidden 

layers. For a BMLP network with two hidden layers, the largest parity problem that can be 

solved is given by (2.1-8). 

ܰ ൌ 2ሺ݇ ൅ 1ሻሺ݉ ൅ 1ሻ െ 1 (2.1-8)

For a BLMP network with an arbitrary number of hidden layers, the expression is a little 

more complex. The largest parity problem a network with p hidden layers can solve is shown by 

(2.1-9), where ݊௜ is the number of hidden neurons in the ith hidden layer. 

ܰ ൌ 2ቌෑሺ݊௜ ൅ 1ሻ

௜ୀ௣

௜ୀଵ

ቍ െ 1 
(2.1-9)
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Figure 2.1.7: A BMLP network with two hidden layers. 

The most powerful network architecture evaluated is the Fully Connected Cascade (FCC) 

architecture. Shown in Figure 2.1.8, the FCC can be thought of as a special case of the BMLP 

where each hidden layer only has a single neuron. This gives an FCC network the maximum 

possible depth with a minimum total number of neurons. The highest order parity-N problem an 

FCC network with n neurons can solve is given by (2.1-10). 

ܰ ൌ 2௞ െ 1 (2.1-10)
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Figure 2.1.8: A FCC network with n inputs and k neurons. 

Some concrete numbers can help demonstrate the difference in power between these 

architectures. Table III shows the maximum parity problem that can be solved by the various 

architectures if we fix the network size at eight neurons. Note that BMLP (4-4) indicates that the 

network has two hidden layers with four neurons each, and BMLP (2-2-2-2) has four hidden 

layers with two neurons each. It should be clear that the difference in power between the network 

topologies is substantial, with the FCC network able to solve problems of much greater 

complexity than simple MLP networks. 

Table III: Comparing the largest parity problem that can be solved by various architectures with 

eight neurons. 

Architecture  Parity‐N 

MLP  7 
BMLP (4‐4)  15 
BMLP (2‐2‐2‐2) 161 
FCC  255 
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2.1.3 Neural Network Training 

For a small number of neurons, it is possible to design the weights to create the desired 

output. Designing quickly becomes impossible as network size increases, and some form of 

training is necessary to automatically adjust the weights to meet some criteria. Learning methods 

can be broadly classified as supervised, where each training pattern has a desired output, or 

unsupervised, where the training patterns do not have desired outputs. The goal of unsupervised 

learning is typically to explore a dataset and perform clustering, such as with a Kohonen Self 

Organizing Map (SOM)[27]. The focus here will be on supervised learning. 

In supervised learning, each input pattern has a desired output. When a pattern is applied to 

the network, the actual output will, in general, be different from the desired output. The optimal 

network weights for that pattern will be the set of weights that minimizes the error between the 

desired and actual outputs. Thus, training the network can be reformulated to an optimization 

problem, with the goal of minimizing the total error for all patterns. Assume there are P total 

training patterns, and the pth pattern has the form of (2.1-11), with n input dimensions and the 

desired output d. 

௣ݔ ൌ ሼ൫ݔ௣,ଵ, ,௣,ଶݔ … , ௣,௡൯│݀௣ሽ (2.1-11)ݔ

After applying the pth pattern, the error ݁௣ for that pattern is computed as the difference 

between the desired output ݀௣ and the actual output ݋௣ (2.1-12). 

݁௣ ൌ ݀௣ െ ௣ (2.1-12)݋

Since the goal of neural network training is to minimize the error for all training patterns, a 

measure for the total error is needed. The Sum Squared Error (SSE), abbreviated as simply E, 
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shown in (2.1-13), is widely utilized. Note that the one half factor is there to cancel the power 

during differentiation later, and could be omitted. 

ܧ ൌ
1
2
෍൫݀௣ െ ௣൯݋

ଶ
௉

௣ୀଵ

 
(2.1-13)

The training algorithms described in the following sections are all based on some form of 

gradient descent optimization to find the minimum SSE. 

2.1.3.1 Error Backpropagation 
Early training algorithms were limited to either a single neuron or a single layer of neurons 

(as in no hidden layers). As a result, neural networks were very limited in ability and application. 

The first algorithm that could train networks with one or more hidden layers was Error 

Backpropagation (EBP). Originally described in 1974 by Werbos [28], EBP was first applied to 

ANN training by Rumelhart et al. [29] in 1986. 

EBP is an iterative algorithm, with each iteration consisting of three steps. The first consists 

of forward computation, where a training pattern is applied to the network inputs. The net values 

for each neuron in the first layer are computed, and the output of each neuron is calculated using 

the activation function. Then the outputs of the first layer are used as the inputs to the next layer, 

and the process is repeated until the final output of the network is obtained. In the second step, 

the error between the desired output and the actual output is found. The error then propagates 

back through the network (the titular backpropagation), by calculating the partial derivative of 

the total error with respect to each weight. The third and final step calculates the change in each 

network weight using the input pattern and the partial error terms. 

Error Backpropagation is a steepest descent algorithm. As such, the weight update rule can 

be written as (2.1-14). 
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∗࢝ ൌ ࢝ െ (2.1-14) ࢍߙ

Where ࢝ is the vector of network weights, ࢝∗ is the updated weight vector for the next 

iteration, ߙ is a learning constant, and ࢍ is the gradient of the error function taken with respect to 

the weights, and has the form of (2.1-15). 

ࢍ ൌ
ሻ࢝,࢞ሺܧ߲
߲࢝

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
ܧ߲
ଵݓ߲
ܧ߲
ଶݓ߲
⋮
ܧ߲
ےேݓ߲

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

(2.1-15)

Finding the partial derivative values for the gradient is the difficult part of the algorithm. We 

will assume a SLFN network with one output, such as the one shown in Figure 2.1.5. 

Furthermore, we shall refer to the set of weights between the inputs and hidden layer as ࢛, the 

weights between the hidden layer and the output layer as ࢜, and output of the neurons in the 

hidden layer as ݂ሺࢅሻ. 

Recall that the goal is to minimize the error function. Evaluating (2.1-13) for an input pattern 

 .௣ and expanding yields (2.1-16)ݔ

൯࢝,࢖࢞൫ܧ ൌ
1
2
ሺ݀ଶ െ ݋2݀ ൅  ଶሻ݋

(2.1-16)

The partial derivative of (2.1-16) with respect to the output weights ࢜ gives (2.1-17). 

,࢖࢞ሺܧ߲ ሻ࢜

߲࢜
ൌ െሺ݀ െ  ሻࢅሻ൯݂ሺࢅᇱሺ݂࢜ሻ݂ᇱ൫݋

(2.1-17)

It is convenient to define a term ߜ to be the partial error (2.1-18), so that the weight change in 

for the output layer can be written as (2.1-19). 

ߜ ൌ ሺ݀ െ ሻ (2.1-18)࢟࢜ሻ݂ᇱሺ݋

Δ࢜ ൌ െ
,࢖࢞ሺܧ߲ ሻ࢜

߲࢜
ൌ  ࢅߜߙ

(2.1-19)
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This process repeats for the weights in the input layer (2.1-20) 

Δ࢛ ൌ െ
,࢖࢞ሺܧ߲ ሻ࢛

࢛߲
ൌ  ࢖࢞൯࢖࢛࢞ᇱ൫݂࢜ߜߙ

(2.1-20)

This process is either repeated for each training pattern, with the weights either being 

updated after each pattern is applied, or held constant until all patterns are applied, and the sum 

of all weight changes used to update the weights. 

As a first order gradient descent algorithm, EBP is stable, but suffers from slow convergence 

and a tendency to get stuck in local minima. Modifications of EBP such as adaptive learning rate 

[30], momentum [31],  and Resilient Error Backpropagation (RPROP)[32] seek to address one or 

both of these issues. However, even with these modifications EBP is simply not powerful enough 

to solve some problems, requires a large number of neurons, or produces very poor results when 

tested with patterns that were not used for training. Furthermore, EBP can only train MLP 

networks, which are not very powerful. More powerful algorithms that can train arbitrarily 

connected networks are needed. 

2.1.3.2 Levenberg-Marquardt Approach 
The goal of a gradient descent algorithm is to find the global minimum of an error function. 

This process can be visualized as attempting to find the lowest point in a valley while only being 

able to see one step in any direction. Getting to the bottom of the valley then becomes a series of 

“steps”, and the direction and size of each step must be chosen. In a first order algorithm like 

EBP, the direction of the next “step” is selected to be whichever is the steepest. This is a locally 

greedy heuristic, and as such can cause the algorithm to get stuck in local minima. EBP can also 

become trapped in flat spots where the gradient is very small. The size of each step is determined 

by the learning constant ߙ. A larger learning constant produces a larger change in the network 

weights for a given iteration, and makes the algorithm less likely to become trapped in local 
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minima. However, larger values also cause the algorithm to become less stable, and may prevent 

it from ever reaching the global minimum by causing it to always step from one side of the 

“valley” to the other. A smaller learning constant causes slower convergence, but is more stable. 

Fast, stable convergence therefor requires optimal selection of the learning constant at each 

iteration. First order methods do not have enough information about the surface of the error 

function to optimally choose the learning constant at each step. Towards that end, second order 

methods are needed. 

Newton’s method is the starting point of second order training algorithms. In Newton’s 

method, the weight update rule of steepest descent in (2.1-14) is modified to (2.1-21). 

∗࢝ ൌ ࢝ െିࡴ૚(2.1-21) ࢍ

Where ࡴ is the Hessian matrix of the form in (2.1-22). 

ࡴ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

߲ଶܧ
ଵݓ߲

ଶ

߲ଶܧ
ଶݓଵ߲ݓ߲

⋯
߲ଶܧ

ேݓଵ߲ݓ߲
߲ଶܧ

ଵݓଶ߲ݓ߲

߲ଶܧ
ଶݓ߲

ଶ ⋯
߲ଶܧ

ேݓଶ߲ݓ߲
⋮ ⋮ ⋱ ⋮

߲ଶܧ
ଵݓே߲ݓ߲

߲ଶܧ
ଶݓே߲ݓ߲

⋯
߲ଶܧ
ேݓ߲

ଶ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

(2.1-22)

Newton’s method gives fast convergence, but calculating the second derivatives of the error 

function for the Hessian matrix can be computationally infeasible. Newton’s method is also 

unstable in some cases. In order to reduce the computational complexity, the Gauss-Newton 

method introduces the Jacobian matrix (2.1-23). Note that ܲ refers to the number of patterns, and 

 .refers to the number of outputs ܯ
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ࡶ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲݁ଵ,ଵ
ଵݓ߲

߲݁ଵ,ଵ
ଶݓ߲

⋯
߲݁ଵ,ଵ
ேݓ߲

߲݁ଵ,ଶ
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߲݁ଵ,ଶ
ଶݓ߲

⋯
߲݁ଵ,ଶ
ேݓ߲

⋮ ⋮ ⋱ ⋮
߲݁ଵ,ெ
ଵݓ߲

߲݁ଵ,ெ
ଶݓ߲

⋯
߲݁ଵ,ெ
ேݓ߲

⋮ ⋮ ⋱ ⋮
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ଵݓ߲

߲݁௉,ଵ
ଶݓ߲

⋯
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⋯
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ேݓ߲
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߲݁௉,ெ
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߲݁௉,ெ
ଶݓ߲

⋯
߲݁௉,ெ
ேݓ߲ ے

ۑ
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ۑ
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ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

(2.1-23)

The gradient is related to the Jacobian by (2.1-24). The vector ࢋ has the form of (2.1-25). 

ࢍ ൌ (2.1-24) ࢋࡶ

ࢋ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
݁ଵ,ଵ
݁ଵ,ଶ
⋮

݁ଵ,ெ
⋮
݁௉,ଵ
݁௉,ଶ
⋮

݁௉,ெے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

(2.1-25)

The Hessian matrix can be approximated by (2.1-26). 

ࡴ ൎ (2.1-26) ࡶ்ࡶ

Combining (2.1-21), (2.1-24), and (2.1-26), the weight update rule for the Gauss-Newton 

method and can be written as (2.1-27). 

∗࢝ ൌ ࢝ െ ሺࡶ்ࡶሻି૚(2.1-27) ࢋࡶ

The Gauss-Newton method does not require the second derivative calculations of the Newton 

method, but still faces convergence problems. Specifically, the approximation of the Hessian, 

 .is not guaranteed to be invertible ,ࡶ்ࡶ
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The Levenberg-Marquardt (LM) algorithm[33] modifies the Gauss-Newton method by 

replacing the Hessian approximation in (2.1-26) with (2.1-28). Note that ߤ is a positive constant 

called the combination coefficient and ࡵ is the identity matrix. 

ࡴ ൎ ࡶ்ࡶ ൅ (2.1-28) ࡵߤ

The addition of the ࡵߤ term ensures that the diagonal of the Hessian approximation will 

always be non-zero, and thus invertible. Finally, the weight update rule for the LM algorithm can 

be seen in (2.1-29). 

∗࢝ ൌ ࢝ െ ሺࡶ்ࡶ ൅ (2.1-29) ࢋࡶሻି૚ࡵߤ

First applied to neural network training in [34], the LM algorithm combines the fast 

convergence of the Gauss-Newton method with the stability of EBP. LM training has many 

advantages, however, there are still problems. The Jacobian matrix that must be stored is of size 

ሺܲ ൈ ሻܯ ൈ ܰ, where ܲ is the number of patterns, ܯ is the number of outputs, and ܰ is the 

number of weights. For large training sets and/or network sizes, the Jacobian can become too 

large for the available memory, and the speed gains over EBP will be lost. Furthermore, the LM 

algorithm can only be applied to certain network architectures, such as MLP. The recently 

developed Neuron-by-Neuron (NBN) algorithm[19] offers several advantages over LM. First, 

NBN can train arbitrarily connected networks, which is important if efficient architectures are to 

be used. Second, NBN utilizes a novel computation scheme that avoids ever having the entire 

Jacobian matrix in memory at one time. 

2.1.4 Specialized Neural Networks 

This section will briefly describe several machine learning techniques that are related to 

neural networks, but differ from classic neural networks in key ways. 
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2.1.4.1 Radial Basis Function Networks 
Moody and Darken [35] first showed that Radial Basis Function (RBF) networks were 

universal approximators. RBF networks differ from traditional neural networks in that instead of 

neurons with sigmoidal activation functions, RBF networks are composed of RBF units with one 

of several activation functions, typically a multidimensional Gaussian function such as (2.1-30). 

The vector ࢞ is the multidimensional input, ࢉ is a vector with the location of the center of the 

Gaussian for each dimension, ߪ is a parameter that controls the width, and the gain ߚ controls the 

height of the Gaussian. 

݂ሺ࢞ሻ ൌ β exp൭െቆ
࢞‖ െ ‖ࢉ
ଶߪ

ቇ൱ 
(2.1-30)

RBF networks typically use a SLFN architecture, shown in Figure 2.1.9. The output layer of 

an RBF network is usually a summation, rather than another RBF unit. 

 

Figure 2.1.9: A SLFN RBF network with k RBF units and a single output. 
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In contrast to finding the weights in classic ANN, the goal of training RBF networks is to 

find optimal values for ࢉ,  for each RBF unit. Because the number of tunable parameters ߚ and ,ߪ

is larger than in a traditional ANN of the same size, developing training algorisms is difficult. 

Typically, only first order algorithms have been adapted to train RBF networks, although recent 

advances have applied second order LM training to RBF networks[15]. 

2.1.4.2 Extreme Learning Machines 
Extreme Learning Machines (ELM) are a relatively recent development. Originally published 

by Huang et al. [36]–[38], ELM are a type of RBF network. ELM sidestep the difficulties of 

training RBF networks by randomly generating (and leaving fixed) the ߪ and ࢉ parameters for 

each RBF unit, and then solving for the ߚ by simple pseudo-inversion. ELM have very fast 

training times and are capable of producing surprisingly good results considering only one 

parameter is trained. However, the fast training times of ELM are mitigated by the fact that many 

trials may be necessary before acceptable results are obtained. In addition, ELM require far 

larger networks to reach similar error levels vs. other algorithms that take advantage of all 

trainable parameters. 

2.1.4.3 Support Vector Machines 
Support Vector Machines (SVM) [39] are an attempt to perform learning on a dataset using a 

minimum number of nodes. This is done by selecting and training only the most essential 

patterns, and using those for training. This is done by performing optimization on a more 

complex cost function than the one used in classic ANN. For a detailed description of SVM, see 

[40]. SVM can use a variety of kernels such as sigmoid or Gaussian. A trained SVM with a 

Gaussian kernel is functionally equivalent to an RBF network. While SVM are capable of 

producing very good results, they require the user to provide several parameters that will greatly 
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impact the performance. Searching for appropriate values for these parameters is very time 

consuming, requiring trial and error. 

2.2 Fuzzy Systems 

Fuzzy logic can be thought of as a generalization of classical set theory. First proposed by 

Zadeh[41], Fuzzy logic attempts to formalize and account for the uncertainty inherent in the real 

world. In Boolean logic (and in classical set theory on which it is based), the only allowed values 

are zero and one. An expression is either true or false; an item either belongs to a set or it does 

not. As the foundation of digital computing, this kind of reasoning is powerful, but also has clear 

limitations. At its heart, set theory relies on certainty. It requires that there be no ambiguity in 

observations or measurements, which is not a problem in the abstract realm of theory. But we 

intuitively understand that uncertainty and ambiguity exist intrinsically in the real world. Fuzzy 

logic models this by allowing a continuous range of values between zero and one. 

There are a few important concepts necessary to understanding the Fuzzy Systems described 

in the next section. The first are the fuzzy version of the AND, OR, and NOT operations, which 

are defined by (2.2-31), (2.2-32), and (2.2-33), respectively. 

ܣ ∩ ܤ ൌ minሺܣ, ሻ (2.2-31)ܤ

ܣ ∪ ܤ ൌ maxሺܣ, ሻ (2.2-32)ܤ

ܣ̅ ൌ 1 െ (33-2.2) ܣ

The second is the idea of the membership function. A membership function defines a fuzzy 

set by taking in an input ݔ and producing a value indicating degree to which ݔ belongs to the set. 

Notice that in the limit, where ݔ either fully belongs to a set or fully does not, fuzzy logic 

reduces to Boolean logic. The range of a variable can be divided into any number of membership 

functions. These functions can overlap as long as the sum never exceeds one. Typically, 
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trapezoidal, triangular, or Gaussian membership functions are used. The process of computing 

the membership values of a crisp (or non-fuzzy) value ݔ for each membership function is called 

fuzzification. The reverse process of taking a set of membership values and producing a crisp 

output is called defuzzification. 

2.2.1 TSK Fuzzy Systems 

Fuzzy Systems (FS) refers to a family of techniques that utilize fuzzy logic to perform 

classification, approximation, and control. Mamdani[42] published the first example of a FS 

applied to controlling a steam engine.  This idea was improved upon in the Takagi-Sugeno-Kang 

(TSK) FS [20], which generally produces better results. The general structure of any FS can be 

seen in Figure 2.2.1. 

 

Figure 2.2.1: The basic component of any fuzzy system. 

The inputs ଵܺ, ܺଶ, …ܺ௡ are crisp (or non-fuzzy) values. These crisp values are passed 

through a fuzzification step. After fuzzification, the fuzzy values are passed to the inference 

engine. The inference engine evaluates the rule base using the fuzzy inputs and aggregates the 

results. Formally, the rule base is a series of IF-THEN statements that produce a certain output 

when activated, as shown in (2.2-34). Note that ݉௜ሺ ଵܺሻ indicates the output of the ith 
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membership function of input ଵܺ, ௝݉ሺܺଶሻ is the output of the jth membership function of input 

ܺଶ, and so on. The value C can be a constant or a function of the inputs depending on the system 

being used. 

௜ሺ݉	ܨܫ ଵܺሻ	ܦܰܣ	 ௝݉ሺܺଶሻ ௞ሺܺ௡ሻ݉…ܦܰܣ ܰܧܪܶ ܱ ൌ (34-2.2) ܥ

The last step is to pass the results of the inference engine through a defuzzifier to produce a 

single, crisp output. 

One major difference between FS and ANN is that FS are designed, while ANN are trained. 

By adjusting the number and shape of membership functions as well as the rule base, the desired 

output can be obtained. The design process can take into account expert knowledge and intuition, 

but generally requires a good deal of trial and error. Broadly speaking, FS are fast compared to 

neural networks, at least in cases where there are only a few input dimensions. Neural Networks 

are trainable and do not have a limitation on the number of input dimensions, but they suffer 

from convergence problems. One trend involves applying optimization techniques to the design 

of FS—essentially leading to trainable FS, often referred to as neuro-fuzzy systems. 

2.2.2 Adaptive Network-based Fuzzy Inference Systems 

One of the foundational ANN FS hybrid techniques is called Adaptive Network-based Fuzzy 

Inference Systems (ANFIS). Proposed by Jang[43], [44], ANFIS is essentially a TSK FS with 

Gaussian membership functions and linear rule consequents. In ANFIS, the parameters of the 

membership functions are tuned using a gradient descent algorithm. This hybridization gives 

ANFIS the potential to maintain the human interpretability of a fuzzy system, while being able to 

learn from training data in a manner similar to ANN. In a later paper, Jang proved that ANFIS 

and RBF networks are functionally equivalent [45]. Nevertheless, ANFIS is a powerful learning 

technique. 
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Chapter 3 Nearest Neighbor Spline Approximation 

Before describing the Nearest Neighbor Spline Approximation (NNSA) algorithm, some 

review is in order. As the name implies, NNSA relies on splines. So we will first, briefly, review 

polynomial interpolation as an introduction to splines, move onto a description of splines, and 

then present the NNSA algorithm. 

3.1 Polynomial Approximation Review 

Polynomial interpolation has long been used to approximate functions from known data 

points. This technique is useful if the underlying function is unknown, or too computationally 

complex to be used directly. One historical example is the computation of trigonometric 

functions. For hundreds of years, the main technique for computing values for trigonometric 

functions relied on precomputed tables of values for known angles, and then applying linear 

interpolation to obtain the function output for the desired input. Modern processors use a variety 

of techniques to compute trigonometric functions, but use of look up tables and interpolation 

remain common, especially in applications where speed is essential. 

3.1.1 Polynomial Approximation Derivation 

Polynomials have a known and predictable form. For a polynomial ݌ of degree ݊, the form is 

defined by (3.1-35) 

ሻݔሺ݌ ൌ ܽ௡ݔ௡ ൅ ܽ௡ିଵݔ௡ିଵ ൅ ⋯൅ ܽଶݔଶ ൅ ܽଵݔଵ ൅ ܽ଴ (3.1-35)

So, the problem of polynomial interpolation is one of solving for the values of the unknown 

coefficients. More formally, given a set of ݊ ൅ 1 data points of the form ሺݔ௜,  ௜ሻ, find theݕ

polynomial ݌ with degree of ݊ which satisfies the interpolation condition (3.1-36). 

௜ሻݔሺ݌ ൌ ௜ݕ , ݅ ൌ 0…݊ (3.1-36)
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The interpolation condition means that the polynomial must be pass through the data points. 

This also ensures that the solution will be unique. In order to solve for the coefficients, the 

known polynomial form (3.1-35), and the data points are inserted into (3.1-36) to produce a 

system of equations shown in (3.1-37). 

