

Learning Systems for Nonlinear Mapping

by

Jordan Augustus Richardson

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 6, 2017

Keywords: Computational Intelligence, Machine Learning, Artificial Neural Networks, Radial
Basis Functions, Fuzzy Systems, Splines

Copyright 2017 by Jordan Augustus Richardson

Approved by

Bogdan Wilamowski, Chair, Professor of Electrical and Computer Engineering
Michael Hamilton, Associate Professor of Electrical and Computer Engineering

Robert Dean, Professor of Electrical and Computer Engineering
Vitaly Vodyanoy, Professor of Anatomy, Physiology, and Pharmacy

ii

Abstract

The many complex problems facing researchers and engineers demand innovative solutions.

Machine learning techniques are growing in popularity due to their versatility and power.

However, challenges remain. Popular machine learning algorithms such as Artificial Neural

Networks are difficult to train, and require many designer choices that heavily impact the

performance of the network. Furthermore, the randomized starting point of most ANN variants

means that even if optimal choices are made, it may still take multiple trials to obtain satisfactory

results. Fuzzy Systems are also widely used, but cannot tackle high dimensional problems or

produce outputs of similar quality to neural networks. A novel defuzzification routine based on

cubic splines seeking to improve the performance of FS is introduced, and compared to many

state of the art machine learning techniques. The experimental results show the proposed

algorithm performs competitively with popular machine learning methods, while not requiring a

lengthy training process.

 iii

Acknowledgements

First, I would like to acknowledge my advisor and committee chair Dr. Bogdan Wilamowski.

Without his encouragement and guidance, I would likely never have begun pursuing my

doctorate, much less completed it. It has been the privilege of a lifetime to get to work with and

learn from him.

I want to thank my entire committee Dr. Hamilton, Dr. Dean, Dr. Vodyanoy, and my outside

reader Dr. Chapman for their time and valuable feedback. The quality of this manuscript has

been greatly enhanced as a result.

There have been many professors in the Electrical and Computer Engineering department

who have helped me on this journey, and to whom I want to express my deepest gratitude.

I would like to thank Dr. Wentworth, who has been a mentor and friend for my entire

academic career, and Dr. Nelson, with whom I have had the pleasure of teaching for the past few

years.

I must also thank my parents for their love and support and for encouraging me from a young

age to embrace my love of learning. I literally would not be here without you.

Lastly, I want to thank the love of my life for her superhuman patience, tireless support, and

unwavering belief in me. Tiffany, this is for you.

 iv

Table of Contents

Abstract ... ii

Acknowledgements .. iii

List of Tables ... vi

List of Figures ... vii

Chapter 1 Introduction ... 1

Chapter 2 Machine Learning Overview .. 3

2.1 Artificial Neural Networks ... 3

2.1.1 Neural Network Size ... 8

2.1.2 Neural Network Architecture .. 10

2.1.3 Neural Network Training .. 15

2.1.4 Specialized Neural Networks .. 21

2.2 Fuzzy Systems .. 24

2.2.1 TSK Fuzzy Systems .. 25

2.2.2 Adaptive Network-based Fuzzy Inference Systems ... 26

Chapter 3 Nearest Neighbor Spline Approximation .. 27

3.1 Polynomial Approximation Review ... 27

3.1.1 Polynomial Approximation Derivation ... 27

3.1.2 Polynomial Approximation Problems... 28

3.2 Cubic Spline Review .. 32

3.2.1 Cubic Spline Derivation .. 35

3.2.2 End Conditions.. 39

3.2.3 Cubic Spline Problems .. 40

3.3 Nearest Neighbor Spline Approximation ... 40

3.3.1 One Dimensional TSK .. 41

3.3.2 One Dimensional NNSA ... 42

3.3.3 Extension to Multiple Dimensions.. 51

3.3.4 Comments ... 56

Chapter 4 Experimental Results .. 56

 v

4.1 Peaks Problem .. 57

4.2 Forward Kinematics ... 60

4.3 Multidimensional Schwefel Function .. 63

Chapter 5 Conclusions ... 73

References ... 75

Chapter 6 Appendices .. 79

6.1 Multidimensional Schwefel Data ... 79

6.2 MATLAB Code .. 82

6.2.1 Algorithm Functions ... 82

6.2.2 Support Functions ... 93

6.2.3 Peaks Experimental Results Code .. 102

6.2.4 Forward Kinematics Results Code.. 105

6.2.5 Schwefel Function Results Code .. 106

 vi

List of Tables

Table I: Tabulated training and testing errors as the number of neurons increases. 9

Table II: Input patterns for the parity-3 problem. .. 10

Table III: Comparing the largest parity problem that can be solved by various architectures with
eight neurons. .. 14

Table IV: Results for peaks benchmark in terms of Training and Testing errors (RMSE),
Training and Testing Times (s), and the number nodes/neurons. ... 59

Table V: Results for Forward Kinematics problem X position in terms of Training and Testing
errors (RMSE), Training and Testing Times (s), and the number nodes/neurons. 62

Table VI: Results for Forward Kinematics problem Y position in terms of Training and Testing
errors (RMSE), Training and Testing Times (s), and the number nodes/neurons. 63

 vii

List of Figures

Figure 2.1.1 ... 5

Figure 2.1.2 ... 7

Figure 2.1.3 ... 7

Figure 2.1.4 ... 9

Figure 2.1.5 ... 11

Figure 2.1.6 ... 12

Figure 2.1.7 ... 13

Figure 2.1.8 ... 14

Figure 2.1.9 ... 22

Figure 2.2.1 ... 25

Figure 3.1.1 ... 28

Figure 3.1.2 ... 29

Figure 3.1.3 ... 31

Figure 3.2.1 ... 33

Figure 3.2.2 ... 34

Figure 3.2.3 ... 36

Figure 3.3.1 ... 41

Figure 3.3.2 ... 43

Figure 3.3.3 ... 47

Figure 3.3.4 ... 50

Figure 3.3.5 ... 52

Figure 3.3.6 ... 54

 viii

Figure 4.1.1 ... 57

Figure 4.1.2 ... 59

Figure 4.2.1 ... 61

Figure 4.2.2 ... 62

Figure 4.3.1 ... 64

Figure 4.3.2 ... 66

Figure 4.3.3 ... 67

Figure 4.3.4 ... 69

Figure 4.3.5 ... 70

Figure 4.3.6 ... 71

1

Chapter 1 Introduction

Computers dominate our daily lives. Over the course of the last half century, they have

evolved from massive, multi-room mainframes to personal computers, laptops, smart phones,

tablets, and, recently, wearable computing devices such as smart watches and glasses, all with

exponentially more power and capabilities than their vacuum tube forebears. This evolution has

been driven by the continual shrinking of silicon process technology, with each reduction of the

size of transistors allowing more devices to be packed into the same area. As computing power

has grown, applications that once seemed like science fiction have become first possible, then

feasible, and eventually commonplace. Despite this incredible progress, there are specific

problems and classes of problems that remain intractable with conventional computing. Tasks

that appear simple to humans—from moving through space, to making educated guesses based

on incomplete information, to dealing with unexpected events—pose incredible difficulty to

traditional digital computing.

Machine learning seeks to leverage the power of modern computers to solve these difficult

problems. This family of algorithms can be broadly described as attempting to imitate the

abilities of organic life to solve problems. The traits that get imitated vary between paradigms,

and include movement, evolution, learning, reasoning, etc. Two of the more popular techniques,

Artificial Neural Networks (ANN) and Fuzzy Systems (FS) attempt to emulate learning and

reasoning, respectively. In theory, ANN and FS can approximate any function to an arbitrary

degree of accuracy[1], [2]. In practice, both technologies have strengths and weaknesses.

Fuzzy systems are frequently used in the literature for nonlinear system modelling in which

the problems are difficult to describe with mathematical models[3]–[6]. Fuzzy systems are also

often used in industry for adaptive control algorithms[7]–[14]. The inherent drawbacks of fuzzy

 2

membership functions result in approximations that lack smoothness. In addition, the process of

designing FS can be difficult even for an experienced designer.

Traditional ANNs have recently been joined by radial basis function (RBF) networks, which

are often trained by Support Vector Regression (SVR) or by Extreme Learning Machine (ELM)

algorithms. Far better results can be obtained with ISO[15] and ErrCor[16] algorithms, which are

capable of producing RBF networks more than 10 to 30 times smaller than SVM or ELM. These

smaller networks are more suitable for hardware implementation.

There is also recent progress in ANN. It is much easier to train shallow architectures with a

single hidden layer than it is to train deep networks[17]. But again, these shallow architectures

often require network sizes 10 to 100 times larger than special deep architectures[18].

Unfortunately, these special ANN architectures, such as fully connected cascade (FCC) or

bridged multilayer perceptron (BMLP), cannot be trained by commonly-available software, and

a special NBN algorithm[19] for arbitrarily connected neural networks must be used.

With advanced training algorithms there is a loss of transparency in the relationship between

trainable parameters and system output. A simple and transparent relationship—such as in a

TSK[20]–[22] fuzzy system—is crucial for creation of adaptive systems. In traditional TSK

fuzzy systems, for each selected area of operation, a specific value of the output is defined. This

makes TSK systems very popular—especially with simple triangular membership functions—

because this direct relationship between area of operation and desired output can easily be

adjusted by a single parameter associated with the area.

The purpose of this work is to examine several state-of-the-art machine learning algorithms,

and compare their performance to a new, improved defuzzification technique for zero-order TSK

fuzzy systems. The proposed modification seeks to address one of the deficiencies of classic

 3

TSK systems—the rawness of the output surfaces—while maintaining several desirable traits.

Specifically, the modification maintains a transparent input-output relationship that allows for

easy adjustments. In addition, the proposed approach does not require a lengthy and complicated

training process. This has several benefits, including the ability to incorporate new data without

necessitating retraining of the system. The newly-developed defuzzification scheme is based on

spline-like local third-order polynomials. This local approach was developed to avoid the more

complex computation required by global cubic splines [23].

Chapter 2 Machine Learning Overview

The purpose of this section is to provide a conceptual review of popular machine learning

techniques in order to give context to the research presented later. This review will focus on

artificial neural networks and fuzzy systems.

2.1 Artificial Neural Networks

One of the defining features of life is the ability to adapt to changing environmental

circumstances, which can be viewed as a form of problem solving. For simple organisms, natural

selection is the primary adaptation mechanism. Natural selection is a slow process, requiring

many generations for beneficial mutations or adaptions to occur and be propagated throughout

the gene pool. In higher animals, the ability to learn new behaviors provides an alternative way

of adapting to new challenges. Higher animals possess brains made up of many nerve cells. Very

simplistically, nerve cells, or neurons, are specialized cells that can transmit electrical signals to

other cells via connections called synapses. A neuron that receives sufficient input stimulus will

fire in turn, thus propagating the signals. There are two features of neurons that are important to

this discussion. The first is that a single neuron can form connections with many other neurons,

all of which have their own connections and collectively form what is known as a neural

 4

network. The second important feature is that repeated firing of a particular neuron has an effect

on the connected neurons. In general, the effect is either excitatory or inhibitory, meaning that

the connected neurons will either become more or less likely to fire. In this way, a neural

network can adapt to produce responses to repeated stimuli. The power of biological neural

networks is readily apparent when examining the complex behavior of higher animals, with the

most striking example being humans. Recreating this ability for use in computers has many

applications.

An artificial neural network (ANN) is a biologically inspired machine learning paradigm. As

the name implies, ANNs attempt to replicate the process by which biological neural networks

adapt and learn in order to solve problems. Rather than try to model all of the incredibly complex

biological and chemical interactions, ANNs are an approximation of biological neural networks.

Figure 2.1.1 shows a standard artificial neuron, called a perceptron, with N inputs ଵܺ, ܺଶ, …ܺ௡.

Each input ௜ܺ has an associated weight ݓ௜, which get multiplied together to produce the value

actually seen by the neuron. The total or net input to the neuron is calculated as a weighted sum

of all the inputs (2.1-1). The output ଵܱ is then computed as the result of the activation function

݂ሺܻሻ operating on the net.

ܻ ൌ ଵݓଵݔ ൅⋯൅ ௜ݓ௜ݔ ൅ ⋯൅ ௡ݓ௡ݔ ൌ෍ݓ௜ݔ௜

௡

௜ୀଵ

(2.1-1)

 5

Figure 2.1.1: An artificial neuron with inputs N weighted inputs, activation function ݂ሺܻሻ, and

one output.

Early artificial neuron models such as the McCullough-Pitts[24] neuron employed “hard”

activation functions (essentially a step function). Hard activation functions are either unipolar

(2.1-2) or bipolar (2.1-3). While the threshold can be variable, in practice most neurons will have

an additional input connected to a constant value which is used to bias the net input for a

threshold of 0 or 0.5 for bipolar and unipolar neurons, respectively.

ଵܱ ൌ ൜
1 ݂݅ ܻ ൒ ܶ
0 ݂݅ ܻ ൏ ܶൠ

(2.1-2)

ଵܱ ൌ ൜
1 ݂݅ ܻ ൒ ܶ
െ1 ݂݅ ܻ ൏ ܶൠ

(2.1-3)

Hard activation functions emulate the all-or-nothing firing mechanism of biologic neurons

and can implement basic logic functions such as AND, OR, and NOT, as well as solve other

small problems with at most a single layer of neurons. Neurons with hard activation functions

present a problem for training multiple layers in that they are opaque. Incremental changes to the

 6

weights do not have a corresponding effect on the output. This is why “soft” sigmoidal activation

functions are used in place of step functions. Sigmoidal activation functions behave the same in

the limit as step functions, and can also be unipolar (2.1-4) or bipolar (2.1-5), but have a gradual

transition that makes the neuron (or network) transparent for training, which can be seen in

Figure 2.1.2. Note that ߣ is a constant that controls the slope of the activation function.

ଵܱ ൌ
1

1 ൅ ሻܻߣሺെ݌ݔ݁

(2.1-4)

ଵܱ ൌ
2

1 ൅ ሻܻߣሺെ݌ݔ݁
െ 1

(2.1-5)

(a) (b)

(c) (d)

-inf 0 inf

0

0.5

1

Net

f(
Y

)

-inf 0 inf

-1

0

1

Net

f(
Y

)

-inf 0 inf

0

0.5

1

Net

f(
Y

)

-inf 0 inf

-1

0

1

Net

f(
Y

)

 7

Figure 2.1.2: Typical activation functions. a) Hard unipolar. b) Hard bipolar. c) Soft unipolar. d)

Soft bipolar.

As with biological neurons, a single artificial neuron is not particularly useful, and must be

connected together in networks before any kind of learning can take place. The discussion here

will be limited to feedforward networks, although there are special types of networks that make

use of recurrent connections, such as Hopfield Networks[25]. Figure 2.1.3 shows a typical

artificial neural network configured in a Multi-Layer Perceptron (MLP) architecture. This

architecture has a number of what are called “hidden layers” in between the inputs and the

network output.

Figure 2.1.3: A Multi-Layer Perceptron artificial neural network.

Artificial neural networks require several design decisions to be made, specifically: what

architecture will be used, how large will the network be, and what algorithm will be used for

training. These decisions will have an enormous impact on the network performance.

 8

2.1.1 Neural Network Size

The size (number of neurons) and their configuration (the architecture or topology) have a

direct impact the power of a neural network. Intuitively, the more neurons in a network, the more

complex problems it can solve. This is easily confirmed experimentally in Figure 2.1.4(a)-(f)

where a simple sinusoid is approximated by an ANN with increasing numbers of neurons. As the

number of neurons increases, the output of the network more closely matches the desired

sinusoid.

(a) (b)

(c) (d)

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
n = 1

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
n = 2

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
n = 3

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
n = 4

 9

(e) (f)

Figure 2.1.4: Results of training a neural network to approximate a sinusoid as number of

neurons n increases. a) ݊ ൌ 1 b) ݊ ൌ 2 c) ݊ ൌ 3 d) ݊ ൌ 4 e) ݊ ൌ 5 f)	݊ ൌ 6

However, it is readily apparent that the best results are produced by the network with three

neurons, and adding more past that causes undesirable oscillations between the training points.

These are similar to the oscillations that occur when using a high order polynomial for

interpolation. Past the optimal number of neurons, the network will match the training points

very closely, but the generalization ability suffers, as shown by the errors in Table I. Notice that

the training errors decrease as more neurons are added, with the largest network producing the

smallest training error. The testing errors verify what can be seen visually in Figure 2.1.4, with

the errors decreasing as more neurons are added, reaching a minimum with three neurons, and

then beginning to increase.

Table I: Tabulated training and testing errors as the number of neurons increases.

n
Training
RMSE

Testing
RMSE

1 0.3431 0.2736
2 0.2454 0.2000
3 0.0153 0.0219
4 0.0086 0.0327

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
n = 5

0 1 2 3 4 5 6 7
-1.5

-1

-0.5

0

0.5

1

1.5
n = 6

 10

5 0.0039 0.0469
6 5.6417e-04 0.1078

In general, the best neural network results will be produced by a network that uses the fewest

number of neurons possible while still meeting a minimum training error threshold[17], [19].

Such compact networks maintain good generalization capabilities when presented with inputs

that were not used in training. The tradeoff for this performance is that smaller networks are

harder to train than an overprovisioned network, and can even fail to converge.

2.1.2 Neural Network Architecture

In theory, there are an infinite number of ways to connect a given number of neurons, some

subset of which will be optimal for a particular problem. In practice, there are several reasons

why standardized architectures are preferred. First, not all training algorithms can handle

arbitrarily connected networks. Second, standardized architectures make evaluating the effects of

different network sizes and initial starting weights feasible. A comparison of the power of

various architectures was done in [17]. The different architectures were evaluated based on their

ability to solve parity-N problems. This problem has been demonstrated as an effective

benchmark for comparing neural network efficiency[26]. The parity-N problem is a

generalization of the XOR problem for n inputs, where the output is zero if there are an even

number of one’s in the input string, and one if there is an odd number. Table II shows the input

patterns for the parity-3 problem.

Table II: Input patterns for the parity-3 problem.

Binary Input Output

000 0
001 1
010 1
011 0
100 1
101 0

 11

110 0
111 1

The Multilayer Perceptron architecture shown in the previous section (Figure 2.1.3) is the

simplest architecture, and also one of the most popular. The defining property of an MLP

network is that the neurons are organized into discreet layers, with no cross layer connections.

Although there can be any number of layers, the special case of one hidden layer (known as a

Single Layer Feedforward Network (SLFN)) shown in Figure 2.1.5 is widely used. The largest

parity problem that can be solved by a SLFN is given by (2.1-6), where k is the number of

neurons, and N is the degree of the parity problem.

ܰ ൌ ݇ െ 1 (2.1-6)

Figure 2.1.5: A Single Layer Feedforward Network (SLFN).

If cross layer connections are allowed, the Multilayer Perceptron becomes the Bridged

Multilayer Perceptron (BMLP) architecture. A BMLP network with a single hidden layer is

shown in Figure 2.1.6. The cross layer connections of the BMLP make it more powerful than the

MLP, requiring fewer neurons to solve the same parity-N problem (2.1-7).

 12

ܰ ൌ 2݇ െ 1 (2.1-7)

Figure 2.1.6: A BMLP network with a single hidden layer.

Multiple hidden layers can also be used in the BMLP architecture, and the network diagrams

can quickly become difficult to follow, as shown in Figure 2.1.7, which only has two hidden

layers. For a BMLP network with two hidden layers, the largest parity problem that can be

solved is given by (2.1-8).

ܰ ൌ 2ሺ݇ ൅ 1ሻሺ݉ ൅ 1ሻ െ 1 (2.1-8)

For a BLMP network with an arbitrary number of hidden layers, the expression is a little

more complex. The largest parity problem a network with p hidden layers can solve is shown by

(2.1-9), where ݊௜ is the number of hidden neurons in the ith hidden layer.

ܰ ൌ 2ቌෑሺ݊௜ ൅ 1ሻ

௜ୀ௣

௜ୀଵ

ቍ െ 1
(2.1-9)

 13

Figure 2.1.7: A BMLP network with two hidden layers.

The most powerful network architecture evaluated is the Fully Connected Cascade (FCC)

architecture. Shown in Figure 2.1.8, the FCC can be thought of as a special case of the BMLP

where each hidden layer only has a single neuron. This gives an FCC network the maximum

possible depth with a minimum total number of neurons. The highest order parity-N problem an

FCC network with n neurons can solve is given by (2.1-10).

ܰ ൌ 2௞ െ 1 (2.1-10)

 14

Figure 2.1.8: A FCC network with n inputs and k neurons.

Some concrete numbers can help demonstrate the difference in power between these

architectures. Table III shows the maximum parity problem that can be solved by the various

architectures if we fix the network size at eight neurons. Note that BMLP (4-4) indicates that the

network has two hidden layers with four neurons each, and BMLP (2-2-2-2) has four hidden

layers with two neurons each. It should be clear that the difference in power between the network

topologies is substantial, with the FCC network able to solve problems of much greater

complexity than simple MLP networks.

Table III: Comparing the largest parity problem that can be solved by various architectures with

eight neurons.

Architecture Parity‐N

MLP 7
BMLP (4‐4) 15
BMLP (2‐2‐2‐2) 161
FCC 255

 15

2.1.3 Neural Network Training

For a small number of neurons, it is possible to design the weights to create the desired

output. Designing quickly becomes impossible as network size increases, and some form of

training is necessary to automatically adjust the weights to meet some criteria. Learning methods

can be broadly classified as supervised, where each training pattern has a desired output, or

unsupervised, where the training patterns do not have desired outputs. The goal of unsupervised

learning is typically to explore a dataset and perform clustering, such as with a Kohonen Self

Organizing Map (SOM)[27]. The focus here will be on supervised learning.

In supervised learning, each input pattern has a desired output. When a pattern is applied to

the network, the actual output will, in general, be different from the desired output. The optimal

network weights for that pattern will be the set of weights that minimizes the error between the

desired and actual outputs. Thus, training the network can be reformulated to an optimization

problem, with the goal of minimizing the total error for all patterns. Assume there are P total

training patterns, and the pth pattern has the form of (2.1-11), with n input dimensions and the

desired output d.

௣ݔ ൌ ሼ൫ݔ௣,ଵ, ,௣,ଶݔ … , ௣,௡൯│݀௣ሽ (2.1-11)ݔ

After applying the pth pattern, the error ݁௣ for that pattern is computed as the difference

between the desired output ݀௣ and the actual output ݋௣ (2.1-12).

݁௣ ൌ ݀௣ െ ௣ (2.1-12)݋

Since the goal of neural network training is to minimize the error for all training patterns, a

measure for the total error is needed. The Sum Squared Error (SSE), abbreviated as simply E,

 16

shown in (2.1-13), is widely utilized. Note that the one half factor is there to cancel the power

during differentiation later, and could be omitted.

ܧ ൌ
1
2
෍൫݀௣ െ ௣൯݋

ଶ
௉

௣ୀଵ

(2.1-13)

The training algorithms described in the following sections are all based on some form of

gradient descent optimization to find the minimum SSE.

2.1.3.1 Error Backpropagation
Early training algorithms were limited to either a single neuron or a single layer of neurons

(as in no hidden layers). As a result, neural networks were very limited in ability and application.

The first algorithm that could train networks with one or more hidden layers was Error

Backpropagation (EBP). Originally described in 1974 by Werbos [28], EBP was first applied to

ANN training by Rumelhart et al. [29] in 1986.

EBP is an iterative algorithm, with each iteration consisting of three steps. The first consists

of forward computation, where a training pattern is applied to the network inputs. The net values

for each neuron in the first layer are computed, and the output of each neuron is calculated using

the activation function. Then the outputs of the first layer are used as the inputs to the next layer,

and the process is repeated until the final output of the network is obtained. In the second step,

the error between the desired output and the actual output is found. The error then propagates

back through the network (the titular backpropagation), by calculating the partial derivative of

the total error with respect to each weight. The third and final step calculates the change in each

network weight using the input pattern and the partial error terms.

Error Backpropagation is a steepest descent algorithm. As such, the weight update rule can

be written as (2.1-14).

 17

∗࢝ ൌ ࢝ െ (2.1-14) ࢍߙ

Where ࢝ is the vector of network weights, ࢝∗ is the updated weight vector for the next

iteration, ߙ is a learning constant, and ࢍ is the gradient of the error function taken with respect to

the weights, and has the form of (2.1-15).

ࢍ ൌ
ሻ࢝,࢞ሺܧ߲
߲࢝

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
ܧ߲
ଵݓ߲
ܧ߲
ଶݓ߲
⋮
ܧ߲
ےேݓ߲

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

(2.1-15)

Finding the partial derivative values for the gradient is the difficult part of the algorithm. We

will assume a SLFN network with one output, such as the one shown in Figure 2.1.5.

Furthermore, we shall refer to the set of weights between the inputs and hidden layer as ࢛, the

weights between the hidden layer and the output layer as ࢜, and output of the neurons in the

hidden layer as ݂ሺࢅሻ.

Recall that the goal is to minimize the error function. Evaluating (2.1-13) for an input pattern

 .௣ and expanding yields (2.1-16)ݔ

൯࢝,࢖࢞൫ܧ ൌ
1
2
ሺ݀ଶ െ ݋2݀ ൅ ଶሻ݋

(2.1-16)

The partial derivative of (2.1-16) with respect to the output weights ࢜ gives (2.1-17).

,࢖࢞ሺܧ߲ ሻ࢜

߲࢜
ൌ െሺ݀ െ ሻࢅሻ൯݂ሺࢅᇱሺ݂࢜ሻ݂ᇱ൫݋

(2.1-17)

It is convenient to define a term ߜ to be the partial error (2.1-18), so that the weight change in

for the output layer can be written as (2.1-19).

ߜ ൌ ሺ݀ െ ሻ (2.1-18)࢟࢜ሻ݂ᇱሺ݋

Δ࢜ ൌ െ
,࢖࢞ሺܧ߲ ሻ࢜

߲࢜
ൌ ࢅߜߙ

(2.1-19)

 18

This process repeats for the weights in the input layer (2.1-20)

Δ࢛ ൌ െ
,࢖࢞ሺܧ߲ ሻ࢛

࢛߲
ൌ ࢖࢞൯࢖࢛࢞ᇱ൫݂࢜ߜߙ

(2.1-20)

This process is either repeated for each training pattern, with the weights either being

updated after each pattern is applied, or held constant until all patterns are applied, and the sum

of all weight changes used to update the weights.

