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Abstract

Advancements in modern technology have enabled the collection of complex,

high-dimensional data sets, such as curves, 2D or 3D images, and other objects

living in a functional space, thus boosting the investigation of function data. This

phenomenon affects all the fields involving applied statistics such as Geophysics (Fer-

raty et al., 2005), Environmetrics (Febrero et al., 2008), Ecology (Embling et al.,

2012), Chemometrics (Daszykowski et al., 2007), and others, see also Ferraty and

Vieu (2006). Not only revealing the wide variety of possible fields of application of

functional data methods, the previous selected set of references also reflect the large

scope of statistical problems, such as regression and inference, in which one may have

to deal with under the context of functional data. Hence, functional data analysis

(FDA) has become one of the most active fields of research in statistics during the

last ten years.

In this dissertation our objective is to develop outlying-resistant methods for

the estimation of the mean curve of a functional dataset that remain valid even in

the presence of a significant proportion of outlier curves. We also propose a method

for the calculation of a simultaneous confidence band for the mean curve that is

robust to outliers. Our work is based on B-Spline Smoothing, together with LAD-

based and M-based estimation techniques. We also extend both methods for the

estimation of the difference of the mean functions of two populations, also obtaining

a robust test statistics for the difference of the mean functions of two populations.

We analyze the asymptotic properties of the proposed estimators, proving weak

consistency and, for the M-based estimator, asymptotic normality. We implement an
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extensive numerical simulation to evaluate the performance of the proposed methods.

We also demonstrate the applicability of the proposed methods using real datasets.
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Matemático Sergipano, I would have traded our studying weekends for nothing in

this world. Pietro, thank you! Professor Valdenberg, words will never express my

gratitude for you. If I am here today, I owe it to you. To my parents, Raimunda and
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Chapter 1

Introduction

The main topic of this dissertation is Functional Data Analysis (FDA), a recently

developed area of statistics, that has gained increasing interest in the latest years.

FDA considers smooth functions as fundamental atoms of data, markedly in the form

of functional curves. Unlike multivariate statistics where the data live in a finite-

dimensional space, usually Rn, in FDA the data live in spaces of infinite dimension,

usually some subset of L2, the space of square integrable functions. The literature

on FDA is vast, but the books of Silverman and Ramsay (2005) and Ferraty and

Vieu (2006) provide a thorough overview of the basics of the area.

In this dissertation we study Robust Statistical Methods. Basic statistical meth-

ods require assumptions on the data, such as distributional assumptions, e.g. nor-

mality of data, and homogeneity of data. When the assumptions are not satisfied, the

statistical methods usually deteriorate, generating misleading results, such as wrong

estimates or overestimated variance. The assumptions of a model might be broken

due to the intrinsic distribution of the data, or due to an external contamination,

that is, due to the presence of outliers.

Outliers can appear in a dataset in various ways. They might be the result of an

error, for example an incorrect measurement, or they can be correct observations that

do not follow the pattern of the majority of the data. In the former case, identification

and removal of wrong data are preferred. In the latter case, the removal of outliers

is not recommended, since it is a valid data point. Rather, a robust method should

be used for the analysis of such data. Robust statistics has a long history, going
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as far back as the work of Fisher (1922) where the sample mean was studied under

small deviations from normality. The seminal works of Hampel et al. (2011) and

Huber and Ronchetti (2011) established much of the basic theory for modern robust

methods.

The results presented in this dissertation are on the intersection of robust statis-

tical methods and functional data analysis. Robust statistical methods in functional

data analysis are challenging due to the rich outlier structure in functional spaces.

The inherent complexity of infinite dimensional functional spaces allows for a wide

variety of possible outlier behavior. Among the recent literature, Gervini (2008)

proposed a robust estimator for the location parameter of contaminated datasets, by

extending the notion of median to functional datasets, and also proposed a robust

alternative for the functional principal components analysis (FPCA) based on the

spherical principal components defined in Locantore et al. (1999). More recently,

Bali et al. (2011) and Lee et al. (2013) proposed robust estimators for the functional

principal components by adapting the projection pursuit approach and based on

MM estimation, respectively. Kraus and Panaretos (2012) uses a different approach,

instead estimating the dispersion operator containing influential observations. More

recently, Maronna and Yohai (2013) established a robust version of spline-based esti-

mators, replacing the L2 loss by a bounded loss function of the residuals in functional

linear regression models. Shin and Lee (2016) proposed a robust procedure which

uses outlier-resistant loss functions including non-convex loss functions in functional

linear regression models, computationally based on iteratively reweighted penalized

least-squares algorithm and study the theoretical developments of this estimator by

using numerical studies with various types of robust loss.

In this dissertation we obtain robust methods for the simultaneous inference for

the mean function of functional datasets. The problem of simultaneous inference for
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functional data has not been studied extensively not due to the lack of interest of the

research community, but rather due to its challenging technical nature. The focus of

this dissertation is on developing robust estimation of simultaneous confidence bands

for the mean function of functional data, that is, confidence bands that are valid

uniformly for all the points of the mean function when the data are contaminated with

outliers. Among the recent literature, Degras (2011) and Cao et al. (2012b) calculated

simultaneous confidence bands for the mean function using local kernels and B-Spline

basis, respectively, when data are homogeneous. Some studies also discussed robust

confidence intervals for the location parameter in the finite-dimensional setting. For

instance, Fraiman et al. (2001) discussed globally robust confidence intervals, where

the confidence level is maintained in a neighborhood of the base distribution and

Adrover et al. (2004) defined globally robust confidence intervals and p-values for the

location and simple linear regression models, and Haque and Khan (2012) discussed

globally robust confidence intervals by taking into account the bias direction of the

robust location estimators.

Two methods are presented to obtain a robust estimator and robust simulta-

neous confidence band for the mean function of functional data. In Chapter 2, we

present an estimation of the mean function by using Least Absolute Deviation and

B-Spline smoothing. Following, we propose a robust estimation of the covariance

function by using the spherical principal components for estimating the eigenfunc-

tion decomposition of the covariance operator, aided by a robust estimation of the

eigenvalues, leading to a robust reconstruction of the covariance function. The robust

simultaneous confidence band is then calculated by using a Monte-Carlo procedure

to estimate the maximal quantile of appropriately defined Gaussian processes. The

same methodology is extended for the robust estimation of the difference of the mean

functions of two populations, and for the definition of a robust statistic for testing
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the hypothesis of the difference of the mean function of two populations. In Chapter

3, we present an extension of the robust simultaneous inference in Chapter 2. We

propose the B-Spline Smoothed M-Estimator for the mean function of functional

data. For this estimator, we research the asymptotic theoretical properties, and we

present proofs for the asymptotic consistency and the asymptotic normality of the

estimator. Using a modified version of the pseudo-data introduced in Cox (1983), we

obtain a robust simultaneous confidence band for the mean function. We also pro-

pose a robust test for the difference of the mean functions of two populations, based

on the robust simultaneous confidence band of the difference of two mean functions.

In Chapter 4, we review and make a comparison of the results of the dissertation,

and propose some future research problems.

1.1 Some Motivating Examples

We present here two real datasets that have a natural interpretation as func-

tional datasets. These datasets also contain outliers. These examples will serve as a

motivation for the application of the methods presented in this dissertation, and are

further analyzed in the Sections 2.5 and 3.5.

1.1.1 Octane dataset

This dataset consists of 39 near infrared (NIR) spectra of gasoline samples,

obtained from Esbensen et al. (1996). The absorbance rate of each gasoline sample

was measured for every other wavelength between 1100hz and 1550hz. It is known,

from the data collection phase, that 6 of the samples contain added ethanol, which

corresponds to an upward translation of the absorbance rate for the upper wavelength

interval of the spectrum, 1390hz onward.
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Figure 1.1: Absorbance rate of gasoline for near infrared spectra.

For this dataset, the outlying curves are clear, both visually, see Figure 1.1,

and from the description of the data collection. A question of interest about this

dataset is to identify the average absorbance rate as a function of the wavelenght in

the presence of the outliers. An answer to this question will be given in Sections 2.5

and 3.5.

1.1.2 Ground level Ozone concentration dataset

This dataset consists of hourly average measurements of ground level ozone (O3)

concentrations from a monitoring station in Richmond, BC, Canada, from the years

of 2004 to 2012. The presence of Ozone at ground level is highly undesirable, and

considered a serious air pollutant. Since the concentration of ground level Ozone

typically peaks at summer months, the month of August will usually present a high

concentration level. Figure 1.2 represents the daily ground level ozone concentration

for the month of August of the years 2005 and 2007.
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The same dataset was studied in Boente and Salibian-Barrera (2015), and using

S-estimators for the principal components, the presence of outliers was detected in

the year of 2005. Based on the existence of outliers, one question of interest is if

there is a significant difference between the mean functions of the ground level ozone

concentration between the years of 2005 and 2007, in spite of the existence of outliers.

An answer to this question will be presented in the Section 2.5.

Figure 1.2: Ground Level Ozone Concentration for the month of August for 2005
and 2007.

1.2 Introduction to Functional Data Analysis

In this section we will present some basic definitions for FDA and present some

examples of analyses performed on functional datasets.

The recent developments of data management apparatus, including collection,

storage and analysis capabilities, made possible the collection of complex, high-

dimensional datasets. Examples include the collection of smooth curves, high-definition
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images and high-fidelity 3D models, such as datasets originating from fMRI, func-

tional Magnetic Resonance Imaging. These developments have boosted the study

of functional data analysis. This phenomenon affects all the fields involving applied

statistics such as Geophysics (Ferraty et al., 2005), Environmetrics (Febrero et al.,

2008), Ecology (Embling et al., 2012), Chemometrics (Daszykowski et al., 2007),

and others, see also Ferraty and Vieu (2006). Not only revealing the wide variety of

possible fields of application of functional data methods, the previous selected set of

references also reflect the large scope of statistical problems, such as regression and

inference, in which one may have to deal with under the context of functional data.

Hence, FDA has become one of the most active fields of research in statistics during

the last ten years.

The development of FDA was also helped by the seminal book of Silverman

and Ramsay (2005), which laid the foundations of functional data analysis, and

also presented insightful suggestions for future research. It is still considered the

handbook of functional data analysis. The basic definitions presented following are

mostly borrowed from that book.

1.2.1 Basic Definitions

The basic data considered in FDA come from experiments in which the mea-

surements can be interpreted as a smooth function. One such example comes from

the Berkeley Growth Study (Tuddenham and Snyder, 1954). In this study, the re-

searchers collected the heights of boys and girls at irregular intervals from the birth

to eighteen years of age. Although only a discrete set of measurements is presented,

the height is best represented as a smooth function observed at discrete points. The

assumption of the observations being smooth functions comes with several benefits,
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such as the possibility of using the information of derivatives, giving rise to rich

measures, such as the acceleration of growth of the kids.

The same assumption of smooth curves also comes with setbacks. For example,

how should the discrete measurement points be interpolated to a smooth function?

Basis representation of functional spaces provide a partial answer to this question.

Some examples of such basis expansions are Fourier, B-Splines, and Wavelets.

A formal attempt at defining objects of study of FDA can be made with the

help of stochastic processes. We consider a functional dataset as a collection of i.i.d.

random samples, {ηi(x)}ni=1, from a smooth and square integrable random function

η(x) ∈ L2. As mentioned in the previous paragraph, often times the whole curve is

not available, but rather a discrete set of measurements for each sample curve, that

is, each random curve ηi(·) is measured at the points xij, 1 ≤ j ≤ N , 1 ≤ i ≤ n,

where N goes to infinity together with the sample size n. Then, the j-th observation

for the i-th subject can be written as

Yij = ηi (xij) + σ (xij) εij, (1.1)

where εij are measurement errors, and usually assumed to be independent, satisfying

E(εij) = 0 and E(ε2
ij) = 1, and σ(·) is the variance of the measurement errors,

assumed to be a smooth function.

In order to obtain the full sample from a discrete set of measurements, an

approximation basis approach can be used. One example of such approach is the

B-Spline smoothing method. In order to illustrate this method, assume that the

random curves are defined in a compact interval, assumed here to be [0, 1]. Let

t1−p = · · · = t0 = 0 < t1 < · · · < tNm < 1 = tNm+1 = · · · = tNm+p be a set of

Nm points on [0, 1], called interior knots. The number of interior knots will control

8



the amount variation allowed in the interpolation, and will depend on the number

of measurement points, N , and the number of sample curves n. Denote by H(p−2)

the p-th order spline space, i.e., p− 2 times continuously differentiable functions on

[0, 1] that are polynomials of degree p− 1 on [tJ , tJ+1], J = 0, . . . , Nm. The B-Spline

basis of H(p−2) was defined in De Boor (1978), and consists of an orthogonal basis,

containing Nm + p functions B1−p(·), · · · , BNm(·). Using the B-Spline basis, we can

approximate the whole smooth sample function as

η̂i(x) =
Nm∑

J=1−p

β̂i,JBJ(x), i = 1, . . . , n,

where {β̂i,1, · · · , β̂i,Nm+p}T, i = 1, . . . , n is the solution of

{
β̂i,1, · · · , β̂i,Nm+p

}T

= arg min
{β1,...,βNm+p}∈RNm+p

N∑
j=1

{
Yij −

Nm∑
J=1−p

βJBJ (xij)

}2

, 1 ≤ i ≤ n.

Another problem in FDA concerns of the estimation of the covariance function.

The covariance function is defined as

G(x, x′) = E ((η(x)−m(x))(η(x′)−m(x′)) , 0 ≤ x, x′ ≤ 1,

where m(x) = E(η(x)), 0 ≤ x ≤ 1. Using the Karhunen-Loève L2 representation

theorem, we can write

η(x) = m(x) +
∞∑
k=1

ξkφk(x),

where ξk, k = 1, 2, . . ., are uncorrelated random coefficients with mean zero and vari-

ance one and φk(x) =
√
λkϕk(x). Also, {λk}∞k=1 and {ϕk(x)}∞k=1 are the eigenvalues
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and the eigenfunctions, respectively, of the covariance function G(x, x′) given by

G(x, x′) =
κ∑
k=1

λk · ϕk(x)ϕk(x
′) =

κ∑
k=1

φk(x)φk(x
′).

This suggests that the covariance function can be estimated using an extension of

the principal components analysis to functional data, the Functional Principal Com-

ponent Analysis.

A presentation of further problems in FDA can be found in Silverman and

Ramsay (2005).
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Chapter 2

LAD-Based Robust Simultaneous Inference for Functional Data

2.1 Introduction

In this chapter, our objective is to develop outlying-resistant methods that can

provide valid statistical inference even in the presence of a significant proportion of

outlier curves. In particular, outlier-resistant simultaneous inference for the location

function will be studied. Experimenters may have outlier curves in functional data

for two reasons. First, they may result in errors in measurements and recording or

typing mistakes. These should be identified and corrected if possible, or discarded if

not corrected. Second, outlier curves can be correctly observed data curves which are

different in the sense that they do not follow the same pattern as that of the majority

of the curves. In the presence of outlier curves, the estimate of the functional mean,

and therefore simultaneous confidence band (SCB), may be affected badly which

would yield misleading statistical conclusions. Further, the presence of outliers is

amplified by the inherent complexity of functional spaces. This may lead to arise

different types of outlier curves which add further complication to estimating func-

tional mean and constructing SCB for functional mean. It is of particular interest

in data analysis to construct SCB for the mean function instead of point-wise confi-

dence intervals and to develop global test statistics for the general hypothesis testing

problem on the location functions. For example, Degras (2011), Cao et al. (2012a,b)

construct asymptotic SCB for the mean and derivative functions in FDA without

considering any outliers. However, all the existing literatures on constructing SCB
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for the mean function assume that observed functional data are homogeneous, that

is free of outlier curves.

