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Abstract

A G-Design of order n is a decomposition of the edges of Kn (the complete graph on

n vertices) into subgraphs of Kn isomorphic to G, called blocks, in which each edge of Kn

appears in exactly one block. If B1 and B2 are arbitrary block sets corresponding to two

G-designs of order n, one might ask under what circumstances can a G-design B′2 of order

n be found such that B2 and B′2 are isomorphic and B1 and B′2 are disjoint. Luc Teirlinck

found that if B1 and B2 are K3-designs of order n, then such a design B′2 can be found for all

n ≥ 7. In the first part of this dissertation, a similar result is shown for all graphs G with

the exception of four small graphs (i.e. some graphs with less than 5 vertices and 3 edges).

That is, if B1 and B2 is a pair of arbitrary G-designs of order n, then there is a G-design

B′2 such that B2 and B′2 are isomorphic and B1 and B′2 are disjoint provided n is sufficiently

large.

The remainder of the dissertation focuses on the intersection problem for some selected

graphs G. The intersection problem is concerned with determining the positive integer pairs

n,k for which there are G-designs B1 and B2 of order n such that |B1∩B2| = k. In a landmark

result, C.C. Lindner and A. Rosa solved the intersection problem for Steiner Triple Systems

(which are K3-designs). Since then the intersection problem has been solved for various

combinatorial designs among which are cycle systems where the cycles have length less than

10, star designs, and various other simple connected graphs with no more than 6 edges. The

results presented here solve the intersection problem for 7 bipartite graphs each of which has

exactly 7 vertices and 7 edges.
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Chapter 1

Preliminaries

1.1 G-Designs

Let us begin by establishing some notation that will be in effect for the remainder of

discussion unless stated otherwise. For a graph G with vertex set V (G) and edge set E(G),

vG = |V (G)| and eG = |E(G)|.

Definition 1.1. For a graph G with vG = n, the automorphism group of G, denoted

Aut(G), is the subgroup of Sn, the group of permutations on V (G), such that for each edge

{u, v} ∈ E(G) and σ ∈ Aut(G), {σ(u), σ(v)} ∈ E(G). Let aG = |Aut(G)|.

For everything else, the notation and definitions of [8] will be used unless specifically

stated otherwise. Moreover, all graphs are simple, finite, and nontrivial, that is, they have

at least one edge, unless stated otherwise, and n will refer to a positive integer unless stated

otherwise.

Definition 1.2. If G and H are graphs, then a G-design on H is an ordered pair (V,B) such

that V is the vertex set of H and B is a collection of subgraphs of H, each isomorphic to G,

called blocks, where each edge in H is in exactly one block of B. In practice, a G-design on

H is named by the set of blocks B; that is, B is referred to as a G-design on H.

If B is a G-design on Kn, then B is called a G-design of order n. For future reference,

the vertex set of the complete graph on n vertices is V (Kn) = {1, 2, . . . , n} unless stated

otherwise.
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Observation. Some obvious necessary conditions for the existence of a nontrivial G-design

B on H are

1. vG ≤ vH

2. eG|eH since the number of blocks |B| = eH
eG

3. dH ≡ 0 (mod dG) where dG is the greatest common divisor of the degrees in G and dH

is the greatest common divisor of the degrees in H.

Definition 1.3. Letting V = {1, . . . , n} be the vertex set for a graph H, two G-designs B1

and B2 on H are isomorphic if B1 = σB2 for some permutation σ ∈ Aut(H) with

σB2 = {σb | b ∈ B2} where σb is the graph obtained by applying sigma to the vertices in b.

If two G-designs B1 and B2 on H are isomorphic, we denote it

B1
∼= B2.

Definition 1.4. Two G-designs B1 and B2 on a graph H are disjoint if B1 ∩ B2 = ∅.

Example 1.1. Figure 1.1 shows disjoint K3-designs of order 9.

Figure 1.1: Disjoint K3-designs of Order 9
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Definition 1.5. The spectrum of G, denoted Spec(G), is the set of all n for which there is

a G-design of order n. Note that 1 ∈ Spec(G) vacuously for any graph G.
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Remark. When discussing G-designs, we only consider the positive integers n ∈ Spec(G)

unless stated otherwise.

The following gives some possible conditions on the graph G:

• T1 – For n ∈ Spec(G), there is a pair B1, B2 of G- designs of order n with B1∩B2 = ∅.

• T2 – Given a G-design B1 of order n, there is a G-design B2 of order n such that

B1 ∩ B2 = ∅.

• T3 – Given G-designs B1 and B2 of order n, there is a G- design B′2, isomorphic to B2,

such that B1 ∩ B′2 = ∅.

For the sake of simplicity, if the statement about G in Ti (i ∈ {1, 2, 3}) holds for a

particular integer n, we say G is Ti for order n. Notice that the conditions ascend in order

of strength; that is,

G is T3 for order n ⇒ G is T2 for order n ⇒ G is T1 for order n.

Condition T3 is a generalization to G-designs of a problem posed in [11] concerning Steiner

triple systems. It was shown in [17] that K3 is T3 for all orders n ≥ 7. Incidentally, the

Ti naming scheme for the conditions on a graph G is for Luc Teirlinck whose work on K3

inspired further investigation into other graphs. Consequently, graphs that satisfy condition

T3 for all sufficiently large n may also be referred to as Teirlinck graphs. Interestingly, each

graph G (with the exception of a few small graphs) is T3 for all sufficiently large n. In order

to show this, we need some results from group theory.

1.2 Group Actions, Orbits, and Stabilizers

Much of the following discussion about group actions follows the development and proof

techniques of [2] except notation has been changed and some additional results are included.
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Although many of the definitions and theorems apply when the group or set is infinite, we

assume that all groups and sets are finite unless explicitly stated otherwise.

Definition 1.6. Let (Γ, •) be a group and let X be a set. Γ acts on X if for each g ∈ Γ and

each x ∈ X, there is defined an element g .x ∈ X such that:

i) For each x ∈ X, ιΓ .x = x, where ιΓ is the identity element of Γ.

ii) For all g1, g2 ∈ Γ and each x ∈ X, g1 .(g2 .x) = (g1 • g2) .x.

If a group acts on a set, then it is called a group action.

Remark. When it is clear that two elements of a group Γ are being combined under the

group’s binary operation, it is customary to omit the symbol for the binary operation. This

practice will be adhered to from now on.

Example 1.2. Let X be the set of all subgraphs of K4 isomorphic to K3, i.e.

X={ }, , ,1

2

3 1

2

4 1

3

4 2

3

4

The permutation group S4 acts on X by applying σ ∈ S4 as follows:

σ .(ab c)=
σ(a)

σ(b)

σ(c)
for 1 ≤ a < b < c ≤ 4.

Remark. If G is a graph such that vG ≤ n and X is the set of all subgraphs of Kn isomorphic

to G, then the permutation group Sn acts on X by applying the permutations in Sn to the

vertices of Kn similarly to Example 1.2.

Observation. Let Γ be a group that acts on a set X. Define the relation ∼Γ on X by

x ∼Γ y if and only if there is some g ∈ Γ such that g .x = y

for all x, y ∈ X.
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Using the properties of groups and group actions, it is easily shown that ∼Γ is an

equivalence relation on X. Thus ∼Γ partitions the elements of X into disjoint equivalence

classes.

Definition 1.7. Let Γ be a group that acts on a set X. The equivalence classes of the

relation ∼Γ are called orbits, and for each x ∈ X, Orb(x) is the orbit to which x belongs.

Alternatively,

Orb(x) = {g .x | g ∈ Γ}.

Definition 1.8. Let Γ be a group that acts on a set X. The group action of Γ on X is

called transitive if for each pair x, y ∈ X there is some g ∈ Γ such that g .x = y. If the

group action of Γ on X is transitive, we say that Γ acts transitively on X.

Theorem 1.1. A group Γ acts transitively on a set X if and only if Orb(x) = X for each

x ∈ X.

Example 1.3. The group action given in Example 1.2 is transitive. In fact, the action of

Sn on the set X of all subgraphs of Kn isomorphic to a graph G is transitive.

Definition 1.9. Let Γ be a group that acts on a set X. For each x ∈ X, the stabilizer of x

is the set of elements of Γ that fix x. We denote the stabilizer of x by Stab(x); thus,

Stab(x) = {g ∈ Γ | g .x = x}.

Lemma 1.2. Suppose G is a group that acts on a set X. Then for each x ∈ X, Stab(x) is

a subgroup of G.

Proof. The proof of this lemma follows easily by using the properties of group actions to

check that Stab(x) satisfies the conditions for a subgroup of G.

5



Theorem 1.3 (The Orbit-Stabilizer Theorem). Let Γ be a group that acts on a set X. Then

for each x ∈ X,

|Orb(x)| = [Γ : Stab(x)] or |Γ| = |Orb(x)| · | Stab(x)|.

Proof. Let x ∈ X and C = {g Stab(x) | g ∈ Γ} be the collection of left cosets of Stab(x) in

Γ. Then by definition |C| = [Γ : Stab(x)]. Let us define a function ϕ : C → Orb(x) by

ϕ(g Stab(x)) = g .x for each g ∈ Γ.

To see that ϕ is well defined, suppose g1, g2 ∈ Γ with g1 Stab(x) = g2 Stab(x). Then by left

cancellation we have Stab(x) = g−1
1 g2 Stab(x) which means g−1

1 g2 ∈ Stab(x). Thus

g1 .x = g1 .(g
−1
1 g2 .x) = g1 .[g

−1
1 .(g2 .x)] = g1g

−1
1 .(g2 .x) = ιΓ .(g2 .x) = g2 .x.

We now want to show that ϕ is bijective.

Suppose g .x ∈ Orb(x). Then ϕ(g Stab(x)) = g .x; hence, ϕ is an onto function.

Furthermore, suppose ϕ(g1 Stab(x)) = ϕ(g2 Stab(x)) for some g1, g2 ∈ Γ. Then

g1 .x = g2 .x, and g−1
1 g2x = x which means g−1

1 g2 ∈ Stab(x) (or g−1
1 g2 Stab(x) = Stab(x)).

Consequently, g1 Stab(x) = g2 Stab(x) implying that ϕ is a one-to-one function.

Therefore, |C| = |Orb(x)| proving the desired result. Lagrange’s Theorem shows that

[Γ : Stab(x)] =
|Γ|

| Stab(x)|
which means

|Orb(x)| = |Γ|
| Stab(x)|

.
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Lemma 1.4. Let Γ be a group that acts on a set X, and define [x→ y] = {g ∈ Γ|g .x = y}

for any pair x, y ∈ X. If g ∈ [x→ y], then

[x→ y] = g Stab(x).