ۏ
ێ
ێ
ۍ
଴ݔ
௡ ଴ݔ

௡ିଵ ⋯ ଴ݔ
ଵ 1

ଵݔ
௡ ଵݔ

௡ିଵ ⋯ ଵݔ
ଵ 1

⋮ ⋮ ⋮ ⋮
௡௡ݔ ௡௡ିଵݔ ⋯ ௡ଵݔ ے1

ۑ
ۑ
ې
൦

ܽ௡
ܽ௡ିଵ
⋮
ܽ଴

൪ ൌ ൦

଴ݕ
ଵݕ
⋮
௡ݕ

൪ 

(3.1-37)

This system of equations has ݊ unknowns and ݊ equations, meaning it has a unique solution 

that can be found by simple pseudo-inversion. 

3.1.2 Polynomial Approximation Problems 

This process works well in certain situations, as demonstrated by the example in Figure 3.1.1. 

On the left, we can see the desired function, a simple sinusoid, and seven evenly spaced data 

points to interpolate. On the right is the resulting curve produced by polynomial interpolation. 

Since seven data points were used, then the interpolating polynomial is sixth order. 

(a) (b) 

Figure 3.1.1: Polynomial interpolation example. (a) The desired function ݕ ൌ  ሻ. (b) Theݔሺ݊݅ݏ

interpolating polynomial. 
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On first inspection, the results look fairly good, as it is hard to visually distinguish between 

the two curves. Upon further inspection, several problems become apparent. First, the difference 

between the curves is greater than it first appears, as shown in Figure 3.1.2. 

 

 

Figure 3.1.2: The differences between the desired curve and the interpolated curve at every 

evaluation point. 

There are significant errors in between the data points. The logical solution to this problem is 

to use more data points. Assuming that more data points are available (which is a large 

assumption in any real-world application), this creates several more problems. 

The first is simply one of computation time. Because the order of the interpolating 

polynomial is tied to the number of data points, adding more data points will result in a higher 

order polynomial, which will in turn require more multiplications to evaluate. Depending on the 

order of the polynomial and the number of points that need to be evaluated, this computation cost 

can become too expensive. 
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The second problem is more serious, and a fundamental problem rather than a practical one. 

This issue has to do with the behavior of high order polynomials in between data points of 

certain function. Specifically, increasing the order of the interpolating polynomial produces a 

better match at the data points, while oscillating wildly in between points. This is known as 

Runge’s Phenomenon. It is best illustrated through an example, shown in Figure 3.1.3, which 

shows the results of polynomial interpolation of nine data points with polynomials of order one 

through nine. Note that only odd polynomial orders were used, because for this particular 

problem, the even power polynomial coefficients always evaluate to zero. 

(a) 
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(b) 

Figure 3.1.3: Runge's Phenomenon example. (a) Runge's Function and set of training points. (b) 

Interpolating polynomials of increasing order. Notice that as the order increases, the polynomials 

come closer to matching the training points, but have undesirable behavior in between. 

As higher order polynomials are used to try and increase accuracy, the interpolating 

polynomials start diverging more and more from the desired function. 

It is clear that simple polynomials are not suitable to use on complex problems. However, 

polynomials, especially of low order, have some desirable properties. For this reason, one of the 

most popular modifications utilizes piecewise polynomial interpolation. In other words, rather 

than attempt to define a single polynomial over an entire curve, a separate, low order polynomial 

is obtained for each segment. If certain continuity conditions are imposed when deriving the 
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individual segments, the result is known as a spline. If each segment is a third order polynomial, 

then this is known as a cubic spline. 

3.2 Cubic Spline Review 

Cubic splines have been in use for decades due to their simplicity and performance. The term 

spline derives from a thin, flexible strip of metal used by drafters to draw smooth curves. The 

spline would be bent around anchor points, forcing it into the desired shape. Similarly, 

mathematical splines can be thought of as having control points which constrain their behavior. 

Splines are a special type of piecewise polynomial function. Piecewise polynomials avoid the 

issues of defining a single polynomial for an entire curve by finding a different polynomial for 

each segment (i.e. between each pair of data points). There are several benefits to this approach. 

First, because each polynomial segment only has to perform well between two points, much 

lower order polynomials can be used, which avoid the oscillation problem. Second, computation 

time is saved by not having to evaluate high order polynomial terms. However, directly using 

piecewise polynomials can result in undesirable behavior with rapidly changing functions, as 

shown in Figure 3.2.1, in which a cubic piecewise polynomial interpolates some data. The 

piecewise interpolant performs much better than simple polynomial interpolation, but the quality 

of the curve suffers at the data points, as one cubic segment transitions to another. 
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Figure 3.2.1: A piecewise cubic interpolant. 

Although the interpolant is continuous, it is not differentiable at the data points because the 

derivative of the interpolant is not continuous. As a consequence, the curve lacks smoothness, 

which is displeasing visually, and cannot be numerically differentiated, which is problematic for 

analysis. This is what separates splines from piecewise polynomials. The difference can be 

observed by comparing Figure 3.2.1 with Figure 3.2.2. The spline curve is much smoother, with 

gradual transitions at the boundary points. 
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Figure 3.2.2: Cubic spline interpolant 

Simply put, splines are piecewise polynomials that have constraints placed on their 

derivatives. Although any order of polynomial can be used, third order, or cubic, splines are by 

far the most common. Cubic polynomials are of a high enough order that they can match most 

nonlinearities over a short domain, and low order enough that they are generally well behaved. 

Cubic splines posses ܥଶ continuity, which means that both the first and second derivatives are 

continuous. Cubic spline interpolation can be extended to multiple dimensions though the use of 

tensor products [46], however, the cost associated with solving for the coefficients increases 

rapidly as the number of dimensions and data points increase.  
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3.2.1 Cubic Spline Derivation 

The process for solving for the coefficients of the spline segments is a little more involved 

than with polynomial interpolation. If there are ܰ ൅ 1 data points, then there are ܰ segments, so 

the overall spline can be represented as the piecewise function (3.2-38). 

ܵሺݔሻ ൌ

ە
ۖ
۔

ۖ
ۓ
ሻݔଵሺݏ ଵݔ ൑ ݔ ൑ ଶݔ
ሻݔଶሺݏ ଷݔ ൑ ݔ ൑ ସݔ
⋮ ⋮

ሻݔ௜ሺݏ ௜ݔ ൑ ݔ ൑ ௜ାଵݔ
⋮ ⋮

ሻݔேሺݏ ேݔ ൑ ݔ ൑ ேାଵۙݔ
ۖ
ۘ

ۖ
ۗ

 

(3.2-38)

Each segment ݏ௜ሺݔሻ is a third order polynomial with the form of (3.2-39). 

ሻݔ௜ሺݏ ൌ ܽ௜ ൅ ܾ௜ሺݔ െ ௜ሻݔ ൅ ܿ௜ሺݔ െ ௜ሻଶݔ ൅ ݀௜ሺݔ െ ௜ሻଷ (3.2-39)ݔ

For convenience, we will define ݄௜ ൌ ሺݔ െ  ௜ሻ, so (3.2-39) becomes (3.2-40). Figure 3.2.3ݔ

gives a visual representation of the notation used in this derivation. 

ሻݔ௜ሺݏ ൌ ܽ௜ ൅ ܾ௜݄௜ ൅ ܿ௜݄௜
ଶ ൅ ݀௜݄௜

ଷ (3.2-40)

It is also useful to define here the form of the first and second derivatives of (3.2-40). 

ሻݔ௜′ሺݏ ൌ ܾ௜ ൅ 2ܿ௜݄௜ ൅ 3݀௜݄௜
ଶ (3.2-41)

ሻݔ௜″ሺݏ ൌ 2ܿ௜ ൅ 6݀௜݄௜ (3.2-42)

As stated earlier, ܰ ൅ 1 data points gives ܰ spline segments, each of which has four 

unknown coefficients ሼܽ௜, ܾ௜, ܿ௜, ݀௜ሽ, which makes a total of 4ܰ unknowns. The notation used in 

this section can also be seen in Figure 3.2.3. 
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Figure 3.2.3: Illustration of notation. 

In order to solve for the 4ܰ unknowns, 4ܰ equations are needed. To obtain the equations, we 

will impose the constraints of cubic splines. The first condition is that the spline must pass 

through every data point. This is also called the interpolation condition (3.2-43). 

ܵሺݔ௜ሻ ൌ ൜
௜ሻݔ௜ሺݏ ൌ ௜ݕ , ݅ ∈ ሾ1, ܰሿ

ேାଵሻݔேሺݏ ൌ ேାଵݕ , ݅ ൌ ܰ ൅ 1
ൠ (3.2-43)

The second condition is the continuity condition (3.2-44), which forces the left and right 

hand spline segments to be equal at the data points. 

௜ାଵሻݔ௜ሺݏ ൌ ௜ାଵሻݔ௜ାଵሺݏ ݅ ∈ ሾ1, ܰ െ 1ሿ (3.2-44)

The last two conditions (3.2-45) (3.2-46) enforce the continuity of the first and second 

derivatives at the junctions. 

௜ାଵሻݔ௜′ሺݏ ൌ ௜ାଵሻݔ௜ାଵ′ሺݏ ݅ ∈ ሾ1, ܰ െ 1ሿ (3.2-45)

௜ାଵሻݔ௜″ሺݏ ൌ ௜ାଵሻݔ௜ାଵ″ሺݏ ݅ ∈ ሾ1, ܰ െ 1ሿ (3.2-46)

With the conditions established, it is time to derive equations for the unknowns. First, by 

substituting (3.2-40) into (3.2-43) and (3.2-44) we obtain (3.2-47) and (3.2-48), respectively. 

௜ሻݔ௜ሺݏ ൌ ܽ௜ ൌ ௜ (3.2-47)ݕ

௜ାଵሻݔ௜ሺݏ ൌ ௜ାଵݕ ൌ ܽ௜ ൅ ܾ௜݄௜ ൅ ܿ௜݄௜
ଶ ൅ ݀௜݄௜

ଷ (3.2-48)

Similarly, using (3.2-41) and (3.2-42) with (3.2-45) and (3.2-46) yields (3.2-49) and (3.2-50). 
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௜ାଵሻݔ௜′ሺݏ ൌ ܾ௜ ൅ 2ܿ௜݄௜ ൅ 3݀௜݄௜
ଶ ൌ ܾ௜ାଵ (3.2-49)

௜ାଵሻݔ௜″ሺݏ ൌ 2ܿ௜ ൅ 6݀௜݄௜ ൌ 2ܿ௜ାଵ (3.2-50)

Although (3.2-47), (3.2-48), (3.2-49), and (3.2-50) define a system of equations that can be 

used to solve for the spline coefficients, the computation can be greatly simplified by evaluating 

(3.2-42) at ݔ ൌ ௜. Recall that we defined ݄௜ݔ ൌ ݔ െ ݔ ௜, so by settingݔ ൌ ௜, then ݄௜ݔ ൌ 0 and 

(3.2-42) simplifies to (3.2-51). 

௜ሻݔ௜″ሺݏ ൌ 2ܿ௜ (3.2-51)

For additional convenience, we will define a new variable ݉௜ (3.2-52) to be the second 

derivative of the curve. 

݉௜ ൌ ௜ሻ (3.2-52)ݔ௜″ሺݏ

Now we can derive expressions for each coefficient in terms of ݉௜ and ݕ௜. From (3.2-47) we 

already have an expression for ܽ௜, rewritten here as (3.2-53) 

ܽ௜ ൌ ௜ (3.2-53)ݕ

We can also immediately obtain the function for ܿ௜, using (3.2-51) and (3.2-52) to produce 

(3.2-54). 

ܿ௜ ൌ
݉௜

2
 (3.2-54)

Next, by substituting (3.2-54) into (3.2-50), we get (3.2-55) 

2 ቀ
݉௜

2
ቁ ൅ 6݀௜݄௜ ൌ 2 ቀ

݉௜ାଵ

2
ቁ (3.2-55)

Which simplifies to (3.2-56)  

݀௜ ൌ ൬
݉௜ାଵ െ ݉௜

6݄௜
൰ (3.2-56)
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The last coefficient is ܾ௜, whose expression can be found using the values for ܽ௜, ܿ௜, and ݀௜, 

(3.2-53), (3.2-54), and (3.2-56), respectively, in (3.2-48), giving (3.2-57), which finally 

simplifies down to (3.2-58). 

௜ାଵݕ ൌ ௜ݕ ൅ ܾ௜݄௜ ൅ ቀ
݉௜

2
ቁ ݄௜

ଶ ൅ ൬
݉௜ାଵ െ ݉௜

6݄௜
൰ ݄௜

ଷ  (3.2-57)

ܾ௜ ൌ
௜ାଵݕ െ ௜ݕ

݄௜
െ
݄௜
6
ሺ݉௜ାଵ െ ݉௜ሻ െ

݄௜
2
݉௜ 

(3.2-58)

With equations for the four coefficients in terms of ݉௜, we now just have to set up a system 

of equations to solve for ݉, and can easily calculate the values for the coefficients of every 

spline segment. Fortunately, we have one last equation to use. If we replace ܾ௜, ܿ௜, and ݀௜ with 

(3.2-54), (3.2-56), (3.2-58) in (3.2-49) (and perform a rather tedious amount of simplification 

which has been omitted here), we can obtain (3.2-59), which can be used to populate the system 

of equations in (3.2-60). 

݄௜݉௜ ൅ 2ሺ݄௜ ൅ ݄௜ାଵሻ݉௜ାଵ ൅ ݄௜ାଵ݉௜ାଶ ൌ 6 ൤
௜ାଶݕ െ ௜ାଵݕ

݄௜ାଵ
െ
௜ାଵݕ െ ௜ݕ

݄௜
൨ (3.2-59)

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
2ሺ݄ଵ		ଵ݄ۍ ൅ ݄ଶሻ		݄ଶ 	 							⋯ 															 0

⋮ 				 ݄ଶ		2ሺ݄ଶ ൅ ݄ଷሻ		݄ଷ 			⋯ 																								 ⋮

																																⋱
0																⋯ 	݄ேିଵ		2ሺ݄ேିଵ ൅ ݄ேሻ		݄ே

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ଶ݉ۍ

݉ଷ

⋮
݉ே

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ 6 ൤

3ݕ െ 2ݕ
݄2

െ
2ݕ െ 1ݕ
݄1

൨

6 ൤
3ݕ െ 2ݕ
݄2

െ
2ݕ െ 1ݕ
݄1

൨

⋮

6 ൤
൅1ܰݕ െ ܰݕ

݄ܰ
െ
ܰݕ െ െ1ܰݕ
݄ܰെ1

൨
ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

(3.2-60)

Sharp-eyed readers will note that this system of equations is missing values for 

݉ଵܽ݊݀	݉ேାଵ, or in other words has two fewer rows than columns. The reason for this becomes 

obvious when examining (3.2-59). Solving for the value of ݉௜ (recall, this is the second 

derivative of a spline segment) requires the values for ݉ in the adjacent segments, which in turn 

rely on the second derivative values of their neighbors. In this fashion, the segments are 

interlocking, and finding a particular value requires solving the entire curve. At the limits, ݅ ൌ 1 
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and ݅ ൌ ܰ ൅ 1, the adjacent values of ݉ depend on data that does not exist. Therefore, it is 

necessary to impose end conditions. 

3.2.2 End Conditions 

The end condition choice will impact the performance of the spline curve most strongly at 

the boundaries. The simplest and perhaps most obvious option is called a natural or free spline, 

in which the first and last second derivative values are set to zero (3.2-61). 

ଵݏ
ᇳሺݔሻ ൌ ேݏ

ᇳሺݔሻ ൌ 0 (3.2-61)

Obviously, this boundary condition assumes that the second derivative at node ݔଵ and ݔேାଵ 

equals zero, and will obviously not perform well when the second derivative has a large 

magnitude. 

For periodic functions, it makes sense to match the curves on the left and right hand 

boundaries, giving rise to the periodic end condition (3.2-62) and (3.2-63). 

ଵݏ
ᇳሺݔሻ ൌ ேݏ

ᇳሺݔሻ (3.2-62)

ଵݏ
ᇱሺݔሻ ൌ ேݏ

ᇱ ሺݔሻ (3.2-63)

The last frequently used end condition we will look at forces the third derivative to be 

continuous across the first and second segments (3.2-64), and across the second to last and last 

segments (3.2-65). 

ଵݏ
ᇵሺݔଶሻ ൌ ଶݏ

ᇵሺݔଶሻ (3.2-64)

ேିଵݏ
ᇵ ሺݔேሻ ൌ ேݏ

ᇵሺݔேሻ (3.2-65)

There is no end condition that will be the best choice in all cases. This is because the problem 

boils down to extrapolation, a fundamentally hard problem. 
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3.2.3 Cubic Spline Problems 

Cubic splines work well, but have several deficiencies. The solution of a spline surface is 

global. That is, in order to approximate the value of a single point, the coefficients for the entire 

curve must be calculated. This can get computationally expensive for large numbers of data 

points, and in high dimensions. It is also problematic if the training points change, perhaps as 

new data becomes available. 

3.3 Nearest Neighbor Spline Approximation 

Nearest Neighbor Spline Approximation [47] (NNSA) is an algorithm that attempts to 

emulate the desirable properties of cubic splines, such as curve smoothness and interpolation 

ability, while only using local data. NNSA can also be thought of as a modified defuzzification 

algorithm of a TSK Fuzzy System. The following sections will describe a one dimensional TSK 

system, show how this can be enhanced with NNSA defuzzification, and finally examine how 

this technique can be extended to higher dimensions. 
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3.3.1 One Dimensional TSK 

Let us consider a one dimensional case of a zero order TSK system with non-uniform 

membership functions as shown in Figure 3.3.1.

 

Figure 3.3.1: Showing the non-uniform triangular membership functions ݉௑೔ for a single input x. 

Note that only two membership functions ݉௑೔ and ݉௑೔శభare activated, and that their values sum 

to 1. 

For an input x, only two membership functions ݉௑೔ሺݔሻ and ݉௑೔శభሺݔሻ have nonzero values, 

given by (3.3-66) and (3.3-67). 

mଡ଼౟ሺxሻ ൌ
|x െ X୧|

h୧
 

(3.3-66)

mଡ଼౟శభሺxሻ ൌ
|x െ X୧ାଵ|

h୧ାଵ
 

(3.3-67)

Notice that since the sum of overlapping membership functions must membership functions must 

equal one, (3.3-66) and (3.3-67) become (3.3-68) and (3.3-69). 
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mଡ଼౟ሺxሻ ൅ mଡ଼౟శభሺxሻ ൌ 1 (3.3-68)

mଡ଼౟శభሺxሻ ൌ 1 െmଡ଼౟ሺxሻ (3.3-69)

If membership functions fulfill equations (3.3-66) to (3.3-69), then values of mଡ଼౟ can be also 

used as “normalized” distances. This way, for approximation purposes, the non-uniform case is 

simplified to a uniform one.  

The commonly used defuzzification process for a zero-order TSK FS leads to the system 

output of (3.3-70). 

gሺxሻ ൌ
fሺX୧ሻmଡ଼౟ሺxሻ ൅ fሺX୧ାଵሻmଡ଼౟శభሺxሻ

mଡ଼౟ሺxሻ ൅ mଡ଼౟శభሺxሻ
 

(3.3-70)

Where ݂ሺ ௜ܺሻ and ݂ሺ ௜ܺାଵሻ are values associated with each membership function and 

corresponding grid nodes. Because of (3.3-68) and (3.3-69), equation (3.3-70) can be simplified 

to remove the division entirely, and a use a single multiplication in (3.3-72). 

gሺxሻ ൌ fሺX୧ሻmଡ଼౟ሺxሻ ൅ fሺX୧ାଵሻmଡ଼౟శభሺxሻ (3.3-71)

gሺxሻ ൌ mଡ଼౟ሺxሻሾfሺX୧ሻ െ fሺX୧ାଵሻሿ ൅ fሺX୧ାଵሻ (3.3-72)

Notice that with this approach, the output value may be obtained using a defuzzification 

process that, for a one dimensional case, uses one membership function ݉௑೔ሺݔሻ, and two 

neighboring values ݂ሺ ௜ܺሻ and ݂ሺ ௜ܺାଵሻ. 

3.3.2 One Dimensional NNSA 

We will now describe the NNSA defuzzification process, and highlighting the similarities 

and differences compared to the previous section. 
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Figure 3.3.2: The NNSA algorithm constructs a third-order polynomial using the four nearest 

node value and two slope values. 

In Figure 3.3.2, the range between ௜ܺ and ௜ܺାଵ can be approximated by the third order 

polynomial ݃ሺݔሻ: 

gሺxሻ ൌ a ൅ b ൬
x െ X୧
h୧

൰ ൅ c୧ ൬
x െ X୧
h୧

൰
ଶ

൅ d୧ ൬
x െ X୧
h୧

൰
ଷ

 
(3.3-73)

Or, by using (3.3-66), 

gሺxሻ ൌ a ൅ b	mଡ଼౟ሺxሻ ൅ c mଡ଼౟ሺxሻ
ଶ ൅ d mଡ଼౟ሺxሻ

ଷ (3.3-74)

The first derivative will also be needed: 

gᇱሺxሻ ൌ b	 ൅ 2c mଡ଼౟ሺxሻ
ଶ ൅ 3d mଡ଼౟ሺxሻ

ଶ (3.3-75)

In order to solve for the four unknown coefficients, four constraints are necessary. The first 

two constraints will be that the interpolating function ݃ሺݔሻ should pass through the values ݂ሺ ௜ܺሻ 

and ݂ሺ ௜ܺାଵሻ. For the second two constraints, we will enforce that the derivative of the 

interpolating function ݃′ሺݔሻ should match the derivative of the underlying function ݂′ሺݔሻ at ௜ܺ 
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and ௜ܺାଵ. Finding values for the derivatives of the underlying function is addressed in Section 

3.3.2.1. 

By evaluating (3.3-74) and (3.3-75) at ௜ܺ and ௜ܺାଵ, we obtain (3.3-76), (3.3-77), (3.3-78), 

and (3.3-79), which define a system of equations that can be solved for the coefficients. 

gሺX୧ሻ ൌ fሺX୧ሻ ൌ a (3.3-76)

gᇱሺX୧ሻ ൌ f ᇱሺX୧ሻ ൌ b  (3.3-77)

gሺX୧ାଵሻ ൌ fሺX୧ାଵሻ ൌ a ൅ b	mଡ଼౟ሺX୧ାଵሻ ൅ c mଡ଼౟ሺX୧ାଵሻ
ଶ ൅ d mଡ଼౟ሺX୧ାଵሻ

ଷ (3.3-78)

gᇱሺxሻ ൌ f ᇱሺX୧ାଵሻ ൌ b	 ൅ 2c mଡ଼౟ሺX୧ାଵሻ ൅ 3d mଡ଼౟ሺX୧ାଵሻ
ଶ (3.3-79)

The system can be solved analytically. Clearly, (3.3-76) and (3.3-77) give the first two 

unknowns directly. Rearranging (3.3-79) to solve for ܿ gives (3.3-80). 

ܿ ൌ
f ᇱሺX୧ାଵሻ െ b െ 3d mଡ଼౟ሺX୧ାଵሻ

ଶ

2 mଡ଼౟ሺX୧ାଵሻ
 

(3.3-80)

Replacing c in (3.3-78) and solving for d gives (3.3-81). 

d ൌ
fሺX୧ାଵሻ െ a െ b mଡ଼౟ሺX୧ାଵሻ െ ܿ mଡ଼౟ሺX୧ାଵሻ

ଶ

mଡ଼౟ሺX୧ାଵሻ
ଷ  

(3.3-81)

Substituting (3.3-66), (3.3-76) and (3.3-77) into (3.3-80) and (3.3-81) and simplifying yields 

the final form of the expressions for the coefficients (3.3-82)-(3.3-85). 