As a first order gradient descent algorithm, EBP is stable, but suffers from slow convergence

and a tendency to get stuck in local minima. Modifications of EBP such as adaptive learning rate

[30], momentum [31], and Resilient Error Backpropagation (RPROP)[32] seek to address one or

both of these issues. However, even with these modifications EBP is simply not powerful enough

to solve some problems, requires a large number of neurons, or produces very poor results when

tested with patterns that were not used for training. Furthermore, EBP can only train MLP

networks, which are not very powerful. More powerful algorithms that can train arbitrarily

connected networks are needed.

2.1.3.2 Levenberg-Marquardt Approach
The goal of a gradient descent algorithm is to find the global minimum of an error function.

This process can be visualized as attempting to find the lowest point in a valley while only being

able to see one step in any direction. Getting to the bottom of the valley then becomes a series of

“steps”, and the direction and size of each step must be chosen. In a first order algorithm like

EBP, the direction of the next “step” is selected to be whichever is the steepest. This is a locally

greedy heuristic, and as such can cause the algorithm to get stuck in local minima. EBP can also

become trapped in flat spots where the gradient is very small. The size of each step is determined

by the learning constant ߙ. A larger learning constant produces a larger change in the network

weights for a given iteration, and makes the algorithm less likely to become trapped in local

 19

minima. However, larger values also cause the algorithm to become less stable, and may prevent

it from ever reaching the global minimum by causing it to always step from one side of the

“valley” to the other. A smaller learning constant causes slower convergence, but is more stable.

Fast, stable convergence therefor requires optimal selection of the learning constant at each

iteration. First order methods do not have enough information about the surface of the error

function to optimally choose the learning constant at each step. Towards that end, second order

methods are needed.

Newton’s method is the starting point of second order training algorithms. In Newton’s

method, the weight update rule of steepest descent in (2.1-14) is modified to (2.1-21).

∗࢝ ൌ ࢝ െିࡴ૚(2.1-21) ࢍ

Where ࡴ is the Hessian matrix of the form in (2.1-22).

ࡴ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

߲ଶܧ
ଵݓ߲

ଶ

߲ଶܧ
ଶݓଵ߲ݓ߲

⋯
߲ଶܧ

ேݓଵ߲ݓ߲
߲ଶܧ

ଵݓଶ߲ݓ߲

߲ଶܧ
ଶݓ߲

ଶ ⋯
߲ଶܧ

ேݓଶ߲ݓ߲
⋮ ⋮ ⋱ ⋮

߲ଶܧ
ଵݓே߲ݓ߲

߲ଶܧ
ଶݓே߲ݓ߲

⋯
߲ଶܧ
ேݓ߲

ଶ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

(2.1-22)

Newton’s method gives fast convergence, but calculating the second derivatives of the error

function for the Hessian matrix can be computationally infeasible. Newton’s method is also

unstable in some cases. In order to reduce the computational complexity, the Gauss-Newton

method introduces the Jacobian matrix (2.1-23). Note that ܲ refers to the number of patterns, and

 .refers to the number of outputs ܯ

 20

ࡶ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲݁ଵ,ଵ
ଵݓ߲

߲݁ଵ,ଵ
ଶݓ߲

⋯
߲݁ଵ,ଵ
ேݓ߲

߲݁ଵ,ଶ
ଵݓ߲

߲݁ଵ,ଶ
ଶݓ߲

⋯
߲݁ଵ,ଶ
ேݓ߲

⋮ ⋮ ⋱ ⋮
߲݁ଵ,ெ
ଵݓ߲

߲݁ଵ,ெ
ଶݓ߲

⋯
߲݁ଵ,ெ
ேݓ߲

⋮ ⋮ ⋱ ⋮
߲݁௉,ଵ
ଵݓ߲

߲݁௉,ଵ
ଶݓ߲

⋯
߲݁௉,ଵ
ேݓ߲

߲݁௉,ଶ
ଵݓ߲

߲݁௉,ଶ
ଶݓ߲

⋯
߲݁௉,ଶ
ேݓ߲

⋮ ⋮ ⋱ ⋮
߲݁௉,ெ
ଵݓ߲

߲݁௉,ெ
ଶݓ߲

⋯
߲݁௉,ெ
ேݓ߲ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

(2.1-23)

The gradient is related to the Jacobian by (2.1-24). The vector ࢋ has the form of (2.1-25).

ࢍ ൌ (2.1-24) ࢋࡶ

ࢋ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
݁ଵ,ଵ
݁ଵ,ଶ
⋮

݁ଵ,ெ
⋮
݁௉,ଵ
݁௉,ଶ
⋮

݁௉,ெے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

(2.1-25)

The Hessian matrix can be approximated by (2.1-26).

ࡴ ൎ (2.1-26) ࡶ்ࡶ

Combining (2.1-21), (2.1-24), and (2.1-26), the weight update rule for the Gauss-Newton

method and can be written as (2.1-27).

∗࢝ ൌ ࢝ െ ሺࡶ்ࡶሻି૚(2.1-27) ࢋࡶ

The Gauss-Newton method does not require the second derivative calculations of the Newton

method, but still faces convergence problems. Specifically, the approximation of the Hessian,

 .is not guaranteed to be invertible ,ࡶ்ࡶ

 21

The Levenberg-Marquardt (LM) algorithm[33] modifies the Gauss-Newton method by

replacing the Hessian approximation in (2.1-26) with (2.1-28). Note that ߤ is a positive constant

called the combination coefficient and ࡵ is the identity matrix.

ࡴ ൎ ࡶ்ࡶ ൅ (2.1-28) ࡵߤ

The addition of the ࡵߤ term ensures that the diagonal of the Hessian approximation will

always be non-zero, and thus invertible. Finally, the weight update rule for the LM algorithm can

be seen in (2.1-29).

∗࢝ ൌ ࢝ െ ሺࡶ்ࡶ ൅ (2.1-29) ࢋࡶሻି૚ࡵߤ

First applied to neural network training in [34], the LM algorithm combines the fast

convergence of the Gauss-Newton method with the stability of EBP. LM training has many

advantages, however, there are still problems. The Jacobian matrix that must be stored is of size

ሺܲ ൈ ሻܯ ൈ ܰ, where ܲ is the number of patterns, ܯ is the number of outputs, and ܰ is the

number of weights. For large training sets and/or network sizes, the Jacobian can become too

large for the available memory, and the speed gains over EBP will be lost. Furthermore, the LM

algorithm can only be applied to certain network architectures, such as MLP. The recently

developed Neuron-by-Neuron (NBN) algorithm[19] offers several advantages over LM. First,

NBN can train arbitrarily connected networks, which is important if efficient architectures are to

be used. Second, NBN utilizes a novel computation scheme that avoids ever having the entire

Jacobian matrix in memory at one time.

2.1.4 Specialized Neural Networks

This section will briefly describe several machine learning techniques that are related to

neural networks, but differ from classic neural networks in key ways.

 22

2.1.4.1 Radial Basis Function Networks
Moody and Darken [35] first showed that Radial Basis Function (RBF) networks were

universal approximators. RBF networks differ from traditional neural networks in that instead of

neurons with sigmoidal activation functions, RBF networks are composed of RBF units with one

of several activation functions, typically a multidimensional Gaussian function such as (2.1-30).

The vector ࢞ is the multidimensional input, ࢉ is a vector with the location of the center of the

Gaussian for each dimension, ߪ is a parameter that controls the width, and the gain ߚ controls the

height of the Gaussian.

݂ሺ࢞ሻ ൌ β exp൭െቆ
࢞‖ െ ‖ࢉ
ଶߪ

ቇ൱
(2.1-30)

RBF networks typically use a SLFN architecture, shown in Figure 2.1.9. The output layer of

an RBF network is usually a summation, rather than another RBF unit.

Figure 2.1.9: A SLFN RBF network with k RBF units and a single output.

 23

In contrast to finding the weights in classic ANN, the goal of training RBF networks is to

find optimal values for ࢉ, for each RBF unit. Because the number of tunable parameters ߚ and ,ߪ

is larger than in a traditional ANN of the same size, developing training algorisms is difficult.

Typically, only first order algorithms have been adapted to train RBF networks, although recent

advances have applied second order LM training to RBF networks[15].

2.1.4.2 Extreme Learning Machines
Extreme Learning Machines (ELM) are a relatively recent development. Originally published

by Huang et al. [36]–[38], ELM are a type of RBF network. ELM sidestep the difficulties of

training RBF networks by randomly generating (and leaving fixed) the ߪ and ࢉ parameters for

each RBF unit, and then solving for the ߚ by simple pseudo-inversion. ELM have very fast

training times and are capable of producing surprisingly good results considering only one

parameter is trained. However, the fast training times of ELM are mitigated by the fact that many

trials may be necessary before acceptable results are obtained. In addition, ELM require far

larger networks to reach similar error levels vs. other algorithms that take advantage of all

trainable parameters.

2.1.4.3 Support Vector Machines
Support Vector Machines (SVM) [39] are an attempt to perform learning on a dataset using a

minimum number of nodes. This is done by selecting and training only the most essential

patterns, and using those for training. This is done by performing optimization on a more

complex cost function than the one used in classic ANN. For a detailed description of SVM, see

[40]. SVM can use a variety of kernels such as sigmoid or Gaussian. A trained SVM with a

Gaussian kernel is functionally equivalent to an RBF network. While SVM are capable of

producing very good results, they require the user to provide several parameters that will greatly

 24

impact the performance. Searching for appropriate values for these parameters is very time

consuming, requiring trial and error.

2.2 Fuzzy Systems

Fuzzy logic can be thought of as a generalization of classical set theory. First proposed by

Zadeh[41], Fuzzy logic attempts to formalize and account for the uncertainty inherent in the real

world. In Boolean logic (and in classical set theory on which it is based), the only allowed values

are zero and one. An expression is either true or false; an item either belongs to a set or it does

not. As the foundation of digital computing, this kind of reasoning is powerful, but also has clear

limitations. At its heart, set theory relies on certainty. It requires that there be no ambiguity in

observations or measurements, which is not a problem in the abstract realm of theory. But we

intuitively understand that uncertainty and ambiguity exist intrinsically in the real world. Fuzzy

logic models this by allowing a continuous range of values between zero and one.

There are a few important concepts necessary to understanding the Fuzzy Systems described

in the next section. The first are the fuzzy version of the AND, OR, and NOT operations, which

are defined by (2.2-31), (2.2-32), and (2.2-33), respectively.

ܣ ∩ ܤ ൌ minሺܣ, ሻ (2.2-31)ܤ

ܣ ∪ ܤ ൌ maxሺܣ, ሻ (2.2-32)ܤ

ܣ̅ ൌ 1 െ (33-2.2) ܣ

The second is the idea of the membership function. A membership function defines a fuzzy

set by taking in an input ݔ and producing a value indicating degree to which ݔ belongs to the set.

Notice that in the limit, where ݔ either fully belongs to a set or fully does not, fuzzy logic

reduces to Boolean logic. The range of a variable can be divided into any number of membership

functions. These functions can overlap as long as the sum never exceeds one. Typically,

 25

trapezoidal, triangular, or Gaussian membership functions are used. The process of computing

the membership values of a crisp (or non-fuzzy) value ݔ for each membership function is called

fuzzification. The reverse process of taking a set of membership values and producing a crisp

output is called defuzzification.

2.2.1 TSK Fuzzy Systems

Fuzzy Systems (FS) refers to a family of techniques that utilize fuzzy logic to perform

classification, approximation, and control. Mamdani[42] published the first example of a FS

applied to controlling a steam engine. This idea was improved upon in the Takagi-Sugeno-Kang

(TSK) FS [20], which generally produces better results. The general structure of any FS can be

seen in Figure 2.2.1.

Figure 2.2.1: The basic component of any fuzzy system.

The inputs ଵܺ, ܺଶ, …ܺ௡ are crisp (or non-fuzzy) values. These crisp values are passed

through a fuzzification step. After fuzzification, the fuzzy values are passed to the inference

engine. The inference engine evaluates the rule base using the fuzzy inputs and aggregates the

results. Formally, the rule base is a series of IF-THEN statements that produce a certain output

when activated, as shown in (2.2-34). Note that ݉௜ሺ ଵܺሻ indicates the output of the ith

 26

membership function of input ଵܺ, ௝݉ሺܺଶሻ is the output of the jth membership function of input

ܺଶ, and so on. The value C can be a constant or a function of the inputs depending on the system

being used.

௜ሺ݉	ܨܫ ଵܺሻ	ܦܰܣ	 ௝݉ሺܺଶሻ ௞ሺܺ௡ሻ݉…ܦܰܣ ܰܧܪܶ ܱ ൌ (34-2.2) ܥ

The last step is to pass the results of the inference engine through a defuzzifier to produce a

single, crisp output.

One major difference between FS and ANN is that FS are designed, while ANN are trained.

By adjusting the number and shape of membership functions as well as the rule base, the desired

output can be obtained. The design process can take into account expert knowledge and intuition,

but generally requires a good deal of trial and error. Broadly speaking, FS are fast compared to

neural networks, at least in cases where there are only a few input dimensions. Neural Networks

are trainable and do not have a limitation on the number of input dimensions, but they suffer

from convergence problems. One trend involves applying optimization techniques to the design

of FS—essentially leading to trainable FS, often referred to as neuro-fuzzy systems.

2.2.2 Adaptive Network-based Fuzzy Inference Systems

One of the foundational ANN FS hybrid techniques is called Adaptive Network-based Fuzzy

Inference Systems (ANFIS). Proposed by Jang[43], [44], ANFIS is essentially a TSK FS with

Gaussian membership functions and linear rule consequents. In ANFIS, the parameters of the

membership functions are tuned using a gradient descent algorithm. This hybridization gives

ANFIS the potential to maintain the human interpretability of a fuzzy system, while being able to

learn from training data in a manner similar to ANN. In a later paper, Jang proved that ANFIS

and RBF networks are functionally equivalent [45]. Nevertheless, ANFIS is a powerful learning

technique.

 27

Chapter 3 Nearest Neighbor Spline Approximation

Before describing the Nearest Neighbor Spline Approximation (NNSA) algorithm, some

review is in order. As the name implies, NNSA relies on splines. So we will first, briefly, review

polynomial interpolation as an introduction to splines, move onto a description of splines, and

then present the NNSA algorithm.

3.1 Polynomial Approximation Review

Polynomial interpolation has long been used to approximate functions from known data

points. This technique is useful if the underlying function is unknown, or too computationally

complex to be used directly. One historical example is the computation of trigonometric

functions. For hundreds of years, the main technique for computing values for trigonometric

functions relied on precomputed tables of values for known angles, and then applying linear

interpolation to obtain the function output for the desired input. Modern processors use a variety

of techniques to compute trigonometric functions, but use of look up tables and interpolation

remain common, especially in applications where speed is essential.

3.1.1 Polynomial Approximation Derivation

Polynomials have a known and predictable form. For a polynomial ݌ of degree ݊, the form is

defined by (3.1-35)

ሻݔሺ݌ ൌ ܽ௡ݔ௡ ൅ ܽ௡ିଵݔ௡ିଵ ൅ ⋯൅ ܽଶݔଶ ൅ ܽଵݔଵ ൅ ܽ଴ (3.1-35)

So, the problem of polynomial interpolation is one of solving for the values of the unknown

coefficients. More formally, given a set of ݊ ൅ 1 data points of the form ሺݔ௜, ௜ሻ, find theݕ

polynomial ݌ with degree of ݊ which satisfies the interpolation condition (3.1-36).

௜ሻݔሺ݌ ൌ ௜ݕ , ݅ ൌ 0…݊ (3.1-36)

 28

The interpolation condition means that the polynomial must be pass through the data points.

This also ensures that the solution will be unique. In order to solve for the coefficients, the

known polynomial form (3.1-35), and the data points are inserted into (3.1-36) to produce a

system of equations shown in (3.1-37).

ۏ
ێ
ێ
ۍ
଴ݔ
௡ ଴ݔ

௡ିଵ ⋯ ଴ݔ
ଵ 1

ଵݔ
௡ ଵݔ

௡ିଵ ⋯ ଵݔ
ଵ 1

⋮ ⋮ ⋮ ⋮
௡௡ݔ ௡௡ିଵݔ ⋯ ௡ଵݔ ے1

ۑ
ۑ
ې
൦

ܽ௡
ܽ௡ିଵ
⋮
ܽ଴

൪ ൌ ൦

଴ݕ
ଵݕ
⋮
௡ݕ

൪

(3.1-37)

This system of equations has ݊ unknowns and ݊ equations, meaning it has a unique solution

that can be found by simple pseudo-inversion.

3.1.2 Polynomial Approximation Problems

This process works well in certain situations, as demonstrated by the example in Figure 3.1.1.

On the left, we can see the desired function, a simple sinusoid, and seven evenly spaced data

points to interpolate. On the right is the resulting curve produced by polynomial interpolation.

Since seven data points were used, then the interpolating polynomial is sixth order.

(a) (b)

Figure 3.1.1: Polynomial interpolation example. (a) The desired function ݕ ൌ ሻ. (b) Theݔሺ݊݅ݏ

interpolating polynomial.

0 1 2 3 4 5 6

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x

Desired Function and Training Points

0 1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

Interpolating Polynomial and Training Points

 29

On first inspection, the results look fairly good, as it is hard to visually distinguish between

the two curves. Upon further inspection, several problems become apparent. First, the difference

between the curves is greater than it first appears, as shown in Figure 3.1.2.

Figure 3.1.2: The differences between the desired curve and the interpolated curve at every

evaluation point.

There are significant errors in between the data points. The logical solution to this problem is

to use more data points. Assuming that more data points are available (which is a large

assumption in any real-world application), this creates several more problems.

The first is simply one of computation time. Because the order of the interpolating

polynomial is tied to the number of data points, adding more data points will result in a higher

order polynomial, which will in turn require more multiplications to evaluate. Depending on the

order of the polynomial and the number of points that need to be evaluated, this computation cost

can become too expensive.

0 1 2 3 4 5 6

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

x

Error

 30

The second problem is more serious, and a fundamental problem rather than a practical one.

This issue has to do with the behavior of high order polynomials in between data points of

certain function. Specifically, increasing the order of the interpolating polynomial produces a

better match at the data points, while oscillating wildly in between points. This is known as

Runge’s Phenomenon. It is best illustrated through an example, shown in Figure 3.1.3, which

shows the results of polynomial interpolation of nine data points with polynomials of order one

through nine. Note that only odd polynomial orders were used, because for this particular

problem, the even power polynomial coefficients always evaluate to zero.

(a)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Desired Function and Training Points

 31

(b)

Figure 3.1.3: Runge's Phenomenon example. (a) Runge's Function and set of training points. (b)

Interpolating polynomials of increasing order. Notice that as the order increases, the polynomials

come closer to matching the training points, but have undesirable behavior in between.

As higher order polynomials are used to try and increase accuracy, the interpolating

polynomials start diverging more and more from the desired function.

It is clear that simple polynomials are not suitable to use on complex problems. However,

polynomials, especially of low order, have some desirable properties. For this reason, one of the

most popular modifications utilizes piecewise polynomial interpolation. In other words, rather

than attempt to define a single polynomial over an entire curve, a separate, low order polynomial

is obtained for each segment. If certain continuity conditions are imposed when deriving the

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

Interpolating Polynomials and Training Points

Training Points
Polynomial of degree 1

Polynomial of degree 3

Polynomial of degree 5

Polynomial of degree 7
Polynomial of degree 9

 32

individual segments, the result is known as a spline. If each segment is a third order polynomial,

then this is known as a cubic spline.

3.2 Cubic Spline Review

Cubic splines have been in use for decades due to their simplicity and performance. The term

spline derives from a thin, flexible strip of metal used by drafters to draw smooth curves. The

spline would be bent around anchor points, forcing it into the desired shape. Similarly,

mathematical splines can be thought of as having control points which constrain their behavior.

Splines are a special type of piecewise polynomial function. Piecewise polynomials avoid the

issues of defining a single polynomial for an entire curve by finding a different polynomial for

each segment (i.e. between each pair of data points). There are several benefits to this approach.

First, because each polynomial segment only has to perform well between two points, much

lower order polynomials can be used, which avoid the oscillation problem. Second, computation

time is saved by not having to evaluate high order polynomial terms. However, directly using

piecewise polynomials can result in undesirable behavior with rapidly changing functions, as

shown in Figure 3.2.1, in which a cubic piecewise polynomial interpolates some data. The

piecewise interpolant performs much better than simple polynomial interpolation, but the quality

of the curve suffers at the data points, as one cubic segment transitions to another.

 33

Figure 3.2.1: A piecewise cubic interpolant.

Although the interpolant is continuous, it is not differentiable at the data points because the

derivative of the interpolant is not continuous. As a consequence, the curve lacks smoothness,

which is displeasing visually, and cannot be numerically differentiated, which is problematic for

analysis. This is what separates splines from piecewise polynomials. The difference can be

observed by comparing Figure 3.2.1 with Figure 3.2.2. The spline curve is much smoother, with

gradual transitions at the boundary points.

0 2 4 6 8 10 12
0

2

4

6

8

10

x

Piecewise Cubic Interpolant

 34

Figure 3.2.2: Cubic spline interpolant

Simply put, splines are piecewise polynomials that have constraints placed on their

derivatives. Although any order of polynomial can be used, third order, or cubic, splines are by

far the most common. Cubic polynomials are of a high enough order that they can match most

nonlinearities over a short domain, and low order enough that they are generally well behaved.

Cubic splines posses ܥଶ continuity, which means that both the first and second derivatives are

continuous. Cubic spline interpolation can be extended to multiple dimensions though the use of

tensor products [46], however, the cost associated with solving for the coefficients increases

rapidly as the number of dimensions and data points increase.

0 2 4 6 8 10 12

1

2

3

4

5

6

7

8

9

10

x

Cubic Spline Interpolant

 35

3.2.1 Cubic Spline Derivation

The process for solving for the coefficients of the spline segments is a little more involved

than with polynomial interpolation. If there are ܰ ൅ 1 data points, then there are ܰ segments, so

the overall spline can be represented as the piecewise function (3.2-38).

ܵሺݔሻ ൌ

ە
ۖ
۔

ۖ
ۓ
ሻݔଵሺݏ ଵݔ ൑ ݔ ൑ ଶݔ
ሻݔଶሺݏ ଷݔ ൑ ݔ ൑ ସݔ
⋮ ⋮

ሻݔ௜ሺݏ ௜ݔ ൑ ݔ ൑ ௜ାଵݔ
⋮ ⋮

ሻݔேሺݏ ேݔ ൑ ݔ ൑ ேାଵۙݔ
ۖ
ۘ

ۖ
ۗ

(3.2-38)

Each segment ݏ௜ሺݔሻ is a third order polynomial with the form of (3.2-39).

ሻݔ௜ሺݏ ൌ ܽ௜ ൅ ܾ௜ሺݔ െ ௜ሻݔ ൅ ܿ௜ሺݔ െ ௜ሻଶݔ ൅ ݀௜ሺݔ െ ௜ሻଷ (3.2-39)ݔ

For convenience, we will define ݄௜ ൌ ሺݔ െ ௜ሻ, so (3.2-39) becomes (3.2-40). Figure 3.2.3ݔ

gives a visual representation of the notation used in this derivation.

ሻݔ௜ሺݏ ൌ ܽ௜ ൅ ܾ௜݄௜ ൅ ܿ௜݄௜
ଶ ൅ ݀௜݄௜

ଷ (3.2-40)

It is also useful to define here the form of the first and second derivatives of (3.2-40).

ሻݔ௜′ሺݏ ൌ ܾ௜ ൅ 2ܿ௜݄௜ ൅ 3݀௜݄௜
ଶ (3.2-41)

ሻݔ௜″ሺݏ ൌ 2ܿ௜ ൅ 6݀௜݄௜ (3.2-42)

As stated earlier, ܰ ൅ 1 data points gives ܰ spline segments, each of which has four

unknown coefficients ሼܽ௜, ܾ௜, ܿ௜, ݀௜ሽ, which makes a total of 4ܰ unknowns. The notation used in

this section can also be seen in Figure 3.2.3.

 36

   ii
ii

i xs
x

xs
m ''

2

2







Figure 3.2.3: Illustration of notation.

In order to solve for the 4ܰ unknowns, 4ܰ equations are needed. To obtain the equations, we

will impose the constraints of cubic splines. The first condition is that the spline must pass

through every data point. This is also called the interpolation condition (3.2-43).

ܵሺݔ௜ሻ ൌ ൜
௜ሻݔ௜ሺݏ ൌ ௜ݕ , ݅ ∈ ሾ1, ܰሿ

ேାଵሻݔேሺݏ ൌ ேାଵݕ , ݅ ൌ ܰ ൅ 1
ൠ (3.2-43)

The second condition is the continuity condition (3.2-44), which forces the left and right

hand spline segments to be equal at the data points.

௜ାଵሻݔ௜ሺݏ ൌ ௜ାଵሻݔ௜ାଵሺݏ ݅ ∈ ሾ1, ܰ െ 1ሿ (3.2-44)

The last two conditions (3.2-45) (3.2-46) enforce the continuity of the first and second

derivatives at the junctions.

௜ାଵሻݔ௜′ሺݏ ൌ ௜ାଵሻݔ௜ାଵ′ሺݏ ݅ ∈ ሾ1, ܰ െ 1ሿ (3.2-45)

௜ାଵሻݔ௜″ሺݏ ൌ ௜ାଵሻݔ௜ାଵ″ሺݏ ݅ ∈ ሾ1, ܰ െ 1ሿ (3.2-46)

With the conditions established, it is time to derive equations for the unknowns. First, by

substituting (3.2-40) into (3.2-43) and (3.2-44) we obtain (3.2-47) and (3.2-48), respectively.

௜ሻݔ௜ሺݏ ൌ ܽ௜ ൌ ௜ (3.2-47)ݕ

௜ାଵሻݔ௜ሺݏ ൌ ௜ାଵݕ ൌ ܽ௜ ൅ ܾ௜݄௜ ൅ ܿ௜݄௜
ଶ ൅ ݀௜݄௜

ଷ (3.2-48)

Similarly, using (3.2-41) and (3.2-42) with (3.2-45) and (3.2-46) yields (3.2-49) and (3.2-50).

 37

௜ାଵሻݔ௜′ሺݏ ൌ ܾ௜ ൅ 2ܿ௜݄௜ ൅ 3݀௜݄௜
ଶ ൌ ܾ௜ାଵ (3.2-49)

௜ାଵሻݔ௜″ሺݏ ൌ 2ܿ௜ ൅ 6݀௜݄௜ ൌ 2ܿ௜ାଵ (3.2-50)

Although (3.2-47), (3.2-48), (3.2-49), and (3.2-50) define a system of equations that can be

used to solve for the spline coefficients, the computation can be greatly simplified by evaluating

(3.2-42) at ݔ ൌ ௜. Recall that we defined ݄௜ݔ ൌ ݔ െ ݔ ௜, so by settingݔ ൌ ௜, then ݄௜ݔ ൌ 0 and

(3.2-42) simplifies to (3.2-51).