Developing the robust (R) simultaneous inference for functional responses, we

encountered many new challenges. First, the greater technical difficulty is to for-

mulate SCB for a mean function and establish their theoretical properties. Second,

unlike the scenarios considered in the classical FDA literature, in our settings there

is complex outlier structure. Our main contribution is to construct a R simultaneous

confidence band (RSCB) based on R estimators of the mean function and covari-

ance function using the least absolute deviation and spline smoothing methods and

spherical principal components, respectively. We further extend the simultaneous

inference to the two-sample case and evaluate the equality of mean functions from

two groups when atypical curves exist. Our Monte Carlo simulation results show

that the proposed bands are superior to existing classical methods which do not ac-

count for atypical curves. To our best knowledge, this is the first attempt to provide

SCB for functional data that are less sensitive to anomalous observations. We note

that all currently available methods cannot be immediately used for constructing a

R version of SCB for mean functions.

This chapter is organized as follows. We first propose a R estimator for the

mean function when the dataset contain outliers, using a proposed robust B-spline

smoothing estimation method in the Section 2.2. Then we construct a RSCB for

the mean function based on the proposed R estimator for the mean function, and a

R covariance estimator obtained from the spherical principal components by using

polynomial spline smoothing estimation in the Section 2.3. In addition we extend this

method to form a RSCB for the difference of mean functions of two populations in the

same section. In the Sections 2.4 and 2.5, the performance of the proposed R methods
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and their robustness are demonstrated with an extensive simulation study and real

data examples. Finally we conclude the chapter with discussion and conclusion.

2.2 Model

A functional dataset can be defined as a collection of i.i.d. random samples,

{ηi(x)}ni=1, where i is the subject index, from a smooth and square integrable random

function η(x) ∈ L2, with unknown mean function, E[η(x)] = m(x), and unknown

covariance function G(x, x′) = cov[η(x), η(x′)]. For simplicity reasons, the domain

of η(·) is assumed as [0, 1]. In this paper we assume an equally spaced dense design,

that is, each random curve ηi(·) is measured at the points xij = j/N , 1 ≤ j ≤ N ,

1 ≤ i ≤ n, where N goes to infinity when sample size n goes to infinity. Then, the

jth observation for the ith subject can be written as

Yij = ηi (j/N) + σ (j/N) εij, (2.1)

where errors εij’s are independent and assumed to satisfy E(εij) = 0 and E(ε2
ij) = 1,

and the stochastic process E
∫

[0,1]
η2(x)dx <∞.

The process η(x) can be written, based on Karhunen-Loève L2 representation,

as η(x) = m(x)+
∑∞

k=1 ξkφk(x), where ξk’s are uncorrelated random coefficients with

mean zero and variance one, which we assume to have a symmetrical elliptical distri-

bution, and φk(x) =
√
λkϕk(x) . Here, {λk}∞k=1 and {ϕk(x)}∞k=1 are the eigenvalues

and eigenfunctions, which form an orthonormal basis of L2, of the covariance func-

tion G(x, x′). We assume that φk(·)’s are kept in a descending order of λk’s, i.e.,

λ1 ≥ λ2 ≥ . . . ≥ 0. Assume that λk = 0 for k > κ, where κ is a positive integer or
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∞. This implies that the eigenvalue decomposition of G(x, x′) is

G(x, x′) =
κ∑
k=1

λkϕk(x)ϕk(x
′) =

κ∑
k=1

φk(x)φk(x
′). (2.2)

With this representation, we rewrite the model (2.1) as

Yij = m

(
j

N

)
+

κ∑
k=1

ξikφk

(
j

N

)
+ σ

(
j

N

)
εij. (2.3)

Although the existence of {λk}κk=1 and {φk}κk=1, and the random coefficients {ξik}κk=1

are guaranteed mathematically, they are unknown and unobservable.

2.3 Proposed Method

2.3.1 The classical estimation of the mean function

We first review an estimation procedure that approximates the mean function

by polynomial splines. Let t1−p = · · · = t0 = 0 < t1 < · · · < tNm < 1 = tNm+1 =

· · · = tNm+p be equally-spaced points over [0, 1], called interior knots, in which tJ =

Jhm, 0 ≤ J ≤ Nm, and hm = 1/ (Nm + 1) is the distance between neighboring

knots. Denote by H(p−2) the p-th order spline space, i.e., p − 2 times continuously

differentiable functions on [0, 1] that are polynomials of degree p − 1 on [tJ , tJ+1],

J = 0, . . . , Nm.

Cao et al. (2012b) proposed to approximate the mean function m(·) by a linear

combination of spline basis: m̂ (x) =
∑Nm

J=1−p β̂JBJ(x), where BJ be the J-th B-spline

basis of order p defined in de Boor (2001), and the coefficients {β̂1−p, . . . , β̂Nm}T are
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the solutions of the following least squares problem

{
β̂1−p, . . . , β̂Nm

}T

= arg min
{β1−p,...,βNm}∈RNm+p

n∑
i=1

N∑
j=1

{
Yij −

Nm∑
J=1−p

βJBJ (j/N)

}2

.

Let Ȳ = (Ȳ·1, . . . , Ȳ·N)T, where Ȳ·j = 1/n
∑

i=1 Yij, j = 1, . . . , N . One advantage

of the least square estimator is the existence of a closed form solution. Indeed,

applying elementary algebra, one obtains

m̂ (x) = B(x) (BTB)−1 BTȲ, (2.4)

where B(x) = (B1−p,p(x), . . . , BNm,p(x)) and B = (BT(1/N), . . . ,BT(N/N))T is the

design matrix.

2.3.2 The robust estimation of the mean function

The ordinary least square (OLS) estimation, used in equation (2.4), is susceptible

to the presence of outliers. To circumvent this non-robustness, we propose to replace

the OLS by the least absolute deviation (LAD), that is, we estimate the mean function

by a linear combination of spline basis,

m̃(x) =
Nm∑

J=1−p

β̃JBJ(x), (2.5)

where

{
β̃1−p, . . . , β̃Nm

}T

= arg min
{β1−p,...,βNm}∈RNm+p

n∑
i=1

N∑
j=1

∣∣∣∣∣Yij −
Nm∑

J=1−p

βJBJ (j/N)

∣∣∣∣∣ .
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LAD gives equal emphasis to all observations, in contrast to OLS which, by squaring

the residuals, gives more weight to large residuals, that is, outliers in which predicted

values are far from actual observations. This is helpful in studies where outliers do

not need to be given greater weight than other observations. In this work, we use

cubic spline (p = 4) basis and the number of interior knots Nm is taken to be

[0.5n1/8 log n] and [a] denotes the integer part of a, which is recommended in Cao

et al. (2012b). In the following theorem, we show that the proposed R estimator,

m̃(x), is a consistent estimator of the true mean function, m(x), converging at the

optimal rate n−1/2.

Theorem 1. Under Assumptions (A1)-(A4) bellow, one has

‖m̃−m‖2
2 = oP (n−1).

To give the proof of the Theorem 1, we first need some additional definitions.

For any r ∈ (0, 1], we denote Cq,r [0, 1] as the space of Hölder continuous functions on

[0, 1], Cq,r [0, 1] =

{
φ : supt6=s,t,s∈[0,1]

|φ(q)(t)−φ(q)(s)|
|t−s|r < +∞

}
. Let fij(0) be the density

function of eij, where eij =
∑κ

k=1 ξikφk(j/N) + σ(j/N)εij, 1 ≤ i ≤ n, 1 ≤ j ≤ N .

The following technical assumptions are needed.

(A1) The regression function m ∈ Cp0−1,1[0, 1]. The spline order in estimating m

satisfies p ≥ p0.

(A2) The standard deviation function σ (x) ∈ C0,δ [0, 1] for some δ ∈ (0, 1] and for

any k = 1, 2, . . . κ, φk (x) ∈ Cp,1 [0, 1] and minx∈[0,1] G (x, x) > 0;

(A3) The number of knots Nm satisfies n1/(2p) � Nm � Nn−1.

(A4) Uniformly over i and j, fij(·) is bounded from infinity, and it is bounded away

from zero and has a bounded first derivative in the neighborhood of zero.
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Assumptions (A1)-(A3) are standard in the spline smoothing and FDA litera-

ture; see Cao et al. (2012b), for instance. In particular, (A1) guarantee the orders of

the bias terms of the spline smoothers for m(x). Assumption (A2) ensures the covari-

ance function is a uniformly bounded function. Assumption (A3) implies the number

of points on each curve N diverges to infinity as n → ∞, which is a well-developed

asymptotic scenario for dense functional data. The smoothness of our estimator is

controlled by the number of knots, which increases to infinity as specified in (A3).

This increasing knots asymptotic framework guarantees the richness of the basis.

(A4) is a standard assumption in quantile regression; see Theorem 1 in Wang et al.

(2009) for example.

2.3.3 Proof of Theorem 1

Let Ki = diag{fi1(0), . . . , fiN(0)}, i = 1, 2, . . . , n and K = diag{K1, . . . ,Kn}.

Let ς = ς(β) =N
−1/2
m Hn(β − β0), where H2

n = NmΠTKΠ, Π = (BT
1 , . . . ,B

T
n) and

Bi ≡ B, i = 1, . . . , n. We first show that ‖ς(β̃)‖2 = Op(N
1/2
m ). We standardize

b̃j = N
1/2
m H−1

n Bp(j/N). Denote Rnj = Bp(j/N)β0 − m(j/N) as the bias from the

spline approximation. Thus, we have
∑n

i=1

∑N
j=1 |Yij−Bp(j/N)β|=

∑n
i=1

∑N
j=1 |eij−

Bp(j/N)β − ςTb̃j − Rnj|. By Lemma A.5 of Kim (2007), maxj ‖b̃j‖2 = O(
√
Nm/n).

Applying similar arguments used in Theorem 3.1 of Wei and He (2006), for any ε > 0,

there exits Lε such that P
{

inf‖ς‖2>LεN1/2
m

∑n
i=1

∑N
j=1 |eij−Bp(j/N)β− ςTb̃j−Rnj| >∑n

i=1

∑N
j=1 |eij−Bp(j/N)β−Rnj|

}
> 1−ε. Since

∑n
i=1

∑N
j=1 |eij−Bp(j/N)β−ςTb̃j−

Rnj| is minimized at ς(β̃) over the space RNm+p, we have P (‖ς(β̃)‖2 < LεN
1/2
m ) >

1−ε, and ‖ς(β̃)‖2 = Op(N
1/2
m ). According to Lemma A.4 of Cao et al. (2012b), there

exists a constant C > 0, such that ‖m̃−m‖∞ ≤ C ‖m‖∞ J−pmm , where ‖m‖∞ =
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supx∈[0,1] |m(x)|. There exists a constant C, such that

1

N

N∑
j=1

{m̃(j/N)−m(j/N)}2 ≤ 2

N

N∑
j=1

{Bp(j/N)(β̃ − β0)}2 + 2CN−2p
m

= 2N−1‖ς(β̃)‖2
2 + 2CN−2p

m = op(n
−1).

The proof of Theorem 1 is complete.

2.3.4 The robust estimator for the covariance function

In order to construct a R confidence band for the mean function, first we need to

obtain a R estimator for the covariance function, G(x, x′). The covariance function

defined in (2.2) can be recovered if the eigenfunction/eigenvalue decomposition is

known. A popular estimator for the eigenfunctions and eigenvalues is derived from

eigenvalue decomposition of the empirical or smoothed covariance matrix. Such

method has been widely used in functional data analysis (Yao et al., 2005; Cao

et al., 2012b). However, this estimator is sensitive to the presence of outliers.

An alternative R estimator, the spherical principal components, is proposed in

Locantore et al. (1999). The first step in this method is to normalize each sample

curve to mitigate the effect of outliers. That is, the covariance function is replaced

by the normalized covariance function, i.e.,

ρ(x, x′) = E
{

[η(x)−m(x)][η(x′)−m(x′)]

‖η(·)−m(·)‖2
2

}
,

where ‖ · ‖2 is the usual L2-norm. We can then find the eigenfunction/eigenvalue

decomposition of this new operator, leading to eigenfunctions ϕ∗k and eigenvalues

λ∗k. When κ < ∞ and {ξk}κk=1 has a symmetric and interchangeable marginal dis-

tribution, Gervini (2008) has shown that ϕ∗k = ϕk, that is, the eigenfunctions of the
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covariance operator are the same as the eigenfunctions of normalized one, and they

are in the same order. However the corresponding two types of eigenvalues are not

necessarily be the same. These R estimators are generally more robust to outliers

than the commonly used sample mean and principal components. Moreover, Boente

et al. (2014) extend the above results to the case of κ =∞.

Since we do not have the entire stochastic process and the true mean function,

we use the discretized sample version of the normalized covariance function,

ρn(j/N, j′/N) =
1

n

n∑
i=1

(Yij − m̃(j/N))(Yij′ − m̃(j′/N))

‖Yi· − m̃(·)‖2
2

, 1 ≤ j, j′ ≤ N, (2.6)

where ‖Yi· − m̃(·)‖2
2 = 1/N

∑N
j=1 (Yij − m̃(j/N))2 and m̃(·) is the proposed R esti-

mator of the mean function, defined in (2.5). Similarly to the population version, we

can find the eigenvector decomposition {ϕ∗k(j/N)}κk=1 for the sample version of the

normalized covariance function and the eigenfunctions, ϕ∗k are called spherical prin-

cipal components (Locantore et al., 1999) since ρn is the sample covariance function

of the centred curves projected on the unit sphere.

The presence of measurement errors in our model adds a layer of contamination

to the calculation of (2.6), but due to the aforementioned robustness of the spherical

principal components, if the measurement errors are not excessive, ϕ∗k will be close to

the true ϕk. In order to reduce the effects of measurement errors further, we smooth

each ϕ∗k using the B-Splines which yield the smoothed eigenfunctions ϕ̃k(·).

To estimate the covariance function in (2.2), we need to recover the eigenvalues

λk. Notice that the k-th eigenvalue is the variance of the projection of the centralized

stochastic process on the k-th eigenfunction, that is λk = Var ( 〈η(·)−m(·), ϕk(·)〉 ) .

Adapting this to our model, we can use the proposed R estimator m̃ and the R estima-

tor of the eigenfunctions ϕ̃k to obtain λ̃k as the square of the R estimator of the scale
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of 〈Yi· − m̃(·), ϕ̃k(·)〉. Having estimated the eigenvalues and eigenfunctions, we can

recover a R estimator of the covariance function as G̃(x, x′) =
∑κ

k=1 λ̃kϕ̃k(x)ϕ̃k(x
′).

The R estimation of the covariance function can be summarized in the following

steps.

Step 1. Estimate eigenfunction ϕ̃k(·).

Apply the B-spline smoothing ϕ̃k(x) = B(x) (BTB)−1 BTϕ∗k, whereϕ∗k = (ϕ∗k(1/N),

. . . , ϕ∗k(N/N))T, k = 1, 2, . . . , N , are the eigenvectors of the sample normalized

covariance matrix ρn in (2.6).

Step 2. Estimate eigenvalue λ̃k.

Using a R scale estimator of the projection of the centralized data onto ϕ̃k. The

chosen R estimator is the Huber’s M-estimator (Huber and Ronchetti, 2011),

i.e., the solution of the equation

H(σ) =
1

n

n∑
i=1

ργ

(
1
N

∑N
j=1(Yij − m̃(j/N))ϕ̃k(j/N)

σ

)
= 0.5,

where ργ(u) = ρ(u/γ), γ > 0, and ρ is the Tukey’s bisquare function. We use

γ = 1.5 in the following numerical studies, which is the suggested value in

Huber and Ronchetti (2011). This leads to the estimators λ̃
1/2
k . Squaring these

values results in the estimator λ̃k of the eigenvalues.

Step 3. Recover the R covariance estimator G̃(x, x′).

Define G̃(x, x′) =
∑N

k=1 λ̃kϕ̃k(x)ϕ̃k(x
′), x, x′ ∈ [0, 1].
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2.3.5 The RSCB for the mean function

In the following, we mimic the construction of SCB procedure in Cao et al.