Proof. Suppose g ∈ [x→ y] for some pair x, y ∈ X and g Stab(x) is the left coset of Stab(x)

in Γ containing g. By definition,

h ∈ [x→ y] ⇔ h .x = y = g .x ⇔ (g−1h) .x = x ⇔ g−1h ∈ Stab(x) ⇔ h ∈ g Stab(x).

Therefore [x→ y] = g Stab(x).

Definition 1.10. Let Γ be a group that acts on a set X. For each g ∈ Γ and S ⊆ X define

gS = {g . s | s ∈ S}.

Lemma 1.5. If Γ is a group that acts transitively on a set X, A ⊆ X, and

B = {b} ⊆ X, then ∑
g∈Γ

|A ∩ gB| = |A| · | Stab(b)|.

Proof. Suppose |A| = n, A = {a1, . . . , an} and for simplicity Ai = {ai} for 1 ≤ i ≤ n. Then

for 1 ≤ i ≤ n, there is a gi ∈ Γ such that gi . b = ai (or giB = Ai), and [b→ ai] = gi Stab(b)

by Lemma 1.4. Consequently, for 1 ≤ i ≤ n,

|Ai ∩ gB| =


1 if g ∈ gi Stab(b)

0 otherwise.

7



Thus
∑
g∈Γ

|Ai ∩ gB| = |gi Stab(b)| = | Stab(b)| for each i ∈ {1, . . . , n}. Moreover, since

[b→ ai] ∩ [b→ aj] = ∅ for 1 ≤ i < j ≤ n,

∑
g∈Γ

|A ∩ gB| =
∑
g∈Γ

∣∣∣∣∣
(

n⋃
i=1

Ai

)
∩ gB

∣∣∣∣∣ =
∑
g∈Γ

∣∣∣∣∣
n⋃
i=1

(Ai ∩ gB)

∣∣∣∣∣
=

n∑
i=1

(∑
g∈Γ

|Ai ∩ gB|

)
=

n∑
i=1

| Stab(b)| = n| Stab(b)|

= |A| · | Stab(b)|.

Theorem 1.6. Suppose Γ is a group that acts transitively on a nonempty set X. If

A,B ⊆ X, then

1

|Γ|
∑
g∈Γ

|A ∩ gB| = |A| · |B|
|X|

.

Proof. Suppose |B| = m, B = {b1, . . . , bm}, and for ease of notation Bi = {bi} for each

i ∈ {1, . . . ,m}. For each g ∈ Γ, (A ∩ gBi) ∩ (A ∩ gBj) = ∅ for 1 ≤ i < j ≤ m. Hence

∑
g∈Γ

|A ∩ gB| =
∑
g∈Γ

∣∣∣∣∣A ∩
(
g

m⋃
i=1

Bi

)∣∣∣∣∣
=
∑
g∈Γ

∣∣∣∣∣A ∩
(

m⋃
i=1

gBi

)∣∣∣∣∣
=
∑
g∈Γ

∣∣∣∣∣
m⋃
i=1

(A ∩ gBi)

∣∣∣∣∣
=

m∑
i=1

(∑
g∈Γ

|A ∩ gBi|

)

=
m∑
i=1

(|A| · | Stab(bi)|) by Lemma 1.5

=
m∑
i=1

(
|A| · |Γ|

|X|

)
by the Orbit-Stabilizer Theorem

8



= m
|A|
|X|
|Γ|

=
|A| · |B|
|X|

|Γ|.

Therefore,
1

|Γ|
∑
g∈Γ

|A ∩ gB| = |A| · |B|
|X|

.

Corollary 1.7. Suppose Γ is a group that acts transitively on a nonempty set X. If

A,B ⊆ X such that |A| · |B| < |X|, then there is some g ∈ Γ such that A ∩ gB = ∅.

Proof. From Theorem 1.6,

∑
g∈Γ

|A ∩ gB| = |Γ| |A| · |B|
|X|

< |Γ|.

Hence, for some g ∈ Γ, A ∩ gB = ∅; otherwise, the sum on the left side of the inequality is

too large.
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Chapter 2

Disjoint G-Designs

From the necessary conditions mentioned previously, a G-design of order n ≥ 2, say B,

exists for a graph G only if

vG ≤ n

|B| = eKn

eG
=

(
n
2

)
eG

=
n(n− 1)

2eG
.

For a graph G, let Xn
G be the set of all subgraphs of Kn that are isomorphic to G.

Lemma 2.1. For a graph G,

|Xn
G| =

n(n− 1) · · · (n− vG + 1)

aG
.

Proof. The number of ways of labelling the vertices of G with vertices from V (Kn) is

n(n− 1) · · · (n− vG + 1) because there are n choices for the first vertex, n− 1 choices for the

second vertex, and continuing on n−vG+1 choices for the vGth vertex. These labellings will

represent distinct subgraphs of Kn except when there is a permutation of the vertices of G

that gives the same labelling of G; that is, the permutation has the same adjacencies between

vertices as the original labelling. The set of these permutations is Aut(G). Therefore

|Xn
G| =

n(n− 1) · · · (n− vG + 1)

aG
.

10



Theorem 2.2. Let G be a graph and

G/∈{ }, , ,

Then there is a positive integer NG such that G is T3 for n ≥ NG.

Proof. For a graph G to have at least one edge and not be in the set of excluded graphs,

vG ≥ 3. If vG = 3 and G is not in the set of excluded graphs, then G is K3. This graph was

shown to be T3 for each n ≥ 7 in [17].

For a pair B1 and B2 of G-designs of order n, we have B1,B2 ⊆ Xn
G,

|B1| = |B2| =
n(n− 1)

2eG
, and

|B1| · |B2|
|Xn

G|
=

aGn
2(n− 1)2

4e2
Gn(n− 1) · · · (n− vG + 1)

.

To proceed, we consider two cases for a graph with at least 4 vertices:

(i) Suppose vG = 4 and B1 and B2 are G-designs of order n. Then

lim
n→∞

|B1| · |B2|
|Xn

G|
= lim

n→∞

aGn(n− 1)

4e2
G(n− 2)(n− 3)

=
aG
4e2

G

.

As summarized in Table 2.1,
aG
4e2

G

< 1 for all 4-vertex graphs except for the one in the

set of excluded graphs.

(ii) Suppose vG ≥ 5 and B1 and B2 are G-designs of order n. Then

lim
n→∞

|B1| · |B2|
|Xn

G|
= lim

n→∞

aGn(n− 1)

4e2
G(n− 2)(n− 3) · · · (n− vG + 1)

= 0.

In either case, lim
n→∞

|B1| · |B2|
|Xn

G|
< 1 which means there is a positive integer NG such that for

all n ≥ NG and n ∈ Spec(G), |B1| · |B2| < |Xn
G|. From Theorem 1.6, there is a σ ∈ Sn such

that

B1 ∩ σB2 = ∅.

11



The above proof does not show that the excluded graphs are not T3 for all orders n

such that a design exists. However, there is exactly one way to decompose a graph into its

component edges which means K2 is clearly not T3 for any order n.

As it turns out, all of the excluded graphs except possibly the path of length 2 are not

T3 for any order n.

Example 2.1. Let G = , and let B1 and B2 be the following G-designs of order n ≥ 3:

B1={
i j

1 |2 ≤ i < j ≤ n}∪{
1 i

i+ 1 |2 ≤ i ≤ n− 1}∪{
1 n

2 }
B2 ={

i j

j + 1 |1 ≤ i < j ≤ n− 1}∪{
i n

i+ 1 |1 ≤ i ≤ n− 2}∪{
n − 1 n

1 }
Notice that in B1 every edge of Kn not incident on vertex 1 is in a block where 1 is the

isolated vertex. In B2, each vertex of Kn is the isolated vertex in some block of the design.

For any σ ∈ Sn, there is an i ∈ {1, 2, . . . , n} such that σ(i) = 1. By construction there must

be some block in B2 such that i is the isolated vertex along with some edge {j, k}. Applying

σ to that block gives

σ .(j
i

k
)=

σ(j)

1

σ(k)
∈ B1.

Thus B1 ∩ σB2 6= ∅ for each σ ∈ Sn which means G is not T3 for any order n.

Example 2.2. Let G = , and let B1 and B2 be the following G-designs of order n ≥ 4:

B1={
i j

1 2 | 3 ≤ i < j ≤ n}∪{
1 i

2 3

,
2 i

1 3|4 ≤ i ≤ n}∪{
1 2

3 4

,
1 3

2 4

,
2 3

1 4}.

B2={
i i+ 1

i+ 2 i+ 3|1 ≤ i ≤ n}∪{
i i+ j

i+ 1 i+ j + 1|1 ≤ i ≤ n,2 ≤ j ≤
⌊
n
2

⌋}.
(The addition in B2 is done modulo n with n replacing 0.) Each edge of Kn not incident on

vertex 1 or 2 is in a block in B1 in which the isolated vertices are 1 and 2. In B2, each pair

of vertices in Kn is in some block as the isolated vertex pair; that is, for each i, j ∈ V (Kn)

(i 6= j), there is some block

12



k `

i j∈ B2.

Suppose σ ∈ Sn. Then there is a pair i, j ∈ {1, 2, . . . , n} such that σ(i) = 1 and σ(j) = 2.

Applying σ to the block in B2 that contains i and j as isolated vertices gives

σ .(
k

i

`

j)=
σ(k)

1

σ(`)

2 ∈ B1.

Hence B1 ∩ σB2 6= ∅ for each σ ∈ Sn meaning G is not T3 for any order n.

As shown in Theorem 2.2, if G is a graph with vG ≥ 4, eG ≥ 2, and n ∈ Spec(G) is

sufficiently large, then we can find a pair of disjoint G-designs of order n. Moreover, if G

is a graph with vG ≥ 5 and n ∈ Spec(G) is sufficiently large, then we can find k pairwise

disjoint G-designs of order n for any integer k ≥ 2.

Theorem 2.3. Let G be a graph with vG ≥ 5, and let k ≥ 2 be an integer. There is a

positive integer NG,k such that if n ≥ NG,k and B1,B2, . . . ,Bk are G-designs of order n, then

there are G-designs B′1,B′2, . . . ,B′k of order n such that Bi ∼= Bi′ for 1 ≤ i ≤ k and

B′i ∩ B′j = ∅ for 1 ≤ i < j ≤ k.

Proof. Suppose G is a graph such that vG ≥ 5. The proof proceeds by induction on the

number of G-designs k.

(i) Suppose k = 2. By Theorem 2.2 there is an integer NG such that for all n ≥ NG, if

B1 and B2 are G-designs of order n, then for some σ ∈ Aut(Kn), B1 ∩ σB2 = ∅. Let

B′1 = B1 and B′2 = σB2.

