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Abstract

Simulation experiments are becoming a widely feasible medium for scientific discovery

due to the amount of traceability and reproducibility which computing systems are able to

provide. These characteristics help to ensure the validity of an experimental process, which in

turn gives credibility to the propositions supported therein. Simulations can be as complex as

the real-world mechanisms they mimic, so the process of experimentation on a simulation can

have an explosive search space. We attempt to minimize some of this complexity by reducing

data concerns to a more abstract verification model. Additional experimental complexities

are reduced by the inclusion of the goal-hypothesis-experiment framework, which includes a

domain-specific language for experiment management. By making use of this framework, a

scientist needs only to specify the goal of the experiment and give evidence and hypotheses to

be tested against a simulation model. By utilizing formal methods of model verification we

may automate the process of testing hypotheses against evidence, and facilitate the selection

of new hypotheses to maximize the information gained while using the minimum processing

requirements. In this thesis, a probabilistic model checker is used as the formal method of

verification, and evidence and hypotheses are specified as a temporal logic specifications.
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Chapter 1

Introduction

As software simulation practices are becoming more prevalent in various scientific dis-

ciplines [1, 2], it is becoming apparent that there is room for exploitation of the scientific

process by leveraging computational strengths such as formal model checking in the use of

these models for experimentation. Given that scientific models exist from a diverse array

of fields, ranging from groundwater analysis [3] to nuclear fusion, socioeconomic forecast,

and astrophysics [4], it is clear that a process to aid in the simplification of experimentation

must be abstract enough to be applicable to such a wide variety of models. The presented

solution aims to take some of the guesswork out of experimentation in a systematic way that

reduces time spent on designing experiments. This goal is accomplished by infusing simu-

lation models with code generated by an aspect-oriented programming extension (AspectJ)

as a method of instrumentation. This allows a scientist to record quantitative observations

without impacting the course of program execution, and use the data recorded to form a

verification model for automated hypothesis testing.

Before further consideration of the possibilities of testing hypotheses automatically by

aid of instrumentation, it is important to first examine the role that in-silico experimentation

may play in science. Honavar [5] suggests that, ”computation is now serving as language for

science, a role not unlike that played by mathematics over the past many centuries, and a

powerful formal framework and exploratory apparatus for the conduct of science.” His claim

is supported by the observation that computation, mathematics, and science are often used

ubiquitously to provide a structured way of answering questions. As Honavar’s statement

alludes to, the appeal of using computation as a language for science is great because algo-

rithms and data structures can perform the same role in science that mathematics played
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in the past, but at an accelerated rate. For the purposes of this chapter, computation will

play the specific scientific role of hypothesis testing. In the established scientific method,

hypotheses are used as a tool to test assumptions that seem to explain observations. Once a

hypothesis is rigorously tested under varying conditions, a hypothesis can become a widely

accepted theory, and can be used as evidence for support of future hypotheses. In regard to

this, the point is raised that, ”hypothesis tests become rules of ’inductive behavior’ (Neyman

and Pearson 1933) where an evidential assessment of the tested hypotheses is not of intrinsic

interest, but just in so far as it helps us taking the right action” [6]. The basic view that

is presented here is that, due to the impossibility that all possible evidence is gathered, a

hypothesis test cannot guarantee the hypothesiss accuracy or inaccuracy, but it can be used

to lead the scientist to the next question. It is for this reason that a computational system for

hypothesis testing is enticing. To elaborate, a computational system with persistent memory

naturally excels at traceability and reproducibility. By leveraging these attributes, the com-

plex problem of analyzing the implications of a failed theory or hypothesis can be reduced

by automatically rolling back those hypotheses that relied on inaccuracies as evidence.

In addition to the intractable problems with inductive reasoning, in-silico experimen-

tation often suffers from incomplete or inaccurate models that should be representative of

real-world mechanisms [7]. This statement may seem obvious, since it is commonly acknowl-

edged that the task of experimentation is to understand reality’s mechanisms. In other

words, how can a model that only represents those aspects that are already well established

from past experiments answer questions that have not been answered by a real-world exam-

ple? As Savory [8] points out in reference to the formulation of simulation models, ”missing

an essential element may invalidate the representation provided by the model or make it

useless for the intended application.” This is an important observation, which exposes a call

for constant comparison with real-world results. In the proposed system, this problem is at

least partially mitigated by introducing real-world observations to the model as evidence, and
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guiding the user to refinements of the model that would make it more mimetic of real-world

mechanisms.

However, it is clearly impossible to iteratively refine a model ad-infinitum. Tragically,

this is the only way to make some models complete due to the randomness that exists in

nature. Moskovitz [9] posits some deep philosophic questions relating to this assertion. He

argues that the universe is not random, but chaotic. The difference being that, ”natural

events are chaotic, fully determined but unpredictable,” whereas simulated events are unde-

termined, but predictable. If it were possible to create models that assume complexity rather

than randomness, the implication would be that a model could reproduce what is, rather

than what may be. However, such methods of modeling do not exist at present, so, for this

study, statistical model checking is applied to test hypotheses since alternative methods are

unavailable for the foreseeable future.

We propose to address some of the above challenges by providing a framework for

hypothesis testing that is simulation platform independent1 by following principles of Model-

Driven Software Development. The proposed solution provides a domain specific language for

hypothesis specification and automated model checking to evaluate these hypotheses using

a statistical model checker. By incorporating the results of model checking into learning

networks, better experiments can be developed at a faster rate to increase knowledge gain.

Organization of the thesis. The next chapter discusses the process of model-driven

software development as well as a summary of the framework in which the hypothesis test-

ing unit is enveloped in. Additionally, we explore the current work on experimentation

frameworks, and introduce a foundational background for the work. Chapter 3 presents the

model-driven methodology that was followed for the development of this study. Chapter

4 explains the implementation details of the framework. Chapter 5 presents a case study

that shows the framework in action. The framework for Formal Automated Analysis of

Simulation Experiments (FASE) is evaluated and validated through exploration of a case

1The data recording mechanisms of the system require a language based in Java, but the domain-specific
language is platform independent, as it can have alternative reference implementations.

3



study in chapter 6. Finally, in chapter 7, we conclude the work and discuss potential avenues

of future research.
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Chapter 2

Background

In this chapter we present the concepts and terminology used in the later chapters. In

2.1, Model-Driven Software Development is described as a means for developing models with

re-use and minimalistic coding idioms. Section 2.2 presents the Goal-Hypothesis-Experiment

framework, a process that increases the efficiency of digital experimentation. In sections 2.3

and 2.4, instrumentation and formal verification are explored as a means to improve upon

the framework of the previous section. In section 2.5 the concept of probabilistic model

checking is introduced. Section 2.6 explains the well-defined temporal properties, known as

property specification patterns. Finally, section 2.7 introduces the concept of explanatory

coherence networks, which are used later in the text to model hypothesis relationships.

2.1 Model-Driven Software Development

Model-Driven Software Development (MDSD) [10, 11, 12] is a strategy of software de-

velopment that focuses on building software that is correct-by-construction as opposed to

construct-by-correction. MDSD provides methods for the formulation, construction, and

management of models. It presents a philosophy of re-use and generalization to promote the

efficient use of software constructs in complex systems. The goals of MDSD are to increase

development speed by automating more of the coding tasks, improving software quality, re-

ducing redundancy and increasing maintainability in systems, managing complexity through

abstraction, and improving interoperability and portability of complex systems. The basic

process of MDSD is presented in figure 2.1.

Voelter, Salzmann, and Kircher [13] explain that through the practice of MDSD, models

are treated as first class development artifacts, instead of just documentation figures. This
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practice provides an ability to specify various abstract aspects of a system in a modeling

language, which can later be converted to source code through a series of transformations.

The models used, being far more abstract than implementation code, are specific to the

domain that the model is to be used for. The languages to describe these models are called

domain-specific languages (DSL) [14]. A DSL must have a meta-model, a concrete syntax,

and semantics. The meta-model defines the parts of the language and how they can be

combined. A concrete syntax is the notation used to specify models. There is a one-to-many

relationship between a meta-model and concrete syntax, since keyword choices may differ,

and the medium (text or graphics) may also vary. Finally, the semantics of the DSL ensure

that the model’s meaning is well-defined for the purpose of facilitating transformations [13].

In Model-Driven Software Development [15], some common software development pit-

falls are shown to be avoidable by use of MDSD principles:

”The idea of modeling is not exactly new, and is used mostly for sophisticated

development processes to document a softwares inner structure. Developers then

try to counteract the inevitable consistency problems with time-consuming re-

views. In practice, these reviews and also the models are among the first victims

when time presses from a pragmatic point of view, even rightly so. Another ap-

proach is round-trip or reverse engineering, which most UML tools offer, which

is merely source code visualization in UML syntax: that is, the abstraction level

of these models is the same as for the source code itself. Visually it may be

clearer, but the essential problem remains the same. Model-Driven Software De-

velopment offers a significantly more effective approach: Models are abstract and

formal at the same time. Abstractness does not stand for vagueness here, but

for compactness and a reduction to the essence. MDSD models have the exact

meaning of program code in the sense that the bulk of the final implementation,

not just class and method skeletons, can be generated from them. In this case,

models are no longer only documentation, but parts of the software, constituting

6



a decisive factor in increasing both the speed and quality of software development.