(2012b) to obtain the RSCB for the mean function. Namely, first we obtain an esti-

mator of the (1− α)100% quantile, Q1−α, of the absolute maxima distribution for a

standardized Gaussian process ζ(x), with E[ζ(x)] = 0, and E[ζ2(x)] = 1, and covari-

ance function E [ζ(x)ζ(x′)] = G(x, x′) {G(x, x)G(x′, x′)}−1/2. For any α ∈ (0, 1), we

denote Q1−α the 100(1−α)-th percentile of the absolute maxima distribution of ζ(x),

i.e., P(supx∈[0,1] |ζ(x)| < Q1−α) = 1−α, 0 < α < 1. This can be done using a Monte-

Carlo simulation, that is, we first simulate ζl(x) = G̃(x, x)−1/2
∑κ

k=1 Zk,l
√
λ̃kϕ̃k(x),

where Zk,l follows i.i.d. standard normal distribution, 1 ≤ k ≤ κ, l = 1, · · · , L, and

L is a large positive integer, say 1000. Next, one chooses the number κ of eigenfunc-

tions by using the following standard “fraction of variation explained”, i.e., selects

the number of eigenvalues that can explain, say, 95% of the variation in the data.

Then an estimator for Q1−α, Q̂1−α, is obtained as the empirical (1 − α) quantile of

the set {supx∈[0,1] |ζl(x)|, l = 1, · · · , L}.

Implementation of correction factor

In order to make the RSCB have consistent coverage rates for different sam-

ples sizes, we perform a simulation to find the correction factor. The detailed dis-

cussion is given in the Section 2.4.2. Based on the empirical coverage rates, the

(1 − α)100% RSCB for the mean function can then be calculated as m̃(x) ± c(n) ·

n−1/2G̃(x, x)1/2Q̂1−α, where c (n) = 1.3 · 1.1log2(n/30) is a correction factor used to

improve the consistency of the confidence band. The use of correction factors to

improve the consistency of robust confidence intervals is a common procedure in R

methodology (Wilcox, 2005).
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2.3.6 The RSCB for the difference of two mean functions

The framework proposed here to obtain a RSCB for the mean function can be

extended to obtain a RSCB for the difference of the mean functions of two popula-

tions. Denote for d = 1, 2 the samples coming from each population, satisfying the

model defined in (2.3)

Ydij = md

(
j

N

)
+

κd∑
k=1

ξdikφdk

(
j

N

)
+ σd

(
j

N

)
εdij, 1 ≤ i ≤ nd, 1 ≤ j ≤ N,

with covariance function Gd(x, x
′) =

∑κd
k=1 φdk(x)φdk(x

′), respectively. Define the

ratio of two-sample sizes as r̂ = n1/n2 and assume that limn1→∞ r̂ = r > 0. For

each group we can obtain the R estimator for the mean function as described in the

Section 2.3.2.

Following the procedure in the Section 2.3.4, we can obtain R estimators for the

covariance function of each group, G̃d(·, ·), d = 1, 2, then proceed as the Section 2.3.5,

by first defining ζ12(x), x ∈ [0, 1] the Gaussian process with zero mean, E[ζ12(x)] = 0,

unit variance E[ζ2
12(x)] = 1, and covariance function

E [ζ12(x)ζ12(x′)] =
G̃1(x, x′) + r̂G̃2(x, x′){

G̃1(x, x) + r̂G̃2(x, x)
}1/2 {

G̃1(x′, x′) + r̂G̃2(x′, x′)
}1/2

,

where x, x′ ∈ [0, 1]. Analogue to the one sample case, the quantile Q̂12,1−α can be

estimated using a Monte-Carlo simulation. The RSCB for m1(x)−m2(x) is given as

(m̃1(x)− m̃2(x))± c(n1, n2) · n1/2
1

[
G̃1(x, x) + r̂G̃2(x, x)

]1/2

Q̂12,1−α,

where the correction factor is selected as c(n1, n2) = 1.3·1.1log2(min{n1,n2}/30), similarly

to the discussion in the Section 2.4.2. The confidence band for the difference of the
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mean functions can be used to perform a hypothesis test of the form H0 : m1(x) ≡

m2(x), ∀x ∈ [0, 1] vs. HA : m1(x) 6= m2(x),∃x ∈ [0, 1]. The test can be performed

by calculating the appropriate (1−α)×100% confidence band. Although the p-value

cannot be calculated directly, it can be estimated by finding the largest α when H0

is rejected.

2.4 Simulation

In this section we perform a simulation study to select the correction factor,

and compare the performance of the proposed RSCB with the (non-robust) method

proposed by Cao et al. (2012b) for the mean function and the difference of mean

functions for two populations. We use empirical confidence band coverage rate as

a performance criterion. Since outlier curves often have different types of outlying

behaviors in the functional datasetting, we consider several types of outliers in the

assessment of the performance of the RSCB.

2.4.1 Simulation setting

We first generate data from the simulation model in Cao et al. (2012b), i.e.,

Yij = m

(
j

N

)
+

2∑
k=1

ξikφk

(
j

N

)
+ σεij, 1 ≤ j ≤ N, 1 ≤ i ≤ n.

In this model, ξik for k = 1, 2 and εij for 1 ≤ j ≤ N, 1 ≤ i ≤ n are generated

from N(0, 1). The number of subjects is n, the number of observations per curve

is taken as N = bn0.25 log2(n)c for functional samples and the number of knots is

chosen as Nm = n1/2p log(n). The mean function, eigenvector functions and the

noise level are taken as m(x) = 10 + sin{2π(x− 1/2)}, φ1(x) = −2 cos{(π(x− 1/2)},

φ2(x) = sin{π(x − 1/2)}, and σ = 0.5. Note that this model implies that λ1 = 2,
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λ2 = 0.5, but this information is not used a priori. For each sample, κ is chosen to

contain 95% of the total sum of the eigenvalues.

Under this functional model, we introduce outlier curves (Y o
ij) to the generated

functional sample by contaminating a subset, IO, of the original functional sample.

The contamination proportion varies from 0 to 0.5, at 0.05 increment. In order to

determine the influence of different types of outliers on constructing SCB for the

mean function we consider three different types of outliers, mainly with localized

influence, which mimic the types of outlying curves encountered in the real datasets

in the Section 2.5.

1. Peak Outliers. To simulate an outlier with a punctual influence, each curve was

contaminated at a single measurement point, j∗/N , by adding a fixed value s

(outliers strength), that is,

Y o
ij∗ = Yij∗ + s, i ∈ IO, j∗ = b0.05Nc.

This produces a peak outlier curve with a peak at the point j∗/N .

2. Bump Outliers. This type is an extension of the peak outliers and the con-

tamination occurs in an interval, [b0, b1], rather than at a single point, that

is,

Y o
ij∗ = Yij∗ + s, i ∈ IO, j∗/N ∈ [b0, b1].

This type of outlier is present in the ozone dataset considered in the Section

2.5. In the simulation, the interval is chosen as [b0, b1] = [0.5, 0.53].

3. Step Outliers. A further extension of the bump outliers is created by contami-

nating the curve in the interval [ci, 1], where ci is randomly chosen from [0.5, 1]

24



Figure 2.1: Empirical coverage rates of 95% RSCB when the correction factor c varies
between 1 and 2.

for each outlying curve, that is,

Y o
ij∗ = Yij∗ + s, i ∈ IO, j∗/N ≥ ci.

2.4.2 Selecting correction factor

In this simulation, the contamination ratio of the outliers is 20% and the out-

liers strength is s = 5. Three sample sizes n = 30, 50 and 100 are considered and

the correction factor c is varied for values between 1 and 2. For each n, the valid-

ity of the confidence band is tested at 100 points {1/100, · · · , 99/100, 1}, against

the value of the true mean function defined as in the simulation setting. The

proportion of the valid confidence bands is then evaluated. The simulation is re-

peated 500 times. Figure 2.1 presents the empirical coverage rates of 95% SCB, i.e.,

m̃(x)± c · n−1/2G̃(x, x)1/2Q̂1−α, for the cases of bump and step outliers. Given these

different empirical coverage rates for various c, we select c (n) = 1.3 · 1.1log2(n/30) as

the correction factor to improve the consistency of the RSCB.
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2.4.3 An illustrative example

We first show the performance of the proposed method for one sample SCB

construction on an illustrative toy example. Therefore we generate a functional

sample of n = 100 from the model defined in the Section 2.4.1 and contaminate

the data by using all three types of outliers with the contamination proportion 20%

and, for this illustrative example, strength of s = 20. We first construct the 95%

confidence band using the proposed RSCB (black) and non-robust (red) SCB for

the mean function for each outlier type. We also construct the non-robust SCB and

RSCB for the mean function when the sample does not have outlier curves to assess

the consistency of the proposed RSCB. Figure 2.2 depicts the effects of outlier curves

on the non-robust SCB and RSCB methods.

The first graph (top left in Figure 2.2) for no outlier case shows that the proposed

RSCB behaves the same as the non-robust SCB when there is no outlier curve in

the data, therefore it is consistent. For peak and bump outliers (top right and

bottom left in Figure 2.2), which are considered as very localized outliers, the width

of the non-robust SCB is widened around the outlier location and the estimate of

the true mean function is strongly affected, deviating from the true mean function,

which results in a confidence band that does not cover the mean function whereas

the RSCB is robust to outlier curves even though it is widened slightly around the

outlier location, but by a small factor, and the estimated mean is barely affected by

the presence of these types of outliers.

For the step outlier (bottom right in Figure 2.2), the mean function estimation

and the non-robust SCB are affected dramatically since the estimate of the mean

function is deteriorated whereas the RSCB is not affected even though the band

is widened a little around the outlier location. This illustrative example provides

evidence that when there are outlier curves in a functional dataset, estimate of the
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mean function and non-robust SCB are both affected badly while the proposed RSCB

based on the R mean estimator performs well for different types of outlier curves.

Further the proposed RSCB is consistent since it performs well when there are no

outlier curves.

Figure 2.2: Comparison between RSCB (Black) and non-robust SCB (Red) for a
simulated dataset.

Another important metric is the relationship between the strength of the outlier

curves and the total area of the confidence band. To illustrate this metric, we generate

functional samples of size n = 50 from the model defined in the Section 2.4.1 and

contaminate the data by using peak and step outliers with contamination proportion

20%, and the varying strengths, s = 5, 10, 20, 30, 40, 50. The results are presented
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Figure 2.3: Comparison of the area of the RSCB (black) and non-robust SCB (red),
for varying strength of outliers.

in Figure 2.3. Note that the area of non-robust SCB is strongly influenced by the

strength of the outliers, while the area of the RSCB is maintained at an almost

constant level. Similar results are obtained for the bump outliers, which are not

shown here.

2.4.4 Simulation for the SCB for the mean function and the difference

of two mean functions

Case I: SCB for the mean function, m(x)

To evaluate the performance of the proposed RSCB method for the mean func-

tion, we calculate the empirical coverage rate. We generate functional samples from

the model in the Section 2.4.1 for sample sizes n = 30, 50, and 100 with strength is

s = 5. Each simulation is repeated 500 times.

The empirical coverage rates for contamination proportions varying from 0.05

to 0.50 are presented in Figure 2.4 as well as in Table 2.1. The results for non-

contaminated datasets are presented in Table 2.2. For the first two types of outliers

(top two graphs in Figure 2.4 and Table 2.1), the proposed RSCB method maintains
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Table 2.1: Comparison of Robust (R) and non-robust (NR) empirical coverage rates
of 95% SCB for four types of outlier curves.

Outlier Type n Method Contamination Proportion
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Peak

30 R 0.85 0.85 0.86 0.91 0.93 0.92 0.93 0.92 0.91 0.82
NR 0.64 0.17 0.09 0.01 0.00 0.01 0.00 0.00 0.01 0.00

50 R 0.91 0.93 0.90 0.88 0.87 0.88 0.86 0.83 0.82 0.78
NR 0.77 0.62 0.34 0.10 0.05 0.04 0.03 0.02 0.01 0.02

100 R 0.96 0.99 0.98 0.97 0.96 0.94 0.93 0.94 0.95 0.92
NR 0.85 0.77 0.62 0.37 0.20 0.08 0.02 0.00 0.00 0.00

200 R 1.00 0.99 1.00 1.00 0.99 0.98 1.00 0.98 0.98 0.98
NR 0.90 0.83 0.79 0.68 0.54 0.43 0.28 0.17 0.09 0.00

Bump

30 R 0.84 0.81 0.83 0.76 0.78 0.76 0.79 0.71 0.69 0.66
NR 0.77 0.72 0.63 0.44 0.34 0.13 0.09 0.03 0.02 0.02

50 R 0.89 0.90 0.90 0.89 0.89 0.85 0.87 0.82 0.75 0.65
NR 0.82 0.73 0.65 0.41 0.25 0.07 0.03 0.00 0.00 0.00

100 R 0.98 0.97 0.96 0.93 0.88 0.91 0.86 0.76 0.68 0.53
NR 0.81 0.57 0.17 0.01 0.00 0.00 0.00 0.00 0.00 0.00

200 R 0.99 0.99 0.97 0.91 0.85 0.69 0.62 0.46 0.27 0.13
NR 0.74 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Step

30 R 0.82 0.85 0.86 0.87 0.88 0.88 0.82 0.76 0.64 0.14
NR 0.77 0.60 0.49 0.22 0.06 0.00 0.00 0.00 0.00 0.00

50 R 0.93 0.90 0.88 0.89 0.87 0.83 0.80 0.58 0.34 0.01
NR 0.79 0.46 0.18 0.01 0.00 0.00 0.00 0.00 0.00 0.00

100 R 0.97 0.95 0.92 0.86 0.82 0.70 0.46 0.20 0.02 0.00
NR 0.61 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

200 R 0.97 0.95 0.91 0.74 0.53 0.32 0.10 0.01 0.00 0.00
NR 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2.2: Comparison of Robust (R) and non-robust (NR) empirical coverage rates
of 95% SCB for datasets with no outliers.

Method n
30 50 100 200

Clean Dataset R 0.86 0.91 0.98 0.98
NR 0.86 0.87 0.91 0.90
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the nominal level 95%, and has breakdown point close to 50%, while the non-robust

SCB breaks down immediately in the presence of outliers, and shows a rapid decrease

in the empirical coverage rate. Hence we conclude that proposed RSCB performs

superiorly to the non-robust SCB for these two cases.

For the step outlier case, the RSCB method still performs well (bottom graph

in Figure 2.4 and Table 2.1). Although the RSCB method does not maintain 50%

breakdown point as in the case of peak and bump outliers, but still has reasonably

good breakdown point (20% to 30%), whereas the non-robust SCB breaks down

immediately in the presence of even small contamination proportions.

Figure 2.4: Empirical coverage rates of 95% SCB. Non-robust method (Red) vs.
Robust method (Black). n = 30 (solid), n = 50 (dashed), n = 100 (dotted), n = 200
(dash-dot).
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Case II: SCB for the difference of two mean functions, m1(x)−m2(x)

We also conduct simulation to evaluate the performance of the RSCB method

for the difference between two mean functions, by testing the hypotheses described

in the Section 2.3.6,

H0 : m1(x) = m2(x), ∀x ∈ [0, 1] vs. HA : m1(x) 6= m2(x),∃x ∈ [0, 1]. (2.7)

We employ the same model in the Section 2.4.1 for the one sample case. In this

simulation setup, n1 = 100, and n2 = 130 correspond to the sample sizes for the first

and the second population, respectively, N = 100 are the number of measurement

points for both samples, and outlier curves are introduced to the first population.

The results of the simulation are presented in Figure 2.5 for the three types of

outliers, using RSCB (red), and using non-robust SCB (black) as proposed in Cao

et al. (2012b). For all cases, the type I error is not maintained for the non-robust

method, while for the RSCB method, the type I error is kept at, or close to the

nominal value. For the step outliers, the type I error is close to the nominal value for

small contamination proportions, deteriorating for large contamination proportions,

albeit at a much slower rate than the non-robust SCB. This is evidence that our

proposed RSCB method has a superior performance compared to the classical one.

