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Abstract

This paper focuses on number fields and the number rings associated

with a particular number field. This topic falls under the study of algebra,

and in particular algebraic number theory. The motivation of this paper is

to discuss the properties of these number fields in an effort to observe the

prime ideal structure. The Dedekind property is most useful in the obser-

vation of the prime ideal structure. Along with discussing the structure of

these number fields, we will also briefly talk about completions in a number

field, which is from the area of topology.
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Section 1 - Introduction

The study of algebraic number theory focuses on number fields and their

properties. A number field is a finite field extension over the field Q of ra-

tional numbers. These such number fields are of the form Q[α] for some

algebraic integer α. An algebraic integer is a complex number which is a

root to some monic poynomial with integer coefficients.

Example 1.1: Since
√

2 is a root to the polynomial x2 - 2, then it is an alge-

braic integer. We can define the number field Q[
√

2] = {a + b
√

2 | a, b ∈ Q}.

Proposition 1.2: Let d be a square free integer. The set of algebraic

integers in the number field Q[
√
d] is

{a + b
√
d | a, b ∈ Z} if d ≡ 2 or 3 (mod 4)

{a+b
√
d

2
| a, b ∈ Z, a ≡ b (mod 2)} if d ≡ 1 (mod 4)

The result of Proposition 1.2 is that the algebraic integers in Q[
√
d] form a

ring. Furthermore, this is true for any number field and it can be proven

by showing that the sum of two algebraic numbers and the product of two

algebraic numbers both yield an algebraic number. The following theorem

will be useful in proving this.

Theorem 1.3: The following conditions are equivalent for α ∈ C:

(i) α is an algebraic integer;

(ii) The additive group of the ring Z[α] is finitely generated;
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(iii) α is a member of some subring of C having a finitely generated additive

group;

(iv) αA ⊂ A for some finitely generated additive subgroup A ⊂ C

(Marcus 15-16).

Corollary 1.4: If α and β are algebraic integers, then so are α + β and αβ.

Proof: By (ii) of Theorem 1.3, we know that Z[α] and Z[β] both have finitely

generated additive groups. Suppose α1, · · ·, αm generate Z[α], and

β1, · · ·, βn generate Z[β]. The total of mn products of αiβi generate Z[α, β].

We can see that α + β, αβ ∈ Z[α, β], and by (iii) of Theorem 1.3, we have

that they are algebraic integers. �

From the same notion of the set of algebraic integers in any number field

K, we can consider the set of algebraic integers of the complex field C which

we will denote A. The set of algebraic integers A is a ring, and we will use

this to define a number ring.

Definition 1.5: For any number field K, we shall say that the subring

A ∩ K of K is the number ring corresponding to K. An example of a number

ring is Z[
√

3] = {a + b
√

3 | a, b ∈ Z}.

Suppose we have a number field K with degree n over Q. We have that

K lies in C, and there are exactly n Q-linearly independent monomorphisms

of K in C, say σ1, · · ·, σn. We can define two functions trace and norm on

K. Then for each α ∈ K, the trace of α on K is defined:
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T(α) = σ1(α) + · · · + σn(α)

and the norm of α on K is defined:

N(α) = σ1(α)· · ·σn(α)

From these definitions we have T(α + β) = T(α) + T(β) and

N(αβ) = N(α)N(β).

Proof: T(α + β) = σ1(α + β) + · · · + σn(α + β)

= (σ1(α) + σ1(β)) + · · · + (σn(α) + σn(β))

= (σ1(α) + · · · + σn(α)) + (σ1(β) + · · · + σn(β))

= T(α) + T(β).

N(αβ) = σ1(αβ)· · ·σn(αβ)

= (σ1(α)σ1(β))· · ·(σn(α)σn(β))

= (σ1(α)· · ·σn(α))(σ1(β)· · ·σn(β))

= N(α)N(β).

Suppose we have a number field K as before with K having degree n over Q,

and such that σ1, · · ·, σn are the n embeddings of K in C. If we take any

n elements α1, · · ·, αn ∈ K, we can define the discriminant of α1, · · ·, αn as

follows:

disc(α1, · · ·, αn) = |σi(αj)|2

which is the square of the determinant of the matrix with σi(αj) in the ith

row, jth column. We can further define the discriminant using the trace

function, that is:
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disc(α1, · · ·, αn) = |T(αiαj)|.

We can now use the discriminant to determine the additive structure of R.

Keeping in mind, we are dealing with the number field K having degree n

over Q and let R be the ring of algebraic integers in K, as we have defined

to be the number ring corresponding to K.

Definition 1.6: A free abelian group of finite rank n is a group which

is the direct sum of n subgroups, each isomorphic to Z.

Theorem 1.7: Let {α1, · · ·, αn} be a basis for K over Q consisting en-

tirely of algebraic integers, and let d = disc(α1, · · ·, αn). Then every α ∈ R,

where R is the ring of algebraic integers in K, can be expressed in the form

α = m1α1+···+mnαn
d

with all mj ∈ Z and all m2
j divisible by d (Marcus 29).

Theorem 1.7 says that R is contained in the free abelian group

1
d
A = Zα1

d
⊕ · · · ⊕ Zαn

d
.

Therefore, R has rank n, and R is contained in a free abelian group of rank

n. This implies the following corollary.

Corollary 1.8: R is a free abelian group of rank n.
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Section 2 - Localization

When dealing with number fields, it is useful to look at the localization of

a ring R at some prime ideal P. We will start this discussion by defining a

multiplicative subset of a ring. All rings are assumed to be commutative

with identity.

Definition 2.1: Let A be a ring. A multiplicative subset, S of A, is a

subset containing 1 such that, whenever x, y ∈ S, then xy ∈ S. We shall

assume 0 is not contained in S.

Suppose S is the multiplicative subset containing all nonzero elements of

the ring A. The set K = S−1A is the quotient field of A. We shall define

the set K to be the set of quotients x
s

with x ∈ A and s ∈ S. From this defi-

nition it is obvious that A has a canonical inclusion in its field of quotients K.