௜ሻݔ௜″ሺݏ ൌ 2ܿ௜ (3.2-51)

For additional convenience, we will define a new variable ݉௜ (3.2-52) to be the second

derivative of the curve.

݉௜ ൌ ௜ሻ (3.2-52)ݔ௜″ሺݏ

Now we can derive expressions for each coefficient in terms of ݉௜ and ݕ௜. From (3.2-47) we

already have an expression for ܽ௜, rewritten here as (3.2-53)

ܽ௜ ൌ ௜ (3.2-53)ݕ

We can also immediately obtain the function for ܿ௜, using (3.2-51) and (3.2-52) to produce

(3.2-54).

ܿ௜ ൌ
݉௜

2
 (3.2-54)

Next, by substituting (3.2-54) into (3.2-50), we get (3.2-55)

2 ቀ
݉௜

2
ቁ ൅ 6݀௜݄௜ ൌ 2 ቀ

݉௜ାଵ

2
ቁ (3.2-55)

Which simplifies to (3.2-56)

݀௜ ൌ ൬
݉௜ାଵ െ ݉௜

6݄௜
൰ (3.2-56)

 38

The last coefficient is ܾ௜, whose expression can be found using the values for ܽ௜, ܿ௜, and ݀௜,

(3.2-53), (3.2-54), and (3.2-56), respectively, in (3.2-48), giving (3.2-57), which finally

simplifies down to (3.2-58).

௜ାଵݕ ൌ ௜ݕ ൅ ܾ௜݄௜ ൅ ቀ
݉௜

2
ቁ ݄௜

ଶ ൅ ൬
݉௜ାଵ െ ݉௜

6݄௜
൰ ݄௜

ଷ (3.2-57)

ܾ௜ ൌ
௜ାଵݕ െ ௜ݕ

݄௜
െ
݄௜
6
ሺ݉௜ାଵ െ ݉௜ሻ െ

݄௜
2
݉௜

(3.2-58)

With equations for the four coefficients in terms of ݉௜, we now just have to set up a system

of equations to solve for ݉, and can easily calculate the values for the coefficients of every

spline segment. Fortunately, we have one last equation to use. If we replace ܾ௜, ܿ௜, and ݀௜ with

(3.2-54), (3.2-56), (3.2-58) in (3.2-49) (and perform a rather tedious amount of simplification

which has been omitted here), we can obtain (3.2-59), which can be used to populate the system

of equations in (3.2-60).

݄௜݉௜ ൅ 2ሺ݄௜ ൅ ݄௜ାଵሻ݉௜ାଵ ൅ ݄௜ାଵ݉௜ାଶ ൌ 6 ൤
௜ାଶݕ െ ௜ାଵݕ

݄௜ାଵ
െ
௜ାଵݕ െ ௜ݕ

݄௜
൨ (3.2-59)

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
2ሺ݄ଵ		ଵ݄ۍ ൅ ݄ଶሻ		݄ଶ 	 							⋯ 															 0

⋮ 				 ݄ଶ		2ሺ݄ଶ ൅ ݄ଷሻ		݄ଷ 			⋯ 																								 ⋮

																																⋱
0																⋯ 	݄ேିଵ		2ሺ݄ேିଵ ൅ ݄ேሻ		݄ே

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ଶ݉ۍ

݉ଷ

⋮
݉ே

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ 6 ൤

3ݕ െ 2ݕ
݄2

െ
2ݕ െ 1ݕ
݄1

൨

6 ൤
3ݕ െ 2ݕ
݄2

െ
2ݕ െ 1ݕ
݄1

൨

⋮

6 ൤
൅1ܰݕ െ ܰݕ

݄ܰ
െ
ܰݕ െ െ1ܰݕ
݄ܰെ1

൨
ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

(3.2-60)

Sharp-eyed readers will note that this system of equations is missing values for

݉ଵܽ݊݀	݉ேାଵ, or in other words has two fewer rows than columns. The reason for this becomes

obvious when examining (3.2-59). Solving for the value of ݉௜ (recall, this is the second

derivative of a spline segment) requires the values for ݉ in the adjacent segments, which in turn

rely on the second derivative values of their neighbors. In this fashion, the segments are

interlocking, and finding a particular value requires solving the entire curve. At the limits, ݅ ൌ 1

 39

and ݅ ൌ ܰ ൅ 1, the adjacent values of ݉ depend on data that does not exist. Therefore, it is

necessary to impose end conditions.

3.2.2 End Conditions

The end condition choice will impact the performance of the spline curve most strongly at

the boundaries. The simplest and perhaps most obvious option is called a natural or free spline,

in which the first and last second derivative values are set to zero (3.2-61).

ଵݏ
ᇳሺݔሻ ൌ ேݏ

ᇳሺݔሻ ൌ 0 (3.2-61)

Obviously, this boundary condition assumes that the second derivative at node ݔଵ and ݔேାଵ

equals zero, and will obviously not perform well when the second derivative has a large

magnitude.

For periodic functions, it makes sense to match the curves on the left and right hand

boundaries, giving rise to the periodic end condition (3.2-62) and (3.2-63).

ଵݏ
ᇳሺݔሻ ൌ ேݏ

ᇳሺݔሻ (3.2-62)

ଵݏ
ᇱሺݔሻ ൌ ேݏ

ᇱ ሺݔሻ (3.2-63)

The last frequently used end condition we will look at forces the third derivative to be

continuous across the first and second segments (3.2-64), and across the second to last and last

segments (3.2-65).

ଵݏ
ᇵሺݔଶሻ ൌ ଶݏ

ᇵሺݔଶሻ (3.2-64)

ேିଵݏ
ᇵ ሺݔேሻ ൌ ேݏ

ᇵሺݔேሻ (3.2-65)

There is no end condition that will be the best choice in all cases. This is because the problem

boils down to extrapolation, a fundamentally hard problem.

 40

3.2.3 Cubic Spline Problems

Cubic splines work well, but have several deficiencies. The solution of a spline surface is

global. That is, in order to approximate the value of a single point, the coefficients for the entire

curve must be calculated. This can get computationally expensive for large numbers of data

points, and in high dimensions. It is also problematic if the training points change, perhaps as

new data becomes available.

3.3 Nearest Neighbor Spline Approximation

Nearest Neighbor Spline Approximation [47] (NNSA) is an algorithm that attempts to

emulate the desirable properties of cubic splines, such as curve smoothness and interpolation

ability, while only using local data. NNSA can also be thought of as a modified defuzzification

algorithm of a TSK Fuzzy System. The following sections will describe a one dimensional TSK

system, show how this can be enhanced with NNSA defuzzification, and finally examine how

this technique can be extended to higher dimensions.

 41

3.3.1 One Dimensional TSK

Let us consider a one dimensional case of a zero order TSK system with non-uniform

membership functions as shown in Figure 3.3.1.

Figure 3.3.1: Showing the non-uniform triangular membership functions ݉௑೔ for a single input x.

Note that only two membership functions ݉௑೔ and ݉௑೔శభare activated, and that their values sum

to 1.

For an input x, only two membership functions ݉௑೔ሺݔሻ and ݉௑೔శభሺݔሻ have nonzero values,

given by (3.3-66) and (3.3-67).

mଡ଼౟ሺxሻ ൌ
|x െ X୧|

h୧

(3.3-66)

mଡ଼౟శభሺxሻ ൌ
|x െ X୧ାଵ|

h୧ାଵ

(3.3-67)

Notice that since the sum of overlapping membership functions must membership functions must

equal one, (3.3-66) and (3.3-67) become (3.3-68) and (3.3-69).

 42

mଡ଼౟ሺxሻ ൅ mଡ଼౟శభሺxሻ ൌ 1 (3.3-68)

mଡ଼౟శభሺxሻ ൌ 1 െmଡ଼౟ሺxሻ (3.3-69)

If membership functions fulfill equations (3.3-66) to (3.3-69), then values of mଡ଼౟ can be also

used as “normalized” distances. This way, for approximation purposes, the non-uniform case is

simplified to a uniform one.

The commonly used defuzzification process for a zero-order TSK FS leads to the system

output of (3.3-70).

gሺxሻ ൌ
fሺX୧ሻmଡ଼౟ሺxሻ ൅ fሺX୧ାଵሻmଡ଼౟శభሺxሻ

mଡ଼౟ሺxሻ ൅ mଡ଼౟శభሺxሻ

(3.3-70)

Where ݂ሺ ௜ܺሻ and ݂ሺ ௜ܺାଵሻ are values associated with each membership function and

corresponding grid nodes. Because of (3.3-68) and (3.3-69), equation (3.3-70) can be simplified

to remove the division entirely, and a use a single multiplication in (3.3-72).

gሺxሻ ൌ fሺX୧ሻmଡ଼౟ሺxሻ ൅ fሺX୧ାଵሻmଡ଼౟శభሺxሻ (3.3-71)

gሺxሻ ൌ mଡ଼౟ሺxሻሾfሺX୧ሻ െ fሺX୧ାଵሻሿ ൅ fሺX୧ାଵሻ (3.3-72)

Notice that with this approach, the output value may be obtained using a defuzzification

process that, for a one dimensional case, uses one membership function ݉௑೔ሺݔሻ, and two

neighboring values ݂ሺ ௜ܺሻ and ݂ሺ ௜ܺାଵሻ.

3.3.2 One Dimensional NNSA

We will now describe the NNSA defuzzification process, and highlighting the similarities

and differences compared to the previous section.

 43

Figure 3.3.2: The NNSA algorithm constructs a third-order polynomial using the four nearest

node value and two slope values.

In Figure 3.3.2, the range between ௜ܺ and ௜ܺାଵ can be approximated by the third order

polynomial ݃ሺݔሻ:

gሺxሻ ൌ a ൅ b ൬
x െ X୧
h୧

൰ ൅ c୧ ൬
x െ X୧
h୧

൰
ଶ

൅ d୧ ൬
x െ X୧
h୧

൰
ଷ

(3.3-73)

Or, by using (3.3-66),

gሺxሻ ൌ a ൅ b	mଡ଼౟ሺxሻ ൅ c mଡ଼౟ሺxሻ
ଶ ൅ d mଡ଼౟ሺxሻ

ଷ (3.3-74)

The first derivative will also be needed:

gᇱሺxሻ ൌ b	 ൅ 2c mଡ଼౟ሺxሻ
ଶ ൅ 3d mଡ଼౟ሺxሻ

ଶ (3.3-75)

In order to solve for the four unknown coefficients, four constraints are necessary. The first

two constraints will be that the interpolating function ݃ሺݔሻ should pass through the values ݂ሺ ௜ܺሻ

and ݂ሺ ௜ܺାଵሻ. For the second two constraints, we will enforce that the derivative of the

interpolating function ݃′ሺݔሻ should match the derivative of the underlying function ݂′ሺݔሻ at ௜ܺ

 44

and ௜ܺାଵ. Finding values for the derivatives of the underlying function is addressed in Section

3.3.2.1.

By evaluating (3.3-74) and (3.3-75) at ௜ܺ and ௜ܺାଵ, we obtain (3.3-76), (3.3-77), (3.3-78),

and (3.3-79), which define a system of equations that can be solved for the coefficients.

gሺX୧ሻ ൌ fሺX୧ሻ ൌ a (3.3-76)

gᇱሺX୧ሻ ൌ f ᇱሺX୧ሻ ൌ b (3.3-77)

gሺX୧ାଵሻ ൌ fሺX୧ାଵሻ ൌ a ൅ b	mଡ଼౟ሺX୧ାଵሻ ൅ c mଡ଼౟ሺX୧ାଵሻ
ଶ ൅ d mଡ଼౟ሺX୧ାଵሻ

ଷ (3.3-78)

gᇱሺxሻ ൌ f ᇱሺX୧ାଵሻ ൌ b	 ൅ 2c mଡ଼౟ሺX୧ାଵሻ ൅ 3d mଡ଼౟ሺX୧ାଵሻ
ଶ (3.3-79)

The system can be solved analytically. Clearly, (3.3-76) and (3.3-77) give the first two

unknowns directly. Rearranging (3.3-79) to solve for ܿ gives (3.3-80).

ܿ ൌ
f ᇱሺX୧ାଵሻ െ b െ 3d mଡ଼౟ሺX୧ାଵሻ

ଶ

2 mଡ଼౟ሺX୧ାଵሻ

(3.3-80)

Replacing c in (3.3-78) and solving for d gives (3.3-81).

d ൌ
fሺX୧ାଵሻ െ a െ b mଡ଼౟ሺX୧ାଵሻ െ ܿ mଡ଼౟ሺX୧ାଵሻ

ଶ

mଡ଼౟ሺX୧ାଵሻ
ଷ

(3.3-81)

Substituting (3.3-66), (3.3-76) and (3.3-77) into (3.3-80) and (3.3-81) and simplifying yields

the final form of the expressions for the coefficients (3.3-82)-(3.3-85).

ܽ ൌ ݂ሺ ௜ܺሻ (3.3-82)

ܾ ൌ ݂ᇱሺ ௜ܺሻ (3.3-83)

ܿ ൌ
3൫݂ሺ ௜ܺାଵሻ െ ݂ሺ ௜ܺሻ൯

݄௜
ଶ െ

൫2݂ᇱሺ ௜ܺାଵሻ ൅ ݂ᇱሺ ௜ܺሻ൯
݄௜

(3.3-84)

݀ ൌ
൫݂ᇱሺ ௜ܺାଵሻ ൅ ݂ᇱሺ ௜ܺሻ൯

݄௜
ଶ െ

2൫݂ሺ ௜ܺାଵሻ െ ݂ሺ ௜ܺሻ൯
݄௜
ଷ

(3.3-85)

 45

With expressions for all four coefficients, values for the derivatives are needed before the

algorithm can be used.

3.3.2.1 Derivative Approximation
The above formulation requires values for the derivatives of the underlying function at the

points ௜ܺ and ௜ܺାଵ. In almost any real world example, the underlying function is either unknown,

or of sufficient complexity that computing the derivative directly is unfeasible. As a result, the

best solution is to approximate the derivative from the available data. The easiest and most

obvious solution is to use simple divided differences (3.3-86) and (3.3-87).

݂ᇱሺ ௜ܺሻ ൌ
݂ሺ ௜ܺାଵሻ െ ݂ሺ ௜ܺሻ

݄௜

(3.3-86)

݂ᇱሺݔ௜ାଵሻ ൌ
݂ሺ ௜ܺାଶሻ െ ݂ሺ ௜ܺାଵሻ

݄௜ାଵ

(3.3-87)

The quality of the curve will be dependent on the accuracy of the derivative approximations.

Inaccurate values will result in a curve with a discontinuous second derivative. This means that

single sided divided difference formulas will not suffice. Obtaining a more accurate derivative

requires using the Taylor Expansion (3.3-88) and some algebraic manipulation.

݂ሺݔሻ ൌ ෍
݂ሺ௡ሻሺܽሻ
݊!

ஶ

௡ୀ଴

∗ ሺݔ െ ܽሻ௡ ൌ ⋯

ൌ ݂ሺܽሻ ൅
݂ሺଵሻሺܽሻ

1!
∗ ሺݔ െ ܽሻଵ ൅

݂ሺଶሻሺܽሻ

2!
∗ ሺݔ െ ܽሻଶ ൅ ⋯

(3.3-88)

Setting ܽ ൌ .଴ yields (3.3-89)ݔ

݂ሺݔሻ ൌ ݂ሺݔ଴ሻ ൅ ݂ᇱሺݔ଴ሻ ∗ ሺݔ െ ଴ሻݔ ൅
݂ሺଶሻሺݔ଴ሻ

2
∗ ሺݔ െ ଴ሻଶݔ ൅ ⋯

(3.3-89)

Expressions for forward (3.3-90) and backward (3.3-91) differences can be obtained by

setting ݔ ൌ ଴ݔ ൅ ݄ and ݔ ൌ ଴ݔ െ ݄, respectively, and solving for ݂ᇱሺݔ଴ሻ

 46

݂ᇱሺݔ଴ሻ ൌ
݂ሺݔ଴ ൅ ݄ሻ െ ݂ሺݔ଴ሻ

݄
െ
݂ᇳሺݔ଴ሻ݄

2
െ
݂ᇵሺݔ଴ሻ݄ଶ

6
൅ ⋯

(3.3-90)

݂ᇱሺݔ଴ሻ ൌ
݂ሺݔ଴ሻ െ ݂ሺݔ଴ െ ݄ሻ

݄
൅
݂ᇳሺݔ଴ሻ݄

2
െ
݂ᇵሺݔ଴ሻ݄ଶ

6
൅ ⋯

(3.3-91)

The upper bound of the error of the single sided difference formulas is ܱሺ݄ሻ, caused by the

truncation of all the higher order terms. Adding (3.3-90) to (3.3-91) produces the centered

difference formula (3.3-92).

݂ᇱሺݔ଴ሻ ൌ
݂ሺݔ଴ ൅ ݄ሻ െ ݂ሺݔ଴ െ ݄ሻ

2݄
െ
݂ᇵሺݔ଴ሻ݄ଶ

6
െ
݂ସሺݔ଴ሻ݄ସ

120
൅

(3.3-92)

Which reduces the error from ܱሺ݄ሻ to ܱሺ݄ଶሻ by cancelling out the errors from the terms with

odd powers of ݄. Truncating the higher order terms and substituting ௜ܺ and ௜ܺାଵfor ݔ௢ (as well as

replacing ݄ with ݄௜ and ݄௜ାଵ) yields the needed derivative approximations (3.3-93) and (3.3-94).

݂ᇱሺ ௜ܺሻ ൌ
݂ሺ ௜ܺାଵሻ െ ݂ሺ ௜ܺିଵሻ

2݄௜

(3.3-93)

݂ᇱሺ ௜ܺାଵሻ ൌ
݂ሺ ௜ܺାଶሻ െ ݂ሺ ௜ܺሻ

2݄௜ାଵ

(3.3-94)

The above formulas assume that the data points are evenly spaced. Unevenly spaced points

complicate the derivation a bit, but (3.3-95) and (3.3-96) are the result.

݂ሺ ௜ܺሻ ൌ

݄௜
݄௜ିଵ

ሺ݂ሺ ௜ܺሻ െ ݂ሺ ௜ܺିଵሻ െ
݄௜ିଵ
݄௜

൫݂ሺ ௜ܺାଵሻ െ ݂ሺ ௜ܺሻ൯

݄௜ ൅ ݄௜ିଵ

(3.3-95)

݂ሺ ௜ܺାଵሻ ൌ

݄௜ାଵ
݄௜

൫݂ሺ ௜ܺାଵሻ െ ݂ሺ ௜ܺሻ൯ െ
݄௜
݄௜ାଵ

ሺ݂ሺ ௜ܺାଶሻ െ ݂ሺ ௜ܺାଵሻሻ

݄௜ାଵ ൅ ݄௜

(3.3-96)

These formulas provide an approximation of the actual derivative of the underlying function

at the specified points. The errors in the approximation can cause the resulting curve to have

small discontinuities in the second derivative, as shown in Figure 3.3.3.

 47

Figure 3.3.3: Comparing the continuity of various derivatives between global spline and NNSA.

The global values are from a global spline routine. The local left and right values are from the

NNSA algorithm on the left and right hand sides of each data point.

 The issue boils down to the fact that when using centered difference derivative

approximations, moving from one NNSA segment to the next brings in one new data point and

removes another. That means fully half of the data points are different, and the result is a

sometimes discontinuous second derivative. Higher order divided difference approximations

such as (3.3-97) that use more data points can help reduce the error, with the extreme case of

using all of the available data points.

݂ᇱሺݔ௜ሻ ൌ
െ݂ሺݔ௜ାଶሻ ൅ 8݂ሺݔ௜ାଵሻ െ 8݂ሺݔ௜ିଵሻ ൅ ݂ሺݔ௜ିଶሻ

12݄௜
െ ܱሺ݄ସሻ

(3.3-97)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Spline Values at Training Points

Desired Function

Local Left Values

Local Right Values

Global Values

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Local Spline First Derivative Values at Training Points

Global Values

Local Left Values

Local Right Values

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Local Spline Second Derivative Values at Training Points

Global Values

Local Left Values

Local Right Values

 48

However, increasing the number of points required for the algorithm increases the

computational overhead, and gets away from the localized solution that was the original goal. In

addition, using more points exacerbates the problems that must be dealt with at the edge of data

sets. For those reasons, centered divided difference derivative approximation will be sufficient.

Provided the four surrounding points are available, the equations for the coefficients in the

previous section and the formula for the derivative approximations above can be used to

approximate any arbitrary function. However, it should be apparent that problems appear at the

edges for the data set, and so special care must be taken.

3.3.2.2 Handling Edges
Evaluating (3.3-95) at ݅ ൌ 1 and (3.3-96) for ݅ ൌ ܰ reveals the problem with edge values, as

shown in (3.3-98) and (3.3-99).

݂ᇱሺ ଵܺሻ ൌ
݂ሺܺଶሻ െ ݂ሺܺିଵሻ

2݄ଵ

(3.3-98)

݂ᇱሺܺேାଵሻ ൌ
݂ሺܺேାଶሻ െ ݂ሺܺேሻ

2݄ேାଵ

(3.3-99)

Since the values at ݂ሺܺିଵሻ and ݂ሺܺேାଶሻ are unavailable, some method of obtaining

approximations of the derivatives is needed at the boundaries.

There are two obvious strategies for dealing with the edges. The first is to simply use first

order forward/backward approximations of the derivative at the boundaries, such as (3.3-86) and

(3.3-87). The benefit of this approach is simplicity, but forward and backward difference

approximations generate rather large errors, and must be generated on the fly. The second

solution is to use the available data points to extrapolate an additional “virtual” point on each

end. While this could also be done on the fly, it has the benefit of being easily accomplished as a

preprocessing step. The next issue is what extrapolation method to use.

 49

Given the limited number of data points available, and the nature of the NNSA algorithm,

some form of polynomial extrapolation seems appropriate. The NNSA algorithm only uses at

most four data points, so it makes sense to limit the highest order polynomial to a third order

polynomial. Furthermore, as discussed in section 3.1.2, using high degree polynomials can cause

wild behavior. A zero order polynomial is a constant, and would simply duplicate the points on

the boundaries, which will rarely give good results, so we will limit the discussion to polynomial

extrapolation with first, second, and third order polynomials. The benchmark function was an

exponentially decaying sinusoid described by (3.3-100) and shown in Figure 3.3.4(a).

݂ሺݔሻ ൌ 0.8 expሺെ0.2ݔሻ sinሺ10ݔሻ (3.3-100)

No matter what extrapolation method is used, the NNSA algorithm will produce identical

results for all but the first and last segments, indicated by the red boxes. For that reason, Figure

3.3.4(b) and Figure 3.3.4(c) show the results of applying NNSA for the first and last segments,

respectively.

 50

(a)

(b) (c)

Figure 3.3.4: Showing the benchmark function and results. (a) The function and data points, with

the first and last segments highlighted. (b) Resulting NNSA surface with different extrapolation

methods for the first interval. (c) Resulting NNSA surface with different extrapolation methods

for the last interval.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Desired Function and Data points

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
First Interval

Desired Function

NNSA with 1st Order
NNSA with 2nd Order

NNSA with 3rd Order

1.85 1.9 1.95 2
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Last Interval

Desired Function

NNSA with 1st Order
NNSA with 2nd Order

NNSA with 3rd Order

 51

 In the first segment, second order extrapolation appears to be closest to the desired curve,

while in the last segment the third order extrapolation performs the best. It is clear that the

behavior of the curve at the edge will determine which method gives the best results. By shifting

the start and stop values through one full period of the sinusoid and averaging the results for each

method, it was found that a third order extrapolation produced the lowest errors, and is therefore

the default extrapolation technique in the NNSA algorithm. As a final note, extrapolation is a

fundamentally hard problem. No single method will be optimal in every case, and the goal here

was to identify a method that would perform reasonably well.

3.3.3 Extension to Multiple Dimensions

The defuzzification described in section 3.3.1 can be extended for multiple dimensions. The

multidimensional case can be handled as multiple steps of the one dimensional case described by

the formulas (3.3-82)-(3.3-85), (3.3-93), and (3.3-94). In the two-dimensional example shown in

Figure 3.3.5, the point ሺݔ, ሻ is associated with two membership functions ݉௑೔,݉௑೔శభ in the xݕ

direction, and ݉௒ೕ,݉௒ೕశభ in the y direction.

 52

Figure 3.3.5: Demonstrating the defuzzification process in two dimensions. In this case, one-

dimensional defuzzification is performed in the ݔ direction in order to obtain the intermediate

points ݂ሺ ௝ܺሻ and ݂൫ ௝ܺାଵ൯. Defuzzification in the ݕ direction is then performed on the

intermediate points to obtain the final value.

With x and y as inputs, the output value is calculated as

݃ሺݔ, ሻݕ ൌ ݉௑೔ሺݔሻ݉௒ೕሺݕሻ݂൫ ௜ܺ, ௝ܻ൯ ൅ ݉௑೔శభሺݔሻ݉௒ೕሺݕሻ݂൫ ௜ܺାଵ, ௝ܻ൯

൅ ݉௑೔ሺݔሻ݉௒ೕశభሺݕሻ݂൫ ௜ܺ, ௝ܻାଵ൯ ൅ ݉௑೔శభሺݔሻ݉௒ೕశభሺݕሻ݂൫ ௜ܺାଵ, ௝ܻାଵ൯

(3.3-101)

 53

Because of (3.3-68), equation (3.3-101) can be rewritten as

݃ሺݔ, ሻݕ ൌ ݂൫ ௜ܺ, ௝ܻ൯ ቂ݉௑೔ሺݔሻ݉௒ೕሺݕሻቃ

൅ ݂൫ ௜ܺାଵ, ௝ܻ൯ ቂቀ1 െ ݉௑೔ሺݔሻቁ݉௒ೕሺݕሻቃ

൅ ݂൫ ௜ܺ, ௝ܻାଵ൯ ቂ݉௑೔ሺݔሻ ൬1 െ ݉௒ೕሺݕሻ൰ቃ

൅ ݂൫ ௜ܺାଵ, ௝ܻାଵ൯ ቂ݉௑೔షభሺݔሻ ൬1 െ ݉௒ೕሺݕሻ൰ቃ

(3.3-102)

Notice again that in the two dimensional case, the output value can be calculated as a

function of the four nearest grid point values and two membership functions ݉௑೔ሺݔሻ and ݉௒ೕሺݕሻ.