2.5 Applications

We illustrate our approach on two datasets: Octane dataset for the one sample

case and Ground level Ozone concentration dataset for the two sample case.
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Figure 2.5: Empirical type I error of Hypothesis Test for the difference of means
for two populations, with nominal value α = 0.05. Non-robust method (Red) vs.
Robust method (Black).

2.5.1 Octane dataset

This dataset consists of 39 near infrared (NIR) spectra of gasoline sample, ob-

tained from Esbensen et al. (1996). It is known that 6 of the samples contain added

ethanol, which corresponds to an upward translation on the upper wavelength, 1390

onward, interval of the spectrum. This is considered as the step outliers described

in the Section 3.4.

The R estimation of the mean and the 95% RSCB are calculated for this dataset,

as well as the mean estimator and confidence band using the method in Cao et al.
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(2012b). The results are presented in Figure 2.6, showing the full spectrum measure

(left panel) and magnified on the second half of the spectrum to display the differences

more apparently between the non-robust and robust SCBs (right panel).

We observe that the R mean estimator remains close to the non-outlying curves,

while the non-robust estimate of the mean function is heavily influenced by the

outliers, resulting in an upward shift. The non-robust SCB is also heavily influenced

by the outliers, translating in a very wide band on the second half of the spectrum.

However the proposed RSCB maintains a consistent width across the whole spectrum.

Figure 2.6: 95% SCB comparison for the octane dataset. Non-Robust (Red) vs.
Robust (Black) methods. Left: full spectrum. Right: magnified on the second half
of the spectrum.

2.5.2 Ground level Ozone concentration dataset

This dataset consists of hourly average measurements of ground level ozone (O3)

concentrations from a monitoring station in Richmond, BC, Canada, from the years

of 2004 to 2012. The presence of Ozone at ground level is highly undesirable, and

considered a serious air pollutant. Since the concentration of ground level Ozone
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typically peaks at summer months, only the month of August is analyzed, resulting

in 31 samples, with 24 measurement points for each sample.

The same dataset was studied in Boente and Salibian-Barrera (2015), and using

S-estimators for the principal components, the presence of outliers was detected in

the year of 2005. For illustrative purposes, we take the ozone levels for the year of

2005 as one sample and the ozone levels for the year of 2007, which we know there

are no outlier curves (Boente and Salibian-Barrera, 2015), as the other sample. The

plot of the ground level O3 concentration for years 2005 and 2007 is presented in

Figure 2.7, top left panel, with the year of 2005 in gray/black, and the year of 2007

in red. The outliers detected by Boente and Salibian-Barrera (2015) are highlighted.

We set up our hypotheses for testing if there is a difference between the ozone

mean functions of the years 2005 and 2007 in Richmond, Canada. The outliers in

the dataset are similar to the bump outliers described in the Section 3.4. The ground

level O3 concentration remained the same, except for the aforementioned outliers in

2005 (Figure 2.7, top left panel). The R method does not reject the null hypothesis

at a significant level α = 0.05, while the non-robust method proposed in Cao et al.

(2012b) rejects the null hypothesis, with an empirical p-value calculated as 0.015.

The 95% SCB of the difference between the mean functions of the ground level O3

concentration in years of 2005 and 2007 is presented in the top right panel of Figure

2.7. We also calculate the 95% SCB for the difference between the mean functions

with the outliers kept for the RSCB, and excluding the outliers for the non-robust

SCB. This is presented in the bottom panel of Figure 2.7. This plot provides a

comparison of the SCB between the robust and non-robust methods, highlighting

that the former successfully works, despite the presence of outliers.
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Figure 2.7: Top Left: O3 Levels in years of 2005 (Gray and black) and 2007 (Red) in
Richmond. Black lines are the outliers which are determined in Boente and Salibian-
Barrera (2015). Top Right: 95% non-robust SCB (Red) and RSCB (Gray) for the
difference between the mean functions of the two years. Bottom: 95% non-robust
SCB (Red) and RSCB (Gray) for the difference between the mean functions of the
two years, keeping outliers for RSCB, excluding outliers for non-robust SCB.
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2.6 Conclusion

In this chapter we presented a novel method of robustly estimating the mean

function of the functional data, and a novel method to obtain a RSCB for the mean

function. To our best knowledge, this work is the first manuscript investigating the

construction of RSCB accounting for the presence of outlying curves. The proposed

method performs well under the presence of the three types of local outliers studied,

which are typical types of contamination in the R functional data analysis. Although

we primarily focus on the computational issue of RSCB, we also proved the consis-

tency of the proposed LAD estimator for the mean function. Careful developing

a consistent estimator of covariance function of the LAD estimator may produce a

more accurate RSCB, but this procedure is not straightforward. A careful analysis of

phase outliers is also necessary due to the use of L2 norms for distance measurements.

We leave these issues for a future work. We also believe that an exploration of RSCB

for the functional derivatives of the mean, together with the methods proposed here

can improve the understanding of the behavior of the mean function.
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Chapter 3

B-Spline Smoothed M-Based Simultaneous Inference for Functional Data

3.1 Introduction

In this chapter we present a complement and extension to the methods presented

in the Chapter 2, where we proposed a robust framework for the estimation of the

mean function of functional data, and for the simultaneous confidence band for the

mean function, and also a robust hypothesis test for the difference of the mean func-

tion of two populations. We complement the Chapter 2 by presenting a framework

in which the asymptotic theory of the results there presented can be established, and

we extend those results by proposing an additional robust estimator, the B-spline

smoothed M-Estimator.

Exact theoretical properties of statistical methods for functional data are more

often than not out of reach due to the intricate structure of probabilities in func-

tional spaces. This is also added to the greater technical difficulty in formulating

SCB for the mean function of an infinite dimensional functional response. In our

setting, there is also the complex outlier structure considered, which increases the

challenge of a theoretical framework. In this chapter, we propose a robust estimator

for the mean function, a robust method to construct a simultaneous confidence band

in the functional data setting and a robust hypothesis test statistic for the differ-

ence between the mean functions of two populations. The proposed method uses the

B-spline smoothed M-Estimation. We also present the asymptotic theoretical prop-

erties of the proposed estimators, proving asymptotic consistency and asymptotic

normality of the mean function estimator.
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This chapter is organized as follows. We first introduce the model used for the

functional dataset in the Section 3.2. We then propose a robust estimator for the

mean function when the dataset contain outliers, using a B-spline smoothing M-

estimation method in the Section 3.3. This is followed by the presentation of the

asymptotic properties of the proposed estimator. Then we construct a RSCB for

the mean function based on the proposed robust estimator for the mean function.

In addition, we extend this method to construct a robust simultaneous confidence

band for the difference of the mean functions of two populations. In the Sections 3.4

and 3.5, the performance of the proposed robust methods, and their robustness, are

demonstrated with an extensive simulation study and real data examples. Finally

we conclude with some discussion.

3.2 Model

Consider the following model for a functional dataset

Yi(x) = m (x) + εi(x), 1 ≤ i ≤ n

where m(·) is a non-random component and {εi(·)}ni=1 are independent random noise.

Assume also that each sample curve is observed only on a discrete set of measurement

points x1, . . . , xN , that is,

Yij = Yi(xj) = m (xj) + eij, (3.1)

where eij = εi(xj). For this paper, we assume that the interval of definition of the

random functions is the unit interval [0, 1] and the measurements are equally spaced,

that is, x1 = 1/N, x2 = 2/N, . . . , xN = 1.
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Notice that if E(εi) = 0, then m(·) is the mean function in the traditional sense.

If we weaken this assumption, only requiring that distribution of ei· is symmetric, i =

1, . . . , n, we cannot guarantee the existence of E(Y (·)), m(·) can be viewed as a center

function of the functional data. Although we postpone the specific assumptions

required to the Appendix, for simplicity, we will use the term mean function when

we refer to the function m(·).

3.3 Proposed Methods

In this section we will present the robust estimation method for the mean func-

tion. The estimator extends the concept of M-Estimators from classical robust statis-

tics, adding the use of B-Splines basis to improve the quality of estimation and

also allow for interpolation of the discrete measurements. We call this the B-Spline

Smoothed M-Estimator for the Mean Function. We also present the asymptotic prop-

erties of estimator, showing that it is (weakly) consistent, with order of convergence

approaching the best non-parametric convergence order from Stone (1985).

A method for estimating a Robust Simultaneous Confidence Band is also pro-

posed. The method is built on the results obtained for the mean function estimator

and a modification of the concept of pseudo-data, introduce by Cox (1983). We

also extend the robust simultaneous confidence band to obtain a robust statistic for

testing the two-sample difference of mean functions.

3.3.1 B-spline Smoothed M-Estimator for Mean Function

Denote by H(p−2) the p-th order spline space, i.e., p− 2 times continuously dif-

ferentiable functions on [0, 1] that are polynomials of degree p−1 on [0, t1], [tJ , tJ+1],

J = 1, . . . , Nm− 2 and [tNm , 1]. The points {tJ}NmJ=1 are called interior knots, and for

each integer p, introduce left boundary knots t1−p, . . . , t0 and right boundary knots
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tNm+1, . . . , tNm+p, satisfying t1−p = . . . = t0 = 0 ≤ t1 < t2 · · · < tNm ≤ 1 = tNm+1 =

. . . = tNm+p.

Define the B-spline smoothed M-estimator of the mean function by

m̂(x) =
Nm∑

J=1−p

β̂JBj(x),

where

{
β̂1−p, . . . , β̂Nm

}T

= argmin{β1−p,...,βNm}∈RNm+p

n∑
i=1

N∑
j=1

ρ

(
Yij −

Nm∑
J=1−p

βJBJ (j/N)

)
,

(3.2)

and ρ is a suitably chosen loss function. In this work, we focus on convex loss

functions, which guarantees that the equation (3.2) has a unique solution. Different

choices of ρ will lead to different estimation properties of the mean function m. For

example, if we choose ρ(x) = x2, we obtain the classical OLS estimator which was

studied in Cao et al. (2012b). If we consider ρ(x) = |x| we obtain the LAD estimator,

which was studied in the Chapter 2.

The robust properties of different choices of ρ functions has been extensively

studied in the literature, see Wilcox (2005). One notable example is the Huber loss

function defined by

ρk(x) =


x2/2, |x| ≤ k,

k(|x| − k/2), |x| > k,

where k > 0. Note that ρk combines both the OLS and the LAD loss functions for

small and large values, respectively. The parameter k controls a trade-off between

the resistance to outlying observations and efficiency of the estimator. For example,
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a choice of k = 1.345 provides 95% asymptotic efficiency on the normal distribution,

see Huber et al. (1964).

Define the function ψ(x) = ρ′(x) a.e., then the estimated coefficients in (3.2)

can also be obtained by the following system of equations

n∑
i=1

N∑
j=1

ψ

(
Yij −

Nm∑
J=1−p

β̂JBJ(j/N)

)
Bk(j/N) = 0, 1− p ≤ k ≤ Nm, (3.3)

which can be seen from direct differentiation. A closed form solution to (3.3) usually

does not exist. An approximate solution can be obtained using an iteratively re-

weighted least squares fitting algorithm. This is performed by first obtaining a

crude initial approximation, m0(·), for the estimator and calculating weights w0
ij =

ψ(e0
ij)/e

0
ij, where e0

ij = Yij −m0(j/N), i = 1, . . . , n, j = 1, . . . , N . Then, a weighted

least square is fit using the weights w0
ij, i = 1, . . . , n, j = 1, . . . , N , producing a new

approximation for the estimator. New weights can be calculated, and the procedure

is repeated until convergence. This algorithm is implemented in the function rlm

from the MASS R-package, Venables and Ripley (2002). Notice that, since we are

assuming that ρ is a convex loss function, the uniqueness of the solution is guaranteed.

We perform a simulation analysis comparing the performance of the spline

smoothed M-estimator and a non-robust spline smoothed least square method. The

results of the analysis are presented in the Section 3.4 and serve to indicated the

need for a robust procedure.

3.3.2 Asymptotic Properties of the B-Spline Smoothed M-Estimator

In this section we will explore the asymptotic properties of the proposed B-

Spline Smoothed M-Estimator for the mean function of functional data. We prove

the asymptotic consistency and the asymptotic normality of the B-spline Smoothed
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M-estimator. Before stating the first result, we need to introduce some notations.

For 0 < r < 1, denote by Cp,r the Hölder function space, that is, the space of functions

with continuous derivatives up to order p, and with r-Hölder continuous p-derivative.

For a real-valued function, f , denote by ‖f‖2 the standard L2 space norm, that is,

‖f‖2
2 =

∫ 1

0
|f(x)|2dx. Similarly, for a vector V T = (Vi)

k
i=1, let ‖V ‖2

2 =
∑k

i=1 |Vi|2

and for a matrix A, ‖A‖2 = supV 6=0 ‖AV ‖2/‖V ‖2. Let λmax (A) and λmin (A) be the

largest and smallest eigenvalue of matrix A, respectively. Note that ‖A‖2 = λmax(A)

and if matrix A is non-singular, ‖A−1‖2 = λmin(A)−1. Throughout this section, C

denotes a uniform positive constant. We need the following assumptions for the

asymptotic consistency and the asymptotic normality of the proposed method.

(A1) Let p be the order of the smoothing splines, Nm be the number of B-spline

knots, and assume that (n/N)1/3 � Nm � min(n1/3, n/N) and Nm logNm �

N ;

(A2) The function m(x) satisfies m ∈ Cp,r;

(A3) Let ψ(x) = ρ′(x), then ψ(x) is continuous, non-decreasing and uniformly

bounded, |ψ(x)| < C, ∀x ∈ R. Also, ρ(·) is a convex function;

(A4) Eψ(eij) = 0 and E [ψ(eij)]
2 ≤ C;

(A5) There exists a bounded function δ(x) satisfying 0 < infx∈R δ(x) < supx∈R δ(x) <

∞, such that

∣∣∣∣E[ψ(eij + u)]− δ
(
j

N

)
· u
∣∣∣∣ ≤ Cu2, |u| < C;

(A6) E [ψ(eij + u)− ψ(eij)]
2 ≤ C|u|, and |ψ(u + v) − ψ(v)| < C, for |u| < C, and

v ∈ R;
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(A7) Define ei = (ei1, · · · , eiN)T, ψ(ei) = (ψ(ei1), · · · , ψ(eiN))T and Gi = E (ψ(ei) ·ψ(ei)
T),

1 ≤ i ≤ n. Also, min1≤i≤n λmin (Gi) ≥ λ0.

Remark 1. Assumption (A2) is standard in B-spline approximation, see for example

Huang et al. (2004), Cao et al. (2012b), and allows for arbitrarily good approxima-

tions of m(x) by spline functions. Assumption (A3) is a common condition in the

theory of M-estimators, and guarantees the existence of the solution of the optimiza-

tion problem in (3.2). The boundedness of ψ is a technical assumption needed for

the proof of the consistency of the estimator. It doesn’t pose a large restriction, since

most of the ψ functions chosen in practice satisfy this condition, such as the Huber

loss function. Assumption (A4) states that the function ψ adds some regularity to

the errors eij. Assumptions (A5) and (A6) are regularity conditions on the func-

tion ψ. Assumption (A7) is used to prove the asymptotic normality of the proposed

estimator.

Asymptotic Consistency

The first result states that the spline smoothed M-Estimator, m̂, converges in

probability to the mean function m at rate approaching the best non-parametric

convergence rate established in Stone (1985).

Theorem 2 (Asymptotic Consistency). Under Assumptions (A1) - (A6) we have

‖m̂−m‖2
2 = OP

(
n−1Nm +N−2p

m

)
. (3.4)

Remark 2. As a consequence from Theorem 2, the L2 error between m̂ and m has

an order of magnitude bounded by the maximum of n−1Nm and N−2p
m . Choosing

Nm = O(n1/(2p+1)) produces an optimal convergence rate equal to oP (n(2p−2)/(2p+1)).
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Proof of Theorem 2

To prove Theorem 2, we first need to introduce some notations. Let m̂ be the

proposed spline-smoothed M-estimator of the mean function, i.e., m̂(·) =
∑Nm

J=1−p β̂JBJ(·),

{β̂J}NmJ=1−p is defined in (3.2). Let B(·) = (B1−p(·), . . . , BNm(·))T, where BJ(·) are

the B-spline basis functions, J = 1− p, . . . , Nm, as defined in Section 3.3.1.