ܽ ൌ ݂ሺ ௜ܺሻ (3.3-82)

ܾ ൌ ݂ᇱሺ ௜ܺሻ (3.3-83)

ܿ ൌ
3൫݂ሺ ௜ܺାଵሻ െ ݂ሺ ௜ܺሻ൯

݄௜
ଶ െ

൫2݂ᇱሺ ௜ܺାଵሻ ൅ ݂ᇱሺ ௜ܺሻ൯
݄௜

 
(3.3-84)

݀ ൌ
൫݂ᇱሺ ௜ܺାଵሻ ൅ ݂ᇱሺ ௜ܺሻ൯

݄௜
ଶ െ

2൫݂ሺ ௜ܺାଵሻ െ ݂ሺ ௜ܺሻ൯
݄௜
ଷ  

(3.3-85)



 45

With expressions for all four coefficients, values for the derivatives are needed before the 

algorithm can be used. 

3.3.2.1 Derivative Approximation 
The above formulation requires values for the derivatives of the underlying function at the 

points ௜ܺ and ௜ܺାଵ. In almost any real world example, the underlying function is either unknown, 

or of sufficient complexity that computing the derivative directly is unfeasible. As a result, the 

best solution is to approximate the derivative from the available data. The easiest and most 

obvious solution is to use simple divided differences (3.3-86) and (3.3-87). 

݂ᇱሺ ௜ܺሻ ൌ
݂ሺ ௜ܺାଵሻ െ ݂ሺ ௜ܺሻ

݄௜
 

(3.3-86)

݂ᇱሺݔ௜ାଵሻ ൌ
݂ሺ ௜ܺାଶሻ െ ݂ሺ ௜ܺାଵሻ

݄௜ାଵ
 

(3.3-87)

The quality of the curve will be dependent on the accuracy of the derivative approximations. 

Inaccurate values will result in a curve with a discontinuous second derivative. This means that 

single sided divided difference formulas will not suffice. Obtaining a more accurate derivative 

requires using the Taylor Expansion (3.3-88) and some algebraic manipulation. 

݂ሺݔሻ ൌ ෍
݂ሺ௡ሻሺܽሻ
݊!

ஶ

௡ୀ଴

∗ ሺݔ െ ܽሻ௡ ൌ ⋯ 

ൌ ݂ሺܽሻ ൅
݂ሺଵሻሺܽሻ

1!
∗ ሺݔ െ ܽሻଵ ൅

݂ሺଶሻሺܽሻ

2!
∗ ሺݔ െ ܽሻଶ ൅ ⋯ 

(3.3-88)

Setting ܽ ൌ  .଴ yields (3.3-89)ݔ

݂ሺݔሻ ൌ ݂ሺݔ଴ሻ ൅ ݂ᇱሺݔ଴ሻ ∗ ሺݔ െ ଴ሻݔ ൅
݂ሺଶሻሺݔ଴ሻ

2
∗ ሺݔ െ ଴ሻଶݔ ൅ ⋯ 

(3.3-89)

Expressions for forward (3.3-90) and backward (3.3-91) differences can be obtained by 

setting ݔ ൌ ଴ݔ ൅ ݄ and ݔ ൌ ଴ݔ െ ݄, respectively, and solving for ݂ᇱሺݔ଴ሻ 
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݂ᇱሺݔ଴ሻ ൌ
݂ሺݔ଴ ൅ ݄ሻ െ ݂ሺݔ଴ሻ

݄
െ
݂ᇳሺݔ଴ሻ݄

2
െ
݂ᇵሺݔ଴ሻ݄ଶ

6
൅ ⋯ 

(3.3-90)

݂ᇱሺݔ଴ሻ ൌ
݂ሺݔ଴ሻ െ ݂ሺݔ଴ െ ݄ሻ

݄
൅
݂ᇳሺݔ଴ሻ݄

2
െ
݂ᇵሺݔ଴ሻ݄ଶ

6
൅ ⋯ 

(3.3-91)

The upper bound of the error of the single sided difference formulas is ܱሺ݄ሻ, caused by the 

truncation of all the higher order terms. Adding (3.3-90) to (3.3-91) produces the centered 

difference formula (3.3-92). 

݂ᇱሺݔ଴ሻ ൌ
݂ሺݔ଴ ൅ ݄ሻ െ ݂ሺݔ଴ െ ݄ሻ

2݄
െ
݂ᇵሺݔ଴ሻ݄ଶ

6
െ
݂ସሺݔ଴ሻ݄ସ

120
൅ 

(3.3-92)

Which reduces the error from ܱሺ݄ሻ to ܱሺ݄ଶሻ by cancelling out the errors from the terms with 

odd powers of ݄. Truncating the higher order terms and substituting ௜ܺ and ௜ܺାଵfor ݔ௢ (as well as 

replacing ݄ with ݄௜ and ݄௜ାଵ) yields the needed derivative approximations (3.3-93) and (3.3-94). 

݂ᇱሺ ௜ܺሻ ൌ
݂ሺ ௜ܺାଵሻ െ ݂ሺ ௜ܺିଵሻ

2݄௜
 

(3.3-93)

݂ᇱሺ ௜ܺାଵሻ ൌ
݂ሺ ௜ܺାଶሻ െ ݂ሺ ௜ܺሻ

2݄௜ାଵ
 

(3.3-94)

The above formulas assume that the data points are evenly spaced. Unevenly spaced points 

complicate the derivation a bit, but (3.3-95) and (3.3-96) are the result. 

݂ሺ ௜ܺሻ ൌ

݄௜
݄௜ିଵ

ሺ݂ሺ ௜ܺሻ െ ݂ሺ ௜ܺିଵሻ െ
݄௜ିଵ
݄௜

൫݂ሺ ௜ܺାଵሻ െ ݂ሺ ௜ܺሻ൯

݄௜ ൅ ݄௜ିଵ
 

(3.3-95)

݂ሺ ௜ܺାଵሻ ൌ

݄௜ାଵ
݄௜

൫݂ሺ ௜ܺାଵሻ െ ݂ሺ ௜ܺሻ൯ െ
݄௜
݄௜ାଵ

ሺ݂ሺ ௜ܺାଶሻ െ ݂ሺ ௜ܺାଵሻሻ

݄௜ାଵ ൅ ݄௜
 

(3.3-96)

These formulas provide an approximation of the actual derivative of the underlying function 

at the specified points. The errors in the approximation can cause the resulting curve to have 

small discontinuities in the second derivative, as shown in Figure 3.3.3. 
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Figure 3.3.3: Comparing the continuity of various derivatives between global spline and NNSA. 

The global values are from a global spline routine. The local left and right values are from the 

NNSA algorithm on the left and right hand sides of each data point. 

 The issue boils down to the fact that when using centered difference derivative 

approximations, moving from one NNSA segment to the next brings in one new data point and 

removes another. That means fully half of the data points are different, and the result is a 

sometimes discontinuous second derivative. Higher order divided difference approximations 

such as (3.3-97) that use more data points can help reduce the error, with the extreme case of 

using all of the available data points. 

݂ᇱሺݔ௜ሻ ൌ
െ݂ሺݔ௜ାଶሻ ൅ 8݂ሺݔ௜ାଵሻ െ 8݂ሺݔ௜ିଵሻ ൅ ݂ሺݔ௜ିଶሻ

12݄௜
െ ܱሺ݄ସሻ 

(3.3-97)
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However, increasing the number of points required for the algorithm increases the 

computational overhead, and gets away from the localized solution that was the original goal. In 

addition, using more points exacerbates the problems that must be dealt with at the edge of data 

sets. For those reasons, centered divided difference derivative approximation will be sufficient. 

Provided the four surrounding points are available, the equations for the coefficients in the 

previous section and the formula for the derivative approximations above can be used to 

approximate any arbitrary function. However, it should be apparent that problems appear at the 

edges for the data set, and so special care must be taken. 

3.3.2.2 Handling Edges 
Evaluating (3.3-95) at ݅ ൌ 1 and (3.3-96) for ݅ ൌ ܰ reveals the problem with edge values, as 

shown in (3.3-98) and (3.3-99). 

݂ᇱሺ ଵܺሻ ൌ
݂ሺܺଶሻ െ ݂ሺܺିଵሻ

2݄ଵ
 

(3.3-98)

݂ᇱሺܺேାଵሻ ൌ
݂ሺܺேାଶሻ െ ݂ሺܺேሻ

2݄ேାଵ
 

(3.3-99)

Since the values at ݂ሺܺିଵሻ and ݂ሺܺேାଶሻ are unavailable, some method of obtaining 

approximations of the derivatives is needed at the boundaries. 

There are two obvious strategies for dealing with the edges. The first is to simply use first 

order forward/backward approximations of the derivative at the boundaries, such as (3.3-86) and 

(3.3-87). The benefit of this approach is simplicity, but forward and backward difference 

approximations generate rather large errors, and must be generated on the fly. The second 

solution is to use the available data points to extrapolate an additional “virtual” point on each 

end. While this could also be done on the fly, it has the benefit of being easily accomplished as a 

preprocessing step. The next issue is what extrapolation method to use. 
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Given the limited number of data points available, and the nature of the NNSA algorithm, 

some form of polynomial extrapolation seems appropriate. The NNSA algorithm only uses at 

most four data points, so it makes sense to limit the highest order polynomial to a third order 

polynomial. Furthermore, as discussed in section 3.1.2, using high degree polynomials can cause 

wild behavior. A zero order polynomial is a constant, and would simply duplicate the points on 

the boundaries, which will rarely give good results, so we will limit the discussion to polynomial 

extrapolation with first, second, and third order polynomials. The benchmark function was an 

exponentially decaying sinusoid described by (3.3-100) and shown in Figure 3.3.4(a). 

݂ሺݔሻ ൌ 0.8 expሺെ0.2ݔሻ sinሺ10ݔሻ (3.3-100)

No matter what extrapolation method is used, the NNSA algorithm will produce identical 

results for all but the first and last segments, indicated by the red boxes. For that reason, Figure 

3.3.4(b) and Figure 3.3.4(c) show the results of applying NNSA for the first and last segments, 

respectively. 
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(a) 

(b) (c) 

Figure 3.3.4: Showing the benchmark function and results. (a) The function and data points, with 

the first and last segments highlighted. (b) Resulting NNSA surface with different extrapolation 

methods for the first interval. (c) Resulting NNSA surface with different extrapolation methods 

for the last interval. 
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  In the first segment, second order extrapolation appears to be closest to the desired curve, 

while in the last segment the third order extrapolation performs the best. It is clear that the 

behavior of the curve at the edge will determine which method gives the best results. By shifting 

the start and stop values through one full period of the sinusoid and averaging the results for each 

method, it was found that a third order extrapolation produced the lowest errors, and is therefore 

the default extrapolation technique in the NNSA algorithm. As a final note, extrapolation is a 

fundamentally hard problem. No single method will be optimal in every case, and the goal here 

was to identify a method that would perform reasonably well. 

3.3.3 Extension to Multiple Dimensions 

The defuzzification described in section 3.3.1 can be extended for multiple dimensions. The 

multidimensional case can be handled as multiple steps of the one dimensional case described by 

the formulas (3.3-82)-(3.3-85), (3.3-93), and (3.3-94). In the two-dimensional example shown in 

Figure 3.3.5, the point ሺݔ,  ሻ is associated with two membership functions ݉௑೔,݉௑೔శభ in the xݕ

direction, and ݉௒ೕ,݉௒ೕశభ in the y direction. 
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Figure 3.3.5: Demonstrating the defuzzification process in two dimensions. In this case, one-

dimensional defuzzification is performed in the ݔ direction in order to obtain the intermediate 

points ݂ሺ ௝ܺሻ and ݂൫ ௝ܺାଵ൯. Defuzzification in the ݕ direction is then performed on the 

intermediate points to obtain the final value. 

With x and y as inputs, the output value is calculated as  

݃ሺݔ, ሻݕ ൌ ݉௑೔ሺݔሻ݉௒ೕሺݕሻ݂൫ ௜ܺ, ௝ܻ൯ ൅ ݉௑೔శభሺݔሻ݉௒ೕሺݕሻ݂൫ ௜ܺାଵ, ௝ܻ൯

൅ ݉௑೔ሺݔሻ݉௒ೕశభሺݕሻ݂൫ ௜ܺ, ௝ܻାଵ൯ ൅ ݉௑೔శభሺݔሻ݉௒ೕశభሺݕሻ݂൫ ௜ܺାଵ, ௝ܻାଵ൯ 

(3.3-101)
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Because of (3.3-68), equation (3.3-101) can be rewritten as 

݃ሺݔ, ሻݕ ൌ ݂൫ ௜ܺ, ௝ܻ൯ ቂ݉௑೔ሺݔሻ݉௒ೕሺݕሻቃ

൅ ݂൫ ௜ܺାଵ, ௝ܻ൯ ቂቀ1 െ ݉௑೔ሺݔሻቁ݉௒ೕሺݕሻቃ

൅ ݂൫ ௜ܺ, ௝ܻାଵ൯ ቂ݉௑೔ሺݔሻ ൬1 െ ݉௒ೕሺݕሻ൰ቃ

൅ ݂൫ ௜ܺାଵ, ௝ܻାଵ൯ ቂ݉௑೔షభሺݔሻ ൬1 െ ݉௒ೕሺݕሻ൰ቃ 

(3.3-102)

Notice again that in the two dimensional case, the output value can be calculated as a 

function of the four nearest grid point values and two membership functions ݉௑೔ሺݔሻ and ݉௒ೕሺݕሻ. 

Let us first calculate the values of intermediate points ݂൫ ௝ܺ൯ and ݂൫ ௝ܺାଵ൯: 

݂൫ ௝ܺ൯ ൌ ݂൫ ௜ܺ, ௝ܻ൯݉௑೔ሺݔሻ ൅ ݂൫ ௜ܺାଵ, ௝ܻ൯݉௑೔శభሺݔሻ 

݂൫ ௝ܺାଵ൯ ൌ ݂൫ ௜ܺ, ௝ܻାଵ൯݉௑೔ሺݔሻ ൅ ݂൫ ௜ܺାଵ, ௝ܻାଵ൯݉௑೔శభሺݔሻ 

(3.3-103)

݂൫ ௝ܺ൯ ൌ ݂൫ ௜ܺ, ௝ܻ൯݉௑೔ሺݔሻ ൅ ݂൫ ௜ܺାଵ, ௝ܻ൯ ቀ1 െ ݉௑೔ሺݔሻቁ 

݂൫ ௝ܺାଵ൯ ൌ ݂൫ ௜ܺ, ௝ܻାଵ൯݉௑೔ሺݔሻ ൅ ݂൫ ௜ܺାଵ, ௝ܻାଵ൯ ቀ1 െ ݉௑೔ሺݔሻቁ 

(3.3-104)

Then the output value at (x,y) can be calculated as: 

݃ሺݔ, ሻݕ ൌ ݂൫ ௝ܺ൯݉௒ೕሺݕሻ ൅ ݂൫ ௝ܺାଵ൯ ൬1 െ ݉௒ೕሺݕሻ൰ (3.3-105)

Inserting (3.3-104) into (3.3-105) leads to the same formula (3.3-102). It is not important if 

the first calculation is done in the x or in y direction. The formula will be the same and leads to 

the well-known fuzzy product encoding formula (3.3-102). 

The two-dimensional case described by (3.3-102), (3.3-103), (3.3-104), and (3.3-105) can be 

extended to multidimensional cases, which can be simply computed as a series of one 

dimensional calculations. 
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In a very similar fashion, the NNSA algorithm can also be applied in higher dimensions. The 

approach is illustrated in Figure 3.3.6 for the 2-dimensional case. Given function values at the 

grid points, the following steps must be taken in order to calculate a single function value located 

outside of the grid.  

1. Find the intermediate y values along the all grid lines (red dash lines) in in the x direction 

using values of function at a grid points and (3.3-74). 

2. Once intermediate y values at the points where the dotted blue line crosses the grids are 

known, the value at the desired point D can be approximated. 

 

Figure 3.3.6: Illustration of the values that must be computed for the two dimensional NNSA1 

algorithm. 
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In the above example, computation was done first in the ݔ direction and then in the ݕ 

direction. Of course, the process can be reversed—the ݕ direction is solved first, followed by the 

  .direction—with similar results ݔ

This concept can be extended for multiple dimensions such that the dimensionality is reduced 

one by one in subsequent steps. The algorithm for arbitrary dimension d is as follows: 

1. Inputs 

a. x∶ an array of length d which contains the location of the desired point 

b. Xt∶ a matrix with ݊ௗ rows – where n is the number of training points per 

dimension - and d +1 columns. The first d columns contain the input points, 

while the last column holds the function value. Note that the points arranged 

in a grid pattern. 

c. npoints∶ the number of points required per dimension. For NNSA this is 4. 

2. For i = d down to 1 

a. b=݊ݏݐ݊݅݋݌௜ିଵ 

b. Out=array of length b 

c. For j = 1 to b 

i. For k=1 to npoints 

1. Xa(k)=Xt(j+(k-1)*b,i) 

2. Ya(k)=Xt(j+(k-1)*b,i+1) 

ii. end 

d. Calculate Out(j) using (3.3-74). 

e. end 

3. Xt=[Xt(1 to b,1 to i-1), out] 
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4. end 

5. After the loop exits, Xt will contain a single value that is the approximated value at 

location x. 

3.3.4 Comments 

The proposed algorithm requires exactly the same parameters as the zero-order TSK with 

triangular membership functions and node values. Only the defuzzification process is different, 

as given by equations (3.3-82)–(3.3-85). 

The name Nearest Neighbor Spline Approximation is adopted because only the nearest four 

neighbors are needed in the calculation process. The only difference between zero-order TSK 

and NNSA is that in TSK, only the two nearest node values are required, while NNSA uses the 

nearest four. As a consequence, any algorithm which has already been developed to tune or train 

TSK system can also be applied to train or tune the NNSA system, because exactly the same 

parameters are adjusted in both systems. 

Chapter 4 Experimental Results 

For comparison, the proposed algorithm was tested on a variety of problems against popular 

machine learning and approximation techniques ANN (MLP trained with EBP), ANN (FCC 

trained with NBN), ELM, SVM, ANFIS, TSK FS, and Global Spline. For the algorithms that 

required user parameters, a search was performed to find the parameters that minimized the 

testing error. For example: size and starting weights for the ANNs, the input weight and bias 

range for ELM; the cost constant, C, size of epsilon insensitive tube, ε, and radius of the RBF 

kernel, γ for SVR, and the number of input membership functions for ANFIS. All experiments 

were performed using MATLAB, running on a Windows machine with an Intel i5-2300 

operating at 2.80 GHz and 8GB of RAM. 
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4.1 Peaks Problem 

Various learning algorithms were tested on a highly nonlinear peaks benchmark problem 

described by (4.1-106) and shown in Figure 4.1.1. 

,ݔሺݖ ሻݕ ൌ െ
1
30

expሺെ1 െ 6x െ 9xଶ െ 9yଶሻ

െ ሺ0.6x െ 27xଷ െ 243yହሻ expሺെ9xଶ െ 9yଶሻ

൅ ሺ0.3 െ 1.8x ൅ 2.7xଶሻ expሺെ1 െ 6y െ 9xଶ െ 9yଶሻ 

(4.1-106)

 

 

Figure 4.1.1: Peaks benchmark surface plot. 

For the benchmark trials, 2000 random patterns were generated for training, and a separate 

set of 1000 random patterns was used for testing. For the algorithms that require node values on 

a regular grid, an 8x8 grid was approximated from the random training data. The time required to 

create the grid was counted as the “training” time for the TSKFS, SPLINE, and NNSA 

algorithms. For the algorithms that have randomized starting conditions, ten trials were run, and 
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the best results were used. For the algorithms that require user set parameters, the following 

settings were used: 

ANN-MLP: 40 hidden neurons. 

ANN-FCC: 10 hidden neurons. 

ELM: 60 RBF units. 

SVR: ߛ ൌ ܥ ,3 ൌ 10 

ANFIS: 3 generalized bell membership functions per input dimension. 

The training set was supplied to each of the described algorithms, and the test set applied 

after training. Figure 4.1.2 shows the surface produced by each algorithm, and the results are 

summarized in Table IV in terms of error and execution time for both training and testing. 
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(c) (d) 

(e) (f) 

(g) (h) 

Figure 4.1.2: Surface plots for peaks benchmark for (a) ANN-MLP (b) ANN- FCC (c) SVM (d) 

ELM (e) ANFIS (f) TSK FS (g) Global Spline (h) NNSA. 

Table IV: Results for peaks benchmark in terms of Training and Testing errors (RMSE), 

Training and Testing Times (s), and the number nodes/neurons. 

Algorithm 
Training 
RMSE 

Testing 
RMSE 

Training 
Time (s) 

Testing 
Time(s) 

nn 

ANN-MLP 0.0381 0.0401 7.0832 0.0238 40 
ANN-FCC 0.0329 0.0351 13.2805 0.0569 10 

SVM 0.0311 0.0315 39.6671 0.0973 79 
ELM 0.0301 0.0306 7.0258 0.0907 60 

ANFIS 0.0238 0.0280 0.4186 0.0811 6 
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TSK 0.0369 0.0345 0.0105 0.0881 16 
SPLINE 0.0369 0.0218 0.0105 0.4909 16 
NNSA 0.0286 0.0267 0.0105 0.4531 16 

As one can see from Table IV, traditional MLP neural networks trained with EBP require a 

very large number of nodes to train, and the errors obtained are still larger than in other methods. 

Better results can be obtained with SVM, but the training is very time consuming—especially if 

optimal training parameters must be found using the grid search method. On the other hand, 

ELM needs a large number of RBF units, but the number of trainable parameters is still smaller 

than in the case of ANN. The ANFIS algorithm produces very good results with a very short 

training time. The TSK fuzzy system is very competitive with the methods that required training. 

The only disadvantage of the TSK system is that the output surface is rawer than that obtained 

with the learning methods. Global Spine and NNSA produced the lowest and second lowest 

testing errors, respectively. 

4.2 Forward Kinematics 

Control of robotics and motors is a commonly-used benchmark for approximation methods. 

The forward kinematics problem is useful in robotics and computer animation. Presented here is 

forward 2D kinematics problem in which the position of a manipulator, such as a robot arm or 

animated wire frame, must be found given the lengths and angles between the links. Shown in 

Figure 4.2.1, the desired X and Y position of the arm is given as an input, and the angles alpha 

and beta must be calculated to move the manipulator to the specified XY coordinate. 



 61

 

Figure 4.2.1: A two link manipulator with lengths R1 and R2, and angles alpha and beta. 

This system is governed by the forward kinematic equations (4.2-107) and (4.2-108). 