(ii) Suppose for 2 ≤ r < k that there is an integer NG,r such that for all n ≥ NG,r if

B1,B2, . . . ,Br are G-designs of order n, then there are G-designs B′1,B′2, . . . ,B′r such

that B′i ∼= Bi for 1 ≤ i ≤ r and B′i ∩ B′j = ∅ for 1 ≤ i < j ≤ r.
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(iii) Suppose k ≥ 3. By the induction hypothesis there is a positive integer NG,k−1 such

that for all n ≥ NG,k−1 if B1,B2, . . . ,Bk are G-designs of order n, then there are

G-designs B′1,B′2, . . . ,B′k−1 such that B′i ∼= Bi for 1 ≤ i ≤ k − 1 and B′i ∩ B′j = ∅ for

1 ≤ i < j ≤ k − 1. Since B′1,B′2, . . . ,B′k−1 are pairwise disjoint G-designs of order n,

∣∣∣∣∣
k−1⋃
i=1

B′i

∣∣∣∣∣ = (k − 1)
n(n− 1)

2eG
.

Furthermore,
k−1⋃
i=1

B′i ⊆ Xn
G and Bk ⊆ Xn

G and

lim
n→∞

∣∣∣∣k−1⋃
i=1

B′i
∣∣∣∣ · |Bk|
|Xn

G|
= lim

n→∞

aG(k − 1)n(n− 1)

4e2
G(n− 2)(n− 3) · · · (n− vG + 1)

= 0.

Thus there is a positive integer NG,k such that

∣∣∣∣k−1⋃
i=1

B′i
∣∣∣∣ · |Bk|
|Xn

G|
< 1 for all n ≥ NG,k with

n ∈ Spec(G). By Theorem 1.6, there is a σ ∈ Sn such that
k−1⋃
i=1

B′i ∩ σBk = ∅. Let

B′k = σBk which completes the proof.

For a graph G with vG = 4, the limit in the proof of Theorem 2.3 is

lim
n→∞

aG(k − 1)n(n− 1)

4e2
G(n− 2)(n− 3)

=
aG(k − 1)

4e2
G

.

Provided the limit is less than 1, then the conclusion of the theorem should hold as well. Let

KG = max

{
k ∈ Z

∣∣∣∣ aG(k − 1)

4e2
G

< 1

}
= max

{
k ∈ Z

∣∣∣∣ k < 4e2
G

aG
+ 1

}
.
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Then for the 4-vertex graphs, KG is the maximum number of disjoint G-designs that can be

found using the techniques of Theorem 2.3. The values of aG and KG for all 4-vertex graphs

are summarized in Table 2.1.

Table 2.1: Summary of 4-Vertex Graphs

G aG
aG
4e2

G

KG

4 1 1

8
1

2
2

2
1

8
8

6
1

6
6

2
1

18
18

6
1

6
6

2
1

32
32

8
1

8
8

4
1

25
25

24
1

6
6
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Chapter 3

The Intersection Problem for 7 Graphs with 7 Vertices and 7 Edges

Throughout this chapter, we assume that all graphs have nontrivial components unless

stated otherwise. Before we solve the intersection problem for some select 7 vertex, 7 edge

graphs, we first need some definitions. Among these definitions is that of the intersection

problem itself.

Definition 3.1. For a graph G, the intersection problem for G is the problem of determining

all integer pairs n, k for which there exist G-designs B1 and B2 of order n such that

|B1 ∩ B2| = k.

For a graph G, we need to know Spec(G) in order to solve the intersection problem.

Then for each n ∈ Spec(G) we can define two sets that are closely related to the intersection

problem.

Definition 3.2. For a graph G, we define the following two sets. Suppose there exists a

G-design on a graph H.

• Let IG(H) be the set of all k such that there are G-designs B1 and B2 on H with

|B1 ∩ B2| = k. Clearly, if B is a G-design on H, then |B| ∈ IG(H).

• Let JG(H) be the set of all non-negative integers k such that keG ≤ eH except for

k =
eH
eG
− 1.

If H = Kn, then we write these sets as IG(n) and JG(n) respectively.

The set IG(n) is the set of all realizable k for which there exist G-designs B1 and B2 of

order n such that|B1 ∩B2| = k. Thus the solution to the intersection problem for a graph G
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is to find IG(n) for each n ∈ Spec(G). Since the size of the intersection of two G-designs of

order n must be nonnegative and cannot exceed the number of blocks in either design, the

set JG(n) gives us the set of possible integers that two G-designs of order n could have in

common. We can exclude the integer one less than the number of blocks in the G-design, for

if two G-designs have that many blocks in common, the two designs are forced to have the

remaining block in common as well. Thus, IG(n) ⊆ JG(n) for any graph G and n ∈ Spec(G).

The intersection problem was first solved for Steiner Triple Systems (K3-designs) by

C.C. Lindner and A. Rosa in [15]. Since then, the intersection problem has been solved for

various other graphs including cycles of length less than 10 [3,12], connected graphs with at

most 4 vertices or 4 edges [4,6,9] (except there are a few undetermined values for K4-designs

of order n = 25, 28, 37), star graphs with m edges [5], a 4-cycle with a pendant edge [16],

and graphs with 6 vertices, 6 edges, and a 4-cycle subgraph [13]. The type of graphs for

which we will be solving the intersection problem have at least 7 vertices and 7 edges. But

first, several useful definitions and results must be introduced.

Solving the intersection problem involves working with various sets of non-negative

integers which necessitates defining some binary operations on these sets.

Definition 3.3. Let A and B be nonempty sets of non-negative integers, and let p be a

positive integer. Then

1. A+B = {a+ b | a ∈ A and b ∈ B}

2. p ∗A = A1 +A2 + . . .+Ap where Ai = A for 1 ≤ i ≤ p. There should be no ambiguity

in this definition due to the associativity of addition.

3. For convenience, let 0 ∗ A = {0}.

Example 3.1. Let A = {0, 1, 3} and B = {0, 4, 5}. Then A + B = {0, 1, 3, 4, 5, 6, 7, 8} and

2 ∗ A = {0, 1, 2, 3, 4, 6}.
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Observation. Let A1, A2, B1, and B2 be nonempty sets of non-negative integers such that

Ai ⊆ Bi for each i, and let p be a positive integer. Then

1. A1 + A2 ⊆ B1 +B2

2. p ∗ Ai ⊆ p ∗Bi for each i ∈ {1, 2}.

The following generalization of G-designs is another useful definition.

Definition 3.4. Let K be a collection of graphs. A K-decomposition of a graph H is an

ordered pair (V,B) where V is the vertex set of H and B is a collection of subgraphs of H

called blocks, each of which is isomorphic to some graph in K, such that each edge of H is in

exactly one block of B. Notice that if K = {G}, then a K-decomposition of H is a G-design

on H.

Proposition 3.1. If a K-decomposition of a graph H exists and there exists a G-design on

K for each K ∈ K, then there exists a G-design on H.

Proof. Suppose H is a graph with vertex set V and (V,B) is a K-decomposition of H for

some collection of graphs K. Furthermore, suppose G is a graph such that for each graph

K ∈ K there is a G-design on K. Construct a G-design on B with block set ΓB for each

B ∈ B. Then
⋃
B∈B

ΓB is a G-design on H.

Lemma 3.2. Let n and t be positive integers with t ≥ 2.

(a) There exists a {Kn, Kn,n}-decomposition of Knt.

(b) There exists a {Kn+1, Kn,n}-decomposition of Knt+1.

Proof. (a) There are t subgraphs of Knt induced by the sets {ni + r | 1 ≤ r ≤ n} where

0 ≤ i ≤ t− 1 that are isomorphic to Kn. Note that the edges of Knt in these induced

subgraphs must be of the form {u, v} where u = ni+r and v = ni+s where 0 ≤ i ≤ t− 1

and 1 ≤ r < s ≤ n. There are
(
t
2

)
subgraphs of Knt isomorphic to Kn,n formed by taking
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vertices u and v such that u ∈ {ni + r | 1 ≤ r ≤ n} and v ∈ {nj + s | 1 ≤ s ≤ n}

where 0 ≤ i < j ≤ t− 1 and taking all edges {u, v} ∈ E(Knt) such that u = ni+ r and

v = nj + s with 0 ≤ i < j ≤ t− 1 and 1 ≤ r, s ≤ n. Clearly, none of the edges of Knt

in the subgraphs isomorphic to Kn overlap with those in the subgraphs isomorphic to

Kn,n. Counting the number of edges in these subgraphs gives

t

(
n

2

)
+

(
t

2

)
n2 =

nt(n− 1)

2
+
n2t(t− 1)

2
=
nt(nt− 1)

2
=

(
nt

2

)
= eKnt .

Thus a {Kn, Kn,n}-decomposition of Knt exists. (For a visual representation of the proof,

see Figure 3.1.)

Figure 3.1: {Kn, Kn,n}-Decomposition of Knt with t ≥ 2

...

t

j

i

...

1

. . .

. . .

. . .

. . .
Copy of Kn

Copy of Kn

Copy of Kn

Copy of Kn

Copy of Kn,n

(b) Let V (Knt+1) = V (Knt) ∪ {∞}. Extend a {Kn, Kn,n}-decomposition of Knt to a

{Kn+1, Kn,n}-decomposition ofKnt+1 by adding the vertex∞ to each of the t copies ofKn

in the {Kn, Kn,n}-decomposition of Knt to get t copies of Kn+1. Hence a {Kn+1, Kn,n}-

decomposition of Knt+1 with t copies of Kn+1 and
(
t
2

)
copies of Kn,n exists. (For a visual

representation of the proof, see Figure 3.2.)
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Figure 3.2: {Kn+1, Kn,n}-Decomposition of Knt+1 with t ≥ 2

Copies of Kn+1

...

t

j

i

...

1

. . .

. . .

. . .

. . .

Copy of Kn,n
∞

The following lemma will be used frequently for solving the intersection problem for

several upcoming graphs.

Lemma 3.3. If there exists an {H1, H2, . . . , Hm}-decomposition of Kn with ri blocks of the

decomposition isomorphic to Hi for 1 ≤ i ≤ m and there exists a G-design on Hi for

1 ≤ i ≤ m, then

IG(n) ⊇ r1 ∗ IG(H1) + r2 ∗ IG(H2) + . . .+ rm ∗ IG(Hm).

Proof. Suppose k ∈ r1 ∗ IG(H1) + r2 ∗ IG(H2) + . . .+ rm ∗ IG(Hm). Then

k = s1 + s2 + . . .+ sm where si ∈ ri ∗ IG(Hi) for 1 ≤ i ≤ m. Furthermore, each

si = ti,1 + ti,2 + . . .+ ti,ri where {ti,1, ti,2, . . . , ti,ri} ⊆ IG(Hi) for 1 ≤ i ≤ m. Thus there exist

ri pairs of G-designs on the ri distinct blocks in the decomposition of Kn isomorphic to Hi,
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say Bti,j and B′ti,j , such that |Bti,j ∩ B′ti,j | = ti,j for 1 ≤ j ≤ ri. Let

BHi
=

ri⋃
j=1

Bti,j and B′Hi
=

ri⋃
j=1

B′ti,j for 1 ≤ i ≤ m.