The following lemma provides an initial approximation of m(x) by a spline

function, resulting in an approximation bias. Notice that, although this bias is

negligible for increasing Nm, the approximating spline function cannot be directly

obtained from the sample curves, therefore it is an infeasible estimator.

Lemma 1. Define Rn(x) = BT(x)β∗ −m(x). If Assumption (A1) holds, then there

exists β∗ ∈ RNm+p such that

sup
x∈[0,1]

|Rn(x)| = sup
x∈[0,1]

|BT(x)β∗ −m(x)| = O(N−pm ). (3.5)

Proof. The proof follows from general properties of spline approximation, i.e., Corol-

lary 6.21 in Schumaker (2007).

The above result states that to prove Theorem 2, we can replace m by m∗(·) =

BT(·)β∗ up to an order of N−pm . In particular, we just need to prove that

‖m̂−m∗‖2
2 = OP

(
n−1Nm

)
. (3.6)

Define

Sn =
n

N

N∑
j=1

B

(
j

N

)
BT

(
j

N

)
, B̃

(
j

N

)
= S−1/2

n B

(
j

N

)
, and θ = S1/2

n (β−β∗),

(3.7)

where β∗ is defined in Lemma 1.
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Lemma 2 (Lemma A.3, Huang et al. (2004)). Under Assumption (A1), there exist

positive constants M1 and M2, such that all the eigenvalues of (Nm/n)Sn fall between

M1 and M2, and Sn is invertible consequently.

By Lemma 2, and the definition of B̃(·) in (3.7), we have Yij − BT
(
j
N

)
β =

eij +Rnj − B̃T
(
j
N

)
θ. This implies that

min
β∈RNm+p

n∑
i=1

1

N

N∑
i=1

ρ

(
Yij −BT

(
j

N

)
β

)

= min
θ∈RNm+p

n∑
i=1

1

N

N∑
i=1

[
ρ

(
eij +Rnj − B̃T

(
j

N

)
θ

)
− ρ (eij +Rnj)

]
, (3.8)

where ρ(eij + Rnj) is a constant term with respect to θ, so it does not change the

minimum. Let Γn(θ) be the operator defined in (3.8), that is,

Γn(θ) =
n∑
i=1

1

N

N∑
j=1

[
ρ

(
eij +Rnj − B̃T

(
j

N

)
θ

)
− ρ (eij +Rnj)

]
,

and define

∆n(θ) = Γn(θ)− E (Γn(θ)) +
n∑
i=1

1

N

N∑
j=1

[
ψ(eij)B̃

T

(
j

N

)
θ

]
. (3.9)

Before proving Theorem 2, we need to obtain asymptotic upper bounds on Γn(θ),

E (Γn(θ)) and ∆n (θ) in the following lemma.

Lemma 3. Under Assumptions (A1) - (A4) and (A6) and for a fixed constant L > 1,

sup
‖θ‖2<1

∣∣∣∣ 1

Nm

∆n

(
N1/2
m Lθ

)∣∣∣∣ = oP (1). (3.10)
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Proof. We need to prove that for any ε > 0,

P

(
sup
‖θ‖2≤1

1

Nm

∣∣∆n

(
N1/2
m Lθ

)∣∣ ≥ ε

)
→ 0. (3.11)

This asymptotic bound will be proved using Bernstein’s theorem. To do this, first

define

Π = {θ ∈ Rp; ‖θ‖2 ≤ 1} ,

and find a decomposition

Π = Π1 ∪ · · · ∪ ΠKn ,

where {Πk}Knk=1 are pairwise disjoint sets and, for any 1 ≤ k ≤ Kn,

diam(Πk) = max
θ1,θ2∈Πk

{‖θ1 − θ2‖2} ≤ qo = εC−1Nmn
−1.

Notice that we can find such decomposition with

Kn ≤
(

2

√
p

q0

+ 1

)p
. (3.12)

For each 1 ≤ k ≤ Kn, select θk ∈ Πk. Then we have

min
1≤k≤Kn

1

Nm

∣∣∆n

(
N1/2
m Lθ

)
−∆n

(
N1/2
m Lθk

)∣∣
≤ min

1≤k≤Kn

1

Nm

∣∣Γn(N1/2
m Lθ)− Γn(N1/2

m Lθk)
∣∣

+ min
1≤k≤Kn

1

Nm

∣∣E (Γn(N1/2
m Lθ)

)
− E

(
Γn(N1/2

m Lθk)
)∣∣

+ min
1≤k≤Kn

1

Nm

∣∣∣∣∣N1/2
m L

n∑
i=1

1

N

N∑
j=1

[
ψ(eij) · B̃T

(
j

N

)
θ − ψ(eij) · B̃T

(
j

N

)
θk

]∣∣∣∣∣
= I + II + III .
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We proceed by obtaining an asymptotic upper bound for I, II and III. Using the

definition of Γn(θ), we have

I = min
1≤k≤Kn

1

Nm

∣∣∣∣∣
n∑
i=1

1

N

N∑
i=1

[
ρ

(
eij +Rnj −N1/2

m L B̃T

(
j

N

)
θ

)
− ρ (eij +Rnj)

]

−
n∑
i=1

1

N

N∑
i=1

[
ρ

(
eij +Rnj −N1/2

m L B̃T

(
j

N

)
θk

)
− ρ (eij +Rnj)

]∣∣∣∣∣ ,
and using the mean value theorem on ρ(·) and Assumption (A2), we have

I ≤ N−1
m CnN1/2

m L max
1≤j≤N

∥∥∥∥B̃T

(
j

N

)∥∥∥∥
2

min
1≤k≤Kn

‖θ − θk‖2.

Similarly, max{II, III} ≤ N−1
m CnN

1/2
m Lmax1≤j≤N

∥∥∥B̃T
(
j
N

)∥∥∥
2

min1≤k≤Kn ‖θ−θk‖2.

Combining the previous results, we have

min
1≤k≤Kn

1

Nm

∣∣∆n

(
N1/2
m Lθ

)
−∆n

(
N1/2
m Lθk

)∣∣
≤ 3N−1

m C min
1≤k≤Kn

‖θ − θk‖2 nN
1/2
m L max

1≤j≤N

∥∥∥∥B̃T

(
j

N

)∥∥∥∥
2

≤ 3N−1
m Cq0dn = 3εdn, (3.13)

where

dn = Nm

[
max

1≤j≤N

(∥∥∥∥B̃( j

N

)∥∥∥∥
2

LN1/2
m + |Rnj|

)]
.

By Lemma 2 one has Nm

[
max1≤j≤N

∥∥∥B̃ ( jN )∥∥∥
2
LN

1/2
m

]
= O

(
N

3/2
m n−1/2

)
=

o(1). According to Lemma 1, one has Nm max1≤j≤N |Rnj| = O (N1−p
m ) = o(1). Com-

bining these two upper bounds we have dn = o(1). In particular, by (3.13) and by

choosing dn < 1/12, we have

min
1≤k≤Kn

1

Nm

∣∣∆n

(
N1/2
m Lθ

)
−∆n

(
N1/2
m Lθk

)∣∣ < ε/4. (3.14)
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For any 1 ≤ i ≤ n, 1 ≤ j ≤ N , and θ ∈ Rp, define

Ωij(θ) = ρ

(
eij +Rnj −N1/2

m LB̃T

(
j

N

)
θ

)
− ρ (eij +Rnj) + ψ(eij)B̃

T

(
j

N

)
θ.

Using an argument similar to equation (3.13), we can prove that sup‖θ‖2≤1 |Ωij(θ)| =

O(N−1
m ), and consequently sup‖θ‖2≤1 |Ωij(θ)− E(Ωij(θ))| = O(N−1

m ). Using the pre-

vious equation, we have

sup
‖θ‖2≤1

n∑
i=1

Var

(
1

N

N∑
j=1

Ωij(θ)

)
= O

(
nN−1N−1

m

)
. (3.15)

Using the above three upper bounds and Bernstein’s Inequality we have

P

(
sup
‖θ‖2≤1

1

Nm

∣∣∆n

(
N1/2
m Lθ

)∣∣ ≥ ε

)
≤

Kn∑
k=1

P
(∣∣∆n

(
N1/2
m Lθk

)∣∣ ≥ εNm

2

)

≤
Kn∑
k=1

P

(
1

n

n∑
i=1

[
1

N

N∑
j=1

|Ωij(θk)− E(Ωij(θk))|

]
≥ εNm

2n

)

≤ Kn exp

(
− Cn (εNm/2n)2

N−1N−1
m +N−1

m (εNm/2n)

)

≤ Kn exp

(
− Cε2N2

m/n

N−1N−1
m + εn−1

)
≤ Kn exp

(
− Cε2NN3

m

n+ εNNm

)
= o(1).

Therefore the Lemma 3 is proved.

The second asymptotic bound we need is given by the following lemma.

Lemma 4. Under the Assumptions (A1) - (A5) and for a fixed constant L > 1,

sup
‖θ‖2<L

∣∣∣∣∣N−1/2
m

n∑
i=1

1

N

N∑
j=1

[
ψ(eij) · B̃T

(
j

N

)
θ

]∣∣∣∣∣ = oP (1). (3.16)
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Proof. Notice that by Assumption (A2) one has

Var

(
1

N
1/2
m

n∑
i=1

1

N

N∑
j=1

[
ψ(eij) · B̃T

(
j

N

)
θ

])
≤ 1

Nm

n∑
i=1

1

N

N∑
j=1

E
[
ψ(eij)

2
] [
B̃T

(
j

N

)
θ

]2

≤ CN−1
m ‖θ‖2.

Using Tchebychev’s Inequality, equation (3.16) is proved.

The last asymptotic bound needed is given by the following lemma.

Lemma 5. Under Assumptions (A1) - (A5) and for a fixed constant L > 1,

P
(

inf
‖θ‖2=L

∣∣∣∣ 1

Nm

E
[
Γn
(
N1/2
m θ

)]∣∣∣∣ > 0

)
→ 1.

Proof. By Lemma 2 we can assume that sup‖θ‖2≤L

(
|Rnj|+N

1/2
m

∥∥∥B̃T
(
j
N

)
θ
∥∥∥2

2

)
<

C. By Assumption (A4) we have

N−1
m E

(
Γn
(
N1/2
m Lθ

))
= N−1

m

n∑
i=1

1

N

N∑
j=1

∫ Rnj−N
1/2
m B̃T( j

N )θ

Rnj

E (ψ(eij + u)) du

= N−1
m

n∑
i=1

1

N

N∑
j=1

∫ Rnj−N
1/2
m B̃T( j

N )θ

Rnj

δ

(
j

N

)
u+O(u2)du

= N−1
m

n∑
i=1

1

N

N∑
j=1

δ

(
j

N

)
1

2

[(
Rnj −N1/2

m B̃T

(
j

N

)
θ

)2

−R2
nj

]
+ o(1)

=
n∑
i=1

1

N

N∑
j=1

δ

(
j

N

)
(
B̃T
(
j
N

)
θ
)2

2
−N−1/2

m RnjB
T

(
j

N

)
θ

+ o(1)

≥ Cn inf
x∈R

δ(x)‖θ‖2
2 −

n∑
i=1

1

N

N∑
j=1

N−1/2
m RnjB̃

T

(
j

N

)
θ + o(1)

= CnL2 − CnL+ o(1), (3.17)

which is positive for large enough L. This finishes the proof of the lemma.

49



The following lemma is standard in the spline approximation theory and we

omit the proof here.

Lemma 6 (Theorem 5.4.2, DeVore and Lorentz (1993)). There is a constant Cp >

0, such that for any spline function S(·) =
∑Nm

J=1−p γJBJ(·) of order p, we have

CpN
−1
m ‖γ‖2

2 ≤ ‖S‖2
2 ≤ N−1

m ‖γ‖2
2, where γ = (γ1−p, . . . , γNm)T.

Now, after presenting the required lemmas, and their proofs, we are ready to

give the proof for Theorem 2.

Proof of Theorem 2. Combining Lemmas 3, 4 and 5, and using the convexity of ρ(·)

we have

P
(

inf
‖θ‖2≥L

1

Nm

Γ(N1/2
m θ) > 0

)
= P

(
inf
‖θ‖2=L

1

Nm

Γ(N1/2
m θ) > 0

)
→ 1.

This in turn implies

P

(
inf

‖θ‖2≥LN1/2
m

n∑
i=1

1

N

N∑
j=1

ρ

(
eij +Rnj −N1/2

m LnB̃
T

(
j

N

)
θ

)
>

n∑
i=1

1

N

N∑
j=1

ρ (eij +Rnj)

)
→ 1.

(3.18)

Define θ̂ := S
−1/2
n

(
β̂ − β∗

)
= arg minθ∈RNm+p Γn(θ). By equation (3.18) one

has ‖θ̂‖2 = OP

(
N

1/2
m

)
, and using Lemma 2, we obtain ‖β̂ − β∗‖2

2 = OP (n−1N2
m) .

The approximation property of B-Splines implies that ‖m̂(·)−B(·)Tβ∗‖2
2 = ‖B(·)T(β̂−

β∗)‖2
2 = O(N−1

m )‖β̂ − β∗‖2
2 = OP (n−1Nm) , where the second-to-last equality comes

from Lemma 6. Finally, using Lemma 1, and by Assumption (A2), we have

‖m̂−m‖2
2 = OP

(
n−1Nm +N−2p

m

)
, (3.19)

which completes the proof of Theorem 2.
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Asymptotic Normality

Before presenting the second theorem, we need some additional notation. Let

Wn =
n

N

N∑
j=1

δ

(
j

N

)
B

(
j

N

)
BT

(
j

N

)
, W̃n = S−1/2

n WnS−1/2
n and

θ̃ = W̃−1
n

n∑
i=1

1

N

N∑
j=1

B̃

(
j

N

)
ψ(eij). (3.20)

The second result answers the question of what is the asymptotic distribution

of the B-Spline smoothed M-estimator. We prove that m̂(·) converges to a nor-

mal distribution. Besides the convergence in distribution, this theorem provides an

estimator for the variance of m̂(·), which is of fundamental importance when con-

structing the robust simultaneous confidence band in the Section 3.3.3. Note also

that the convergence provided in Theorem 3 is only true point-wise, that is, this

result cannot be directly used to construct a simultaneous confidence band.

Theorem 3 (Asymptotic Normality). Under Assumptions (A1) - (A7) we have

m̂(x)−m(x)√
Dn(x)

d−→ N(0, 1), 0 ≤ x ≤ 1, (3.21)

where Dn(x) = B (x)T W−1
n (
∑n

i=1 N
−2BTGiB)W−1

n B (x), where Gi was defined in

the Assumption A7 and B is the matrix with columns B(j/N), j = 1, . . . , N , and

Wi are defined in (3.20).

Proof of Theorem 3

The first step in the proof of the Theorem 3 is to obtain an asymptotic upper

bound on the difference between θ̂ and θ̃, where θ̃ is given in (3.20).
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Lemma 7. Under Assumptions (A1) - (A7),

N−1/2
m ‖θ̂ − θ̃‖2 = oP (1). (3.22)

Proof. By Assumption (A5), note that W̃n is invertible and, for all n, λmin (W̃n) >

λ̃0 > 0 for some constant λ̃0. We will use an argument similar to the proof of Theorem

2, and first show that, for any fixed ε > 0, P
(

inf
N
−1/2
m ‖θ−θ̃‖2≥ε

N−1
m |Γ(θ)− Γ(θ̃)| > 0

)
→

1. To prove this, using the convexity of ρ(·), we only need to show that

P

(
inf

N
−1/2
m ‖θ−θ̃‖2=ε

N−1
m |Γ(θ)− Γ(θ̃)| > 0; N−1/2

m ‖θ̃‖2 < L

)
→ 1. (3.23)

Using the equation (3.9) and the same argument to show the bound in equation

(3.17), we have

N−1
m Γn(θ) = N−1

m

[
∆n(θ) + E(Γn(θ))−

n∑
i=1

1

N

N∑
j=1

ψ(eij)B̃
T

(
j

N

)
θ

]

= N−1
m

[
∆n(θ) +

θTW̃nθ

2
− θ̃TW̃nθ

]
+ o(1), (3.24)

using equation (3.17). Notice that 2θ̃TW̃nθ = θTW̃nθ+ θ̃TW̃nθ̃−(θ− θ̃)TW̃n(θ− θ̃).