ݔ ൌ ሻߙሺݏ݋ܿ	1ܴ ൅ ߙሺݏ݋2ܴܿ ൅ ሻ (4.2-107)ߚ

 

ݕ ൌ ሻߙሺ݊݅ݏ	1ܴ ൅ ߙሺ݊݅ݏ2ܴ ൅ ሻ (4.2-108)ߚ

The control surfaces for both X and Y are shown in Figure 4.2.2. For this work, the lengths 

R1 and R2 are normalized to be 1 and 1 respectively. For the experiments performed, a uniform 

grid of size 8x8 with was used for training. A separate set of 900 data points were used for 

testing. All inputs and outputs were normalized to [-1,+1]. 
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(b) (c) 

Figure 4.2.2: Output surface for the (a) X-position and (b) Y-position. 

For the algorithms that require user set parameters, the following settings were used: 

ANN-MLP: 10 hidden neurons. 

ANN-FCC: 8 hidden neurons. 

ELM: 60 RBF units. 

SVR: ߛ ൌ ܥ ,1 ൌ 64 

ANFIS: 4 generalized bell membership functions per input dimension. 

The results for the X-position can be seen in Table V, and the Y-position in Table VI. 

Table V: Results for Forward Kinematics problem X position in terms of Training and Testing 

errors (RMSE), Training and Testing Times (s), and the number nodes/neurons. 

Algorithm 
Training 
RMSE 

Testing 
RMSE 

Training 
Time (s) 

Testing 
Time(s) 

Nodes 

ANN-MLP 0.1443 0.0888 13.7827 0.0214 10 
ANN-FCC 0.0688 0.0533 1.7226 0.0570 8 

SVM 0.0723 0.0376 0.0482 0.0014 53 
ELM 0.0104 0.0277 0.4012 0.0876 60 

ANFIS 0.0896 0.0721 0.1239 0.0846 16 
TSK 0.0000 0.0352 0.0000 0.0046 64 
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SPLINE 0.0000 0.0319 0.0000 1.6829 64 
NNSA 0.0000 0.0239 0.0000 0.3481 64 

 

Table VI: Results for Forward Kinematics problem Y position in terms of Training and Testing 

errors (RMSE), Training and Testing Times (s), and the number nodes/neurons. 

Algorithm 
Training 
RMSE 

Testing 
RMSE 

Training 
Time (s) 

Testing 
Time(s) 

Nodes 

ANN-MLP 0.0980 0.0740 12.7502 0.0210 20 
ANN-FCC 0.0765 0.0486 2.0770 0.1326 8 

SVM 0.0585 0.0332 0.0315 0.0012 43 
ELM 0.0092 0.0155 0.4696 0.1086 60 

ANFIS 0.0329 0.0453 0.1021 0.0658 16 
TSK 0.0000 0.0431 0.0000 0.0046 64 

SPLINE 0.0000 0.0198 0.0000 1.6863 64 
NNSA 0.0000 0.0127 0.0000 0.3525 64 

Again, we can see that the neural networks require a lengthy training process, and the SVM, 

ELM, and ANFIS are much faster. TSK, SPLINE, and NNSA do not require training, although 

NNSA and SPLINE require a relatively lengthy testing time. The MLP network has the poorest 

performance, both in training time and testing error. For both X and Y outputs, NNSA performs 

very well, producing the lowest testing error of any algorithm. In contrast, the TSK FS has a 

higher testing error, but it also has the lowest execution time. 

4.3 Multidimensional Schwefel Function 

The Schwefel [48] function is highly complex nonlinear benchmark function, and can be 

extended to arbitrary dimensions. For the purposes of this research, the Schwefel function was 

modified so that the sine function is used instead of cosine, a parameter called alpha to control 

nonlinearity was added, and inputs and outputs were normalized to the range (-1,1). The function 

is described by (4.3-109). 

ݕ ൌ෍െݔ௜ ∗ ߙ ∗ sin ቀඥ|ݔ௜ ∗ ቁ|ߙ

ௗ

௜ୀଵ

 
(4.3-109)
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Note that ݔ is a vector of length ݀, and each element ݔ௜ corresponds to a different dimension. 

The alpha parameter allows the shape of the resulting function to be changed, as shown in Figure 

4.3.1. 

 

Figure 4.3.1: Schwefel function with different alpha values for one dimensional cases for 

different values of Alpha (Alpha = 10, Alpha = 20, Alpha = 30, Alpha = 50, Alpha = 100.) 

The NNSA algorithm was compared to the same machine learning algorithms listed in the 

previous section using the Schwefel function in multiple dimensions with several different 

uniform training grid sizes. For each training grid size N, an N-1 grid of test points was 

generated. The test point grid was offset from the training grid so that each test point resided in 

the center of a hypercube defined by the closest training points. This meant that the test points 
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were as far as possible from the available training points. The purpose of this was to test the 

ability of the algorithms to generalize between the available data points. 

The performance of the algorithms was evaluated by comparing the training and testing times 

(Figure 4.3.2 and Figure 4.3.3), as well as the training and testing error (Figure 4.3.5 and Figure 

4.3.6). Selected graphs have been included in this section for analysis of the data. For the full 

listing, see Multidimensional Schwefel Data in Appendix 6.1. 
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(e) 

Figure 4.3.2: Semi-log plots showing training times for the algorithms tested as the number of 

dimensions increased. (a) Alpha = 10 (b) Alpha = 20 (c) Alpha = 30 (d) Alpha = 50 (e) Alpha = 

100. 
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(c) (d) 

 
(e) 

Figure 4.3.3: Semi-log plots showing testing times for the algorithms tested as the number of 

dimensions increased. (a) Alpha = 10 (b) Alpha = 20 (c) Alpha = 30 (d) Alpha = 50 (e) Alpha = 

100. 
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Figure 4.3.4: Semi-log plots showing total times for the algorithms tested as the number of 

dimensions increased. (a) Alpha = 10 (b) Alpha = 20 (c) Alpha = 30 (d) Alpha = 50 (e) Alpha = 

100. 
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(e) 

Figure 4.3.5: Plots showing training errors for the algorithms tested as the number of dimensions 

increased. (a) Alpha = 10 (b) Alpha = 20 (c) Alpha = 30 (d) Alpha = 50 (e) Alpha = 100. 
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(c) (d) 

 
(e) 

Figure 4.3.6: Plots showing training errors for the algorithms tested as the number of dimensions 

increased. (a) Alpha = 10 (b) Alpha = 20 (c) Alpha = 30 (d) Alpha = 50 (e) Alpha = 100. 
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training points were generated to account for the increasing complexity of the function. As a 

result, Figure 4.3.2(d) and (e) stop at the fourth dimension, as the simulations for the fifth 

dimension required an infeasible amount of time to complete. 

The testing times in Figure 4.3.3(a)–(e) also increase as the number of dimensions increase, 

although the MLP network appears nearly constant. The only exception is ANFIS in Figure 

4.3.3(a). The fact that this behavior does not repeat with any of the other values of alpha 

indicates that this is an anomaly. It is clear that SPLINE performance suffers the most as the 

number of dimensions increases, followed by NNSA and TSK. This is a result of the memory 

and computation requirements of each algorithm that scale with the number of dimensions. 

A fairer comparison of the algorithms can be seen in Figure 4.3.4(a)–(e), which shows the 

total time as a sum of training and testing time for each algorithm. Several trends are apparent. 

First, the total time for all algorithms increases exponentially (recall that the scale for the Y-axis 

is semi-logarithmic) as the number of dimensions increases. The fastest algorithm appears to be 

the TSKFS, which is a result of simplicity of the defuzzification process when compared with 

NNSA. SVM performs the slowest, probably due to the necessity of searching for appropriate 

parameters for each training set. Lastly, other than TSKFS, NNSA performs the fastest, although 

it suffers as the number of dimensions increases. 

The training errors of the tested algorithms can be seen in Figure 4.3.5(a)–(e). Training error 

gives a measurement of how well an algorithm has matched the training data. The training error 

of TSKFS, SPLINE, and NNSA are all zero, as they match the training points by design. For the 

other algorithms, the training errors generally increase as the number of dimensions increase, 

with the exception of SVM, with which training errors actually decrease. The errors also appear 
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fairly consistent as alpha increases, with the MLP network and ELM performing the worst, FCC 

and ANFIS in the middle, and SVM generally performing the best. 

Perhaps the most important performance criterion is testing or validation error, shown in 

Figure 4.3.6(a)–(e). This measures how an algorithm performs on data that was not used for 

training. There are several interesting trends to notice. The errors for all the algorithms are fairly 

close when there are only two input dimensions. The errors for MLP, FCC, and ELM generally 

increase as the number of dimensions increases, especially compared to the other algorithms. In 

every case, NNSA produces either the lowest, or close to the lowest errors. 

Chapter 5 Conclusions 

The power of modern computing has the potential to tackle engineering and scientific 

problems that were infeasible only a few years ago. Even with this potential, some tasks are 

simply too complex for traditional first principles analysis. Data driven machine learning 

techniques represent a different paradigm for applying the capabilities of computers. By drawing 

inspiration from the biological world, machine learning seeks to recreate the problem-solving 

ability of living organisms. The varieties of ANN and FS all have advantages and drawbacks. 

Questions such as network size, architecture, training algorithm, number, and type of 

membership function, rule base, etc. can lead to frustration. The NNSA algorithm presented in 

this work offers another tool for researchers to utilize. 

The experimental results demonstrate the capabilities of NNSA when compared to other 

machine leaning methods. It is clear that the performance of NNSA suffers as the number of 

input dimensions grows. Further work remains to be done to make the algorithm viable in higher 

dimensions. In addition, the grid-based nature of the algorithm makes it unsuitable for some 

problems. However, the smoothness and accuracy of the NNSA algorithm is superior to 
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traditional TSK FS, and of similar quality to ANN, even without optimization. The quality of the 

output surfaces produced by NNSA approaches that of cubic splines, while avoiding the 

computational cost associated with traditional splines, such as solving for the entire surface by 

matrix inversion. The forward-only nature of the computation means that new training data can 

be easily incorporated through the adjustment of the appropriate node values, thus avoiding the 

computationally intensive retraining process required by learning systems. In theory, this also 

allows NNSA to be tuned to produce more accurate results, as it is a simple matter to trace 

inaccurate output values back to the associated node values, which can then be modified to 

reduce the error.  
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Chapter 6 Appendices 

6.1 Multidimensional Schwefel Data 

Algorithm Dimension Alpha 
Train Time 

(s) 
Test Time 

(s) 
Total Time 

(s) 
Train 

RMSE 
Test 

RMSE Nodes 
MLP 2 10 12.94021 0.017668 12.95788 0.121646 0.057196 15 
FCC 2 10 1.277369 0.001482 1.278852 0.029302 0.022392 88 
SVM 2 10 0.084975 0.000155 0.08513 0.197627 0.027843 26 
ELM 2 10 0.297913 0.001967 0.29988 0.015431 0.025549 50 

ANFIS 2 10 0.169048 0.135201 0.304249 0.02677 0.07732 9 
TSK 2 10 0 0.001662 0.001662 0 0.049552 36 

Spline 2 10 0 0.034441 0.034441 0 0.038061 64 
NNSA 2 10 0 0.012179 0.012179 0 0.020946 64 
MLP 2 20 9.533187 0.018249 9.551436 0.102822 0.052718 10 
FCC 2 20 1.275765 0.001484 1.277249 0.009014 0.016296 88 
SVM 2 20 0.085635 0.000172 0.085808 0.119255 0.022908 26 
ELM 2 20 0.186096 0.001962 0.188058 0.010574 0.011705 50 

ANFIS 2 20 0.014293 0.001537 0.01583 0.056705 0.093826 9 
TSK 2 20 0 0.00107 0.00107 0 0.04136 36 

Spline 2 20 0 0.034048 0.034048 0 0.021066 64 
NNSA 2 20 0 0.00789 0.00789 0 0.025755 64 
MLP 2 30 9.553677 0.017545 9.571222 0.117325 0.055211 15 
FCC 2 30 1.282617 0.001323 1.28394 0.090229 0.047413 75 
SVM 2 30 0.095954 0.000419 0.096373 0.06564 0.020103 50 
ELM 2 30 0.183874 0.001968 0.185842 0.042202 0.080674 50 

ANFIS 2 30 0.014358 0.001606 0.015964 0.092787 0.099857 9 
TSK 2 30 0 0.001315 0.001315 0 0.093282 36 

Spline 2 30 0 0.034027 0.034027 0 0.036846 64 
NNSA 2 30 0 0.007869 0.007869 0 0.026711 64 
MLP 2 50 9.866466 0.017431 9.883896 0.155482 0.054535 10 
FCC 2 50 2.017227 0.00284 2.020067 0.10179 0.050774 88 
SVM 2 50 0.466546 0.000331 0.466877 0.079549 0.022621 58 
ELM 2 50 0.274767 0.004475 0.279242 0.039195 0.035099 60 

ANFIS 2 50 0.020172 0.001613 0.021785 0.053061 0.070035 9 
TSK 2 50 0 0.001529 0.001529 0 0.03492 64 

Spline 2 50 0 0.097538 0.097538 0 0.023999 100 
NNSA 2 50 0 0.018577 0.018577 0 0.02154 100 
MLP 2 100 9.918065 0.018211 9.936276 0.13268 0.067406 15 
FCC 2 100 2.861763 0.003218 2.864981 0.122154 0.053686 52 
SVM 2 100 0.877246 0.000683 0.877929 0.07292 0.025967 80 
ELM 2 100 0.379914 0.007136 0.38705 0.044361 0.038643 60 

ANFIS 2 100 0.027089 0.001683 0.028772 0.103398 0.103106 9 
TSK 2 100 0 0.001971 0.001971 0 0.044214 100 
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Spline 2 100 0 0.195435 0.195435 0 0.029356 144 
NNSA 2 100 0 0.037775 0.037775 0 0.027175 144 
MLP 3 10 11.67602 0.017682 11.69371 0.223443 0.094427 15 
FCC 3 10 10.43696 0.006565 10.44353 0.182259 0.056854 85 
SVM 3 10 12.99226 0.003508 12.99577 0.221449 0.018689 220 
ELM 3 10 1.28128 0.011016 1.292296 0.172382 0.050919 60 

ANFIS 3 10 0.643649 0.002904 0.646553 0.063526 0.084563 27 
TSK 3 10 0 0.00566 0.00566 0 0.049921 216 

Spline 3 10 0 1.217751 1.217751 0 0.04016 512 
NNSA 3 10 0 0.198288 0.198288 0 0.022087 512 
MLP 3 20 11.6582 0.017831 11.67603 0.159723 0.093526 15 
FCC 3 20 10.40526 0.007341 10.4126 0.073409 0.048747 99 
SVM 3 20 6.064509 0.003309 6.067819 0.046382 0.033754 202 
ELM 3 20 1.285099 0.011284 1.296383 0.140609 0.079254 60 

ANFIS 3 20 0.640177 0.003091 0.643268 0.068292 0.087144 27 
TSK 3 20 0 0.00554 0.00554 0 0.037631 216 

Spline 3 20 0 1.176986 1.176986 0 0.02081 512 
NNSA 3 20 0 0.196855 0.196855 0 0.02419 512 
MLP 3 30 11.82266 0.018017 11.84067 0.202482 0.151629 25 
FCC 3 30 10.53178 0.00722 10.539 0.132451 0.062261 99 
SVM 3 30 4.939962 0.005136 4.945098 0.075979 0.022402 330 
ELM 3 30 1.277036 0.011005 1.288041 0.193019 0.185437 60 

ANFIS 3 30 0.647471 0.002924 0.650395 0.11093 0.091414 27 
TSK 3 30 0 0.005423 0.005423 0 0.079976 216 

Spline 3 30 0 1.180454 1.180454 0 0.032455 512 
NNSA 3 30 0 0.197245 0.197245 0 0.022763 512 
MLP 3 50 13.9658 0.018649 13.98444 0.218229 0.099286 25 
FCC 3 50 20.35409 0.017786 20.37188 0.139455 0.070053 85 
SVM 3 50 40.31731 0.016089 40.3334 0.056144 0.036059 500 
ELM 3 50 2.476887 0.025589 2.502475 0.178807 0.071072 50 

ANFIS 3 50 1.233366 0.00428 1.237646 0.079535 0.072193 27 
TSK 3 50 0 0.056827 0.056827 0 0.034738 512 

Spline 3 50 0 5.667674 5.667674 0 0.025043 1000 
NNSA 3 50 0 0.834155 0.834155 0 0.022016 1000 
MLP 3 100 17.28814 0.020393 17.30853 0.220541 0.146163 60 
FCC 3 100 35.29679 0.037954 35.33474 0.179835 0.129798 85 
SVM 3 100 187.8772 0.05173 187.9289 0.047501 0.030291 856 
ELM 3 100 4.237248 0.064341 4.301589 0.199897 0.154177 60 

ANFIS 3 100 2.114776 0.0065 2.121276 0.125058 0.113305 27 
TSK 3 100 0 0.094961 0.094961 0 0.046213 1000 

Spline 3 100 0 18.53888 18.53888 0 0.031442 1728 
NNSA 3 100 0 2.701356 2.701356 0 0.028755 1728 
MLP 4 10 28.35486 0.022919 28.37778 0.231954 0.135059 25 
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FCC 4 10 85.23116 0.031815 85.26298 0.152566 0.063653 95 
SVM 4 10 723.1443 0.2785 723.4228 0.175609 0.025627 2382 
ELM 4 10 9.943142 0.055251 9.998393 0.211735 0.135045 60 

ANFIS 4 10 66.04318 0.023018 66.0662 0.093438 0.088782 81 
TSK 4 10 0 0.184057 0.184057 0 0.048957 1296 

Spline 4 10 0 46.03165 46.03165 0 0.041206 4096 
NNSA 4 10 0 6.033782 6.033782 0 0.022663 4096 
MLP 4 20 28.31941 0.019033 28.33844 0.197213 0.113244 10 
FCC 4 20 85.06787 0.034637 85.1025 0.11942 0.060266 110 
SVM 4 20 402.6522 0.152874 402.805 0.042911 0.026338 1313 
ELM 4 20 10.00417 0.009647 10.01382 0.218395 0.105801 10 

ANFIS 4 20 68.40435 0.02277 68.42712 0.077212 0.081042 81 
TSK 4 20 0 0.131341 0.131341 0 0.034564 1296 

Spline 4 20 0 45.9078 45.9078 0 0.020877 4096 
NNSA 4 20 0 6.032537 6.032537 0 0.023059 4096 
MLP 4 30 28.29759 0.020012 28.3176 0.223361 0.190555 25 
FCC 4 30 85.50003 0.030924 85.53096 0.181146 0.125596 95 
SVM 4 30 352.0603 0.210318 352.2706 0.058419 0.033476 1814 
ELM 4 30 9.949425 0.054983 10.00441 0.222647 0.177087 60 

ANFIS 4 30 69.23301 0.022929 69.25594 0.116801 0.093651 81 
TSK 4 30 0 0.131906 0.131906 0 0.071039 1296 

Spline 4 30 0 46.05314 46.05314 0 0.029394 4096 
NNSA 4 30 0 6.042726 6.042726 0 0.020083 4096 
MLP 4 50 55.73015 0.022774 55.75293 0.220229 0.118194 15 
FCC 4 50 208.4648 0.122344 208.5871 0.166434 0.077965 95 
SVM 4 50 5389.336 1.107214 5390.443 0.039466 0.03439 3612 
ELM 4 50 23.78374 0.211077 23.99482 0.215717 0.126312 60 

ANFIS 4 50 161.5137 0.056375 161.5701 0.101769 0.07598 81 
TSK 4 50 0 1.108912 1.108912 0 0.033772 4096 

Spline 4 50 0 380.1863 380.1863 0 0.025567 10000 
NNSA 4 50 0 49.33926 49.33926 0 0.02203 10000 
MLP 4 100 105.3967 0.033225 105.4299 0.264329 0.18534 25 
FCC 4 100 430.3563 0.357924 430.7142 0.238833 0.155644 110 
SVM 4 100 47576 4.379837 47580.38 0.043271 0.029839 6504 
ELM 4 100 48.59702 0.563259 49.16028 0.24534 0.173948 60 

ANFIS 4 100 331.3938 0.122643 331.5165 0.149129 0.124757 81 
TSK 4 100 0 8.733116 8.733116 0 0.046541 10000 

Spline 4 100 0 1940.6 1940.6 0 0.03247 20736 
NNSA 4 100 0 267.5006 267.5006 0 0.029341 20736 
MLP 5 10 164.608 0.040163 164.6481 0.256136 0.180209 25 
FCC 5 10 701.3773 0.159256 701.5365 0.166944 0.073857 105 
SVM 5 10 93743.83 20.17087 93764 0.158525 0.032145 20242 
ELM 5 10 98.60218 0.148691 98.75087 0.312352 0.262447 25 
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ANFIS 5 10 13872.62 0.451701 13873.07 0.109332 0.092275 243 
TSK 5 10 0 9.405557 9.405557 0 0.047568 7776 

Spline 5 10 0 1886.991 1886.991 0 0.041853 32768 
NNSA 5 10 0 227.5315 227.5315 0 0.023028 32768 
MLP 5 20 170.8636 0.031217 170.8948 0.181 0.104928 10 
FCC 5 20 710.2176 0.176799 710.3944 0.139779 0.103971 121 
SVM 5 20 76271.13 8.009599 76279.14 0.039603 0.027568 7866 
ELM 5 20 77.05893 0.048053 77.10698 0.195917 0.095323 10 

ANFIS 5 20 12863.51 0.429435 12863.94 0.079761 0.076789 243 
TSK 5 20 0 9.362086 9.362086 0 0.032082 7776 

Spline 5 20 0 1890.666 1890.666 0 0.021256 32768 
NNSA 5 20 0 220.0561 220.0561 0 0.022327 32768 
MLP 5 30 164.9082 0.033286 164.9415 0.228211 0.188709 15 
FCC 5 30 696.1101 0.171432 696.2815 0.166718 0.127076 121 
SVM 5 30 57440.51 7.775694 57448.28 0.03498 0.03898 8339 
ELM 5 30 76.29271 0.28198 76.57469 0.241528 0.224315 60 

ANFIS 5 30 12856.47 0.444522 12856.92 0.117707 0.084495 243 
TSK 5 30 0 9.419723 9.419723 0 0.064533 7776 

Spline 5 30 0 1887.493 1887.493 0 0.027043 32768 
NNSA 5 30 0 220.4 220.4 0 0.018107 32768 

 
6.2 MATLAB Code 

6.2.1 Algorithm Functions 

 

Name: MLPResults.m 
function [output,RMSETR,RMSETS,trainTime,testTime,network,nodes]=MLPResults(TrainData,TestData,sizes,ntrial,epoch_n) 
  
  
RMSETS=100; 
RMSETR=100; 
ns=length(sizes); 
trainTimes=zeros(1,ns); 
testTimes=zeros(1,ns); 
tt=1; 
for j=1:ns 
nsize=sizes(j); 
for i=1:ntrial 
tic; 
inputs = TrainData(:,1:end-1).'; 
targets = TrainData(:,end)'; 
  
% Create a Fitting Network 
hiddenLayerSize = nsize; 
trainFcn='trainrp'; 
net = fitnet(hiddenLayerSize,trainFcn); 
net.trainParam.showWindow = false; 
  
% Setup Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 100/100; 
net.divideParam.valRatio = 0/100; 
net.divideParam.testRatio = 0/100; 
  
net.trainParam.epochs = epoch_n; 
  
% Train the Network 
  
[net,tr] = train(net,inputs,targets); 
  
trainTimes(tt)=toc; 
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tic; 
  