Definition 2.2: An R-module of a ring R is an additive abelian group

A together with a function R × A → A such that for all r, s ∈ R and

a, b ∈ A:

(i) r(a+b) = ra + rb;

(ii) (r+s)a = ra + sa;

(iii) (rs)a = r(sa);

(iv) If 1 is the identity of R, then 1a = a for all a ∈ A. If R is a division ring,

then a unitary R-module is called a vector space.

Consider a ring A. If M is an A-module contained in some field L (con-
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taining A), then S−1M denotes the set of elements v
s

with v ∈ M and s ∈ S.

We are actually speaking of equivalence classes by v
s
. That is, v

s
∼ w

t
if and

only if vt = ws. Then S−1M is an S−1A-module. We can sometimes consider

the case with M a ring containing A as a subring.

Definition 2.3: A proper ideal P of a ring R is said to be a prime ideal

if for any ideals A, B in R, then AB ⊂ P implies A ⊂ P or B ⊂ P.

Let P be a prime ideal of a ring A, then P 6= A by definition. The com-

plement of P in A, denoted A - P, is a multiplicative subset of A. If we let

A - P = S, we can denote S−1A by AP .

Definition 2.4: A maximal ideal of a ring R is a proper ideal M of R,

M 6= R, such that for any other ideal N of R with M ⊂ N ⊂ R, then either

N = M or N = R.

Definition 2.5: A local ring R is a ring which has a unique maximal ideal.

In the case of such a local ring R with maximal ideal M, for any element

x ∈ R with x /∈ M, then x is a unit. Thus the maximal ideal M of a local

ring R is the set of non-units of R.

Example 2.6: If p is a prime and n a positive integer, then Zpn is a lo-

cal ring with a unique maximal ideal pZ.

Notice the ring AP as defined earlier is a local ring. Its maximal ideal MP
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consists of the quotients x
s
, with x ∈ P and s ∈ A - P (s in A but not in P).

Theorem 2.7: If R is a commutative ring, then the following conditions

are equivalent:

(i) R is a local ring;

(ii) all non-unit, non-zero elements of R are contained in some ideal M 6= R;

(iii) the non-unit elements of R form an ideal.

Proof: (i) =⇒ (ii) If a ∈ R is a nonunit, then aR 6= R (where aR denotes

the ideal generated by a). Remark: Every ideal in a ring with identity is

contained in some maximal ideal, thus the unique maximal ideal of a local

ring R must contain every ideal of R. Therefore, aR is contained in the unique

maximal ideal of R. (ii) =⇒ (iii) and (iii) =⇒ (i) follow from the fact that if

I is an ideal of R and a ∈ I, then aR ⊂ I. Consequently, I 6= R if and only if

I consists only of nonunits. �

Observe that MP ∩ A = P. The inclusion ⊃ is clear. Conversely, if

y ∈ MP ∩ A with y = x
s

for x ∈ P and s ∈ S, then x = sy ∈ P and s /∈ P.

Hence y ∈ P.

Let A be a ring and S a multiplicative subset of A. Consider B an ideal

of S−1A. Then, B = S−1(B ∩ A). The inclusion ⊃ is clear. Conversely, let

x ∈ B. Write x = a
s

for some a ∈ A and s ∈ S. Then sx ∈ B ∩ A, so

x ∈ S−1(B ∩ A).
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Section 3 - Integral Closure

Definition 3.1: Let A be a ring and L some field containing A. We shall say

for some element x ∈ L, that x is integral over A if either one of the following

two conditions holds:

(i) There exists a finitely generated non-zero A-module M ⊂ L such that

xM ⊂ M.

(ii) The element x satisfies some equation

xn + an−1x
n−1 + · · · + a0 = 0

with coefficients ai ∈ A. Such an equation is called an integral equation. An-

other way to state this second condition is, that x is a root to some monic

polynomial f(x) in A[x], that is, f(x) = 0.

The previous two conditions are actually equivalent. Assume (i), that is,

there exists M = 〈v1,· · ·,vn〉 such that xM ⊂ M and M 6= 0. Then

xv1 = a11v1 + · · · + a1nvn
...

xvn = an1v1 + · · · + annvn

with coefficients aij in A. Transposing xv1, · · ·, xvn to the right hand side of

these equations we can conclude that the determinant is equal to 0. This gives

us an integral equation for x over A. Conversely, assuming (ii), the module M

generated by 1, x, · · ·, xn−1 is mapped into itself by the element x so xM ⊂M.

Proposition 3.2: Let A be a ring, K its quotient field, and x algebraic
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over K. Then there exists an element c 6= 0 of A such that cx is integral over

A.

Proof: There exists an equation

anxn + · · · + a0 = 0

with ai ∈ A and an 6= 0. Multiply this equation by an−1n . Then

(anx)n + · · · + a0a
n−1
n = 0

is an integral equation for anx over A. �

Let B be a ring containing A. We will call B integral over A if every ele-

ment of B is integral over A.

Proposition 3.3: If B is integral over A and finitely generated as an A-

algebra, then B is a finitely generated A-module.

Proof: Use induction on the number of ring generators, and we may assume

that B = A[x] for some element x integral over A. We have already seen that

our assertion is true for this case. �

Proposition 3.4: Let A ⊂ B ⊂ C be rings. If B is integral over A and

C is integral over B, then C is integral over A.

Proof: Let x ∈ C, so x satisfies some integral equation

xn + bn−1x
n−1 + · · · + b0 = 0

with bi ∈ B. Let B1 = A[b0, · · ·, bn−1]. Then B1 is a finitely generated

A-module by Proposition 3.3, and B1[x] is a finitely generated B1-module,
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whence it is a finitely generated A-module. Since multiplication by x maps

B1[x] into itself, it follows that x is integral over A. �

Proposition 3.5: Let A ⊂ B be rings such that B integral over A. Let

σ be a homomorphism of B. Then σ(B) is integral over σ(A).

