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Abstract

A continuum is a compact and connected topological space. A continuum that is not

the union of any two of its proper subcontinua is said to be indecomposable. We exam-

ine topological spaces which are closely related to indecomposable continua, specifically,

widely-connected spaces and the hyperspace of the Stone-Čech remainder of the half-line. A

widely-connected space is a connected space all of whose non-trivial connected subsets are

dense in the entire space. We answer questions of Erdős, Bellamy, and Mioduszewski with

the following examples: a completely metrizable widely-connected subset of the plane; a

widely-connected subset of Euclidean 3-space that is not indecomposable upon the addition

of a single limit point; a widely-connected subset of Euclidean 3-space that is contained

in a composant of each of its compactifications; widely-connected spaces of large cardinali-

ties. Then, we construct the maximum possible number of non-homeomorphic subcontinua

of C(H∗), each of which is a union of two order arcs. We also characterize when βX is

indecomposable and study the structure of C(H∗) using the property of Kelley.
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Chapter 1

Introduction

A topological space that is compact and connected is called a continuum. Usually, a

continuum can be decomposed into two proper subcontinua – for instance, [0, 1
2
]∪ [1

2
, 1] and

[0, 1
3
] ∪ [1

4
, 1] are decompositions of the unit interval [0, 1]. A continuum which admits no

such decomposition is said to be indecomposable. By a standard result of continuum theory,

every connected subset of an indecomposable continuum is either dense or nowhere dense.

This document addresses connected spaces with similar properties.

Widely-connected spaces are connected topological spaces all of whose non-degenerate

connected subsets are dense in the original space. Examples are usually constructed as dense

subsets of indecomposable continua by carefully eliminating all of the nowhere dense sub-

continua. Techniques for constructing widely-connected sets in this manner are provided

in Chapter 2. In Section 2.2 we describe a new method for producing widely-connected

subsets of a planar indecomposable continuum known as the bucket-handle continuum. An

example is obtained in Section 2.2.4 by deleting only countably many compact sets from the

bucket-handle. A metrizable space is completely metrizable if and only if it is a Gδ-subset

of one (each) of its compactifications. Thus, the problem of finding a completely metriz-

able widely-connected space, due to Paul Erdős and Howard Cook, is solved. The original

technique for constructing widely-connected spaces is revived in Section 2.3. Applying it

to the large indecomposable continua of Michel Smith produces widely-connected spaces of

arbitrarily large cardinality, answering a question of David Bellamy.

Now there is the question of whether every widely-connected space is a dense subset of

an indecomposable continuum. Equivalently: Is the Stone-Čech compactification of a widely-

connected space necessarily an indecomposable continuum? This question is made interesting
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by the fact that the indecomposability of a widely-connected set can be destroyed by adding

limit points. In fact, Example 2.26 shows that the addition of a single limit point to a widely-

connected subset of Euclidean 3-space can destroy indecomposability. The existence of such

an example was suggested by Mary Ellen Rudin, who proved that this scenario is impossible

in the plane but never published her example. The special limit point glues together many

disjoint closed subsets of the original space, and is therefore not representative of a point in

the Stone-Čech compactification.

In Section 2.4.1 we describe a property of X that is necessary and sufficient in order for

βX to be indecomposable. Our characterization shows that some extreme types of widely-

connected spaces have indecomposable compactifications. Also, whenX is a separable metric

space, βX is indecomposable if and only if X has a metric indecomposable compactification

– Section 2.4.2. In the language of continuum theory the question above is equivalent to: If

W is a connected separable metric space that is irreducible between every two of its points,

then does W have an irreducible compactification? Perhaps surprisingly, W may not have a

compactification that is irreducible between two points in W . A counterexample is given in

Section 2.4.3; it implies a negative answer to a question of Jerzy Mioduszewski.

The Stone-Čech remainder H∗ := β[0,∞) \ [0,∞) is a non-metric indecomposable con-

tinuum. The subject of Chapter 3 is the hyperspace of subcontinua of H∗, denoted C(H∗).

An order arc in the hyperspace is a linearly ordered continuum that is obtained by continu-

ously increasing from one continuum to another. In Section 3.2, a method of Alan Dow and

Klaas Pieter Hart is used to find 2c mutually non-homeomorphic subcontinua of C(H∗), each

of which is a union of two order arcs. If the Continuum Hypothesis fails, then there is the

maximum possible number of 2c non-homeomorphic order arcs in C(H∗), in sharp contrast to

the metric case (if X is a metric continuum then every order arc in C(X) is homeomorphic

to the unit interval [0, 1]). On the other hand, if the Continuum Hypothesis holds then there

are at least 3 different order arcs, but the exact number is still unknown. Finally, in Section

3.3 we use the property of Kelley to learn more about the general structure of C(H∗).
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1.1 Preliminaries

Let X be a topological space. Then X is connected if it cannot be partitioned into two

non-empty disjoint open subsets. A subset of X that is both closed and open is said to be

clopen. Since open and closed sets are complementary, X is connected if and only if every

clopen subset of X is equal to ∅ or all of X. Some ways of creating larger connected spaces

from smaller ones are described by the following.

Theorem 1.1 ([11] Theorem 6.1.10). If the collection {Cs : s ∈ S} of connected subspaces

of a topological space has a non-empty intersection, then
⋃
s∈S Cs is connected.

Theorem 1.2 ([11] Theorem 6.1.11). If a subspace C of X is connected then every subspace

A of X which satisfies C ⊆ A ⊆ C is also connected.

Theorem 1.3 ([18] §46 II Theorem 4). If C is a connected subset of a connected space X,

and if U and V are disjoint relatively clopen subsets of X \ C, then C ∪ U and C ∪ V are

connected.

The component of a point x ∈ X is the union of all connected subsets of X which

contain x. The quasi-component of x is the intersection of all clopen subsets of X which

contain x. The component of x is always contained in the quasi-component of x, but they

are not necessarily equal. Consider for instance X = ({0} × 2) ∪ ({1/n : n ≥ 1} × [0, 1]).

The quasi-component of 〈0, 0〉 is {0} × 2, but the component of 〈0, 0〉 is {0} × 1.

Following [11], X is hereditarily disconnected if all of its components are singletons, and

totally disconnected if all of its quasi-components are singletons. Every totally disconnected

space is hereditarily disconnected, but the converse is not necessarily true – see Examples

X1 and X3 in Sections 2.2.2 and 2.2.4.

A continuum (plural form continua) is a connected compact Hausdorff space.

Theorem 1.4 ([11] Theorem 6.1.18). Let {Cs : s ∈ S} be a collection of subspaces of a

topological space X each of which is a continuum. If Cs ⊆ Ct or Ct ⊆ Cs for each s and t in

S, then
⋂
s∈S Cs is a continuum.
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Theorem 1.5 ([11] Theorem 6.1.23). In a compact space X the component of a point x ∈ X

coincides with the quasi-component of the point x.

Theorem 1.6 ([11] Theorem 6.1.25). If A is a closed subset of a continuum X such that

∅ 6= A 6= X, then for every component C of the space A we have C ∩ ∂A 6= ∅.

If X is a continuum, then P is a composant of X if there exists p ∈ X such that P is

the union of all proper subcontinua of X that contain p. By Theorems 1.1 and 1.6, each

composant of X is connected and dense in X.

If X is a continuum, then X is decomposable if there are two proper subcontinua H,K (

X such that X = H ∪K. Otherwise, X is indecomposable.

Theorem 1.7 ([18] §48 V Theorem 2). Let X be a continuum. The following are equivalent:

(i) X is indecomposable;

(ii) Every proper subcontinuum of X is nowhere dense in X.

Theorem 1.8 ([18] §48 VI Theorem 5). The composants of an indecomposable continuum

are disjoint.

Examples of indecomposable continua:

� Knaster bucket-handle continuum – [18] §48 V Example 1

� Stone-Čech remainder of the half-line – [32] Theorem 9.13

� Examples with one and two composants – David Bellamy [3]

� Examples with large numbers of composants – Michel Smith [30]

A compactification of a space X is a compact Hausdorff space in which X is densely

embedded. Recall that a space is T1 if all of its singletons are closed, and completely regular

if for any closed A ⊆ X and x ∈ X \ A there is a continuous function f : X → [0, 1]

such that f [A] = {0} and f(x) = 1. Every T1 completely regular space, sometimes called
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a Tychonoff space or a T3.5 space, has a particular compactification called the Stone-Čech

compactification, which we describe now.

Let X be Tychonoff. Z ⊆ X is a zero set if there is a continuous function f : X → R

such that Z = f−1{0}. Zero sets are obviously closed. The opposite is true ifX is metrizable.

Indeed, if d is a metric for X and A is a closed subset of X, then A is the zero set of the

mapping dA : X → [0,∞) defined by dA(x) = inf{d(x, y) : y ∈ A}. Let Z(X) = {Z ⊆ X :

Z is a zero set}. Say that p ⊆ Z(X) is a filter if

i. p 6= ∅ and ∅ /∈ p,

ii. Z1 ∩ Z2 ∈ p whenever Z1, Z2 ∈ p, and

iii. Z ∈ p whenever Z ∈ Z(X) is a superset of a member of p.

A filter p ⊆ Z(X) is an utrafilter if no other filter properly contains p. Equivalently, p is

an ultrafilter if p is a filter and Z ∈ p whenever Z ∈ Z(X) intersects each member of p.

Every filter has the finite intersection property, and every subset of Z(X) with the finite

intersection property is contained in an ultrafilter by Zorn’s Lemma. Let

βX =
{
p ⊆ Z(X) : p is an ultrafilter

}
.

For each U ⊆ X such that X \ U ∈ Z(X), let exβXU = {p ∈ βX : (∃Z ∈ p)(Z ⊆ U)}.

The set of all exβXU ’s is a basis for a topology on βX; the topology of βX is the topology

generated by this basis.

Theorem 1.9. βX is compact Hausdorff, and e : X ↪→ βX by x 7→ {Z ∈ Z(X) : x ∈ Z} is

a well-defined dense homeomorphic embedding

Thus βX is a compactification of X (the Stone-Čech compactification). Up to homeo-

morphism, it is the unique compactification of X with the following extension property.

Theorem 1.10. If Y is compact Hausdorff and f : X → Y is a continuous function, then

there is a unique continuous function βf : βX → Y such that βf � X = f .

5



In particular, every continuous function from X into [0, 1] extends to βX. βf is called

the Stone-Čech extension of f . Additional properties of βX:

� clβX Z = {p ∈ βX : Z ∈ p} for each Z ∈ Z(X)

� clβX Z1 ∩ clβX Z1 = clβX(Z1 ∩ Z2) for all Z1, Z2 ∈ Z(X)

� If γX is a compactification of X, ι : X → X is the identity map, and βι : βX → γX

is the Stone-Čech extension of ι, then βι[βX \ X] = γX \ X (βX \ X is called the

Stone-Čech remainder of X). In particular, βι maps onto γX.

� If X is compact Hausdorff, then X ' βX.

� βX is connected if and only if X is connected.
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Chapter 2

Widely-connected spaces

2.1 Background

A topological space X is punctiform if X does not contain a continuum with more than

one point. The earliest examples of connected punctiform spaces are due to Mazurkiewicz

[21], Kuratowski and Sierpinski [17], and Knaster and Kuratowski [15]. Each of these exam-

ples is the graph of a hereditarily discontinuous function. For any space X and real-valued

function f : X → R, let disc(f) = {x ∈ X : f is not continuous at x} be the set of discon-

tinuities of f , and let Gr(f) = {〈x, f(x)〉 : x ∈ X} be the graph of f . By f is hereditarily

discontinuous, we mean disc(f) = X.

The example of Kuratowski and Sierpinski exploits the fact that a function with a single

discontinuity can have a connected graph. Let ϕ(x) = sin(1/x) for x 6= 0 and put ϕ(0) = 0.