Then |BHi
∩ B′Hi

| = si for 1 ≤ i ≤ m. Let

B =
m⋃
i=1

BHi
and B′ =

m⋃
i=1

B′Hi
.

Then |B ∩ B′| =
m∑
i=1

si = k. Since B and B′ are unions of G-designs on Hi for 1 ≤ i ≤ m

which combined appropriately (i.e. taking the union of the blocks in each design) comprise

{H1, H2, . . . , Hm}-decompositions of Kn, they must both be G-designs of order n. Therefore,

k ∈ IG(n).

Finally, a concept that will be used in solving the intersection problems for several

upcoming graphs is that of a trade.

Definition 3.5. A pair of G-designs T1 and T2 on the same graph H are called mates if

T1 ∩ T2 = ∅. If T is a G-design with at least one mate and |T | = t, then T is said to be a

trade of volume t. It should be noted that no trades of volume 1 exist.

As outlined in the following lemma from [5], the intersection problem for a graph G is

closely related to finding trades.

Lemma 3.4. Let B1 be a G-design of order n. Then there is a G-design B2 of order n with

|B1 ∩ B2| = k if and only if B1 contains a trade of volume
(
n
2

)
/eG − k.

Proof. Suppose B1 and B2 are G-designs of order n with |B1∩B2| = k. Let H be the subgraph

of Kn formed by removing each edge found in some block contained in B1 ∩ B2 from Kn.

Then T1 = B1 − (B1 ∩ B2) is a G-design on H as is T2 = B2 − (B1 ∩ B2). Furthermore,

T1 ∩ T2 = ∅ meaning T1 and T2 are mates with |T1| = |T2| =
(
n
2

)
/eG − k. Thus T1 is a trade

of volume
(
n
2

)
/eG − k contained in B1.
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Suppose B1 is a G-design of order n containing a trade T1 of volume
(
n
2

)
/eG − k. Then

T1 is a G-design on some subgraph H of Kn with a mate T2. Consequently, T1 and T2 are

G-designs on the same subgraph H with T1∩T2 = ∅ and |T1| = |T2| =
(
n
2

)
/eG−k. Moreover,

there must be a G-design S on H (the complement of H in Kn) with |S| = k since T1 is

contained in a G-design of order n; that is, B1 = T1 ∪ S with T1 ∩ S = ∅. Let B2 = T2 ∪ S.

Then B2 is a G-design of order n since T2 is a G-design on H and S is a G-design on H.

Additionally,

|B1 ∩ B2| = |(T1 ∪ S) ∩ (T2 ∪ S)| = |(T1 ∩ T2) ∪ S| = |S| = k.

Hence there is a G-design B2 of order n with |B1 ∩ B2| = k

For each graph G that will be discussed in the subsequent sections, there exists a

G-design of orders n and n + 1 as well as a G-design on Kn,n for some positive integer n

which essentially reduces the intersection problem for these graphs to a few small cases. (See

Figures 3.3 and 3.4.)

Figure 3.3: G-Design of Order nt with t ≥ 2

...
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G-Design on Kn,n
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Figure 3.4: G-Design of Order nt+ 1 with t ≥ 2
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3.1 A Pair of Dragons with 7 Edges

Definition 3.6. A dragon D`(m) (` < m) is a graph with m edges consisting of a cycle of

length ` and an attached path called the tail. (See Figure 3.5 for a picture of the dragon

D4(7).)

Figure 3.5: The Dragon D4(7)

The definition and notation describing dragons are a generalization of that given in

[14]. In particular, a dragon D3(m) containing a triangle with vertices {a, b, c} is de-

noted by (a, b, c; v1, v2, . . . , vm−3) where the tail is attached to vertex c. Similarly, a dragon

D4(m) containing a 4-cycle with vertices {a, b, c, d} and edges {ab, bc, cd, da} is denoted by

(a, b, c, d; v1, v2, . . . , vm−4) where the tail is attached to vertex d. As for the intersection

problem, several of the dragon graphs have been completely solved. D3(4) (also known as
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a 3-kite or just a kite) is solved in [6]. The dragons D4(5) (also called a 4-kite) and D4(6)

are solved in [16] and [13] respectively. In solving the intersection problem for D4(7), the

spectrum of D4(7) must first be found. In order to find the spectrum, we first look at a few

small D4(7)-designs.

Example 3.2. A D4(7)-design of order 7 is given by

B7 = {(3, 6, 7, 1; 4, 5, 2), (1, 5, 7, 2; 6, 4, 3), (2, 4, 7, 3; 5, 6, 1)}.

See Figure 3.6 for a picture of the blocks as graphs.

Figure 3.6: B7, a D4(7)-Design of Order 7
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Example 3.3. A D4(7)-design of order 8 is given by

B8 = {(4, 8, 6, 1; 7, 3, 5), (5, 7, 8, 2; 3, 4, 6), (1, 5, 8, 3; 6, 2, 7), (5, 6, 7, 4; 2, 1, 8)}.

The blocks can be seen as graphs in Figure 3.7.

Figure 3.7: B8, a D4(7)-Design of Order 8

1

5

4

7

3

8

6 5

2

6

4

7

3

8

7

1

3

5

6

2

8

8

5

4

6

2

1

7

24



Example 3.4. If V (K7,7) = Z7 × {1, 2} with partitions A = Z7 × {1} and B = Z7 × {2},

then

B7,7 = {((i, 2), (i+ 2, 1), (i+ 1, 2), (i, 1); (i+ 3, 2), (i+ 1, 1), (i+ 5, 2) | 0 ≤ i ≤ 6},

where addition in the first coordinates is done modulo 7, is a D4(7)-design on K7,7. To see

that this is a design on K7,7, notice that for each j ∈ Z7 there is some edge {(x, 1), (y, 2)}

in each block of B7,7 such that y − x = j. Thus each edge of K7,7 is in some block of B7,7,

and |B7,7| = 7 which is the number of blocks expected in an D4(7)-design on K7,7. Also, see

Figure 3.8.

Figure 3.8: B7,7, a Cyclic D4(7)-Design on K7,7
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For a view of each of the blocks, see Figure A.1 in the appendix.

Now for the spectrum of D4(7).

Theorem 3.5. There exists a D4(7)-design of order n if and only if n ≡ 0 or 1 (mod 7).

Proof. The necessity of n ≡ 0 or 1 (mod 7) is obvious since those are the only orders such

that 7|
(
n
2

)
. The proof of sufficiency proceeds by checking two cases.

(i) Suppose n ≡ 0 (mod 7). For n = 7, a D4(7)-design of order n exists as shown in Exam-

ple 3.2. Also, a D4(7)-design on K7,7 exists as shown in Example 3.4. By Lemma 3.2,

a {K7, K7,7}-decomposition of K7t exists for each t ≥ 2; hence, a D4(7)-design of order

7t exists for each positive integer t according to Proposition 3.1.
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(ii) Suppose n ≡ 1 (mod 7). For n = 8, a D4(7)-design of order 8 exists as shown in

Example 3.3. Once again, a D4(7)-design on K7,7 exists as shown in Example 3.4. By

Lemma 3.2, a {K8, K7,7}-decomposition of K7t+1 exists for each t ≥ 2; hence, a D4(7)-

design of order 7t+ 1 exists for each positive integer t according to Proposition 3.1.

Therefore, a D4(7)-design of order n exists for each n ≡ 0 or 1 (mod 7).

Directly solving the intersection problem for D4(7) begins with looking at small cases.

The techniques that will prove most useful in determining ID4(7)(n) will be permutation of

vertices and finding trades.

Example 3.5. Starting with B7 from Example 3.2, consider the following three

D4(7)-designs of order 7.

B7 = {(3, 6, 7, 1; 4, 5, 2), (1, 5, 7, 2; 6, 4, 3), (2, 4, 7, 3; 5, 6, 1)}

Transposing vertices 3 and 4 in B7 yields the design

B0
7 = {(4, 6, 7, 1; 3, 5, 2), (1, 5, 7, 2; 6, 3, 4), (2, 3, 7, 4; 5, 6, 1)}

which is disjoint from B7.

Transposing vertices 3 and 7 in B7 yields a design

B1
7 = {(3, 6, 7, 1; 4, 5, 2), (1, 5, 3, 2; 6, 4, 7), (2, 4, 3, 7; 5, 6, 1)}

that shares exactly 1 block with B7. Thus ID4(7)(7) = {0, 1, 3} = JD4(7)(7).

Example 3.6. Starting with B8 from Example 3.3, consider the following three

D4(7)-designs of order 8.

B8 = {(4, 8, 6, 1; 7, 3, 5), (5, 7, 8, 2; 3, 4, 6), (1, 5, 8, 3; 6, 2, 7), (5, 6, 7, 4; 2, 1, 8)}
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Transposing vertices 7 and 8 in B8 yields the following design that is disjoint from B8.

B0
8 = {(4, 7, 6, 1; 8, 3, 5), (5, 8, 7, 2; 3, 4, 6), (1, 5, 7, 3; 6, 2, 8), (5, 6, 8, 4; 2, 1, 7)}

Transposing vertices 4 and 6 in B8 yields the following design that has exactly one block in

common with B8.

B1
8 = {(4, 8, 6, 1; 7, 3, 5), (5, 7, 8, 2; 3, 6, 4), (1, 5, 8, 3; 4, 2, 7), (5, 4, 7, 6; 2, 1, 8)}

The last two blocks in B8 form a trade of volume 2 in the design. The trade and a mate are

illustrated in the subgraph of K8 shown in Figure 3.9.

Figure 3.9: A Trade of Volume 2 and a Mate in a D4(7)-Design of Order 8
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Thus ID4(7)(8) = {0, 1, 2, 4} = JD4(7)(8).

For the purposes of solving the intersection problem of D4(7) for orders larger than 8,

the existence of some elements of ID4(7)(K7,7) also need to be shown.

Example 3.7. Looking at the D4(7)-design on K7,7 of Example 3.4,

B7,7 = {((i, 2), (i+ 2, 1), (i+ 1, 2), (i, 1); (i+ 3, 2), (i+ 1, 1), (i+ 5, 2) | 0 ≤ i ≤ 6},
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a disjoint design is readily found by changing the second coordinates of each vertex in each

block as shown below.

B0
7,7 = {((i, 1), (i+ 2, 2), (i+ 1, 1), (i, 2); (i+ 3, 1), (i+ 1, 2), (i+ 5, 1) | 0 ≤ i ≤ 6}

(Note that addition is done modulo 7 in both designs.)