Proof: All we need to do is apply σ to some integral equation satisfied by

any element x ∈ B. This will be an integral equation for σ(x) over σ(A). �

Proposition 3.6: Let R be a ring contained in a field L. Let R be the

set of elements of L which are integral over R. Then R is a ring which we

call the integral closure of R in L.

Proof: Let x, y ∈ R, and let M, N be two finitely generated R-modules such

that xM ⊂ M and yN ⊂ N. Then MN is finitely generated, and it is mapped

into itself by multiplication with x ± y and xy. �

Let K be a field and f ∈ K[x] an irreducible polynomial. The polynomial

f is said to be separable if in some splitting field of f over K, every root of

f is a simple root. If F is an extension field of K, and every element of F is

separable over K, then F is said to be a separable extension of K.

Corollary 3.7: Let A be a ring, K its quotient field, and L a finite sep-

arable extension of K. Let x be an element of L which is integral over A.

Then the norm and trace of x from L to K are integral over A, and so are

the coefficients of the irreducible polynomial satisfied by x over K.

Proof: For each isomorphism σ of L over K, σ(x) is integral over A. Since

10



the norm is the product of σ(x) over all such σ, and the trace is the sum of

σ(x) over all such σ, it follows they are integral over A. Similarly, the coeffi-

cients of the irreducible polynomial are obtained from elementary symmetric

functions of σ(x), and are therefore integral over A. �

Definition 3.8: A ring R is integrally closed in a field L if R = R. We

say that R is integrally closed if it is integrally closed in its quotient field.

Let A be a ring, M an A-module and B a nonempty subset of A. B is called

a submodule of M provided that B is an additive subgroup of M and rb ∈ B

for all r ∈ A, b ∈ B. A submodule of a vector space over a division ring is

called a subspace.

A module M is said to satisfy the ascending chain condition (ACC) on sub-

modules if for every chain A1 ⊂ A2 ⊂ A3 ⊂ · · · of submodules of M, there is

an integer n such that Ai = An for all i ≥ n.

Definition 3.9: A ring A is called Noetherian if it satisfies the ascend-

ing chain condition on ideals.

If M and N are modules over a ring A, then HomA(M,N) is the set of

all A-module homomorphisms f: M → N. If A = Z we write Hom(M,N) in

place of HomA(M,N). HomA(M,N) is an abelian group under addition and

this addition is distributive with respect to composition of functions.
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Definition 3.10: If M is a right A-module, the dual M∗ of M is the left

A-module HomA(M,A). Similarly, if N is a left A-module, the dual N∗ of N

is the right A-module HomA(N,A).

Theorem 3.11: Let R be a ring with identity. The following conditions

on a unitary R-module F are equivalent:

(i) F has a nonempty basis;

(ii) F is the internal direct sum of a family of cyclic R-modules, each of which

is isomorphic as a left R-module to R;

(iii) F is R-module isomorphic to a direct sum of copies of the left R-module

R;

(iv) there exists a nonempty set X and a function ι: X → F with the follow-

ing property: given any unitary R-module A and function f: X → A, there

exists a unique R-module homomorphism f : F → A such that fι = f. In

other words, F is a free object in the category of unitary R-modules.

A unitary F module over a ring R with identity which satisfies the equivalent

conditions of the previous Theroem is called a free R-module on the set X.

If F is a free left A-module such that X is a basis for F, and if X is fi-

nite, then F∗ is a free right A-module with basis {fx | x ∈ X}, which is called

the dual basis.

Definition 3.12: The kernel of a homomorphism of rings f: R → S is

its kernel as a map of additive groups, that is, Ker f = {r ∈ R | f(r) = 0}.
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Proposition 3.13: Let A be a Noetherian ring, integrally closed. Let L

be a finite separable extension of its quotient field K. Then the integral clo-

sure of A in L is finitely generated over A.

Proof: Let w1, · · ·, wn be a linear basis of L over K. After multiplying each

wi by a suitable element of A, we may assume that the wi are integral over

A. The trace Tr from L to K is a K-linear map of L into K, and it is non-

degenerate, that is, there exists an element x ∈ L such that Tr(x) 6= 0. If

α is a non-zero element of L, then the function Tr(αx) on L is an element

of the dual space of L as K-vector space, and induces a homomorphism of L

into its dual space. Since the kernel is trivial, it follows that L is isomorphic

to its dual under the bilinear form (x,y) 7−→ Tr(xy). Let w′1, · · ·, w′n be the

dual basis of w1, · · ·, wn, so that Tr(w′iwj) = δij. Let c 6= 0 be an element of

A such that cw′i is integral over A. Let z ∈ L be integral over A. Then zcw′i

is integral over A, and so is Tr(zcw′i) for each i. If we write

z = b1w1 + · · · + bnwn

with coefficients bi ∈ K, then Tr(zcw′i) = cbi, and cbi ∈ A because A is

integrally closed. Hence z is contained in

Ac−1w1 + · · · + Ac−1wn.

Since z was selected arbitrarily in the integral closure of A in L, it follows

that the integral closure is contained in a finitely generated A-module, and

thus our proof is finished. �

Recall that an integral domain R is a commutative ring with identity such
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that for any elements a, b ∈ R whenever ab = 0, either a = 0 or b = 0. A

unique factorization domain, or UFD, is an integral domain in which every

element can be uniquely factored into a product of prime elements. Also a

principal ideal ring (domain) is a ring in which every ideal is principal, that

is, an ideal which is generated by a single element x.

Proposition 3.14: If A is a unique factorization domain, then A is in-

tegrally closed.

Proof: Suppose there is a quotient a
b

with a, b ∈ A which is integral over

A, and a prime element p in A which divides b but not a. For some n ≥ 1,

we have

(a
b
)n + an−1(

a
b
)n−1 + · · · + a0 = 0,

whence

an + an−1ban−1 + · · · + a0b
n = 0.