We emphasize model-driven as opposed to model-based to verbally highlight this

distinction.”

Figure 2.1: Model-Driven Software Development Process [15]

The central idea of this process is to identify the segments of code that are repetitive

or generic and create a concrete implementation of these segments on-the-fly by utilizing

code generation templates. The practical upshot of all this is that an engineer needs only to

code one template and have a wide variety of concrete implementations by customizing the

template with a set of arguments.

2.2 Goal-Hypothesis-Experiment Framework

In this section, we delineate the overarching infrastructure of FASE: the Goal-Hypothesis-

Experiment (GHE) framework [16, 17]. The goal of FASE, combined with the GHE frame-

work is to extend the tools and efficiency of digital science using simulation models. The

GHE framework adheres to the principles of MDSD listed in the preceding section in order

to facilitate the range and dynamics of applicable models. It provides a Domain Specific

Language (DSL) for experiment specification, and describes methodology for iteratively ex-

ploring and refining domain ontologies. The GHE framework gives domain experts the tools
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they need to perform experiments, test hypotheses, observe phenomena, and refine models

without having need for advanced coding and code analysis expertise.

As the name implies, the GHE framework structures the knowledge discovery process

into three levels: conceptual, operational, and tactical levels (goals, hypotheses, and experi-

ments respecively) [17]. It is proposed that, after the goal phase, knowledge can be gained

most efficiently by iteratively exploring the hypothesis and experiment spaces of a domain,

while performing optimizations in between each space change. In order to carry out the

execution of these spaces, the DSL needs to be backed by a reference implementation to

support hypothesis testing. The requirements for this endeavor include instrumentation (to

construct a verification model) and model checking (to validate the model), each of which

are discussed in the following sections.

2.3 Instrumentation

This section presents the concept of instrumentation on simulation experiments and how

it is supported by Aspect-Oriented Programming (AOP) [18]. Here, instrumentation refers

to measuring instruments used to indicate, measure and record quantities observed in the

course of an experiment. Though it is obvious that physical apparatus are not needed to make

measurements in a digital system, code to extract values from variables at certain instances

during program execution is a means of mimicking the same process of data collection that is

used during in-vivo experimentation. To facilitate instrumentation for experiments, AspectJ

[19] is presented as a means of recording variable values during simulation execution by AOP

methods.

Aspect-Oriented Programming aims to address crosscutting concerns in software. A

crosscutting concern is a structure in which ”methods related to those concerns intersect, but

which cannot be neatly separated from each other” [18]. An example of this is data logging

code, where data is logged in-line with business logic. These concerns are addressed by

separating components and aspects, then weaving them together in a manner that untangles
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the problem. Aspects are defined as ”properties that affect the performance or semantics of

the components in systemic ways”, such as, ”memory access patterns and synchronization of

concurrent objects” [20]. Stated formally, the goal of AOP is, ”to support the programmer

in cleanly separating components and aspects from each other, by providing mechanisms

that make it possible to abstract and compose them to produce the overall system” [20].

AspectJ is an AOP language that works as an extension of Java. It serves as a tool

to facilitate instrumentation by intercepting variable values at well-defined points of pro-

gram execution. Kiczales defines the terminology of AspectJ as follows: ”join points are

well-defined points in the execution of the program; pointcuts are a means of referring to

collections of join points and certain values at those join points; advice are method-like

constructs used to define additional behavior at join points; and aspects are units of modu-

lar crosscutting implementation, composed of pointcuts, advice, and ordinary Java member

declarations” [21]. In summary, a join point can trigger execution of advice during the

simulation run, thus acting as an observer of experimental quantities.

At first it may not be clear whether it is necessary to mimic the real-world process

of instrumentation. Is this approach just for the sake of mimicry? If not, why use in-

strumentation rather than standard testing procedures? Why not skip the data recording

and costly simulation execution and instead break down a model into pieces and test in a

divide-and-conquer manner, as in unit testing? For one, this process can be extremely time

consuming, and difficult to automate, as it usually requires design expertise. Additionally,

for exploratory work like scientific experimentation, system testing is more suited to identify

when or where a mechanism exists when its workings are previously unknown. Finally, the

questions asked as scientific hypotheses often involve the interactions between components.

By taking a temporal approach to verification modeling, we can analyze these interactions

formally.
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2.4 Formal Verification

Model checking is a formal verification technique for finite-state concurrent systems.

It was first comprehensively presented by Clarke, Grumberg, and Peled [22] as a method

of verifying sequential circuit designs and communication protocols. The process of model

checking consists of several tasks, including modeling, specification, and verification. In the

modeling step, a design is converted into a model that is compatible with model checking

software by either abstraction (to eliminate irrelevant details) or compilation. The specifi-

cation step involves defining the properties that the design must satisfy. These properties

are generally defined in terms of temporal logic formulae, which can be used describe system

behavior over time. Finally, the verification step involves the measures taken to reduce the

state explosion and evaluate the temporal properties on the model from the previous steps

[22].

Using model checking as a tool for formal verification is now a well-established method-

ology. As a concise overview of its ability, it is expressed that safety (”Bad things will never

happen”) and liveness (”Good things will eventually happen”) properties verification will en-

sure component validity. Components that violate these properties exhibit illegal behavior.

The process of model checking is to first define the model, then check whether the properties

hold by means of assertions (invariants) and temporal logic formulae. When a property is

violated, the model checker provides a counterexample. The counterexample is represented

as a sequence of actions that leads to an error [23].

So, a component checked by a model checker will either pass the tests or the model

checker will identify the point of failure. It is also observed that, ”formal verification usually

only applies to models of limited size, which means that only abstract models of complex

programs can be verified,” however, it is highlighted that, ”in general, anything can be

tested with model checkers if there is a suitable model, that is sufficiently abstract to allow

verification in realistic time” [23]. In accordance with this claim, the proposed hypothesis

testing system constructs an abstract model of the simulation for testing. Several use cases
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exist in which the model checking method has been successful, ranging from the correctness

of music playing software to biomedical applications. In these use cases, it is shown that

model checking is applicable to applications ”exhibiting probabilistic, nondeterministic and

real-time characteristics” [24].

To speak briefly on the utility of model checking, Holtzmann and Smith (1999) explain

some of the challenges present with the formal verification methodology. They claim that

its practicality can be limited because, while, ”to check the accuracy of a formal model

for any application of substance can be significant, often consuming weeks or months,” the

software application development will often accelerate beyond the period of relevance for the

verification results. However, this challenge may be overcome by means of abstraction and

automation. The solution they propose is, ”to devise a way to map a given program into

an element of this subset by some well-defined process. That well-defined process is called

abstraction, and the result of this process can be called a verification model.” By use of the

verification model, the state explosion of complex systems becomes irrelevant.

2.5 Probabilistic Model Checking

Probabilistic model checking [25] is defined as a method for modeling and analysis of

systems with stochastic behavior. It is a variant of model checking [26], which is a formal

method for verifying the correctness of real-life systems. The difference between the two

formalisms is that the input to a probabilistic model checker is a model which includes

quantitative information about the likelihood of state transitions and the times at which

they occur. Additionally, temporal properties can be specified in terms of a probability that

the property is satisfied [27].

The case study for this paper utilizes the open-source Probabilistic Symbolic Model

Checker (PRISM) for hypothesis evaluation. The newest version of PRISM provides ”for-

mal modelling and analysis capabilities for systems with probabilistic, nondeterministic,

and real-time characteristics, through support for verification of (priced) probabilistic timed
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automata” [28]. These capabilities are necessary to check models exhibiting unreliable or

unpredictable behavior, as is the case for the models developed to aid the process of scien-

tific discovery, since those models are built by the process of inductive reasoning and exhibit

random behavior to model mechanisms that are not yet fully understood [29].