Then disc(ϕ) = {0}, but Gr(ϕ) is connected as it consists of two rays with a common limit

point at the origin. Now define f : R→ R by

f(x) =
∞∑
n=0

ϕ(x− qn)

2n
,

where Q = {qn : n < ω} is an enumeration of the rationals. f satisfies the conclusion of

the Intermediate Value Theorem and disc(f) = Q. These properties imply that Gr(f) is a

punctiform connected Gδ-set in the plane.

Two types of punctiform connected spaces exclude graphs of functions from the real

line. A topological space X is biconnected if X is connected and X is not the union of two

disjoint and non-degenerate connected subsets. A topological space W is widely-connected

if W is connected and every non-degenerate connected subset of W is dense in W .
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Theorem 2.1. Let X be a connected space. The following are equivalent:

(i) X is biconnected;

(ii) X contains no pair of disjoint and non-degenerate connected sets.

Proof. Clearly (ii)⇒(i). We prove ¬(ii)⇒¬(i). Suppose that A and B are disjoint connected

subsets of X each with more than one point. Let C be the component of B in X \A. Then

X \ C is connected. Indeed, suppose that U and V are disjoint relatively clopen subsets of

X \ C such that X \ C = U ∪ V . Since A is a connected subset of X \ C, we can assume

that A ⊆ U . By Theorem 1.3, C ∪V is connected. By maximality of C we have C ∪V ⊆ C,

thus V = ∅. In summary, C and X \C are disjoint connected sets whose union is X. Each

has more than one point because A ⊆ X \ C and B ⊆ C.

Theorem 2.2. Let W be a connected space. The following are equivalent:

(i) W is widely-connected;

(ii) Every subset of W is either connected or hereditarily disconnected.

Proof. (i)⇒(ii): Suppose that W is widely-connected and A ⊆ W is not hereditarily discon-

nected. Then there is a connected C ⊆ A with |C| > 1. Then C = W . Thus C ⊆ A ⊆ C,

whence A is connected. (ii)⇒(i): Suppose that W is not widely-connected. Then there is a

connected C ⊆ W with |C| > 1 and C 6= W . Let p ∈ W \C. Then C ∪ {p} is a subset of W

that is neither connected nor hereditarily disconnected.

Theorem 2.3. Biconnected and widely-connected Hausdorff spaces are punctiform.

Proof. Let X he a Hausdorff space, and suppose that X contains a continuum K, |K| > 1.

Let p and q be distinct points in K. There are two relatively open subsets of K, say U and

V , such that p ∈ U , q ∈ V , and U ∩ V = ∅. Let P be the component of p in U , and let

Q be the component of q in V . Then P and Q are disjoint closed connected subsets of X,

and each has more than one point by Theorem 1.6. By Theorem 2.1, X is not biconnected.

Since P 6= X, X is not widely-connected.
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Theorem 2.4. If f : R→ R, then Gr(f) is neither widely-connected nor biconnected.

Proof. Assuming that Gr(f) is connected, we show that Gr(f � [0,∞)) is connected. Suppose

that A and B are non-empty closed subsets of Gr(f � [0,∞)) and A ∪ B = Gr(f � [0,∞)).

Assume that 〈0, f(0)〉 ∈ A. Then Gr(f � (−∞, 0]) ∪ A and B are non-empty closed subsets

Gr(f) whose union is Gr(f). Since Gr(f) is connected, (Gr(f � (−∞, 0])∪A)∩B 6= ∅. The

only way this happens is if A ∩ B 6= ∅. Thus Gr(f � [0,∞)) is connected, so Gr(f) is not

widely-connected. By similar arguments, Gr(f � (−∞, 0)) =
⋃∞
n=1 Gr(f � (−∞,−1/n]) is

connected, so Gr(f) is not biconnected.

widely-connected

biconnected

connected w/ dispersion point

connected w/ dispersion point

connected graph of hered.

discontinuous function

connected graph of hered.

discontinuous function

connected graph of hered.

discontinuous function

connected with

dispersion point

punctiform connected

Figure 2.1: Classes of some T2 connected spaces

Knaster and Kuratowski [16] gave the first example of a biconnected space by construct-

ing a connected space with a dispersion point. A point p in a connected space X is called

a dispersion point if X \ {p} is hereditarily disconnected. The Knaster-Kuratowski fails to

be topologically complete as it contains closed copies of the rationals. However, Knaster

and Kuratowski later constructed a completely metrizable dispersion point space by deform-

ing their punctiform connected graph in [15]. Erdős [12] constructed a totally disconnected

closed subspace of the Hilbert space `2 with a remarkable property, namely, that of Theorem

2.10. Roberts [25] embedded the Erdős space into the plane so that the addition of a sin-

gle point produces a connected set. The augmented embedding is a completely metrizable

explosion point space (X \ {p} is totally disconnected).
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Miller [19] used the Continuum Hypothesis (CH) to construct the first example of a

biconnected set without a dispersion point. Miller’s biconnected set has no cut points pre-

cisely because it is widely-connected (apply Theorem 1.3). The first widely-connected space

slightly predates Miller’s example, and was constructed by Swingle [31].

Rudin [26] also used CH to construct a connected subset of the plane, each of whose

connected subsets has countable complement (in the entire set). Her example is easily seen

to be both widely-connected and biconnected. Every connected metric space has a connected

subset with infinite complement, so in a sense Rudin’s example is the most extreme type

of widely-connected metric space. Consistently, there are completely regular and perfectly

normal connected spaces all of whose connected subsets have finite complement. These are

due to Gruenhage [13]. Most recently, Rudin [27] showed that under Martin’s Axiom there is

a biconnected subset of the plane which has no dispersion point and is not widely-connected.

It is still unknown if a metric biconnected set without a dispersion can be constructed without

additional set-theoretic axioms.

We will see in Section 2.2.3 that the examples of Swingle, Miller, and Rudin fail to

be completely metrizable, hence the question of Erdős and Cook: Is there a completely

metrizable widely-connected space? This question appears as Problem G3 in [29] and [24],

and as Problem 123 in [6].

2.2 In the bucket-handle

In this section we describe a method for constructing widely-connected subsets of the

bucket-handle continuum. Our method produces three examples, one of which is completely

metrizable. The building blocks are called connectible sets. Let C denote the middle-thirds

Cantor set in the interval [0, 1]. If X is a subset of C × (0, 1), then X is connectible if

〈c, 0〉 ∈ A whenever A is a clopen subset of X ∪ (C×{0}), c ∈ C, and A∩ ({c}× (0, 1)) 6= ∅.

There is a one-to-one correlation between connectible subsets of C × (0, 1) and connected

subsets of the Cantor fan – this is the intuition behind the examples in Section 2.2.2.
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2.2.1 Assembly of connectible sets

Let K be the Knaster bucket-handle continuum. The rectilinear version of K depicted

in Figure 2.2 is formed by successively removing open middle-third canals (white regions of

the figure), beginning with the unit square [0, 1]2. K \ {〈0, 0〉} is locally homeomorphic to

C × (0, 1). Moreover, if ∆ = {〈x, x〉 ∈ K : x ∈ [0, 1]} is the diagonal Cantor set in K, then

K \∆ is the union of ω-many copies of C × (0, 1), to wit, K \∆ =
⋃
i<ωKi where the Ki’s

are shown in Figure 2.3.

�

K1K2K3

K0

K1K2K3

K0

�

K0

K1K2K3

Figure 2.2: K

�

K1K2K3

K0

K1K2K3

K0

�

K0

K1K2K3

Figure 2.3: K \∆

For each i < ω let ϕi : C × (0, 1) → Ki be a simple bending homeomorphism that

witnesses Ki ' C × (0, 1). If X is a subset of C × (0, 1) then define

W [X] = ∆ ∪
⋃
i<ω

ϕi[X].

Proposition 2.5. If X is a dense connectible subset of C × (0, 1), then W [X] is connected.

If X is also hereditarily disconnected, then W [X] is widely-connected.

Proof. Let X be a dense connectible subset of C × (0, 1).

Suppose for a contradiction that W := W [X] is not connected. Let A and B be non-

empty closed subsets of W such that W = A∪B and A∩B = ∅. Then K = A∪B because

11



W is dense in K. There exists p ∈ A ∩ B because K is connected. p /∈ ∆ because ∆ ⊆ W ,

so there exists i < ω such that p ∈ Ki. Thinking of Ki as C × [0, 1] with C × 2 ⊆ ∆, give

local coordinates 〈p(0), p(1)〉 to p. Assume that p′ := 〈p(0), 0〉 ∈ A. Let (bn) be a sequence

of points in Ki ∩ B converging to p. Then b′n := 〈bn(0), 0〉 ∈ B for each i < ω because X is

connectible. The sequence (b′n) converges to p′. Since B is closed in W , p′ ∈ B. We have

p′ ∈ A ∩B, a contradiction.

Suppose that W [X] is not widely-connected. Let A be a non-dense connected subset

of W with more than one point. Every non-degenerate proper subcontinuum of K is an

arc, therefore A is an arc. Let e : [0, 1] ↪→ K be a homeomorphic embedding such that

e([0, 1]) = A. Let a, b ∈ A with a 6= b, and let r, s ∈ [0, 1] such that e(r) = a and e(s) = b.

Assume that r < s. e−1[A] is connected, so [r, s] ⊆ e−1[A]. Clearly e([r, s]) 6⊆ ∆, so there

exists i < ω such that e([r, s]) ∩Ki 6= ∅. Then e−1[Ki] ∩ [r, s] is a non-empty open subset

of [r, s] and thus contains a non-degenerate interval I. e[I] is a non-degenerate connected

subset of W ∩Ki = ϕi[X]. Thus X is not hereditarily disconnected.

Remark 2.6. A widely-connected set cannot contain an interval, so every widely-connected

subset of K is dense in K.

2.2.2 Connectible sets X1 and X2

Here we describe two connectible sets X1 and X2. Both sets will be hereditarily discon-

nected and dense in C × (0, 1), so that W [X1] and W [X2] will be widely-connected.

Example X1. Let C ′ be the set of all endpoints of intervals removed from [0, 1] in the

process of constructing C, and let C ′′ = C \ C ′. Let

X1 =
(
C ′ ×Q ∩ (0, 1)

)
∪
(
C ′′ × P ∩ (0, 1)

)
,

where Q and P are the rationals and irrationals, respectively. Clearly X1 is hereditarily

disconnected and dense in C×(0, 1). The reader may recognizeX1 as the Knaster-Kuratowski
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fan [16] minus its dispersion point. In proving that X1 is connectible, we essentially prove

that the Knaster-Kuratowski fan is connected.

Proposition 2.7. X1 is connectible.

Proof. Let A be a non-empty clopen subset ofX1∪(C×{0}) and let 〈c, r〉 ∈ A. Suppose for a

contradiction that 〈c, 0〉 ∈ B := X1 \A. There are open sets U ⊆ C and V ⊆ (0, 1) such that

〈c, 0〉 ∈ U × {0} ⊆ B and 〈c, r〉 ∈ X1 ∩ (U × V ) ⊆ A. Enumerate Q ∩ (0, 1) = {qi : i < ω}.

For each i < ω let Ci =
{
c ∈ C : 〈c, qi〉 ∈ A ∩ B

}
. Each Ci closed and nowhere dense

in C. By the Baire Category Theorem, C \ (C ′ ∪
⋃
i<ω Ci) is dense in C, so there exists

d ∈ U ∩ C ′′ \
⋃
i<ω Ci. Then A and B form a non-trivial clopen partition of the connected

set {d} × [0, 1), a contradiction.

Example X2. Define ‖ · ‖ : Rω → [0,∞] by

‖x‖ =

√√√√ ∞∑
i=0

x2i .