Since p divides b, it must divide an, and hence p divides a which is a contra-

diction. �

Let A be a left module over an integral domain R and for each a ∈ A let

Oa = {r ∈ R | ra = 0}. Moreover, At = {a ∈ A | Oa 6= 0} is a submodule of

A called the torsion submodule of A. Furthermore, A is a torsion module if

A = At, and A is torsion-free if At = 0.

Theorem 3.15: Let A be a principal ideal ring, and L a finite separable

extension of its quotient field, of degree n. Let B be the integral closure of
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A in L. Then B is a free module of rank n over A.

Proof: As a module over A, the integral closure is torsion-free, and by

the general theory of principal ideal rings, any torsion-free finitely generated

module is in fact a free module. It is obvious that the rank is equal to the

degree [L:K]. �

Proposition 3.16: Let A be a subring of a ring B, integral over A. Let

S be a multiplicative subset of A. Then S−1B is integral over S−1A. If A is

integrally closed, then S−1A is integrally closed.

Proof: If x ∈ B and s ∈ S, and if M is a finitely generated A-module such that

xM ⊂ M, then S−1M is a finitely generated S−1A-module which is mapped

into itself by s−1x, so that s−1x is integral over S−1A. As to the second asser-

tion, let x be integral over S−1A, with x in the quotient field of A. We have

that

xn + bn−1

sn−1
xn−1 + · · · + b0

s0
= 0,

bi ∈ A and si ∈ S. Thus there exists an element s ∈ S such that sx is integral

over A, and hence lies in A. This proves that x lies in S−1A. �

Corollary 3.17: If B is the integral closure of A in some field extension

L of the quotient field of A, then S−1B is the integral closure of S−1A in L.
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Section 4 - Dedekind Rings

We will define a Dedekind ring (domain) in efforts to further inspect how we

may view number rings. A good reason for inspecting these Dedekind rings

is that a number ring is always Dedekind. Let’s now give some definitions

and theorems.

Definition 4.1: A Dedekind domain is an integral domain R in which

every proper ideal is the product of a finite number of prime ideals.

Definition 4.2: A fractional ideal is a nonzero submodule I of K such

that aI ⊂ R for some nonzero a ∈ R.

Example: Every nonzero finitely generated R-submodule I of K is a frac-

tional ideal of R. For if I is generated by b1, · · ·, bn ∈ K, then

I = Rb1 + · · · + Rbn

and for each i, bi = ci
ai

with 0 6= ai, ci ∈ R. Let a = a1a2 · · ·an. Then a 6= 0

and

aI = Ra2 · · ·anc1 + · · · + Ra1 · · ·an−1cn ⊂ R.

Definition 4.3: A discrete valuation ring is a principal ideal domain

that has exactly one nonzero prime ideal.

Lemma 4.4: Let I, I1, I2, · · ·, In be ideals in an integral domain R.

(i) The ideal I1I2 · · ·In is invertible if and only if each Ij is invertible.

16



(ii) If P1 · · ·Pm = I = Q1 · · ·Qn, where the Pi and Qj are prime ideals in R

and every Pi is invertible, then m = n and after indexing Pi = Qi for each

i = 1, · · ·, m (Hungerford 402).

Theorem 4.5: If R is a Dedekind domain, then every nonzero prime ideal

of R is invertible and maximal (Hungerford 402-403).

Theorem 4.6: Every invertible fractional ideal of an integral domain R

with quotient field K is a finitely generated R-module (Hungerford 403).

Theorem 4.7: A module A satisfies the ascending chain condition on sub-

modules if and only if every submodule of A is finitely generated. In par-

ticular, a commutative ring R is Noetherian if and only if every ideal R is

finitely generated.

Proof: (=⇒) If B is a submodule of A, let S be the set of all finitely gen-

erated submodules of B. Since S is nonempty because 0 ∈ S, S contains a

maximal element C. C is finitely generated by c1c2 · · ·cn. For each b ∈ B let

Db be the submodule of B generated by b, c1c2 · · ·cn. Then Db ∈ S and

C ⊂ Db. Since C is maximal, Db = C for every b ∈ B, whence b ∈ Db = C

for every b ∈ B and B ⊂ C. Since C ⊂ B by construction, B = C and thus

B is finitely generated.

(⇐=) Given a chain of submodules A1 ⊂ A 2 ⊂ A3 ⊂ · · ·, it is easy to verify

that ∪ Ai is also a submodule of A and therefore finitely generated, say by

a1, · · ·, ak. Since each ai is an element of some Ai, there is an index n such

that ai ∈ An for i = 1, 2, · · ·, k. Consequently, ∪ Ai ⊂ An, whence Ai = An
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for i ≥ n. �

Theorem 4.8: Let S be an extension ring of R and s ∈ S. Then the following

conditions are equivalent.

(i) s is integral over R;

(ii) R[s] is a finitely generated R-module;

(iii) there is a subring T of S containing 1 and R[s] which is finitely generated

as an R-module;

(iv) there is an R[s]-submodule B of S which is finitely generated as an R-

module and whose annihilator in R[s] is zero.

Proof: (i) =⇒ (ii): Suppose s is a root to the monic polynomial f ∈ R[x] of

degree n. We claim that 1R = s0, s, s2, · · ·, sn−1 generate R[s] as an R-module.

Every element of R[s] is of the form g(s) for some g ∈ R[x]. By the division

algorithm, g(x) = f(x)q(x) + r(x) with r < deg f. Therefore,

g(s) = f(s)q(s) + r(s) = 0 + r(s) = r(s). Hence, g(s) is an R-linear combina-

tion of 1R, s, s2, · · ·, sm with m = deg r < deg f = n.

(ii) =⇒ (iii): This is trivial if we let T = R[s].

(iii) =⇒ (iv): Let B be the subring T. Since R ⊂ R[s] ⊂ T, B is an R[s]-

module that is finitely generated as an R-module by (iii). Moreover, 1s ∈ B,

uB = 0 for any u ∈ S implies that u = u1s = 0; that is, the annihilator of B

in R[s] is 0.