In this study, simulation system behavior is modeled as a Discrete-Time Markov chain

(DTMC)[30]. A DTMC is defined as the following:

For a state sεS of a DTMC D, the probability of moving to a state s′εS in one

discrete step is given by P(s, s’). Each state in D represents one possible configu-

ration of the system being modelled; each transition represents the possibility to

evolve from one configuration to another. A path of D, which gives one possible

evolution of the Markov chain, is a sequence of states s0s1s2... such that s0 = s̄

and P (si, si+1) > 0 for all i ≥ 0. [24]

By producing a model of an experiment with a DTMC, we gain an increasingly accurate

model as more experiments are performed and more data is collected. Evaluation of this

type of model provides verification of hypotheses with a certain error margin rather than

true exhaustive model checking, which aims to build a verification model as a deep copy of

the simulation model source code and claim with complete certainty that a model is correct

based on the property specifications.
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2.6 Property Specification Patterns

A property specification pattern is a high-level characterization of a common require-

ment on the acceptable state/event sequences in a finite-state model of a system [31]. These

patterns are modeled after the philosophy of design patterns. That is, they are a means of

applying expert knowledge to a diverse set of problems. The motivation for developing this

set of patterns was to address the concerns that prevent wide-scale use of model checking as

a formal method of software verification. These concerns are based in the observation that

the applied use of temporal logic formalisms is difficult even for model checking practitioners

and researchers. Additionally, once the formulae are composed, they are still difficult to

reason about, debug, and modify [32].

Dwyer, Avrunin, and Corbett propose a collection of patterns to solve this problem.

They are divided into three categories: occurrence patterns, ordering patterns, and com-

pound patterns. Among the occurrence patterns are absence, existence, bounded existence,

and universality. The ordering patterns are precedence, and response, and the compound

patterns include chain precedence, chain response, and boolean combinations [31]. Each of

these patterns can be specified using high-level language. For example, the occurrence pat-

terns can each contain an ”occurs” keyword and an ordering, such as ”A occurs before B.”

This high-level characterization lends itself nicely to the development of a domain specific

language for hypothesis testing.

2.7 Explanatory Coherence Networks

Explanatory coherence theory [33, 34] offers a set of principles and methods for studying

the degree of coherence existing between a set of hypotheses. The hypotheses are connected

forming a network, which is then balanced to determine which hypotheses cohere with one

another and which ones do not. This is called a coherence network. The coherence network

tells us how well the hypotheses (and the observed evidence resulting from an experiment)
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work together. Our confidence in the truth of a new hypothesis will be affected if it coheres

with a network of previously held hypotheses.

A coherence network is a qualitative model that represents a set of propositions and

their relations to one another. The propositions may be in the form of a hypothesis or in

the form of an evidence which may either support or refute a hypothesis. The theory of

explanatory coherence is informally stated in the following principles:

Principle E1. Symmetry. Explanatory coherence is a symmetric relation, unlike,

say, conditional probability.

Principle E2. Explanation. (a) A hypothesis coheres with what it explains, which

can either be evidence or another hypothesis; (b) hypotheses that together explain

some other proposition cohere with each other; and (c) the more hypotheses it

takes to explain something, the lower the degree of coherence.

Principle E3. Analogy. Similar hypotheses that explain similar pieces of evidence

cohere.

Principle E4. Data priority. Propositions that describe the results of observations

have a degree of acceptability on their own.

Principle E5. Contradiction. Contradictory propositions are incoherent with

each other.

Principle E6. Competition. If P and Q both explain a proposition, and if P and

Q are not explanatorily connected, then P and Q are incoherent with each other.

(P and Q are explanatorily connected if one explains the other or if together they

explain something.)

Principle E7. Acceptance. The acceptability of a proposition in a system of

propositions depends on its coherence with them. [33]
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Units typically start with an activation level of 0, except for the special evidence unit

whose activation is always 1. Activation spreads from it to the other units. Inhibitory links

between units make them suppress each other’s activation.

Activation of each unit aj is updated according to the following equations:

Here d is a decay parameter (say .05) that decrements each unit at every cycle, min is

minimum activation (-1), max is maximum activation (1).

Based on the weight wij between each unit i and j, we can calculate neti, the net input

to a unit, by:
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Chapter 3

Methodology

The hypothesis testing framework was developed by following the idioms of model-driven

software development principles. In this regard, the development process is divided into

three sections of related development, and each can be performed in parallel. The sections

are namely Domain, Transformations, and Platform. The Domain section includes those

steps of development which are related to the domain-specific language. This is the most

abstract area, where language requirements are identified and the language is defined. In

the Transformations section, the model transformations are defined to create implementation

specific artifacts from the DSL text. In the platform section, the simulation is implemented

for evaluating the usability of the DSL. The activity diagram in figure 3.1 illustrates the

steps taken during this process.

Figure 3.1: FASE Development Process
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3.1 Domain

The first step in the Domain development process is to define the language that is to be

used for the hypothesis testing framework. One of the most difficult parts of the process is

defining the language in a way that enables developers with little programming or domain

experience to be effective users [35]. To promote greater validity of the language, the DSL

development step starts by rigorously defining a metamodel for the language in the form of a

UML class model. This metamodel helps the language engineer to understand the domain,

and is a basis for requirements specification. After the metamodel is developed, the formal

syntax of the language is defined by taking the objects and associations from the metamodel

and developing a context-free grammar in Backus-Naur Form (BNF). This is done by a pro-

cess of assigning keywords to associations from the metamodel and defining rules for their

legal order of occurrence. Once the language is defined in BNF, it can be implemented in a

language engineering framework. An editor for the language may be provided by the frame-

work, or one may be developed simultaneously. With the implementation of the language

complete, a reference model will be constructed using the language. A reference model is a

concrete example of the DSL in use. By evaluating the readability and writeability of the

reference model, this step provides an opportunity to evaluate the usability of the language

and refine it for unusual cases.

3.1.1 DSL Development

The initial stage of development for the FASE framework requires iterative refinement

of the grammar. The process of developing the grammar from the metamodel keeps the

language well structured, while providing visual aid to the developer.

• Metamodeling

The metamodeling step involves adding potential keywords to the language in the form of

a UML class model. This model conveys the connections between the language elements
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and gives the initial representation of the domain concepts. After defining the metamodel,

the next step should be to define the grammar in BNF. If any problems are found in the

BNF definition, development should return to the metamodel, restructure the language or

add/remove keywords, and return to BNF definition.

• Grammar Definition

Readers are reminded that a BNF grammar is defined as an ordered sequence of terminal

and non-terminal elements. The grammar definition step requires that a BNF grammar is

developed from the metamodel. To do this, one should consider leaf nodes of the diagram to

be terminals in the grammar. There will be one node of the model that represents the entry

point. Relationships defined in the metamodel such as composition or inheritance help to

characterize the relationships in the grammar. For example, if an element is composed of

several parts, it is a non-terminal which contains the modeled words in a certain ordering.

An inheritance relationship indicates that there should be multiple orderings of the children

of the parent non-terminal. After finalization of the BNF grammar, the syntax can be

implemented in a language engineering framework.

3.1.2 Reference Model

Once the grammar is defined in a language engineering framework, it is possible to write

sentences with syntax highlighting using the language. The reference model is defined as a

vigorous exercise of the language. The language is exercised by attempting to develop all the

sentences that are necessary for the framework to specify goals, hypotheses, and experiments.

If there is difficulty in conveying a necessary element to any of these sections in a clear and

concise way, additional refinement may be necessary.

3.2 Transformations

The Transformation section starts with development of a reference implementation. The

reference implementation is an example of the code that would be required to do the actions
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that are expected of the DSL execution. By evaluation of the reference implementation,

sections of code that are candidates for text-to-model transformations are identified. These

transformations bridge the gap between reference model, reference implementation, and

application.

3.2.1 Reference Implementation

The reference implementation is the backbone of the language. Most of the classes and

methods that allow the language to function will be constructed through development of the

reference implementation. This code base will be written in an API-style format, allowing

for simple substitutions into method calls to perform the functions of the DSL.

3.2.2 Transformation Implementation

The transformation from DSL to Application is accomplished by use of source code

templates. The reference implementation is used to identify sections of code that could be

filled in with text from the DSL and used as arguments to methods that can handle these

inputs.

3.3 Platform

The platform section includes the development of the simulation model and the gener-

ation of the system application. Once the simulation model is defined, the application can

make slight modifications to it programmatically. In this case, the platform is altered to

incorporate data recording mechanisms. By executing the DSL, outputs ultimately come

from the platform, but are interpreted by the system application.

3.3.1 Simulation Platform

The implementation of the simulation platform can be incredibly diverse. Since the

augmenting code is generated automatically, the framework can be applied to nearly any
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application, assuming it is written in a language compatible with an aspect-oriented frame-

work.

3.3.2 Application

The application is a union of the code generated by the template engine and the reference

implementation. This is what is finally executed after saving the DSL changes. If the

application encounters any errors, development may need to return to the transformation

section to revise the template parametrization.
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Chapter 4

Implementation

The implementation of the FASE framework follows from the methodology of the pre-

vious chapter. First, we will give a high-level overview of the system behavior. Then we will

discuss the development of the FASE language and how it is implemented in the language

engineering framework, Xtext. Next, we will review how the template engine, Xtend is used

to generate an evaluation model to carry out the tasks required by the DSL. Afterwards, we

will present a detailed design of the reference implementation. Finally, we will take a look

at the implementation of the In-Silico-Hepatocyte-Culture(ISHC) platform used in the case

study of chapter 5.