Substituting this into equation (3.24) we obtain

1

Nm

Γn(θ) =
1

Nm

[
(θ − θ̃)TW̃n(θ − θ̃)

2
− θ̃

TW̃nθ̃

2
+ ∆n(θ)

]
+ o(1). (3.25)

In particular we have

1

Nm

Γn(θ̃) =
1

Nm

[
− θ̃

TW̃nθ̃

2
+ ∆n(θ̃)

]
+ o(1). (3.26)
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Using Lemmas 2 and Assumption (A3) we have ‖θ̃‖2 = O(N
1/2
m ), which implies that

for a large enough constant L > 0, we can assume N
−1/2
m ‖θ̃‖2 < L. Note that if

N
−1/2
m ‖θ − θ̃‖2 = ε and N

−1/2
m ‖θ̃‖2 < L, then N

−1/2
m ‖θ‖ ≤ L+ ε. Subtracting, then,

equation (3.26) from (3.25) we get

inf
N
−1/2
m ‖θ−θ̃‖2=ε,N

−1/2
m ‖θ̃‖2<L

1

Nm

∣∣∣Γ(θ)− Γ(θ̃)
∣∣∣

= N−1
m

[
(θ − θ̃)TW̃n(θ − θ̃)

2
+ ∆n(θ)−∆n(θ̃)

]
+ o(1)

≥ λ̃0ε
2

2
− 2 sup

N
−1/2
m ‖θ‖2≤L+ε

N−1
m |∆n(θ)|+ o(1) =

λ̃ε2

2
+ o(1),

where the last equality comes from Lemma 3. This proves equation (3.23) and implies

that N
−1/2
m ‖θ̂ − θ̃‖2 = oP (1). This proves Lemma 7.

After presenting the required lemmas, and their proofs, we are ready to give a

proof for Theorem 3.

Proof of Theorem 3. By Lemmas 2 and 7, we have

∥∥∥(β̂ − β∗)− S−1/2
n θ̃

∥∥∥
2

=
∥∥∥S−1/2

n

[
S1/2
n (β̂ − β∗)− θ̃

]∥∥∥
2

=
∥∥S−1/2

n

∥∥
2

∥∥∥θ̂ − θ̃∥∥∥
2

= oP
(
Nmn

−1/2
)
,

which implies that, for any vector γ ∈ RNm+p, with ‖γ‖ ≤ L, for a fixed constant

L > 0,

γT(β̂ − β∗) = γTS−1/2
n θ̃ + oP

(
Nmn

−1/2
)

= γTW−1
n

n∑
i=1

1

N

N∑
j=1

B

(
j

N

)T

ψ(eij) + oP
(
Nmn

−1/2
)
. (3.27)
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We can rewrite

γTW−1
n

n∑
i=1

1

N

N∑
j=1

B

(
j

N

)T

ψ(eij) =
n∑
i=1

1

N
vTψ(ei), (3.28)

where v =
(
γTW−1

n B
(

1
N

)
, · · · ,γTW−1

n B
(
N
N

))T
.Note also that Var (

∑n
i=1 N

−1vTψ(ei)) =∑n
i=1 N

−2vTGiv. Using this calculation, we can rewrite equation (3.28) as
∑n

i=1 aiξi,

where a2
i = N−2vTGiv, 1 ≤ i ≤ n, and {ξi}ni=1 are independent with mean zero and

unit variance. Using the Lindeberg’s central limit theorem, see Billingsley (2008),

if maxi=1,...,n a
2
i /
∑n

i=1 a
2
i = o(1), then

∑n
i=1 aiξi/

√∑n
i=1 a

2
i converges in distribution

to N(0, 1). We have

max
i=1,...,n

a2
i ≤ max

i=1,...,n
N−2‖v‖2

2

N∑
j=1

E(ψ(eij)
2)

≤ CN−1

N∑
j=1

(
γTW−1

n B

(
j

N

))2

= O(N2
mn
−2),

from Assumption (A4) and Lemma 2. We also have

n∑
i=1

a2
i =

n∑
i=1

N−2vTGiv ≥ N−1λ0γ
TW−1

n SnW−1
n γ = O(Nmn

−1N−1),

where the inequality comes from the Assumption (A7), and the last equation from

Lemma 2. Collecting the previous bounds we have maxi=1,...,n a
2
i /
∑n

i=1 a
2
i = O(NmN/n) =

o(1) due to Assumption (A1). This proves that the condition of Lindeberg’s central

limit theorem is satisfied. Setting γ = B(x), 0 ≤ x ≤ 1, we obtain

n∑
i=1

N−2vTGiv = B (x)T W−1
n

(
n∑
i=1

N−2BTGiB

)
W−1

n B (x) = Dn(x),

and due to the Assumption (A1) and (3.27) we complete the proof of Theorem 3.
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3.3.3 Robust Simultaneous Confidence Band

In this section we propose a method to calculate a robust simultaneous confidence

band (RSCB) for the mean function. Opposed to point-wise confidence intervals, for

which the confidence level is maintained only for each individual point individually,

a simultaneous confidence band (SCB) must maintain the confidence level uniformly

for all the points, that is, the 1 − α SCB for the mean function, (U(x), L(x)) must

satisfiy P{L(x) ≤ m(x) ≤ U(x), ∀x ∈ [0, 1]} ≥ 1− α.

Obtaining SCB for homogeneous functional datasets has been discussed in pre-

vious literature, such as Cao et al. (2012b). In that work, the SCB is obtained by first

estimating the covariance function of the functional process, and then calculating the

quantile of a Gaussian process with the same covariance structure. This procedure,

though, is very sensitive to outliers, as discussed in the Section 3.4. The result of the

Theorem 3 alone is not enough to provide a RSCB, but with the help of a modified

pseudo-data transformation, we can translate the calculation of the RSCB to the

simpler problem of obtaining a SCB for homogenous functional datasets.

Pseudo-data

The objective of this section is first to modify the dataset, possibly contaminated

with outliers, to reduce the influence of any extreme observation, producing a more

homogeneous dataset. We can then use this new dataset with a classical, non-robust

method to calculate the SCB.

To accomplish the first objective, we can transform each curve in the original

dataset into the new homogeneous curves using a modified version of the pseudo-data.

This concept was first introduced in Cox (1983), where it was used to obtain asymp-

totic properties of M-based regression estimation for i.i.d. data by transforming the

problem to the established properties of the non-robust least square regression of the
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pseudo-data. We modify the definition of the pseudo-data to allow for heteroskedas-

ticity of the random errors considered in our model.

Define the pseudo-data derived from the dataset Yij as

Zij = m (j/N) +
√

2nDn(j/N)ψ
(
eij/
√

2nDn(j/N)
)
, i = 1, . . . , n, j = 1, . . . , N

(3.29)

where ψ(·), as defined before, is the derivative of loss function, and Dn(·) is the

variance of m̂(·) obtained from the Theorem 3.

To understand the multiplication by
√

2nDn(x) in (3.29), a simple example is

helpful. Assume that the dataset {Yij}i=1,...,n,j=1,...,N is homogeneous, that is, assume

that ei· is i.i.d. and Var(eij) < ∞, i = 1, . . . , n, j = 1, . . . , N . Also, consider the

least square loss function, that is, ρLS(x) = x2, x ∈ R. Then, a direct calculation

results in that Dn(x) is the B-spline smoothing of {Yij}i=1,...,n,j=1,...,N . That is, the

pseudo-data defined in (3.29) is the original homogeneous dataset, Zij ≡ Yij, i =

1, . . . , n, j = 1, . . . , N.

In the general case, with outlier contaminated datasets, and robust loss func-

tions, the pseudo-data Zij has a similar behavior as the original dataset, excluding

the influence of the outlier curves. The extra multiplication by
√

2 in (3.29) was

determined empirically and it is needed to make sure that, for each j = 1, . . . , N ,

the variance of Zij, i = 1, . . . , n is similar to the variance of the original dataset, ex-

cluding the influence of the outlier curves. A simulation to support this is presented

in the Section 3.4.

More recently, Oh et al. (2007) and Lim and Oh (2015) used the concept of

pseudo-data to obtain simultaneous confidence bands for regression function with

i.i.d. data. Here we will extend this idea to work with functional data and transform
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the estimation of the RSCB for the mean function of contaminated data to the

estimation of a SCB for homogeneous functional data.

More precisely, we will apply the estimation method for the SCB of functional

datasets developed in Cao et al. (2012b) to the pseudo-dataset Zij, 1 ≤ i ≤ n,

1 ≤ j ≤ N . Since neither the mean function nor the random error are directly

observable, we calculate the empirical pseudo-data as

Ẑij = m̂ (j/N) +
√

2nDn(j/N)ψ
(
êij/
√

2nDn(j/N)
)
, i = 1, . . . , n, j = 1, . . . , N,

where m̂(·) is the B-spline M-estimator of the mean function defined in the Section

3.3.1 and êij is the empirical estimator of the random error defined as êij = Yij −

m̂(j/N), i = 1, . . . , n, j = 1, . . . , N . The full method to estimate the RSCB is

summarized in the Algorithm 1.

Algorithm 1: Robust Simultaneous Confidence Band for the mean func-
tion

Part 1: Pseudo-data preparation
1 Robust estimation of mean using B-Spline M-Estimator: m̂(·);
2 Calculate asymptotic variance of m̂(·): Dn(x);
3 Evaluate the empirical random-error: êij = Yij − m̂(xij);
4 Calculate the empirical pseudo-data:

Ŷij = m̂(xij) +
√

2nDn(xij)ψ
(
êij/
√

2nDn(xij)
)

;

Part 2: RSCB Construction
5 Estimate mean function using B-spline smooth least-square: m̂pd;

6 Estimate sample covariance function using B-spline smoothing: Ĝpd(·, ·);
7 Calculate empirical quantile of Gaussian process with same covariance

structure: Q̂pd
1−α;

8 Construct Robust Simultaneous Confidence Band:

m̂pd(·)± Q̂pd
1−α

√
Ĝpd(·, ·)/n.
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3.3.4 The RSCB for the difference of two mean functions

The framework proposed here to obtain a RSCB for the mean function can be

extended to obtain a RSCB for the difference of the mean functions of two popula-

tions. Denote for d = 1, 2 the samples coming from each population, satisfying the

model defined in (3.1)

Ydij = md

(
j

N

)
+ edij, 1 ≤ i ≤ nd, 1 ≤ j ≤ N.

Define the ratio of two-sample sizes as r̂ = n1/n2 and assume that limn1→∞ r̂ = r > 0.

For each group we can obtain the B-spline smooth M-estimator for the mean function

as described in the Section 3.3.1.

Following the procedure in the Section 3.3.3, we can obtain empirical pseudo-

samples Ẑdij for each population, d = 1, 2. We can then use the empirical pseudo-

samples to obtain the RSCB for the difference of the mean functions using a method

for non-contaminated datasets. First, we obtain estimators for the covariance func-

tion of each group, Ĝpd
d (·, ·), d = 1, 2, then proceed to obtain the empirical quantile,

Q̂12,1−α, of a Gaussian process having covariance structure defined by

Ĝpd
1 (x, x′) + r̂Ĝpd

2 (x, x′){
Ĝpd

1 (x, x) + r̂Ĝpd
2 (x, x)

}1/2 {
Ĝpd

1 (x′, x′) + r̂Ĝpd
2 (x′, x′)

}1/2
,

where x, x′ ∈ [0, 1]. The RSCB for m1(x)−m2(x) is then given as

(m̂1(x)− m̂2(x))± n1/2
1

[
Ĝpd

1 (x, x) + r̂Ĝpd
2 (x, x)

]1/2

Q̂12,1−α.

The confidence band for the difference of the mean functions can be used to

perform a hypothesis test of the form H0 : m1(x) ≡ m2(x), ∀x ∈ [0, 1] vs. HA :
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m1(x) 6= m2(x),∃x ∈ [0, 1]. The test can be performed by calculating the appropri-

ate (1−α)× 100% RSCB and checking if the horizontal line y = 0 is fully contained

in the RSCB. Although the p-value for the test cannot be calculated directly, it can

be estimated by finding the largest α for which H0 is rejected.

3.4 Simulation

In this section we perform a numerical study to analyze the performance of

methods proposed in this paper. We investigate the consistency of the B-Spline M-

estimator for the mean function and the empirical coverage and band area of the

RSCB. We use the SCB (non-robust) proposed in Cao et al. (2012b) as a baseline

for comparison. Since outlier curves often have different types of outlying behaviors

in functional data, we consider several types of outliers in the assessment of the

performance of the RSCB.

3.4.1 Simulation setting

Based on the model proposed in Cao et al. (2012b), we decompose the random

component of the model (3.1) as

eij =
2∑

k=1

ξikφk

(
j

N

)
+ σεij, 1 ≤ j ≤ N, 1 ≤ i ≤ n.

This decomposition corresponds to two different sources of randomness. The first

component,
∑2

k=1 ξikφk (j/N), corresponds to the intrinsic error of the functional

data, while the second component, σεij, corresponds to an additive random mea-

surement error with a noise level σ.

For this simulation we generate ξik for k = 1, 2 and εij for 1 ≤ j ≤ N, 1 ≤

i ≤ n from N(0, 1). The number of subjects is n, the number of observations
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per curve is taken as N = b1.22n(2p−2)/2p+1 log(n))c and the number of knots is

Nm = bn1/2p log(n)c, where p, the order of the B-splines, is chosen as 4. The

mean function, eigenvector functions and the noise level are taken as m(x) = 10 +

sin{2π(x−1/2)}, φ1(x) = −2 cos{(π(x−1/2)} , φ2(x) = sin{π(x−1/2)} and σ = 0.5,

respectively.

Under this functional model we introduce outlier curves, Y o
ij, to the generated

functional sample in two different ways. In the first method we contaminate a subset,

IO, of the original functional sample. The contamination proportion varies from 0.00

to 0.20, at 0.05 increment. These outliers are described in items (1) to (6) below.

The second type of contamination considers changing the distribution of the additive

measurement error to a heavy-tailed distribution, described in (7) below.

1. Peak Outliers. To simulate an outlier with a punctual influence, each curve

was contaminated at a single measurement point, j∗/N , by adding a random

value si taken from a uniform distribution on [−su,−sl] ∪ [sl, su], that is,

Y o
ij∗ = Yij∗ + si, i ∈ IO, j∗ = b0.05Nc.

This produces a peak outlier curve with a peak at the point j∗/N . The param-

eters sl and su controls the strength of outliers.

2. Bump Outliers. This type is an extension of the peak outliers and the con-

tamination occurs in an interval, [b0, b1], rather than at a single point, that

is,

Y o
ij∗ = Yij∗ + si, i ∈ IO, j∗/N ∈ [b0, b1].

In the simulation, the interval is chosen as [b0, b1] = [0.5, 0.53].
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3. Step Outliers. A further extension of the bump outliers is created by contami-

nating the curve in the interval [ci, 1], where ci is randomly chosen from [0.5, 1]

for each outlying curve, that is,

Y o
ij∗ = Yij∗ + si, i ∈ IO, j∗/N ≥ ci.

4. Mixture Normal–Laplace. Similar to the previous type of outliers, but using

a mixture of a normal distribution N(0, σ2) and a Laplace distribution with

mean 0 and scale σ.

5. Mixture Normal–Slash. Similar to item (4), but using a mixture of a normal

distribution N(0, σ2) and a Slash distribution with location 0 and scale σ.