OO=net(TestData(:,1:end-1).'); 
  
  
% Test the Network 
outputs = net(inputs); 
testTimes(tt)=toc; 
% times(i)=toc; 
  
  
  
[~,RMSETR1]=computeRMSE(targets,outputs); 
[~,RMSETS1]=computeRMSE(TestData(:,end),OO.'); 
if (RMSETS1<RMSETS) 
    RMSETS=RMSETS1; 
     
  
network=net; 
  
    testTime=testTimes(tt); 
    nodes=nsize; 
    RMSETR=RMSETR1; 
    output=OO.'; 
end 
tt=tt+1; 
end 
end 
% time=sum(times)/length(times); 
nntraintool('close') 
  
% time=toc; 
trainTime=sum(trainTimes); 
 

 
 
Name: FCCResults.m 
function 
[output,RMSETR,RMSETS,trainTime,testTime,nodes,topo,best_w,act,gain,paramt,iw]=FCCResults(TrainData,TestData,nsize,ntrial,maxite,
ntest) 
  
trainTime = nan; 
testTime = nan; 
topo = nan; 
best_w = nan; 
act = nan; 
gain = nan; 
paramt = nan; 
iw = nan; 
nodes = nan; 
  
types={'FCC'}; 
ntypes=length(types); 
data = [TrainData ;TestData]; 
[m,n]=size(data); ninp=n-1; 
  
maxerr=1e-3;   
  
RMSETS=100*ones(1,ntypes); 
RMSETR=100*ones(1,ntypes); 
output=zeros(length(TestData(:,end)),ntypes); 
trainTimeTotal = 0; 
for k=1:length(types) 
    type=types{k}; 
    for i = 1:length(nsize) 
        h=nsize(i); 
        network=[ninp ones(1,h) 1]; nFig=11+h; 
        [RMSETS1,RMSETR1,output1,trainTime1,testTime1,topo1,best_w1,act1,gain1,paramt1,iw1]=nbn(data, type, network, ntrial, 
maxite, maxerr,nFig,ntest); 
        trainTimeTotal = trainTimeTotal + trainTime1; 
        if (RMSETS1 < RMSETS) 
            output = output1; 
            RMSETR = RMSETR1; 
            RMSETS = RMSETS1; 
            testTime = testTime1; 
            topo = topo1; 
            best_w = best_w1; 
            act = act1; 
            gain = gain1; 
            paramt = paramt1; 
            iw = iw1; 
            nodes = nsize(i); 
        end 
         
  
    end 
end 
trainTime = trainTimeTotal; 
  
function [bestTSRMSE,bestTRRMSE,out,trainTime,testTime,topo,best_w,act,gain,paramt,iw]=nbn(data, type, network, ntrial, maxite, 
maxerr,nFig,ntest) 
format compact;  warning off; %#ok<WNOFF> 
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topo=gen_topo(type,network); 
[m,n]=size(data); 
Ti = data(:,1:n-1); 
Td = data(:,n); 
  
ind = 1:1:m; 
Tnp = m-ntest; 
Ti_tst = Ti(ind(Tnp+1:end),:);  Ti = Ti(ind(1:Tnp),:);   
Td_tst = Td(ind(Tnp+1:end));    Td = Td(ind(1:Tnp));     
  
Tnp=size(Ti,1);   Tnp_tst = m-Tnp; 
nd=size(Ti,2); 
  
%% neural network NBN      FCC  
%%%%%%%%%%%%%%%%%%%%%% set train parameter %%%%%%%%%%%%%%%%%%%%%%% 
% maxite = 10;          % max iteration 
mu = 0.01;             % mu 
muH = 1e15;            % high bound of mu 
muL = 1e-15;           % low bound of mu 
scale = 10;            % scale 
% maxerr = 1e-3;         % max required error 
setting = [maxite,mu,muH,muL,scale,maxerr]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
[np,ni,no,nw,nn,iw] = checkingInputs(Ti,Td,topo); 
act=5*ones(1,nn); act(nn)=0; 
gain=1*ones(1,nn); 
param=[np,ni,no,nw,nn]; 
  
threshold=0.09;   % threshold for success rate evaluation 
RMSE_rc=zeros(ntrial,1);  time_rc=zeros(ntrial,1);   is=0;   RMSEt_rc=zeros(ntrial,1);  ttime_rc=zeros(ntrial,1); 
  
bestTSRMSE=inf; 
best_w=generate_weights(nw); 
  
  
for tr=1:ntrial 
    w_ini=generate_weights(nw); 
    tic; 
    [w,iter,SSE] = Trainer(Ti,Td,topo,w_ini,act,gain,param,iw,setting); 
    t=toc; 
  
    paramt=param;  paramt(1)=Tnp_tst; 
    tic; 
    SSEt=calculate_error(Ti_tst,Td_tst,topo,w,act,gain,paramt,iw);  % scalar 
    tt=toc; 
    outtr=calc_fwd(Ti,topo,w,act,gain,paramt,iw); 
    outts=calc_fwd(Ti_tst,topo,w,act,gain,paramt,iw); 
    [~,RMSE]=computeRMSE(Td,outtr); 
    [~,RMSEt_rc(tr)]=computeRMSE(Td_tst,outts); 
    if (RMSEt_rc(tr) < bestTSRMSE) 
        bestTSRMSE = RMSEt_rc(tr); 
        bestTRRMSE=RMSE; 
        best_w=w; 
    end 
    if RMSE<threshold 
        is=is+1; 
    end; 
     
  
  
     
    RMSE_rc(tr)=RMSE; 
    time_rc(tr)=t; 
    ttime_rc(tr)=tt; 
end; 
sr=is/ntrial;                                   % success rate 
time_ave=sum(time_rc)/ntrial;                   % average training time 
ttime_ave=sum(ttime_rc)/ntrial;                 % average testing time 
RMSE_ave=sum(RMSE_rc)/ntrial;                     % average training RMSE 
RMSEt_ave=sum(RMSEt_rc)/ntrial;                   % average testing RMSE 
RMSE_std=std(RMSE_rc);                           % std of all the training RMSE 
RMSEt_std=std(RMSEt_rc);                         % std of all the testing RMSE 
trainTime=time_ave; 
testTime=ttime_ave; 
  
tic; 
out=calc_fwd(Ti_tst,topo,best_w,act,gain,paramt,iw); 
testTime=toc; 
  
function [ww,iter,SSE] = Trainer(inp,dout,topo,w,act,gain,param,iw,setting) 
ww = w;                  % weight 
nw = param(4);           % number of weights 
maxite = setting(1);     % max iteration 
mu = setting(2);         % mu 
muH = setting(3);        % high bound of mu 
muL = setting(4);        % low bound of mu 
scale = setting(5);      % scale 
maxerr = setting(6);     % max requred error 
  
TER = calculate_error(inp,dout,topo,ww,act,gain,param,iw); 
SSE=zeros(maxite,1); 
SSE(1) = TER; 
I = eye(nw); 
for iter = 2:maxite 
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    jw = 0; 
    [gradient,hessian] = Hessian(inp,dout,topo,ww,act,gain,param,iw); 
    ww_backup = ww; 
    while 1 
        ww = ww_backup - ((hessian+mu*I)\gradient)'; 
        TER = calculate_error(inp,dout,topo,ww,act,gain,param,iw); 
        SSE(iter) = TER; 
        if TER <= SSE(iter-1) 
            if mu > muL 
                mu = mu/scale; 
            end; 
            break; 
        end; 
        if mu < muH 
            mu = mu*scale; 
        end; 
        jw = jw + 1; 
        if jw > 30 
            break; 
        end; 
    end; 
    if SSE(iter) < maxerr 
        break; 
    end; 
    if (SSE(iter-1)-SSE(iter))/SSE(iter-1)<0.000000000000001 
        break; 
    end; 
end; 
return; 
  
function [gradient,hessian] = Hessian(inp,dout,topo,ww,act,gain,param,iw) 
% param(1)-------np--------number of pattern 
% param(2)-------ni--------number of input 
% param(3)-------no--------number of output 
% param(4)-------nw--------number of weights 
% param(5)-------nn--------number of neurons 
np=param(1); 
ni=param(2); 
no=param(3); 
nw=param(4); 
nn=param(5); 
  
gradient = zeros(nw,1); 
hessian = zeros(nw,nw); 
  
for p = 1:np 
    node(1:ni) = inp(p, 1:ni);%pobierz wiersz 
     
    for n = 1:nn 
        j = ni + n; 
        net = ww(iw(n)); 
        for i = (iw(n)+1):(iw(n+1)-1) 
            net = net + node(topo(i))*ww(i); 
        end; 
        [out,de(j)]=actFuncDer(n,net,act,gain); 
        node(j) = out; 
    end; 
     
    for k = 1:no           % for each output 
        error = dout(p,k) - node(nn+ni-no+k); 
        J = zeros(1, nw);  % Jacobian row 
        o = nn + ni - no + k; 
        s = iw(o-ni); 
        J(s) = -de(o);   %%% modify de depending on sign of error and net  
        delo=zeros(1,nn+ni-no+1); 
         
        for i = (s+1):(iw(o+1-ni)-1) 
            J(i) = node(topo(i))*J(s); 
            delo(topo(i)) = delo(topo(i))-ww(i)*J(s); 
        end; 
         
        for n = 1:(nn-no)                 %hidden neurons in the reverse order 
            j = nn+ni-no + 1 - n;   %node number 
            s = iw(j-ni); 
            J(s) = -de(j)*delo(j);                    %for bias of hidden neurons 
            for i = (s+1):(iw(j-ni+1)-1)        %for weights of hidden neurons 
                J(i) = node(topo(i))*J(s); 
                delo(topo(i)) = delo(topo(i)) - ww(i)*J(s); 
            end; 
        end; 
         
        gradient = gradient + J'*error; 
        hessian = hessian + J'*J; 
         
    end; 
end; 
return; 
  
function topo=gen_topo(type,network) 
%  MLP ,network=>  ninp 3 4 2 1 
%  SLP ,network=>  ninp 17 1 
%  FCC ,network=>  ninp 1 1 1 1 1 1 
%  MLP ,network=>  ninp 3 4 2 1 
topo=[]; 
nl=length(network); 
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for i=2:nl                  %   for number of layers 
    s=sum(network(1:i-1));      %   starting a new layer 
    for j=1:network(i)          %   in each layer 
        switch type 
            case 'SLP' 
                topo=[topo, s+j, s-network(i-1)+1:s]; 
            case 'MLP' 
                topo=[topo, s+j, s-network(i-1)+1:s]; 
            case 'FCC'       
                topo=[topo, s+j, 1:s];   %s+j node number and j is always 1 
            case 'BMLP'         
                topo=[topo, s+j, 1:s];   %s+j node number  
        end; 
    end; 
end; 
return; 
  
function [y] = calc_fwd(inp,topo,w,act,gain,param,iw) 
np = size(inp,1);           % number of pattern 
ni = param(2);           % number of input 
no = param(3);           % number of output 
nn = param(5);           % number of neurons 
y = zeros(np,no); 
for p = 1:np     % number of patterns 
    node(1:ni) = inp(p,1:ni); 
    for n = 1:nn % number of neurons 
        j = ni + n; 
        net = w(iw(n)); 
        for i = (iw(n)+1):(iw(n+1)-1) 
            net = net + node(topo(i))*w(i); 
        end; 
        out=actFunc(n,net,act,gain); 
        node(j) = out; 
    end; 
    y(p,:)=node(ni+nn-no+1:ni+nn); 
end; 
  
function [err] = calculate_error(inp,dout,topo,w,act,gain,param,iw) 
np = param(1);           % number of pattern 
ni = param(2);           % number of input 
no = param(3);           % number of output 
nn = param(5);           % number of neurons 
err = 0; 
for p = 1:np     % number of patterns 
    node(1:ni) = inp(p,1:ni); 
    for n = 1:nn % number of neurons 
        j = ni + n; 
        net = w(iw(n)); 
        for i = (iw(n)+1):(iw(n+1)-1) 
            net = net + node(topo(i))*w(i); 
        end; 
        out=actFunc(n,net,act,gain); 
        node(j) = out; 
    end; 
    for k = 1:no 
        err = err + (dout(p,k)-node(nn+ni-no+k))^2;                % calculate total error 
    end; 
end; 
  
function [np,ni,no,nw,nn,iw]= checkingInputs(inp,dout,topo) 
iw = findiw(topo); 
[np,ni]=size(inp); 
[y,no]=size(dout); 
if (np ~= y) error('input and output patterns are not equal'); end; 
nw=length(topo);  
y=length(topo); nn=length(iw)-1; 
  
if (min(min(sign(topo))')<1)  
    error('all elements of topo must be positive');  
end; 
  
if (nw==0)  
    error('weights must not be zero');  
end; 
return; 
  
function iw = findiw(topo) 
nmax=0; j=0; 
for i=1:length(topo), 
    if topo(i)>nmax, 
        nmax=topo(i); 
        j=j+1; iw(j)=i; 
    end; 
end; 
iw(j+1)=i+1; 
return 
  
function [weight] = generate_weights(nw) 
for i = 1:nw             % number of weights 
    ra = 2*rand(1)-1;          % generate random weights between -1 and 1 
    while( ra == 0 ) 
        ra = 2*rand(1)-1; 
    end; 
    weight(i) = ra; 
end; 
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function out=actFunc(n,net,act,gain) 
de=0; 
switch act(n) 
    case 0, out = gain(n)*net;                          % linear neuron 
    case 1, out = 1/(1+exp(-gain(n)*net));              % unipolar neuron 
    case 2, out = tanh(gain(n)*net);                    % bipolar neuron 
    case 3, out = gain(n)*net/(1+gain(n)*abs(net));     % bipolar elliot neuron 
    case 4, out = 2*gain(n)*net/(1+gain(n)*abs(net))-1; % unipolar elliot neuron 
    case 5, out = 2/(1+exp(-gain(n)*net))-1;            % bipolar from NBN 2.08  
    case 6,  
%         out = sign(gain(n)*net); 
        if (abs(gain(n)*net)>=1) 
            out = sign(gain(n)*net);            % hard activation  
        else 
            out = gain(n)*net; 
        end 
end; 
  
function [out,der]=actFuncDer(n,net,act,gain) 
de=0; 
switch act(n) 
    case 0, out = gain(n)*net;  der = gain(n);                                                       % linear neuron 
    case 1, out = 1/(1+exp(-gain(n)*net)); der = gain(n)*(1-out)*out;                                % unipolar neuron   % log-
likelyhood cost function: der = gain(n)/(1-out)/out; 
    case 2, out = tanh(gain(n)*net);  der = gain(n)*(1-out*out);                                     % bipolar neuron 
    case 3, out = gain(n)*net/(1+gain(n)*abs(net));der = 1/((gain(n)*abs(net)+1)^2);                 % bipolar elliot neuron 
    case 4, out = 2*gain(n)*net/(1+gain(n)*abs(net))-1; der = 2*gain(n)/(gain(n)*abs(net)+1)^2;      % unipolar elliot neuron 
    case 5, out = 2/(1+exp(-gain(n)*net))-1; der = gain(n)*(1-out*out)/2;                            % bipolar from NBN 2.08 
    case 6,  
        if (abs(gain(n)*net)>=1) 
            out = sign(gain(n)*net);            % hard activation  
            der = 0; 
        else 
            out = gain(n)*net;der = gain(n); 
        end 
  
end; 
der=der+de; 
 

 
 
Name: ELMResults.m 
function [output,RMSETR,RMSETS,trainTime,testTime,inw1,outw1,bias1,nodes1]=ELMResults(TrainData,TestData,nodeV,ntrial) 
  
 wRange=[-1 1]; bRange=[-1 1]; 
  
trainTimes=zeros(1,ntrial*length(nodeV)); 
testTimes=zeros(1,ntrial*length(nodeV)); 
  
RMSETS=100; 
RMSETR=100; 
  
tt=1; 
for na=1:length(nodeV) 
    nodes=nodeV(na); 
for i=1:ntrial 
tic; 
    [inw, outw, bias, outputs, error]=ELM(TrainData(:,1:end-1),TrainData(:,end),wRange,bRange,nodes); 
    trainTimes(tt)=toc; 
    tic; 
  
    [~,O]=calcO(TestData(:,1:end-1),TestData(:,end),inw,outw,bias,nodes); 
    testTimes(tt)=toc; 
  
    [~,RMSETR1]=computeRMSE(TrainData(:,end),outputs.'); 
    [~,RMSETS1]=computeRMSE(TestData(:,end),O.'); 
  
if (RMSETS1<RMSETS) 
    RMSETS=RMSETS1; 
    RMSETR=RMSETR1; 
    inw1=inw; 
    outw1=outw; 
    bias1=bias; 
    nodes1=nodes; 
    testTime=testTimes(tt); 
  
    output=O.'; 
end 
  tt=tt+1;   
  
end 
  
  
end 
  
trainTime=sum(trainTimes); 
  
%% Original ELM (not incremental ELM) 
% Inputs ******************** 
% x are the training vectors 
% y are the targets 
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% wRange is a 1x2 matrix containing the lower and upper bounds for the 
% range of the input weights 
% bRange is the same as wRange but pertaining to the input bias 
% nodes is the number of nodes in the network 
% output = sum of outw*g(inw*x+bias) 
function [inw outw bias outputs error]=ELM(x,y,wRange,bRange,nodes) 
[np,nd]=size(x); 
inw=(wRange(2)-wRange(1))*rand(nodes,nd)+wRange(1); 
bias=(bRange(2)-bRange(1))*rand(nodes,1)+bRange(1); 
for i=1:nodes 
    for j=1:np 
        H(j,i)=1/(1+exp(-(inw(i,:)*x(j,:)'+bias(i)))); 
    end 
end 
%Calculate Moore-Penrose generalized inverse of H 
Ht=pinv(H); 
%Calculate output weights 
outw=Ht*y; 
outputs=outw'*H'; 
error=y-outputs'; 
  
function [SSE,O]=calcO(x, y, inw, outw, bias, nodes) 
[np,nd]=size(x); 
for i=1:nodes 
    for j=1:np 
        H(j,i)=1/(1+exp(-(inw(i,:)*x(j,:)'+bias(i)))); 
    end 
end 
O=outw'*H'; 
er=y-O'; SSE=er'*er; 
 

 
 
Name: SVRResults.m 
function 
[output,RMSETR,RMSETS,trainTime,testTime,model_bst,nodes,C_bst,gamma_bst]=SVRResults(TrainData,TestData,gamma_list,C_list) 
%% instruction 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% train %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Usage: model = svmtrain(training_label_vector, training_instance_matrix, 'libsvm_options'); 
% libsvm_options: 
% -s svm_type : set type of SVM (default 0) 
%   0 -- C-SVC 
%   1 -- nu-SVC 
%   2 -- one-class SVM 
%   3 -- epsilon-SVR 
%   4 -- nu-SVR 
% -t kernel_type : set type of kernel function (default 2) 
%   0 -- linear: u'*v 
%   1 -- polynomial: (gamma*u'*v + coef0)^degree 
%   2 -- radial basis function: exp(-gamma*|u-v|^2) 
%   3 -- sigmoid: tanh(gamma*u'*v + coef0) 
%   4 -- precomputed kernel (kernel values in training_instance_matrix) 
% -d degree : set degree in kernel function (default 3) 
% -g gamma : set gamma in kernel function (default 1/num_features) 
% -r coef0 : set coef0 in kernel function (default 0) 
% -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1) 
% -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5) 
% -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1) 
% -m cachesize : set cache memory size in MB (default 100) 
% -e epsilon : set tolerance of termination criterion (default 0.001) 
% -h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1) 
% -b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0) 
% -wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1) 
% -v n : n-fold cross validation mode 
% -q : quiet mode (no outputs) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% predict %%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Usage: [predicted_label, accuracy, decision_values/prob_estimates] = svmpredict(testing_label_vector, testing_instance_matrix, 
model, 'libsvm_options') 
% Parameters: 
%   model: SVM model structure from svmtrain. 
%   libsvm_options: 
%     -b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yet 
% Returns: 
%   predicted_label: SVM prediction output vector. 
%   accuracy: a vector with accuracy, mean squared error, squared correlation coefficient. 
%   prob_estimates: If selected, probability estimate vector. 
%% support vector regression train 
ng = length(gamma_list); 
nc = length(C_list); 
TrainData(:,end)=2*TrainData(:,end)-1;TestData(:,end)=2*TestData(:,end)-1; 
Td=TrainData(:,end); Ti=TrainData(:,1:end-1); 
rms_bst = 10; 
figcnt=1; 
trainTimes=zeros(1,ng*nc); 
testTimes=zeros(1,ng*nc); 
for i = 1:ng 
    for j = 1:nc 
        gamma = gamma_list(i);   C = C_list(j); 
        option = sprintf('-s 3 -t 2 -h 0 -q -g %f -c %f', gamma, C); 
        tic; 
  
        model = svmtrain(Td, Ti, option); 
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        trainTimes(figcnt)=toc; 
        tic; 
        [y, ~, ~] = svmpredict(Td, Ti, model); 
        [yt, ~, ~] = svmpredict( TestData(:,end),TestData(:,1:end-1), model); 
        testTimes(figcnt)=toc;         
        [~,trainRMS]=computeRMSE((TrainData(:,end)+1)/2,(y+1)/2); 
        [~,testRMS]=computeRMSE((TestData(:,end)+1)/2,(yt+1)/2); 
      if testRMS<rms_bst 
            rms_bst = testRMS; 
            model_bst = model; 
            C_bst = C; 
            gamma_bst = gamma; 
            RMSETR=trainRMS; 
            RMSETS=testRMS; 
            testTime=testTimes(figcnt); 
            output=yt; 
      end; 
      figcnt=figcnt+1; 
    end; 
end; 
  
trainTime=sum(trainTimes); 
output=(output+1)/2; 
  
nodes=model_bst.totalSV; 
 

 
 
Name: fuzzyResults.m 
function 
[output,RMSETR,RMSETS,trainTime,testTime,out_fis,nodes]=fuzzyResults(TrainData,TestData,numMFs,inmftype,outmftype,epoch_n) 
  
nodes=prod(numMFs); 
tic; 
in_fis = genfis1(TrainData,numMFs,inmftype,outmftype); 
trnOpt=[epoch_n,0,0.1,0.9,1.1]; 
dispOpt=[0,0,0,0]; 
  
out_fis = anfis(TrainData,in_fis,trnOpt,dispOpt); 
trainTime=toc; 
tic; 
output=evalfis(TestData(:,1:end-1),out_fis); 
TrainOut=evalfis(TrainData(:,1:end-1),out_fis); 
testTime=toc; 
[~,RMSETR]=computeRMSE(TrainData(:,end),TrainOut); 
  
[~,RMSETS]=computeRMSE(TestData(:,end),output); 
  
 
 

 
 
Name: FuzzyTSKResults.m 
function [output,RMSETR,RMSETS,trainTime,testTime,nodes]=FuzzyTSKResults(xt,TrainData,TestData,trainn) 
  
ndim = size(TrainData,2)-1; 
trainTime=0; 
testTime=0; 
  
  
numMFs = zeros(1,ndim); 
mfType=char(zeros(ndim,5)); 
for i=1:ndim 
    numMFs(i) = length(xt{i}); 
%     mfType = [mfType;'trimf']; 
    mfType(i,:) = 'trimf'; 
end 
  
nodes=prod(numMFs); 
  