4.1 Overview

Figure 4.1 presents a high-level overview of the activities that occur during the use of

FASE. The only input to the process is the text of the DSL editor. After execution, the

final product is a coherence network which models the current, holistic, understanding of

the domain. The following items explain the details of each activity. Afterwards, the system

is also presented as a sequence diagram to give a clear depiction of how data flows from one

unit to another.

• User Saves GHE Specification

In this step, the user employs the GHE DSL to define an appropriate experiment specifi-

cation, model description, hypotheses, and goals. More details on how these concepts are

defined can be found in section 4.2. Once the specification is saved, the transformations take

place, and the next activity is executed.
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Figure 4.1: FASE System Activity Diagram

• Model Transformation

Here, the DSL text is used to fill in a template that corresponds with a generic driver for the

system. After the driver generation is completed, it will immediately be executed, leading

to the next step.

• Convert Hypotheses to LTL

In this step, the hypotheses from the specification will be taken and syntactically analyzed

to identify the temporal property that they correspond to, and match them to a formula.

Additionally, the condition will be identified as either an event or a logic statement so that

the distinction can be made later at PRISM model building time.

• Generate AspectJ code

When execution reaches this point, the system generates pointcuts and advice to record the

variables from the hypotheses.

• Run Batches of Experiments
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Once the data recording elements have been generated, the experiments are run to collect

that data into a table formatted file. Here, each row of the table represents a change in one

of the variables’ value.

• Build Markov Chain from Tabular Data

In this section, the data from the experiments is used to build a Markov Chain. Transitions

in the chain are determinant upon the ranges defined in the hypotheses and/or whether the

condition is an event. Repeat states increase the likelihood, while not adding the same state

twice.

• Build PRISM Model from Markov Chain

Here, the Markov chain is used to generate the PRISM model by converting each state into

a statement in the PRISM language. These statements include the state name, transitions,

and probabilities associated with the transitions.

• PRISM Checks Temporal Properties Against Verification Model

After the PRISM model is built, it is executed. The PRISM system constructs an omega

automata from the LTL formula, and a DTMC from the generated PRISM code. To evaluate

the validity of the model compared to the temporal property, the model checker builds a

cross product of the omega automata and the DTMC, and evaluates the reachability of the

bottom strongly connected components.

• Model Checking Results Integrate Into Coherence Network

When model checking is completed, the result is a probability of acceptance of the LTL

property. This value is interpreted as a confidence interval based on number of experiments

performed, and incorporated into a coherence network representing the current knowledge
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base of domain experiments. Once the new data is added to the network, competing hy-

potheses are evaluated and the network is stabilized. The resulting network is displayed to

the user.

Figure 4.2: FASE System Sequence Diagram

4.2 FASE Language

In this section, we will explain the development and design of the FASE language.

Readers will be reminded that the FASE framework is an extension of the Goal-Hypothesis-

Experiment framework that addresses the ”hypothesis” section of the framework’s concerns.

The development of the FASE language started with the creation of a metamodel of the terms

needed to support property specification, acceptance definitions, condition declarations, and

model connection. In 4.2.1, the structure of the GHE framework is presented, and the parts

addressed by FASE are highlighted. In figure 4.3, the hypothesis testing-specific concepts

are in blue, and the experiment management concepts are in white, and are presented at

a higher level. For more information on the experiment management terms, see [17]. The

terms for hypothesis testing are discussed in detail in section 4.2.2.
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4.2.1 Structure

Figure 4.3: Goal-Hypothesis-Experiment Language Structure

• Model

The Model section has 3 elements: Mechanisms, Events, and Parameters. Mechanisms

represent the actions that are needed to produce a phenomena. A mechanism could be an

object, a method, or a section of code. Mechanistic hypotheses are in terms of mechanisms

and their outcomes. Events are declarations of methods and their system path. These are

incorporated in the model section to increase the readability of the hypothesis section, and

because events are a characteristic of the model. Finally, parameters are the variables that

are under scrutiny in the execution of the experiment.

• Goal

The Goal section has 5 elements: Context, Object of Study, View Point, Purpose, and Focus.

These elements represent the conceptual level of the experiment. They define the targets

of experimentation, which in turn aids in the experimentation and evaluation steps of the

process.
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• Hypothesis

In this section of the DSL, the hypotheses, evidence, and coherence model are defined. A

hypothesis can be either phenomenological (concerning inputs and expected outputs), or

mechanistic (concerning inner workings of the simulation). A mechanistic hypothesis can be

either a fine-grain, or higher-order hypothesis. A higher-order hypothesis is defined as an

instantiation of a number of mechanisms from the model section, with temporal properties

to describe the order the mechanisms should occur in, while a fine-grain hypothesis targets

a specific working, such as variables and/or events. Evidence represents hypotheses that a

user considers irrefutable. Hypotheses and evidence are connected in the coherence model.

• Experiment

In the experiment section, there is a design specification, which includes design type and

variables, and a performance measure specification. Design type determines how many view

points should be examined in the experiments. It can define either a full factorial design,

fractional factorial, or a custom design type. The variables element allows a user to define

which variables are dependent or independent. Finally, the performance measure element

defines the margin of error allowed for the experiment to be considered a success.

4.2.2 Syntax

The syntax of the FASE language was developed by first modeling the words needed and

their relationships in UML. Figure 4.4 represents the metamodel of the language elements.

In this section, we will explain what each part of the language is for, and present key parts

of the grammar in Xtext.
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Figure 4.4: FASE DSL Metamodel

A temporal hypothesis consists primarily of a specification pattern and conditions. A

specification pattern is a specific ordering of temporal operators with certain lexical links

(is, occurs) that are included for the sake of readability. An acceptance definition can be

added in the special case where a hypothesis is acting as evidence. An expression represents

a logical assertion (true or false) for a boolean variable, for an example, see the property

condition = true until flag >10.

• Xtext Grammar

For the sake of illustration, a section of the Xtext grammar is given below. The non-

terminals for each of the main sections (Model, Goal, Hypothesis, Experiment) are defined

by Experiment Ontology, and the Hypothesis section is displayed afterwards with its own set

of non-terminals.

ExperimentOntology :

ModelSection | Goals | Hypothes is | Experiment

;
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Hypothes is :

’ hypothes i s ’

’{ ’

( ’ mechanist ic ’ ’ hypothes i s ’ ’{ ’

( mechHypothesis += MechHypothesis )∗

’} ’ ) ?

( ’ evidence ’ ’{ ’

( ev idence s += Evidence )∗

’} ’ ) ?

( ’ coherence ’ ’ model ’ ’{ ’

( coherenceLinks += CoherenceLink )∗

’} ’ ) ?

’} ’

;

4.3 Reference Model

The hypothesis testing sections of the reference model span the model and hypothesis

modules of the subsuming GHE language. However, the bulk of the hypothesis testing

constructs reside in the hypothesis section. It is in this section that we define what the

hypothesis is and what evidence supports it. Hypotheses are defined in terms of mechanisms

which are found in the model section. The model section also contains support for hypothesis
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testing, because it is where variables and event paths are defined. The following listing gives

an example of the reference model text.

hypothes i s

{

mechan i s t i c hypothes i s

{

H3 : M1 occurs be f o r e M2

}

ev idence

{

E1 : inf lammation occurs a f t e r inflammatoryAgent >

inf lammatoryAgentThreshold

a c t i v a t i o n weight : 0 . 5

E2 : inf lammation i s absent a f t e r cytok ine <

cytok ineThresho ld

a c t i v a t i o n weight : 0 . 5

}

coherence model

{

EXPLAIN (H1) ( E1)

EXPLAIN (H1 H2) ( E1)

ANALOGOUS (H1) (H2)

DATA ( Experiment1 ) ( E1 E2)

}

}
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4.4 Transformations

Transformations are defined using Xtend, a template-based model generation extension

of Xtext. The Xtend templates are written as a driver for the hypothesis testing framework.

Grammar elements are extracted from the specification and substituted into the template.

4.5 Reference Implementation

The reference implementation is the Java code that should execute as a result of running

the DSL. It performs 5 specific functions: converting the hypothesis specification to an

LTL property, adding pointcuts to the simulation model, running the simulation model in

batches and recording data, constructing a verification model from that data, and verifying

the temporal properties are not invalidated by the verification model. The nature of the

reference implementation is such that the DSL text can be taken and transferred into API

calls by a text-to-text transformation to carry out the above functions. Some of the vital

classes are described below.

• HypothesisTesting.java

This class takes the hypothesis definition from the DSL and converts it to an LTL formula.