Let us first calculate the values of intermediate points ݂൫ ௝ܺ൯ and ݂൫ ௝ܺାଵ൯:

݂൫ ௝ܺ൯ ൌ ݂൫ ௜ܺ, ௝ܻ൯݉௑೔ሺݔሻ ൅ ݂൫ ௜ܺାଵ, ௝ܻ൯݉௑೔శభሺݔሻ

݂൫ ௝ܺାଵ൯ ൌ ݂൫ ௜ܺ, ௝ܻାଵ൯݉௑೔ሺݔሻ ൅ ݂൫ ௜ܺାଵ, ௝ܻାଵ൯݉௑೔శభሺݔሻ

(3.3-103)

݂൫ ௝ܺ൯ ൌ ݂൫ ௜ܺ, ௝ܻ൯݉௑೔ሺݔሻ ൅ ݂൫ ௜ܺାଵ, ௝ܻ൯ ቀ1 െ ݉௑೔ሺݔሻቁ

݂൫ ௝ܺାଵ൯ ൌ ݂൫ ௜ܺ, ௝ܻାଵ൯݉௑೔ሺݔሻ ൅ ݂൫ ௜ܺାଵ, ௝ܻାଵ൯ ቀ1 െ ݉௑೔ሺݔሻቁ

(3.3-104)

Then the output value at (x,y) can be calculated as:

݃ሺݔ, ሻݕ ൌ ݂൫ ௝ܺ൯݉௒ೕሺݕሻ ൅ ݂൫ ௝ܺାଵ൯ ൬1 െ ݉௒ೕሺݕሻ൰ (3.3-105)

Inserting (3.3-104) into (3.3-105) leads to the same formula (3.3-102). It is not important if

the first calculation is done in the x or in y direction. The formula will be the same and leads to

the well-known fuzzy product encoding formula (3.3-102).

The two-dimensional case described by (3.3-102), (3.3-103), (3.3-104), and (3.3-105) can be

extended to multidimensional cases, which can be simply computed as a series of one

dimensional calculations.

 54

In a very similar fashion, the NNSA algorithm can also be applied in higher dimensions. The

approach is illustrated in Figure 3.3.6 for the 2-dimensional case. Given function values at the

grid points, the following steps must be taken in order to calculate a single function value located

outside of the grid.

1. Find the intermediate y values along the all grid lines (red dash lines) in in the x direction

using values of function at a grid points and (3.3-74).

2. Once intermediate y values at the points where the dotted blue line crosses the grids are

known, the value at the desired point D can be approximated.

Figure 3.3.6: Illustration of the values that must be computed for the two dimensional NNSA1

algorithm.

 55

In the above example, computation was done first in the ݔ direction and then in the ݕ

direction. Of course, the process can be reversed—the ݕ direction is solved first, followed by the

 .direction—with similar results ݔ

This concept can be extended for multiple dimensions such that the dimensionality is reduced

one by one in subsequent steps. The algorithm for arbitrary dimension d is as follows:

1. Inputs

a. x∶ an array of length d which contains the location of the desired point

b. Xt∶ a matrix with ݊ௗ rows – where n is the number of training points per

dimension - and d +1 columns. The first d columns contain the input points,

while the last column holds the function value. Note that the points arranged

in a grid pattern.

c. npoints∶ the number of points required per dimension. For NNSA this is 4.

2. For i = d down to 1

a. b=݊ݏݐ݊݅݋݌௜ିଵ

b. Out=array of length b

c. For j = 1 to b

i. For k=1 to npoints

1. Xa(k)=Xt(j+(k-1)*b,i)

2. Ya(k)=Xt(j+(k-1)*b,i+1)

ii. end

d. Calculate Out(j) using (3.3-74).

e. end

3. Xt=[Xt(1 to b,1 to i-1), out]

 56

4. end

5. After the loop exits, Xt will contain a single value that is the approximated value at

location x.

3.3.4 Comments

The proposed algorithm requires exactly the same parameters as the zero-order TSK with

triangular membership functions and node values. Only the defuzzification process is different,

as given by equations (3.3-82)–(3.3-85).

The name Nearest Neighbor Spline Approximation is adopted because only the nearest four

neighbors are needed in the calculation process. The only difference between zero-order TSK

and NNSA is that in TSK, only the two nearest node values are required, while NNSA uses the

nearest four. As a consequence, any algorithm which has already been developed to tune or train

TSK system can also be applied to train or tune the NNSA system, because exactly the same

parameters are adjusted in both systems.

Chapter 4 Experimental Results

For comparison, the proposed algorithm was tested on a variety of problems against popular

machine learning and approximation techniques ANN (MLP trained with EBP), ANN (FCC

trained with NBN), ELM, SVM, ANFIS, TSK FS, and Global Spline. For the algorithms that

required user parameters, a search was performed to find the parameters that minimized the

testing error. For example: size and starting weights for the ANNs, the input weight and bias

range for ELM; the cost constant, C, size of epsilon insensitive tube, ε, and radius of the RBF

kernel, γ for SVR, and the number of input membership functions for ANFIS. All experiments

were performed using MATLAB, running on a Windows machine with an Intel i5-2300

operating at 2.80 GHz and 8GB of RAM.

 57

4.1 Peaks Problem

Various learning algorithms were tested on a highly nonlinear peaks benchmark problem

described by (4.1-106) and shown in Figure 4.1.1.

,ݔሺݖ ሻݕ ൌ െ
1
30

expሺെ1 െ 6x െ 9xଶ െ 9yଶሻ

െ ሺ0.6x െ 27xଷ െ 243yହሻ expሺെ9xଶ െ 9yଶሻ

൅ ሺ0.3 െ 1.8x ൅ 2.7xଶሻ expሺെ1 െ 6y െ 9xଶ െ 9yଶሻ

(4.1-106)

Figure 4.1.1: Peaks benchmark surface plot.

For the benchmark trials, 2000 random patterns were generated for training, and a separate

set of 1000 random patterns was used for testing. For the algorithms that require node values on

a regular grid, an 8x8 grid was approximated from the random training data. The time required to

create the grid was counted as the “training” time for the TSKFS, SPLINE, and NNSA

algorithms. For the algorithms that have randomized starting conditions, ten trials were run, and

-1
0

1

-1
0

1

0.5

1

Desired

 58

the best results were used. For the algorithms that require user set parameters, the following

settings were used:

ANN-MLP: 40 hidden neurons.

ANN-FCC: 10 hidden neurons.

ELM: 60 RBF units.

SVR: ߛ ൌ ܥ ,3 ൌ 10

ANFIS: 3 generalized bell membership functions per input dimension.

The training set was supplied to each of the described algorithms, and the test set applied

after training. Figure 4.1.2 shows the surface produced by each algorithm, and the results are

summarized in Table IV in terms of error and execution time for both training and testing.

(a) (b)
-1

0
1

-1
0

1
0.2

0.4
0.6
0.8

MLP RMSE: 0.040072

-1
0

1

-1
0

1
0.2

0.4

0.6

0.8

FCC RMSE: 0.035098

-1
0

1

-1
0

1
0.2
0.4
0.6
0.8

SVM RMSE: 0.031475

-1
0

1

-1
0

1
0.2

0.4

0.6

0.8

ELM RMSE: 0.030587

 59

(c) (d)

(e) (f)

(g) (h)

Figure 4.1.2: Surface plots for peaks benchmark for (a) ANN-MLP (b) ANN- FCC (c) SVM (d)

ELM (e) ANFIS (f) TSK FS (g) Global Spline (h) NNSA.

Table IV: Results for peaks benchmark in terms of Training and Testing errors (RMSE),

Training and Testing Times (s), and the number nodes/neurons.

Algorithm
Training
RMSE

Testing
RMSE

Training
Time (s)

Testing
Time(s)

nn

ANN-MLP 0.0381 0.0401 7.0832 0.0238 40
ANN-FCC 0.0329 0.0351 13.2805 0.0569 10

SVM 0.0311 0.0315 39.6671 0.0973 79
ELM 0.0301 0.0306 7.0258 0.0907 60

ANFIS 0.0238 0.0280 0.4186 0.0811 6

-1
0

1

-1
0

1
0.2

0.4
0.6
0.8

ANFIS RMSE: 0.027972

-1
0

1

-1
0

1

0.4

0.6

0.8

TSK RMSE: 0.034534

-1
0

1

-1
0

1
0.2

0.4

0.6

0.8

SPLINE RMSE: 0.021796

-1
0

1

-1
0

1

0.4

0.6

0.8

NNSA RMSE: 0.026692

 60

TSK 0.0369 0.0345 0.0105 0.0881 16
SPLINE 0.0369 0.0218 0.0105 0.4909 16
NNSA 0.0286 0.0267 0.0105 0.4531 16

As one can see from Table IV, traditional MLP neural networks trained with EBP require a

very large number of nodes to train, and the errors obtained are still larger than in other methods.

Better results can be obtained with SVM, but the training is very time consuming—especially if

optimal training parameters must be found using the grid search method. On the other hand,

ELM needs a large number of RBF units, but the number of trainable parameters is still smaller

than in the case of ANN. The ANFIS algorithm produces very good results with a very short

training time. The TSK fuzzy system is very competitive with the methods that required training.

The only disadvantage of the TSK system is that the output surface is rawer than that obtained

with the learning methods. Global Spine and NNSA produced the lowest and second lowest

testing errors, respectively.

4.2 Forward Kinematics

Control of robotics and motors is a commonly-used benchmark for approximation methods.

The forward kinematics problem is useful in robotics and computer animation. Presented here is

forward 2D kinematics problem in which the position of a manipulator, such as a robot arm or

animated wire frame, must be found given the lengths and angles between the links. Shown in

Figure 4.2.1, the desired X and Y position of the arm is given as an input, and the angles alpha

and beta must be calculated to move the manipulator to the specified XY coordinate.

 61

Figure 4.2.1: A two link manipulator with lengths R1 and R2, and angles alpha and beta.

This system is governed by the forward kinematic equations (4.2-107) and (4.2-108).

ݔ ൌ ሻߙሺݏ݋ܿ	1ܴ ൅ ߙሺݏ݋2ܴܿ ൅ ሻ (4.2-107)ߚ

ݕ ൌ ሻߙሺ݊݅ݏ	1ܴ ൅ ߙሺ݊݅ݏ2ܴ ൅ ሻ (4.2-108)ߚ

The control surfaces for both X and Y are shown in Figure 4.2.2. For this work, the lengths

R1 and R2 are normalized to be 1 and 1 respectively. For the experiments performed, a uniform

grid of size 8x8 with was used for training. A separate set of 900 data points were used for

testing. All inputs and outputs were normalized to [-1,+1].

 62

(b) (c)

Figure 4.2.2: Output surface for the (a) X-position and (b) Y-position.

For the algorithms that require user set parameters, the following settings were used:

ANN-MLP: 10 hidden neurons.

ANN-FCC: 8 hidden neurons.

ELM: 60 RBF units.

SVR: ߛ ൌ ܥ ,1 ൌ 64

ANFIS: 4 generalized bell membership functions per input dimension.

The results for the X-position can be seen in Table V, and the Y-position in Table VI.

Table V: Results for Forward Kinematics problem X position in terms of Training and Testing

errors (RMSE), Training and Testing Times (s), and the number nodes/neurons.

Algorithm
Training
RMSE

Testing
RMSE

Training
Time (s)

Testing
Time(s)

Nodes

ANN-MLP 0.1443 0.0888 13.7827 0.0214 10
ANN-FCC 0.0688 0.0533 1.7226 0.0570 8

SVM 0.0723 0.0376 0.0482 0.0014 53
ELM 0.0104 0.0277 0.4012 0.0876 60

ANFIS 0.0896 0.0721 0.1239 0.0846 16
TSK 0.0000 0.0352 0.0000 0.0046 64

-1
0

1 -1
0

1
-1

0

1



X-position vs  and 



-1 -0.5 0 0.5 1 -1

0

1

-1

0

1




Y-position vs  and 

 63

SPLINE 0.0000 0.0319 0.0000 1.6829 64
NNSA 0.0000 0.0239 0.0000 0.3481 64

Table VI: Results for Forward Kinematics problem Y position in terms of Training and Testing

errors (RMSE), Training and Testing Times (s), and the number nodes/neurons.

Algorithm
Training
RMSE

Testing
RMSE

Training
Time (s)

Testing
Time(s)

Nodes

ANN-MLP 0.0980 0.0740 12.7502 0.0210 20
ANN-FCC 0.0765 0.0486 2.0770 0.1326 8

SVM 0.0585 0.0332 0.0315 0.0012 43
ELM 0.0092 0.0155 0.4696 0.1086 60

ANFIS 0.0329 0.0453 0.1021 0.0658 16
TSK 0.0000 0.0431 0.0000 0.0046 64

SPLINE 0.0000 0.0198 0.0000 1.6863 64
NNSA 0.0000 0.0127 0.0000 0.3525 64

Again, we can see that the neural networks require a lengthy training process, and the SVM,

ELM, and ANFIS are much faster. TSK, SPLINE, and NNSA do not require training, although

NNSA and SPLINE require a relatively lengthy testing time. The MLP network has the poorest

performance, both in training time and testing error. For both X and Y outputs, NNSA performs

very well, producing the lowest testing error of any algorithm. In contrast, the TSK FS has a

higher testing error, but it also has the lowest execution time.

4.3 Multidimensional Schwefel Function

The Schwefel [48] function is highly complex nonlinear benchmark function, and can be

extended to arbitrary dimensions. For the purposes of this research, the Schwefel function was

modified so that the sine function is used instead of cosine, a parameter called alpha to control

nonlinearity was added, and inputs and outputs were normalized to the range (-1,1). The function

is described by (4.3-109).

ݕ ൌ෍െݔ௜ ∗ ߙ ∗ sin ቀඥ|ݔ௜ ∗ ቁ|ߙ

ௗ

௜ୀଵ

(4.3-109)

 64

Note that ݔ is a vector of length ݀, and each element ݔ௜ corresponds to a different dimension.

The alpha parameter allows the shape of the resulting function to be changed, as shown in Figure

4.3.1.

Figure 4.3.1: Schwefel function with different alpha values for one dimensional cases for

different values of Alpha (Alpha = 10, Alpha = 20, Alpha = 30, Alpha = 50, Alpha = 100.)

The NNSA algorithm was compared to the same machine learning algorithms listed in the

previous section using the Schwefel function in multiple dimensions with several different

uniform training grid sizes. For each training grid size N, an N-1 grid of test points was

generated. The test point grid was offset from the training grid so that each test point resided in

the center of a hypercube defined by the closest training points. This meant that the test points

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Schwefel function in in 1-d with various alpha

 5
10
20
30
50
100

 65

were as far as possible from the available training points. The purpose of this was to test the

ability of the algorithms to generalize between the available data points.

The performance of the algorithms was evaluated by comparing the training and testing times

(Figure 4.3.2 and Figure 4.3.3), as well as the training and testing error (Figure 4.3.5 and Figure

4.3.6). Selected graphs have been included in this section for analysis of the data. For the full

listing, see Multidimensional Schwefel Data in Appendix 6.1.

(a) (b)

(c) (d)

2 3 4 5
10

-2

10
0

10
2

10
4

10
6 Train Time(s) alpha = 10

Dimensions

T
ra

in
 T

im
e(

s)

2 3 4 5
10

-2

10
0

10
2

10
4

10
6 Train Time(s) alpha = 20

Dimensions

T
ra

in
 T

im
e(

s)

2 3 4 5
10

-2

10
0

10
2

10
4

10
6 Train Time(s) alpha = 30

Dimensions

T
ra

in
 T

im
e(

s)

2 3 4
10

-2

10
0

10
2

10
4 Train Time(s) alpha = 50

Dimensions

T
ra

in
 T

im
e(

s)

 66

(e)

Figure 4.3.2: Semi-log plots showing training times for the algorithms tested as the number of

dimensions increased. (a) Alpha = 10 (b) Alpha = 20 (c) Alpha = 30 (d) Alpha = 50 (e) Alpha =

100.

(a) (b)

2 3 4
10

-2

10
0

10
2

10
4

10
6 Train Time(s) alpha = 100

Dimensions

T
ra

in
 T

im
e(

s)

2 3 4 5
10

-4

10
-2

10
0

10
2

10
4

Test Time(s) alpha = 10

Dimensions

T
es

t
T

im
e(

s)

2 3 4 5
10

-4

10
-2

10
0

10
2

10
4

Test Time(s) alpha = 20

Dimensions

T
es

t
T

im
e(

s)

 67

(c) (d)

(e)

Figure 4.3.3: Semi-log plots showing testing times for the algorithms tested as the number of

dimensions increased. (a) Alpha = 10 (b) Alpha = 20 (c) Alpha = 30 (d) Alpha = 50 (e) Alpha =

100.

2 3 4 5
10

-4

10
-2

10
0

10
2

10
4

Test Time(s) alpha = 30

Dimensions

T
es

t
T

im
e(

s)

2 3 4
10

-4

10
-2

10
0

10
2

10
4

Test Time(s) alpha = 50

Dimensions

T
es

t
T

im
e(

s)

2 3 4
10

-4

10
-2

10
0

10
2

10
4

Test Time(s) alpha = 100

Dimensions

T
es

t
T

im
e(

s)

 68

(a) (b)

(c) (d)

(e)

2 3 4 5
10

-4

10
-2

10
0

10
2

10
4

10
6

Total Time(s) alpha = 10

Dimensions

T
ot

al
 T

im
e(

s)

2 3 4 5
10

-4

10
-2

10
0

10
2

10
4

10
6

Total Time(s) alpha = 20

Dimensions

T
ot

al
 T

im
e(

s)

2 3 4 5
10

-4

10
-2

10
0

10
2

10
4

10
6

Total Time(s) alpha = 30

Dimensions

T
ot

al
 T

im
e(

s)

2 3 4
10

-4

10
-2

10
0

10
2

10
4

Total Time(s) alpha = 50

Dimensions

T
ot

al
 T

im
e(

s)

2 3 4
10

-4

10
-2

10
0

10
2

10
4

10
6

Total Time(s) alpha = 100

Dimensions

T
ot

al
 T

im
e(

s)

 69

Figure 4.3.4: Semi-log plots showing total times for the algorithms tested as the number of

dimensions increased. (a) Alpha = 10 (b) Alpha = 20 (c) Alpha = 30 (d) Alpha = 50 (e) Alpha =

100.

(a) (b)

(c) (d)

2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Train RMSE alpha = 10

Dimensions

T
ra

in
 R

M
S

E

2 3 4 5
0

0.05

0.1

0.15

0.2

0.25
Train RMSE alpha = 20

Dimensions

T
ra

in
 R

M
S

E

2 3 4 5
0

0.05

0.1

0.15

0.2

0.25
Train RMSE alpha = 30

Dimensions

T
ra

in
 R

M
S

E

2 3 4
0

0.05

0.1

0.15

0.2

0.25
Train RMSE alpha = 50

Dimensions

T
ra

in
 R

M
S

E

 70

(e)

Figure 4.3.5: Plots showing training errors for the algorithms tested as the number of dimensions

increased. (a) Alpha = 10 (b) Alpha = 20 (c) Alpha = 30 (d) Alpha = 50 (e) Alpha = 100.

(a) (b)

2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Train RMSE alpha = 100

Dimensions

T
ra

in
 R

M
S

E

2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Test RMSE alpha = 10

Dimensions

T
es

t
R

M
S

E

2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12
Test RMSE alpha = 20

Dimensions

T
es

t
R

M
S

E

 71

(c) (d)

(e)

Figure 4.3.6: Plots showing training errors for the algorithms tested as the number of dimensions

increased. (a) Alpha = 10 (b) Alpha = 20 (c) Alpha = 30 (d) Alpha = 50 (e) Alpha = 100.

The training and testing times can be seen in Figure 4.3.2 and Figure 4.3.3, respectively. The

SPLINE, TSKFS, and NNSA algorithms do not require training, and cannot be seen in Figure

4.3.2. The training times of all algorithms increase as the number of dimensions increases, which

makes sense seeing as the number of training points is growing exponentially with each

additional dimension. Note that the plots use a log scale on the Y-axis, so the linear appearance

of the trends is in fact exponential growth. Figure 4.3.2(a)–(c) are very similar because the same

number of points in each dimension were used. Figure 4.3.2(d) and (e) differ slightly as more

2 3 4 5
0

0.05

0.1

0.15

0.2

0.25
Test RMSE alpha = 30

Dimensions

T
es

t
R

M
S

E

2 3 4
0.02

0.04

0.06

0.08

0.1

0.12

0.14
Test RMSE alpha = 50

Dimensions

T
es

t
R

M
S

E

2 3 4
0

0.05

0.1

0.15

0.2
Test RMSE alpha = 100

Dimensions

T
es

t
R

M
S

E

 72

training points were generated to account for the increasing complexity of the function. As a

result, Figure 4.3.2(d) and (e) stop at the fourth dimension, as the simulations for the fifth

dimension required an infeasible amount of time to complete.

The testing times in Figure 4.3.3(a)–(e) also increase as the number of dimensions increase,

although the MLP network appears nearly constant. The only exception is ANFIS in Figure

4.3.3(a). The fact that this behavior does not repeat with any of the other values of alpha

indicates that this is an anomaly. It is clear that SPLINE performance suffers the most as the

number of dimensions increases, followed by NNSA and TSK. This is a result of the memory

and computation requirements of each algorithm that scale with the number of dimensions.

A fairer comparison of the algorithms can be seen in Figure 4.3.4(a)–(e), which shows the

total time as a sum of training and testing time for each algorithm. Several trends are apparent.

First, the total time for all algorithms increases exponentially (recall that the scale for the Y-axis

is semi-logarithmic) as the number of dimensions increases. The fastest algorithm appears to be

the TSKFS, which is a result of simplicity of the defuzzification process when compared with

NNSA. SVM performs the slowest, probably due to the necessity of searching for appropriate

parameters for each training set. Lastly, other than TSKFS, NNSA performs the fastest, although

it suffers as the number of dimensions increases.

The training errors of the tested algorithms can be seen in Figure 4.3.5(a)–(e). Training error

gives a measurement of how well an algorithm has matched the training data. The training error

of TSKFS, SPLINE, and NNSA are all zero, as they match the training points by design. For the

other algorithms, the training errors generally increase as the number of dimensions increase,

with the exception of SVM, with which training errors actually decrease. The errors also appear

 73

fairly consistent as alpha increases, with the MLP network and ELM performing the worst, FCC

and ANFIS in the middle, and SVM generally performing the best.

Perhaps the most important performance criterion is testing or validation error, shown in

Figure 4.3.6(a)–(e). This measures how an algorithm performs on data that was not used for

training. There are several interesting trends to notice. The errors for all the algorithms are fairly

close when there are only two input dimensions. The errors for MLP, FCC, and ELM generally

increase as the number of dimensions increases, especially compared to the other algorithms. In

every case, NNSA produces either the lowest, or close to the lowest errors.

Chapter 5 Conclusions

The power of modern computing has the potential to tackle engineering and scientific

problems that were infeasible only a few years ago. Even with this potential, some tasks are

simply too complex for traditional first principles analysis. Data driven machine learning

techniques represent a different paradigm for applying the capabilities of computers. By drawing

inspiration from the biological world, machine learning seeks to recreate the problem-solving

ability of living organisms. The varieties of ANN and FS all have advantages and drawbacks.

Questions such as network size, architecture, training algorithm, number, and type of

membership function, rule base, etc. can lead to frustration. The NNSA algorithm presented in

this work offers another tool for researchers to utilize.

The experimental results demonstrate the capabilities of NNSA when compared to other

machine leaning methods. It is clear that the performance of NNSA suffers as the number of

input dimensions grows. Further work remains to be done to make the algorithm viable in higher

dimensions. In addition, the grid-based nature of the algorithm makes it unsuitable for some

problems. However, the smoothness and accuracy of the NNSA algorithm is superior to

 74

traditional TSK FS, and of similar quality to ANN, even without optimization. The quality of the

output surfaces produced by NNSA approaches that of cubic splines, while avoiding the

computational cost associated with traditional splines, such as solving for the entire surface by

matrix inversion. The forward-only nature of the computation means that new training data can

be easily incorporated through the adjustment of the appropriate node values, thus avoiding the

computationally intensive retraining process required by learning systems. In theory, this also

allows NNSA to be tuned to produce more accurate results, as it is a simple matter to trace

inaccurate output values back to the associated node values, which can then be modified to

reduce the error.

 75

References

[1] K. Hornik, “Approximation Capabilities of Multilayer Feedforward Networks,” Neural
Netw, vol. 4, no. 2, pp. 251–257, Mar. 1991.

[2] B. Kosko, “Fuzzy systems as universal approximators,” IEEE Trans. Comput., vol. 43, no.
11, pp. 1329–1333, Nov. 1994.

[3] E. Kayacan, E. Kayacan, and M. A. Khanesar, “Identification of Nonlinear Dynamic
Systems Using Type-2 Fuzzy Neural Networks -A Novel Learning Algorithm and a
Comparative Study,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1716–1724, Mar. 2015.

[4] S. Simani, S. Farsoni, and P. Castaldi, “Fault Diagnosis of a Wind Turbine Benchmark via
Identified Fuzzy Models,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3775–3782, Jun.
2015.

[5] F. Lin, K. Lu, T. Ke, B. Yang, and Y. Chang, “Reactive Power Control of Three-Phase
Grid-Connected PV System during Grid Faults Using Takagi-Sugeno-Kang Probabilistic
Fuzzy Neural Network Control,” IEEE Trans. Ind. Electron., vol. PP, no. 99, pp. 1–1, 2015.

[6] J. Yu, P. Shi, W. Dong, and H. Yu, “Observer and Command Filter-based Adaptive Fuzzy
Output Feedback Control of Uncertain Nonlinear Systems,” IEEE Trans. Ind. Electron.,
vol. PP, no. 99, pp. 1–1, 2015.

[7] R. Wai, M. Chen, and Y. Liu, “Design of Adaptive Control and Fuzzy Neural Network
Control for Single-Stage Boost Inverter,” IEEE Trans. Ind. Electron., vol. PP, no. 99, pp.
1–1, 2015.

[8] C. Lin, Y. Chang, C. Hung, C. Tu, and C. Chuang, “Position Estimation and Smooth
Tracking with a Fuzzy Logic-Based Adaptive Strong Tracking Kalman Filter for Capacitive
Touch Panels,” IEEE Trans. Ind. Electron., vol. PP, no. 99, pp. 1–1, 2015.

[9] H. H. Choi, H. M. Yun, and Y. Kim, “Implementation of Evolutionary Fuzzy PID Speed
Controller for PM Synchronous Motor,” IEEE Trans. Ind. Inform., vol. 11, no. 2, pp. 540–
547, Apr. 2015.