The Hilbert space `2 is the set {x ∈ Rω : ‖x‖ < ∞} with the norm topology generated by

‖ · ‖. The subspace E := {x ∈ `2 : xi ∈ {0}∪{1/n : n ∈ N} for each i < ω} of `2 is called the

complete Erdős space (E is closed subset of the completely metrizable `2, and is therefore

complete). Let f : [0,∞)→ [0, 1] be the function with the following graph.

-2 -1 0 1 2 3 4 5 6 7

-4

-3

-2

-1

1

y

r

Figure 2.4: y = f(r)

The Cantor set is the unique zero-dimensional compact metric space without isolated points,

therefore ({0} ∪ {1/n : n ∈ N})ω ' C. We will think of these spaces as being equal.
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Define ξ : E → C × [0, 1] by x 7→ 〈x, f‖x‖〉. Note that ξ is continuous, as the inclusion

E ↪→ ({0} ∪ {1/n : n ∈ N})ω is continuous and f and ‖ · ‖ are both continuous. Let

X2 = ξ[E] \ (C × 2).

X2 has at most one point from each fiber {c} × (0, 1), so it is totally disconnected.

Remark 2.8. If instead f : [0,∞)→ [0, 1] is defined by f(r) = 1/(1 + r), then ξ is a homeo-

morphic embedding (see [25] and [10] 6.3.24). By adding C×{0} to ξ[E] and then contracting

it to a point, one obtains a completely metrizable dispersion point space. However, in this

case ξ[E] is nowhere dense in C × (0, 1). We will see that the sinusoidal f makes ξ a dense

embedding, but destroys completeness.

Proposition 2.9. X2 is dense in C × (0, 1).

Proof. Let U × (a, b) be a non-empty open subset of C × (0, 1). Assume that U is a basic

open subset of ({0} ∪ {1/n : n ∈ N})ω; U =
∏

i<ω Ui and n = max{i < ω : Ui 6= X}. For

each i ≤ n choose xi ∈ Ui. Let c ∈ (a, b). There exists p ∈ f−1{c} such that p2 >
∑

i≤n x
2
i .

Let r = p2 −
∑

i≤n x
2
i . There is an increasing sequence of rationals (qi) such that q0 = 0

and qi → r as i → ∞. Each qi+1 − qi is a positive rational number ai
bi

for some ai, bi ∈ N.

For each i < ω let yi ∈ { 1
bi
}ai·bi be the finite sequence of ai · bi repeated entries 1

bi
. Let

y = y0
_
y1

_
y2

_
... be the sequence in {1/n : n ∈ N}ω whose first a0 · b0 coordinates are 1

b0
,

whose next a1 · b1 coordinates are 1
b1
, etc. Note that

∑∞
i=0 y

2
i =

∑∞
i=0 qi+1 − qi = r. Now put

z := 〈x0, ..., xn, y0, y1, ...〉. We have z ∈ U and ‖z‖ = p, so that ξ(z) = 〈z, c〉 ∈ U × (a, b).

The following is due to Erdős [12].

Proposition 2.10. {‖x‖ : x ∈ A} is unbounded if A is a non-empty clopen subset of E.

Proof. Let A be a non-empty subset of E such that {‖x‖ : x ∈ A} is bounded. We show

that A has non-empty boundary.
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Let N ∈ ω such that ‖x‖ < N for each x ∈ A, and let a0 ∈ A. Define a1 as follows.

There is a least j ∈ [1, N ] such that 〈1, 1, ..., 1, a0j , a0j+1, ...〉 ∈ E \ A (replacing a0i with 1 for

each i < j). Let a1i = 1 if i < j−1 and a1i = a0i otherwise. Then a1 ∈ A and d(a1,E\A) ≤ 1.

Let j0 = 0 and j1 = j.

Suppose k > 1 and an ∈ A and increasing integers jn have been defined, n < k, such

that d(an,E \ A) ≤ 1/n and ani = a0i for i ≥ jn. There exists j′ > jk−1 such that a0i < 1/k

whenever i ≥ j′. There is a least j ∈ [1, kN ] such that

〈ak−10 , ..., ak−1j′−1, 1/k, 1/k, ..., 1/k, a
k−1
j′+j, ...〉 ∈ E \ A.

Let jk = j′+ j. Define ak by letting aki = 1/k if j′− 1 < i < jk − 1 and aki = ak−1i otherwise.

Finally, define a by setting it equal to ak on [jk−1, jk], k ∈ N. ‖a‖ ≤ N , otherwise there

is a finite sum
∑n

i=0 a
2
i greater than N2, but then ‖ak‖ > N if k > n. Thus d(a0, a) ≤ 2N ,

and so
∑∞

i=n(a0i − ai)2 → 0 as n → ∞. So d(ak, a) → 0 as k → ∞. Therefore a is a limit

point of A. Also, d(a, âk) ≤ d(a, ak) + d(ak, âk), where âk is equal to ak with akjk−1 increased

to 1/k (so âk ∈ E \ A). By construction d(ak, âk) < 1/k, so it follows that d(a, âk) → 0 as

k →∞. Therefore a is also a limit point of E \ A.

Proposition 2.11. X2 is connectible.

Proof. Let A be a clopen subset of X2 ∪ (C ×{0}). Suppose that 〈a, f‖a‖〉 ∈ A and 〈a, 0〉 ∈

ξ[E]\A for some a ∈ C. There is a clopen U ⊆ C such that 〈a, 0〉 ∈ ξ[E]∩(U×{0}) ⊆ ξ[E]\A,

so that {〈x, f‖x‖〉 : x ∈ U and ‖x‖ is even} ⊆ ξ[E] \ A. Let n be an even integer greater

than ‖a‖.

ξ−1
[
A ∩ U × [0, 1]

]
∩ {x ∈ E : ‖x‖ < n} = ξ−1

[
A ∩ U × [0, 1]

]
∩ {x ∈ E : ‖x‖ ≤ n}

is a non-empty (it contains a) clopen subset of E. Its set of norms is bounded above (by n).

This contradicts Proposition 2.10.
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2.2.3 Necessary conditions for completeness

Proposition 2.12. W [X] is completely metrizable if and only if the same is true of X.

Proof. Suppose that X is completely metrizable. Then each ϕi[X] is a Gδ-set in K. Further,

the sets ϕi[X] lie in pairwise disjoint open regions of K, and so their union is Gδ in K. Thus

W [X] is the union of two Gδ’s, ∆ and
⋃
i<ω ϕi[X], which is again a Gδ (in K). The converse

is true because W [X] contains an open copy of X.

Remark 2.13. X1 is not complete because it contains closed copies of the rationals, e.g. in

the fibers above C ′. So W [X1] is not complete. In fact, every Gδ-superset of X1 contains an

arc – Exercise 1.4.C(c) in [10].

Theorem 2.14. If G is a dense Gδ in C × R, then

D :=
{
c ∈ C : G ∩ {c} × R is a dense Gδ in {c} × R

}
is a dense Gδ in C.

Proof. Let {Gi : i < ω} be a collection of open sets in C × R such that G =
⋂
i<ω Gi, and

let {Vj : j ∈ ω} be a countable basis for R consisting of non-empty sets. For each i and j,

define F (i, j) = {c ∈ C : Gi ∩ ({c} × Vj) = ∅}.

D = C \
⋃
i,j∈ω F (i, j): Suppose that d ∈ D and i, j ∈ ω. Then G ∩ {d} × Vj 6= ∅

by density of G ∩ {d} × R in {d} × R. As G ⊆ Gi, we have Gi ∩ {d} × Vj 6= ∅, so that

d /∈ F (i, j). Thus D ⊆ C \
⋃
i,j∈ω F (i, j). Now let c ∈ C \

⋃
i,j∈ω F (i, j). Fix i < ω. As

Gi ∩ {c} × Vj 6= ∅ for each j ∈ ω, we have that Gi ∩ {c} × R is dense in {c} × R. Thus

G∩{c}×R =
⋂
i<ω Gi∩{c}×R is a countable intersection of dense open subsets of {c}×R.

By the Baire property of R, G ∩ {c} × R is a dense Gδ in {c} × R, whence c ∈ D.

Each F (i, j) is closed and nowhere dense in C: Fix i, j ∈ ω and let F = F (i, j). F is

closed in C: Let c ∈ C \ F . There exists r ∈ R such that 〈c, r〉 ∈ Gi ∩ {c} × Vj. There is an

open set U × V ⊆ Gi with c ∈ U and r ∈ V ⊆ Vj. Then F ∩ U = ∅. So C \ F is open. F
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is nowhere dense in C: If U ⊆ C is non-empty and open, then by density of G there exists

〈c, r〉 ∈ G ∩ U × Vj. Then c witnesses that U 6⊆ F .

It now follows that from the Baire property of C that D is a dense Gδ in C.

Remark 2.15. By Theorem 2.14, every dense Gδ in C× [0, 1] has an uncountable intersection

with some arc {c} × [0, 1]. W [X2] is not complete because X2 has at most one point from

each arc. Moreover, we find that every dense Gδ in K has an uncountable intersection with

some composant. The original widely-connected space by Swingle [31] has only one point

from each composant, while Miller’s biconnected set [19], also widely-connected, has only

countably many points in any given composant. Both spaces are of course dense in K, and

so they fail to be complete.

Theorem 2.16. If W is a completely metrizable widely-connected subset of K, then there

is a closed F ⊆ K such that W ∩ F = ∅, K \ F is connected, and F ∩ P 6= ∅ for each

composant P of K.

Proof. Since W is completely metrizable, there is a collection {Fn : n < ω} of closed subsets

ofK such thatW = K\
⋃
n<ω Fn. Let ϕ0 andK0 be as defined in Section 2.2.1. By the widely-

connected property ofW , for each c ∈ C there exists n < ω such that Fn∩ϕ0[{c}×(0, 1)] 6= ∅.

Thus C =
⋃
n<ω π[ϕ−10 Fn] where π is the first coordinate projection in C × (0, 1). By the

Baire Category Theorem there exists N ∈ ω and an open V ⊆ C such that V ⊆ π[ϕ−10 FN ].

F := FN is as desired: By the remark following Proposition 2.5, W is dense in K. Thus

W is a dense connected subset of K \ F , so K \ F is connected. Let P be a composant of

K. P is dense in K, so there is a point ϕ0(〈c, r〉) ∈ P ∩K0. Then ϕ0[{c} × (0, 1)] ⊆ P . By

design F ∩ ϕ0[{c} × (0, 1)] 6= ∅, so that F ∩ P 6= ∅.

2.2.4 Solution to the Erdős-Cook problem

The main result of [7] is that K has a closed subset F with the properties stated in

Theorem 2.16. Considered as a subset of C × [0, 1], F is the closure of the graph of a
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certain hereditarily discontinuous function. Specifically, let D = {dn : n < ω} be a dense

subset of the non-endpoints in C, let (an) be a sequence of positive real numbers such that∑∞
n=0 an = 1, and define f : C → [0, 1] by

f(c) =
∑

{n<ω:dn<c}

an.

Then F = Gr(f).

Example X3. Enumerate the rationals Q = {qn : n < ω}, and let

Y = C × R \
⋃
n<ω

Gr(f + qn).

Define a homeomorphism Ξ : C × R→ C × (0, 1) by

Ξ(〈c, r〉) =

〈
c,

arctan(r)

π
+

1

2

〉
.

Finally,

X3 = Ξ[Y ].

Proposition 2.17. If U is open in C and V = (a, b) is an open interval in R, then for every

c ∈ U , ({c} × V ) \Gr(f) is a quasi-component of (U × V ) \Gr(f).

Proof. We first show that if dn ∈ U ∩D (n < ω), then ({dn} × V ) \Gr(f) is contained in a

quasi-component of (U × V ) \Gr(f).