% grid=reshape(TrainData(:,end),numMFs).'; % For 2D 
grid=reshape(TrainData(:,end),numMFs); 
  
  
outmftype='constant'; 
fismat = genfis1(TrainData,numMFs,mfType,outmftype); 
for i=1:nodes 
fismat.output.mf(i).params=grid(i); 
end 
tic; 
output=evalfis(TestData(:,1:end-1),fismat); 
testTime=testTime+toc; 
  
RMSETR=0; 
[~,RMSETS]=computeRMSE(TestData(:,end),output); 
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Name: splineResults.m 
function [output,RMSETR,RMSETS,trainTime,testTime,nodes]=splineResults(TrainData,TestData,trainn,xtE,nsegE,xv) 
trainTime=0; 
testTime=0; 
nodes=prod(nsegE); 
% xv{2}=xv{2}.'; 
output=zeros(size(TestData(:,end))); 
tic; 
for i=1:size(TestData,1) 
  
point = num2cell(TestData(i,1:end-1)); 
  
output(i) = SplineND(xtE, TrainData, point,nsegE); 
end 
testTime=testTime+toc; 
  
RMSETR = 0; 
[~,RMSETS]=computeRMSE(TestData(:,end),output); 
  
function splineValues = SplineND(ranges, values, points,nsegE) 
  
  
dimensions=size(values,2)-1; 
  
  
  
splineStorageSize=num2cell(nsegE); 
splineStorageSize{end}=length(points{1}); 
splineStorage=reshape(values(:,end),nsegE); 
for i=1:dimensions 
    resolution=length(points{i}); 
    index1=1:nsegE(i); 
    index2=1:resolution; 
    [splineIndex,dataIndex]=generateIndices(dimensions,i,index1,index2); 
    splineStorageSize{end-i+1}=resolution; 
     
    tempMatrix=zeros(splineStorageSize{:}); 
    for j=1:length(dataIndex(:,1)) 
        currentDataIndex=dataIndex(j,:); 
        currentSplineIndex=splineIndex(j,:); 
  
        tempMatrix(currentSplineIndex{:})=SPLINE1D(ranges{i},splineStorage(currentDataIndex{:}),points{i}); 
    end 
    splineStorage=tempMatrix; 
end 
splineValues=splineStorage; 
  
  
  
function [splineIndex,dataIndex]=generateIndices(dimensions,i,index1,index2) 
  
  
vectorsToGrid=cell(1,dimensions-1); 
te=i-1; 
  
vectorsToGrid(1:end-te)={index1}; 
vectorsToGrid(end-te+1:end)={index2}; 
  
  
    temp1=cell(1,dimensions-1); 
    [temp1{:}]=ndgrid(vectorsToGrid{:}); 
  
    baseIndex=cell(numel(temp1{1}),dimensions-1); 
    for j=1:dimensions-1 
  
         
        baseIndex(:,j)=num2cell(temp1{:,j}(:)); 
    end 
splineIndex=cell(size(baseIndex,1),dimensions); 
  
splineIndex(:,1:end~=(end-i+1))=baseIndex; 
dataIndex=splineIndex; 
  
dataIndex(:,end-i+1)={index1}; 
splineIndex(:,end-i+1)={index2}; 
  
function output = SPLINE1D(x, y, interpPoints) 
  
x=x(:).';  
y=y(:).'; 
% % Mirror edge values to give better fit at boundry 
x=[x(1)-(x(2)-x(1)),x,x(end)+(x(end)-x(end-1))]; 
y=[y(1),y,y(end)]; 
  
  
n=length(x); 
  
  
h=diff(x); 
  
A=zeros(n,n); 
f=zeros(n,1); 
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% Setting up matrix for g''(x) 
for i=1:n  
    % The first and last segments require special conditions 
    if ( i == 1 ) 
        A(i,i)=-h(i+1); 
        A(i,i+1)=h(i)+h(i+1); 
        A(i,i+2)=-h(i); 
         
    elseif( i == n) 
        A(i,i-2)=-h(i-1); 
        A(i,i-1)=h(i-2)+h(i-1); 
        A(i,i)=-h(i-2); 
    else 
        A(i,i-1)=h(i-1); 
        A(i,i)=2*(h(i-1)+h(i)); 
        A(i,i+1)=h(i); 
        f(i)=6*((y(i+1)-y(i))/h(i)-(y(i)-y(i-1))/h(i-1)); 
    end 
end 
  
m=A\f; 
  
  
% With the g''(x) for each interval, solve for the coeficients 
coefs=zeros(n-1,4); 
  
for i=1:n-1 
    coefs(i,1)=y(i); 
    coefs(i,2)=(y(i+1)-y(i))/h(i)-h(i)/2*m(i)-h(i)/6*(m(i+1)-m(i)); 
    coefs(i,3)=m(i)/2; 
    coefs(i,4)=(m(i+1)-m(i))/(6*h(i)); 
end 
  
output = EvaluatePoints(coefs, x, interpPoints); 
  
  
function value = EvaluatePoints(coefs, range, points) 
% EvaluatePoints  Computes polynomial values 
% ------------------------------------------------------------------------- 
% 
% Parameters: 
%  
%   value = EvaluatePoints(coefs, points) 
%    
%    INPUT: 
%    
%      coefs - (n-1)x4 matrix of coefeicient values for each segment. 
%    
%    
%      ranges - vector of length n conataining the break values of the piecewise polynomial  
%    
%    
%      points - vector of the desired points at which the piecewise polynomial should 
%      be evaluated.  All of the values should be contained with 
%      [range(1),range(end)] 
%    
%    OUTPUT: 
%    
%      value - vector of the same length as input points containing the 
%      function values corresponding to each point 
  
% dimensions=size(points,2); 
n=length(range); 
value=zeros(size(points)); 
for i=1:n-1 
    activePoints=points(points>=range(i) & points<=range(i+1))-range(i); 
    value(points>=range(i) & points<=range(i+1))=coefs(i,1)+activePoints.*(coefs(i,2) + activePoints.*(coefs(i,3) + 
coefs(i,4).*activePoints)); 
end 
 
 

 
 
Name: NNSA1Results.m 
function [output,RMSETR,RMSETS,trainTime,testTime,nodes]=NNSA1Results(Xt,Xv,xtE,indx,method_apr) 
% INPUTS 
%         ndim => number of input dimensions for function 
%         xtE - cell with extended grid vectors 
%         xxa => desired point in for [x1 x2 ... xndim] where 
%           x1,x2,...,xndim are the coordinates in each dimension 
%         indx - index array 
%         X  - training points (last column is the output)  
%         method_apr=> method used for approximation 
% OUTPUTS 
%         out  - approximated value at xxa 
trainTime=0; 
testTime=0; 
  
[np,ndim]=size(Xv); 
nodes=length(xtE{1})^(ndim-1); 
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output=zeros(np,1); 
tic; 
for i=1:np 
output(i)=localWrapper(ndim-1,xtE,Xv(i,1:end-1),indx,Xt,method_apr); 
end 
testTime=testTime+toc; 
  
  
RMSETR=0; 
[~,RMSETS]=computeRMSE(Xv(:,end),output); 
  
function out=localWrapper(ndim,xtE,xxa,indx,X,method_apr) 
% INPUTS 
%         ndim => number of input dimensions for function 
%         xtE - cell with extended grid vectors 
%         xxa => desired point in for [x1 x2 ... xndim] where 
%           x1,x2,...,xndim are the coordinates in each dimension 
%         indx - index array 
%         X  - training points (last column is the output)  
%         method_apr=> method used for approximation 
% OUTPUTS 
%         out  - approximated value at xxa 
  
    X4=extractSarray(ndim,xtE,xxa,indx,X); 
    out=findValueFrom4array(X4,xxa,method_apr); 
     
function [Xn,In]=extractSarray(ndim,xtE,xx,indx,X) 
[nn,~]=size(indx); 
kk=zeros(1,ndim); 
for j=1:ndim 
  
    kk(j)=find_range(xtE{j},xx(j)); 
end 
sw=zeros(1,ndim); 
Xn=zeros(4^ndim,ndim+1); 
In=zeros(4^ndim,ndim); 
it=1; 
for i=1:nn 
    for j=1:ndim 
        a=indx(i,j); 
        k=kk(j); 
        if a>=k-1 && a<=k+2 
            sw(j)=1; 
        else 
            sw(j)=0; 
        end 
    end; 
    if all(sw), 
        Xn(it,:)=X(i,:); 
        In(it,:)=indx(i,:); 
        it=it+1; 
    end 
end 
  
  
function kk=find_range(Xa,x) 
%   Xa long vector 
%   find index for x 
n=length(Xa); 
kk=0; 
for k=1:n-1, 
    if x>=Xa(k) && x<=Xa(k+1), 
        kk=k; 
        break 
    end 
end 
if kk==1, kk=2; end; 
  
function out=findValueFrom4array(Xr,xx,method_apr) 
%  Xr column array of 4x4x4x... 
%  xx value of point 
nc=length(xx); 
while nc > 0 
    Xr=reduceDim4(Xr,xx,nc,method_apr); 
    nc=nc-1; 
end 
out=Xr; 
  
  
function Xt_new=reduceDim4(Xt,xx,nc,method_apr) 
% x  => location of a point 
% Xt  => traning data colum vectors with input and output 
% nc => index for the last column to be eliminated 
% [ni,n2]=size(Xt); % n2=ndim+1  ni number of points 
% ndim=n2-1; 
x=xx(nc); %single value  
nii=4^(nc-1); 
out=zeros(nii,1); 
Ya=zeros(1,4); 
Xa=Ya; 
for i=1:nii 
    for j=1:4  % this js just to 4x4x4x.... arrays   
        Ya(j)=Xt(i+(j-1)*nii,end);   %just for output (end)  
        Xa(j)=Xt(i+(j-1)*nii,nc);   
    end; 
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    switch method_apr 
        case 1,  out(i)=linearA(Xa,Ya,x); 
        case 2,  out(i)=Spline1d4point(Xa,Ya, x); 
        case 3,  out(i)=Spline1d4point4(Xa,Ya, x); 
        case 4,  out(i) = Spline_Local_Optimized1(Xa, Ya, x); 
    end; 
end; 
% rearange arrays for output 
Xt_new=[Xt(1:nii,1:nc-1),out]; 
  
function out=linearA(Xa,YY,x) 
kk=find_range(Xa,x); 
% kk 
x2=Xa(kk+1); x1=Xa(kk); 
h=x2-x1; del=x-x1; 
out=(YY(kk)*(h-del)  + YY(kk+1)*del)/h; 
  
  
function output = Spline1d4point(Xa,Ya, x) 
%    Xa,Ya are 4 elements vectors 
%    x scalar where value maust be calculated  
% SPLINE1D_Local  Computes cubic spline interpolating curve 
% using central approximation 
     
h=diff(Xa); h1=h(1); h2=h(2); h3=h(3);  
dy=diff(Ya); y1=Ya(1);y2=Ya(2);y3=Ya(3); y4=Ya(4); 
m2=(dy(2)/h2-dy(1)/h1)/(0.5*(h2+h1)); 
m3=(dy(3)/h3-dy(2)/h2)/(0.5*(h3+h2)); 
d=(m3-m2)/(6*h2); 
c=(m2+m3)*0.25; 
% c=(m2+m3)*0.3; 
h2x=h2*h2*0.25; 
b=(y3-y2)/h2-d*h2x; 
a=(y2+y3)*0.5-c*h2x; 
x=x-(Xa(2)+Xa(3))*0.5; 
output = a+x*(b+x*(c+x*d)); 
  
  
function output = Spline1d4point4(Xa,Ya, x) 
%    Xa,Ya are 4 elements vectors 
X(:,4)=ones(4,1);  
X(:,3)=Xa; 
X(:,2)=X(:,3).*X(:,3); 
X(:,1)=X(:,2).*X(:,3); 
p=(X\Ya'); 
output = p(4)+x*(p(3)+x*(p(2)+x*p(1))); 
  
  
function output = Spline_Local_Optimized1(Xa, Ya, x) 
% Given input data x and y, approximates value of y at desired point 
% inputs: Xa,Ya:  arrays containing knownn data points. 
%       x: value of x at which Ya will be approximated. 
  
dx=diff(Xa); dx1=dx(1); dx2=dx(2); dx3=dx(3);  
dy=diff(Ya); dy1=dy(1); dy2=dy(2); dy3=dy(3);  
y1=Ya(1);y2=Ya(2);y3=Ya(3); y4=Ya(4); 
x1=Xa(1);x2=Xa(2);x3=Xa(3); x4=Xa(4); 
x=x-x2; 
  
a=1; 
fPrime2=a*(dx1/dx2*dy2+dx2/dx1*dy1)/(dx1+dx2); 
fPrime3=a*(dx2/dx3*dy3+dx3/dx2*dy2)/(dx2+dx3); 
  
  
h2=dx2*dx2; h3=dx2*h2; 
a=y2; 
b=fPrime2; 
d=(dx2*(fPrime3+b)+2*(a-y3))/h3; 
c=(y3-a-b*dx2)/h2-d*dx2; 
  
output=a+x*(b+x*(c+x*d)); 
 

 
6.2.2 Support Functions 

Name: computeRMSE.m 
function [difference,RMSE]=computeRMSE(desired,actual) 
difference=desired(:)-actual(:); 
SSE=sum(difference.^2); 
MSE=SSE/(length(difference)); 
RMSE=sqrt(MSE); 

 
 
Name: fig.m 
function h = fig(varargin) 
% FIG - Creates a figure with a desired size, no white-space, and several other options. 
% 
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%       All Matlab figure options are accepted.  
%       FIG-specific options of the form FIG('PropertyName',propertyvalue,...)  
%       can be used to modify the default behavior, as follows: 
% 
%       -'units'    : preferred unit for the width and height of the figure  
%                      e.g. 'inches', 'centimeters', 'pixels', 'points', 'characters', 'normalized'  
%                      Default is 'centimeters' 
% 
%       -'width'    : width of the figure in units defined by 'units' 
%                      Default is 14 centimeters 
%                      Note: For IEEE journals, one column wide standard is 
%                      8.5cm (3.5in), and two-column width standard is 17cm (7 1/16 in) 
% 
%       -'height'   : height of the figure in units defined by 'units' 
%                      Specifying only one dimension sets the other dimension 
%                      to preserve the figure's default aspect ratio.  
% 
%       -'font'     : The font name for all the texts on the figure, including labels, title, legend, colorbar, etc. 
%                      Default is 'Times New Roman'  
% 
%       -'fontsize' : The font size for all the texts on the figure, including labels, title, legend, colorbar, etc. 
%                      Default is 14pt 
%        
%       -'border'   : Thin white border around the figure (compatible with export_fig -nocrop)  
%                      'on', 'off' 
%                      Default is 'off'  
% 
%   FIG(H) makes H the current figure.  
%   If figure H does not exist, and H is an integer, a new figure is created with 
%   handle H. 
% 
%   FIG(H,...) applies the properties to the figure H. 
% 
%   H = FIG(...) returns the handle to the figure created by FIG. 
% 
% 
% Example 1: 
%   fig 
% 
% Example 2: 
%   h=fig('units','inches','width',7,'height',2,'font','Helvetica','fontsize',16) 
% 
% 
% Copyright   2012 Reza Shirvany,  matlab.sciences@neverbox.com  
% Source:    http://www.mathworks.com/matlabcentral/fileexchange/30736 
% Updated:   05/14/2012 
% Version:   1.6.5  
% 
  
  
  
  
  
  
  
% default arguments 
width=14; 
font='Times New Roman'; 
fontsize=14;  
units='centimeters'; 
bgcolor='w'; 
sborder='off'; 
flag=''; 
Pindex=[]; 
  
%%%%%%%%%%% process optional arguments 
optargin = size(varargin,2); 
if optargin>0 
  
% check if a handle is passed in 
if isscalar(varargin{1}) && isnumeric(varargin{1}) 
    flag=[flag '1']; 
    i=2; 
     if ishghandle(varargin{1})==1 
        flag=[flag 'i']; 
    end 
else 
    i=1; 
end 
  
% get the property values 
while (i <= optargin) 
    if (strcmpi(varargin{i}, 'border')) 
        if (i >= optargin) 
            error('Property value required for: %s', num2str(varargin{i})); 
        else 
            sborder = varargin{i+1};flag=[flag 'b']; 
            i = i + 2; 
        end 
    elseif (strcmpi(varargin{i}, 'width')) 
        if (i >= optargin) 
            error('Property value required for: %s', num2str(varargin{i})); 
        else 
            width = varargin{i+1};flag=[flag 'w']; 
            i = i + 2; 
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        end 
    elseif (strcmpi(varargin{i}, 'height')) 
        if (i >= optargin) 
            error('Property value required for: %s', num2str(varargin{i})); 
        else 
            height = varargin{i+1};flag=[flag 'h']; 
            i = i + 2; 
        end 
    elseif (strcmpi(varargin{i}, 'font')) 
        if (i >= optargin) 
            error('Property value required for: %s', num2str(varargin{i})); 
        else 
            font = varargin{i+1};flag=[flag 'f']; 
            i = i + 2; 
        end 
    elseif (strcmpi(varargin{i}, 'fontsize')) 
        if (i >= optargin) 
            error('Property value required for: %s', num2str(varargin{i})); 
        else 
           fontsize = varargin{i+1};flag=[flag 's']; 
            i = i + 2; 
        end 
    elseif (strcmpi(varargin{i}, 'units')) 
        if (i >= optargin) 
            error('Property value required for: %s', num2str(varargin{i})); 
        else 
            units = varargin{i+1};flag=[flag 'u']; 
            i = i + 2; 
        end 
    elseif (strcmpi(varargin{i}, 'color')) 
        if (i >= optargin) 
            error('Property value required for: %s', num2str(varargin{i})); 
        else 
            bgcolor = varargin{i+1};flag=[flag 'c']; 
            i = i + 2; 
        end 
    else 
        %other figure properties 
        if (i >= optargin) 
            error('A property value is missing.'); 
        else 
        Pindex = [Pindex i i+1]; 
        i = i + 2; 
        end 
    end 
  
end 
  
end 
  
% We use try/catch to handle errors 
try 
  
% creat a figure with a given (or new) handle 
if length(strfind(flag,'1'))==1 
    s=varargin{1}; 
    if ishandle(s)==1 
    set(0, 'CurrentFigure', s); 
    else  
        figure(s); 
    end 
else 
    s=figure; 
end 
  
flag=[flag 's']; 
  
% set other figure properties 
if ~isempty(Pindex) 
    set(s,varargin{Pindex}); 
end 
  
  
% set the background color 
set(s, 'color',bgcolor); 
  
% set the font and font size 
set(s, 'DefaultTextFontSize', fontsize);  
set(s, 'DefaultAxesFontSize', fontsize);  
set(s, 'DefaultAxesFontName', font); 
set(s, 'DefaultTextFontName', font); 
  
%%%%%%%%%%% set the figure size 
% set the root unit 
old_units=get(0,'Units'); 
set(0,'Units',units); 
  
% get the screen size 
scrsz = get(0,'ScreenSize'); 
  
% set the root unit to its default value 
set(0,'Units',old_units); 
  
% set the figure unit 
set(s,'Units',units); 
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% get the figure's position 
pos = get(s, 'Position'); 
old_pos=pos; 
aspectRatio = pos(3)/pos(4); 
  
% set the width and height of the figure 
if length(strfind(flag,'w'))==1 && length(strfind(flag,'h'))==1  
    pos(3)=width; 
    pos(4)=height; 
elseif isempty(strfind(flag,'h')) 
    pos(3)=width; 
    pos(4) = width/aspectRatio; 
elseif isempty(strfind(flag,'w')) && length(strfind(flag,'h'))==1 
    pos(4)=height; 
    pos(3)=height*aspectRatio;  
end 
  
% make sure the figure stays in the middle of the screen 
diff=old_pos-pos; 
  
 if diff(3)<0 
 pos(1)=old_pos(1)+diff(3)/2; 
     if pos(1)<0 
         pos(1)=0; 
     end 
 end 
 if diff(4)<0 
 pos(2)=old_pos(2)+diff(4); 
    if pos(2)<0 
         pos(2)=0; 
     end 
 end 
  
% warning if the given width (or height) is greater than the screen size 
if pos(3)>scrsz(3) 
warning(['Maximum width (screen width) is reached! width=' num2str(scrsz(3)) ' ' units]); 
end 
  
if pos(4)>scrsz(4) 
warning(['Maximum height (screen height) is reached! height=' num2str(scrsz(4)) ' ' units]); 
end 
  
% apply the width, height, and position to the figure 
set(s, 'Position', pos); 
if strcmpi(sborder, 'off') 
    set(s,'DefaultAxesLooseInset',[0,0,0,0]); 
end 
  
     
  
% handle errors 
catch ME 
    if isempty(strfind(flag,'i')) && ~isempty(strfind(flag,'s')) 
    close(s); 
    end 
   error(ME.message) 
end 
  
s=figure(s); 
% return handle if caller requested it. 
  if (nargout > 0) 
        h =s; 
  end 
% 
% That's all folks! 
% 
%flag/1iwhfsucsb 
 

 
 
Name: generateSchwefelTrainValidation.m 
function [Xt,xt,Xv,xv,Y_,xtE,nsegE,indx,n]=generateSchwefelTrainValidation(nPoints,alpha,method_gen) 
% INPUTS 
%         nPoints - vector with number of grid points for each dimension 
%         alpha - scalar nonlinear parameter for Schwefel function 
%         method_gen - method used to hand edges via extrapolation, see 
%                      GenTpoints for details 
% OUTPUTS 
%         Xt  - training points (last column is the output)  
%         xt  - cells of grid vectors 
%         Xv  - validation points (last column is the desired output) 
%         xv  - cells of vectors 
%            Validation point are automaticaly selected in the middle between grids 
%            Each time you run the same data point should be generated 
%         Y_  - Training point function values for extended grid 
%         xtE - cell with extended grid vectors 
%         nsegE - extended grid size 
%         indx - index array 
%         n   - number of points in extended grid 
[xt,xv]=initEqual(nPoints); 
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[Y_,xtE,nsegE]=GenTpoints(nPoints, xt, alpha,method_gen); 
  
[Y_,scal,offset]=normaliArray(Y_, 2); 
  
[Xv,xv]=GenVpoints(nPoints, alpha, xv); 
Xv(:,end)=scal*Xv(:,end)-offset; 
Xt=genInps(Y_,xtE,nsegE); 
[indx,n]=FindInd(nsegE); 
  
function [xt,xv]=initEqual(nPoints) 
%% Description: Creates the grid vectors for training and testing data sets 
% INPUTS 
%         nPoints - vector with number of grid points for each dimension 
% OUTPUTS 
%         xt  - cell array with each entry containing the grid vector for 
%               the corresponding dimension of the training set 
%         xv  - cell array with each entry containing the grid vector for 
%               the corresponding dimension of the validation set 
%% 
ndim=length(nPoints); 
xt = cell(1,ndim); 
xv = cell(1,ndim); 
for j=1:ndim 
    xa=linspace(-1,1,nPoints(j)); 
    xb=xa(1:end-1)+0.5*diff(xa); 
    xt{j}=xa; 
    xv{j}=xb; 
end 
  
  
function [TrainData,xtE,nPointsE]=GenTpoints(nPoints, xt, alpha,method) 
%% Description: Generate extended training dataset 
% INPUTS 
%         nPoints - vector with number of grid points for each dimension 
%         xt      - cell array with each entry containing the grid vector for 
%                   the corresponding dimension of the training set 
%         alpha   - scalar nonlinear parameter for Schwefel function 
%         method  - select the method for edge extrapolation 
% OUTPUTS 
%         TrainData  - matrix with training points (last column is the output) 
%         xtE  - extended cell array with each entry containing the grid vector for 
%                the corresponding dimension of the training set 
%         nPointsE - vector with number of grid points for each dimension 
%                    after extrapolation 
%% 
ndim=length(nPoints); 
nPointsE=nPoints+2; % add beginning and ending values for each dimension 
xtE = cell(1,ndim); 
for i=1:ndim,  % extend cells form xt => xxt 
    point=xt{i}; 
    xl=2*point(1)-point(2);     xr=2*point(end)-point(end-1); % calculate left and right values 
    xtE{i} = [xl,point,xr]; 
end; 
  