[10] D. Q. Dang, Y. Choi, H. H. Choi, and J. Jung, “Experimental Validation of a Fuzzy
Adaptive Voltage Controller for Three-Phase PWM Inverter of a Standalone DG Unit,”
IEEE Trans. Ind. Inform., vol. 11, no. 3, pp. 632–641, Jun. 2015.

[11] Q. Jia, W. Chen, Y. Zhang, and H. Li, “Fault Reconstruction and Fault-Tolerant Control via
Learning Observers in Takagi-Sugeno Fuzzy Descriptor Systems With Time Delays,” IEEE
Trans. Ind. Electron., vol. 62, no. 6, pp. 3885–3895, Jun. 2015.

 76

[12] F. Luo et al., “Advanced Pattern Discovery-based Fuzzy Classification Method for Power
System Dynamic Security Assessment,” IEEE Trans. Ind. Inform., vol. 11, no. 2, pp. 416–
426, Apr. 2015.

[13] C.-F. Juang, Y.-H. Chen, and Y.-H. Jhan, “Wall-Following Control of a Hexapod Robot
Using a Data-Driven Fuzzy Controller Learned Through Differential Evolution,” IEEE
Trans. Ind. Electron., vol. 62, no. 1, pp. 611–619, Jan. 2015.

[14] Z. Li, C.-Y. Su, L. Wang, Z. Chen, and T. Chai, “Nonlinear Disturbance Observer-Based
Control Design for a Robotic Exoskeleton Incorporating Fuzzy Approximation,” IEEE
Trans. Ind. Electron., vol. 62, no. 9, pp. 5763–5775, Sep. 2015.

[15] T. Xie, H. Yu, J. Hewlett, P. Rozycki, and B. Wilamowski, “Fast and Efficient Second-
Order Method for Training Radial Basis Function Networks,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 23, no. 4, pp. 609–619, Apr. 2012.

[16] H. Yu, P. D. Reiner, T. Xie, T. Bartczak, and B. M. Wilamowski, “An Incremental Design
of Radial Basis Function Networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no.
10, pp. 1793–1803, Oct. 2014.

[17] B. M. Wilamowski, “Neural network architectures and learning algorithms,” IEEE Ind.
Electron. Mag., vol. 3, no. 4, pp. 56–63, Dec. 2009.

[18] D. Hunter, H. Yu, M. S. Pukish, J. Kolbusz, and B. M. Wilamowski, “Selection of Proper
Neural Network Sizes and Architectures-A Comparative Study,” IEEE Trans. Ind. Inform.,
vol. 8, no. 2, pp. 228–240, May 2012.

[19] B. M. Wilamowski and H. Yu, “Neural Network Learning Without Backpropagation,”
IEEE Trans. Neural Netw., vol. 21, no. 11, pp. 1793–1803, Nov. 2010.

[20] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling
and control,” IEEE Trans. Syst. Man Cybern., vol. SMC-15, no. 1, pp. 116–132, Jan. 1985.

[21] M. Sugeno and G. T. Kang, “Structure Identification of Fuzzy Model,” Fuzzy Sets Syst, vol.
28, no. 1, pp. 15–33, Oct. 1988.

[22] H. Ying, “General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are
universal approximators,” IEEE Trans. Fuzzy Syst., vol. 6, no. 4, pp. 582–587, Nov. 1998.

[23] J. Richardson, P. Reiner, and B. M. Wilamowski, “Cubic spline as an alternative to
methods of machine learning,” in 2015 IEEE 13th International Conference on Industrial
Informatics (INDIN), 2015, pp. 110–115.

[24] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” Bull. Math. Biophys., vol. 5, no. 4, pp. 115–133, Dec. 1943.

[25] J. J. Hopfield, “Neural networks and physical systems with emergent collective
computational abilities,” Proc. Natl. Acad. Sci., vol. 79, no. 8, pp. 2554–2558, Apr. 1982.

 77

[26] B. M. Wilamowski, H. Yu, and K. T. Chung, “Parity-N Problems as a Vehicle to Compare
Efficiency of Neural Network Architectures,” in Industrial Electronics Handbook, 2nd ed.,
vol. 5, CRC Press, pp. 10-1 to 10-2.

[27] T. Kohonen, “Self-organized formation of topologically correct feature maps,” Biol.
Cybern., vol. 43, no. 1, pp. 59–69, Jan. 1982.

[28] Werbos and P. J. (Paul John, “Beyond regression : new tools for prediction and analysis in
the behavioral sciences /,” ResearchGate, Jan. 1974.

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, Oct. 1986.

[30] C. T. Kim and J. J. Lee, “Training Two-Layered Feedforward Networks With Variable
Projection Method,” IEEE Trans. Neural Netw., vol. 19, no. 2, pp. 371–375, Feb. 2008.

[31] V. V. Phansalkar and P. S. Sastry, “Analysis of the back-propagation algorithm with
momentum,” IEEE Trans. Neural Netw., vol. 5, no. 3, pp. 505–506, May 1994.

[32] M. Riedmiller and H. Braun, “A direct adaptive method for faster backpropagation
learning: the RPROP algorithm,” in IEEE International Conference on Neural Networks,
1993, pp. 586–591 vol.1.

[33] K. Levenberg, “A method for the solution of certain non-linear problems in least squares,”
Q. Appl. Math., vol. 2, pp. 164–168, 1944.

[34] M. T. Hagan and M.-B. Menhaj, “Training feedforward networks with the Marquardt
algorithm,” IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 989–993, 1994.

[35] J. Moody and C. J. Darken, “Fast Learning in Networks of Locally-tuned Processing
Units,” Neural Comput, vol. 1, no. 2, pp. 281–294, Jun. 1989.

[36] G.-B. Huang, Z. Bai, L. L. C. Kasun, and C. M. Vong, “Local Receptive Fields Based
Extreme Learning Machine,” IEEE Comput. Intell. Mag., vol. 10, no. 2, pp. 18–29, May
2015.

[37] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory and
applications,” Neurocomputing, vol. 70, no. 1–3, pp. 489–501, Dec. 2006.

[38] S. Y. Wong, K. S. Yap, H. J. Yap, S. C. Tan, and S. W. Chang, “On Equivalence of FIS and
ELM for Interpretable Rule-Based Knowledge Representation,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 26, no. 7, pp. 1417–1430, Jul. 2015.

[39] V. N. Vapnik, “An overview of statistical learning theory,” IEEE Trans. Neural Netw., vol.
10, no. 5, pp. 988–999, Sep. 1999.

[40] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Stat. Comput., vol.
14, no. 3, pp. 199–222, Aug. 2004.

 78

[41] L. A. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338–353, Jun. 1965.

[42] E. H. Mamdani, “Application of Fuzzy Logic to Approximate Reasoning Using Linguistic
Synthesis,” IEEE Trans. Comput., vol. C-26, no. 12, pp. 1182–1191, Dec. 1977.

[43] J.-S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Trans. Syst.
Man Cybern., vol. 23, no. 3, pp. 665–685, May 1993.

[44] J.-S. R. Jang and C.-T. Sun, “Neuro-fuzzy modeling and control,” Proc. IEEE, vol. 83, no.
3, pp. 378–406, Mar. 1995.

[45] J.-S. R. Jang and C.-T. Sun, “Functional equivalence between radial basis function
networks and fuzzy inference systems,” IEEE Trans. Neural Netw., vol. 4, no. 1, pp. 156–
159, Jan. 1993.

[46] C. de Boor, “Efficient Computer Manipulation of Tensor Products,” ACM Trans Math
Softw, vol. 5, no. 2, pp. 173–182, Jun. 1979.

[47] J. Richardson, J. Korniak, P. D. Reiner, and B. M. Wilamowski, “Nearest-Neighbor Spline
Approximation (NNSA) Improvement to TSK Fuzzy Systems,” IEEE Trans. Ind. Inform.,
vol. 12, no. 1, pp. 169–178, Feb. 2016.

[48] H.-P. Schwefel, Numerical Optimization of Computer Models. New York, NY, USA: John
Wiley & Sons, Inc., 1981.

 79

Chapter 6 Appendices

6.1 Multidimensional Schwefel Data

Algorithm Dimension Alpha
Train Time

(s)
Test Time

(s)
Total Time

(s)
Train

RMSE
Test

RMSE Nodes
MLP 2 10 12.94021 0.017668 12.95788 0.121646 0.057196 15
FCC 2 10 1.277369 0.001482 1.278852 0.029302 0.022392 88
SVM 2 10 0.084975 0.000155 0.08513 0.197627 0.027843 26
ELM 2 10 0.297913 0.001967 0.29988 0.015431 0.025549 50

ANFIS 2 10 0.169048 0.135201 0.304249 0.02677 0.07732 9
TSK 2 10 0 0.001662 0.001662 0 0.049552 36

Spline 2 10 0 0.034441 0.034441 0 0.038061 64
NNSA 2 10 0 0.012179 0.012179 0 0.020946 64
MLP 2 20 9.533187 0.018249 9.551436 0.102822 0.052718 10
FCC 2 20 1.275765 0.001484 1.277249 0.009014 0.016296 88
SVM 2 20 0.085635 0.000172 0.085808 0.119255 0.022908 26
ELM 2 20 0.186096 0.001962 0.188058 0.010574 0.011705 50

ANFIS 2 20 0.014293 0.001537 0.01583 0.056705 0.093826 9
TSK 2 20 0 0.00107 0.00107 0 0.04136 36

Spline 2 20 0 0.034048 0.034048 0 0.021066 64
NNSA 2 20 0 0.00789 0.00789 0 0.025755 64
MLP 2 30 9.553677 0.017545 9.571222 0.117325 0.055211 15
FCC 2 30 1.282617 0.001323 1.28394 0.090229 0.047413 75
SVM 2 30 0.095954 0.000419 0.096373 0.06564 0.020103 50
ELM 2 30 0.183874 0.001968 0.185842 0.042202 0.080674 50

ANFIS 2 30 0.014358 0.001606 0.015964 0.092787 0.099857 9
TSK 2 30 0 0.001315 0.001315 0 0.093282 36

Spline 2 30 0 0.034027 0.034027 0 0.036846 64
NNSA 2 30 0 0.007869 0.007869 0 0.026711 64
MLP 2 50 9.866466 0.017431 9.883896 0.155482 0.054535 10
FCC 2 50 2.017227 0.00284 2.020067 0.10179 0.050774 88
SVM 2 50 0.466546 0.000331 0.466877 0.079549 0.022621 58
ELM 2 50 0.274767 0.004475 0.279242 0.039195 0.035099 60

ANFIS 2 50 0.020172 0.001613 0.021785 0.053061 0.070035 9
TSK 2 50 0 0.001529 0.001529 0 0.03492 64

Spline 2 50 0 0.097538 0.097538 0 0.023999 100
NNSA 2 50 0 0.018577 0.018577 0 0.02154 100
MLP 2 100 9.918065 0.018211 9.936276 0.13268 0.067406 15
FCC 2 100 2.861763 0.003218 2.864981 0.122154 0.053686 52
SVM 2 100 0.877246 0.000683 0.877929 0.07292 0.025967 80
ELM 2 100 0.379914 0.007136 0.38705 0.044361 0.038643 60

ANFIS 2 100 0.027089 0.001683 0.028772 0.103398 0.103106 9
TSK 2 100 0 0.001971 0.001971 0 0.044214 100

 80

Spline 2 100 0 0.195435 0.195435 0 0.029356 144
NNSA 2 100 0 0.037775 0.037775 0 0.027175 144
MLP 3 10 11.67602 0.017682 11.69371 0.223443 0.094427 15
FCC 3 10 10.43696 0.006565 10.44353 0.182259 0.056854 85
SVM 3 10 12.99226 0.003508 12.99577 0.221449 0.018689 220
ELM 3 10 1.28128 0.011016 1.292296 0.172382 0.050919 60

ANFIS 3 10 0.643649 0.002904 0.646553 0.063526 0.084563 27
TSK 3 10 0 0.00566 0.00566 0 0.049921 216

Spline 3 10 0 1.217751 1.217751 0 0.04016 512
NNSA 3 10 0 0.198288 0.198288 0 0.022087 512
MLP 3 20 11.6582 0.017831 11.67603 0.159723 0.093526 15
FCC 3 20 10.40526 0.007341 10.4126 0.073409 0.048747 99
SVM 3 20 6.064509 0.003309 6.067819 0.046382 0.033754 202
ELM 3 20 1.285099 0.011284 1.296383 0.140609 0.079254 60

ANFIS 3 20 0.640177 0.003091 0.643268 0.068292 0.087144 27
TSK 3 20 0 0.00554 0.00554 0 0.037631 216

Spline 3 20 0 1.176986 1.176986 0 0.02081 512
NNSA 3 20 0 0.196855 0.196855 0 0.02419 512
MLP 3 30 11.82266 0.018017 11.84067 0.202482 0.151629 25
FCC 3 30 10.53178 0.00722 10.539 0.132451 0.062261 99
SVM 3 30 4.939962 0.005136 4.945098 0.075979 0.022402 330
ELM 3 30 1.277036 0.011005 1.288041 0.193019 0.185437 60

ANFIS 3 30 0.647471 0.002924 0.650395 0.11093 0.091414 27
TSK 3 30 0 0.005423 0.005423 0 0.079976 216

Spline 3 30 0 1.180454 1.180454 0 0.032455 512
NNSA 3 30 0 0.197245 0.197245 0 0.022763 512
MLP 3 50 13.9658 0.018649 13.98444 0.218229 0.099286 25
FCC 3 50 20.35409 0.017786 20.37188 0.139455 0.070053 85
SVM 3 50 40.31731 0.016089 40.3334 0.056144 0.036059 500
ELM 3 50 2.476887 0.025589 2.502475 0.178807 0.071072 50

ANFIS 3 50 1.233366 0.00428 1.237646 0.079535 0.072193 27
TSK 3 50 0 0.056827 0.056827 0 0.034738 512

Spline 3 50 0 5.667674 5.667674 0 0.025043 1000
NNSA 3 50 0 0.834155 0.834155 0 0.022016 1000
MLP 3 100 17.28814 0.020393 17.30853 0.220541 0.146163 60
FCC 3 100 35.29679 0.037954 35.33474 0.179835 0.129798 85
SVM 3 100 187.8772 0.05173 187.9289 0.047501 0.030291 856
ELM 3 100 4.237248 0.064341 4.301589 0.199897 0.154177 60

ANFIS 3 100 2.114776 0.0065 2.121276 0.125058 0.113305 27
TSK 3 100 0 0.094961 0.094961 0 0.046213 1000

Spline 3 100 0 18.53888 18.53888 0 0.031442 1728
NNSA 3 100 0 2.701356 2.701356 0 0.028755 1728
MLP 4 10 28.35486 0.022919 28.37778 0.231954 0.135059 25

 81

FCC 4 10 85.23116 0.031815 85.26298 0.152566 0.063653 95
SVM 4 10 723.1443 0.2785 723.4228 0.175609 0.025627 2382
ELM 4 10 9.943142 0.055251 9.998393 0.211735 0.135045 60

ANFIS 4 10 66.04318 0.023018 66.0662 0.093438 0.088782 81
TSK 4 10 0 0.184057 0.184057 0 0.048957 1296

Spline 4 10 0 46.03165 46.03165 0 0.041206 4096
NNSA 4 10 0 6.033782 6.033782 0 0.022663 4096
MLP 4 20 28.31941 0.019033 28.33844 0.197213 0.113244 10
FCC 4 20 85.06787 0.034637 85.1025 0.11942 0.060266 110
SVM 4 20 402.6522 0.152874 402.805 0.042911 0.026338 1313
ELM 4 20 10.00417 0.009647 10.01382 0.218395 0.105801 10

ANFIS 4 20 68.40435 0.02277 68.42712 0.077212 0.081042 81
TSK 4 20 0 0.131341 0.131341 0 0.034564 1296

Spline 4 20 0 45.9078 45.9078 0 0.020877 4096
NNSA 4 20 0 6.032537 6.032537 0 0.023059 4096
MLP 4 30 28.29759 0.020012 28.3176 0.223361 0.190555 25
FCC 4 30 85.50003 0.030924 85.53096 0.181146 0.125596 95
SVM 4 30 352.0603 0.210318 352.2706 0.058419 0.033476 1814
ELM 4 30 9.949425 0.054983 10.00441 0.222647 0.177087 60

ANFIS 4 30 69.23301 0.022929 69.25594 0.116801 0.093651 81
TSK 4 30 0 0.131906 0.131906 0 0.071039 1296

Spline 4 30 0 46.05314 46.05314 0 0.029394 4096
NNSA 4 30 0 6.042726 6.042726 0 0.020083 4096
MLP 4 50 55.73015 0.022774 55.75293 0.220229 0.118194 15
FCC 4 50 208.4648 0.122344 208.5871 0.166434 0.077965 95
SVM 4 50 5389.336 1.107214 5390.443 0.039466 0.03439 3612
ELM 4 50 23.78374 0.211077 23.99482 0.215717 0.126312 60

ANFIS 4 50 161.5137 0.056375 161.5701 0.101769 0.07598 81
TSK 4 50 0 1.108912 1.108912 0 0.033772 4096

Spline 4 50 0 380.1863 380.1863 0 0.025567 10000
NNSA 4 50 0 49.33926 49.33926 0 0.02203 10000
MLP 4 100 105.3967 0.033225 105.4299 0.264329 0.18534 25
FCC 4 100 430.3563 0.357924 430.7142 0.238833 0.155644 110
SVM 4 100 47576 4.379837 47580.38 0.043271 0.029839 6504
ELM 4 100 48.59702 0.563259 49.16028 0.24534 0.173948 60

ANFIS 4 100 331.3938 0.122643 331.5165 0.149129 0.124757 81
TSK 4 100 0 8.733116 8.733116 0 0.046541 10000

Spline 4 100 0 1940.6 1940.6 0 0.03247 20736
NNSA 4 100 0 267.5006 267.5006 0 0.029341 20736
MLP 5 10 164.608 0.040163 164.6481 0.256136 0.180209 25
FCC 5 10 701.3773 0.159256 701.5365 0.166944 0.073857 105
SVM 5 10 93743.83 20.17087 93764 0.158525 0.032145 20242
ELM 5 10 98.60218 0.148691 98.75087 0.312352 0.262447 25

 82

ANFIS 5 10 13872.62 0.451701 13873.07 0.109332 0.092275 243
TSK 5 10 0 9.405557 9.405557 0 0.047568 7776

Spline 5 10 0 1886.991 1886.991 0 0.041853 32768
NNSA 5 10 0 227.5315 227.5315 0 0.023028 32768
MLP 5 20 170.8636 0.031217 170.8948 0.181 0.104928 10
FCC 5 20 710.2176 0.176799 710.3944 0.139779 0.103971 121
SVM 5 20 76271.13 8.009599 76279.14 0.039603 0.027568 7866
ELM 5 20 77.05893 0.048053 77.10698 0.195917 0.095323 10

ANFIS 5 20 12863.51 0.429435 12863.94 0.079761 0.076789 243
TSK 5 20 0 9.362086 9.362086 0 0.032082 7776

Spline 5 20 0 1890.666 1890.666 0 0.021256 32768
NNSA 5 20 0 220.0561 220.0561 0 0.022327 32768
MLP 5 30 164.9082 0.033286 164.9415 0.228211 0.188709 15
FCC 5 30 696.1101 0.171432 696.2815 0.166718 0.127076 121
SVM 5 30 57440.51 7.775694 57448.28 0.03498 0.03898 8339
ELM 5 30 76.29271 0.28198 76.57469 0.241528 0.224315 60

ANFIS 5 30 12856.47 0.444522 12856.92 0.117707 0.084495 243
TSK 5 30 0 9.419723 9.419723 0 0.064533 7776

Spline 5 30 0 1887.493 1887.493 0 0.027043 32768
NNSA 5 30 0 220.4 220.4 0 0.018107 32768

6.2 MATLAB Code

6.2.1 Algorithm Functions

Name: MLPResults.m
function [output,RMSETR,RMSETS,trainTime,testTime,network,nodes]=MLPResults(TrainData,TestData,sizes,ntrial,epoch_n)

RMSETS=100;
RMSETR=100;
ns=length(sizes);
trainTimes=zeros(1,ns);
testTimes=zeros(1,ns);
tt=1;
for j=1:ns
nsize=sizes(j);
for i=1:ntrial
tic;
inputs = TrainData(:,1:end-1).';
targets = TrainData(:,end)';

% Create a Fitting Network
hiddenLayerSize = nsize;
trainFcn='trainrp';
net = fitnet(hiddenLayerSize,trainFcn);
net.trainParam.showWindow = false;

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 100/100;
net.divideParam.valRatio = 0/100;
net.divideParam.testRatio = 0/100;

net.trainParam.epochs = epoch_n;

% Train the Network

[net,tr] = train(net,inputs,targets);

trainTimes(tt)=toc;

 83

tic;

OO=net(TestData(:,1:end-1).');

% Test the Network
outputs = net(inputs);
testTimes(tt)=toc;
% times(i)=toc;

[~,RMSETR1]=computeRMSE(targets,outputs);
[~,RMSETS1]=computeRMSE(TestData(:,end),OO.');
if (RMSETS1<RMSETS)
 RMSETS=RMSETS1;

network=net;

 testTime=testTimes(tt);
 nodes=nsize;
 RMSETR=RMSETR1;
 output=OO.';
end
tt=tt+1;
end
end
% time=sum(times)/length(times);
nntraintool('close')

% time=toc;
trainTime=sum(trainTimes);

Name: FCCResults.m
function
[output,RMSETR,RMSETS,trainTime,testTime,nodes,topo,best_w,act,gain,paramt,iw]=FCCResults(TrainData,TestData,nsize,ntrial,maxite,
ntest)

trainTime = nan;
testTime = nan;
topo = nan;
best_w = nan;
act = nan;
gain = nan;
paramt = nan;
iw = nan;
nodes = nan;

types={'FCC'};
ntypes=length(types);
data = [TrainData ;TestData];
[m,n]=size(data); ninp=n-1;

maxerr=1e-3;

RMSETS=100*ones(1,ntypes);
RMSETR=100*ones(1,ntypes);
output=zeros(length(TestData(:,end)),ntypes);
trainTimeTotal = 0;
for k=1:length(types)
 type=types{k};
 for i = 1:length(nsize)
 h=nsize(i);
 network=[ninp ones(1,h) 1]; nFig=11+h;
 [RMSETS1,RMSETR1,output1,trainTime1,testTime1,topo1,best_w1,act1,gain1,paramt1,iw1]=nbn(data, type, network, ntrial,
maxite, maxerr,nFig,ntest);
 trainTimeTotal = trainTimeTotal + trainTime1;
 if (RMSETS1 < RMSETS)
 output = output1;
 RMSETR = RMSETR1;
 RMSETS = RMSETS1;
 testTime = testTime1;
 topo = topo1;
 best_w = best_w1;
 act = act1;
 gain = gain1;
 paramt = paramt1;
 iw = iw1;
 nodes = nsize(i);
 end

 end
end
trainTime = trainTimeTotal;

function [bestTSRMSE,bestTRRMSE,out,trainTime,testTime,topo,best_w,act,gain,paramt,iw]=nbn(data, type, network, ntrial, maxite,
maxerr,nFig,ntest)
format compact; warning off; %#ok<WNOFF>

 84

topo=gen_topo(type,network);
[m,n]=size(data);
Ti = data(:,1:n-1);
Td = data(:,n);

ind = 1:1:m;
Tnp = m-ntest;
Ti_tst = Ti(ind(Tnp+1:end),:); Ti = Ti(ind(1:Tnp),:);
Td_tst = Td(ind(Tnp+1:end)); Td = Td(ind(1:Tnp));

Tnp=size(Ti,1); Tnp_tst = m-Tnp;
nd=size(Ti,2);

%% neural network NBN FCC
%%%%%%%%%%%%%%%%%%%%%% set train parameter %%%%%%%%%%%%%%%%%%%%%%%
% maxite = 10; % max iteration
mu = 0.01; % mu
muH = 1e15; % high bound of mu
muL = 1e-15; % low bound of mu
scale = 10; % scale
% maxerr = 1e-3; % max required error
setting = [maxite,mu,muH,muL,scale,maxerr];
%%

[np,ni,no,nw,nn,iw] = checkingInputs(Ti,Td,topo);
act=5*ones(1,nn); act(nn)=0;
gain=1*ones(1,nn);
param=[np,ni,no,nw,nn];

threshold=0.09; % threshold for success rate evaluation
RMSE_rc=zeros(ntrial,1); time_rc=zeros(ntrial,1); is=0; RMSEt_rc=zeros(ntrial,1); ttime_rc=zeros(ntrial,1);

bestTSRMSE=inf;
best_w=generate_weights(nw);

for tr=1:ntrial
 w_ini=generate_weights(nw);
 tic;
 [w,iter,SSE] = Trainer(Ti,Td,topo,w_ini,act,gain,param,iw,setting);
 t=toc;

 paramt=param; paramt(1)=Tnp_tst;
 tic;
 SSEt=calculate_error(Ti_tst,Td_tst,topo,w,act,gain,paramt,iw); % scalar
 tt=toc;
 outtr=calc_fwd(Ti,topo,w,act,gain,paramt,iw);
 outts=calc_fwd(Ti_tst,topo,w,act,gain,paramt,iw);
 [~,RMSE]=computeRMSE(Td,outtr);
 [~,RMSEt_rc(tr)]=computeRMSE(Td_tst,outts);
 if (RMSEt_rc(tr) < bestTSRMSE)
 bestTSRMSE = RMSEt_rc(tr);
 bestTRRMSE=RMSE;
 best_w=w;
 end
 if RMSE<threshold
 is=is+1;
 end;

 RMSE_rc(tr)=RMSE;
 time_rc(tr)=t;
 ttime_rc(tr)=tt;
end;
sr=is/ntrial; % success rate
time_ave=sum(time_rc)/ntrial; % average training time
ttime_ave=sum(ttime_rc)/ntrial; % average testing time
RMSE_ave=sum(RMSE_rc)/ntrial; % average training RMSE
RMSEt_ave=sum(RMSEt_rc)/ntrial; % average testing RMSE
RMSE_std=std(RMSE_rc); % std of all the training RMSE
RMSEt_std=std(RMSEt_rc); % std of all the testing RMSE
trainTime=time_ave;
testTime=ttime_ave;

tic;
out=calc_fwd(Ti_tst,topo,best_w,act,gain,paramt,iw);
testTime=toc;

function [ww,iter,SSE] = Trainer(inp,dout,topo,w,act,gain,param,iw,setting)
ww = w; % weight
nw = param(4); % number of weights
maxite = setting(1); % max iteration
mu = setting(2); % mu
muH = setting(3); % high bound of mu
muL = setting(4); % low bound of mu
scale = setting(5); % scale
maxerr = setting(6); % max requred error