Hypotheses have to be in the form of a property specification pattern or else the DSL will

not validate. The process of conversion is aided by an XML file that contains the formula

version of each specification pattern. Thus, in order to convert a hypothesis into a temporal

logic formula, the process comes down to two steps: identifying the pattern and substituting

the variable text into the formula.

• Property.java

This class is a helper to HypothesisTesting.java. It identifies what specification property the

hypothesis belongs to and decomposes its parts, identifying conditions and events.
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Figure 4.5: Data Recording & FSA Metamodel

Figure 4.6: Hypothesis & Project Management Metamodel
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• AspectJGenerator.java

This class defines the pointcuts based on the events from the model section of the DSL. It

also generates the advice that is used to record the value of variables. Pointcuts are defined

by taking the variables from the hypothesis(-es) and identifying those accessor methods that

correspond with these variables. Whenever a variable value is changed, its accessor method

will be called and the pointcut will be activated and the advice will cause the variable to be

recorded into a table in a data file.

• SimulationModelInterface.java

This class executes the simulation model in batches in order to observe the experiment from

different possible outcomes. Due to random variables and probabilistic simulations, it is

important to get as much data as possible before construction of the verification model.

This is because we are making assertions based on inductive reasoning, and the error rate is

higher when there is less data.

• DataRecordManager.java

This class is used to structure the incoming data from the simulation into a matrix of abstract

data types. Once the simulation completes, it writes the matrix into a file for later use by

the Markov Chain builder.

• MarkovChain.java

This class constructs the verification model from the simulation data. It reads through

the data file that the Data Record Manager created and adds new states when they are

encountered. If a new state is satisfiable by an old state, a new transition is added instead,

or the transition probability is increased.

• Condition.java
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This class represents a condition range, such as A <B. It checks whether a set of values

can satisfy this condition definition. This simplifies the code in the Markov Chain class by

making it simple to identify if a condition range is exceeded by the data set (meaning a new

state or transition should exist).

• PrismInterface.java

This class generates the PRISM model from the Markov Chain and runs the model checker.

The PRISM model is generated by first writing the parameters to specify that the model is

a DTMC, and to start the model specification. After the initial code is written, the class

begins processing each state in the Markov Chain and creating a line of PRISM code for

each state and its transitions. When the process is complete the entire Markov Chain will

be modeled in the PRISM language and the model will be executed with the LTL formula

generated earlier by the Hypothesis Testing class.

4.6 Platform

Figure 4.7 is a simplified metamodel of the implementation of the ISHC simulation

used in the case study of Chapter 5. This system is an agent-based model representing an

In-Silico Hepatocyte Culture, written in the MASON simulation framework. The model is

primarily concerned with how certain cells react when introduced to chemical compounds. A

comprehensive review of the mechanisms of the model is outside the scope of this document;

however, a closer look at the metamodel can be found in Appendix B, and reviewing [36]

will give a detailed explanation of the mechanisms.
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Figure 4.7: ISHC Metamodel
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Chapter 5

Case Study

Here we will walk through each of the above steps with a concrete example to demon-

strate the process. Our case study will be of the In-Silico Hepatocyte Culture (ISHC)

simulation developed by Petersen et. al [36].

5.1 Hypothesis Space

In the hypothesis space, the model, experiment, and hypotheses are defined.

5.1.1 Simulation Model

In this study, we will present a section of the ISHC model that will relate to the hypothe-

ses about metabolic capacity and inflammation, which will be the focus of these experiments.

At a high level, Figure 5.1 shows the mechanism to control inflammation, and below are de-

tails on the mechanism’s workings.

INFLAMMATION HANDLER maps to cytokine production in response to an

inflammatory stimulus like LPS; it is unique to KUPFFER CELLS. It first counts

how many INFLAMMATORY STIMULI are in the CELL. An inflammatory

stimulus is any SOLUTE for which the Boolean property inflammatory is true. In

simulations here, only LPS is an INFLAMMATORY STIMULUS. If the number

of INFLAMMATORY STIMULI exceeds the value of inflammatoryThreshold, a

random draw from U[0,1) determines whether to produce a CYTOKINE. The

associated probability is determined by:
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Figure 5.1: Inflammation Handler Mechanism

Thus, exponentialFactor controls the degree to which increasing stimulus causes

CYTOKINE formation. Lastly, to prevent excess CYTOKINE formation in the

presence of significant INFLAMMATORY STIMULUS, CYTOKINE cannot be

created if there are already more than cytokineThreshold CYTOKINES in the

CELL. The above equation is an example of a biomimetic agent rule. We lack

sufficient detailed knowledge to describe exactly how a Kupffer cell in a particular

lobule location determines whether to produce cytokine. The equation is an in

silico placeholder for a yet to be specified fine-grain mechanism. A risk of relying

on such rules is committing inscription error, the logical fallacy of assuming the

conclusion and programming in (consciously or not) aspects of the result we ex-

pect to see (Smith, 1996). Cognizant of inscription error, we were careful not to

explicitly encode a sigmoidal dose-response into INFLAMMATION HANDLER.

We chose the above equation to mimic a Poisson distribution in which the prob-

ability of at least one binding event occurring within a simulation cycle depends

on the extent to which the number of inflammatory stimuli exceeds a threshold
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value. The ability to generate a sigmoidal dose-response curve arises from a com-

plex interplay among multiple analog mechanisms, facilitated by flexibility in the

parameters inflammatoryThreshold and exponentialFactor.[36]

The code for this mechanism is the handleInflammation() function of the KupfferCell class:

Listing 5.1: Inflammation Handler

//Count the number o f s t i m u l i and Cytok ines in the c e l l

int numInflammatoryStimuli = 0 ;

int numCytokines = 0 ;

for ( Object o : s o l u t e s )

{

So lute s = ( So lute ) o ;

i f ( s . hasProperty ( ” inf lammatory ” ) &&

( ( Boolean ) s . getProperty ( ” inf lammatory ” ) ) )

{

numInflammatoryStimuli++;

}

i f ( s . type . equa l s ( ” Cytokine ” ) )

{

numCytokines++;

}

}

// I f pas t Cytokine t h r e s h o l d , s top c r e a t i n g Cytok ines

i f ( numCytokines >= parent . cytok ineThresho ld )

{

return ;

}
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// I f pas t inf lammation t h r e s h o l d , t h e r e ’ s a chance to

produce Cytokine

i f ( numInflammatoryStimuli >=

parent . inf lammatoryStimulusThreshold )

{

double p r o b a b i l i t y = 1 .0 −

Math . exp(−1∗( numInflammatoryStimuli −

parent . inf lammatoryStimulusThreshold )

/ parent . exponent ia lFactor ) ;

double draw = rng . nextDouble ( ) ;

i f ( draw <= p r o b a b i l i t y )

addCytokine ( ) ;

}

5.1.2 Coherence Model

Assume we are given the following coherence model from past observations (L3 indicates

inhibition; L1 and L2 indicate coherence):

Figure 5.2: Initial Coherence Model

hypothes i s 1 (H1) = inflammatoryAgent < in f lammatorythresho ld
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occurs be f o r e INCREASE in cytok ine

hypothes i s 2 (H2) = inflammatoryAgent < in f lammatorythresho ld

occurs a f t e r INCREASE in cytok ine

ev idence 1 (E1) = inflammatoryAgent DECREASES

a f t e r cytok ine > cy tok ine th r e sho ld

After the experimentation is complete, the coherence model will be reevaluated.

5.1.3 Hypothesis

The goal of modeling a hepatocyte culture is to discover how the liver will respond to

various drugs; therefore, we should be able to formulate hypotheses in terms of drugs and

ISHC mechanisms. An example hypothesis may be as follows: In response to lipopolysac-

charide, Kupffer cells down-regulate hepatic P450 levels via inflammatory cytokines, thus

leading to a reduction in metabolic capacity. At this level of abstraction, the hypothesis is

easily readable. With the help of a domain specific language and a domain ontology, the

specification in code is shockingly similar to the hypothesis above, as we will see in section

5.6.

5.1.4 Domain Ontology

By defining a domain ontology, the DSL can target domain-specific experiments tailored

to the variables of a specific simulation model. The selection of variables is manually specified

at this point in development, but there is potential for an automatic variable recognition

sweep of the source code, which would take less time and effort than manual specification.

This xml file will be referenced when validating the DSL text to ensure that terms used in

the DSL correspond with terms in the model.