(iv) =⇒ (i): Let B be generated over R by b1, · · ·, bn. We have that B is an

R[s]-module sbi ∈ B for each i. Therefore, there exists rij ∈ R such that

sb1 = r11b1 + · · · + r1nbn
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...

sbn = rn1b1 + · · · + rnnbn.

Consequently,

(r11 - s)b1 + r12b2 + · · · + r1nbn = 0

r21b1 + (r22 - s)b2 + · · · + r2nbn = 0

...

rn1b1 + rn2b2 + · · · + (rnn -s)bn = 0.

Let M be the n x n matrix (rij) and let d ∈ R[s] be the determinant of the

matrix M - sIn. Then dbi = 0 for all i. Since B is generated by the bi,

dB = 0. Since the annihilator of B in R[s] is 0 by (iv), we must have d = 0.

If f is the polynomial |M - xIn| in R[x], then one of f, -f is monic and

± f(s) = ± |M - sIn| = ± d = 0.

Therefore, s is integral over R. �

Theorem 4.9: In a nonzero ring R with identity maximal ideals always

exist. In fact every ideal I in R (I 6= R) is contained in a maximal ideal.

Proof: Since 0 is an ideal and 0 6= R, it suffices to prove the second state-

ment. We will use an application of Zorn’s Lemma. If A is a ideal in R such

that A 6= R, then let S be the set of all ideals B in R such that A ⊂ B 6= R.

S is nonempty since A ∈ S. Partially order S using set theoretic inclusion;

that is, B1 ≤ B2 ⇔ B1 ⊂ B2. To apply Zorn’s Lemma, we must show that

every chain C = {Ci | i ∈ I} of ideals in S has an upper bound in S. Let

C = ∪i∈I Ci. We claim that C is a ideal. If a, b ∈ C, then for some i, j ∈ I,
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a ∈ Ci and b ∈ Cj. Since C is a chain, either Ci ⊂ Cj or Cj ⊂ Ci, say the

latter. Hence, a, b ∈ Ci. Since Ci is a ideal, a - b ∈ Ci and ra ∈ Ci for all

r ∈ R. Therefore, a, b ∈ C implies a - b and ra ∈ Ci ⊂ C. Consequently, C

is a ideal. Since A ⊂ Ci for all i, A ⊂ ∪ Ci = C. Each Ci ∈ S, Ci 6= R for all

i ∈ I. Consequently, 1R /∈ Ci for every i, whence 1R ∈ ∪ Ci = C. Therefore,

C 6= R and hence, C ∈ S. Clearly C is an upper bound of the chain C. Thus

the hypotheses of Zorn’s Lemma are satisfied and hence S contains a maxi-

mal element. But a maximal element of S is obviously a maximal ideal in R

that contains A. �

Theorem 4.10: If R is commutative, then every maximal ideal M in R

is prime.

Proof: Suppose ab ∈ M but a /∈ M and b /∈ M. Then each ideal M + aR

and M + bR properly contains M. By maximality M + aR = R = M + bR.

Since R is commutative and ab ∈ M, (aR)(bR) ⊂ (ab)R ⊂ M. Therefore,

R = R2 = (M + aR)(M + bR) ⊂ M2 + (aR)M + M(bR) + (aR)(bR) ⊂ M.

This contradicts the fact that M 6= R since M is maximal. Therefore, a ∈ M

or b ∈ M, and so M is prime. �

Theorem 4.11: Let T be a multiplicative subset of an integral domain

R such that 0 /∈ T. If R is integrally closed, then T−1R is an integrally closed

integral domain.

Proof: Observe that T−1R is an integral domain and R may be identified

as a subring of T−1R. Extending this, the quotient filed Q(R) of R may be
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considered as a subfield of the quotient field Q(T−1R) of T−1R. It is clear

that Q(R) = Q(T−1R). Let u ∈ Q(T−1R) be integral over T−1R, then for

some ri ∈ R and si ∈ T

un + rn−1

sn−1
un−1 + · · · + r1

s1
u + r0

s0
= 0.

Multiply through this equation by sn, where s = s0s1 · · ·sn−1 ∈ T. We can

conclude that su is integral over R. Since su ∈ Q(T−1R) = Q(R) and R is

integrally closed, su ∈ R. Therefore, u = su
s
∈ T−1R, whence T−1R is inte-

grally closed. �

Lemma 4.12: Let S be a multiplicative subset of a commutative ring R

with identity and let I be an ideal in R.

(i) I ⊂ φs−1(S−1I).

(ii) If I = φs−1(J) for some ideal J in S−1R, then S−1I = J. In other words

every ideal in S−1R is of the form S−1I for some ideal I in R.

(iii) If P is a prime ideal in R and S ∩ P = ∅, then S−1P is a prime ideal in

S−1R and φs−1(S−1P) = P (Hungerford 146).

Remark: There is a one-to-one correspondence between the set U of prime

ideals of a ring R which are disjoint from S and the set V of prime ideals of

S−1R, given by P 7→ S−1P.

Theorem 4.13: Let P be a prime ideal in a commutative ring R with

identity.

(i) there is a one-to-one correspondence between the set of prime ideals of R
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which are contained in P and the set of prime ideals of Rp, given by

Q 7→ Qp;

(ii) the ideal Pp in Rp is the unique maximal ideal of Rp.

Proof: Since the prime ideals of R contained in P are precisely those which

are disjoint from S = R - P, (i) is an immediate consequence of the remark

preceding the theorem. If M is a maximal ideal of RP , then M is prime,

whence M = QP for some prime ideal Q of R with Q ⊂ P. But Q ⊂ P implies

QP ⊂ PP . Since PP 6= RP , we must have QP = PP . Therefore, PP is the

unique maximal ideal in RP . �

Theorem 4.14: If S is a set, a ∈ S and for each n ∈ N, fn: S → S is a

function φ: N → S such that φ(0) = a and φ(n + 1) = fn(φ(n)) for every

n ∈ N (Hungerford 10-11).