TER = calculate_error(inp,dout,topo,ww,act,gain,param,iw);
SSE=zeros(maxite,1);
SSE(1) = TER;
I = eye(nw);
for iter = 2:maxite

 85

 jw = 0;
 [gradient,hessian] = Hessian(inp,dout,topo,ww,act,gain,param,iw);
 ww_backup = ww;
 while 1
 ww = ww_backup - ((hessian+mu*I)\gradient)';
 TER = calculate_error(inp,dout,topo,ww,act,gain,param,iw);
 SSE(iter) = TER;
 if TER <= SSE(iter-1)
 if mu > muL
 mu = mu/scale;
 end;
 break;
 end;
 if mu < muH
 mu = mu*scale;
 end;
 jw = jw + 1;
 if jw > 30
 break;
 end;
 end;
 if SSE(iter) < maxerr
 break;
 end;
 if (SSE(iter-1)-SSE(iter))/SSE(iter-1)<0.000000000000001
 break;
 end;
end;
return;

function [gradient,hessian] = Hessian(inp,dout,topo,ww,act,gain,param,iw)
% param(1)-------np--------number of pattern
% param(2)-------ni--------number of input
% param(3)-------no--------number of output
% param(4)-------nw--------number of weights
% param(5)-------nn--------number of neurons
np=param(1);
ni=param(2);
no=param(3);
nw=param(4);
nn=param(5);

gradient = zeros(nw,1);
hessian = zeros(nw,nw);

for p = 1:np
 node(1:ni) = inp(p, 1:ni);%pobierz wiersz

 for n = 1:nn
 j = ni + n;
 net = ww(iw(n));
 for i = (iw(n)+1):(iw(n+1)-1)
 net = net + node(topo(i))*ww(i);
 end;
 [out,de(j)]=actFuncDer(n,net,act,gain);
 node(j) = out;
 end;

 for k = 1:no % for each output
 error = dout(p,k) - node(nn+ni-no+k);
 J = zeros(1, nw); % Jacobian row
 o = nn + ni - no + k;
 s = iw(o-ni);
 J(s) = -de(o); %%% modify de depending on sign of error and net
 delo=zeros(1,nn+ni-no+1);

 for i = (s+1):(iw(o+1-ni)-1)
 J(i) = node(topo(i))*J(s);
 delo(topo(i)) = delo(topo(i))-ww(i)*J(s);
 end;

 for n = 1:(nn-no) %hidden neurons in the reverse order
 j = nn+ni-no + 1 - n; %node number
 s = iw(j-ni);
 J(s) = -de(j)*delo(j); %for bias of hidden neurons
 for i = (s+1):(iw(j-ni+1)-1) %for weights of hidden neurons
 J(i) = node(topo(i))*J(s);
 delo(topo(i)) = delo(topo(i)) - ww(i)*J(s);
 end;
 end;

 gradient = gradient + J'*error;
 hessian = hessian + J'*J;

 end;
end;
return;

function topo=gen_topo(type,network)
% MLP ,network=> ninp 3 4 2 1
% SLP ,network=> ninp 17 1
% FCC ,network=> ninp 1 1 1 1 1 1
% MLP ,network=> ninp 3 4 2 1
topo=[];
nl=length(network);

 86

for i=2:nl % for number of layers
 s=sum(network(1:i-1)); % starting a new layer
 for j=1:network(i) % in each layer
 switch type
 case 'SLP'
 topo=[topo, s+j, s-network(i-1)+1:s];
 case 'MLP'
 topo=[topo, s+j, s-network(i-1)+1:s];
 case 'FCC'
 topo=[topo, s+j, 1:s]; %s+j node number and j is always 1
 case 'BMLP'
 topo=[topo, s+j, 1:s]; %s+j node number
 end;
 end;
end;
return;

function [y] = calc_fwd(inp,topo,w,act,gain,param,iw)
np = size(inp,1); % number of pattern
ni = param(2); % number of input
no = param(3); % number of output
nn = param(5); % number of neurons
y = zeros(np,no);
for p = 1:np % number of patterns
 node(1:ni) = inp(p,1:ni);
 for n = 1:nn % number of neurons
 j = ni + n;
 net = w(iw(n));
 for i = (iw(n)+1):(iw(n+1)-1)
 net = net + node(topo(i))*w(i);
 end;
 out=actFunc(n,net,act,gain);
 node(j) = out;
 end;
 y(p,:)=node(ni+nn-no+1:ni+nn);
end;

function [err] = calculate_error(inp,dout,topo,w,act,gain,param,iw)
np = param(1); % number of pattern
ni = param(2); % number of input
no = param(3); % number of output
nn = param(5); % number of neurons
err = 0;
for p = 1:np % number of patterns
 node(1:ni) = inp(p,1:ni);
 for n = 1:nn % number of neurons
 j = ni + n;
 net = w(iw(n));
 for i = (iw(n)+1):(iw(n+1)-1)
 net = net + node(topo(i))*w(i);
 end;
 out=actFunc(n,net,act,gain);
 node(j) = out;
 end;
 for k = 1:no
 err = err + (dout(p,k)-node(nn+ni-no+k))^2; % calculate total error
 end;
end;

function [np,ni,no,nw,nn,iw]= checkingInputs(inp,dout,topo)
iw = findiw(topo);
[np,ni]=size(inp);
[y,no]=size(dout);
if (np ~= y) error('input and output patterns are not equal'); end;
nw=length(topo);
y=length(topo); nn=length(iw)-1;

if (min(min(sign(topo))')<1)
 error('all elements of topo must be positive');
end;

if (nw==0)
 error('weights must not be zero');
end;
return;

function iw = findiw(topo)
nmax=0; j=0;
for i=1:length(topo),
 if topo(i)>nmax,
 nmax=topo(i);
 j=j+1; iw(j)=i;
 end;
end;
iw(j+1)=i+1;
return

function [weight] = generate_weights(nw)
for i = 1:nw % number of weights
 ra = 2*rand(1)-1; % generate random weights between -1 and 1
 while(ra == 0)
 ra = 2*rand(1)-1;
 end;
 weight(i) = ra;
end;

 87

function out=actFunc(n,net,act,gain)
de=0;
switch act(n)
 case 0, out = gain(n)*net; % linear neuron
 case 1, out = 1/(1+exp(-gain(n)*net)); % unipolar neuron
 case 2, out = tanh(gain(n)*net); % bipolar neuron
 case 3, out = gain(n)*net/(1+gain(n)*abs(net)); % bipolar elliot neuron
 case 4, out = 2*gain(n)*net/(1+gain(n)*abs(net))-1; % unipolar elliot neuron
 case 5, out = 2/(1+exp(-gain(n)*net))-1; % bipolar from NBN 2.08
 case 6,
% out = sign(gain(n)*net);
 if (abs(gain(n)*net)>=1)
 out = sign(gain(n)*net); % hard activation
 else
 out = gain(n)*net;
 end
end;

function [out,der]=actFuncDer(n,net,act,gain)
de=0;
switch act(n)
 case 0, out = gain(n)*net; der = gain(n); % linear neuron
 case 1, out = 1/(1+exp(-gain(n)*net)); der = gain(n)*(1-out)*out; % unipolar neuron % log-
likelyhood cost function: der = gain(n)/(1-out)/out;
 case 2, out = tanh(gain(n)*net); der = gain(n)*(1-out*out); % bipolar neuron
 case 3, out = gain(n)*net/(1+gain(n)*abs(net));der = 1/((gain(n)*abs(net)+1)^2); % bipolar elliot neuron
 case 4, out = 2*gain(n)*net/(1+gain(n)*abs(net))-1; der = 2*gain(n)/(gain(n)*abs(net)+1)^2; % unipolar elliot neuron
 case 5, out = 2/(1+exp(-gain(n)*net))-1; der = gain(n)*(1-out*out)/2; % bipolar from NBN 2.08
 case 6,
 if (abs(gain(n)*net)>=1)
 out = sign(gain(n)*net); % hard activation
 der = 0;
 else
 out = gain(n)*net;der = gain(n);
 end

end;
der=der+de;

Name: ELMResults.m
function [output,RMSETR,RMSETS,trainTime,testTime,inw1,outw1,bias1,nodes1]=ELMResults(TrainData,TestData,nodeV,ntrial)

 wRange=[-1 1]; bRange=[-1 1];

trainTimes=zeros(1,ntrial*length(nodeV));
testTimes=zeros(1,ntrial*length(nodeV));

RMSETS=100;
RMSETR=100;

tt=1;
for na=1:length(nodeV)
 nodes=nodeV(na);
for i=1:ntrial
tic;
 [inw, outw, bias, outputs, error]=ELM(TrainData(:,1:end-1),TrainData(:,end),wRange,bRange,nodes);
 trainTimes(tt)=toc;
 tic;

 [~,O]=calcO(TestData(:,1:end-1),TestData(:,end),inw,outw,bias,nodes);
 testTimes(tt)=toc;

 [~,RMSETR1]=computeRMSE(TrainData(:,end),outputs.');
 [~,RMSETS1]=computeRMSE(TestData(:,end),O.');

if (RMSETS1<RMSETS)
 RMSETS=RMSETS1;
 RMSETR=RMSETR1;
 inw1=inw;
 outw1=outw;
 bias1=bias;
 nodes1=nodes;
 testTime=testTimes(tt);

 output=O.';
end
 tt=tt+1;

end

end

trainTime=sum(trainTimes);

%% Original ELM (not incremental ELM)
% Inputs ********************
% x are the training vectors
% y are the targets

 88

% wRange is a 1x2 matrix containing the lower and upper bounds for the
% range of the input weights
% bRange is the same as wRange but pertaining to the input bias
% nodes is the number of nodes in the network
% output = sum of outw*g(inw*x+bias)
function [inw outw bias outputs error]=ELM(x,y,wRange,bRange,nodes)
[np,nd]=size(x);
inw=(wRange(2)-wRange(1))*rand(nodes,nd)+wRange(1);
bias=(bRange(2)-bRange(1))*rand(nodes,1)+bRange(1);
for i=1:nodes
 for j=1:np
 H(j,i)=1/(1+exp(-(inw(i,:)*x(j,:)'+bias(i))));
 end
end
%Calculate Moore-Penrose generalized inverse of H
Ht=pinv(H);
%Calculate output weights
outw=Ht*y;
outputs=outw'*H';
error=y-outputs';

function [SSE,O]=calcO(x, y, inw, outw, bias, nodes)
[np,nd]=size(x);
for i=1:nodes
 for j=1:np
 H(j,i)=1/(1+exp(-(inw(i,:)*x(j,:)'+bias(i))));
 end
end
O=outw'*H';
er=y-O'; SSE=er'*er;

Name: SVRResults.m
function
[output,RMSETR,RMSETS,trainTime,testTime,model_bst,nodes,C_bst,gamma_bst]=SVRResults(TrainData,TestData,gamma_list,C_list)
%% instruction
%%%%%%%%%%%%%%%%%%%%%%%%%%%% train %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Usage: model = svmtrain(training_label_vector, training_instance_matrix, 'libsvm_options');
% libsvm_options:
% -s svm_type : set type of SVM (default 0)
% 0 -- C-SVC
% 1 -- nu-SVC
% 2 -- one-class SVM
% 3 -- epsilon-SVR
% 4 -- nu-SVR
% -t kernel_type : set type of kernel function (default 2)
% 0 -- linear: u'*v
% 1 -- polynomial: (gamma*u'*v + coef0)^degree
% 2 -- radial basis function: exp(-gamma*|u-v|^2)
% 3 -- sigmoid: tanh(gamma*u'*v + coef0)
% 4 -- precomputed kernel (kernel values in training_instance_matrix)
% -d degree : set degree in kernel function (default 3)
% -g gamma : set gamma in kernel function (default 1/num_features)
% -r coef0 : set coef0 in kernel function (default 0)
% -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
% -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
% -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
% -m cachesize : set cache memory size in MB (default 100)
% -e epsilon : set tolerance of termination criterion (default 0.001)
% -h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)
% -b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
% -wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)
% -v n : n-fold cross validation mode
% -q : quiet mode (no outputs)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% predict %%%%%%%%%%%%%%%%%%%%%%%%%%%
% Usage: [predicted_label, accuracy, decision_values/prob_estimates] = svmpredict(testing_label_vector, testing_instance_matrix,
model, 'libsvm_options')
% Parameters:
% model: SVM model structure from svmtrain.
% libsvm_options:
% -b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yet
% Returns:
% predicted_label: SVM prediction output vector.
% accuracy: a vector with accuracy, mean squared error, squared correlation coefficient.
% prob_estimates: If selected, probability estimate vector.
%% support vector regression train
ng = length(gamma_list);
nc = length(C_list);
TrainData(:,end)=2*TrainData(:,end)-1;TestData(:,end)=2*TestData(:,end)-1;
Td=TrainData(:,end); Ti=TrainData(:,1:end-1);
rms_bst = 10;
figcnt=1;
trainTimes=zeros(1,ng*nc);
testTimes=zeros(1,ng*nc);
for i = 1:ng
 for j = 1:nc
 gamma = gamma_list(i); C = C_list(j);
 option = sprintf('-s 3 -t 2 -h 0 -q -g %f -c %f', gamma, C);
 tic;

 model = svmtrain(Td, Ti, option);

 89

 trainTimes(figcnt)=toc;
 tic;
 [y, ~, ~] = svmpredict(Td, Ti, model);
 [yt, ~, ~] = svmpredict(TestData(:,end),TestData(:,1:end-1), model);
 testTimes(figcnt)=toc;
 [~,trainRMS]=computeRMSE((TrainData(:,end)+1)/2,(y+1)/2);
 [~,testRMS]=computeRMSE((TestData(:,end)+1)/2,(yt+1)/2);
 if testRMS<rms_bst
 rms_bst = testRMS;
 model_bst = model;
 C_bst = C;
 gamma_bst = gamma;
 RMSETR=trainRMS;
 RMSETS=testRMS;
 testTime=testTimes(figcnt);
 output=yt;
 end;
 figcnt=figcnt+1;
 end;
end;

trainTime=sum(trainTimes);
output=(output+1)/2;

nodes=model_bst.totalSV;

Name: fuzzyResults.m
function
[output,RMSETR,RMSETS,trainTime,testTime,out_fis,nodes]=fuzzyResults(TrainData,TestData,numMFs,inmftype,outmftype,epoch_n)

nodes=prod(numMFs);
tic;
in_fis = genfis1(TrainData,numMFs,inmftype,outmftype);
trnOpt=[epoch_n,0,0.1,0.9,1.1];
dispOpt=[0,0,0,0];

out_fis = anfis(TrainData,in_fis,trnOpt,dispOpt);
trainTime=toc;
tic;
output=evalfis(TestData(:,1:end-1),out_fis);
TrainOut=evalfis(TrainData(:,1:end-1),out_fis);
testTime=toc;
[~,RMSETR]=computeRMSE(TrainData(:,end),TrainOut);

[~,RMSETS]=computeRMSE(TestData(:,end),output);

Name: FuzzyTSKResults.m
function [output,RMSETR,RMSETS,trainTime,testTime,nodes]=FuzzyTSKResults(xt,TrainData,TestData,trainn)

ndim = size(TrainData,2)-1;
trainTime=0;
testTime=0;

numMFs = zeros(1,ndim);
mfType=char(zeros(ndim,5));
for i=1:ndim
 numMFs(i) = length(xt{i});
% mfType = [mfType;'trimf'];
 mfType(i,:) = 'trimf';
end

nodes=prod(numMFs);

% grid=reshape(TrainData(:,end),numMFs).'; % For 2D
grid=reshape(TrainData(:,end),numMFs);

outmftype='constant';
fismat = genfis1(TrainData,numMFs,mfType,outmftype);
for i=1:nodes
fismat.output.mf(i).params=grid(i);
end
tic;
output=evalfis(TestData(:,1:end-1),fismat);
testTime=testTime+toc;

RMSETR=0;
[~,RMSETS]=computeRMSE(TestData(:,end),output);

 90

Name: splineResults.m
function [output,RMSETR,RMSETS,trainTime,testTime,nodes]=splineResults(TrainData,TestData,trainn,xtE,nsegE,xv)
trainTime=0;
testTime=0;
nodes=prod(nsegE);
% xv{2}=xv{2}.';
output=zeros(size(TestData(:,end)));
tic;
for i=1:size(TestData,1)

point = num2cell(TestData(i,1:end-1));

output(i) = SplineND(xtE, TrainData, point,nsegE);
end
testTime=testTime+toc;

RMSETR = 0;
[~,RMSETS]=computeRMSE(TestData(:,end),output);

function splineValues = SplineND(ranges, values, points,nsegE)

dimensions=size(values,2)-1;

splineStorageSize=num2cell(nsegE);
splineStorageSize{end}=length(points{1});
splineStorage=reshape(values(:,end),nsegE);
for i=1:dimensions
 resolution=length(points{i});
 index1=1:nsegE(i);
 index2=1:resolution;
 [splineIndex,dataIndex]=generateIndices(dimensions,i,index1,index2);
 splineStorageSize{end-i+1}=resolution;

 tempMatrix=zeros(splineStorageSize{:});
 for j=1:length(dataIndex(:,1))
 currentDataIndex=dataIndex(j,:);
 currentSplineIndex=splineIndex(j,:);

 tempMatrix(currentSplineIndex{:})=SPLINE1D(ranges{i},splineStorage(currentDataIndex{:}),points{i});
 end
 splineStorage=tempMatrix;
end
splineValues=splineStorage;

function [splineIndex,dataIndex]=generateIndices(dimensions,i,index1,index2)

vectorsToGrid=cell(1,dimensions-1);
te=i-1;

vectorsToGrid(1:end-te)={index1};
vectorsToGrid(end-te+1:end)={index2};

 temp1=cell(1,dimensions-1);
 [temp1{:}]=ndgrid(vectorsToGrid{:});

 baseIndex=cell(numel(temp1{1}),dimensions-1);
 for j=1:dimensions-1

 baseIndex(:,j)=num2cell(temp1{:,j}(:));
 end
splineIndex=cell(size(baseIndex,1),dimensions);

splineIndex(:,1:end~=(end-i+1))=baseIndex;
dataIndex=splineIndex;

dataIndex(:,end-i+1)={index1};
splineIndex(:,end-i+1)={index2};

function output = SPLINE1D(x, y, interpPoints)

x=x(:).';
y=y(:).';
% % Mirror edge values to give better fit at boundry
x=[x(1)-(x(2)-x(1)),x,x(end)+(x(end)-x(end-1))];
y=[y(1),y,y(end)];

n=length(x);

h=diff(x);

A=zeros(n,n);
f=zeros(n,1);

 91

% Setting up matrix for g''(x)
for i=1:n
 % The first and last segments require special conditions
 if (i == 1)
 A(i,i)=-h(i+1);
 A(i,i+1)=h(i)+h(i+1);
 A(i,i+2)=-h(i);

 elseif(i == n)
 A(i,i-2)=-h(i-1);
 A(i,i-1)=h(i-2)+h(i-1);
 A(i,i)=-h(i-2);
 else
 A(i,i-1)=h(i-1);
 A(i,i)=2*(h(i-1)+h(i));
 A(i,i+1)=h(i);
 f(i)=6*((y(i+1)-y(i))/h(i)-(y(i)-y(i-1))/h(i-1));
 end
end

m=A\f;

% With the g''(x) for each interval, solve for the coeficients
coefs=zeros(n-1,4);

for i=1:n-1
 coefs(i,1)=y(i);
 coefs(i,2)=(y(i+1)-y(i))/h(i)-h(i)/2*m(i)-h(i)/6*(m(i+1)-m(i));
 coefs(i,3)=m(i)/2;
 coefs(i,4)=(m(i+1)-m(i))/(6*h(i));
end

output = EvaluatePoints(coefs, x, interpPoints);

function value = EvaluatePoints(coefs, range, points)
% EvaluatePoints Computes polynomial values
% ---
%
% Parameters:
%
% value = EvaluatePoints(coefs, points)
%
% INPUT:
%
% coefs - (n-1)x4 matrix of coefeicient values for each segment.
%
%
% ranges - vector of length n conataining the break values of the piecewise polynomial
%
%
% points - vector of the desired points at which the piecewise polynomial should
% be evaluated. All of the values should be contained with
% [range(1),range(end)]
%
% OUTPUT:
%
% value - vector of the same length as input points containing the
% function values corresponding to each point

% dimensions=size(points,2);
n=length(range);
value=zeros(size(points));
for i=1:n-1
 activePoints=points(points>=range(i) & points<=range(i+1))-range(i);
 value(points>=range(i) & points<=range(i+1))=coefs(i,1)+activePoints.*(coefs(i,2) + activePoints.*(coefs(i,3) +
coefs(i,4).*activePoints));
end

Name: NNSA1Results.m
function [output,RMSETR,RMSETS,trainTime,testTime,nodes]=NNSA1Results(Xt,Xv,xtE,indx,method_apr)
% INPUTS
% ndim => number of input dimensions for function
% xtE - cell with extended grid vectors
% xxa => desired point in for [x1 x2 ... xndim] where
% x1,x2,...,xndim are the coordinates in each dimension
% indx - index array
% X - training points (last column is the output)
% method_apr=> method used for approximation
% OUTPUTS
% out - approximated value at xxa
trainTime=0;
testTime=0;

[np,ndim]=size(Xv);
nodes=length(xtE{1})^(ndim-1);

 92

output=zeros(np,1);
tic;
for i=1:np
output(i)=localWrapper(ndim-1,xtE,Xv(i,1:end-1),indx,Xt,method_apr);
end
testTime=testTime+toc;

RMSETR=0;
[~,RMSETS]=computeRMSE(Xv(:,end),output);

function out=localWrapper(ndim,xtE,xxa,indx,X,method_apr)
% INPUTS
% ndim => number of input dimensions for function
% xtE - cell with extended grid vectors
% xxa => desired point in for [x1 x2 ... xndim] where
% x1,x2,...,xndim are the coordinates in each dimension
% indx - index array
% X - training points (last column is the output)
% method_apr=> method used for approximation
% OUTPUTS
% out - approximated value at xxa

 X4=extractSarray(ndim,xtE,xxa,indx,X);
 out=findValueFrom4array(X4,xxa,method_apr);

function [Xn,In]=extractSarray(ndim,xtE,xx,indx,X)
[nn,~]=size(indx);
kk=zeros(1,ndim);
for j=1:ndim

 kk(j)=find_range(xtE{j},xx(j));
end
sw=zeros(1,ndim);
Xn=zeros(4^ndim,ndim+1);
In=zeros(4^ndim,ndim);
it=1;
for i=1:nn
 for j=1:ndim
 a=indx(i,j);
 k=kk(j);
 if a>=k-1 && a<=k+2
 sw(j)=1;
 else
 sw(j)=0;
 end
 end;
 if all(sw),
 Xn(it,:)=X(i,:);
 In(it,:)=indx(i,:);
 it=it+1;
 end
end

function kk=find_range(Xa,x)
% Xa long vector
% find index for x
n=length(Xa);
kk=0;
for k=1:n-1,
 if x>=Xa(k) && x<=Xa(k+1),
 kk=k;
 break
 end
end
if kk==1, kk=2; end;

function out=findValueFrom4array(Xr,xx,method_apr)
% Xr column array of 4x4x4x...
% xx value of point
nc=length(xx);
while nc > 0
 Xr=reduceDim4(Xr,xx,nc,method_apr);
 nc=nc-1;
end
out=Xr;

function Xt_new=reduceDim4(Xt,xx,nc,method_apr)
% x => location of a point
% Xt => traning data colum vectors with input and output
% nc => index for the last column to be eliminated
% [ni,n2]=size(Xt); % n2=ndim+1 ni number of points
% ndim=n2-1;
x=xx(nc); %single value
nii=4^(nc-1);
out=zeros(nii,1);
Ya=zeros(1,4);
Xa=Ya;
for i=1:nii
 for j=1:4 % this js just to 4x4x4x.... arrays
 Ya(j)=Xt(i+(j-1)*nii,end); %just for output (end)
 Xa(j)=Xt(i+(j-1)*nii,nc);
 end;

 93

 switch method_apr
 case 1, out(i)=linearA(Xa,Ya,x);
 case 2, out(i)=Spline1d4point(Xa,Ya, x);
 case 3, out(i)=Spline1d4point4(Xa,Ya, x);
 case 4, out(i) = Spline_Local_Optimized1(Xa, Ya, x);
 end;
end;
% rearange arrays for output
Xt_new=[Xt(1:nii,1:nc-1),out];

function out=linearA(Xa,YY,x)
kk=find_range(Xa,x);
% kk
x2=Xa(kk+1); x1=Xa(kk);
h=x2-x1; del=x-x1;
out=(YY(kk)*(h-del) + YY(kk+1)*del)/h;

function output = Spline1d4point(Xa,Ya, x)
% Xa,Ya are 4 elements vectors
% x scalar where value maust be calculated
% SPLINE1D_Local Computes cubic spline interpolating curve
% using central approximation

h=diff(Xa); h1=h(1); h2=h(2); h3=h(3);
dy=diff(Ya); y1=Ya(1);y2=Ya(2);y3=Ya(3); y4=Ya(4);
m2=(dy(2)/h2-dy(1)/h1)/(0.5*(h2+h1));
m3=(dy(3)/h3-dy(2)/h2)/(0.5*(h3+h2));
d=(m3-m2)/(6*h2);
c=(m2+m3)*0.25;
% c=(m2+m3)*0.3;
h2x=h2*h2*0.25;
b=(y3-y2)/h2-d*h2x;
a=(y2+y3)*0.5-c*h2x;
x=x-(Xa(2)+Xa(3))*0.5;
output = a+x*(b+x*(c+x*d));

function output = Spline1d4point4(Xa,Ya, x)
% Xa,Ya are 4 elements vectors
X(:,4)=ones(4,1);
X(:,3)=Xa;
X(:,2)=X(:,3).*X(:,3);
X(:,1)=X(:,2).*X(:,3);
p=(X\Ya');
output = p(4)+x*(p(3)+x*(p(2)+x*p(1)));

function output = Spline_Local_Optimized1(Xa, Ya, x)
% Given input data x and y, approximates value of y at desired point
% inputs: Xa,Ya: arrays containing knownn data points.
% x: value of x at which Ya will be approximated.