Listing 5.2: Domain Ontology

<?xml version=” 1 .0 ” encoding=” utf−8”?>
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<model>

<events>

<event id=” inf lammation ”

path=” void i s h c . model . Kupf f e rCe l l . handleInf lammation ( ) ”/>

</ events>

<v a r i a b l e s>

<v a r i a b l e id=” inflammatoryAgent ”

path=” void i s h c . model . Kupf f e rCe l l . handleInf lammation ( )

. numInflammatoryStimuli ”/>

<v a r i a b l e id=” in f lammatorythresho ld ”

path=” i s h c . model . Kup f f e rCe l l . parent

. inf lammatoryStimulusThreshold ”/>

<v a r i a b l e id=” noOfCytokines ”

path=” void i s h c . model . Kupf f e rCe l l . handleInf lammation ( )

. numCytokines”/>

<v a r i a b l e id=” cy tok in e th r e sho ld ”

path=” i s h c . model . Kup f f e rCe l l . parent . cytok ineThresho ld ”>

<v a r i a b l e id=” Cytokines ”

path=” i s h c . model . Kup f f e rCe l l . parent . s o l u t e s ”/>

</ v a r i a b l e s>

</model>

5.1.5 Experiment Design

Based on the model’s parameters and their levels, hypotheses, and the goal of the

experiment, a design is created that is used in subsequent steps of the experiment life-cycle.
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The experiment design is defined by dependent variables, control variables, independent

variables and their levels, constraints, and values, which, in turn, are mappings of the vari-

ables provided by the user. Based on this design, one can define what is known as a design

matrix, which specifies the actual experimental runs. I.e., the combination of factor levels.

The design matrix, and its effects on the simulation may be found in section 5.9. Following

is the DSL specification for the ISHC experiment design.

Listing 5.3: Experiment Design

experiment Experiment1

{

des ign

{

designType FULLFACTORIAL

v a r i a b l e s

{

independent v a r i a b l e s

{

LPS are at l e v e l s : LOW where LOW i s in the

range 1 .0 to 1 .0

TOL are at l e v e l s : LOW where LOW i s in the

range 1 .0 to 1 .0

DZ are at l e v e l s : LOW where LOW i s in the

range 1 .0 to 1 .0

}

dependent v a r i a b l e s

{

cy tok ine s : type SIMPLE

}
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}

}

}

5.1.6 Temporal Specification Properties

Following are the properties we would like to check against the model:

inflammatoryAgent > in f lammatorythresho ld occurs be f o r e

cytok ine < 10

These properties will affect which variables are recorded during the simulation run. Only

the information needed to verify these properties will be recorded. I.e., the inflammation

and degredation events, and any changes in the inflammatoryAgent, inflammatorythreshold,

cytokine, or cytokineThreshold variables.

5.1.7 Hypothesis Definitions

Mechanistic hypotheses are defined as an instantiation of mechanisms.

H3 : M1 occurs before M2

Mechanisms M1 and M2 are defined in the model section of the DSL:

mechanism M1 = inflammatoryAgent + Kupf f e rCe l l

[ inflammatoryAgent > in f lammatorythresho ld]−> Cytokines

mechanism M2 = inflammatoryAgent + Kupf f e rCe l l

[ noOfCytokines < cy tok ine th r e sho ld ] −> Cytokines

These mechanisms together represent the hypothesis we mentioned in section 5.2: In response

to lipopolysaccharide, Kupffer cells down-regulate hepatic P450 levels via inflammatory cy-

tokines, thus leading to a reduction in metabolic capacity.
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5.2 Experiment Space

After submitting the changes in the DSL by saving the source document, control moves

to the experiment space to transform the source to generate application code.

5.2.1 Code Generation

The code generation step involves selecting parts of sentences from the DSL specifica-

tion and substituting them into a template for the driver of the application program. The

temporal property from section 5.6 is substituted as an input to a method that converts it

to an LTL formula:

Property p2 = new Property (” inflammatoryAgent >

in f lammatorythresho ld occurs be f o r e cytok ine < 10” ) ;

Hypothes i sTest ing e1 = new Hypothes i sTest ing (”E1” , p1 ) ;

S t r ing LTLe1 = e1 . toLTL ( ) ;

• Temporal Properties

The LTL formula generated by the previous step is as follows:

G ! ( inflammatoryAgent > in f lammatorythresho ld ) W cytok ine > 10

This property is now in the form of a temporal logic formula as a string. It is submitted

to the model checker in the last step, section 5.12.

• AspectJ

The generated AspectJ code takes the path from the model section and the conditions from

the HypothesisTesting objects to develop its pointcuts:

S t r ing [ ] i npu tL i s t = e1 . getCond i t ions ( ) ;

AspectJGenerator f i l eMgr = new AspectJGenerator (” i s h c . IshcBatch ” ) ;

f i l eMgr . generate (” answers ” , ”Answer1 ” , i npu tL i s t ) ;
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• Simulation Executor

This generated code then executes the simulation a number of times equal to that specified

by the dsl to gather data.

S t r ing modelPath = ”C: / Mason/models /ISHC ” ;

S t r ing modelName = ” ucberke l ey . s r c . sim . i s h c . ISHCModel ” ;

S t r ing parametersPath =

”C: / Mason/models / I shc / batch / batch params . xml ” ;

S imulat ionMode l Inte r face i s h c = new

Simulat ionMode l Inte r face ( modelPath , modelName , parametersPath ) ;

i s h c . runSimulat ion ( 1 ) ;

5.2.2 Simulation Data

By executing the simulation, we accumulate data on the variables of interest from the

hypotheses. Each time there is a change in one of the variables, its new value is recorded.

Table 5.1 is a reduced table of values for the purposes of illustration.

inflammatoryAgent inflammatoryThreshold cytokine

int int int

0 0 1

1 0 1

0 0 2

0 1 2

0 0 2

Table 5.1: Simulation Data
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5.2.3 Convert to DTMC

Figure 5.3 shows the result of analyzing the above data set and creating a Discrete-Time

Markov Chain.

Figure 5.3: DTMC Representation of Simulation Data

5.2.4 Model Checking

With the Markov Chain constructed, the PRISM model is able to be produced by

transforming each state into a statement in the PRISM language. As an example, a generated

statement from state 0,0,1 in the chain of Figure 5.3 looks like this:

[ ] inflammatoryAgent = 1 & inflammatoryAgentThreshold = 0

& cytok ine = 1 −> 1 .0 : ( inflammatoryAgent ’=1)&

( inflammatoryAgentThreshold ’=0)&( cytokine ’=1) ;

This syntax shows the current state before the − > symbol, and the probability (1.0) that

the values change to the new (prime) values after the − > symbol.

Upon running the model checker with the LTL formula from the previous step, we

receive as output that the model is invalid with probability 1.0, and a state trace from 0,0,1

to 1,0,1.
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5.2.5 Results

Upon receiving the result from the previous step, the coherence model from section 5.2

needs to be updated. The new model will include 3 hypotheses and the same evidence:

hypothes i s 1 (H1) = inflammatoryAgent < in f lammatorythresho ld

occurs be f o r e INCREASE in cytok ine

hypothes i s 2 (H2) = inflammatoryAgent < in f lammatorythresho ld

occurs a f t e r INCREASE in cytok ine

hypothes i s 3 (H3) = inflammatoryAgent > in f lammatorythresho ld

occurs be f o r e cytok ine < 10

ev idence 1 (E1) = inflammatoryAgent DECREASES

a f t e r cytok ine > cy tok ine th r e sho ld

Since H3 was run with only one experiment execution, while H1 and H2 were run multiple

times, its default activation weight is less. The resulting coherence model is as follows:

Figure 5.4: Final Coherence Model

This representation allows a user to easily see that, given 3 competing hypotheses, H1

and H2 have the strongest support.
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Chapter 6

Evaluation

In this chapter, it will be shown how the model-driven methodology presented in chapter

three was applied in the creation of FASE. First, we will discuss the process of developing

a domain specific language for hypothesis testing in terms of conceptualization. In this

section, it is shown how development of a metamodel of the language is an effective method

of identification of relevant concepts to the language. The metamodel is then examined

in the next subsection to reveal insights of value for the development of the language’s

grammar. The grammar is discussed in the next subsection as a Backus-Naur Form context-

free grammar. Next, we address how the DSL for hypothesis testing is implemented. A

reference model and reference implementation for the DSL is characterized, and finally,

we take a look at the model verification aspects that are central to the hypothesis testing

framework. This section includes how a verification model is constructed, as well as how the

model checking process is initiated, and what is done with the verification results.

6.1 Language Conceptualization

The fundamental premise that led to the development of the FASE language was to

bring the power and efficacy of formal verification to domain experts who are not trained

in verification methodology, and to decrease the time required to perform verification. The

end-user of the system is a scientist or simulation developer working with both in-vivo and

in-silico experiments. He/she should be aware of scientific concepts like hypotheses, temporal

properties, factors, and mechanisms. By providing the ability to interact with these concepts

on a domain-specific platform, the scientist is given more time to focus on innovation, rather
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than being burdened by carrying out massive amounts experiments and performing analysis

by hand.