Transposing vertices (0, 2) and (1, 2) in B7,7 yields a design B1
7,7 on K7,7 that has exactly

one block in common with B7,7. (See Example A.1 in the appendix for a list of the blocks of

B1
7,7 which indicates the block that B7,7 and B1

7,7 have in common.)

Hence ID4(7)(K7,7) ⊇ {0, 1, 7}.

Example 3.8. From Lemma 3.2 and Theorem 3.5, a D4(7)-design of order 14 can be con-

structed using 2 D4(7)-designs of order 7, a D4(7)-design on K7,7, and a

{K7, K7,7}-decomposition of K14. From Lemma 3.3 and Examples 3.5 and 3.7,

ID4(7)(14) ⊇ 2 ∗ ID4(7)(7) + ID4(7)(K7,7)

⊇ 2 ∗ {0, 1, 3}+ {0, 1, 7}

⊇ {0, 1, 2, 3, 4, 6}+ {0, 1, 7}

⊇ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13}

⊇ JD4(7)(14).

Hence ID4(7)(14) = JD4(7)(14).

Finally the remaining orders n ∈ Spec(D4(7)) are solved in the following theorem.

Theorem 3.6. If n ∈ Spec(D4(7)), then

ID4(7)(n) = JD4(7)(n).
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Proof. As shown in Theorem 3.5, the values of n ∈ Spec(D4(7)) are n ≡ 0 or 1 (mod 7).

Hence the proof proceeds by considering two cases.

(i) Suppose n ≡ 0 (mod 7). For n = 7 and n = 14, ID4(7)(n) = JD4(7)(n) as shown in

Examples 3.5 and 3.8 respectively. For n = 7t with t ≥ 3 an integer, it was shown in

Theorem 3.5 that a D4(7)-design of order n can be constructed using a

{K7, K7,7}-decomposition of K7t with t blocks isomorphic to K7 and
(
t
2

)
blocks isomor-

phic to K7,7. From Lemma 3.3,

ID4(7)(7t) ⊇ t ∗ ID4(7)(7) +
(
t
2

)
∗ ID4(7)(K7,7)

⊇ t ∗ {0, 1, 3}+
(
t
2

)
∗ {0, 7}

⊇ {0, 1, 2, . . . , 3t− 3, 3t− 2, 3t}+
{

7r | 0 ≤ r ≤
(
t
2

)}
⊇
{

0, 1, 2, . . . , 7
(
t
2

)
+ 3t− 3, 7

(
t
2

)
+ 3t− 2, 7

(
t
2

)
+ 3t

}
⊇
{

0, 1, 2, . . . , 7
(
t
2

)
+ 3t− 3, 7

(
t
2

)
+ 3t− 2, 7t2−7t

2
+ 6t

2

}
⊇
{

0, 1, 2, . . . , 7
(
t
2

)
+ 3t− 3, 7

(
t
2

)
+ 3t− 2, 1

7
7t(7t−1)

2

}
⊇
{

0, 1, 2, . . . , 1
7

(
7t
2

)
− 3, 1

7

(
7t
2

)
− 2, 1

7

(
7t
2

)}
⊇ JD4(7)(7t).

(ii) Suppose n ≡ 1 (mod 7). For n = 8, ID4(7)(n) = JD4(7)(n) as shown in Example 3.6.

For n = 7t+ 1 with t ≥ 2 an integer, it was shown in Theorem 3.5 that a D4(7)-design

of order n can be constructed using a {K8, K7,7}-decomposition of K7t+1 with t blocks

isomorphic to K8 and
(
t
2

)
blocks isomorphic to K7,7.

Consequently

ID4(7)(7t+ 1) ⊇ t ∗ ID4(7)(8) +
(
t
2

)
∗ ID4(7)(K7,7)

⊇ t ∗ {0, 1, 2, 4}+
{

7r | 0 ≤ r ≤
(
t
2

)}
⊇ {0, 1, 2, . . . , 4t− 3, 4t− 2, 4t}+

{
7r | 0 ≤ r ≤

(
t
2

)}
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⊇
{

0, 1, 2, . . . , 7
(
t
2

)
+ 4t− 3, 7

(
t
2

)
+ 4t− 2, 7

(
t
2

)
+ 4t

}
⊇
{

0, 1, 2, . . . , 7
(
t
2

)
+ 4t− 3, 7

(
t
2

)
+ 4t− 2, 7t2−7t

2
+ 8t

2

}
⊇
{

0, 1, 2, . . . , 7
(
t
2

)
+ 4t− 3, 7

(
t
2

)
+ 4t− 2, 1

7
7t(7t+1)

2

}
⊇
{

0, 1, 2, . . . , 1
7

(
7t+1

2

)
− 3, 1

7

(
7t+1

2

)
− 2, 1

7

(
7t+1

2

)}
⊇ JD4(7)(7t+ 1).

Therefore, ID4(7)(n) = JD4(7)(n) for each n ∈ Spec(D4(7)).

Using the similar techniques, the intersection problem for D6(7) can be solved as well.

Also, similar notation will be used when denoting D6(7) as a block in a design.

Example 3.9. If the graph D6(7) has vertex set V (D6(7)) = {a, b, c, d, e, f, g}, then its edge

set is E(D6(7)) = {ab, bc, cd, de, ef, af, fg}. For brevity, this graph will be denoted by the

vector (a, b, c, d, e, f ; g) henceforth. Figure 3.10 gives an illustration of this graph.

Figure 3.10: The Dragon D6(7)
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Once again, the spectrum of the graph needs to be found before solving the intersection

problem which will be done through several examples and Lemma 3.2.

Example 3.10. The following set forms a D6(7)-design of order 7:

B7 = {(4, 3, 5, 6, 7, 1; 2), (4, 6, 1, 5, 7, 2; 3), (6, 2, 5, 4, 7, 3; 1)}.

See Figure 3.11 to see how the blocks look as graphs.
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Figure 3.11: B7, a D6(7)-Design of Order 7
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Example 3.11. The following set forms a D6(7)-design of order 8:

B8 = {(3, 8, 6, 7, 4, 1; 5), (3, 4, 5, 8, 7, 2; 6), (5, 2, 8, 1, 6, 3; 7), (2, 1, 7, 5, 6, 4; 8)}.

To see the blocks as graphs, view Figure 3.12.

Figure 3.12: B8, a D6(7)-Design of Order 8
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Example 3.12. Let V (K7,7) = Z7×{1, 2} with partitions A = Z7×{1} and B = Z7×{2}.

Then

B7,7 = {((i, 2), (i+ 4, 1), (i+ 6, 2), (i+ 2, 1), (i+ 1, 2), (i, 1); (i+ 5, 2)) | 0 ≤ i ≤ 6}

where addition in the first coordinates is done modulo 7 is a D6(7)-design on K7,7. To see

that this is a design on K7,7, notice that for each j ∈ Z7 there is some edge {(x, 1), (y, 2)}

in each block of B7,7 such that y − x = j. Thus each edge of K7,7 is in some block of B7,7,

and |B7,7| = 7 which is the number of blocks expected in a D6(7)-design on K7,7. Also, see

Figure 3.13.
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Figure 3.13: B7,7, a Cyclic D6(7)-Design on K7,7
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For an illustration of the individual blocks of B7,7, see Figure A.3 in the appendix.

The spectrum of D6(7) is outlined in the next theorem.

Theorem 3.7. There exists a D6(7)-design of order n if and only if n ≡ 0 or 1 (mod 7).

Proof. The necessity of the orders n ≡ 0 or 1 (mod 7) is clear given that these are the only

orders such that 7|
(
n
2

)
. Showing their sufficiency proceeds by checking two cases.

(i) Suppose n ≡ 0 (mod 7). For n = 7, a D6(7)-design of order n has been exhibited

in Example 3.10. For n = 7t (t ≥ 2), a D6(7)-design of order n exists according to

Proposition 3.1 and Lemma 3.2 because there exists both a D6(7)-design of order 7

and a D6(7)-design on K7,7 (Example 3.12). Hence there is a D6(7)-design of order 7t

for each positive integer t.

(ii) Suppose n ≡ 1 (mod 7). For n = 8, a D6(7)-design of order n has been exhibited in

Example 3.11. For n = 7t + 1 (t ≥ 2), a D6(7)-design of order n exists according to

Proposition 3.1 and Lemma 3.2 because there exists both a D6(7)-design of order 8 and

a D6(7)-design on K7,7. Thus there is an D6(7)-design of order 7t+ 1 for each positive

integer t.

Therefore a D6(7)-design of order n exists if and only if n ≡ 0 or 1 (mod 7).

Similarly to D4(7), solving the intersection problem for D6(7) proceeds by

considering a few small cases.
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Example 3.13. Starting with the D6(7)-design of order 7 given in Example 3.10,

permutation of select vertices will yield a disjoint design and a design that shares one block

in common with the original design. As a reminder, the original design is

B7 = {(4, 3, 5, 6, 7, 1; 2), (4, 6, 1, 5, 7, 2; 3), (6, 2, 5, 4, 7, 3; 1)}.

Transposing vertices 3 and 4 gives the following D6(7)-design of order 7 which is disjoint

from the original design.

B0
7 = {(3, 4, 5, 6, 7, 1; 2), (3, 6, 1, 5, 7, 2; 4), (6, 2, 5, 3, 7, 4; 1)}.

Transposing vertices 3 and 6 and transposing vertices 4 and 7 gives a design shown below

that shares exactly one block in common with B7.

B7 = {(4, 3, 5, 6, 7, 1; 2), (7, 3, 1, 5, 4, 2; 6), (3, 2, 5, 7, 4, 6; 1)}.

Consequently ID6(7)(7) = JD6(7)(7).

Example 3.14. For the D6(7)-design of order 8 of Example 3.11

B8 = {(3, 8, 6, 7, 4, 1; 5), (3, 4, 5, 8, 7, 2; 6), (5, 2, 8, 1, 6, 3; 7), (2, 1, 7, 5, 6, 4; 8)},

a disjoint design can be found by transposing vertices 5 and 7 as shown in the design below.

B0
8 = {(3, 8, 6, 5, 4, 1; 7), (3, 4, 7, 8, 5, 2; 6), (7, 2, 8, 1, 6, 3; 5), (2, 1, 5, 7, 6, 4; 8)}.

To obtain a design that shares exactly one block with B8, transpose vertices 3 and 4, and

transpose vertices 7 and 8 as seen in the design below.

B1
8 = {(3, 8, 6, 7, 4, 1; 5), (4, 3, 5, 7, 8, 2; 6), (2, 1, 8, 5, 6, 3; 7), (5, 2, 7, 1, 6, 4; 8)}
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Notice that the last two blocks of B8 form a trade of volume 2 in the design as shown in

Figure 3.14.