dx=diff(Xa); dx1=dx(1); dx2=dx(2); dx3=dx(3);
dy=diff(Ya); dy1=dy(1); dy2=dy(2); dy3=dy(3);
y1=Ya(1);y2=Ya(2);y3=Ya(3); y4=Ya(4);
x1=Xa(1);x2=Xa(2);x3=Xa(3); x4=Xa(4);
x=x-x2;

a=1;
fPrime2=a*(dx1/dx2*dy2+dx2/dx1*dy1)/(dx1+dx2);
fPrime3=a*(dx2/dx3*dy3+dx3/dx2*dy2)/(dx2+dx3);

h2=dx2*dx2; h3=dx2*h2;
a=y2;
b=fPrime2;
d=(dx2*(fPrime3+b)+2*(a-y3))/h3;
c=(y3-a-b*dx2)/h2-d*dx2;

output=a+x*(b+x*(c+x*d));

6.2.2 Support Functions

Name: computeRMSE.m
function [difference,RMSE]=computeRMSE(desired,actual)
difference=desired(:)-actual(:);
SSE=sum(difference.^2);
MSE=SSE/(length(difference));
RMSE=sqrt(MSE);

Name: fig.m
function h = fig(varargin)
% FIG - Creates a figure with a desired size, no white-space, and several other options.
%

 94

% All Matlab figure options are accepted.
% FIG-specific options of the form FIG('PropertyName',propertyvalue,...)
% can be used to modify the default behavior, as follows:
%
% -'units' : preferred unit for the width and height of the figure
% e.g. 'inches', 'centimeters', 'pixels', 'points', 'characters', 'normalized'
% Default is 'centimeters'
%
% -'width' : width of the figure in units defined by 'units'
% Default is 14 centimeters
% Note: For IEEE journals, one column wide standard is
% 8.5cm (3.5in), and two-column width standard is 17cm (7 1/16 in)
%
% -'height' : height of the figure in units defined by 'units'
% Specifying only one dimension sets the other dimension
% to preserve the figure's default aspect ratio.
%
% -'font' : The font name for all the texts on the figure, including labels, title, legend, colorbar, etc.
% Default is 'Times New Roman'
%
% -'fontsize' : The font size for all the texts on the figure, including labels, title, legend, colorbar, etc.
% Default is 14pt
%
% -'border' : Thin white border around the figure (compatible with export_fig -nocrop)
% 'on', 'off'
% Default is 'off'
%
% FIG(H) makes H the current figure.
% If figure H does not exist, and H is an integer, a new figure is created with
% handle H.
%
% FIG(H,...) applies the properties to the figure H.
%
% H = FIG(...) returns the handle to the figure created by FIG.
%
%
% Example 1:
% fig
%
% Example 2:
% h=fig('units','inches','width',7,'height',2,'font','Helvetica','fontsize',16)
%
%
% Copyright 2012 Reza Shirvany, matlab.sciences@neverbox.com
% Source: http://www.mathworks.com/matlabcentral/fileexchange/30736
% Updated: 05/14/2012
% Version: 1.6.5
%

% default arguments
width=14;
font='Times New Roman';
fontsize=14;
units='centimeters';
bgcolor='w';
sborder='off';
flag='';
Pindex=[];

%%%%%%%%%%% process optional arguments
optargin = size(varargin,2);
if optargin>0

% check if a handle is passed in
if isscalar(varargin{1}) && isnumeric(varargin{1})
 flag=[flag '1'];
 i=2;
 if ishghandle(varargin{1})==1
 flag=[flag 'i'];
 end
else
 i=1;
end

% get the property values
while (i <= optargin)
 if (strcmpi(varargin{i}, 'border'))
 if (i >= optargin)
 error('Property value required for: %s', num2str(varargin{i}));
 else
 sborder = varargin{i+1};flag=[flag 'b'];
 i = i + 2;
 end
 elseif (strcmpi(varargin{i}, 'width'))
 if (i >= optargin)
 error('Property value required for: %s', num2str(varargin{i}));
 else
 width = varargin{i+1};flag=[flag 'w'];
 i = i + 2;

 95

 end
 elseif (strcmpi(varargin{i}, 'height'))
 if (i >= optargin)
 error('Property value required for: %s', num2str(varargin{i}));
 else
 height = varargin{i+1};flag=[flag 'h'];
 i = i + 2;
 end
 elseif (strcmpi(varargin{i}, 'font'))
 if (i >= optargin)
 error('Property value required for: %s', num2str(varargin{i}));
 else
 font = varargin{i+1};flag=[flag 'f'];
 i = i + 2;
 end
 elseif (strcmpi(varargin{i}, 'fontsize'))
 if (i >= optargin)
 error('Property value required for: %s', num2str(varargin{i}));
 else
 fontsize = varargin{i+1};flag=[flag 's'];
 i = i + 2;
 end
 elseif (strcmpi(varargin{i}, 'units'))
 if (i >= optargin)
 error('Property value required for: %s', num2str(varargin{i}));
 else
 units = varargin{i+1};flag=[flag 'u'];
 i = i + 2;
 end
 elseif (strcmpi(varargin{i}, 'color'))
 if (i >= optargin)
 error('Property value required for: %s', num2str(varargin{i}));
 else
 bgcolor = varargin{i+1};flag=[flag 'c'];
 i = i + 2;
 end
 else
 %other figure properties
 if (i >= optargin)
 error('A property value is missing.');
 else
 Pindex = [Pindex i i+1];
 i = i + 2;
 end
 end

end

end

% We use try/catch to handle errors
try

% creat a figure with a given (or new) handle
if length(strfind(flag,'1'))==1
 s=varargin{1};
 if ishandle(s)==1
 set(0, 'CurrentFigure', s);
 else
 figure(s);
 end
else
 s=figure;
end

flag=[flag 's'];

% set other figure properties
if ~isempty(Pindex)
 set(s,varargin{Pindex});
end

% set the background color
set(s, 'color',bgcolor);

% set the font and font size
set(s, 'DefaultTextFontSize', fontsize);
set(s, 'DefaultAxesFontSize', fontsize);
set(s, 'DefaultAxesFontName', font);
set(s, 'DefaultTextFontName', font);

%%%%%%%%%%% set the figure size
% set the root unit
old_units=get(0,'Units');
set(0,'Units',units);

% get the screen size
scrsz = get(0,'ScreenSize');

% set the root unit to its default value
set(0,'Units',old_units);

% set the figure unit
set(s,'Units',units);

 96

% get the figure's position
pos = get(s, 'Position');
old_pos=pos;
aspectRatio = pos(3)/pos(4);

% set the width and height of the figure
if length(strfind(flag,'w'))==1 && length(strfind(flag,'h'))==1
 pos(3)=width;
 pos(4)=height;
elseif isempty(strfind(flag,'h'))
 pos(3)=width;
 pos(4) = width/aspectRatio;
elseif isempty(strfind(flag,'w')) && length(strfind(flag,'h'))==1
 pos(4)=height;
 pos(3)=height*aspectRatio;
end

% make sure the figure stays in the middle of the screen
diff=old_pos-pos;

 if diff(3)<0
 pos(1)=old_pos(1)+diff(3)/2;
 if pos(1)<0
 pos(1)=0;
 end
 end
 if diff(4)<0
 pos(2)=old_pos(2)+diff(4);
 if pos(2)<0
 pos(2)=0;
 end
 end

% warning if the given width (or height) is greater than the screen size
if pos(3)>scrsz(3)
warning(['Maximum width (screen width) is reached! width=' num2str(scrsz(3)) ' ' units]);
end

if pos(4)>scrsz(4)
warning(['Maximum height (screen height) is reached! height=' num2str(scrsz(4)) ' ' units]);
end

% apply the width, height, and position to the figure
set(s, 'Position', pos);
if strcmpi(sborder, 'off')
 set(s,'DefaultAxesLooseInset',[0,0,0,0]);
end

% handle errors
catch ME
 if isempty(strfind(flag,'i')) && ~isempty(strfind(flag,'s'))
 close(s);
 end
 error(ME.message)
end

s=figure(s);
% return handle if caller requested it.
 if (nargout > 0)
 h =s;
 end
%
% That's all folks!
%
%flag/1iwhfsucsb

Name: generateSchwefelTrainValidation.m
function [Xt,xt,Xv,xv,Y_,xtE,nsegE,indx,n]=generateSchwefelTrainValidation(nPoints,alpha,method_gen)
% INPUTS
% nPoints - vector with number of grid points for each dimension
% alpha - scalar nonlinear parameter for Schwefel function
% method_gen - method used to hand edges via extrapolation, see
% GenTpoints for details
% OUTPUTS
% Xt - training points (last column is the output)
% xt - cells of grid vectors
% Xv - validation points (last column is the desired output)
% xv - cells of vectors
% Validation point are automaticaly selected in the middle between grids
% Each time you run the same data point should be generated
% Y_ - Training point function values for extended grid
% xtE - cell with extended grid vectors
% nsegE - extended grid size
% indx - index array
% n - number of points in extended grid
[xt,xv]=initEqual(nPoints);

 97

[Y_,xtE,nsegE]=GenTpoints(nPoints, xt, alpha,method_gen);

[Y_,scal,offset]=normaliArray(Y_, 2);

[Xv,xv]=GenVpoints(nPoints, alpha, xv);
Xv(:,end)=scal*Xv(:,end)-offset;
Xt=genInps(Y_,xtE,nsegE);
[indx,n]=FindInd(nsegE);

function [xt,xv]=initEqual(nPoints)
%% Description: Creates the grid vectors for training and testing data sets
% INPUTS
% nPoints - vector with number of grid points for each dimension
% OUTPUTS
% xt - cell array with each entry containing the grid vector for
% the corresponding dimension of the training set
% xv - cell array with each entry containing the grid vector for
% the corresponding dimension of the validation set
%%
ndim=length(nPoints);
xt = cell(1,ndim);
xv = cell(1,ndim);
for j=1:ndim
 xa=linspace(-1,1,nPoints(j));
 xb=xa(1:end-1)+0.5*diff(xa);
 xt{j}=xa;
 xv{j}=xb;
end

function [TrainData,xtE,nPointsE]=GenTpoints(nPoints, xt, alpha,method)
%% Description: Generate extended training dataset
% INPUTS
% nPoints - vector with number of grid points for each dimension
% xt - cell array with each entry containing the grid vector for
% the corresponding dimension of the training set
% alpha - scalar nonlinear parameter for Schwefel function
% method - select the method for edge extrapolation
% OUTPUTS
% TrainData - matrix with training points (last column is the output)
% xtE - extended cell array with each entry containing the grid vector for
% the corresponding dimension of the training set
% nPointsE - vector with number of grid points for each dimension
% after extrapolation
%%
ndim=length(nPoints);
nPointsE=nPoints+2; % add beginning and ending values for each dimension
xtE = cell(1,ndim);
for i=1:ndim, % extend cells form xt => xxt
 point=xt{i};
 xl=2*point(1)-point(2); xr=2*point(end)-point(end-1); % calculate left and right values
 xtE{i} = [xl,point,xr];
end;

[indt,nt]=FindInd(nPointsE); % get index matrix
pointer =findPointer(nPointsE); % get jumo size for each dimension

TrainData=zeros(1,nt); % initialize array to hold training data
for i=1:nt
 ind=indt(i,:); % ind is current index
 loc=checkForBE(ind,nPointsE);

 %% Calculate values at training points, or extrapolation values for the edges
 XX_=[]; Y_=[];
 if loc>0, %calculate Y values only if found a single one
 X_=xtE{loc}; lx=length(X_);
 for j=1:ndim
 XX_(j,:)=ones(1,lx)*xtE{j}(ind(j));
 end
 XX_(loc,:)=X_;
 for k=2:lx-1
 point=XX_(:,k)';
 Y_(k) = Schwefel(point,alpha);
 end
 Xa=X_(2:5); Ya=Y_(2:5);
 ya=findVirtualpoint(Xa,Ya,0,method);
 Y_(1)=ya;
 Xa=X_(lx-4:lx-1); Ya=Y_(lx-4:lx-1);
 yb= findVirtualpoint(Xa,Ya,1,method);
 Y_(lx)=yb;
 for k=1:lx
 ind(loc)=k;
 iii=CalcI(ind,pointer);
 TrainData(iii)=Y_(k);
 end
 end
end

function [Xv,xv]=GenVpoints(nPoints, alpha, xv)
%% Description: Validation point are automaticaly selected in the middle between grids
% INPUTS
% nPoints - vector with number of grid points for each dimension
% alpha - scalar nonlinear parameter for Schwefel function
% xv - cell array with each entry containing the grid vector for

 98

% the corresponding dimension of the validation set
% OUTPUTS
% TestData - matrix with validation points (last column is the output)
% xv - matrix with training points (last column is the output)
%%
ndim=length(nPoints);
[indv,~]=FindInd(nPoints-1);
point = zeros(1,ndim);
Xv = zeros(size(indv,1),ndim+1);
for i=1:size(indv,1)
 for j=1:ndim
 point(j)=xv{j}(indv(i,j));
 end
 y = Schwefel(point,alpha);
 Xv(i,:)=[point,y];
end

function [indx,n]=FindInd(nPointsE)
%% Description: Creates a matrix with the indices for the training data
% INPUTS
% nPointsE - vector with number of grid points for each dimension
% after extrapolation
% OUTPUTS
% indx - matrix of indices
% n - number of indices
%%
ndim=length(nPointsE); n=prod(nPointsE);
index=ones(n,ndim); ind=ones(1,ndim);
for i=1:n
 index(i,:)=ind;
 ind(1)=ind(1)+1;
 k=1;
 while(ind(k)>nPointsE(k))
 ind(k)=1;
 k=k+1;
 if k==ndim+1
 break;
 end;
 ind(k)=ind(k)+1;
 end;
end;
indx=int16(index);

function pointer =findPointer(nPointsE)
%% Description: Finds pointer is a vector of size of nsegE indicating size of jumps.
% INPUTS
% nPointsE - vector with number of grid points for each dimension
% after extrapolation
% OUTPUTS
% pointer - array with the jump size for each dimension
%%
ndim = length(nPointsE);
pointer = zeros(1,ndim);
pointer(2)=nPointsE(1);
for i=3:ndim
 pointer(i)=pointer(i-1)*nPointsE(i-1);
end;

function loc=checkForBE(ind,nPointsE)
%% Description: Check for occurances of ones and max in ind.
% INPUTS
% ind - current index
% nPointsE - vector with number of grid points for each dimension
% after extrapolation
% OUTPUTS
% loc - returns location of first 1 in ind, or zero if there are
% none or any ind value is at max
%%
ndim = length(ind); s1 = 0;
for i=1:ndim
 if (ind(i)==1)
 s1 = s1+1;
 ii=i;
 end
end
for i=1:ndim,
 if ind(i)==nPointsE(i)
 s1=0;
 end; %exclude end case
end

if s1==1,
 loc=ii;
else
 loc=0;
end;

function [yv,xv]=findVirtualpoint(Xa,Ya,sw,method_gen)
%% Description: Calculates linear index given ind array and pointer (offsets).
% INPUTS
% Xa - vector of length 4 with the x locations
% Ya - vector of length 4 with the function values

 99

% sw - switch for left/right end of the array. sw=0 for left, 1 for
% right
% method_gen - extrapolation method
% OUTPUTS
% yv - extrapolated y value
% xv - corresponding x value
%%
if length(Xa)~=length(Ya), disp('error in findVirtualpoint length(Xa)~=length(Ya)'); pause; end;
if sw, Xa=fliplr(Xa); Ya=fliplr(Ya); end; % switching R_edge to L_edge
xv=2*Xa(1)-Xa(2);
% Xa
% Ya
% pause
switch method_gen,
 case 1, % linear
 yv=2*Ya(1)-Ya(2);
 case 2 %method from the paper to find quadratic =>faster
 % for gamma=1 gives the same results as quadratic but it is much faster
 dX=diff(Xa);dY=diff(Ya); h0=dX(1); y1=Ya(1);
 k1=dY(1)/dX(1); k2=dY(2)/dX(2);
 del1=h0*k1; del2=(k2-k1)*h0;
 yv=y1-del1+del2;
 case 3 % using the 3-rd order interpolation faster
 X(1,:)=Xa.^3; X(2,:)=Xa.^2; X(3,:)=Xa; X(4,:)=ones(1,4); p=(X'\Ya')';
 yv = polyval(p,xv);
 case 4 % using the quadratic faster => actualy slower
 xx=Xa(1:3); yy=Ya(1:3);
 X(2,:)=Xa(1:3); X(1,:)=X(2,:).^2; X(3,:)=ones(1,3); p=(X'\yy')';
 yv = polyval(p,xv);
 case 5 %method from the paper with gamma parameter
 % for gamma=1 gives the same results as quadratic but it is much faster
 gamma=1;
 dX=diff(Xa);dY=diff(Ya); h0=dX(1); y1=Ya(1);
 k1=dY(1)/dX(1); k2=dY(2)/dX(2);
 del1=h0*k1; del2=(k2-k1)*h0;
 yv=y1-del1+gamma*del2;
 case 6 % using the 3-rd order interpolation - slower
 p = polyfit(Xa(1:4),Ya(1:4),3); %can be faster with a line below
 yv = polyval(p,xv);

 case 7, % quadratic slower => atualy is much faster
 p = polyfit(Xa(1:3),Ya(1:3),2); %can be faster with a line below
 yv = polyval(p,xv);
 case 8 %method from the paper to find linear =>faster
 % for gamma=0 gives the same results as linear
 dX=diff(Xa);dY=diff(Ya); h0=dX(1); y1=Ya(1);
 k1=dY(1)/dX(1);
 del1=h0*k1;
 yv=y1-del1;
 otherwise, disp('error method is not specified')
end

return

function index=CalcI(ind,pointer)
%% Description: Calculates linear index given ind array and pointer (offsets).
% INPUTS
% point - vector with each entry corresponding to the loction in
% each dimension of the desired point.
% ind - current multidimensional index
% OUTPUTS
% index - linear index
%%
index=ind(1); ind=ind-1; ndim=length(ind);
for i=2:ndim, index=index+ind(i)*pointer(i); end;

function X=genInps(Y_,xtE,nPointsE)
%% Description: Generates input matrix.
% INPUTS
% Y_ - Training point function values for extended grid
% xtE - cell with extended grid vectors
% nPointsE - vector with number of grid points for each dimension
% after extrapolation
% OUTPUTS
% X - Matrix with training data
%%
[indx,n]=FindInd(nPointsE);

ndim=length(nPointsE);
X = zeros(n,ndim+1);
for i=1:n,
 for j=1:ndim
 X(i,j)=xtE{j}(indx(i,j));
 end;
end;
X(:,end)=Y_';

function out = Schwefel(point,alpha)
%% Description: Calculates the value of the Schwefel function for the given point and alpha value.
% INPUTS
% point - vector with each entry corresponding to the loction in
% each dimension of the desired point.
% alpha - nonlinear parameter for Schwefel function
% OUTPUTS

 100

% out - value of the Schwefel function at the desired point
%%
ndim=length(point);
out=0;
for i=1:ndim
 x=point(i)*alpha;
 out=out-x.*sin(sqrt(abs(x)));
end

function [Xn,scal,offset]=normaliArray(X, type)
% typ 0 => STD; 1 => UNI; 2 => BIP;
X_=X(:);
ma=max(X_) ;
mi=min(X_) ;
dell=ma-mi;
sd=std(X); avg=mean(X);
switch type
 case 0 % xn=x/std STD
 scal=1./sd; offset=avg./sd;
 case 1 % (0, +1) UNI
 scal=1./dell; offset= mi./dell;
 case 2 % (-1, +1) BIP
 scal=2/dell; offset= 2*mi/dell+1;
end;
Xn=scal*X-offset;
return;

Name: GenTpoints.m
function [xtE,X,indt]=GenTpoints(nseg, xt,X,method,F)
% INPUTS
% nseg => vector with number of gird points for each dimention
% alpha => nonlinear parameter for Schwefel function
% xt=> cells of vectors (if not specified then linspace is created
% OUTPUTS
% Xt - training points (last column is the output)
%% inputs:
% -nseg - a vector containing the number of grid points in each dimension
%
% -xt - cell array of vectors that define a grid
%
% -X - matrix of n row and d columns, where n is the number of grid points
% and d is the number of input dimensions. should be in the ndgrid format.
% Example: a=linspace(-1,1,5);
% b=linspace(-1,1,5);
% [aa,bb]=ndgrid(a,b);
% X=[a(:), bb(:)];
%
% -method - method used for edge value extrapolation, see findVirtualpoint
% function

% -F - column vector of length n containing function values or
% 'pole heights' at each point in X
% Example: for i=1:n
% F(i)=g(X(i,:)); % assume g() is some function
% end
%% outputs:
%
% -xtE - cell array of vectors that define a grid
%
% -X - matrix of n row and d+1 columns. X(:,1:end-1)=locations, X(:end)=values
%
% -indt - matrix with prod(nsegE) rows and d columns. Each row is a
% subscript into the grid defined by the grid vectors, and coressponds to
% each row in X
%%
ndim=length(nseg);
nsegE=nseg+2; % add begining and ending values for each dimention
for i=1:ndim, % extend cells form xt => xxt
 xx=xt{i}; xl=2*xx(1)-xx(2); xr=2*xx(end)-xx(end-1);
 xxx=[xl,xx,xr]; xtE{i}=xxx;
end;
[indt,nt]=FindInd3(nsegE);
indt=int16(indt);
pointer =findPointer(nsegE);
% Mscal=findScal(alpha);
% xtE{1}
% xtE{2}
% YY=zeros(1,nt);
YY=zeros(1,nt);
for i=1:nt
 ind=indt(i,:);
 loc=checkForBE(ind,nsegE);
% loc=checkForBE(ind,nseg);
% loc=checkForOnes(ind)
 XX_=[]; Y_=[];
 if loc>0, %calculate Y values only if found a single one
 X_=xtE{loc}; lx=length(X_);
 for j=1:ndim

 101

 XX_(j,:)=ones(1,lx)*xtE{j}(ind(j));
 end
 XX_(loc,:)=X_;

 for k=2:lx-1
 xx=XX_(:,k)';

% Y_(k)=Schwefel2(xx, alpha, Mscal) ;

% Y_(k)=fun(xx,alpha,functionSwitch);
% Y_(k)=F1(xx(1),xx(2));
% for p=1:ndim
% subs(p)=xt{i}
% end
% index=find(TrainData(:,1:end-1)==xx);
 [~,index]=ismember(xx,X,'rows');
 Y_(k)=F(index);
% xp(count,:)=[xx count];
% count=count+1;
 end
% count=count+1;
 Xa=X_(2:5); Ya=Y_(2:5);
 ya=findVirtualpoint(Xa,Ya,0,method);
 Y_(1)=ya;
 Xa=X_(lx-4:lx-1); Ya=Y_(lx-4:lx-1);
 yb= findVirtualpoint(Xa,Ya,1,method);
 Y_(lx)=yb;
 for k=1:lx
 ind(loc)=k;
 iii=CalcI(ind,pointer);
% finalI(cc)=iii;
% cc=cc+1;
 YY(iii)=Y_(k);
 end
 end
end

X=genInps(YY,xtE,nsegE);

function [indx,n]=FindInd3(max)
%% inx - without removal duplicates
% to get full list use index
b=length(max); n=prod(max);
index=ones(n,b); ind=ones(1,b);
for i=1:n
 index(i,:)=ind;
 ind(1)=ind(1)+1;
 k=1;
 while(ind(k)>max(k))
 ind(k)=1;
 k=k+1;
 if k==b+1
 break;
 end;
 ind(k)=ind(k)+1;
 end;
end;
indx=int16(index);

function pointer =findPointer(nsegE)
% pointer is a vector of size of nsegE indicating size of jumps
% pointer is used in the following way to find iii
% iii=ind(1); ind=ind-1;
% for i=2:ndim, iii=iii+ind(i)*pointer(i); end;
ndim= length(nsegE); pointer(2)=nsegE(1);
for i=3:ndim,
 pointer(i)=pointer(i-1)*nsegE(i-1);
end;

function loc=checkForBE(ind,nsegE)
% cheking occurances of ones and max in the string: ind
% returning location of one
lx=length(ind); s1=0;
for i=1:lx,
 if ind(i)==1, s1=s1+1; ii=i; end;
end
for i=1:lx,
 if ind(i)==nsegE(i), s1=0; end; %exclude end case
end

if s1==1, loc=ii; else loc=0; end;

function [yv,xv]=findVirtualpoint(Xa,Ya,sw,method_gen)
% returning value and posintion if virtual point
% Xa and Ya are 4 elements vectors
% sw==1 for upper end
if length(Xa)~=length(Ya), disp('error in findVirtualpoint length(Xa)~=length(Ya)'); pause; end;
if sw, Xa=fliplr(Xa); Ya=fliplr(Ya); end; % switching R_edge to L_edge
xv=2*Xa(1)-Xa(2);
% Xa
% Ya
% pause
switch method_gen,
 case 1, % linear

 102

 yv=2*Ya(1)-Ya(2);
 case 2 %method from the paper to find quadratic =>faster
 % for gamma=1 gives the same results as quadratic but it is much faster
 dX=diff(Xa);dY=diff(Ya); h0=dX(1); y1=Ya(1);
 k1=dY(1)/dX(1); k2=dY(2)/dX(2);
 del1=h0*k1; del2=(k2-k1)*h0;
 yv=y1-del1+del2;
 case 3 % using the 3-rd order interpolation faster
 X(1,:)=Xa.^3; X(2,:)=Xa.^2; X(3,:)=Xa; X(4,:)=ones(1,4); p=(X'\Ya')';
 yv = polyval(p,xv);
 case 4 % using the quadratic faster => actualy slower
 xx=Xa(1:3); yy=Ya(1:3);
 X(2,:)=Xa(1:3); X(1,:)=X(2,:).^2; X(3,:)=ones(1,3); p=(X'\yy')';
 yv = polyval(p,xv);
 case 5 %method from the paper with gamma parameter
 % for gamma=1 gives the same results as quadratic but it is much faster
 gamma=1;
 dX=diff(Xa);dY=diff(Ya); h0=dX(1); y1=Ya(1);
 k1=dY(1)/dX(1); k2=dY(2)/dX(2);
 del1=h0*k1; del2=(k2-k1)*h0;
 yv=y1-del1+gamma*del2;
 case 6 % using the 3-rd order interpolation - slower
 p = polyfit(Xa(1:4),Ya(1:4),3); %can be faster with a line below
 yv = polyval(p,xv);

 case 7, % quadratic slower => atualy is much faster
 p = polyfit(Xa(1:3),Ya(1:3),2); %can be faster with a line below
 yv = polyval(p,xv);
 case 8 %method from the paper to find linear =>faster
 % for gamma=0 gives the same results as linear
 dX=diff(Xa);dY=diff(Ya); h0=dX(1); y1=Ya(1);
 k1=dY(1)/dX(1);
 del1=h0*k1;
 yv=y1-del1;
 otherwise, disp('error method is not specified')
end

return

function iii=CalcI(ind,pointer)
iii=ind(1); ind=ind-1; ndim=length(ind);
for i=2:ndim, iii=iii+ind(i)*pointer(i); end;

function X=genInps(Y_,xtE,nsegE)
[indx,n]=FindInd3(nsegE);
ndim=length(nsegE);
for i=1:n,
 for j=1:ndim
 X(i,j)=xtE{j}(indx(i,j));
 end;
end;
X=[X,Y_'];