Fix n < ω such that dn ∈ U . Let r = f(dn) and s = f(dn) + an(= inf{f(c) : dn < c}).

Since f is a non-decreasing function with set of (jump) discontinuities D, F := Gr(f) meets a

vertical interval {c}× [0, 1] in exactly one point 〈c, f(c)〉 if c ∈ C \D, and meets {dn}× [0, 1]

in exactly two points 〈dn, r〉 and 〈dn, s〉. Thus ({dn} × V ) \ F is equal to {dn} × (a, b),

{dn} × (a, r) ∪ (r, b), {dn} × (a, s) ∪ (s, b), or {dn} × (a, r) ∪ (r, s) ∪ (s, b), depending on

whether neither, one, or both of r and s are in V .
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Because dn is a non-endpoint of C, it is the limit of increasing and decreasing sequences

of points in C\D. Suppose that r ∈ V . Then the intervals {c}×(a,min{b, f(c)}), dn < c ∈ U ,

are well-defined subsets of (U × V ) \ F . They limit to points vertically above and below

〈dn, r〉, so that {dn}× (a, r)∪ (r,min{b, s}) is contained in a quasi-component of (U×V )\F .

Similarly, if s ∈ V then in (U ×V ) \F the intervals {c}× (max{a, f(c)}, b), dn > c ∈ U \D,

bridge the gap in {dn} × (max{a, r}, s) ∪ (s, b) (see Figure 2.5). Thus ({dn} × V ) \ F is

contained in a quasi-component of (U × V ) \ F .

SinceD is dense in U and ({dn}×V )\F is dense in {dn}×V for each n < ω, ({c}×V )\F

is contained in a quasi-component of (U × V ) \ F for each c ∈ U . The opposite inclusion

holds because C has a basis of clopen sets.

a

b

U

V

dn

r

s

Figure 2.5: (U × V ) \Gr(f) when dn ∈ U and r, s ∈ V
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Proposition 2.18. For each c ∈ C, ({c} × R) ∩ Y is a quasi-component of Y .

Proof. We need to show each fiber ({c} × R) ∩ Y is contained in a quasi-component of Y .

Suppose not. Then there exists c ∈ C and a partition of Y into disjoint clopen sets A and

B such that A ∩ ({c} × R) 6= ∅ and B ∩ ({c} × R) 6= ∅. Density of Y in C × R implies

that A ∪ B = C × R. In particular, {c} × R ⊆ A ∪ B, so A ∩ B 6= ∅ by connectedness of

{c} × R. Now apply the Baire Category Theorem in A ∩ B. As A ∩ B ⊆
⋃
n<ω Gr(f + qn),

there exists N ∈ ω, an open U ⊆ C, and an open interval V ⊆ R such that

∅ 6= A ∩B ∩ (U × V ) ⊆ FN := Gr(f + qN).

Note that A∩ (U × V ) \ FN = ((C ×R) \B)∩ (U × V ) \ FN ; equality also holds if the roles

of A and B are reversed. So A ∩ (U × V ) \ FN and B ∩ (U × V ) \ FN are open. They are

also disjoint, and their union is equal to (U × V ) \ FN . By Proposition 2.17, ({c} × V ) \ FN

is contained in either A or B whenever c ∈ U . So

U1 := π
[
A ∩ (U × V ) \ FN

]
and U2 := π

[
B ∩ (U × V ) \ FN

]
are disjoint open subsets of C, π being the first coordinate projection (π is an open mapping).

Further, U1∪U2 = U because
∣∣FN ∩ ({c} × V )

∣∣ ≤ 2 for each c ∈ C. Hence U1×V and U2×V

form a clopen partition of U × V . As A ∩ (U × V ) ⊆ U1 × V and B ∩ (U × V ) ⊆ U2 × V ,

we have A ∩B ∩ (U × V ) = ∅, a contradiction.

Proposition 2.19. X3 is connectible.

Proof. Suppose that A is a clopen subset of X3∪(C×{0}), c ∈ C, and A∩({c}×(0, 1)) 6= ∅.

The homeomorphism Ξ preserves the form of quasi-components. Therefore, Proposition 2.18

implies that X3 ∩ ({c} × (0, 1)) ⊆ A. Since X3 is dense in {c} × [0, 1) and A is closed, we

have 〈c, 0〉 ∈ A.
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Theorem 2.20. W [X3] is widely-connected and completely metrizable.

Proof. Each fiber ({c} × R) ∩ Y is a real line minus one or two shifted copies of Q, and is

therefore hereditarily disconnected and dense in {c}×R. It follows thatX3 is hereditarily dis-

connected and dense in C× (0, 1). By Propositions 2.5 and 2.19, W [X3] is widely-connected.

X3 is a Gδ-subset of C × (0, 1) by design, so it is completely metrizable. By Proposition

2.12, W [X3] is completely metrizable.

E.W. Miller [19] and M.E. Rudin [26] showed that, consistently, a widely-connected

subset of the plane can be biconnected. This is not the case with W [X3].

Proposition 2.21. W [X3] is not biconnected.

Proof. We first show that if S is a countable subset ofW := W [X3], thenW \S is connected.

To that end, let S = {xn : n < ω} be a countable subset of W . Note that Proposition 2.17

holds if Gr(f) is replaced by Gr(f) ∪ {x} for any x ∈ C × R. By the proofs of Propositions

2.18 and 2.19, it follows that for each i < ω,

Ki \
( ⋃
n<ω

(
ϕi ◦ Ξ

[
Gr(f + qn)

])
∪ {xn}

)

is connectible (considered as a subset of C × (0, 1)). By Proposition 2.5, W ′ := ∆∪ (W \ S)

is connected.

Let W ′′ = W \ S. We want to show that W ′′ is connected. Suppose to the contrary

that {A,B} is a non-trivial clopen partition of W ′′. Then clW ′ A ∩ clW ′ B is a non-empty

subset of ∆. Let p ∈ clW ′ A ∩ clW ′ B. There exists j ∈ ω such that p ∈ Kj. There is a

K-neighborhood of p that identifies with C × [−1, 1] in such a way that C × [−1, 0] ⊆ K0,

C × [0, 1] ⊆ Kj, and p ∈ C × {0}. We think of C × [−1, 1] as being an actual subset of K,

and give local coordinates 〈d, 0〉 to p.

Note that W ′′ ∩ {c} × [−1, 1] is dense in {c} × [−1, 1] for each c ∈ C. Since W ′′ ∩K0

and W ′′ ∩Kj are connectible, for each point 〈c, 0〉 ∈ A we have W ′′ ∩ ({c} × [−1, 1]) ⊆ A,
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and similarly for B. If p is the limit of sequences of points in A and B that are in C × {0},

then points in W ′′ ∩ ({d} × (0, 1]) would be limit points of fibers in A and B. This cannot

happen. Therefore there is an open U ⊆ C such that p ∈ W ′′ ∩ (U × {0}) ⊆ A, without loss

of generality. Since p ∈ B, there exists b ∈ B such that b(0), the first local coordinate of b,

is in U . There is an open set T × V with b ∈ W ′′ ∩ (T × V ) ⊆ B. Since W ′′ ∩ ∆ is dense

in ∆, there exists a ∈ A ∩ [(U ∩ T )× {0}]. We have a contradiction: W ′ ∩ {a(0)} × [−1, 1]

meets both A and B. We have shown that W ′′ is connected.

Thus every separating subset of W is uncountable. Let S = S (W ) be the set of closed

separators of W , defined in Lemma 2.22. If Z is a Bernstein set in W , then Z ∩ S 6= ∅ and

(W \ Z) ∩ S 6= ∅ for each S ∈ S , implying that both Z and W \ Z are connected. A set

like Z can be constructed as follows, using the fact that W is separable and complete. Let

{Sα : α < c} be an enumeration of S . Every member of S is closed and uncountable, and

thus has cardinality c. Let y0 and z0 be distinct points in S0. If α < c and yβ and zβ have

been defined for β < α, then there are two distinct points yα, zα ∈ Sα \ ({yβ : β < α} ∪ {zβ :

β < α}). Then Z = {zα : α < c} is as desired. W is the union of two non-degenerate disjoint

connected sets Z and W \ Z, so W is not biconnected.

Completely metrizable biconnected subsets of the plane are given in [15] and [25]. The

quotient X3/(C × {12}) is another such example. These spaces are biconnected because

they have dispersion points. The examples of E.W. Miller [19] and M.E. Rudin [26] are

biconnected subsets of the plane without dispersion points. As an analogue to the question

of Erdős and Cook, we would like to know:

Question 1. Is there a completely metrizable biconnected space without a dispersion point?

An example would not necessarily have to be widely-connected – see M.E. Rudin [27]. By

the proof of Proposition 2.21, a separable example would have to contain a countable closed

separator. Miller’s biconnected set has many countable closed separators, but, as previously
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shown, is not complete. M.E. Rudin’s examples [26, 27] fail to be complete for essentially

the same reason.

2.3 Large cardinality

In [4], David Bellamy asked whether there are widely-connected sets of arbitrarily large

cardinality. The answer is yes – Theorem 2.25.

Lemma 2.22. Let X be an indecomposable continuum. Let C (X) be the set of composants

of X, and let

S (X) =
{
S ⊆ X : S is closed and X \ S is not connected

}
.

If |S (X)| ≤ |C (X)| then X has a dense widely-connected subspace of size |C (X)|.

Proof. Write S for S (X) and C for C (X). Since each member of C is connected and dense

inX (Theorems 1.1 and 1.6), we have C∩S 6= ∅ for each C ∈ C and S ∈ S . Let Ψ : C → S

be a surjection, and for each C ∈ C let ψ(C) ∈ C ∩ Ψ(C). Let W = {ψ(C) : C ∈ C }. Note

that |W | = |C | since the members of C are disjoint (Theorem 1.8).

W is dense in X: Let U be a non-empty open subset of X. Let V ⊆ X be non-empty

and open such that X 6= V ⊆ U . Then ∂V ∈ S . There exists C ∈ C such that Ψ(C) = ∂V .

Then ψ(C) ∈ W ∩ V ⊆ W ∩ U .

W is connected: Supposing that W is not connected, there are non-empty open subsets

U and V of X such that U ∩W 6= ∅, V ∩W 6= ∅, and W = (U ∩W )∪ (V ∩W ). By density

of W we have U ∩ V = ∅. So X \ (U ∪ V ) ∈ S . By definition W ∩ [X \ (U ∪ V )] 6= ∅,

contrary to W ⊆ U ∪ V .

W is widely-connected: If A is a non-dense connected subset of W , then A is a proper

subcontinuum of X and is therefore contained in a composant C ∈ C (X). By the definition

ofW and the fact that the composants of X are disjoint, |W ∩ C| = 1, so A is degenerate.
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Remark 2.23. The assumption |S (X)| ≤ |C (X)| is actually equivalent to |S (X)| = |C (X)|,

and so Ψ can be taken to be a bijection. Indeed, let λ = |C (X)| and let U and V be non-

empty open subsets of X with U∩V = ∅. |X| ≥ λ implies that |X\∂U | ≥ λ or |X\∂V | ≥ λ.

Assuming that |X \ ∂U | ≥ λ, let S ′(X) = {∂U ∪{x} : x ∈ X \ ∂U}. Then S ′(X) ⊆ S (X)

implies |S (X)| ≥ λ.

Lemma 2.24. Let κ be an infinite cardinal. If {Xα : α < κ} is a collection of spaces each

with a basis of size ≤ κ, then
∏

α<κXα and

X := lim←−{Xα : α < κ}

have bases of size ≤ κ, and X has ≤ 2κ closed subsets.