Figure 3.14: A Trade of Volume 2 and a Mate in a D6(7)-Design of Order 8
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Thus ID6(7)(8) = JD6(7)(8).

To solve the intersection problem for larger orders in Spec(D6(7)), the existence of some

of the elements in ID6(7)(K7,7) needs to be shown.

Example 3.15. Looking at the D6(7)-design on K7,7 of Example 3.12,

B7,7 = {((i, 2), (i+ 4, 1), (i+ 6, 2), (i+ 2, 1), (i+ 1, 2), (i, 1); (i+ 5, 2)) | 0 ≤ i ≤ 6},

a disjoint design is readily found by changing the second coordinates of each vertex in each

block as shown below.

B0
7,7 = {((i, 1), (i+ 4, 2), (i+ 6, 1), (i+ 2, 2), (i+ 1, 1), (i, 2); (i+ 5, 1)) | 0 ≤ i ≤ 6}

(Note that addition is done modulo 7 in both designs.)

Transposing vertices (2, 2) and (3, 2) in B7,7 yields a design B2
7,7 on K7,7 that has exactly

two blocks in common with B7,7. (See Example A.2.)

Hence ID6(7)(K7,7) ⊇ {0, 2, 7}.
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The intersection problem for order 14 is more easily handled separately from the other

higher orders. The solution is shown in the next example.

Example 3.16. From Lemma 3.2 and Theorem 3.7, a D6(7)-design of order 14 can be

constructed by combining two D6(7)-designs of order 7 and one D6(7)-design on K7,7 in a

{K7, K7,7}-decomposition of K14. From Lemma 3.3 and Examples 3.13 and 3.15,

ID6(7)(14) ⊇ 2 ∗ ID6(7)(7) + ID6(7)(K7,7)

⊇ 2 ∗ {0, 1, 3}+ {0, 2, 7}

⊇ {0, 1, 2, 3, 4, 6}+ {0, 2, 7}

⊇ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13}

⊇ JD6(7)(14).

Thus ID6(7)(14) = JD6(7)(14).

The solution to the intersection problem for D6(7) is completed in the following theorem.

Theorem 3.8. If n ∈ Spec(D6(7)), then

ID6(7)(n) = JD6(7)(n).

Proof. For n = 7, n = 8, and n = 14, ID6(7)(n) = JD6(7)(n) as shown in Examples 3.13, 3.14,

and 3.16 respectively. For the remaining orders in Spec(D6(7)), two cases are considered.

(i) Suppose n ≡ 0 (mod 7) and n ≥ 21; that is, n = 7t for some integer t ≥ 3. From

Theorem 3.7, a D6(7)-design of order 7t (t ≥ 3) can be constructed containing t D6(7)-

designs of order 7 and
(
t
2

)
D6(7)-designs on K7,7. According to Lemma 3.3, if t ≥ 3,

ID6(7)(7t) ⊇ t ∗ ID6(7)(7) +
(
t
2

)
∗ ID6(7)(K7,7)

⊇ t ∗ {0, 1, 3}+
(
t
2

)
∗ {0, 7}
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⊇
{

0, 1, 2, . . . , 1
7

(
7t
2

)
− 3, 1

7

(
7t
2

)
− 2, 1

7

(
7t
2

)}
(See proof of Theorem 3.6.)

⊇ JD6(7)(7t).

(ii) Suppose n ≡ 1 (mod 7) and n ≥ 15; that is, n = 7t + 1 for some integer t ≥ 2. From

Theorem 3.7, a D6(7))-design of order 7t + 1 (t ≥ 2) can be constructed containing t

D6(7)-designs of order 8 and
(
t
2

)
D6(7)-designs on K7,7. By Lemma 3.3, if t ≥ 2,

ID6(7)(7t+ 1) ⊇ t ∗ ID6(7)(8) +
(
t
2

)
∗ ID6(7)(K7,7)

⊇ t ∗ {0, 1, 2, 4}+
{

7r | 0 ≤ r ≤
(
t
2

)}
⊇
{

0, 1, 2, . . . , 1
7

(
7t+1

2

)
− 3, 1

7

(
7t+1

2

)
− 2, 1

7

(
7t+1

2

)}
(See Theorem 3.6.)

⊇ JD6(7)(7t+ 1).

Therefore ID6(7)(n) = JD6(7)(n) for each n ∈ Spec(D6(7)).

3.2 A Graph Containing a 4-Cycle, 2 Pendant Edges on 1 Vertex in the Cycle,

and a Single Pendant Edge on an Adjacent Vertex in the Cycle

Since there is no well known convention for naming the graph of interest, one is given

in the following definition.

Definition 3.7. The graph Rk(`,m) (` ≤ m) is a graph containing a cycle of length k, ` > 0

pendant edges on one vertex in the k-cycle, and m > 0 pendant edges on an adjacent vertex

in the k-cycle.

Example 3.17. The graph R4(1, 2) has vertex set V (R4(1, 2)) = {a, b, c, d, e, f, g} and edge

set E(R4(1, 2)) = {ab, bc, cd, de, be, ef, eg}. For convenience, this graph will be denoted by

the vector R(a; b, c, d, e; f, g) from now on. This graph is illustrated in Figure 3.15.
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Figure 3.15: The Graph R4(1, 2)
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The intersection problem for R4(1, 1) is solved in [13]. In the following discussion,

the intersection problem for R4(1, 2) is solved, but first the spectrum of R4(1, 2) must be

established. As usual, some small designs are given first.

Example 3.18. The following block set is an R4(1, 2)-design of order 7.

B7 = {R(3; 4, 5, 7, 1; 2, 6), R(1; 5, 6, 7, 2; 3, 4), R(2; 6, 4, 7, 3; 1, 5)}

The blocks are illustrated as graphs in Figure 3.16.

Figure 3.16: B7, an R4(1, 2)-Design of Order 7
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Example 3.19. The following block set is an R4(1, 2)-design of order 8.

B8 = {R(8; 6, 4, 3, 1; 5, 7), R(3; 5, 7, 8, 2; 4, 6), R(1; 8, 5, 6, 3; 2, 7), R(6; 7, 2, 1, 4; 5, 8)}

The blocks are shown as graphs in Figure 3.17.
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Figure 3.17: B8, an R4(1, 2)-Design of Order 8
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Example 3.20. Let V (K7,7) = Z7×{1, 2} with partitions A = Z7×{1} and B = Z7×{2}.

Then the following set is an R4(1, 2)-design on K7,7.

B7,7 = {R((i+ 5, 1); (i, 2), (i+ 2, 1), (i+ 1, 2), (i, 1); (i+ 3, 2), (i+ 4, 2)) | 0 ≤ i ≤ 6}

The addition in the first coordinates is done modulo 7. To see that this is a design on K7,7,

notice that for each j ∈ Z7 there is some edge {(x, 1), (y, 2)} in each block of B7,7 such that

y−x = j. Thus each edge of K7,7 is in some block of B7,7, and |B7,7| = 7 which is the number

of blocks expected in an R4(1, 2)-design on K7,7. Also, see Figure 3.18.

Figure 3.18: B7,7, a Cyclic R4(1, 2)-Design on K7,7

(0, 2)

(0, 1)

(1, 2)

(1, 1)

(2, 2)

(2, 1)

(3, 2)

(3, 1)

(4, 2)

(4, 1)

(5, 2)

(5, 1)

(6, 2)

(6, 1)

Look at Figure A.5 in the appendix to see each of the blocks in B7,7.

Theorem 3.9. There exists an R4(1, 2)-design of order n if and only if n ≡ 0 or 1 (mod 7).
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Proof. The necessity of n ≡ 0 or 1 (mod 7) is obvious since those are the only orders such

that 7|
(
n
2

)
. The proof of sufficiency proceeds by checking two cases.

(i) Suppose n ≡ 0 (mod 7). For n = 7, an R4(1, 2)-design of order n exists as shown in

Example 3.18. Also, an R4(1, 2)-design on K7,7 exists as shown in Example 3.20. By

Lemma 3.2, a {K7, K7,7}-decomposition of K7t exists for each t ≥ 2; consequently, an

R4(1, 2)-design of order 7t exists for each positive integer t according to Proposition 3.1.

(ii) Suppose n ≡ 1 (mod 7). For n = 8, an R4(1, 2)-design of order 8 exists as shown

in Example 3.19. Once again, an R4(1, 2)-design on K7,7 exists as shown in Exam-

ple 3.20. By Lemma 3.2, a {K8, K7,7}-decomposition of K7t+1 exists for each t ≥ 2;

thus, an R4(1, 2)-design of order 7t + 1 exists for each positive integer t according to

Proposition 3.1.

Therefore, an R4(1, 2)-design of order n exists for each n ≡ 0 or 1 (mod 7).

With the spectrum of R4(1, 2) established, the intersection problem is now solved by

considering a few small designs.

Example 3.21. Starting with B7 from Example 3.18, consider the following three

R4(1, 2)-designs of order 7.

B7 = {R(3; 4, 5, 7, 1; 2, 6), R(1; 5, 6, 7, 2; 3, 4), R(2; 6, 4, 7, 3; 1, 5)}

Transposing vertices 6 and 7 in B7 yields the design

B0
7 = {R(3; 4, 5, 6, 1; 2, 7), R(1; 5, 7, 6, 2; 3, 4), R(2; 7, 4, 6, 3; 1, 5)}

which is disjoint from B7.

Transposing vertices 2 and 6 in B7 yields a design

B1
7 = {R(3; 4, 5, 7, 1; 2, 6), R(1; 5, 2, 7, 6; 3, 4), R(6; 2, 4, 7, 3; 1, 5)}
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that shares exactly 1 block with B7. Thus IR4(1,2)(7) = JR4(1,2)(7).

Example 3.22. Starting with B8 from Example 3.19, consider the following three

R4(1, 2)-designs of order 8.

B8 = {R(8; 6, 4, 3, 1; 5, 7), R(3; 5, 7, 8, 2; 4, 6), R(1; 8, 5, 6, 3; 2, 7), R(6; 7, 2, 1, 4; 5, 8)}

Transposing vertices 7 and 8 in B8 yields the following design that is disjoint from B8.

B0
8 = {R(7; 6, 4, 3, 1; 5, 8), R(3; 5, 8, 7, 2; 4, 6), R(1; 7, 5, 6, 3; 2, 8), R(6; 8, 2, 1, 4; 5, 7)}

Transposing vertices 5 and 7 in B8 yields the following design that has exactly one block in

common with B8.

B1
8 = {R(8; 6, 4, 3, 1; 5, 7), R(3; 7, 5, 8, 2; 4, 6), R(1; 8, 7, 6, 3; 2, 5), R(6; 5, 2, 1, 4; 7, 8)}

The last two blocks in B8 form a trade of volume 2 in the design. The trade and a mate are

illustrated in the subgraph of K8 shown in Figure 3.19.