Lemma 4.15: If R is a Noetherian, integrally closed integral domain and

R has a unique nonzero prime ideal P, then R is a discrete valuation ring

(Hungerford 404-405).

Theorem 4.16: (Dedekind’s Theorem) The following conditions on an in-

tegral domain R are equivalent:

(i) R is a Dedekind domain;

(ii) every proper ideal in R is uniquely a product of a finite number of prime

ideals;

(iii) every nonzero ideal in R is invertible;

(iv) every fractional ideal of R is invertible;
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(v) R is Noetherian, integrally closed, and every nonzero prime ideal is max-

imal;

(vi) R is Noetherian and for every nonzero prime ideal P of R, the localiza-

tion Rp of R at P is a discrete valuation ring.

Proof: (i) =⇒ (ii) and (ii) =⇒ (iii) follow immediately from Lemma 4.4 and

Theorem 4.5.

(iii) =⇒ (iv) Trivial since every fractional ideal is a nonzero ideal.

(iv) =⇒ (v) Every ideal of R is invertible and hence finitely generated by

Theroem 4.6. Since each of these ideals of R is finitely generated then they

are necessarily Noetherian by Theorem 4.7. Let K be the quotient field of

R. If u ∈ K is integral over R, then R[u] is a finitely generated R-submodule

of K by Theorem 4.8. Our example following immediately after Definition

4.2 shows that R[u] is a fractional ideal of R. Therefore, R[u] is invertible

by our assumption (iv). Thus since R[u]R[u] = R[u], then R[u] = RR[u] =

(R[u]−1R[u])R[u] = R[u]−1R[u] = R, whence u ∈ R. Therefore R is integrally

closed. Finally if P is a nonzero prime ideal in R, then there is a maximal

ideal M of R that contains P by Theorem 4.9. M is invertible by assump-

tion. Consequently M−1P is a fractional ideal of R with M−1P ⊂ M−1M =

R, whence M−1P is an ideal in R. Since M(M−1P) = RP = P and P is prime,

either M ⊂ P or M−1P ⊂ P. But if M−1P ⊂ P, then R ⊂ M−1 = M−1R =

M−1PP−1 ⊂ PP−1 ⊂ R, so M−1 = R. Thus R = MM−1 = MR = M, which

contradicts the fact that M is maximal. Therefore M ⊂ P and hence M = P.

Therefore P is maximal.

(v) =⇒ (vi) Rp is an integrally closed integral domain by Theorem 4.11.

By Lemma 4.12 every ideal in Rp is of the form Ip = {i/s | i ∈ I, s /∈ P},
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where I is an ideal of R. Since every ideal of R is finitely generated by (v)

and by Theorem 4.7. It follows that every ideal of Rp is finitely generated.

Therefore Rp is Noetherian by Theorem 4.7. By Theorem 4.13 every nonzero

prime ideal of Rp is of the form Ip, where I is a nonzero prime ideal of R that

is contained in P. Since every nonzero prime ideal of R is maximal by (v),

Pp must be the unique nonzero prime ideal in Rp. Therefore Rp is a discrete

valuation ring by Lemma 4.15.

(vi) =⇒ (i) Note that every nonzero ideal I is invertible by (iii). For each

ideal I of R choose a maximal ideal MI of R such that I ⊂ MI ⊂ R (MI 6= R)

by Theorem 4.9, and using the Axiom of Choice. If I = R, let MR = R. Then

IM−1I is a fractional ideal of R with IM−1I ⊂ MIM
−1
I ⊂ R. Therefore IM−1I is

an ideal of R that clearly contains I. Also if I is proper then I ⊂ IM−1I (not

equal). Let S be the set of all ideals of R and define a function f: S → S by

I 7→ IM−1I . Given a proper ideal J, there exists by the Recursion Theorem

4.14 a function φ: N → S such that φ(0) = J and φ(n + 1) = f(φ(n)). If we

denote φ(n) by Jn and MJn by Mn, then we have an ascending chain of ideals

J = J0 ( J1 ( J2 ( · · · such that J = J0 and Jn+1 = f(Jn) = JnM−1n . Since

R is Noetherian and J is a proper ideal, there is a least integer k such that

J = J0 ( J1 ( · · · ( Jk−1 ( Jk = Jk+1.

Thus Jk = Jk+1 = f(Jk) = JkM
−1
k . This can occur only if Jk = R. Consequently

R = Jk = f(Jk−1) = Jk−1M
−1
k−1, so

Jk−1 = Jk−1R = Jk−1M
−1
k−1Mk−1 = RMk−1 = Mk−1.

Since Mk−1 = Jk−1 ( Jk = R, we have Mk−1 is a maximal ideal. Then

minimality of k insures that each of M0, · · ·, Mk−2 is also maximal. It is easy
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to verify that

Mk−1 = Jk−1 = Jk−2M
−1
k−2 = Jk−3M

−1
k−3M

−1
k−2 = · · · = JM−10 M−11 · · ·M−1k−2.

Consequently since each Mi is invertible,

Mk−1(M0 · · ·Mk−2) = JM−10 · · ·M−1k−2(M0 · · ·Mk−2) = J.

Thus J is the product of maximal ideals, hence prime ideals. Therefore R is

Dedekind. This concludes the proof. �

Ideals in Dedekind rings can be generated by two elements, in which case

we say the ideals are 2 generated. Furthermore, one of these elements can

be taken arbitrarily. Let I be an ideal in a Dedekind ring. If there is some

non-zero α ∈ I, then we can find β ∈ I such that I = αR + βR. When ideals

are generated by two elements with one element taken arbitrarily, we say

that the ideals are 11
2

generated.
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Section 5 - Prime Ideals

In the following theorems and definitions, we will be discussing those such

rings that are commutative. But since the focus of this paper is on num-

ber fields and number rings, we need not define these rings to be necessarily

commutative in this section because that property follows from the fact they

are number rings. This is because our definition of a number ring defines

the elements thereof to be in the intersection of the set of algebraic integers

A along with any number field K in which we are taking into consideration.