[indt,nt]=FindInd(nPointsE); % get index matrix 
pointer =findPointer(nPointsE); % get jumo size for each dimension 
  
TrainData=zeros(1,nt); % initialize array to hold training data 
for i=1:nt 
    ind=indt(i,:); % ind is current index 
    loc=checkForBE(ind,nPointsE); 
     
    %% Calculate values at training points, or extrapolation values for the edges 
    XX_=[]; Y_=[]; 
    if loc>0,  %calculate Y values only if found a single one 
        X_=xtE{loc};  lx=length(X_); 
        for j=1:ndim  
            XX_(j,:)=ones(1,lx)*xtE{j}(ind(j)); 
        end 
        XX_(loc,:)=X_; 
        for k=2:lx-1 
            point=XX_(:,k)'; 
            Y_(k) = Schwefel(point,alpha); 
        end 
        Xa=X_(2:5);         Ya=Y_(2:5); 
        ya=findVirtualpoint(Xa,Ya,0,method); 
        Y_(1)=ya; 
        Xa=X_(lx-4:lx-1);         Ya=Y_(lx-4:lx-1); 
        yb= findVirtualpoint(Xa,Ya,1,method); 
        Y_(lx)=yb; 
        for k=1:lx 
            ind(loc)=k; 
            iii=CalcI(ind,pointer); 
            TrainData(iii)=Y_(k); 
        end 
    end 
end 
  
  
function [Xv,xv]=GenVpoints(nPoints, alpha, xv) 
%% Description: Validation point are automaticaly selected in the middle between grids 
% INPUTS 
%         nPoints - vector with number of grid points for each dimension 
%         alpha - scalar nonlinear parameter for Schwefel function 
%         xv  - cell array with each entry containing the grid vector for 
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%               the corresponding dimension of the validation set 
% OUTPUTS 
%         TestData  - matrix with validation points (last column is the output) 
%         xv  - matrix with training points (last column is the output) 
%% 
ndim=length(nPoints); 
[indv,~]=FindInd(nPoints-1); 
point = zeros(1,ndim); 
Xv = zeros(size(indv,1),ndim+1); 
for i=1:size(indv,1) 
    for j=1:ndim 
        point(j)=xv{j}(indv(i,j)); 
    end 
     y = Schwefel(point,alpha); 
    Xv(i,:)=[point,y]; 
end 
  
  
function [indx,n]=FindInd(nPointsE) 
%% Description: Creates a matrix with the indices for the training data 
% INPUTS 
%         nPointsE - vector with number of grid points for each dimension 
%                    after extrapolation 
% OUTPUTS 
%         indx  - matrix of indices 
%         n  - number of indices 
%% 
ndim=length(nPointsE); n=prod(nPointsE); 
index=ones(n,ndim); ind=ones(1,ndim); 
for i=1:n 
    index(i,:)=ind; 
    ind(1)=ind(1)+1; 
    k=1; 
    while(ind(k)>nPointsE(k)) 
        ind(k)=1; 
        k=k+1; 
        if k==ndim+1 
            break; 
        end; 
        ind(k)=ind(k)+1; 
    end; 
end; 
indx=int16(index); 
  
  
function pointer =findPointer(nPointsE) 
%% Description: Finds pointer is a vector of size of nsegE indicating size of jumps. 
% INPUTS 
%         nPointsE - vector with number of grid points for each dimension 
%                    after extrapolation 
% OUTPUTS 
%         pointer  - array with the jump size for each dimension 
%% 
ndim = length(nPointsE); 
pointer = zeros(1,ndim); 
pointer(2)=nPointsE(1); 
for i=3:ndim 
    pointer(i)=pointer(i-1)*nPointsE(i-1); 
end; 
  
  
function loc=checkForBE(ind,nPointsE) 
%% Description: Check for occurances of ones and max in ind. 
% INPUTS 
%         ind - current index 
%         nPointsE - vector with number of grid points for each dimension 
%                    after extrapolation 
% OUTPUTS 
%         loc  - returns location of first 1 in ind, or zero if there are 
%                none or any ind value is at max 
%% 
ndim = length(ind);  s1 = 0; 
for i=1:ndim 
    if (ind(i)==1) 
        s1 = s1+1; 
        ii=i; 
    end 
end 
for i=1:ndim, 
    if ind(i)==nPointsE(i) 
        s1=0; 
    end; %exclude end case 
end 
  
if s1==1, 
    loc=ii; 
else 
    loc=0; 
end; 
  
function  [yv,xv]=findVirtualpoint(Xa,Ya,sw,method_gen) 
%% Description: Calculates linear index given ind array and pointer (offsets). 
% INPUTS 
%         Xa - vector of length 4 with the x locations 
%         Ya - vector of length 4 with the function values 
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%         sw - switch for left/right end of the array. sw=0 for left, 1 for 
%              right 
%         method_gen - extrapolation method 
% OUTPUTS 
%         yv - extrapolated y value 
%         xv - corresponding x value 
%% 
if length(Xa)~=length(Ya), disp('error in findVirtualpoint length(Xa)~=length(Ya)'); pause; end; 
if sw, Xa=fliplr(Xa); Ya=fliplr(Ya); end; % switching R_edge to L_edge 
xv=2*Xa(1)-Xa(2); 
% Xa 
% Ya 
% pause 
switch method_gen, 
    case 1, % linear 
        yv=2*Ya(1)-Ya(2); 
    case 2 %method from the paper to find quadratic =>faster 
        % for gamma=1 gives the same results as quadratic but it is much faster 
        dX=diff(Xa);dY=diff(Ya); h0=dX(1); y1=Ya(1); 
        k1=dY(1)/dX(1); k2=dY(2)/dX(2); 
        del1=h0*k1; del2=(k2-k1)*h0; 
        yv=y1-del1+del2; 
    case 3 % using the 3-rd order interpolation faster 
        X(1,:)=Xa.^3; X(2,:)=Xa.^2; X(3,:)=Xa; X(4,:)=ones(1,4);   p=(X'\Ya')'; 
        yv = polyval(p,xv); 
    case 4 % using the quadratic faster => actualy slower 
        xx=Xa(1:3); yy=Ya(1:3); 
        X(2,:)=Xa(1:3); X(1,:)=X(2,:).^2; X(3,:)=ones(1,3);   p=(X'\yy')'; 
        yv = polyval(p,xv); 
    case 5 %method from the paper with gamma parameter 
        % for gamma=1 gives the same results as quadratic but it is much faster 
        gamma=1; 
        dX=diff(Xa);dY=diff(Ya); h0=dX(1); y1=Ya(1); 
        k1=dY(1)/dX(1); k2=dY(2)/dX(2); 
        del1=h0*k1; del2=(k2-k1)*h0; 
        yv=y1-del1+gamma*del2; 
    case 6 % using the 3-rd order interpolation - slower 
        p = polyfit(Xa(1:4),Ya(1:4),3);  %can be faster with a line below 
        yv = polyval(p,xv); 
         
    case 7, % quadratic slower => atualy is much faster 
        p = polyfit(Xa(1:3),Ya(1:3),2);  %can be faster with a line below 
        yv = polyval(p,xv); 
    case 8 %method from the paper to find linear =>faster 
        % for gamma=0 gives the same results as linear 
        dX=diff(Xa);dY=diff(Ya); h0=dX(1); y1=Ya(1); 
        k1=dY(1)/dX(1); 
        del1=h0*k1; 
        yv=y1-del1; 
    otherwise, disp('error method is not specified') 
end 
  
return 
  
function index=CalcI(ind,pointer) 
%% Description: Calculates linear index given ind array and pointer (offsets). 
% INPUTS 
%         point - vector with each entry corresponding to the loction in 
%         each dimension of the desired point. 
%         ind - current multidimensional index 
% OUTPUTS 
%         index  - linear index 
%% 
index=ind(1);  ind=ind-1; ndim=length(ind); 
for i=2:ndim,     index=index+ind(i)*pointer(i);  end; 
  
function  X=genInps(Y_,xtE,nPointsE) 
%% Description: Generates input matrix. 
% INPUTS 
%         Y_  - Training point function values for extended grid 
%         xtE - cell with extended grid vectors 
%         nPointsE - vector with number of grid points for each dimension 
%                    after extrapolation 
% OUTPUTS 
%         X  - Matrix with training data 
%% 
[indx,n]=FindInd(nPointsE); 
  
ndim=length(nPointsE); 
X = zeros(n,ndim+1); 
for i=1:n, 
    for j=1:ndim 
        X(i,j)=xtE{j}(indx(i,j));  
    end; 
end; 
X(:,end)=Y_'; 
  
  
function out = Schwefel(point,alpha) 
%% Description: Calculates the value of the Schwefel function for the given point and alpha value. 
% INPUTS 
%         point - vector with each entry corresponding to the loction in 
%         each dimension of the desired point. 
%         alpha - nonlinear parameter for Schwefel function 
% OUTPUTS 
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%         out  - value of the Schwefel function at the desired point 
%% 
ndim=length(point); 
out=0; 
for i=1:ndim 
    x=point(i)*alpha; 
    out=out-x.*sin(sqrt(abs(x))); 
end 
  
  
function [Xn,scal,offset]=normaliArray(X, type) 
% typ   0  => STD; 1  => UNI;  2  => BIP; 
X_=X(:); 
ma=max(X_) ; 
mi=min(X_) ; 
dell=ma-mi; 
sd=std(X);  avg=mean(X); 
switch type 
    case 0           % xn=x/std  STD 
        scal=1./sd; offset=avg./sd; 
    case 1           % (0, +1)  UNI 
        scal=1./dell;   offset= mi./dell; 
    case 2           % (-1, +1) BIP 
        scal=2/dell;   offset= 2*mi/dell+1; 
end; 
Xn=scal*X-offset; 
return; 
 
 

 
 
Name: GenTpoints.m 
function [xtE,X,indt]=GenTpoints(nseg, xt,X,method,F) 
% INPUTS 
%         nseg => vector with number of gird points for each dimention 
%         alpha => nonlinear parameter for Schwefel function 
%         xt=> cells of vectors  (if not specified then linspace is created 
% OUTPUTS 
%         Xt  - training points (last column is the output) 
%% inputs: 
% -nseg - a vector containing the number of grid points in each dimension 
% 
% -xt - cell array of vectors that define a grid 
% 
% -X - matrix of n row and d columns, where n is the number of grid points 
% and d is the number of input dimensions.  should be in the ndgrid format. 
%  Example: a=linspace(-1,1,5); 
%           b=linspace(-1,1,5); 
%           [aa,bb]=ndgrid(a,b); 
%           X=[a(:), bb(:)]; 
% 
% -method - method used for edge value extrapolation, see findVirtualpoint 
% function 
  
% -F - column vector of length n containing function values or  
% 'pole heights' at each point in X 
%  Example: for i=1:n 
%               F(i)=g(X(i,:)); % assume g() is some function 
%           end 
%% outputs: 
% 
% -xtE - cell array of vectors that define a grid 
% 
% -X - matrix of n row and d+1 columns.  X(:,1:end-1)=locations, X(:end)=values 
% 
% -indt - matrix with prod(nsegE) rows and d columns.  Each row is a 
% subscript into the grid defined by the grid vectors, and coressponds to 
% each row in X 
%% 
ndim=length(nseg); 
nsegE=nseg+2; % add begining and ending values for each dimention 
for i=1:ndim,  % extend cells form xt => xxt 
    xx=xt{i};     xl=2*xx(1)-xx(2);     xr=2*xx(end)-xx(end-1); 
    xxx=[xl,xx,xr];     xtE{i}=xxx; 
end; 
[indt,nt]=FindInd3(nsegE); 
indt=int16(indt); 
pointer =findPointer(nsegE); 
% Mscal=findScal(alpha); 
% xtE{1} 
% xtE{2} 
% YY=zeros(1,nt); 
YY=zeros(1,nt); 
for i=1:nt 
    ind=indt(i,:); 
    loc=checkForBE(ind,nsegE); 
% loc=checkForBE(ind,nseg); 
%         loc=checkForOnes(ind) 
    XX_=[]; Y_=[]; 
    if loc>0,  %calculate Y values only if found a single one 
        X_=xtE{loc};  lx=length(X_); 
        for j=1:ndim  
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            XX_(j,:)=ones(1,lx)*xtE{j}(ind(j)); 
        end 
        XX_(loc,:)=X_; 
  
        for k=2:lx-1 
            xx=XX_(:,k)'; 
             
%             Y_(k)=Schwefel2(xx, alpha, Mscal) ; 
  
%         Y_(k)=fun(xx,alpha,functionSwitch); 
% Y_(k)=F1(xx(1),xx(2)); 
%         for p=1:ndim 
%             subs(p)=xt{i} 
%         end 
%         index=find(TrainData(:,1:end-1)==xx); 
        [~,index]=ismember(xx,X,'rows'); 
        Y_(k)=F(index); 
%         xp(count,:)=[xx count]; 
%         count=count+1; 
        end 
%         count=count+1; 
        Xa=X_(2:5);         Ya=Y_(2:5); 
        ya=findVirtualpoint(Xa,Ya,0,method); 
        Y_(1)=ya; 
        Xa=X_(lx-4:lx-1);         Ya=Y_(lx-4:lx-1); 
        yb= findVirtualpoint(Xa,Ya,1,method); 
        Y_(lx)=yb; 
        for k=1:lx 
            ind(loc)=k; 
            iii=CalcI(ind,pointer); 
%             finalI(cc)=iii; 
%             cc=cc+1; 
            YY(iii)=Y_(k); 
        end 
    end 
end 
  
X=genInps(YY,xtE,nsegE); 
  
function [indx,n]=FindInd3(max) 
%% inx  -  without removal duplicates 
% to get full list use index 
b=length(max); n=prod(max); 
index=ones(n,b); ind=ones(1,b); 
for i=1:n 
    index(i,:)=ind; 
    ind(1)=ind(1)+1; 
    k=1; 
    while(ind(k)>max(k)) 
        ind(k)=1; 
        k=k+1; 
        if k==b+1 
            break; 
        end; 
        ind(k)=ind(k)+1; 
    end; 
end; 
indx=int16(index); 
  
function pointer =findPointer(nsegE) 
% pointer is a vector of size of nsegE indicating size of jumps 
% pointer is used in the following way to find iii 
%         iii=ind(1);  ind=ind-1; 
%         for i=2:ndim,     iii=iii+ind(i)*pointer(i);  end; 
ndim= length(nsegE); pointer(2)=nsegE(1); 
for i=3:ndim,   
    pointer(i)=pointer(i-1)*nsegE(i-1);   
end; 
  
function loc=checkForBE(ind,nsegE) 
% cheking occurances of ones and max in the string: ind 
% returning location of one 
lx=length(ind);  s1=0; 
for i=1:lx, 
    if ind(i)==1, s1=s1+1; ii=i; end; 
end 
for i=1:lx, 
    if ind(i)==nsegE(i), s1=0; end; %exclude end case 
end 
  
if s1==1, loc=ii; else loc=0; end; 
  
  
function  [yv,xv]=findVirtualpoint(Xa,Ya,sw,method_gen) 
% returning value and posintion if virtual point 
% Xa and Ya are 4 elements vectors 
% sw==1 for upper end 
if length(Xa)~=length(Ya), disp('error in findVirtualpoint length(Xa)~=length(Ya)'); pause; end; 
if sw, Xa=fliplr(Xa); Ya=fliplr(Ya); end; % switching R_edge to L_edge 
xv=2*Xa(1)-Xa(2); 
% Xa 
% Ya 
% pause 
switch method_gen, 
    case 1, % linear 
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        yv=2*Ya(1)-Ya(2); 
    case 2 %method from the paper to find quadratic =>faster 
        % for gamma=1 gives the same results as quadratic but it is much faster 
        dX=diff(Xa);dY=diff(Ya); h0=dX(1); y1=Ya(1); 
        k1=dY(1)/dX(1); k2=dY(2)/dX(2); 
        del1=h0*k1; del2=(k2-k1)*h0; 
        yv=y1-del1+del2; 
    case 3 % using the 3-rd order interpolation faster 
        X(1,:)=Xa.^3; X(2,:)=Xa.^2; X(3,:)=Xa; X(4,:)=ones(1,4);   p=(X'\Ya')'; 
        yv = polyval(p,xv); 
    case 4 % using the quadratic faster => actualy slower 
        xx=Xa(1:3); yy=Ya(1:3); 
        X(2,:)=Xa(1:3); X(1,:)=X(2,:).^2; X(3,:)=ones(1,3);   p=(X'\yy')'; 
        yv = polyval(p,xv); 
    case 5 %method from the paper with gamma parameter 
        % for gamma=1 gives the same results as quadratic but it is much faster 
        gamma=1; 
        dX=diff(Xa);dY=diff(Ya); h0=dX(1); y1=Ya(1); 
        k1=dY(1)/dX(1); k2=dY(2)/dX(2); 
        del1=h0*k1; del2=(k2-k1)*h0; 
        yv=y1-del1+gamma*del2; 
    case 6 % using the 3-rd order interpolation - slower 
        p = polyfit(Xa(1:4),Ya(1:4),3);  %can be faster with a line below 
        yv = polyval(p,xv); 
         
    case 7, % quadratic slower => atualy is much faster 
        p = polyfit(Xa(1:3),Ya(1:3),2);  %can be faster with a line below 
        yv = polyval(p,xv); 
    case 8 %method from the paper to find linear =>faster 
        % for gamma=0 gives the same results as linear 
        dX=diff(Xa);dY=diff(Ya); h0=dX(1); y1=Ya(1); 
        k1=dY(1)/dX(1); 
        del1=h0*k1; 
        yv=y1-del1; 
    otherwise, disp('error method is not specified') 
end 
  
return 
  
function iii=CalcI(ind,pointer) 
iii=ind(1);  ind=ind-1; ndim=length(ind); 
for i=2:ndim,     iii=iii+ind(i)*pointer(i);  end; 
  
function  X=genInps(Y_,xtE,nsegE) 
[indx,n]=FindInd3(nsegE); 
ndim=length(nsegE); 
for i=1:n, 
    for j=1:ndim 
        X(i,j)=xtE{j}(indx(i,j));  
    end; 
end; 
X=[X,Y_']; 

 
6.2.3 Peaks Experimental Results Code 

Name: m_PeaksRandomTest.m 
clear all; 
testn=1000;trainn=2000; 
load peaksTrain2400.mat 
load peaksTest1000.mat 
%% 
  
trainTime=0; 
testTime=0; 
tic; 
gridn=8; 
xt{1}=linspace(-1,1,gridn);xt{2}=linspace(-1,1,gridn); 
  
tic; 
[xgrid,ygrid]=ndgrid(xt{1},xt{2}); 
zgrid=griddata(TrainData(:,1),TrainData(:,2),TrainData(:,3),xgrid,ygrid); 
trainTime=trainTime+toc; 
X=[xgrid(:), ygrid(:)]; F=zgrid(:); 
  
nt=trainn; 
[np,d]=size(TestData); 
  
nseg=zeros(1,d-1); 
for i=1:d-1 
    nseg(i)=length(xt{i}); 
end 
  
  
ndim = size(TrainData,2)-1; 
n=sqrt(size(TrainData,1)); 
method=3; 
[xtE,X,indx]=GenTpoints(nseg, xt,X,method,F); 
nsegE = nseg + 2; 
%% 
splineTraintime = toc; 
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tskTraintime = splineTraintime; 
nnsaTraintime = splineTraintime; 
%% 
xv = xtE; 
ztemp = reshape(X(:,end),nsegE); 
ztemp = ztemp.'; 
[~,~,splineRMSETR,~,~,~]=splineResults([X(:,1:2) ztemp(:)],TrainData,trainn,xtE,nsegE,xv); 
%% Fuzzy TSK Results 
  
[~,~,tskRMSETR,~,~,~]=FuzzyTSKResults(xtE,X,TrainData,trainn); 
%% NNSA Results 
method_apr=4; 
[~,~,nnsaRMSETR,~,~,~]=NNSA1Results(X,TrainData,xtE,indx,method_apr); 
  
%% 
  
  
ntrial=10; 
%% Strip out values outside of [-1,+1] 
TrainData2=TrainData(1:trainn,:); 
%% MLP Results 
sizes=[40]; 
epoch_n=100; 
[MLP_Result,mlpRMSETR,mlpRMSETS,mlpTraintime,mlpTesttime,net,mlpNodes]=MLPResults(TrainData2,TestData,sizes,ntrial,epoch_n); 
%% FCC Results 
sizes=[10]; 
epoch_n=20; 
[FCC_Result,fccRMSETR,fccRMSETS,fccTraintime,fccTesttime,fccNodes,topo,best_w,act,gain,paramt,iw]=FCCResults(TrainData2,TestData,
sizes,ntrial,epoch_n,testn); 
%% SVR Results 
gamma_list=[0.01,0.1,1,3,10];  
C_list=[10,50,100,150,300]; 
[SVR_Result,svrRMSETR,svrRMSETS,svrTraintime,svrTesttime,model,svrNodes,C_bst,gamma_bst]=SVRResults(TrainData2,TestData,gamma_lis
t,C_list); 
%% ELM Results 
 nodeV=[10 15 25 50 60]; 
[ELM_Result,elmRMSETR,elmRMSETS,elmTraintime,elmTesttime,inw,outw,bias,elmNodes]=ELMResults(TrainData2,TestData,nodeV,ntrial); 
  
%% ANFIS Results 
numMFs=[3,3]; inmftype='gbellmf'; outmftype='linear'; epoch_n = 10; 
[anfis_Result,anfisRMSETR,anfisRMSETS,anfisTraintime,anfisTesttime,out_fis,anfisNodes]=fuzzyResults(TrainData2,TestData,numMFs,in
mftype,outmftype,epoch_n); 
  
%% Global Spline Results 
xv = xtE; 
ztemp = reshape(X(:,end),nsegE); 
ztemp = ztemp.'; 
  
[Global_Result,~,splineRMSETS,~,splineTesttime,splineNodes]=splineResults([X(:,1:2) ztemp(:)],TestData,trainn,xtE,nsegE,xv); 
%% Fuzzy TSK Results 
  
[TSK_Result,~,tskRMSETS,~,tskTesttime,tskNodes]=FuzzyTSKResults(xtE,[X(:,1:2) ztemp(:)],TestData,trainn); 
%% NNSA Results 
method_apr=4; 
[NNSA_Result,~,nnsaRMSETS,~,nnsaTesttime,nnsaNodes]=NNSA1Results(X,TestData,xtE,indx,method_apr); 
  