6. Mixture Normal–Cauchy. Similar to item (4), but using a mixture of a normal

distribution N(0, σ2) and a Cauchy distribution with location 0 and scale σ.

7. Laplace Errors. For this type of outlier, we replace the distribution of the

measurement errors for all random curves εij by a Laplace distribution with

mean 0 and scale σ.

The Huber loss function, described in the Section 3.3, was used as loss function

for the M-estimation. This choice was guided by the good performance of the Huber

loss, added to its the well studied robust theoretical properties. These two qualities

make the Huber loss function well suited for many of the robust estimation, see Huber

et al. (1964). The choice of the parameter k was based on an empirical selection for

maximizing the empirical coverage rate of the RSCB, while keep its total area small.

For outlier types 1 to 6, we used k = 2.50. For outlier type 7, a value of k = 3.5

produced best results. A thorough analysis of data-based choices for k, such as a
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cross-validation and generalized cross-validation, could also have been used, but it is

beyond the scope of this work.

3.4.2 An illustrative example

We first illustrate the performance of the proposed RSCB using a toy example.

We generate a functional sample of n = 50 curves from the model defined in the Sec-

tion 3.4.1 and contaminate the data by using all types of outliers defined previously,

using a contamination proportion of 20% for outlier types 1 to 6, choosing sl = 10

and su = 20 for outlier types 1 to 3. We first construct the 95% confidence band

using the proposed RSCB (black) and non-robust (red) SCB for the mean function

for each outlier type. We also construct the non-robust SCB and RSCB for the mean

function when the sample does not have outlier curves to assess the consistency of

the proposed RSCB. Figure 3.1 depicts the effects of outlier curves on the non-robust

SCB and RSCB methods.

The first graph (top left in Figure 3.1) for no outlier case shows that the proposed

RSCB behaves the same as the non-robust SCB when there are no outlier curves in

the data. For peak, bump and step outliers (center and right, first row, left second

row in Figure 3.1) the width of the non-robust SCB is strongly deformed around the

outlier location, resulting in a non-informative SCB. The RSCB is less influenced

by the outliers, resulting in a SCB with similar characteristics to the SCB for clean

dataset.

For the mixture outliers (center and right in second row, and left in third row in

Figure 3.1) the influence of the outliers is most notable, with a strong deformation

of the non-robust mean estimation and SCB for Normal-Slash and Normal-Cauchy

mixtures. The RSCB is not much influenced by the presence of outliers, albeit a

slight increase in the band width when compared to the clean dataset.
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Figure 3.1: Comparison between RSCB (Black) and non-robust SCB (Red) for a
simulated dataset.

For the pure Laplace outlier, (right third row in Figure 3.1) the resulting band

is similar for the toy example, but as we will see in the Section 3.4.5, the RSCB

performs better than the non robust SCB.

This illustrative example provides evidence that when there are outlier curves

in a functional dataset, estimate of the mean function and non-robust SCB are both

strongly affected while the proposed RSCB based on the R mean estimator performs

well for different types of outlier curves.

3.4.3 Asymptotic consistency of the mean function estimator

To evaluate the performance of the B-spline M-Estimator for the estimation of

the mean function, we generated functional sample from the model in the Section
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3.4.1 for sample sizes n = 50, 100 and 200, with sl = 5 and su = 7 for outlier types

peak, bump and step. Each simulation is repeated 500 times.

The average L2 distance between the real mean function and the B-Spline

smoothed M-estimator was calculated. As a baseline comparison, the least square

method used in Cao et al. (2012b) was also calculated. The results are presented in

Tables 3.1-3.4.

The B-Spline Smoothed M-estimator shows a similar or faster convergence rate,

as measured by the average L2 distance between the estimator and the real mean

function, than the non-robust method for all outliers, with a smaller or similar stan-

dard deviation. For localized outliers, the results are similar, but robust method

shows better results for large contamination, as can be seen in Table 3.1, for step

outliers, with n = 200 and 20% contamination proportion, the average L2 distance

between the robust estimator and the real mean function is 0.120, while the non-

robust is 0.133. The standard deviation of the L2 distance is also smaller for the

robust (0.058), when compared to the non-robust (0.063). The improvement of the

robust method is made clearer for mixtures of heavy tailed distributions, such as

the mixture Normal-Slash and mixture Normal-Cauchy, when the convergence of the

non-robust estimator is most influenced by the outlying curves. From Table 3.2,

the average L2 distance between the robust estimator and the real mean function

for mixture Normal-Cauchy outliers, with n = 200 and 20% contamination is 0.100,

with a standard deviation of 0.060, while for the non-robust the average L2 distance

is 0.915, with a standard deviation of 2.322, an increase of approximately 9 times for

the average distance, and 38 times for the standard deviation. Notice also that the

results for the robust case are very similar to the results for the clean dataset, Table

3.4, for which the average distance is 0.094 and the standard deviation 0.054. This
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Table 3.1: ‖m̂−m‖2 - Mean (SD) L2 distance between the real mean function and
the estimated mean function for contamination type outliers. Comparison between
Robust (R) and Non-Robust (NR) methods.

Outlier Type n Method Contamination Prop.
0.05 0.10 0.15 0.20

Peak

50 R 0.200 (0.114) 0.193 (0.109) 0.193 (0.105) 0.196 (0.110)
NR 0.198 (0.114) 0.189 (0.103) 0.192 (0.104) 0.199 (0.107)

100 R 0.141 (0.081) 0.126 (0.076) 0.133 (0.078) 0.129 (0.072)
NR 0.140 (0.083) 0.139 (0.079) 0.138 (0.079) 0.140 (0.076)

200 R 0.094 (0.054) 0.099 (0.057) 0.103 (0.060) 0.098 (0.053)
NR 0.097 (0.053) 0.097 (0.059) 0.096 (0.056) 0.092 (0.053)

Bump

50 R 0.200 (0.114) 0.195 (0.113) 0.200 (0.107) 0.200 (0.112)
NR 0.200 (0.112) 0.197 (0.112) 0.202 (0.106) 0.202 (0.111)

100 R 0.138 (0.081) 0.145 (0.082) 0.137 (0.076) 0.143 (0.080)
NR 0.139 (0.081) 0.146 (0.082) 0.138 (0.076) 0.145 (0.079)

200 R 0.096 (0.053) 0.098 (0.055) 0.099 (0.056) 0.102 (0.056)
NR 0.096 (0.052) 0.099 (0.055) 0.100 (0.055) 0.103 (0.056)

Step

50 R 0.207 (0.113) 0.217 (0.110) 0.224 (0.114) 0.249 (0.119)
NR 0.208 (0.109) 0.232 (0.114) 0.253 (0.127) 0.272 (0.134)

100 R 0.146 (0.077) 0.148 (0.078) 0.166 (0.081) 0.176 (0.088)
NR 0.153 (0.075) 0.165 (0.078) 0.174 (0.085) 0.187 (0.088)

200 R 0.104 (0.052) 0.110 (0.055) 0.113 (0.053) 0.120 (0.058)
NR 0.111 (0.056) 0.114 (0.052) 0.121 (0.055) 0.133 (0.063)

further indicates that the B-spline smoothed M-estimator is successfully diminishing

the influence of the outliers in the estimation of the mean function.

3.4.4 Variance of Pseudo-data

The definition of the pseudo-data given in equation (3.29), that is,

Ẑij = m̂ (j/N) +
√

2nDn(j/N)ψ
(
êij/
√

2nDn(j/N)
)
, i = 1, . . . , n, j = 1, . . . , N,

aims to produce a new (pseudo) dataset that has the same variance structure as the

non-contaminated dataset.
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Table 3.2: ‖m̂−m‖2 - Mean (SD) L2 distance between the real mean function and the
estimated mean function for mixture model outliers. Comparison between Robust
(R) and Non-Robust (NR) methods.

Outlier Type n Method Contamination Prop.
0.05 0.10 0.15 0.20

Mixture
Normal-Laplace

50 R 0.200 (0.120) 0.196 (0.108) 0.192 (0.106) 0.191 (0.113)
NR 0.202 (0.115) 0.194 (0.108) 0.198 (0.119) 0.193 (0.111)

100 R 0.132 (0.077) 0.146 (0.084) 0.144 (0.082) 0.141 (0.083)
NR 0.137 (0.079) 0.139 (0.080) 0.134 (0.078) 0.136 (0.081)

200 R 0.093 (0.052) 0.095 (0.056) 0.099 (0.056) 0.092 (0.053)
NR 0.096 (0.056) 0.099 (0.061) 0.096 (0.052) 0.094 (0.054)

Mixture
Normal-Slash

50 R 0.192 (0.110) 0.193 (0.105) 0.193 (0.107) 0.200 (0.109)
NR 0.362 (0.684) 1.128 (7.103) 1.796 (13.37) 5.940 (109.9)

100 R 0.140 (0.081) 0.141 (0.078) 0.137 (0.078) 0.144 (0.082)
NR 0.458 (2.896) 5.060 (60.09) 6.983 (98.27) 1.510 (5.676)

200 R 0.095 (0.054) 0.101 (0.059) 0.095 (0.057) 0.100 (0.051)
NR 0.545 (3.406) 0.616 (1.676) 0.948 (2.655) 1.602 (10.99)

Mixture
Normal-Cauchy

50 R 0.199 (0.111) 0.200 (0.116) 0.194 (0.112) 0.205 (0.111)
NR 0.534 (3.067) 0.529 (1.213) 1.820 (13.74) 1.147 (5.073)

100 R 0.132 (0.080) 0.140 (0.077) 0.143 (0.079) 0.143 (0.079)
NR 0.416 (1.615) 1.561 (15.47) 0.786 (2.189) 3.621 (56.44)

200 R 0.095 (0.057) 0.095 (0.056) 0.097 (0.054) 0.100 (0.060)
NR 0.750 (8.707) 0.633 (3.040) 0.823 (2.279) 0.915 (2.322)

Table 3.3: ‖m̂−m‖2 - Mean (SD) L2 distance between the real mean function and the
estimated mean function for heavy tailed distribution. Comparison between Robust
(R) and Non-Robust (NR) methods.

Outlier Type Method n
50 100 200

Laplace Errors R 0.193 (0.106) 0.133 (0.077) 0.097 (0.056)
NR 0.201 (0.112) 0.131 (0.075) 0.097 (0.056)

Table 3.4: Comparison of Robust (R) and non-robust (NR) average L2 distance
between the real mean function and the estimated mean function for datasets with
no outliers.

Method n
50 100 200

Clean Dataset R 0.195 (0.109) 0.135 (0.076) 0.094 (0.054)
NR 0.198 (0.114) 0.128 (0.077) 0.098 (0.057)
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In order to evaluate the efficacy of this method, we compare the sample variance

of the pseudo-data with the real variance of the uncontaminated model defined in

the Section 3.4.1. To further emphasize the influence of outliers in the calculation

of the variance, we also compared the results with the sample variance of the outlier

contaminated dataset, using the least squares method as the estimator for the mean

function. We generate a functional dataset from the model in the Section 3.4.1 for

sample size n = 200, with sl = 5 and su = 7 for outlier types 1 to 3. Each simulation

is repeated 500 times. The results are presented in the Figure 3.2. We only present

the results for Peak outliers, as all other have similar results.

The results show that the variance of the pseudo-data is very close to the real

variance of the uncontaminated model, while the non-robust estimation of the vari-

ance of the outlier contaminated dataset is strongly affected by the outlier curves.

Figure 3.2: Comparison of the real variance (solid), sample variance of pseudo data
(dashed) and sample variance of contaminated data (dash-dot). Peak outlier with
5% contamination.
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Table 3.5: Comparison of Robust (R) and non-robust (NR) empirical coverage rates
of 95% SCB for contamination type outliers. In parenthesis, the average area SCB.

Outlier Type n Method Contamination Prop.
0.05 0.10 0.15 0.20

Peak

50 R 0.902 (1.053) 0.924 (1.045) 0.890 (1.053) 0.880 (1.049)
NR 0.898 (1.055) 0.912 (1.047) 0.878 (1.056) 0.866 (1.054)

100 R 0.926 (0.743) 0.934 (0.748) 0.914 (0.746) 0.934 (0.748)
NR 0.928 (0.743) 0.934 (0.749) 0.914 (0.747) 0.936 (0.750)

200 R 0.952 (0.530) 0.938 (0.529) 0.904 (0.528) 0.958 (0.531)
NR 0.954 (0.530) 0.938 (0.530) 0.904 (0.528) 0.958 (0.531)

Bump

50 R 0.910 (1.047) 0.876 (1.036) 0.884 (1.054) 0.884 (1.048)
NR 0.906 (1.050) 0.870 (1.040) 0.872 (1.059) 0.872 (1.056)

100 R 0.898 (0.745) 0.886 (0.743) 0.908 (0.746) 0.874 (0.744)
NR 0.894 (0.747) 0.886 (0.747) 0.916 (0.751) 0.876 (0.751)

200 R 0.938 (0.529) 0.914 (0.529) 0.902 (0.530) 0.876 (0.529)
NR 0.930 (0.530) 0.898 (0.531) 0.886 (0.533) 0.838 (0.533)

Step

50 R 0.888 (1.080) 0.878 (1.165) 0.892 (1.232) 0.878 (1.324)
NR 0.906 (1.101) 0.896 (1.223) 0.874 (1.278) 0.868 (1.357)

100 R 0.872 (0.772) 0.924 (0.832) 0.894 (0.899) 0.890 (0.943)
NR 0.914 (0.794) 0.932 (0.873) 0.918 (0.928) 0.910 (0.965)

200 R 0.902 (0.545) 0.910 (0.592) 0.914 (0.637) 0.908 (0.669)
NR 0.890 (0.560) 0.926 (0.625) 0.936 (0.659) 0.928 (0.686)

3.4.5 Simulation of the SCB for the mean function and the difference of

two mean functions

Case I: SCB for the mean function, m(x)

To evaluate the performance of the proposed RSCB method for the mean func-

tion, we calculate the empirical coverage rate. We generate functional samples from

the model in the Section 3.4.1 for sample sizes n = 50, 100 and 200, with sl = 5 and

su = 7 for outlier types 1 to 3. Each simulation is repeated 500 times.

The empirical coverage rates for contamination proportions varying from 0.05

to 0.20 are presented in Tables 3.4.5 to 3.8 The results for clean datasets are similar

for robust and non-robust methods, with the empirical coverage for both methods

approaching 95% and the area of RSCB smaller than the area of non-robust SCB.
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Table 3.6: Comparison of Robust (R) and non-robust (NR) empirical coverage rates
of 95% SCB for mixture model types of outliers. In parenthesis, the average area of
SCB.

Outlier Type n Method Contamination Prop.
0.05 0.10 0.15 0.20

Mixture
Normal-Laplace

50 R 0.890 (1.055) 0.896 (1.050) 0.920 (1.050) 0.920 (1.054)
NR 0.906 (1.048) 0.894 (1.040) 0.910 (1.046) 0.908 (1.048)

100 R 0.944 (0.748) 0.906 (0.746) 0.926 (0.748) 0.916 (0.747)
NR 0.930 (0.748) 0.934 (0.748) 0.918 (0.748) 0.906 (0.744)

200 R 0.956 (0.530) 0.942 (0.531) 0.928 (0.530) 0.948 (0.531)
NR 0.940 (0.532) 0.924 (0.531) 0.944 (0.531) 0.946 (0.530)

Mixture
Normal-Slash

50 R 0.908 (1.049) 0.888 (1.042) 0.890 (1.046) 0.822 (1.042)
NR 0.676 (2.397) 0.470 (4.326) 0.394 (5.299) 0.338 (6.205)

100 R 0.920 (0.745) 0.904 (0.744) 0.912 (0.740) 0.870 (0.739)
NR 0.604 (2.805) 0.436 (10.192) 0.384 (5.332) 0.292 (7.718)

200 R 0.944 (0.529) 0.910 (0.526) 0.918 (0.525) 0.888 (0.523)
NR 0.490 (2.613) 0.386 (3.929) 0.300 (5.919) 0.326 (7.606)

Mixture
Normal-Cauchy

50 R 0.912 (1.047) 0.856 (1.046) 0.884 (1.043) 0.862 (1.042)
NR 0.680 (2.137) 0.556 (3.063) 0.442 (4.958) 0.348 (5.208)

100 R 0.920 (0.744) 0.906 (0.746) 0.910 (0.740) 0.910 (0.737)
NR 0.630 (4.167) 0.440 (5.504) 0.366 (4.401) 0.348 (18.69)

200 R 0.912 (0.528) 0.944 (0.529) 0.926 (0.526) 0.924 (0.524)
NR 0.494 (2.446) 0.414 (3.552) 0.304 (4.417) 0.318 (5.617)

Table 3.7: Comparison of Robust (R) and non-robust (NR) empirical coverage rates
of 95% SCB for heavy tailed distribution. In parenthesis, the average area of SCB.