Thus, these elements are complex numbers, which are commutative.

Let P be a prime ideal of a ring A and let S = A - P. If B is a ring containing

A, we denote by BP the ring S−1B. Let B be a ring containing a ring A. Let

P be a prime ideal of A and P′ be a prime ideal of B. We say that P′ lies

above P if P′ ∩ A = P and we write P′ | P. In this case, the injection

A → B induces an injection of the factor rings A/P → B/P′, and we have a

commutative diagram:

B → B/P′

↑ ↑

A → A/P

in which the horizontal arrows are canonical homomorphisms, and the ver-

tical arrows indicate inclusions. If B is integral over A, then B/P′ is integral

over A/P by Proposition 3.5 in section 3.

Nakayama’s Lemma: Let A be a ring, B an ideal contained in all maximal
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ideals of A, and M a finitely generated A-module. If BM = M, then M = 0.

Proof: Induction on the number of generators of M. Say M is generated by

w1, · · ·, wm. There exists an expression

w1 = a1w1 + · · · + amwm

with ai ∈ B. Hence

(1-a1)w1 = a2w2 + · · · + amwm.

If 1-a1 is not a unit in A, then it is contained in a maximal ideal N. Since

a1 ∈ N by hypothesis, we have a contradiction. Hence 1-a1 is a unit, and

dividing by it shows that M can be generated by m-1 elements, thereby con-

cluding our proof. �

Proposition 5.1: Let A be a ring, P a prime ideal, and B a ring con-

taining A and integral over A. Then PB 6= B, and there exists a prime ideal

P′ of B lying above P.

Proof: We know that BP is integral over AP , and that AP is a local ring

with maximal ideal MP . Since we have PBP = PAPB = PAPBP = MPBP , it

will suffice to prove our first assertion when A is a local ring. In that case, if

PB = B, then 1 has an expression as a finite linear combination of elements

of B with coefficients in P,

1 = a1b1 + · · · + anbn

with ai ∈ P and bi ∈ B. Let B0 = A[b1, · · ·, bn]. Then PB0 = B0 and B0 is a

finite A-module by Proposition 3.3. Hence B0 = 0, which is a contradiction.
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To prove our second Assertion, we go back to the original notation, and note

the following commutative diagram:

B → BP

↑ ↑

A → AP

with all arrows inclusions here. We have just proved that MPBP 6= BP .

Hence MPBP is contained in a maximal ideal M of BP , and M ∩ BP there-

fore contains MP . Since MP is maximal, it follows that MP = M ∩ AP . Let

P′ = M ∩ B. Then P′ is a prime ideal of B, and taking intersections with A

going both ways around our diagram shows that M ∩ A = P, so that

P′ ∩ A = P, which is what needs to be shown. �

Remark: Let B be integral over A, and let N be an ideal of B, N 6= 0.

Then N ∩ A 6= 0. Let b 6= 0 ∈ N. Then b satisfies an equation

bn + an−1b
n−1 + · · · + a0 = 0

with ai ∈ A, and a0 6= 0. But a0 lies in N ∩ A.

Proposition 5.2: Let A be a subring of B, and assume B is integral over

A. Let P′ be a prime ideal of B lying over a prime ideal P of A. Then P′ is

maximal if and only if P is maximal.

Proof: Assume P is maximal in A. Then A/P is a field. We are reduced

to proving that a ring which is integral over a field is a field. If K is a field

and x is integral over K, then it is standard from elementary field theory

that the ring K[x] is itself a field, so x is invertible in the ring. Conversely,
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assume that P′ is maximal in B. Then B/P′ is a field, which is integral over

the ring A/P. If A/P is not a field, it has a non-zero maximal ideal M. By

Proposition 5.1, there exists a maximal ideal N of B/P′ lying above M, which

is a contradiction. �

When an extension is given explicitly by a generating element, then we can

describe the primes lying above a given prime more explicitly.

Let A be integrally closed in its quotient field K, and let E be a finite exten-

sion of K. Let B be the integral closure of A in E. Assume that B = A[α] for

some element α, and let f(X) be the irreducible polynomial of α over K. Let

M be a maximal ideal of A. We have a canonical homomorphism

A → A/M = A, which extends to the polynomial ring, namely

g(X) =
∑m

i=1ciX
i 7−→

∑m
i=1 ciX

i = g(X),

where c denotes the residue class mod M of an element c ∈ A.

Proposition 5.3: We will contend that there is a natural bijection between

the prime ideals P′ of B lying above P and the irreducible factors P (X) of

f(X) having leading coefficient 1. This bijection is such that a prime P′ of B

lying above P corresponds to P if and only if P′ is the kernel of the homo-

morphism A[α] → A[α] where α is a root of P .

Proof: Let P′ lie above P. Then the canonical homomorphism B → B/P′

sends α on a root of f which is conjugate to a root of some irreducible factor

of f . Furthermore, two roots of f are conjugate over A if and only if they
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are roots of the same irreducible factors of f . Finally, let z be a root of P

in some algebraic closure of A. The map g(α) 7→ g(z) for g(X) ∈ A[X] is a

well-defined map, because if g(α) = 0 then g(X) = f(X)h(X) for some

h(X) ∈ A[X], whence g(z) = 0 also. Being well-defined, our map is obviously

a homomorphism, and since z is a root of an irreducible polynomial over A,

it follows that its kernel is a prime ideal in B, thus proving our contention. �

Remark 1: The assumption that P is maximal can be weakened to P prime

by localizing.

Remark 2: In dealing with extensions of number fields, the assumption

B = A[α] is not always satisfied, but it is true that BP = AP [α] for all but a

finite number of P, so that the previous discussion holds almost always locally.

Definition 5.4: Let I be an ideal in a ring R. The radical (or nilrad-

ical) of I is the ideal I intersect P, where the intersection is taken over all

prime ideals P in R such that P contains I. The radical is denoted Rad I,

and if the set of prime ideals containing I is empty, then Rad I is R itself.