%% 
save('peaksTrialsData') 
%% 
plotSurfaces() 
%% Print Time, Train, and Test Error to console 
clear all; 
load peaksTrialsData 
  
disp('FCC'); 
disp(sprintf('trTime %.4f, tsTime %.4f, RMSETR=%.4f, RMSETS=%.4f, 
Nodes=%d',fccTraintime,fccTesttime,fccRMSETR,fccRMSETS,fccNodes)); 
disp('MLP'); 
disp(sprintf('trTime %.4f, tsTime %.4f, RMSETR=%.4f, RMSETS=%.4f, 
Nodes=%d',mlpTraintime,mlpTesttime,mlpRMSETR,mlpRMSETS,mlpNodes)); 
disp('SVM'); 
disp(sprintf('trTime %.4f, tsTime %.4f, RMSETR=%.4f, RMSETS=%.4f, 
Nodes=%d',svrTraintime,svrTesttime,svrRMSETR,svrRMSETS,svrNodes)); 
disp('ELM'); 
disp(sprintf('trTime %.4f, tsTime %.4f, RMSETR=%.4f, RMSETS=%.4f, 
Nodes=%d',elmTraintime,elmTesttime,elmRMSETR,elmRMSETS,elmNodes)); 
disp('ANFIS'); 
disp(sprintf('trTime %.4f, tsTime %.4f, RMSETR=%.4f, RMSETS=%.4f, 
Nodes=%d',anfisTraintime,anfisTesttime,anfisRMSETR,anfisRMSETS,anfisNodes)); 
disp('Spline'); 
disp(sprintf('trTime %.4f, tsTime %.4f, RMSETR=%.4f, RMSETS=%.4f, 
Nodes=%d',splineTraintime,splineTesttime,splineRMSETR,splineRMSETS,splineNodes)); 
disp('TSK'); 
disp(sprintf('trTime %.4f, tsTime %.4f, RMSETR=%.4f, RMSETS=%.4f, 
Nodes=%d',tskTraintime,tskTesttime,tskRMSETR,tskRMSETS,tskNodes)); 
disp('NNSA'); 
disp(sprintf('trTime %.4f, tsTime %.4f, RMSETR=%.4f, RMSETS=%.4f, 
Nodes=%d',nnsaTraintime,nnsaTesttime,nnsaRMSETR,nnsaRMSETS,nnsaNodes)); 
 

 
Name: plotSurfaces.m 
function plotSurfaces 
load peaksTrialsData 
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load peaksPlot900 
  
%% Global Results 
[Global_Result,~,~,~,~]=splineResults([X(:,1:2) ztemp(:)],PlotData,trainn,xtE,nsegE,xv); 
  
%% NNSA Results 
[NNSA_Result,~,~,~,~,~]=NNSA1Results(X,PlotData,xtE,indx,method_apr); 
  
%% Fuzzy TSK Results 
[TSK_Result,~,~,~,~,~]=FuzzyTSKResults(xtE,[X(:,1:2) ztemp(:)],PlotData,trainn); 
  
%% Fuzzy Results 
Fuzzy_Result=evalfis(PlotData(:,1:end-1),out_fis); 
  
%% MLP Results 
MLP_Result=net(PlotData(:,1:end-1).').'; 
  
%% FCC Results 
FCC_Result=calc_fwd(PlotData(:,1:end-1),topo,best_w,act,gain,paramt,iw); 
  
%% SVR Results 
[SVR_Result, ~, ~] = svmpredict( 2*PlotData(:,end)-1,PlotData(:,1:end-1), model); 
SVR_Result=(SVR_Result+1)/2; 
  
%% ELM Results 
[~,ELM_Result]=calcO(PlotData(:,1:end-1),PlotData(:,end),inw,outw,bias,elmNodes);ELM_Result=ELM_Result.'; 
  
%% In color 
res=30; 
string=strcat('Desired'); 
h=figure(1);clf; 
surf(reshape(PlotData(:,1),res,res),reshape(PlotData(:,2),res,res),reshape(PlotData(:,3),res,res)); 
view(3); axis tight;hold all; title(string); %scatter3(xi(:),yi(:),zi(:),'r*'); 
fig(h,'units','inches','width',3.5) 
  
string=strcat('SPLINE RMSE:',32,num2str(splineRMSETS)); 
h=figure(2);clf; 
surf(reshape(PlotData(:,1),res,res),reshape(PlotData(:,2),res,res),reshape(Global_Result,res,res)); 
view(3); axis tight;hold all; title(string); %scatter3(xi(:),yi(:),zi(:),'r*'); 
fig(h,'units','inches','width',3.5) 
  
string=strcat('NNSA RMSE:',32,num2str(nnsaRMSETS)); 
h=figure(3);clf; 
surf(reshape(PlotData(:,1),res,res),reshape(PlotData(:,2),res,res),reshape(NNSA_Result,res,res)); 
view(3); axis tight;hold all; title(string); %scatter3(xi(:),yi(:),zi(:),'r*'); 
fig(h,'units','inches','width',3.5) 
  
string=strcat('TSK RMSE:',32,num2str(tskRMSETS)); 
h=figure(4);clf; 
surf(reshape(PlotData(:,1),res,res),reshape(PlotData(:,2),res,res),reshape(TSK_Result,res,res)); 
view(3); axis tight;hold all; title(string); %scatter3(xi(:),yi(:),zi(:),'r*'); 
fig(h,'units','inches','width',3.5) 
  
string=strcat('ANFIS RMSE:',32,num2str(anfisRMSETS)); 
h=figure(5);clf; 
surf(reshape(PlotData(:,1),res,res),reshape(PlotData(:,2),res,res),reshape(Fuzzy_Result,res,res)); 
view(3); axis tight;hold all; title(string); %scatter3(xi(:),yi(:),zi(:),'r*'); 
fig(h,'units','inches','width',3.5) 
  
string=strcat('MLP RMSE:',32,num2str(mlpRMSETS)); 
h=figure(6);clf; 
surf(reshape(PlotData(:,1),res,res),reshape(PlotData(:,2),res,res),reshape(MLP_Result,res,res)); 
view(3); axis tight;hold all; title(string); %scatter3(xi(:),yi(:),zi(:),'r*'); 
fig(h,'units','inches','width',3.5) 
  
string=strcat('SVM RMSE:',32,num2str(svrRMSETS)); 
h=figure(7);clf; 
surf(reshape(PlotData(:,1),res,res),reshape(PlotData(:,2),res,res),reshape(SVR_Result,res,res)); 
view(3); axis tight;hold all; title(string); %scatter3(xi(:),yi(:),zi(:),'r*'); 
fig(h,'units','inches','width',3.5) 
  
string=strcat('ELM RMSE:',32,num2str(elmRMSETS)); 
h=figure(8);clf; 
surf(reshape(PlotData(:,1),res,res),reshape(PlotData(:,2),res,res),reshape(ELM_Result,res,res)); 
view(3); axis tight;hold all; title(string); %scatter3(xi(:),yi(:),zi(:),'r*'); 
fig(h,'units','inches','width',3.5) 
  
string=strcat('FCC RMSE:',32,num2str(fccRMSETS)); 
h=figure(10);clf; 
surf(reshape(PlotData(:,1),res,res),reshape(PlotData(:,2),res,res),reshape(FCC_Result,res,res)); 
view(3); axis tight;hold all; title(string); %scatter3(xi(:),yi(:),zi(:),'r*'); 
fig(h,'units','inches','width',3.5) 
  
  
function [y] = calc_fwd(inp,topo,w,act,gain,param,iw) 
np = size(inp,1);           % number of pattern 
ni = param(2);           % number of input 
no = param(3);           % number of output 
nn = param(5);           % number of neurons 
y = zeros(np,no); 
for p = 1:np     % number of patterns 
    node(1:ni) = inp(p,1:ni); 
    for n = 1:nn % number of neurons 
        j = ni + n; 
        net = w(iw(n)); 
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        for i = (iw(n)+1):(iw(n+1)-1) 
            net = net + node(topo(i))*w(i); 
        end; 
        out=actFunc(n,net,act,gain); 
        node(j) = out; 
    end; 
    y(p,:)=node(ni+nn-no+1:ni+nn); 
end; 
  
function [SSE,O]=calcO(x, y, inw, outw, bias, nodes) 
[np,nd]=size(x); 
for i=1:nodes 
    for j=1:np 
        H(j,i)=1/(1+exp(-(inw(i,:)*x(j,:)'+bias(i)))); 
    end 
end 
O=outw'*H'; 
er=y-O'; SSE=er'*er; 
  
function out=actFunc(n,net,act,gain) 
de=0; 
switch act(n) 
    case 0, out = gain(n)*net;                          % linear neuron 
    case 1, out = 1/(1+exp(-gain(n)*net));              % unipolar neuron 
    case 2, out = tanh(gain(n)*net);                    % bipolar neuron 
    case 3, out = gain(n)*net/(1+gain(n)*abs(net));     % bipolar elliot neuron 
    case 4, out = 2*gain(n)*net/(1+gain(n)*abs(net))-1; % unipolar elliot neuron 
    case 5, out = 2/(1+exp(-gain(n)*net))-1;            % bipolar from NBN 2.08  
    case 6,  
%         out = sign(gain(n)*net); 
        if (abs(gain(n)*net)>=1) 
            out = sign(gain(n)*net);            % hard activation  
        else 
            out = gain(n)*net; 
        end 
end; 
 

 
 

6.2.4 Forward Kinematics Results Code 

Name: m_ForwardKinematicsTest.m 
clear all; format compact; 
% test_2d_with_edges 
  
filename = 'normForwardKinTrainData.dat'; 
TrainData = dlmread(filename); 
  
filename = 'normForwardKinTestData.dat'; 
TestData = dlmread(filename); 
% TrainData = TrainData(:,[1 2 3]); 
% fnamebase = 'forwardKinX2d'; 
% TestData = TestData(:,[1 2 3]); 
TrainData = TrainData(:,[1 2 4]); 
fnamebase = 'forwardKinY2d'; 
TestData = TestData(:,[1 2 4]); 
%% 
ndim = size(TrainData,2)-1; 
n=sqrt(size(TrainData,1)); 
  
xt = cell(1,ndim); 
nseg = zeros(1, ndim); 
for i = 1:ndim 
    xt{i} = TrainData(1:n,1).'; 
    nseg(i) = length(xt{i}); 
end 
[xtE,TrainData,indx]=GenTpoints(nseg, xt,TrainData(:,1:ndim),3,TrainData(:,end)); 
nsegE = nseg + 2; 
  
method_apr=4; 
trainn = size(TrainData,1); 
testn = size(TestData, 1); 
ntrial=10; 
  
%% MLP Results 
sizes=[10,20,50,60,70]; 
epoch_n=100; 
[~,mlpRMSETR,mlpRMSETS,mlpTraintime,mlpTesttime,~,mlpNodes]=MLPResults(TrainData,TestData,sizes,ntrial,epoch_n); 
%% FCC Results 
  
sizes=[4,8,10]; 
epoch_n=20; 
[~,fccRMSETR,fccRMSETS,fccTraintime,fccTesttime,fccNodes,~,~,~,~,~,~]=FCCResults(TrainData,TestData,sizes,ntrial,epoch_n,testn); 
%% SVR Results 
  
 gamma_list=2.^[0 -3 -4]; 
 C_list=2.^[0 3 6]; 
  
[~,svrRMSETR,svrRMSETS,svrTraintime,svrTesttime,~,svrNodes,C_bst,gamma_bst]=SVRResults(TrainData,TestData,gamma_list,C_list); 
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%% ELM Results 
  
 nodeV=[10 15 25 50 60]; 
[~,elmRMSETR,elmRMSETS,elmTraintime,elmTesttime,~,~,~,elmNodes]=ELMResults(TrainData,TestData,nodeV,ntrial); 
%% ANFIS Results 
numMFs = 4*ones(size(nseg)); 
inmftype='gbellmf'; outmftype='linear'; epoch_n = 10; 
[~,anfisRMSETR,anfisRMSETS,anfisTraintime,anfisTesttime,~,anfisNodes]=fuzzyResults(TrainData,TestData,numMFs,inmftype,outmftype,e
poch_n); 
%% Global Spline Results 
xv = xtE; 
[Global_Result,splineRMSETR,splineRMSETS,splineTraintime,splineTesttime,splineNodes]=splineResults(TrainData,TestData,trainn,xtE,
nsegE,xv); 
Global_Result=reshape(Global_Result,sqrt(size(TestData,1)),sqrt(size(TestData,1)));Global_Result=Global_Result.';Global_Result=Gl
obal_Result(:); 
[~,splineRMSETS]=computeRMSE(TestData(:,end),Global_Result(:)); 
%% Fuzzy TSK Results 
[TSK_Result,tskRMSETR,tskRMSETS,tskTraintime,tskTesttime,tskNodes]=FuzzyTSKResults(xtE,TrainData,TestData,trainn); 
TSK_Result=reshape(TSK_Result,sqrt(size(TestData,1)),sqrt(size(TestData,1)));TSK_Result=TSK_Result.';TSK_Result=TSK_Result(:); 
[~,tskRMSETS]=computeRMSE(TestData(:,end),TSK_Result(:)); 
%% NNSA Results 
  
[~,nnsaRMSETR,nnsaRMSETS,nnsaTraintime,nnsaTesttime,nnsaNodes]=NNSA1Results(TrainData,TestData,xtE,indx,method_apr); 
%% 
  
algorithmNames = {'MLP';'FCC';'SVM';'ELM';'ANFIS';'TSK';'Spline';'NNSA'}; 
trainTime = [mlpTraintime;fccTraintime;svrTraintime;elmTraintime;anfisTraintime;tskTraintime;splineTraintime;nnsaTraintime]; 
testTime = [mlpTesttime;fccTesttime;svrTesttime;elmTesttime;anfisTesttime;tskTesttime;splineTesttime;nnsaTesttime]; 
totalTime = trainTime + testTime; 
trainRMSE = [mlpRMSETR;fccRMSETR;svrRMSETR;elmRMSETR;anfisRMSETR;tskRMSETR;splineRMSETR;nnsaRMSETR]; 
testRMSE = [mlpRMSETS;fccRMSETS;svrRMSETS;elmRMSETS;anfisRMSETS;tskRMSETS;splineRMSETS;nnsaRMSETS]; 
nodes = [mlpNodes;fccNodes;svrNodes;elmNodes;anfisNodes;tskNodes;splineNodes;nnsaNodes]; 
trialResults = table(algorithmNames,trainTime,testTime,totalTime,trainRMSE,testRMSE,nodes); 
  
%% 
writetable(trialResults,strcat(fnamebase,'.xlsx')) 
 

 
6.2.5 Schwefel Function Results Code 

Name: m_Schwefel_multidim_batch.m 
clear; 
fnameBase = 'schwefelResults'; 
  
% alphas = [10,20,30,50,100]; 
% ndims = [2,3,4,5]; 
% points = [6,6,6,8,10]; 
alphas = [10,20]; 
ndims = [2,3]; 
points = [6,6]; 
method_gen = 3; 
  
for i=1:length(ndims) 
    for j=1:length(alphas) 
        alpha=alphas(j); 
        nPoints = points(j)*ones(1,ndims(i)); 
         
        trialResults = runSchwefelTrial(nPoints,alpha,method_gen); 
        filename = strcat(fnameBase,'Dim',num2str(ndims(i)),'Alpha',num2str(alpha),'Npt',num2str(points(j))); 
        writetable(trialResults,filename) 
    end 
end 
 

 
 
Name: runSchwefelTrial.m 
clear; 
fnameBase = 'schwefelResults'; 
algorithmNames = {'MLP';'FCC';'SVM';'ELM';'ANFIS';'TSK';'Spline';'NNSA'}; 
nAlg = length(algorithmNames); 
% alphas = [10,20,30,50,100]; 
% ndims = [2,3,4,5]; 
% points = [6,6,6,8,10]; 
  
alphas = [10,20]; 
ndims = [2,3]; 
points = [6,6]; 
  
trialResults = table(); 
for i=1:length(ndims) 
    for j=1:length(alphas) 
  
        alpha=alphas(j); 
        filename = strcat(fnameBase,'Dim',num2str(ndims(i)),'Alpha',num2str(alpha),'Npt',num2str(points(j))); 
        trial = readtable(filename); 
        trialResults = vertcat(trialResults,trial); 
    end 
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end 
  
writetable(trialResults,fnameBase) 
  
trialResults = readtable(fnameBase); 
  
%% 
writetable(trialResults,strcat(fnameBase,'.xlsx')) 
%% 
figureWidth=3.5; 
fontSize = 15; 
lineWidth = 2; 
fields = {'trainTime','testTime','totalTime','trainRMSE','testRMSE'}; 
titles = {'Train Time(s)','Test Time(s)','Total Time(s)','Train RMSE','Test RMSE'}; 
plotStyles = {'-r^','-rd',':b>','--bx','--g<',':gs',':kv','-.ko'}; 
for k=1:length(fields) 
for j=1:length(alphas) 
h=figure(k*10+j);clf;hold all; 
for i = 1:nAlg 
title(strcat(titles{k},32,'alpha =',32,num2str(alphas(j)))); 
rows1 = strcmp(trialResults.Algorithm, algorithmNames{i}); 
rows2 = trialResults.Alpha==alphas(j); 
rows = rows1 & rows2; 
t1 = trialResults(rows,fields{k}); 
%% 
plot(ndims(1:length(t1{:,fields{k}})),t1{:,fields{k}},plotStyles{i},'LineWidth',lineWidth) 
set(gca,'xtick', ndims) 
set(gca,'xticklabel',{'2','3','4','5'}) 
xlabel('Dimensions'); 
ylabel(titles{k}); 
end 
% fig(h,'units','inches','width',figureWidth) 
% legend(algorithmNames,'Location','best'); 
set(gca,'FontSize',fontSize,'fontWeight','bold','FontName','Times New Roman') 
set(findall(gcf,'type','text'),'FontSize',fontSize,'fontWeight','bold','FontName','Times New Roman') 
end 
end 
%% 
  
  
%%  
fields = {'trainTime','testTime','totalTime'}; 
titles = {'Train Time(s)','Test Time(s)','Total Time(s)'}; 
plotStyles = {'-r^','-rd',':b>','--bx','--g<',':gs',':kv','-.ko'}; 
for k=1:length(fields) 
for j=1:length(alphas) 
h=figure(k*10+j);clf; 
for i = 1:nAlg 
  
rows1 = strcmp(trialResults.Algorithm, algorithmNames{i}); 
rows2 = trialResults.Alpha==alphas(j); 
rows = rows1 & rows2; 
t1 = trialResults(rows,fields{k}); 
  
% plot(ndims(1:length(t1{:,fields{k}})),t1{:,fields{k}},plotStyles{i}) 
semilogy(ndims(1:length(t1{:,fields{k}})),t1{:,fields{k}},plotStyles{i},'LineWidth',lineWidth);hold all; 
  
end 
title(strcat(titles{k},32,'alpha =',32,num2str(alphas(j)))); 
set(gca,'xtick', ndims) 
set(gca,'xticklabel',{'2','3','4','5'}) 
xlabel('Dimensions'); 
ylabel(titles{k}); 
% fig(h,'units','inches','width',figureWidth) 
% legend(algorithmNames,'Location','best'); 
set(gca,'FontSize',fontSize,'fontWeight','bold','FontName','Times New Roman') 
set(findall(gcf,'type','text'),'FontSize',fontSize,'fontWeight','bold','FontName','Times New Roman') 
end 
end 
 

 
 
Name: m_Schwefel_multidim_data_analysis.m 
function trialResults = runSchwefelTrial(nPoints,alpha,method_gen) 
[TrainData,xt,TestData,xv,~,xtE,nsegE,indx,n]=generateSchwefelTrainValidation(nPoints,alpha,method_gen); 
method_apr=4; 
trainn = size(TrainData,1); 
testn = size(TestData, 1); 
ntrial=10; 
%% MLP Results 
sizes=[10 15 25 50 60]; 
epoch_n=100; 
[~,mlpRMSETR,mlpRMSETS,mlpTraintime,mlpTesttime,~,mlpNodes]=MLPResults(TrainData,TestData,sizes,ntrial,epoch_n); 
%% FCC Results 
sizes=[3,5,7,9,10]; 
epoch_n=20; 
[~,fccRMSETR,fccRMSETS,fccTraintime,fccTesttime,fccNodes,~,~,~,~,~,~]=FCCResults(TrainData,TestData,sizes,ntrial,epoch_n,testn); 
%% SVR Results 
gamma_list=[0.01,0.1,1,3,10];  
C_list=[10,50,100,150,300]; 
[~,svrRMSETR,svrRMSETS,svrTraintime,svrTesttime,~,svrNodes,~,~]=SVRResults(TrainData,TestData,gamma_list,C_list); 
%% ELM Results 
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 nodeV=[10 15 25 50 60]; 
[~,elmRMSETR,elmRMSETS,elmTraintime,elmTesttime,~,~,~,elmNodes]=ELMResults(TrainData,TestData,nodeV,ntrial); 
%% ANFIS Results 
  
numMFs=3*ones(1,length(nPoints)); 
inmftype='gbellmf'; outmftype='linear'; epoch_n = 10; 
  
[~,anfisRMSETR,anfisRMSETS,anfisTraintime,anfisTesttime,~,anfisNodes]=fuzzyResults(TrainData,TestData,numMFs,inmftype,outmftype,e
poch_n); 
%% Global Spline Results 
[~,splineRMSETR,splineRMSETS,splineTraintime,splineTesttime,splineNodes]=splineResults(TrainData,TestData,trainn,xtE,nsegE,xv); 
%% Fuzzy TSK Results 
[~,tskRMSETR,tskRMSETS,tskTraintime,tskTesttime,tskNodes]=FuzzyTSKResults(xtE,TrainData,TestData,trainn); 
%% NNSA Results 
[~,nnsaRMSETR,nnsaRMSETS,nnsaTraintime,nnsaTesttime,nnsaNodes]=NNSA1Results(TrainData,TestData,xtE,indx,method_apr); 
  
%% 
Algorithm = {'MLP';'FCC';'SVM';'ELM';'ANFIS';'TSK';'Spline';'NNSA'}; 
trainTime = [mlpTraintime;fccTraintime;svrTraintime;elmTraintime;anfisTraintime;tskTraintime;splineTraintime;nnsaTraintime]; 
testTime = [mlpTesttime;fccTesttime;svrTesttime;elmTesttime;anfisTesttime;tskTesttime;splineTesttime;nnsaTesttime]; 
trainRMSE = [mlpRMSETR;fccRMSETR;svrRMSETR;elmRMSETR;anfisRMSETR;tskRMSETR;splineRMSETR;nnsaRMSETR]; 
testRMSE = [mlpRMSETS;fccRMSETS;svrRMSETS;elmRMSETS;anfisRMSETS;tskRMSETS;splineRMSETS;nnsaRMSETS]; 
nodes = [mlpNodes;fccNodes;svrNodes;elmNodes;anfisNodes;tskNodes;splineNodes;nnsaNodes]; 
Dim = size(TrainData,2) -1; 
Dimension = Dim*ones(size(Algorithm)); 
totalTime = trainTime+testTime; 
Alpha = alpha*ones(size(Algorithm)); 
trialResults = table(Algorithm,Dimension,Alpha,trainTime,testTime,totalTime,trainRMSE,testRMSE,nodes); 
 

 