Figure 3.19: A Trade of Volume 2 and a Mate in an R4(1, 2)-Design of Order 8
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Thus IR4(1,2)(8) = JR4(1,2)(8).
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As with the previous graphs, some elements of IR4(1,2)(K7,7) must be shown in order to

solve the intersection problem for n ≥ 14 in the spectrum of R4(1, 2).

Example 3.23. Looking at the R4(1, 2)-design on K7,7 of Example 3.20,

B7,7 = {R((i+ 1, 2), (i+ 2, 1), (i, 2), (i, 1); (i+ 3, 2), (i+ 4, 2), (i+ 5, 1)) | 0 ≤ i ≤ 6}

a disjoint design is readily found by changing the second coordinates of each vertex in each

block as shown below.

B0
7,7 = {R((i+ 1, 1), (i+ 2, 2), (i, 1), (i, 2); (i+ 3, 1), (i+ 4, 1), (i+ 5, 2)) | 0 ≤ i ≤ 6}

(Note that addition is done modulo 7 in both designs.)

Transposing vertices (3, 2) and (4, 2) in B7,7 yields a design B2
7,7 on K7,7 that has exactly

two blocks in common with B7,7. For more details, see Example A.3 in the appendix.

Hence IR4(1,2)(K7,7) ⊇ {0, 2, 7}.

Once again, the solution for order 14 is more easily handled separately from the higher

orders in the spectrum of R4(1, 2).

Example 3.24. From Lemma 3.2 and Theorem 3.9, an R4(1, 2)-design of order 14 can be

constructed using 2 R4(1, 2)-designs of order 7, an R4(1, 2)-design on K7,7, and a {K7, K7,7}-

decomposition of K14. From Lemma 3.3 and Examples 3.21 and 3.23,

IR4(1,2)(14) ⊇ 2 ∗ IR4(1,2)(7) + IR4(1,2)(K7,7)

⊇ 2 ∗ {0, 1, 3}+ {0, 2, 7}

⊇ {0, 1, 2, 3, 4, 6}+ {0, 2, 7}

⊇ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13}

⊇ JR4(1,2)(14).
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Hence IR4(1,2)(14) = JR4(1,2)(14).

The intersection problem for the remaining orders n ∈ Spec(R4(1, 2)) are solved in the

following theorem.

Theorem 3.10. If n ∈ Spec(R4(1, 2)), then

IR4(1,2)(n) = JR4(1,2)(n).

Proof. As shown in Theorem 3.9, the values of n ∈ Spec(R4(1, 2)) are n ≡ 0 or 1 (mod 7).

Thus the proof proceeds by considering two cases.

(i) Suppose n ≡ 0 (mod 7). For n = 7 and n = 14, IR4(1,2)(n) = JR4(1,2)(n) as shown in

Examples 3.21 and 3.24 respectively. For n = 7t with t ≥ 3 an integer, it was shown

in Theorem 3.9 that a R4(1, 2)-design of order n can be constructed using a

{K7, K7,7}-decomposition of K7t with t blocks isomorphic to K7 and
(
t
2

)
blocks

isomorphic to K7,7. From Lemma 3.3,

IR4(1,2)(7t) ⊇ t ∗ IR4(1,2)(7) +
(
t
2

)
∗ IR4(1,2)(K7,7)

⊇ t ∗ {0, 1, 3}+
(
t
2

)
∗ {0, 7}

⊇
{

0, 1, 2, . . . , 1
7

(
7t
2

)
− 3, 1

7

(
7t
2

)
− 2, 1

7

(
7t
2

)}
(See proof of Theorem 3.6.)

⊇ JR4(1,2)(7t).

(ii) Suppose n ≡ 1 (mod 7). For n = 8, IR4(1,2)(n) = JR4(1,2)(n) as shown in Example 3.22.

For n = 7t+1 with t ≥ 2 an integer, it was shown in Theorem 3.9 that a R4(1, 2)-design

of order n can be constructed using a {K8, K7,7}-decomposition of K7t+1 with t blocks

isomorphic to K8 and
(
t
2

)
blocks isomorphic to K7,7.
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Consequently

IR4(1,2)(7t+ 1) ⊇ t ∗ IR4(1,2)(8) +
(
t
2

)
∗ IR4(1,2)(K7,7)

⊇ t ∗ {0, 1, 2, 4}+
{

7r | 0 ≤ r ≤
(
t
2

)}
⊇
{

0, 1, 2, . . . , 1
7

(
7t+1

2

)
− 3, 1

7

(
7t+1

2

)
− 2, 1

7

(
7t+1

2

)}
(See Theorem 3.6.)

⊇ JSE4(1,2)(7t+ 1).

Therefore, IR4(1,2)(n) = JR4(1,2)(n) for each n ∈ Spec(R4(1, 2)).

3.3 The “Starship Enterprise” Graph Containing 7 Vertices and a 4-Cycle

Once again, the graph under discussion does not appear to have a set notation; thus,

notation will be given in the following definition.

Definition 3.8. Let SEk(`,m)1 (` ≤ m) be the graph with a cycle of length k and two

edge-disjoint paths of length ` > 0 and m > 0 incident on one vertex in the cycle.

Example 3.25. The graph SE4(1, 2) has vertex set V (SE4(1, 2)) = {a, b, c, d, e, f, g} and

edge set E(SE4(1, 2)) = {ab, bc, cd, ad, de, df, fg}. For brevity, this graph will be denoted by

the vector SE(a, b, c, d; e, f, g) henceforth. This graph can be seen in Figure 3.20.

Figure 3.20: The “Starship Enterprise” Graph SE4(1, 2)

a

b

c

d
e

f g

The intersection problem for the graph SE4(1, 1) is solved in [13], and the following

discussion solves the intersection problem for SE4(1, 2). First the spectrum needs to be

shown for this graph which will be done through several examples and Lemma 3.2.

1By appropriately orienting the vertices, these graphs look like a top-down view of the Starship Enterprise
from the various Star Trek films and television series. Hence the initialism “SE” is used.
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Example 3.26. The following set forms an SE4(1, 2)-design of order 7:

B7 = {SE(6, 5, 7, 1; 2, 4, 3), SE(4, 6, 7, 2; 3, 5, 1), SE(5, 4, 7, 3; 1, 6, 2)}.

As graphs, the blocks are shown in Figure 3.21.

Figure 3.21: B7, an SE4(1, 2)-Design of Order 7
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Example 3.27. The following set forms an SE4(1, 2)-design of order 8:

B8 = {SE(4, 3, 6, 1; 5, 8, 7), SE(6, 5, 7, 2; 3, 8, 4), SE(7, 6, 8, 3; 1, 5, 2), SE(2, 1, 7, 4; 6, 5, 8)}.

As graphs, the blocks can be seen in Figure 3.22.

Figure 3.22: B8, an SE4(1, 2)-Design of Order 8
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Example 3.28. Let V (K7,7) = Z7×{1, 2} with partitions A = Z7×{1} and B = Z7×{2}.

Then the following set is an SE4(1, 2)-design on K7,7.

B7,7 = {SE((i, 2), (i, 1), (i+ 2, 2), (i+ 1, 1); (i+ 5, 2), (i+ 6, 2), (i+ 3, 1)) | 0 ≤ i ≤ 6}
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The addition in the first coordinates is done modulo 7. To see that this is a design on

K7,7, notice that for each j ∈ Z7 there is some edge {(x, 1), (y, 2)} in each block of B7,7 such

that y − x = j. Thus each edge of K7,7 is in some block of B7,7, and |B7,7| = 7 which is the

number of blocks expected in an SE4(1, 2)-design on K7,7. Also, see Figure 3.23.

Figure 3.23: B7,7, a Cyclic SE4(1, 2)-Design on K7,7
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To see each of the blocks in B7,7, view Figure A.7 in the appendix.

The spectrum of SE4(1, 2) is outlined in the next theorem.

Theorem 3.11. There exists an SE4(1, 2)-design of order n if and only if

n ≡ 0 or 1 (mod 7).

Proof. The necessity of the orders n ≡ 0 or 1 (mod 7) is clear given that these are the only

orders such that 7|
(
n
2

)
. Showing their sufficiency proceeds by checking two cases.

(i) Suppose n ≡ 0 (mod 7). For n = 7, an SE4(1, 2)-design of order n has been exhibited

in Example 3.26. For n = 7t (t ≥ 2), an SE4(1, 2)-design of order n exists according to

Proposition 3.1 and Lemma 3.2 because there exists both an SE4(1, 2)-design of order

7 and an SE4(1, 2)-design on K7,7 (Example 3.28). Hence there is an SE4(1, 2)-design

of order 7t for each positive integer t.

(ii) Suppose n ≡ 1 (mod 7). For n = 8, an SE4(1, 2)-design of order n has been exhibited

in Example 3.27. For n = 7t+1 (t ≥ 2), an SE4(1, 2)-design of order n exists according

to Proposition 3.1 and Lemma 3.2 because there exists both an SE4(1, 2)-design of order

45



8 and an SE4(1, 2)-design on K7,7. Thus there is an SE4(1, 2)-design of order 7t + 1

for each positive integer t.

Therefore an SE4(1, 2)-design of order n exists if and only if n ≡ 0 or 1 (mod 7).

As usual, solving the intersection problem for SE4(1, 2) proceeds by

considering a few small cases.

Example 3.29. Starting with the SE4(1, 2)-design of order 7 given in Example 3.26,

permutation of select vertices will yield a disjoint design and a design that shares one block

in common with the original design. As a reminder, the original design is

B7 = {SE(6, 5, 7, 1; 2, 4, 3), SE(4, 6, 7, 2; 3, 5, 1), SE(5, 4, 7, 3; 1, 6, 2)}.

Transposing vertices 3 and 4 gives the following SE4(1, 2)-design of order 7 which is disjoint

from the original design.

B0
7 = {SE(6, 5, 7, 1; 2, 3, 4), SE(3, 6, 7, 2; 4, 5, 1), SE(5, 3, 7, 4; 1, 6, 2)}.

Transposing vertices 6 and 7 gives a design shown below that shares exactly one block in

common with B7.

B1
7 = {SE(6, 5, 7, 1; 2, 4, 3), SE(4, 7, 6, 2; 3, 5, 1), SE(5, 4, 6, 3; 1, 7, 2)}.

Consequently ISE4(1,2)(7) = JSE4(1,2)(7).

Example 3.30. For the SE4(1, 2)-design of order 8 of Example 3.27

B8 = {SE(4, 3, 6, 1; 5, 8, 7), SE(6, 5, 7, 2; 3, 8, 4), SE(7, 6, 8, 3; 1, 5, 2), SE(2, 1, 7, 4; 6, 5, 8)},

46



a disjoint design can be found by transposing vertices 5 and 7 as shown in the design below.