Proof. For each α < κ let Bα be a basis for Xα with |Bα| ≤ κ. For each f ∈
[⋃

α<κ{α} ×

Bα

]<ω let Uf = {x ∈
∏

α<κXα : x(f(i)(0)) ∈ f(i)(1) for each i ∈ dom(f)}. Then

B =
{
Uf : f ∈

[ ⋃
α<κ

{α} ×Bα

]<ω}

is a basis for
∏

α<κXα with |B| ≤ κ<ω = κ. The inverse limit X also has a basis of size ≤ κ,

namely {B ∩X : B ∈ B}, because it is a subspace of the product.

Define ϕ : P(B)→ τ by ϕ(U ) = X∩
⋃

U , where τ is the topology of X. If U ∈ τ then

letting U = {B ∈ B : B ∩X ⊆ U} we have ϕ(U ) = U , so that ϕ is surjective. Therefore∣∣{X \ U : U ∈ τ}
∣∣ = |τ | ≤

∣∣P(B)
∣∣ ≤ 2κ.

Theorem 2.25. For each infinite cardinal κ there is a completely regular widely-connected

space of size 2κ.

Proof. Let κ be given. By Theorem 2 of [30], there is an indecomposable continuum M

which has 2κ composants. The continuum M is constructed as an inverse limit of κ-many

continua, each of which has a basis of size ≤ κ. To be more specific, M = lim←−{Mα : α < κ}

whereMα is a subcontinuum of [0, 1]α+1 for each α < κ (see the second and third paragraphs

24



of the proof in [30] for the successor and limit cases of α, respectively). By Lemma 2.24,

[0, 1]α+1 has a basis of size ≤ κ for each α < κ, so |S (M)| ≤ 2κ = |C (M)|. By Lemma 2.22,

M contains a widely-connected space of size 2κ.

Mazurkiewicz [20] proved that every metric indecomposable continuum has c = 2ω

composants. Thus, if X is a metric indecomposable continuum then C (X) = S (X), and

so by Lemma 2.22 X has a dense widely-connected subset. This technique does not apply

in general, as there are (non-metric) indecomposable continua with very few composants.

The Stone-Čech remainder of [0,∞) is consistently an indecomposable continuum with only

one composant [22]. There are also indecomposable continua with one and two composants

assuming only the standard ZFC axioms [3].

Question 2. Does every indecomposable continuum have a dense widely-connected subset?

2.4 Indecomposability of compactifications

This section addresses the following multi-part question from the 2004 Spring Topology

and Dynamics Conference report, due to Jerzy Mioduszewski. Part (a) of the question is

also posed in [4] by David Bellamy, who conjectured a positive answer to part (b).

Question 3 (Mioduszewski [23]). Let W be a widely-connected space.

(a) Is βW an indecomposable continuum?

(b) If W is metrizable and separable, does W have a metric compactification which is an

indecomposable continuum?

(c) If W is separable and metrizable does W have a metric compactifacation γW such

that for every composant P of γW , W ∩P is (i) hereditarily disconnected? (ii) finite?

(iii) a singleton?
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2.4.1 A property of quasi-components

By Theorem 1.7, the term indecomposable can be consistently defined for arbitrary

topological spaces – say that X is indecomposable if every connected subset of X is either

dense or nowhere dense in X. Thus, widely-connected spaces are indecomposable connected

spaces whose nowhere dense connected subsets are trivial. Compactifying a widely-connected

space means adding limit points to it. This process can easily destroy indecomposability.

Example 2.26. Let K, K0, W := W [X3], and A := ϕ0 ◦ Ξ[Gr(f)] be as defined in Section

2.2; A is a copy of Dębski’s set in K0 \W . Consider Ŵ := W ∪ A to be on the surface of

the unit sphere S2 ⊆ R3. If d is a metric on R3, then the mapping q : Ŵ → R3 defined by

x 7→ dA(x) · x is a homeomorphic embedding of W (by compactness of A) with a limit point

at the origin (q shrinks A to the point 〈0, 0, 0〉). Note that A intersects each quasi-component

of (W ∪A)∩K0. So q[(W ∪A)∩K0] is a connected subset of q[Ŵ ] that is neither dense nor

nowhere dense; q[Ŵ ] is not indecomposable. In summary, q[W ] is a widely-connected subset

of R3 that fails to be indecomposable when a single limit point is added to it.

The disaster in Example 2.26 is caused by many quasi-components of W ∩K0 limiting

to a connected set. Generally speaking, the quasi-component structure is critical to the

existence of indecomposable compactifications.

Property Q. X has Property Q means that for every two non-empty disjoint open sets U

and V there are two closed sets A and B such that X = A ∪ B, A ∩ U 6= ∅, B ∩ U 6= ∅,

and A ∩B ⊆ V .

Remark 2.27. If X has no isolated points, then X has Property Q if and only if intXQ =

∅ whenever Q is a quasi-component of a non-dense subset of X. Every perfect totally

disconnected space has Property Q, and every space with Property Q is indecomposable.

Lemma 2.28. If Y has Property Q, X ⊆ Y , and X = Y , then X has Property Q.

Proof. Let U and V be non-empty disjoint open subsets of X. There are open subsets U ′

and V ′ of Y such that U = U ′ ∩X and V = V ′ ∩X. Let A′ and B′ be closed subsets of Y
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such that Y = A′ ∪ B′, U ′ ∩ A′ 6= ∅, U ′ ∩ B′ 6= ∅, and A′ ∩ B′ ⊆ V ′. Let A = A′ ∩X and

B = B′ ∩ X. Clearly A and B are closed in X, X = A ∪ B, and A ∩ B ⊆ V . Note that

U ′ ∩ A′ = U ′ ∩ Y \ B′ and U ′ ∩ B′ = U ′ ∩ Y \ A′ are non-empty open subsets of Y . X = Y

implies that U ∩ A 6= ∅ and U ∩B 6= ∅.

The following is implicit in the proof of Lemma 9.8 in [32].

Lemma 2.29. If U and V are disjoint open subsets of X and W is open in βX such that

W ∩X = U ∪ V , then W0 := W ∩ clβX U and W1 := W ∩ clβX V are disjoint open sets in

βX and W0 ∪W1 = W .

Proof. By density of X in βX we have W ⊆ clβX U ∪ clβX V . Thus W0 ∪W1 = W . We

need to show that W ∩ clβX U ∩ clβX V = ∅. Suppose for a contradiction that there exists

p ∈ W ∩ clβX U ∩ clβX V . By Urysohn’s Lemma there is a mapping F : βX → [0, 1] such

that F (p) = 0 and F [βX \W ] = 1. Define f : X → [0, 1] by

f(x) =


1 if x ∈ U

F (x) if x /∈ U.

If T is open in [0, 1] then

f−1[T ] =


(
F−1[T ] ∩X

)
∪ U if 1 ∈ T

F−1[T ] ∩ V if 1 /∈ T,

so f is continuous. Since p ∈ clβX V and f � V = F � V , we have βf(p) = F (p) = 0. On

the other hand, p ∈ clβX U implies that βf(p) = 1, a contradiction.

Theorem 2.30. βX is indecomposable if and only if X has Property Q.

Proof. Suppose that βX is indecomposable. To show that X has Property Q, by By Lemma

2.28 it suffices to show that βX has Property Q. Let U and V be non-empty disjoint open

subsets of βX. Let T be non-empty and open in βX such that T ⊆ V . Since U is not
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contained in a component of βX \ T , by Theorem 1.5 there are disjoint closed sets A and B

such that A ∪ B = βX \ T , A ∩ U 6= ∅, and B ∩ U 6= ∅. Then A ∪ T and B ∪ T satisfy

Property Q for U and V .

Suppose thatX has PropertyQ. LetK be a proper closed subset of βX with non-empty

interior; we show that K is not connected. Let S and T be non-empty open subsets of βX

such that S ⊆ K and K∩clβX T = ∅. Let A and B be disjoint closed subsets of X such that

A∪B = X \ T , A∩S 6= ∅, and B ∩S 6= ∅. Note that U := A \ clβX T and V := B \ clβX T

are open in X, U ∩S 6= ∅, and V ∩S 6= ∅. By Lemma 2.29, W := βX \ clβX T is the union

of the two disjoint open sets W0 := W ∩ clβX U and W1 := W ∩ clβX V . Since K ⊆ W and

Wi ∩K 6= ∅ for each i < 2, K is not connected.

Corollary 2.31. βX is an indecomposable continuum if and only if X is connected and has

Property Q.

Proof. βX is a continuum if and only if X is connected.

Corollary 2.32. If X is compact Hausdorff, then X is indecomposable if and only if X has

Property Q.

Proof. βX ' X when X is compact Hausdorff.

Widely-connected spaces are usually constructed as dense subsets of indecomposable

continua. Gary Gruenhage [13] constructed completely regular and perfectly normal ex-

amples by a different method, assuming Martin’s Axiom and the Continuum Hypothesis,

respectively. Their co-infinite subsets are totally disconnected (it’s worth noting that there

is no connected metric space with this property), thus both examples have Property Q, and

so their Stone-Čech compactifications are indecomposable.

If W is widely-connected and βW is decomposable, then there is a perfect hereditarily

disconnected Y ⊆ W which fails to have Property Q: Let U and V witness that W does

not have Property Q. Let T be a non-empty open set with T ⊆ V . T is the union of two
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relatively clopen sets A and B. Then Y := W \A is as desired. No clopen partition of Y \B

divides U .

Example 2.33. A perfect hereditarily disconnected set without Property Q.

Let C, C ′, and X1 ⊆ C × (0, 1) be as defined in Section 2.2.2. Let X ′1 = {〈−y, x〉 : 〈x, y〉 ∈

X1} be the copy of X1 rotated 90◦ about the origin. Then Y := X ′1 ∪ X1 is hereditarily

disconnected. We show that X ′1 is contained in a quasi-component of Y \(C∩(1/2, 1])×(0, 1].

Suppose that A is clopen in Y \ (C ∩ (1/2, 1]) × [0, 1] and A ∩ X ′1 6= ∅. Since A is open,

there exists c ∈ C ′ \ 2 such that A∩ ((−1, 0)×{c}) 6= ∅. Since c ∈ Q and X ′1 is connectible,

〈0, c〉 ∈ A. Then X1 ∩ ({0} × (0, 1)) ⊆ A because X1 ∩ ([0, 1/2) × (0, 1)) is connectible. So

X ′1 ∩ ((−1, 0)× C ′ \ 2) ⊆ A. Since A is closed, we have X ′1 ⊆ A.

Figure 2.6: Y ⊆
(
[−1, 0]× C

)
∪
(
C × [0, 1]

)
2.4.2 The separable metric case

Throughout, assume that X is a separable metric space. The standard metric on the

Hilbert cube [0, 1]ω is given by ρ(y, y′) =
∑

n<ω

∣∣y(n)− y′(n)
∣∣ · 2−n. The space ([0, 1]ω)X

is the set of functions from X into [0, 1]ω, endowed with the complete metric %(f, g) =

sup{ρ(f(x), g(x)) : x ∈ X}. The following results will be used to show that Questions 3(a)

and 3(b) are equivalent if W is metrizable and separable.

Lemma 2.34 (§46 V Theorem 3 in [18]). There is a continuous ϕ : X → 2ω such that the

quasi-components of X coincide with the non-empty point inverses of ϕ.
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Lemma 2.35 (§44 V Corollary 4a and §44 VI Lemma in [18]). If A and B are disjoint closed

subsets of X, then {
g ∈

(
[0, 1]ω

)X
: g[A] ∩ g[B] = ∅

}
is a dense open subset of ([0, 1]ω)X .

Lemma 2.36 (§44 VI Theorem 2 in [18]). The set of homeomorphic embeddings from X

into [0, 1]ω is a dense Gδ-set in ([0, 1]ω)X .

Theorem 2.37. βX is indecomposable if and only if X has an indecomposable metric com-

pactification.