In order to facilitate this goal, the language needed to be easily readable and naturally

writable. The availability of model checking software allows for formal verification to happen

autonomously with the aid of a verification model; however, model checking requires inti-

mate understanding of the fundamentals of temporal logic, which is a difficult to understand

and distinctly unnaturally writable requirement. The present solution to this predicament

is to implement hypotheses as an abstraction of temporal logic, known as property speci-

fication patterns for finite-state verification (see section 2.7). These patterns represent the

well-understood, but imprecise, conceptions of system behavior and provide translations into

precise statements in common formal specification languages. In other words, the patterns

offer a text-to-text transformation from high-level language text to temporal pattern formu-

lae; which is exactly the goal of the language. As the project developed further, the language

was expanded to include support for mechanism definitions and model declarations. This

meant that the link between simulation software and the language had to be more tightly

coupled. In this regard, the process initially requires scanning the simulation model to iden-

tify variables, then writing code in the DSL using variables from the simulation to phrase

hypotheses in terms of those variables.

6.1.1 Metamodel

The metamodel for the hypothesis testing language consists of the components necessary

to define hypotheses in terms of logical operators and conditions, the latter of which defined

as either an event or a logic statement. A logic statement is a statement that can be evaluated

to true or false at a given point in program execution. For example, x is less than 10, may

be an condition which indicates a change in state. Events, on the other hand, may include

the calling of a function, and do not have a value associated with them other than the fact

that they occurred. The metamodel for the language can be found in Figure 6.1.
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Figure 6.1: FASE Language Metamodel

The above metamodel was created by identifying keywords needed to produce the speci-

fication pattern requirements, and to provide support for defining conditions and a definition

of acceptance for the hypothesis tests. In some cases the metamodel has overlap, where the

same pattern can be written in multiple ways. For example, one of the aforementioned pat-

terns, the precedence pattern, can be identified by ”A precedes B,” or ”A comes before B.”

Here, ”precedes” and ”comes before” are to be keywords used in the language grammar. The

question becomes, should both options be included to make the language more intuitive, or

use only one option to avoid confusion over different syntax? Given that the goal of the

language is to be user-friendly, it seems to be a harmless inclusion to support both natural

sounding alternatives.

6.1.2 Grammar

To formally define the language, the metamodel was used to define a grammar for the

DSL in BNF (introduced in chapter 3.2). The process of grammar definition consisted of
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developing basic sentences using the keywords in the metamodel, and generalizing the sample

sentences into BNF. The process was complete when each specification pattern was able to

be produced by the grammar. To consider the language a success, the following concerns

still needed to be addressed:

1. Can LTL formulae easily be written and read?

2. Can formulae be in terms of mechanistic hypotheses from the experiment specification?

3. Can the DSL connect to the simulation model programmatically?

4. Can there be allowances for a certain degree of error in the model?

To fully address each of these concerns, the grammar required inclusion of additional features

that aren’t represented in the metamodel. To address (1), the definition of the conditions

takes place in the model section of the experiment specification so that the defined alias

can be used in the hypothesis declaration. To address (2), hypotheses are written as an

instantiation of a mechanism. The next concern (3) is addressed by including a declaration

of the model path in the model section of the DSL. And finally, (4) is addressed by associating

the acceptance definition with a number of batches to be run before building a verification

model. In its current state, the grammar is ambiguous by definition, meaning there can be

more than one leftmost derivation of the sentence ””. This implies that invalid sentences

could potentially be produced. This problem could be mitigated by adding limits to the

number of times a non-terminal can be repeated. However, since the BNF of the grammar

is used only to evaluate the usability of the language, its ambiguity can be addressed in the

next step (language implementation). Once the grammar was defined, the sentences that

could be produced by it could be enumerated. By means of validation, we can check if all of

the requirements are met in the producible sentences.

After rigorous evaluation, the grammar was formally completed and presented for the

next step, implementation. The complete listing of the BNF grammar can be found in

Appendix A.
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6.2 Language Implementation

In this section, the steps taken to change the DSL from a collection of words to a

functioning language will be evaluated. First we will examine how the language was converted

from BNF to Xtext[37], a language engineering Java extension. Next, we will evaluate the

reference model and analyze its usability. Afterwards, we will examine how the reference

model and the reference implementation use templates and transformations to close the loop

and enable the language to automatically test the defined hypotheses after the source code

is saved.

6.2.1 Xtext

After the DSL was defined as a BNF grammar, it was implemented in the language

engineering framework, Xtext. Readers are reminded that FASE is implemented as a module

to an experimentation language: the GHE framework. Before incorporation of FASE, the

GHE framework was lacking any support for hypothesis testing, and mainly served as an

experiment specification language. The FASE module was incorporated into the language by

adding a new non-terminal, representing a hypothesis section into the language entry point.

The implementation of the grammar from BNF to Xtext was straightforward because they

operate on the same terminal/non-terminal philosophy.

As a simple example, the following implementation of the temporal pattern grammar

in xtext, and the BNF version afterwards, illustrates the similarities. Here, there is just an

introduction of variables such as l2, exp, op, etc. and inclusion of repeatability (* and ?).

TemporalPattern :

Condit ion ( ( l 2 += Links )? )∗ ( ( exp += Express ion )? )∗

( ( op1 += Temporal | op2 += Log i ca l )? )∗ ( l 3 = Links )?

;

<TemporalPattern> : := <Condition> <Links> <Express ion>
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<Operator> <Links>

The full listing of the Xtext grammar can be found on the project Github repository

[38].

6.2.2 Reference Model

Following the initial implementation of the grammar in Xtext, the reference model

was able to be developed using the Eclipse editor provided by the Xtext Eclipse plugin.

The reference model includes syntax highlighting for the keywords from the grammar, and

is structured properly into the sections of model, goal, hypothesis, and experiment. If any

syntax is violated, the DSL will not generate new code. This is an important quality, because

the DSL is the mechanism that ensures that a temporal property adheres to a specification

pattern. If this quality did not hold, the reference implementation would not be able to

interpret the property correctly.

6.2.3 Reference Implementation

The reference implementation provides the classes necessary to carry out all of the

functions of the FASE language. The implementation is structured such that all the necessary

translations from DSL to code are as simple as generating an API call for each statement in

the DSL specification.

6.3 Model Verification

The focus of the FASE framework is formal verification of simulation models. The

groundwork leading up to this goal has been evaluated thus far. Now, the actual process of

model checking needs to be evaluated.
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6.3.1 Verification Model Construction

The first step in constructing the verification model is the development of a Discrete

Time Markov Chain (DTMC). The DTMC is built by taking each line of data from each

experiment batch and evaluating whether it is a new state or a previously visited state.

Each time a state is visited, its probability of being chosen in a branch increases. If a state

has only one transition, that transition will have a probability of 1.0. Once the DTMC is

constructed, the task remains of converting it into a model that is compatible with the model

checker. In this case, we had to construct a model in the PRISM language by converting

each state in the Markov chain into a state in the language. We also take the transitions

and the ”to” states and define the next states in the language. Thus completing the model.

6.3.2 Model Checking

By this point, the model checker is prepared to construct the verification model and

check it against the temporal logic formula that was created by the reference implementa-

tion. PRISM does this by building a Rabin automata from the LTL property and evaluating

whether the DTMC’s Bottom Strongly Connected Components(BSCCs) are reachable fol-

lowing the rules of the Rabin automata.

6.3.3 Results

The results of the model checking are formatted as the percentage of times the model

did not invalidate the temporal properties. If a property was invalidated, the model checker

tells which property was invalidated and at which state. The final step in this process is to

accept or update the current coherence network based on the output of the model checker.

In the event that an explanatory evidence is falsified, the simulation model will be asserted

to be in error. At this point we can stop the process and make alterations to the models

source code manually. On the other hand, if the evidence is confirmed to be sound in the
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simulation model, we can officially make a positive connection between the evidence and

hypothesis.
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Chapter 7

Conclusions

The FASE framework provides users with an approach to experiment analysis that is

faster than manual methods, and increases the traceability that is needed to ensure exper-

imental validity. The implication of this contribution is that a greater number of parallel

experiments can be tested and validated in-silico than those that could be done by hand

in the same amount of time. This is made possible by the use of model checking, a formal

method of model verification, and Model-Driven software development practices, such as

code generation and domain specific languages.

7.1 Summary

The inspiration for the FASE framework was sparked by the perception of opportu-

nities to accelerate the scientific method with software models. The essential focus of this

study has been to apply formal methods of software verification to simulation models in such

a way to produce elements of scientific discovery. Adhering to the idioms of Model-Driven

software development, specifically the process of transforming metamodel to grammar to im-

plementation, allows this work to be easily reproduced and extended. The domain-specific

language was shown to be an effective means to specify hypotheses in temporal logic-like

syntax. Through the case study in Chapter 4, we found that the results of analyzing hy-

potheses with model checking are consistent with the expectation that hypotheses can be

tested in-silico based on observed behavior. The use of a coherence network to explain the

domain understanding provides a useful explanatory mechanism for evaluation of competing

hypotheses.
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7.2 Findings

This research has shown that automated formal software analysis can be a useful tool

to aid in the process of scientific experimentation. It was found that a quantitative metric

of hypothesis validity and explanatory mechanisms can be provided to guide the process

of experimentation in a positive direction. These findings insist that further avenues of

automation can continue to increase the speed of scientific discovery.