Outlier Type Method n
50 100 200

Laplace Errors R 0.904 (1.052) 0.924 (0.749) 0.936 (0.532)
NR 0.896 (1.052) 0.916 (0.748) 0.930 (0.532)

Table 3.8: Comparison of Robust (R) and non-robust (NR) empirical coverage rates
of 95% SCB for datasets with no outliers. In parenthesis, the average area of SCB.

Method n
50 100 200

Clean Dataset R 0.922 (1.046) 0.932 (0.746) 0.946 (0.529)
NR 0.906 (1.050) 0.922 (0.747) 0.922 (0.530)
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For outlier contaminated datasets, the advantage of the RSCB becomes clear, with

a breakdown point of around 20%, while the non-robust SCB has a breakdown point

at 5% to 10%. The precision in the RSCB is also greater, with the area of the

RSCB smaller than the non-robust SCB. Peak outliers produce similar empirical

convergence rate for large sample size, but for n = 50, the advantage of the RSCB

is apparent. For the less localized outliers, Bump and Step, the robust method has

better empirical coverage and maintains the area of the RSCB reasonably constant

among contamination levels. The non-robust method shows a quicker decay of the

empirical coverage, for bump and at the same time has wider SCB. The mixture

models more clearly shows the better results of the robust method, with the heavy-

tailed mixture models, Slash and Cauchy, showing the significant advantage of the

RSCB over the non-robust SCB. The outliers with a heavy-tailed distributions ex-

hibits the most extreme difference between the non-robust and robust SCBs, while

the precision of the RSCB is kept at the same level as all other outlier and the

non-contaminated dataset. This provides strong evidence that the proposed RSCB

is less sensitive to the presence of outliers in the dataset, maintaining both a good

confidence level and precision.

Case II: SCB for the difference of two mean functions, m1(x)−m2(x)

We also conducted a simulation to evaluate the performance of the RSCB

method for the difference between two mean functions, by testing the hypotheses

described in the Section 3.3.4,

H0 : m1(x) = m2(x), ∀x ∈ [0, 1] vs. HA : m1(x) 6= m2(x),∃x ∈ [0, 1]. (3.30)

We employ the same model in the Section 3.4.1 for the one sample case. In this

simulation setup, n1 = 100, and n2 = 130 correspond to the sample sizes for the first

70



and the second population, respectively, N = 100 are the number of measurement

points for both samples, and outlier curves are introduced to the first population.

The number of knots used for each population is the same as in the Section 3.4.1,

that is, Nm,i = bn1/2p
i log(n)c, i = 1, 2. For the first population, we selected the

parameter for the Huber loss as k1 = 2.50, and for the second, k2 = 1.345.

The results of the simulation are presented in Table 3.9 for the all types of

outliers. For peak outliers the empirical type I error for the robust method is kept

close to the nominal value, α = 5%, decreasing with the rise in the contamination

proportion. For the non-robust test, the empirical type I error is much smaller than

the nominal value, which indicates that the non-robust SCB is over-estimated. For

less localized outliers, Step and Bump, the robust method produces an empirical type

I error closer to the nominal value then the non-robust method for all contamination

proportions. For the mixture models the results for the heavy tailed distributions,

Slash and Cauchy, highlight the most the advantage of the robust method. The

non-robust method has empirical type I error equals to 1.0, while the robust method

keeps the empirical type I error similar to the non-contaminated dataset results.

For the Laplace error type, the non-robust test repeat the previous results, with a

empirical type I error much smaller than the nominal value.

3.5 Applications

We illustrate our approach on two datasets: Octane dataset for the one sample

case and Ground level Ozone concentration dataset for the two sample case.

3.5.1 Octane dataset

This dataset is the same used in the Section 2.5, it consists of 39 near infrared

(NIR) spectra of gasoline sample, obtained from Esbensen et al. (1996). It is known
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Table 3.9: Empirical Type I Error. Nominal Type I Error set at α = 0.05. Hypothesis
test for the difference of mean functions. Sample size fixed at n1 = 100, n2 = 130,
with N = 100 measurement points for both groups.

Outlier Type Method Contamination Prop.
0.05 0.10 0.15 0.20

Peak R 0.044 0.038 0.032 0.036
NR 0.036 0.030 0.024 0.032

Bump R 0.050 0.044 0.050 0.052
NR 0.040 0.034 0.042 0.046

Step R 0.064 0.050 0.066 0.098
NR 0.044 0.060 0.082 0.096

Mixture Laplace R 0.024 0.040 0.040 0.044
NR 0.024 0.028 0.042 0.030

Mixture Slash R 0.038 0.056 0.046 0.042
NR 1.000 1.000 1.000 1.000

Mixture Cauchy R 0.030 0.042 0.058 0.062
NR 1.000 1.000 1.000 1.000

Outlier Type Method Empirical Error

Laplace Errors R 0.046
NR 0.032

Method Empirical Error

Clean Dataset R 0.048
NR 0.052
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that 6 of the samples contain added ethanol, which corresponds to an upward trans-

lation on the upper wavelength, 1390 onward, interval of the spectrum. This is

considered as the step outliers described in the Section 3.4.

The robust estimation of the mean and the 95% RSCB are calculated for this

dataset, using k = 1.65 as the empirically chosen parameter for the Huber loss, as well

as the mean estimator and confidence band using the method in Cao et al. (2012b).

The results are presented in Figure 3.3, showing the full spectrum measure (left

panel) and magnified on the second half of the spectrum to display the differences

more apparently between the non-robust and robust SCBs (right panel).

We observe that the robust mean estimator remains close to the non-outlying

curves, while the non-robust estimate of the mean function is heavily influenced

by the outliers, resulting in an upward shift. The non-robust SCB is also heavily

influenced by the outliers, translating in a very wide band on the second half of the

spectrum. However the proposed RSCB shows a smaller variation of the width across

the spectrum.

Figure 3.3: 95% SCB comparison for the octane dataset. Non-Robust (Red) vs.
Robust (Black) methods. Left: full spectrum. Right: magnified on the second half
of the spectrum.
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3.5.2 Ground level Ozone concentration dataset

This dataset is the same used in the Section 2.5, and it consists of hourly average

measurements of ground level ozone (O3) concentrations from a monitoring station

in Richmond, BC, Canada, from the years of 2004 to 2012. The presence of Ozone

at ground level is highly undesirable, and considered a serious air pollutant. Since

the concentration of ground level Ozone typically peaks at summer months, only the

month of August is analyzed, resulting in 31 samples, with 24 measurement points

for each sample.

The plot of the ground level O3 concentration for years 2005 and 2007 is pre-

sented in Figure 3.4, top panel, with the year of 2005 in gray/black, and the year

of 2007 in red. The outliers detected by Boente and Salibian-Barrera (2015) are

highlighted.

We set up our hypotheses for testing if there is a difference between the ozone

mean functions of the years 2005 and 2007 in Richmond, Canada. The outliers in

the dataset are similar to the bump outliers described in the Section 3.4, but they

are asymmetrical, localized only in the upper portion of the dataset. We chose the

Huber loss parameter empirically as k1 = 2.0 for the 2005 sample and k2 = 1.45 for

the 2007 sample. The 95% SCB of the difference between the mean functions of the

ground level O3 concentration in years of 2005 and 2007 is presented in the bottom

left panel of Figure 3.4. We also calculate the 95% SCB for the difference between the

mean functions with the outliers kept for the RSCB, and excluding the outliers for

the non-robust SCB. This is presented in the bottom right panel of Figure 3.4. This

plot provides a comparison of the SCB between the robust and non-robust methods.

The RSCB has a much smaller width around the location of the outliers, but due

to the asymmetrical disposition of the outlying curves, the estimated difference of

mean functions is shifted slightly upwards.
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Notice that the robust method does not reject the null hypothesis at a signif-

icance level α = 0.05, while the non-robust test rejects the null hypothesis (Figure

3.4 bottom left). The result for the non-robust test is contradictory with the result

of the hypothesis test using the dataset with outlier curves removed, which does not

reject the null hypothesis at α = 0.05 (Figure 3.4 bottom right).

Figure 3.4: Top: O3 Levels in years of 2005 (Gray and black) and 2007 (Red) in
Richmond. Black lines are the outliers which are determined in Boente and Salibian-
Barrera (2015). Bottom Left: 95% non-robust SCB (Red) and RSCB (Gray) for the
difference between the mean functions of the two years. Bottom Right: 95% non-
robust SCB (Red) and RSCB (Gray) for the difference between the mean functions
of the two years, keeping outliers for RSCB, excluding outliers for non-robust SCB.
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3.6 Conclusion

In this chapter we presented a new method of robustly estimating the mean

function of the functional data, using B-Spline Smoothing and M-Based estimator.

We proved that the proposed estimator is consistent and asymptotically normal.

We also presented a new method to obtain a RSCB for the mean function, using

a modified Pseudo-data. Additionally, we presented an extension of the RSCB for

the difference of two mean functions, which can be used as a test statistic for the

hypothesis test of the difference of the mean function of two populations.

A thorough simulation study was performed, showing that the proposed method

performs well under the presence of the seven different types of outliers, which are

typical types of contamination in the robust functional data analysis.
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Chapter 4

Conclusion and Discussion

In this dissertation we presented two methods to obtain a robust estimator and

robust simultaneous confidence band for the mean function of functional data. In

Chapter 2, we proposed an estimation estimation procedure for the mean function

based on the Least Absolute Deviation (LAD) and the B-Spline smoothing tech-

niques. We proposed a robust estimator the mean function of outlier contaminated

functional datasets by extending the LAD estimator to functional data analysis, and

using B-Spline smoothing. We also proposed a robust estimator for the covariance

function of contaminated functional datasets, using a three-step procedure. First, we

used the spherical principal components to robustly estimate the eigenfunctions of

the covariance function. Second, we robustly estimated the eigenvalues of the covari-

ance function by using a robust estimator of the variance, the Huber’s M-estimator,

of the projection of the centralized data onto each robustly estimated eigenfunction.

Finally, we reconstruct the covariance function using the estimated eigenfunctions

and eigenvalues. Using the two previous estimators, we also proposed a method

for constructing a robust simultaneous confidence band for the mean function of non-

homogenous functional datasets. We first used a Monte-Carlo simulation to estimate

the quantile of the absolute maximum of a Gaussian process with the same covari-

ance function as the dataset, using the proposed robust estimation of the covariance

function. Second, a correction factor was implemented, using empirical simulations,

to better improve the efficiency of the RSCB. Finally, the RSCB was calculated using

the robust mean estimator, the estimated empirical quantile, the robust estimator of
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the covariance function and the empirically estimated correction factor. The robust

methods was also extended for calculating a robust estimator for the difference of

the mean function of two functional populations, and for calculating a RSCB for the

difference of the mean function of two functional populations. Based on the RSCB,

we proposed a robust test statistics for the hypothesis that the mean function of two

populations are different.

A simulation study was performed, in the Section 2.4, and the performance of the

LAD-based RSCB was compared with a non-robust SCB based on the least squares.

The results of the simulation showed that the RSCB outperforms the non-robust

SCB by a large margin for different types of simulated outliers. We also performed a

simulation study to compare the robust and non-robust empirical type I error of the

hypothesis test for the difference of the mean function of two functional populations.

Similar to the results for the one-sample SCB, the robust test statistic outperforms

the non-robust test statistic. The robust test kept the empirical type I error close

to the nominal value for large contamination proportion of outliers, between 20%

and 45%, depending on the type of outliers, while the non-robust test resulted in a

empirical type I close to 1.0 for small contamination proportions, between 5% and

10%, depending on the type of outliers. We also compared the robust and non-robust

SCB for two real datasets, the octane dataset for comparing one-sample robust and

non-robust SCB, and the ground level O3 concentration dataset for comparing the

two-sample robust and non-robust SCB, and the robust and non-robust test statistics

for hypothesis test for the difference of the mean functions. The results were inline

with the simulation results, with the robust methods performing better then non-

robust methods.

We also proved that the robust LAD-based B-spline smoothed estimator is

asymptotically consistent, in the Section 2.3.3.
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In Chapter 3, we proposed an extension of the LAD-based robust methods from

Chapter 2. We first proposed the B-spline Smoothed M-estimator for the mean func-

tion of functional data. We researched the asymptotic theoretical properties of the

proposed estimator, obtaining its asymptotic consistency and asymptotic normality,

with full proofs provided in the Section 3.3.2. We also obtained a asymptotically cor-

rect estimation for the variance of the B-spline smoothed M-estimator of the mean

function, in Theorem 3. Using the estimated variance of the mean function estimator,

in the Section 3.3.3 we proposed a modification of the pseudo-data idea, obtaining

a pseudo-dataset that diminishes that influence of the outliers on the covariance

function. We also proposed a robust simultaneous confidence interval for the mean

function of outlier contaminated datasets, by using the pseudo-data and previous

non-robust methods for constructing the SCB for the mean function of homogenous

functional datasets. We also extended the robust methods for constructing the RSCB

for the difference of the mean functions of two outlier contaminated functional popu-

lations. We also extended the two-sample RSCB to obtaining a robust test statistic

for the hypothesis of the difference of the mean functions of two non-homogenous

functional populations.

A simulation study was performed, presented in the Section 3.4, using several

types of outliers, with local contamination models, mixture models and contami-

nation with pure heavy-tailed distributions. We evaluated the convergence of the

B-spline smoothed M-estimator, and compared the results with the non-robust least

square estimator. We calculated the average and the standard deviation of the L2

distance between the estimator produced by each method and the real mean func-

tion. The results of the simulation showed that the robust estimator is better, or

similar, to the non-robust estimator for all different types of outliers considered. We

also evaluated the proposed pseudo-data definition, comparing the sample variance
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of the pseudo-data, with the sample variance of the contaminated dataset, and with

the variance of the clean dataset. The results showed that the pseudo-data limits

the influence of the outliers in the estimation of the variance. We also performed

a simulation comparing the RSCB with the non-robust SCB. The results showed

the advantage of using the RSCB over the non-robust SCB. The robust method

performed better than the non-robust method for the outliers considered, with the

mixture models for outliers showing a great advantage for the RSCB over the non-

robust SCB. We also performed a simulation comparing the empirical type I error

for the hypothesis test of the difference for the mean functions of two heterogeneous

functional populations. The results were inline with the one-sample SCB. For the

robust test statistic, the empirical type I error was kept close to the nominal value,

while the empirical type I error for the non-robust test statistic was deteriorated,

specially for the mixture model type of outliers. We also used the same real datasets

from the Chapter 2, namely, the octane dataset and the ground level O3 concen-

tration dataset, to evaluate the performance of the RSCB and robust test statistic,

respectively. The results, when compared with the non-robust equivalent methods,

show the advantage of the proposed robust methods.

When comparing the LAD-based method proposed in the Chapter 2 and M-

based method proposed in the Chapter 3, the results of a numerical simulation

performed, but not included in this dissertation, indicates that the M-based method

produces more precise results, in exchange for a slightly smaller confidence. The

results showed that the RSCB produced by the LAD-based method are, in average,

twice as large as the RSCB produced by the M-based method. This trade-off between

the accuracy and confidence level might be used to decide between the use of the

LAD-based method and the M-based method, depending the functional dataset being

considered, and the results desired.
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