6.2.3 Peaks Experimental Results Code

Name: m_PeaksRandomTest.m
clear all;
testn=1000;trainn=2000;
load peaksTrain2400.mat
load peaksTest1000.mat
%%

trainTime=0;
testTime=0;
tic;
gridn=8;
xt{1}=linspace(-1,1,gridn);xt{2}=linspace(-1,1,gridn);

tic;
[xgrid,ygrid]=ndgrid(xt{1},xt{2});
zgrid=griddata(TrainData(:,1),TrainData(:,2),TrainData(:,3),xgrid,ygrid);
trainTime=trainTime+toc;
X=[xgrid(:), ygrid(:)]; F=zgrid(:);

nt=trainn;
[np,d]=size(TestData);

nseg=zeros(1,d-1);
for i=1:d-1
 nseg(i)=length(xt{i});
end

ndim = size(TrainData,2)-1;
n=sqrt(size(TrainData,1));
method=3;
[xtE,X,indx]=GenTpoints(nseg, xt,X,method,F);
nsegE = nseg + 2;
%%
splineTraintime = toc;

 103

tskTraintime = splineTraintime;
nnsaTraintime = splineTraintime;
%%
xv = xtE;
ztemp = reshape(X(:,end),nsegE);
ztemp = ztemp.';
[~,~,splineRMSETR,~,~,~]=splineResults([X(:,1:2) ztemp(:)],TrainData,trainn,xtE,nsegE,xv);
%% Fuzzy TSK Results

[~,~,tskRMSETR,~,~,~]=FuzzyTSKResults(xtE,X,TrainData,trainn);
%% NNSA Results
method_apr=4;
[~,~,nnsaRMSETR,~,~,~]=NNSA1Results(X,TrainData,xtE,indx,method_apr);

%%

ntrial=10;
%% Strip out values outside of [-1,+1]
TrainData2=TrainData(1:trainn,:);
%% MLP Results
sizes=[40];
epoch_n=100;
[MLP_Result,mlpRMSETR,mlpRMSETS,mlpTraintime,mlpTesttime,net,mlpNodes]=MLPResults(TrainData2,TestData,sizes,ntrial,epoch_n);
%% FCC Results
sizes=[10];
epoch_n=20;
[FCC_Result,fccRMSETR,fccRMSETS,fccTraintime,fccTesttime,fccNodes,topo,best_w,act,gain,paramt,iw]=FCCResults(TrainData2,TestData,
sizes,ntrial,epoch_n,testn);
%% SVR Results
gamma_list=[0.01,0.1,1,3,10];
C_list=[10,50,100,150,300];
[SVR_Result,svrRMSETR,svrRMSETS,svrTraintime,svrTesttime,model,svrNodes,C_bst,gamma_bst]=SVRResults(TrainData2,TestData,gamma_lis
t,C_list);
%% ELM Results
 nodeV=[10 15 25 50 60];
[ELM_Result,elmRMSETR,elmRMSETS,elmTraintime,elmTesttime,inw,outw,bias,elmNodes]=ELMResults(TrainData2,TestData,nodeV,ntrial);

%% ANFIS Results
numMFs=[3,3]; inmftype='gbellmf'; outmftype='linear'; epoch_n = 10;
[anfis_Result,anfisRMSETR,anfisRMSETS,anfisTraintime,anfisTesttime,out_fis,anfisNodes]=fuzzyResults(TrainData2,TestData,numMFs,in
mftype,outmftype,epoch_n);

%% Global Spline Results
xv = xtE;
ztemp = reshape(X(:,end),nsegE);
ztemp = ztemp.';

[Global_Result,~,splineRMSETS,~,splineTesttime,splineNodes]=splineResults([X(:,1:2) ztemp(:)],TestData,trainn,xtE,nsegE,xv);
%% Fuzzy TSK Results

[TSK_Result,~,tskRMSETS,~,tskTesttime,tskNodes]=FuzzyTSKResults(xtE,[X(:,1:2) ztemp(:)],TestData,trainn);
%% NNSA Results
method_apr=4;
[NNSA_Result,~,nnsaRMSETS,~,nnsaTesttime,nnsaNodes]=NNSA1Results(X,TestData,xtE,indx,method_apr);

%%
save('peaksTrialsData')
%%
plotSurfaces()
%% Print Time, Train, and Test Error to console
clear all;
load peaksTrialsData

disp('FCC');
disp(sprintf('trTime %.4f, tsTime %.4f, RMSETR=%.4f, RMSETS=%.4f,
Nodes=%d',fccTraintime,fccTesttime,fccRMSETR,fccRMSETS,fccNodes));
disp('MLP');
disp(sprintf('trTime %.4f, tsTime %.4f, RMSETR=%.4f, RMSETS=%.4f,
Nodes=%d',mlpTraintime,mlpTesttime,mlpRMSETR,mlpRMSETS,mlpNodes));
disp('SVM');
disp(sprintf('trTime %.4f, tsTime %.4f, RMSETR=%.4f, RMSETS=%.4f,
Nodes=%d',svrTraintime,svrTesttime,svrRMSETR,svrRMSETS,svrNodes));
disp('ELM');
disp(sprintf('trTime %.4f, tsTime %.4f, RMSETR=%.4f, RMSETS=%.4f,
Nodes=%d',elmTraintime,elmTesttime,elmRMSETR,elmRMSETS,elmNodes));
disp('ANFIS');
disp(sprintf('trTime %.4f, tsTime %.4f, RMSETR=%.4f, RMSETS=%.4f,
Nodes=%d',anfisTraintime,anfisTesttime,anfisRMSETR,anfisRMSETS,anfisNodes));
disp('Spline');
disp(sprintf('trTime %.4f, tsTime %.4f, RMSETR=%.4f, RMSETS=%.4f,
Nodes=%d',splineTraintime,splineTesttime,splineRMSETR,splineRMSETS,splineNodes));
disp('TSK');
disp(sprintf('trTime %.4f, tsTime %.4f, RMSETR=%.4f, RMSETS=%.4f,
Nodes=%d',tskTraintime,tskTesttime,tskRMSETR,tskRMSETS,tskNodes));
disp('NNSA');
disp(sprintf('trTime %.4f, tsTime %.4f, RMSETR=%.4f, RMSETS=%.4f,
Nodes=%d',nnsaTraintime,nnsaTesttime,nnsaRMSETR,nnsaRMSETS,nnsaNodes));

Name: plotSurfaces.m
function plotSurfaces
load peaksTrialsData

 104

load peaksPlot900

%% Global Results
[Global_Result,~,~,~,~]=splineResults([X(:,1:2) ztemp(:)],PlotData,trainn,xtE,nsegE,xv);

%% NNSA Results
[NNSA_Result,~,~,~,~,~]=NNSA1Results(X,PlotData,xtE,indx,method_apr);

%% Fuzzy TSK Results
[TSK_Result,~,~,~,~,~]=FuzzyTSKResults(xtE,[X(:,1:2) ztemp(:)],PlotData,trainn);

%% Fuzzy Results
Fuzzy_Result=evalfis(PlotData(:,1:end-1),out_fis);

%% MLP Results
MLP_Result=net(PlotData(:,1:end-1).').';

%% FCC Results
FCC_Result=calc_fwd(PlotData(:,1:end-1),topo,best_w,act,gain,paramt,iw);

%% SVR Results
[SVR_Result, ~, ~] = svmpredict(2*PlotData(:,end)-1,PlotData(:,1:end-1), model);
SVR_Result=(SVR_Result+1)/2;

%% ELM Results
[~,ELM_Result]=calcO(PlotData(:,1:end-1),PlotData(:,end),inw,outw,bias,elmNodes);ELM_Result=ELM_Result.';

%% In color
res=30;
string=strcat('Desired');
h=figure(1);clf;
surf(reshape(PlotData(:,1),res,res),reshape(PlotData(:,2),res,res),reshape(PlotData(:,3),res,res));
view(3); axis tight;hold all; title(string); %scatter3(xi(:),yi(:),zi(:),'r*');
fig(h,'units','inches','width',3.5)

string=strcat('SPLINE RMSE:',32,num2str(splineRMSETS));
h=figure(2);clf;
surf(reshape(PlotData(:,1),res,res),reshape(PlotData(:,2),res,res),reshape(Global_Result,res,res));
view(3); axis tight;hold all; title(string); %scatter3(xi(:),yi(:),zi(:),'r*');
fig(h,'units','inches','width',3.5)

string=strcat('NNSA RMSE:',32,num2str(nnsaRMSETS));
h=figure(3);clf;
surf(reshape(PlotData(:,1),res,res),reshape(PlotData(:,2),res,res),reshape(NNSA_Result,res,res));
view(3); axis tight;hold all; title(string); %scatter3(xi(:),yi(:),zi(:),'r*');
fig(h,'units','inches','width',3.5)

string=strcat('TSK RMSE:',32,num2str(tskRMSETS));
h=figure(4);clf;
surf(reshape(PlotData(:,1),res,res),reshape(PlotData(:,2),res,res),reshape(TSK_Result,res,res));
view(3); axis tight;hold all; title(string); %scatter3(xi(:),yi(:),zi(:),'r*');
fig(h,'units','inches','width',3.5)

string=strcat('ANFIS RMSE:',32,num2str(anfisRMSETS));
h=figure(5);clf;
surf(reshape(PlotData(:,1),res,res),reshape(PlotData(:,2),res,res),reshape(Fuzzy_Result,res,res));
view(3); axis tight;hold all; title(string); %scatter3(xi(:),yi(:),zi(:),'r*');
fig(h,'units','inches','width',3.5)

string=strcat('MLP RMSE:',32,num2str(mlpRMSETS));
h=figure(6);clf;
surf(reshape(PlotData(:,1),res,res),reshape(PlotData(:,2),res,res),reshape(MLP_Result,res,res));
view(3); axis tight;hold all; title(string); %scatter3(xi(:),yi(:),zi(:),'r*');
fig(h,'units','inches','width',3.5)

string=strcat('SVM RMSE:',32,num2str(svrRMSETS));
h=figure(7);clf;
surf(reshape(PlotData(:,1),res,res),reshape(PlotData(:,2),res,res),reshape(SVR_Result,res,res));
view(3); axis tight;hold all; title(string); %scatter3(xi(:),yi(:),zi(:),'r*');
fig(h,'units','inches','width',3.5)

string=strcat('ELM RMSE:',32,num2str(elmRMSETS));
h=figure(8);clf;
surf(reshape(PlotData(:,1),res,res),reshape(PlotData(:,2),res,res),reshape(ELM_Result,res,res));
view(3); axis tight;hold all; title(string); %scatter3(xi(:),yi(:),zi(:),'r*');
fig(h,'units','inches','width',3.5)

string=strcat('FCC RMSE:',32,num2str(fccRMSETS));
h=figure(10);clf;
surf(reshape(PlotData(:,1),res,res),reshape(PlotData(:,2),res,res),reshape(FCC_Result,res,res));
view(3); axis tight;hold all; title(string); %scatter3(xi(:),yi(:),zi(:),'r*');
fig(h,'units','inches','width',3.5)

function [y] = calc_fwd(inp,topo,w,act,gain,param,iw)
np = size(inp,1); % number of pattern
ni = param(2); % number of input
no = param(3); % number of output
nn = param(5); % number of neurons
y = zeros(np,no);
for p = 1:np % number of patterns
 node(1:ni) = inp(p,1:ni);
 for n = 1:nn % number of neurons
 j = ni + n;
 net = w(iw(n));

 105

 for i = (iw(n)+1):(iw(n+1)-1)
 net = net + node(topo(i))*w(i);
 end;
 out=actFunc(n,net,act,gain);
 node(j) = out;
 end;
 y(p,:)=node(ni+nn-no+1:ni+nn);
end;

function [SSE,O]=calcO(x, y, inw, outw, bias, nodes)
[np,nd]=size(x);
for i=1:nodes
 for j=1:np
 H(j,i)=1/(1+exp(-(inw(i,:)*x(j,:)'+bias(i))));
 end
end
O=outw'*H';
er=y-O'; SSE=er'*er;

function out=actFunc(n,net,act,gain)
de=0;
switch act(n)
 case 0, out = gain(n)*net; % linear neuron
 case 1, out = 1/(1+exp(-gain(n)*net)); % unipolar neuron
 case 2, out = tanh(gain(n)*net); % bipolar neuron
 case 3, out = gain(n)*net/(1+gain(n)*abs(net)); % bipolar elliot neuron
 case 4, out = 2*gain(n)*net/(1+gain(n)*abs(net))-1; % unipolar elliot neuron
 case 5, out = 2/(1+exp(-gain(n)*net))-1; % bipolar from NBN 2.08
 case 6,
% out = sign(gain(n)*net);
 if (abs(gain(n)*net)>=1)
 out = sign(gain(n)*net); % hard activation
 else
 out = gain(n)*net;
 end
end;

6.2.4 Forward Kinematics Results Code

Name: m_ForwardKinematicsTest.m
clear all; format compact;
% test_2d_with_edges

filename = 'normForwardKinTrainData.dat';
TrainData = dlmread(filename);

filename = 'normForwardKinTestData.dat';
TestData = dlmread(filename);
% TrainData = TrainData(:,[1 2 3]);
% fnamebase = 'forwardKinX2d';
% TestData = TestData(:,[1 2 3]);
TrainData = TrainData(:,[1 2 4]);
fnamebase = 'forwardKinY2d';
TestData = TestData(:,[1 2 4]);
%%
ndim = size(TrainData,2)-1;
n=sqrt(size(TrainData,1));

xt = cell(1,ndim);
nseg = zeros(1, ndim);
for i = 1:ndim
 xt{i} = TrainData(1:n,1).';
 nseg(i) = length(xt{i});
end
[xtE,TrainData,indx]=GenTpoints(nseg, xt,TrainData(:,1:ndim),3,TrainData(:,end));
nsegE = nseg + 2;

method_apr=4;
trainn = size(TrainData,1);
testn = size(TestData, 1);
ntrial=10;

%% MLP Results
sizes=[10,20,50,60,70];
epoch_n=100;
[~,mlpRMSETR,mlpRMSETS,mlpTraintime,mlpTesttime,~,mlpNodes]=MLPResults(TrainData,TestData,sizes,ntrial,epoch_n);
%% FCC Results

sizes=[4,8,10];
epoch_n=20;
[~,fccRMSETR,fccRMSETS,fccTraintime,fccTesttime,fccNodes,~,~,~,~,~,~]=FCCResults(TrainData,TestData,sizes,ntrial,epoch_n,testn);
%% SVR Results

 gamma_list=2.^[0 -3 -4];
 C_list=2.^[0 3 6];

[~,svrRMSETR,svrRMSETS,svrTraintime,svrTesttime,~,svrNodes,C_bst,gamma_bst]=SVRResults(TrainData,TestData,gamma_list,C_list);

 106

%% ELM Results

 nodeV=[10 15 25 50 60];
[~,elmRMSETR,elmRMSETS,elmTraintime,elmTesttime,~,~,~,elmNodes]=ELMResults(TrainData,TestData,nodeV,ntrial);
%% ANFIS Results
numMFs = 4*ones(size(nseg));
inmftype='gbellmf'; outmftype='linear'; epoch_n = 10;
[~,anfisRMSETR,anfisRMSETS,anfisTraintime,anfisTesttime,~,anfisNodes]=fuzzyResults(TrainData,TestData,numMFs,inmftype,outmftype,e
poch_n);
%% Global Spline Results
xv = xtE;
[Global_Result,splineRMSETR,splineRMSETS,splineTraintime,splineTesttime,splineNodes]=splineResults(TrainData,TestData,trainn,xtE,
nsegE,xv);
Global_Result=reshape(Global_Result,sqrt(size(TestData,1)),sqrt(size(TestData,1)));Global_Result=Global_Result.';Global_Result=Gl
obal_Result(:);
[~,splineRMSETS]=computeRMSE(TestData(:,end),Global_Result(:));
%% Fuzzy TSK Results
[TSK_Result,tskRMSETR,tskRMSETS,tskTraintime,tskTesttime,tskNodes]=FuzzyTSKResults(xtE,TrainData,TestData,trainn);
TSK_Result=reshape(TSK_Result,sqrt(size(TestData,1)),sqrt(size(TestData,1)));TSK_Result=TSK_Result.';TSK_Result=TSK_Result(:);
[~,tskRMSETS]=computeRMSE(TestData(:,end),TSK_Result(:));
%% NNSA Results

[~,nnsaRMSETR,nnsaRMSETS,nnsaTraintime,nnsaTesttime,nnsaNodes]=NNSA1Results(TrainData,TestData,xtE,indx,method_apr);
%%

algorithmNames = {'MLP';'FCC';'SVM';'ELM';'ANFIS';'TSK';'Spline';'NNSA'};
trainTime = [mlpTraintime;fccTraintime;svrTraintime;elmTraintime;anfisTraintime;tskTraintime;splineTraintime;nnsaTraintime];
testTime = [mlpTesttime;fccTesttime;svrTesttime;elmTesttime;anfisTesttime;tskTesttime;splineTesttime;nnsaTesttime];
totalTime = trainTime + testTime;
trainRMSE = [mlpRMSETR;fccRMSETR;svrRMSETR;elmRMSETR;anfisRMSETR;tskRMSETR;splineRMSETR;nnsaRMSETR];
testRMSE = [mlpRMSETS;fccRMSETS;svrRMSETS;elmRMSETS;anfisRMSETS;tskRMSETS;splineRMSETS;nnsaRMSETS];
nodes = [mlpNodes;fccNodes;svrNodes;elmNodes;anfisNodes;tskNodes;splineNodes;nnsaNodes];
trialResults = table(algorithmNames,trainTime,testTime,totalTime,trainRMSE,testRMSE,nodes);

%%
writetable(trialResults,strcat(fnamebase,'.xlsx'))

6.2.5 Schwefel Function Results Code

Name: m_Schwefel_multidim_batch.m
clear;
fnameBase = 'schwefelResults';

% alphas = [10,20,30,50,100];
% ndims = [2,3,4,5];
% points = [6,6,6,8,10];
alphas = [10,20];
ndims = [2,3];
points = [6,6];
method_gen = 3;

for i=1:length(ndims)
 for j=1:length(alphas)
 alpha=alphas(j);
 nPoints = points(j)*ones(1,ndims(i));

 trialResults = runSchwefelTrial(nPoints,alpha,method_gen);
 filename = strcat(fnameBase,'Dim',num2str(ndims(i)),'Alpha',num2str(alpha),'Npt',num2str(points(j)));
 writetable(trialResults,filename)
 end
end

Name: runSchwefelTrial.m
clear;
fnameBase = 'schwefelResults';
algorithmNames = {'MLP';'FCC';'SVM';'ELM';'ANFIS';'TSK';'Spline';'NNSA'};
nAlg = length(algorithmNames);
% alphas = [10,20,30,50,100];
% ndims = [2,3,4,5];
% points = [6,6,6,8,10];

alphas = [10,20];
ndims = [2,3];
points = [6,6];

trialResults = table();
for i=1:length(ndims)
 for j=1:length(alphas)

 alpha=alphas(j);
 filename = strcat(fnameBase,'Dim',num2str(ndims(i)),'Alpha',num2str(alpha),'Npt',num2str(points(j)));
 trial = readtable(filename);
 trialResults = vertcat(trialResults,trial);
 end

 107

end

writetable(trialResults,fnameBase)

trialResults = readtable(fnameBase);

%%
writetable(trialResults,strcat(fnameBase,'.xlsx'))
%%
figureWidth=3.5;
fontSize = 15;
lineWidth = 2;
fields = {'trainTime','testTime','totalTime','trainRMSE','testRMSE'};
titles = {'Train Time(s)','Test Time(s)','Total Time(s)','Train RMSE','Test RMSE'};
plotStyles = {'-r^','-rd',':b>','--bx','--g<',':gs',':kv','-.ko'};
for k=1:length(fields)
for j=1:length(alphas)
h=figure(k*10+j);clf;hold all;
for i = 1:nAlg
title(strcat(titles{k},32,'alpha =',32,num2str(alphas(j))));
rows1 = strcmp(trialResults.Algorithm, algorithmNames{i});
rows2 = trialResults.Alpha==alphas(j);
rows = rows1 & rows2;
t1 = trialResults(rows,fields{k});
%%
plot(ndims(1:length(t1{:,fields{k}})),t1{:,fields{k}},plotStyles{i},'LineWidth',lineWidth)
set(gca,'xtick', ndims)
set(gca,'xticklabel',{'2','3','4','5'})
xlabel('Dimensions');
ylabel(titles{k});
end
% fig(h,'units','inches','width',figureWidth)
% legend(algorithmNames,'Location','best');
set(gca,'FontSize',fontSize,'fontWeight','bold','FontName','Times New Roman')
set(findall(gcf,'type','text'),'FontSize',fontSize,'fontWeight','bold','FontName','Times New Roman')
end
end
%%

%%
fields = {'trainTime','testTime','totalTime'};
titles = {'Train Time(s)','Test Time(s)','Total Time(s)'};
plotStyles = {'-r^','-rd',':b>','--bx','--g<',':gs',':kv','-.ko'};
for k=1:length(fields)
for j=1:length(alphas)
h=figure(k*10+j);clf;
for i = 1:nAlg

rows1 = strcmp(trialResults.Algorithm, algorithmNames{i});
rows2 = trialResults.Alpha==alphas(j);
rows = rows1 & rows2;
t1 = trialResults(rows,fields{k});

% plot(ndims(1:length(t1{:,fields{k}})),t1{:,fields{k}},plotStyles{i})
semilogy(ndims(1:length(t1{:,fields{k}})),t1{:,fields{k}},plotStyles{i},'LineWidth',lineWidth);hold all;

end
title(strcat(titles{k},32,'alpha =',32,num2str(alphas(j))));
set(gca,'xtick', ndims)
set(gca,'xticklabel',{'2','3','4','5'})
xlabel('Dimensions');
ylabel(titles{k});
% fig(h,'units','inches','width',figureWidth)
% legend(algorithmNames,'Location','best');
set(gca,'FontSize',fontSize,'fontWeight','bold','FontName','Times New Roman')
set(findall(gcf,'type','text'),'FontSize',fontSize,'fontWeight','bold','FontName','Times New Roman')
end
end

Name: m_Schwefel_multidim_data_analysis.m
function trialResults = runSchwefelTrial(nPoints,alpha,method_gen)
[TrainData,xt,TestData,xv,~,xtE,nsegE,indx,n]=generateSchwefelTrainValidation(nPoints,alpha,method_gen);
method_apr=4;
trainn = size(TrainData,1);
testn = size(TestData, 1);
ntrial=10;
%% MLP Results
sizes=[10 15 25 50 60];
epoch_n=100;
[~,mlpRMSETR,mlpRMSETS,mlpTraintime,mlpTesttime,~,mlpNodes]=MLPResults(TrainData,TestData,sizes,ntrial,epoch_n);
%% FCC Results
sizes=[3,5,7,9,10];
epoch_n=20;
[~,fccRMSETR,fccRMSETS,fccTraintime,fccTesttime,fccNodes,~,~,~,~,~,~]=FCCResults(TrainData,TestData,sizes,ntrial,epoch_n,testn);
%% SVR Results
gamma_list=[0.01,0.1,1,3,10];
C_list=[10,50,100,150,300];
[~,svrRMSETR,svrRMSETS,svrTraintime,svrTesttime,~,svrNodes,~,~]=SVRResults(TrainData,TestData,gamma_list,C_list);
%% ELM Results

 108

 nodeV=[10 15 25 50 60];
[~,elmRMSETR,elmRMSETS,elmTraintime,elmTesttime,~,~,~,elmNodes]=ELMResults(TrainData,TestData,nodeV,ntrial);
%% ANFIS Results

numMFs=3*ones(1,length(nPoints));
inmftype='gbellmf'; outmftype='linear'; epoch_n = 10;

[~,anfisRMSETR,anfisRMSETS,anfisTraintime,anfisTesttime,~,anfisNodes]=fuzzyResults(TrainData,TestData,numMFs,inmftype,outmftype,e
poch_n);
%% Global Spline Results
[~,splineRMSETR,splineRMSETS,splineTraintime,splineTesttime,splineNodes]=splineResults(TrainData,TestData,trainn,xtE,nsegE,xv);
%% Fuzzy TSK Results
[~,tskRMSETR,tskRMSETS,tskTraintime,tskTesttime,tskNodes]=FuzzyTSKResults(xtE,TrainData,TestData,trainn);
%% NNSA Results
[~,nnsaRMSETR,nnsaRMSETS,nnsaTraintime,nnsaTesttime,nnsaNodes]=NNSA1Results(TrainData,TestData,xtE,indx,method_apr);

%%
Algorithm = {'MLP';'FCC';'SVM';'ELM';'ANFIS';'TSK';'Spline';'NNSA'};
trainTime = [mlpTraintime;fccTraintime;svrTraintime;elmTraintime;anfisTraintime;tskTraintime;splineTraintime;nnsaTraintime];
testTime = [mlpTesttime;fccTesttime;svrTesttime;elmTesttime;anfisTesttime;tskTesttime;splineTesttime;nnsaTesttime];
trainRMSE = [mlpRMSETR;fccRMSETR;svrRMSETR;elmRMSETR;anfisRMSETR;tskRMSETR;splineRMSETR;nnsaRMSETR];
testRMSE = [mlpRMSETS;fccRMSETS;svrRMSETS;elmRMSETS;anfisRMSETS;tskRMSETS;splineRMSETS;nnsaRMSETS];
nodes = [mlpNodes;fccNodes;svrNodes;elmNodes;anfisNodes;tskNodes;splineNodes;nnsaNodes];
Dim = size(TrainData,2) -1;
Dimension = Dim*ones(size(Algorithm));
totalTime = trainTime+testTime;
Alpha = alpha*ones(size(Algorithm));
trialResults = table(Algorithm,Dimension,Alpha,trainTime,testTime,totalTime,trainRMSE,testRMSE,nodes);