The proposed framework does, however, have limitations in regards to aspect-oriented

data recording and specification patterns. The strength and appeal of the aspect-oriented

approach is the straightforward detection of event occurrences, such as method calls, but it

struggles to obtain consistent results when attempting to record local variable changes. It

currently records variables by calling accessor methods at intervals defined in the DSL, but

the spacing of these intervals may cause the system to miss important changes in state. To

address this issue, a more sophisticated model analysis engine may be needed to identify

insertion points for pointcuts around critical variable changes. In regards to specification

patterns, the framework is limited to only the patterns that have been discovered. There is

currently no way to define an LTL property in the DSL if the property cannot be expressed

as a specification pattern. The implication of this limitation is speculatively minimal, as the

purpose of specification patterns is to apply expert knowledge in this tricky domain, and the

patterns are generally applicable.

7.3 Future Research

7.3.1 Point of Failure Identification

In the current system, when a temporal property is violated, the model checker returns

with a counterexample and a sequence of transitions that lead to that counterexample. With

additional work, this system could trace its steps even further and report the mechanism
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that caused the hypothesis to be invalidated. This would be a useful tool when attempting

to refine the model if wet-lab results are conflicting with in-silico experiment results.

7.3.2 Automated Model Evolution

In relation to the prior topic, if the mechanism that is in error is able to be identified,

it may be able to be corrected autonomously by making minor alterations to the simulation

source code. This goal would require a more elaborate characterization of mechanisms so

that they could be analyzed and revised based on irregularities with the expected properties.

7.3.3 Bayesian/Coherence Synergy

A Bayesian network is a probabilistic graphical model that represents a set of random

variables and their conditional dependencies via a directed acyclic graph. Each node in the

graph represents a random variable, each of which has a set of possible states it can be in

(or values it can take). In addition, attached to each node is a probability distribution. The

arcs indicate a dependency between two nodes. If there is a dependency, then the probability

distribution of the child node is a conditional probability that depends on the probability of

the parent node.

While the coherence network can function as a long-term memory repository of hypothe-

ses and their relationships, Bayesian networks can be used as a short-term memory interface

with the experiments performed. Bayesian networks can perform a variety of tasks, but here

we will only discuss potential applications that demonstrate their use as interfaces between

coherence networks and experiments.

An important component of coherence networks are the evidence nodes. Evidence nodes,

in an experimental context, represent observations obtained from an experiment. Often,

these evidence nodes are determined by the experimenter as the result of interpreting the

experimental data. We propose using a Bayesian network to infer these statements from the

data.
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7.3.4 Coherence Network Analyst Agent

As part of a longer-term project, we envision an intelligent agent designed to analyze

the dependencies of the coherence network and propose new experiments to maximize in-

formation gain. This agent would be able to perform optimizations between the experiment

and hypothesis space in order to predict the most valuable parametrization of experiments

and hypotheses that would lead to faster discovery.
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Appendix A

BNF Grammar

<Model> : := ExperimentOntology

<ExperimentOntology> : := ModelSection | Goals | Hypothes is |

Experiment

<ModelSection> : := model <id> {<Mechanism> <EventDescr iptor>

<Factor>}

<Mechanism> : := mechanism <id> = <Reaction> <GuardCondition> −>

<Reaction>

<Reaction> : := <id> + <id>

<GuardCondition> : := [ <id> <LinkOperator> <id> ]

<EventDescr iptor> : := event <id> = <STRING>

<Factor> : := parameter <id> = <VariableType> <id> with va lue s

{<Values>} p r o p e r t i e s {<prope r t i e s >}

<Goals> : := goa l { ob j e c t o f study : <STRING> purpose :

<STRING> f o cu s : <STRING> view point : <STRING> context :

<STRING>}

<VariableType> : := QUALITATIVE | QUANTITATIVE | CONTINUOUS |

DISCRETE | BINARY | NONBINARY

<Values> : := <id> <XExpression> <rangeValue> <f ac torLeve lVa lue>

<prope r t i e s> : := <id> : <Values>

<rangeValue> : := INT <dot> <OptionalInt>

<f ac torLeve lVa lue> : := <rangeValue> | , <rangeValue>

<dot> : := ” .” | ””
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<OptionalInt> : := INT | ””

<Hypotheses> : := hypotheses { mechan i s t i c

hypotheses{<MechHypotheses>} ev idence{<Evidence>} coherence

model{<CoherenceLink>} r e l a t i o n a l hypotheses

{<Relat ionalQuery>}}

<CoherenceLink> : := <Coherence> (< id>)(< id>)

<MechHypotheses> : := <id> : <TemporalPattern> <id>

<Evidence> : := <id> : <TemporalPattern> a c t i v a t i o n weight :

<rangeValue>

<TemporalPattern> : := <Sample> <Links> <Express ion> <Operator>

<Links>

<Sample> : := <Condition> | <Event>

<Condition> : := <ComplexID> <LinkOperators> <Express ion>

<rangeValue> <Condition>

<Event> : := <Dispersed> | <Simultaneous>

<Dispersed> : := <id> <Logica l> <id> | <id>

<Operator> : := <Temporal> | <Logica l>

<Simultaneous> : := [< id> <Logica l> <id>] | [< id>]

<LinkOperators> : := ’+ ’ | ’ − ’ | ’∗ ’ | ’ / ’ | ’% ’ | ’ = ’ | ’ ==

’ | ’&& ’ | ’ | | ’ | ’ < ’ | ’ <= ’ | ’ > ’ | ’ >= ’ | ’ ! ’ | ’ != ’

<Express ion> : := true | f a l s e

<Links> : := i s | occurs | to | in

<Temporal> : := precedes | between | even tua l l y | always |

be f o r e | a f t e r | u n t i l | never | l e ad s | absent | e x i s t s

<Logica l> : := and | or | not

<Coherence> : := EXPLAIN | ANALOGOUS | DATA | CONTRADICT

<Relat ionalQuery> : := <Query1> | <Query2> | <Query3> | <Query4>
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| <Query5>

<Query1> : := i f <id> <id> i s <rangeValue> <Action> then <id> i s

<Response>

<Action> : := added | removed | in the range <rangeValue> to

<rangeValue>

<Response> : := <rangeValue> | in the range <rangeValue> to

<rangeValue>

<Query2> : := compare <Operand> and <Operand>

<Operand> : := <Function> | <id>

<Function> : := MIN | MAX | EXP | INVERSE | SIN | COS | TAN |

FACTORIAL | LOG

<Query3> : := i f <QueryCondition> then <QueryResponse> where

<Levels> f o r <id> <id> <id> i s in the range <rangeValue> to

<rangeValue>

<QueryCondition : := <id> <id> i s <Level>

<Level> : := at l e v e l <Levels> <rangeValue> <OptionalAnd>

<Level> | ””

<QueryResponse> : := <id> i s <Level>

<Changes> : := CHANGED | INCREASED | DECREASED | CONSTANT

<Levels> : := HIGH | MEDIUM | LOW

<Experiment> : := experiment <id> { des ign <Design> performance

measure i s <PerformanceMeasure}

<Design> : := {designType <DesignType> c o n s t r a i n t s <XExpression>

<I t e r a t i o n> v a r i a b l e s <Var iab les>}

<DesignType> : := FULLFACTORIAL | FRACTIONALFACTORIAL | OTHERS |

””

<Var iab les> : := {<IndependentVar iables> <Contro lVar iab les>
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<DependentVariables>}

<IndependentVar iables> : := independent v a r i a b l e s

{<FactorLeve ls>}

<Contro lVar iab les> : := c o n t r o l v a r i a b l e s {<id> : type

<VariableType> with va lue s {<Values>}}

<DependentVariables> : := dependent v a r i a b l e s {<Response>}

<FactorLeve ls> : := <id> are at l e v e s l : <rangeValue> <Levels>

where <Levels> i s in the range <rangeValue> to <rangeValue>

<Response> : := <id> : type <ResponseType>

<ResponseType : := SIMPLE | COMPOSITE

<I t e r a t i o n> : := number o f i t e r a t i o n s : INT

<PerformanceMeasure> : := {<id> = <rangeValue> +− <rangeValue>}

<OptionalAnd> : := and | ””

<OptionalTo> : := to | ””

<STRING> : := ” . . . ”

67



Appendix B

ISHC Metamodel
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