Proof. Suppose that βX is indecomposable. Let {Un : n < ω} be a countable basis for X.

For each n < ω let ϕn : X \ Un → 2ω be given according to Lemma 2.34. Let {Ci : i < ω}

be the canonical clopen basis for 2ω. For each 〈n, i〉 ∈ ω2, let A〈n,i〉 = ϕ−1n [Ci] and B〈n,i〉 =

ϕ−1n [2ω \ Ci]. For each 〈n, i〉 ∈ ω2,

{
g ∈

(
[0, 1]ω

)X
: g[A〈n,i〉] ∩ g[B〈n,i〉] = ∅

}

is a dense open subset of ([0, 1]ω)X by Lemma 2.35. By Lemma 2.36 and the fact that

([0, 1]ω)X is complete, there is a homeomorphic embedding e : X ↪→ [0, 1]ω such that e[A〈n,i〉]∩

e[B〈n,i〉] = ∅ for each 〈n, i〉 ∈ ω2.

We now show that the metric compactification e[X] is indecomposable. Let K be

a proper closed subset of e[X] with non-empty interior. There exists n < ω such that

K ∩ e[Un] = ∅. Since K has non-empty interior, by Property Q (in X) there exists i < ω

such that K ∩ e[A〈n,i〉] 6= ∅ and K ∩ e[B〈n,i〉] 6= ∅. As e[X] = e[Un] ∪ e[A〈n,i〉] ∪ e[B〈n,i〉], we

have K ⊆ e[A〈n,i〉] ∪ e[B〈n,i〉]. Finally, e[A〈n,i〉] ∩ e[B〈n,i〉] = ∅, so K is not connected.

Now suppose that γX is an indecomposable compactification of X. By Corollary 2.32,

γX has property Q. X also has Property Q by Lemma 2.28, thus βX is indecomposable by

Theorem 2.30.
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Remark 2.38. The main result of [5] is that every nowhere locally compact separable metric

space has a dense embedding into the Hilbert space `2 ' (0, 1)ω. Widely-connected Hausdorff

spaces have no compact neighborhoods by Theorem 1.5. Thus, every widely-connected

separable metric space has a decomposable metric compactification equal to the Hilbert

cube [0, 1]ω. The Hilbert cube has only one composant – by Corollary 2.39 this is not a

coincidence.

If X is a connected space and p, q ∈ X, then X is irreducible between p and q if no proper

closed connected subset of X contains both p and q. A continuum is said to be irreducible

if it is irreducible between some pair of its points, i.e., if it has more than one composant.

Corollary 2.39. If X is an indecomposable connected space, then βX is indecomposable if

and only if X has an irreducible compactification (which is necessarily indecomposable).

Proof. If βX is indecomposable, then by Theorem 2.37 X has a metric indecomposable

compactification which necessarily has c composants.

Now suppose that βX is decomposable. Let γX be a compactification of X. If ι :

X → X is the identity map, then the Stone-Čech extension βι : βX → γX maps proper

subcontinua to proper subcontinua and maps onto γX. Thus to prove γX has only one

composant, it suffices to show that βX has only one composant. To that end, let p, q ∈ βX.

Let H and K be proper subcontinua of βX such that βX = H ∪K. Assume that p ∈ K.

If q ∈ K, then p and q are in the same composant. Otherwise, q ∈ U := βX \K. Since X

is indecomposable and U ∩X 6= X, U ∩X is not connected, whence U is not connected by

Lemma 2.29. Let T be a proper clopen subset of U with q ∈ T . Then K ∪ T is a proper

subcontinuum of βX containing p and q. Again p and q are in the same composant of βX.

Suppose that γX is irreducible (between two points p and q) and decomposable. There

is a proper subcontinuum K ⊆ γX with non-empty interior such that p ∈ K. Then βι−1[K]

is a proper closed subset of βX with non-empty interior. Thus, if q′ ∈ βι−1{q} then there

is a proper subcontinuum L ⊆ βX such that q′ ∈ L and L ∩ βι−1[K] 6= ∅ (composants are
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dense). Then βι[L]∪K is a subcontinuum of γX containing p and q, so βι[L]∪K = γX. It

follows that βX \ βι−1[K] ⊆ L, so βX is decomposable.

Observe that a widely-connected space is a connected space that is irreducible between

every two of its points. By Theorem 2.37 and Corollary 2.39, Question 3(b) is equivalent to:

Question 3(b)′. If W is a connected separable metric space that is irreducible between

every two of its points, then does W have an irreducible compactification?

2.4.3 A composant-locked widely-connected set

In this section we show that W may not have a compactification that is irreducible

between two points in W . This provides a complete negative answer to Question 3(c) (see

the statement of Theorem 2.44). By Corollary 2.39, a positive answer to any part of Question

3(c) would have implied a proof of Bellamy’s conjecture (a positive answer to Question 3(b)).

Our counterexample demonstrates that a different line of attack is needed.

Let e ∈ 2Z be the point defined by concatenating all finite binary sequences in the

positive and negative directions of Z. That is, if {bi : i < ω} enumerates
⋃
n<ω 2n, then let

e � Z+ = b_0 b_1 b_2 ..., and define e(n) = e(−n) for n ∈ Z−. Let η : 2Z → 2Z be the shift map

η(x)(n) = x(n + 1); clearly η is a homeomorphism. The backward and forward orbits of e,

E0 = {ηn(e) : n ∈ Z−} and E1 = {ηn(e) : n ∈ Z+ \ {0}}, are dense in 2Z by construction.

Finally, E0 ∩ E1 = ∅. For if n,m ∈ ω such that η−n(e) = ηm(e), then ηn+m(e) = e. Density

of E0 implies that e is not a periodic point. So n + m = 0, whence n = m = 0. We have

η−n(e) = ηm(e) = e ∈ E0 \ E1.

Let K ⊆ [0, 1]2 and ∆ ⊆ K be as defined in Section 2.2.1. K \ ∆ is the union of two

triangular open sets K0 = {〈x, y〉 ∈ K : x < y} and K1 = {〈x, y〉 ∈ K : x > y}. Let X

be any widely-connected subset of K, and for each i < 2 put Wi = (X ∩ Ki) ∪ ∆. Note

that each Wi is hereditarily disconnected, but W0 ∪W1 = X ∪ ∆ is connected since X is
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connected and (necessarily) dense in K. Define W ⊆ 2Z ×K by

W =
⋃
i<2

(Ei ×Wi);

W is hereditarily disconnected, but it will become widely-connected when certain pairs of

its points are identified. Let p, q ∈ ∆ be such that K is irreducible between p and q. Those

familiar with the Cantor set and the composants of K may choose p = 〈1, 1〉 and q = 〈1
4
, 1
4
〉,

for instance. Define a relation on 2Z ×K by ∼ =
{〈
〈x, p〉, 〈η(x), q〉

〉
: x ∈ 2Z

}
, and finally,

put W̃ = W/ ∼ .

Remark 2.40. Recall that the quotient of a compact metric space is metrizable whenever

Hausdorff. The entire quotient (2Z ×K)/ ∼ is easily seen to be Hausdorff, and is therefore

metrizable (and compact). Together with dim((2Z×K)/ ∼) = 1, this implies via the Menger-

Nöbeling Theorem (1.11.4 in [10]) that (2Z×K)/ ∼ embeds into Euclidean 3-space R3, and

so of course W̃ also embeds into R3.

Lemma 2.41. Let X be a space. If U ⊆ X is open, A0 is clopen in U , A1 is clopen in

X \ U , and A0 ∩ ∂U = A1 ∩ ∂U , then A0 ∪ A1 is clopen in X.

Proof. Clearly A0∪A1 is closed in X and (A0∪A1)\∂U is open in X. We show that A0∪A1

is open in X by showing that it is an X-neighborhood of each of its points in ∂U . Suppose

that a ∈ (A0 ∪ A1) ∩ ∂U . Then a ∈ A0 ∩ A1. There are two open subsets of X, V0 and V1,

such that a ∈ V0∩U ⊆ A0 and a ∈ V1∩ (X \U) ⊆ A1. Then a ∈ V0∩V1 ⊆ A0∪A1; to prove

the inclusion, suppose x ∈ V0 ∩ V1 and consider the two cases x ∈ U and x ∈ X \ U .

Lemma 2.42. For each i < 2, {0} ×Wi is a quasi-component of

Y := ({0} ×Wi) ∪
⋃
n≥1

({1/n} ×W1−i).

Proof. Fix i < 2. Clearly {0}×Wi contains a quasi-component of Y . Now let A be a clopen

subset of Y such that A∩{0}×Wi 6= ∅; we show that {0}×Wi ⊆ A. For each a ∈ A∩∆ there
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is an integer n(a) and an open U(a) ⊆ ∆ such that a ∈ [0, 1/n(a)] × U(a) ⊆ A (by [0, 1/n]

we mean {0} ∪ {1/k : k ≥ n}). By compactness of A ∩∆, there is a finite F ⊆ A such that

A∩∆ ⊆
⋃
{[0, 1/n(a)]×U(a) : a ∈ F}. Similarly, there is a finite E ⊆ Y \A and a collection

of open sets {[0, 1/n(b)]×U(b) : b ∈ E} such that (Y \A)∩∆ ⊆
⋃
{[0, 1/n(b)]×U(b) : b ∈ E}.

Let m = max{n(y) : y ∈ F ∪ E}.

Let A0 = A ∩ ({0} ×Wi) and A1 = π[A ∩ ({1/m} ×W1−i)], where π : R3 → {0} × R2

is the projection onto the y-z-plane. A0 ∩ ({0} ×∆) = A1 ∩ ({0} ×∆) by the choice of m.

Applying Lemma 2.41 with U = {0}×(Wi\∆), we have A0∪A1 is clopen in {0}×(W0∪W1).

Since {0} × (W0 ∪W1) = {0} × (X ∪ ∆) is connected, A0 ∪ A1 = {0} × (W0 ∪W1). Thus

{0} ×Wi ⊆ A0 ⊆ A.

Theorem 2.43. W̃ is widely-connected.

Proof. For each i < 2 and e′ ∈ Ei, {e′} × Wi is a quasi-component of W . This follows

immediately from Lemma 2.42 since there is a sequence of points (en) ∈ (E1−i)
ω such that

en → e′ as n→∞. Thus, the relation ∼ links together the quasi-components of W , so that

W̃ is connected.

To prove that W̃ is widely-connected, we let C be a non-empty connected subset of W̃

with C 6= W̃ , and show that |C| = 1. Let U ×V be a non-empty open subset of 2Z×K such

that {p, q}∩V = ∅ and C ∩ (U ×V ) = ∅. Let x ∈ C. Let x′ ∈ W such that x = x′/ ∼, and

let e′ be the first coordinate of x′. Since E0 and E1 are dense in 2Z, there exist n,m > 0 such

that {η−n(e′), ηm(e′)} ⊆ U . Since ηn+m is a homeomorphism and 2Z has a basis of clopen

sets, there is a clopen A ⊆ U such that η−n(e′) ∈ A and ηn+m[A] ⊆ U . Let L and M be

disjoint closed subsets of K such that K \ V = L ∪M , p ∈ L, and q ∈M . Then

T :=
([
W \ (U × V )

]
∩
[
(A× L) ∪ (ηn+m[A]×M) ∪

⋃
0<i<n+m

(ηi[A]×K)
])/
∼

is a clopen subset of W̃ \ (U × V ).
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Let

Q = T ∩
( ⋃
−n≤i≤m

{ηi(e′)} ×K
)/
∼ .

Note that x ∈ Q. If y ∈ T \Q, then by the construction of T there is a clopen S ⊆ T such

that y ∈ S and S ∩Q = ∅. Thus C ⊆ Q, which implies |C| = 1 (see Figure 2.7).

p

q

Figure 2.7: Superset of Q if n = m = 2 and e′ = e

Theorem 2.44. If γW̃ is a compactification of W̃ , then there is a composant P of γW̃ such

that W̃ ⊆ P .