Remark: If R has identity, then every ideal I, not equal R, is contained

in a maximal ideal M. Since M 6= R and M is necessarily prime, then

Rad I 6= R.

Example 5.5: In an integral domain R, the zero ideal is prime. Hence,

Rad 0 = 0. In the ring of integers Z, Rad (12) = (2) ∩ (3) = (6) and
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Rad (4) = (2) = Rad (32).

Theorem 5.6: If I is an ideal in a commutative ring R, then

Rad I = {r ∈ R | rn ∈ I, for some n > 0}.

Proof: If Rad I = R, then {r ∈ R | rn ∈ I} ⊂ Rad I. Assume Rad I 6= R.

If rn ∈ I and P is any prime ideal containing I, then rn ∈ P whence r ∈ P.

Thus {r ∈ R | rn ∈ I} ⊂ Rad I. Conversely, if t ∈ R and tn /∈ I for all n > 0,

then S = {tn + x | n ∈ N∗; x ∈ I} is a multiplicative set such that

S ∩ I = ∅. There is a prime ideal P disjoint from S that contains I. By

construction, t ∈ P and hence t ∈ Rad I. Thus t /∈ {r ∈ R | rn ∈ I} implies

t /∈ Rad I, whence Rad I ⊂ {r ∈ R | rn ∈ I}. �

Definition 5.7: An ideal Q 6= R in a ring R is primary if for any a, b

∈ R: ab ∈ Q and a /∈ Q implies bn ∈ Q for some n > 0.

Example 5.8: Every prime ideal is primary by definition. If p is a prime

integer and n ≥ 2, then (p)n = (pn) is a primary ideal in Z which is not

prime. In general, a power Pn of a prime ideal P need not be primary.

Theorem 5.9: If Q is a primary ideal in a ring R, then Rad Q is a prime

ideal.

Proof: Suppose ab ∈ Rad Q and a /∈ Rad Q. Then anbn = (ab)n ∈ Q for

some n. Since a /∈ Rad Q, an /∈ Q. Since Q is primary, there is an integer

m > 0 such that (bn)m ∈ Q, whence b ∈ Rad Q. Therefore, Rad Q is prime. �
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Theorem 5.10: Let Q and P be ideals in a ring R. Then Q is primary

for P if and only if:

(i) Q ⊂ P ⊂ Rad Q;

(ii) if ab ∈ Q and a /∈ Q, then b ∈ P (Hungerford 381).

Theorem 5.11: If Q1, Q2, · · ·, Qn are primary ideals in a commutative

ring R, all of which are primary for the prime ideal P, then ∩ni=1 Qi is also a

primary ideal belonging to P (Hungerford 381).

Definition 5.12: An ideal I in a ring R has a primary decomposition if

I = Q1 ∩ Q2 ∩ · · · ∩ Qn with each Qi primary. If no Qi contains Q1 ∩ · · · ∩

Qi−1 ∩ Qi+1 ∩ · · · ∩ Qn and the radicals of the Qi are all distinct, then the

primary decomposition is said to be reduced (or irredundant).
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Section 6 - Completions

In this section we will define a completion, and we will look at a couple of the

properties that go along with completions. We will not prove any of these

theorems since it is dealing with the study of topology and this paper is

meant to focus on the study of algebraic number theory. However, we make

mention of the notion of a completion because it is useful in the discussion

of number fields and number rings. First, we will define an absolute value.

Definition 6.1: Let K be a field. An absolute value on K is a real valued

function x 7→ |x|v on K satisfying the following three properties:

(i) |x|v = 0 (= 0 if and only if x = 0);

(ii) for all x, y ∈ K we have |xy|v = |x|v|y|v;

(iii) |x + y|v 5 |x|v + |y|v.

If instead of property (iii) we have the stronger condition:

(iv) |x + y|v 5 max(|x|v, |y|v),

then we shall say that it is a valuation.

An absolute value || defines a distance (x, y) 7→ |x - y|, and thus defines

a topology on the field. If two absolute values define the same topology they

are called dependent. If they do not define the same topology they are called

independent.

Definition 6.2: Let K be a field. We say the K is complete if every

cauchy sequence in K converges, that is, there is a limit to every cauchy

sequence.
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Proposition 6.3: There exists a pair (Kv, i) consisting of a field Kv which

is complete under an absolute value, and an embedding i: K→ Kv such that

the absolute value on K is induced by that of Kv, and such that iK is dense

in Kv. If (Kv, i′) is another such pair, then there exists a unique isomorphism

σ: Kv → K′v that preserves the absolute values (Lang, Algebra 468-469).

In the introduction of this paper we saw the term norm, but here we will

re-introduce the term with some conditions.

Definiton 6.4: Let K be a field with a non-trivial absolute value, and E be

a vector space over K. We define a norm on E by a function φ → |φ| of E

into the real numbers, satisfying the following conditions:

(i) |φ| ≥ 0 for all φ ∈ E, and = 0 if and only if φ = 0;

(ii) For all x ∈ K and φ ∈ E we have |xφ| = |x||φ|;

(iii) If φ, φ′ ∈ E, then |φ + φ′| ≤ |φ| + |φ′|.

Two norms ||1 and ||2 are said to be equivalent if there exist numbers c1,

c2 greater than zero such that for all φ ∈ E we have: c1|φ|1 ≤ |φ|2 ≤ c2|φ|1

Proposition 6.5: Let K be a complete field under a non-trivial absolute

value, and let E be a finite-dimensional vector space over K. Then any two

norms on E are equivalent (Lang, Algebra 470).

Proposition 6.6: Let K be complete with respect to a non-trivial abso-

lute value. Let α be algebraic over K, and let N be the norm from K(α) to
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K. Let n = [K(α): K]. Then |α| = |N(α)|1/n.

The notion of completion is used widely in the field of mathematics. The

most relative example to any field of mathematics is forming the real num-

bers from the rational numbers by ordering. Other examples of completions

are the p-adic absolute values, and the Banach space used in analysis and

topology. The Banach space is a complete normed vector space.
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