Proof. It suffices to show that for every two points x, y ∈ W̃ there is a non-empty open

T ⊆ W̃ such that x and y are in the same quasi-component of W̃ \T . This would imply that

if γW̃ is a compactification of W̃ and T ′ is open in γW̃ such that T ′ ∩ W̃ = T , then x and y

are contained in a quasi-component of γW̃ \ T ′. By Theorem 1.5, x and y are contained in

a component of γW̃ \ T ′, a proper subcontinuum of γW̃ .

Let x and y be given. Pick two points x′, y′ ∈ W such that x = x′/ ∼ and y = y′/ ∼,

and let n,m ∈ Z such that ηn(e) and ηm(e) are the first coordinates of x′ and y′, respectively.

Assume that n ≤ m. There is a non-empty clopen A ⊆ 2Z such that A ∩ {ηi(e) : n − 1 ≤
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i ≤ m+ 1} = ∅. For i ∈ Z, set δ(i) = 0 if i ≤ 0 and δ(i) = 1 if i > 0. Then

R :=
( ⋃
n≤i≤m

{ηi(e)} ×Wδ(i)

)/
∼

is a subset of W̃ \ T where T = (A ×K)/ ∼. And {x, y} ⊆ R. Each fiber {ηi(e)} ×Wδ(i),

n ≤ i ≤ m, is a quasi-component ofW \(A×K) by density of E1−δ(i) in 2Z\A (Lemma 2.42).

The fibers are linked together by ∼, so R is contained in a quasi-component of W̃ \ T .
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Chapter 3

Hyperspace of H∗

3.1 Order arcs in C(X)

If X is a continuum, then let C(X) be the set of all subcontinua of X. The basis for

the (Vietoris) topology on C(X) consists of the sets

〈U1, ..., Un〉 =
{
A ∈ C(X) : A ⊆

⋃
{Ui : 1 ≤ i ≤ n} and A ∩ Ui 6= ∅ for each i

}
,

where U1, ..., Un are open subsets of X. It is well-known that if X is a continuum then so is

C(X). Suppose that N ⊆ C(X) and A,B ∈ C(X) with A ⊆ B. Then N is a nest in C(X)

from A to B if

i. A,B ∈ N ,

ii. A ⊆ N ⊆ B for all N ∈ N , and

iii. N ⊆ N ′ or N ′ ⊆ N for all N,N ′ ∈ N .

Say that N is a maximal nest in C(X) from A to B if N is a nest in C(X) from A to B

and there is no nest in C(X) from A to B which properly contains N . More generally, N

is a (maximal) nest in C(X) if there exist A,B ∈ C(X) such that N is a (maximal) nest in

C(X) from A to B.

Lemma 3.1. If M is a maximal nest in C(X), then for any M1,M2 ∈ M with M1 ( M2

there exists M ∈M such that M1 (M (M2.

Proof. There is a non-empty relatively open U ⊆ M2 such that U ∩M1 = ∅. Let C be the

component ofM1 inM2 \U . ClearlyM1 ⊆M (M2. By Theorem 1.6, M ∩∂U 6= ∅, whence

M1 (M .

37



Lemma 3.2. IfM is a maximal nest in C(X), then the subspace and order (induced by ⊆)

topologies onM coincide.

Proof. Let (M1,M2) be open in (M,⊆), and suppose M ∈ (M1,M2). Let U1 be open in X

containingM but missing a point inM2. Let U2 = U1 \M1. ThenM ∈ 〈U1, U2〉 ⊆ (M1,M2).

Let U = 〈U1, ..., Un〉 be a basic open set in M and suppose M ∈ U . Assume A 6= B,

and assume for the moment that M 6= A,B. By maximality ofM, we have

⋃
[A,M) = M =

⋂
(M,B].

If U ∩ [A,M) 6= ∅, then there exists i such that Ui ∩M ′ = ∅ for each M ′ ∈ [A,M). Then

Ui is a neighborhood of some point in M missing
⋃

[A,M), a contradiction. So there exists

M1 ∈ U ∩ [A,M). If U ∩ (M,B] = ∅, then the sets M ′′ \
⋃
Ui, M ′′ ∈ (M,B], are non-empty

closed and decreasing, but have empty intersection, contrary to compactness of X. So there

exists M2 ∈ U ∩ (M,B]. We have M ∈ (M1,M2) ⊆ U .

If M = A or M = B then replace (M1,M2) with [A,M2) or (M1, B], respectively.

Theorem 3.3. Let N be a nest in C(X). The following are equivalent:

(i) N is maximal

(ii) N is continuum (in the subspace topology).

Proof. (i)⇒ (ii): Suppose N is a maximal nest. We have already discovered that (N ,⊆) is

dense. Now we show it is complete. If S ⊆ N then H =
⋃
S is the smallest member of C(X)

containing all members of S, and K =
⋂
S is the largest member of C(X) contained in all

members of S. N ∪{H,K} is a nest, so by maximality H,K ∈ N . We have H = sup(N ,⊆) S

and K = inf(N ,⊆) S. This finishes our proof that (N ,⊆) is complete. If a linear order with

first and last elements is dense and complete, then it is a continuum (in the order topology).

So (N ,⊆) is a continuum. By the lemma above, N is a continuum.

(ii) ⇒ (i): Suppose N is not maximal. Let M be a proper extension of N , and let

M ∈ M \N . For each N ∈ N there is a basic open set UN in C(X) containing N , missing
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M . Note that if N ⊆ M then everything in N ∩ UN is properly contained in M , and if

M ⊆ N then everything in N ∩ UN properly contains M . Thus N ∩
⋃
{UN : N ⊆ M} and

N ∩
⋃
{UN : M ⊆ N} are disjoint. As these sets are both open and their union covers N ,

we have that N is not connected.

An order arc in C(X) is a nest in C(X) satisfying one (both) of the conditions in the

previous theorem. For any A,B ∈ C(X) with A ⊆ B, there is an order arc in C(X) from A

to B. This follows from applying Zorn’s Lemma to the set of nests from A to B, partially

ordered by inclusion.

3.2 Non-homeomorphic continua

A standard subcontinuum of H∗ is constructed with a sequence of closed intervals in

H, together with a free ultrafilter on ω. Formally, let (an)n<ω and (bn)n<ω be unbounded

sequences of numbers in H such that an < bn ≤ an+1 for each n < ω, and let u ∈ ω∗. Define

[au, bu] =
⋂
A∈u

clβH
⋃
n∈A

[an, bn];

[au, bu] is a subcontinuum of H∗. In the special case that an = n and bn = n + 1 for each

n < ω, we will write Iu = [0u, 1u] for [au, bu].

There is a dense subset of Iu that naturally identifies with the ultrapower [0, 1]ω/u. If

(xn) ∈ [0, 1]ω then xu := {{xn + n : n ∈ A} : A ∈ u} ∈ Iu corresponds to x/u ∈ [0, 1]ω/u.

The set Pu := {xu : x ∈ [0, 1]ω} is dense in Iu, and the subspace topology on Pu is the same

as the linear order topology on [0, 1]ω/u. If [0, 1]ω/u denotes the Dedekind completion of

[0, 1]ω/u with first and last elements, then there is a continuous ϕ : Iu → [0, 1]ω/u such that:

� ϕ−1{x/u} = {xu} for each x ∈ [0, 1]ω;

� Lx := ϕ−1{x} is an indecomposable continuum for each x ∈ [0, 1]ω/u;

� [Lx, Ly] := ϕ−1[x, y] is a continuum for each x < y ∈ [0, 1]ω/u.
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Thus, the completion of [0, 1]ω can be viewed as a linearization of Iu. The continua Lx and

[Lx, Ly] are called layers and subintervals of Iu, respectively.

Lemma 3.4. Cu :=
{

[0u, Lx] : x ∈ [0, 1]ω/u
}
is an order arc.

Proof. Clearly Cu is a nest; we show that Cu is a continuum. Since (Cu,⊆) ' [0, 1]ω/u is a

continuum, it suffices to show the inclusion order topology on Cu is finer than its subspace

topology. Let U := Cu∩〈U1, ..., Un〉 be a basic open set in Cu and suppose that [0u, Lx] ∈ U .

By compactness there exists bu ∈ P u such that x < bu and [0u, bu] ⊆
⋃n
i=1 Ui. For each

i ∈ {1, ..., n} there exists aiu ∈ P u with aiu < x and aiu ∈ Ui. Let au = max aiu. Then

[0u, Lx] ∈ ([0u, au], [0u, bu]) ⊆ U .

The structure of Iu easily generalizes. In fact, for any standard subcontinuum [au, bu]

there is a natural homeomorphism between Iu and [au, bu] that is an isomorphism between

the Pu points of each – by a Pu point of [au, bu], we mean a sequence of points (xn) mod u,

where xn ∈ [an, bn] for each n < ω.

Lemma 3.5. If A is a standard subcontinuum of H∗ and L is a non-trivial layer of A, then

there are two order arcs A1 and A2 in C(H∗) from L to A such that A1 ∩ A2 = {L,A}.

Proof. If A = [au, bu] and L = Ly, then by the arguments in Lemma 3.4,

A1 =
{

[Lx, Ly] : x ≤ y} ∪ {[au, Lx] : y < x
}
and

A2 =
{

[Ly, Lx] : y ≤ x} ∪ {[Lx, bu] : x < y
}

are order arcs. A1 ∩ A2 = {L,A} since L is not and end layer of A.

Lemma 3.6 (Section 2.1 in [9]). If L is a linear order with |L| ≤ ω1, then there is an

order-preserving embedding ϕ : L→ (C(H∗),⊆) such that for each l ∈ L:

(i) ϕ(l) is a standard subcontinuum of H∗;

(ii) l < l′ ∈ L implies ϕ(l) is a subset of a layer of ϕ(l′).
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A point p is triodic if some connected neighborhood of p has exactly three connected

components upon the removal of p.

Theorem 3.7. There is a collection of 2ω1 pairwise non-homeomorphic subcontinua of

C(H∗), each of which is a union of two order arcs.

Proof. Let (ω, 0] be the first infinite ordinal ω with its usual ordering reversed. For each

subset X of limit ordinals less than ω1, let

LX = (ω1 × {0}) ∪
⋃
α∈X

{α + 1} × (ω, 0]

with the lexicographic ordering.

Fix X and let ϕ : LX → C(H∗) be given by Lemma 3.6. Write Al for ϕ(l). For each

l′ ∈ LX let Ll′ be the layer of Al′ which contains
⋃
l<l′ A

l.

For each pair of successors l < l′ ∈ LX (i.e., there exist α < ω1 and n < ω such that

l = 〈α, 0〉 and l′ = 〈α + 1, 0〉, or l = 〈α, n + 1〉 and l′ = 〈α, n〉) we define a continuum K l,l′

as follows. Let A0 be any order arc from Al to Ll′ , and let A1 and A2 be order arcs from Ll
′

to Al′ such that A1 ∩ A2 = {Ll′ , Al′} (Lemma 3.5). Let K l,l′ = A0 ∪ A1 ∪ A2.

Figure 3.1: K l,l′

Suppose that α < ω1 is a limit. Let A0 be an order arc from clH∗
⋃
l<〈α,0〉A

l to L〈α,0〉

(A0 is possibly trivial), let A1 and A2 be order arcs from L〈α,0〉 to A〈α,0〉 such that A1∩A2 =

{L〈α,0〉, A〈α,0〉}, and let Kα = A0 ∪ A1 ∪ A2.

For each α ∈ X let Kα be an order arc from A〈α,0〉 to
⋂
n<ω A

〈α+1,n〉. Note that if α ∈ X

then A〈α,0〉 ⊆
⋂
n<ω A

〈α+1,n〉 =
⋂
n<ω L

〈α+1,n〉 which is indecomposable (Lemma 6.4 in [14]),
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so the inclusion is proper and Kα is non-trivial. Let

KX =
⋃{

K l,l′ : l′ is the successor of l in LX
}
∪

⋃
limit α<ω1

Kα ∪
⋃
α∈X

Kα ∪
{

clH∗
⋃
l∈LX

Al
}
.

Clearly KX is the union of two order arcs from A〈0,0〉 to clH∗
⋃
l∈LX

Al, so it is a continuum.

Suppose that h : KX → KY is a homeomorphism. We show (1) h(A
〈α,0〉
X ) = A

〈α,0〉
Y for

each limit α < ω1, and then (2) X = Y .

(1): Base case: α = ω. h(A
〈0,0〉
X ) = A

〈0,0〉
Y , h(L

〈1,0〉
X ) = L

〈1,0〉
Y , h(A

〈1,0〉
X ) = A

〈1,0〉
Y .

h(A
〈n,0〉
X ) = A

〈n,0〉
Y for each n < ω. h(clH∗

⋃
l<〈ω,0〉A

l
X) = clH∗

⋃
l<〈ω,0〉A

l
Y . h(A

〈ω,0〉
X ) = A

〈ω,0〉
Y .

Figure 3.2: Initial segments of KX and KY

Suppose that α < ω1 is a limit and h(A
〈β,0〉
X ) = A

〈β,0〉
Y for each limit β < α. If α is a limit

of successors then α = β +ω for some β < α, and h(A
〈α,0〉
X ) = A

〈α,0〉
Y as in the base case. If α

is a limit of limits, then by the induction hypothesis h(clH∗
⋃
l<〈α,0〉A

l
X) = clH∗

⋃
l<〈α,0〉A

l
Y ,

and then it follows that h(A
〈α,0〉
X ) = A

〈α,0〉
Y .

(2): Let α ∈ X and suppose for a contradiction that α /∈ Y . We know that h(A
〈α,0〉
X ) =

A
〈α,0〉
Y . Every neighborhood of

⋂
n<ω A

〈α+1,n〉
X contains infinitely many triodic points, but it
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cannot map to a point with this property (contradiction). Similarly, α ∈ Y implies α ∈ X.

Thus X = Y .

Figure 3.3: α ∈ X \ Y

Remark 3.8. Every decomposable subcontinuum of H∗ is a non-trivial interval of some stan-

dard subcontinuum, and thus contains non-trivial layers. The KX ’s are hereditarily decom-

posable, so they are not subspaces of H∗.

Recall that Cu ' (Cu,⊆) ' [0, 1]ω/u. Assuming ¬CH, there are 2c non-isomorphic

orders [0, 1]ω/u – see [8]. Thus, if CH fails then there are 2c mutually non-homeomorphic

order arcs in C(H∗). In general, it is easy to construct three different order arcs in C(H∗).

In any standard subcontinuum there are intervals I1, I2, I3 such that

1. cf(I1) = coi(I1) = ω;

2. cf(I2) = coi(I2) = ω1;

3. cf(I3) = ω and coi(I3) = ω1.
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For each n ∈ {1, 2, 3}, In is homeomorphic to an order arc that increases from one of its

end layers up to In. These order arcs are different because of their endpoints have different

cofinalities/coinitialities.

Question 4 (CH). Are there more than three non-homeomorphic order arcs in C(H∗)?

Infinitely many? The maximum possible number (2ω1)?

3.3 Property of Kelley

If X is a continuum and K ∈ C(X), then X has the property of Kelley at K provided

that for each open C(X)-neighborhood U of K there is an open X-neighborhood V of K

such that for each x ∈ V there exists L ∈ U with x ∈ L. Say that X has the property of

Kelley if it has the property of Kelley at each member of C(X).

Lemma 3.9. If K is a subcontinuum of H∗ and W is a neighborhood of K, then there is a

standard subcontinuum [au, bu] such that K ⊆ [au, bu] ⊆ W .

Proof. Separate K and βH \W with open sets U and V which have disjoint closures in βH.

Assume inf U < inf V . Let

a0 = inf U b0 = sup{x ∈ U : (a0, x) ∩ V = ∅}

c0 = inf V ∩ (b0,∞) d0 = sup{x ∈ V : (c0, x) ∩ U = ∅}

a1 = inf U ∩ (d0,∞) etc.

The process never ends since U and V both meet H∗. Let U1 =
⋃
n<ω(an, bn) and

V1 =
⋃
n<ω(cn, dn). Since U and V have disjoint closures, the sequence a0, b0, c0, d0, a1, ... is

strictly increasing and converging to infinity, so that clH U1 =
⋃
n<ω[an, bn] and similarly for

clH V1. In particular, clH U1 ∩ clH V1 = ∅.

Note that clβH exβH U1 ⊆ clβH clH U1. For suppose that p /∈ clβH clH U1. Then clH U1 /∈ p

so there exists A ∈ p with A ∩ clH U1 = ∅. Thus exβH(H \ clH U1) is an open subset of βH
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containing p missing exβH U1. So p /∈ clβH exβH U1. Similarly, clβH exβH V1 ⊆ clβH clH V1. Thus

clβH exβH U1 ∩ clβH exβH V1 = ∅.

Note that U ∩ H ⊆ U1 and V ∩ H ⊆ V1, so we have K ⊆ U ⊆ exβH U1 and βH \

W ⊆ V ⊆ exβH V1. Putting everything together, K ⊆ clβH
⋃
n<ω[an, bn] ⊆ W . Now let

u = {A ⊆ ω : K ⊆ clβH
⋃
n∈A[an, bn]}. It is easy to see that u is a filter. Because K

is connected, for each A ⊆ ω we must have A ∈ u or ω \ A ∈ u, so that u is in fact an

ultrafilter. We have K ⊆ [au, bu] ⊆ W .

Lemma 3.10. If B is a basis for the topology on X, then {〈B1, ..., Bn〉 : Bi ∈ B and n =

1, 2, ...} is a basis for the (Vietoris) topology of C(X).

Proof. Let 〈U1, ..., Un〉 be a basic neighborhood of a point A ∈ C(X). For each a ∈ A, if

I(a) = {i ∈ {1, ..., n} : a ∈ Ui} then there exists B(a) ∈ B such that a ∈ B(a) ⊆
⋂
i∈I(a) Ui.

Then {B(a) : a ∈ A} is an open cover of A, and thus has a finite subcover {Bi : 1 ≤ i ≤ m}.

Then A ∈ 〈B1, ..., Bm〉 ⊆ 〈U1, ..., Un〉.

Theorem 3.11. H∗ has the property of Kelley.

Proof. Let K ∈ C(H∗) \ {H∗} and let U be open in C(H∗) with K ∈ U . Assume that

U = 〈ex∗βH U1, ..., ex∗βH Un〉, where each Ui is open in H and ex∗βH Ui = (exβH Ui) ∩ H∗. By

Lemma 3.9 there is a standard subcontinuum [au, bu] with K ⊆ [au, bu] ∈ U . Using the fact

that
⋃n
i=1 ex∗βH(Ui) = ex∗βH

⋃n
i=1 Ui, we have

D :=
{
n < ω : [an, bn] ⊆

⋃
Ui and [an, bn] ∩ Ui 6= ∅ for each i

}
∈ u.

There is a sequence (Vn)n∈D of disjoint open intervals in H such that [an, bn] ⊆ Vn ⊆
⋃
Ui

for each n ∈ D. Let V = ex∗βH
⋃
n∈D Vn. We have K ⊆ [au, bu] ⊆ V . Now let q ∈ V . There

exists L ∈ q such that L ⊆
⋃
n∈D Vn. For each n ∈ D there is a closed interval [cn, dn] with

[an, bn] ∪ (L ∩ Vn) ⊆ [cn, dn] ⊆ Vn. Let v = {A ⊆ ω :
⋃
n∈A∩D[cn, dn] ∈ q}. Then v ∈ ω∗ and

q ∈ [cv, dv] ∈ U .
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Corollary 3.12. Let A ∈ C(H∗) \ {H∗}. (i) If U is a non-empty open subset of C(H∗) then

there exists B ∈ U such that A∩B = ∅. (ii) The arc component of C(H∗) \ {A} containing

H∗ is the only dense arc component of C(H∗) \ {A}.

Proof. (i): Let K ∈ U . Let W be open in H∗ with K ⊆ W ⊆ W 6= H∗. Let V = U ∩ 〈W 〉.

Then K ∈ V . By the property of Kelley at K there is a non-empty open V ⊆ H∗ such that

for each q ∈ V there exists Lq ∈ C(H∗) with q ∈ Lq ∈ V . If Lq ∩ A 6= ∅ for each q ∈ V ,

then A ∪
⋃
q∈V Lq is a proper subcontinuum of H∗ with non-empty interior. Therefore there

exists q ∈ V such that A ∩ Lq = ∅; let B = Lq.

(ii): Let E be the arc component of C(H∗) \ {A} containing H∗. Suppose that F is an

arc component of C(H∗) \ {A} such that F 6= E . Then H∗ /∈ F , so each member of F is

a subset of A. So 〈H∗ \ A〉 is a non-empty open subset of C(H∗) missing F , thus F is not

dense in C(H∗). Now we show E is dense. Let U be a non-empty open subset of C(H∗). By

(i) there exists B ∈ U such that A ∩ B = ∅. Then an order arc from B to H∗ witnesses

B ∈ E ∩ U .

Lemma 3.13 ([14] Theorem 5.7). If K is a decomposable subcontinuum of H∗, then K is a

non-degenerate subinterval of a standard subcontinuum.

Lemma 3.14 ([14] Theorem 5.9). If K and L are subcontinua of H∗, L is indecomposable,

and K ∩ L 6= ∅, then K ⊆ L or L ⊆ K.

Theorem 3.15. Let p ∈ H∗,

K =
{
K ∈ C(H∗) : K ∈ α for every order arc α in C(H∗) from {p} to H∗

}
and L = {L ∈ C(H∗) : L is indecomposable and p ∈ L}, then K = L is a compact totally

disconnected subspace of C(H∗).

Proof. L ⊆ K by Lemma 3.14. Now we prove K ⊆ L by showing that each member of K is

indecomposable. LetD be a decomposable subcontinuum of H∗ with p ∈ D. By Lemma 3.13,
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D is an interval of a standard subcontinuum [au, bu]. Without loss of generality, there exists

cu ∈ D with cu < p and [au, cu) ∩D 6= ∅. Then [cu, bu] ∪ [au+1, bu+1] continuum containing

p that is ⊆-incomparable with D. Thus an order arc from {p} to [cu, bu]∪ [au+1, bu+1] to H∗

does not contain D, so D /∈ K.

K is closed in C(H∗): Suppose that B ∈ C(H∗) \ K. There exists an order arc α from

{p} to H∗ such that B /∈ α. There exists A ∈ α such that A 6⊆ B and B 6⊆ A. Let a ∈ A \B

and b ∈ B \A. Let U be open in H∗ with a ∈ U and U ∩B = ∅. Let V be open in H∗ with

b ∈ V and V ∩ A = ∅. Then B ∈ 〈H∗ \ U, V 〉 ⊆ C(H∗) \ K.

L is totally disconnected: Let A and B be two points in L. Without loss of generality

there exists b ∈ B \A. By Lemma 3.9 there is a standard subcontinuum C such that A ⊆ C

and b /∈ C. Then p ∈ C ∩ L for each L ∈ L. By Lemma 3.14, L is the union of the two

disjoint closed sets {L ∈ L : L ⊆ C} and {L ∈ L : L ⊇ C}. The first set contains A and the

second set contains B.
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