B0
8 = {SE(4, 3, 6, 1; 7, 8, 5), SE(6, 7, 5, 2; 3, 8, 4), SE(5, 6, 8, 3; 1, 7, 2), SE(2, 1, 5, 4; 6, 7, 8)}

To obtain a design that shares exactly one block with B8, transpose vertices 4 and 6 as seen

in the design below.

B1
8 = {SE(4, 3, 6, 1; 5, 8, 7), SE(4, 5, 7, 2; 3, 8, 6), SE(7, 4, 8, 3; 1, 5, 2), SE(2, 1, 7, 6; 4, 5, 8)}

Notice that the last two blocks of B8 form a trade of volume 2 in the design as illustrated in

Figure 3.24.

Figure 3.24: A Trade of Volume 2 and a Mate in an SE4(1, 2)-Design of Order 8

Trade Mate

5

3

8

2

1

6

4

7

5

3

8

2

1

6

4

7

Thus ISE4(1,2)(8) = JSE4(1,2)(8).

To solve the intersection problem for larger orders in Spec(SE4(1, 2)), the existence of

some of the elements in ISE4(1,2)(K7,7) needs to be shown.

Example 3.31. Looking at the SE4(1, 2)-design on K7,7 of Example 3.28,

B7,7 = {SE((i, 2), (i, 1), (i+ 2, 2), (i+ 1, 1); (i+ 5, 2), (i+ 6, 2), (i+ 3, 1)) | 0 ≤ i ≤ 6},
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a disjoint design is readily found by changing the second coordinates of each vertex in

each block as shown below.

B0
7,7 = {SE((i, 1), (i, 2), (i+ 2, 1), (i+ 1, 2); (i+ 5, 1), (i+ 6, 1), (i+ 3, 2)) | 0 ≤ i ≤ 6}

(Note that addition is done modulo 7 in both designs.)

Transposing vertices (0, 2) and (2, 2) in B7,7 yields a design B2
7,7 on K7,7 that has exactly

two blocks in common with B7,7. (For full details, see Example A.4.)

Hence ISE4(1,2)(K7,7) ⊇ {0, 2, 7}.

The intersection problem for order 14 is more easily handled separately from the other

higher orders. The solution is shown in the next example.

Example 3.32. From Lemma 3.2 and Theorem 3.11, an SE4(1, 2)-design of order 14 can

be constructed by combining two SE4(1, 2)-designs of order 7 and one SE4(1, 2)-design on

K7,7 in a {K7, K7,7}-decomposition of K14. From Lemma 3.3 and Examples 3.29 and 3.31,

ISE4(1,2)(14) ⊇ 2 ∗ ISE4(1,2)(7) + ISE4(1,2)(K7,7)

⊇ 2 ∗ {0, 1, 3}+ {0, 2, 7}

⊇ {0, 1, 2, 3, 4, 6}+ {0, 2, 7}

⊇ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13}

⊇ JSE4(1,2)(14).

Thus ISE4(1,2)(14) = JSE4(1,2)(14).

The solution to the intersection problem for SE4(1, 2) is completed in the following

theorem.
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Theorem 3.12. If n ∈ Spec(SE4(1, 2)), then

ISE4(1,2)(n) = JSE4(1,2)(n).

Proof. For n = 7, n = 8, and n = 14, ISE4(1,2)(n) = JSE4(1,2)(n) as shown in Examples 3.29,

3.30, and 3.32 respectively. For the remaining orders in Spec(SE4(1, 2)), two cases are

considered.

(i) Suppose n ≡ 0 (mod 7) and n ≥ 21; that is, n = 7t for some integer t ≥ 3. From

Theorem 3.11, an SE4(1, 2)-design of order 7t (t ≥ 3) can be constructed containing t

SE4(1, 2)-designs of order 7 and
(
t
2

)
SE4(1, 2)-designs onK7,7. According to Lemma 3.3,

if t ≥ 3,

ISE4(1,2)(7t) ⊇ t ∗ ISE4(1,2)(7) +
(
t
2

)
∗ ISE4(1,2)(K7,7)

⊇ t ∗ {0, 1, 3}+
(
t
2

)
∗ {0, 7}

⊇
{

0, 1, 2, . . . , 1
7

(
7t
2

)
− 3, 1

7

(
7t
2

)
− 2, 1

7

(
7t
2

)}
(See proof of Theorem 3.6.)

⊇ JSE4(1,2)(7t).

(ii) Suppose n ≡ 1 (mod 7) and n ≥ 15; that is, n = 7t + 1 for some integer t ≥ 2. From

Theorem 3.11, an SE4(1, 2)-design of order 7t+1 (t ≥ 2) can be constructed containing

t SE4(1, 2)-designs of order 8 and
(
t
2

)
SE4(1, 2)-designs on K7,7. By Lemma 3.3, if t ≥ 2,

ISE4(1,2)(7t+ 1) ⊇ t ∗ ISE4(1,2)(8) +
(
t
2

)
∗ ISE4(1,2)(K7,7)

⊇ t ∗ {0, 1, 2, 4}+
{

7r | 0 ≤ r ≤
(
t
2

)}
⊇
{

0, 1, 2, . . . , 1
7

(
7t+1

2

)
− 3, 1

7

(
7t+1

2

)
− 2, 1

7

(
7t+1

2

)}
(See Theorem 3.6.)

⊇ JSE4(1,2)(7t+ 1).

Therefore ISE4(1,2)(n) = JSE4(1,2)(n) for each n ∈ Spec(SE4(1, 2)).
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3.4 A Graph Containing a 4-Cycle with a Pendant Edge on One Vertex and a

Path of Length Two on the Opposite Vertex in the Cycle

As with previous graphs, there is no standard convention for naming the graph of interest

so one is given in the following definition.

Definition 3.9. The graph T (`,m) (0 < ` ≤ m) is a graph containing a cycle of length 4,

a path of length ` incident on one vertex in the 4-cycle, and a path of length m incident on

the opposite vertex in the 4-cycle.

Example 3.33. The graph T (1, 2) has vertex set V (T (1, 2)) = {a, b, c, d, e, f, g} and edge

set E(T (1, 2)) = {ab, bc, cd, de, be, df, fg}. For convenience, this graph will be denoted by

the vector T (a; b, c, d, e; f, g) from now on. The graph is illustrated in Figure 3.25.

Figure 3.25: The Graph T (1, 2)
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The intersection problem for T (1, 1) is solved in [13]. In the following discussion, the in-

tersection problem for T (1, 2) is solved, but first the spectrum of T (1, 2) must be established.

As usual, some small designs are given first.

Example 3.34. The following block set is a T (1, 2)-design of order 7.

B7 = {T (5; 1, 2, 4, 7; 6, 3), T (6; 2, 3, 5, 7; 4, 1), T (4; 3, 1, 6, 7; 5, 2)}

The blocks are shown as graphs in Figure 3.26.
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Figure 3.26: B7, a T (1, 2)-Design of Order 7
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Example 3.35. The following block set is a T (1, 2)-design of order 8.

B8 = {T (2; 8, 5, 1, 7; 6, 4), T (1; 3, 4, 2, 5; 6, 7), T (4; 5, 6, 3, 7; 8, 1), T (3; 2, 1, 4, 7; 8, 6)}

The blocks are illustrated as graphs in Figure 3.27.

Figure 3.27: B8, a T (1, 2)-Design of Order 8
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Example 3.36. Let V (K7,7) = Z7×{1, 2} with partitions A = Z7×{1} and B = Z7×{2}.

Then

B7,7 = {T ((i+ 6, 2); (i+ 2, 1), (i, 2), (i, 1), (i+ 1, 2); (i+ 2, 2), (i+ 6, 1)) | 0 ≤ i ≤ 6}

where the addition in the first coordinates is done modulo 7 is a T (1, 2)-design on K7,7. To

see that this is a design on K7,7, notice that for each j ∈ Z7 there is some edge {(x, 1), (y, 2)}

in each block of B7,7 such that y − x = j. Thus each edge of K7,7 is in some block of B7,7,
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and |B7,7| = 7 which is the number of blocks expected in an T (1, 2)-design on K7,7. Also,

see Figure 3.28.

Figure 3.28: B7,7, a Cyclic T (1, 2)-Design on K7,7
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For a complete list of the blocks as graphs, see Figure A.9 in the appendix.

Theorem 3.13. There exists a T (1, 2)-design of order n if and only if n ≡ 0 or 1 (mod 7).

Proof. The necessity of n ≡ 0 or 1 (mod 7) is obvious since those are the only orders such

that 7|
(
n
2

)
. The proof of sufficiency proceeds by checking two cases.

(i) Suppose n ≡ 0 (mod 7). For n = 7, a T (1, 2)-design of order n exists as shown in

Example 3.34. Also, a T (1, 2)-design on K7,7 exists as shown in Example 3.36. By

Lemma 3.2, a {K7, K7,7}-decomposition of K7t exists for each t ≥ 2; consequently, a

T (1, 2)-design of order 7t exists for each positive integer t according to Proposition 3.1.

(ii) Suppose n ≡ 1 (mod 7). For n = 8, a T (1, 2)-design of order 8 exists as shown in

Example 3.35. Once again, a T (1, 2)-design on K7,7 exists as shown in Example 3.36.

By Lemma 3.2, a {K8, K7,7}-decomposition of K7t+1 exists for each t ≥ 2; thus, a

T (1, 2)-design of order 7t+ 1 exists for each positive integer t according to

Proposition 3.1.

Therefore, a T (1, 2)-design of order n exists for each n ≡ 0 or 1 (mod 7).

With the spectrum of T (1, 2) established, the intersection problem is now solved by

considering a few small designs.
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Example 3.37. Starting with B7 from Example 3.34, consider the following three

T (1, 2)-designs of order 7.

B7 = {T (5; 1, 2, 4, 7; 6, 3), T (6; 2, 3, 5, 7; 4, 1), T (4; 3, 1, 6, 7; 5, 2)}

Transposing vertices 6 and 7 in B7 yields the design

B0
7 = {T (5; 1, 2, 4, 6; 7, 3), T (7; 2, 3, 5, 6; 4, 1), T (4; 3, 1, 7, 6; 5, 2)}

which is disjoint from B7.

Transposing vertices 2 and 7 in B7 yields a design

B1
7 = {T (5; 1, 2, 4, 7; 6, 3), T (6; 7, 3, 5, 2; 4, 1), T (4; 3, 1, 6, 2; 5, 7)}

that shares exactly 1 block with B7. Thus IT (1,2)(7) = JT (1,2)(7).

Example 3.38. Starting with B8 from Example 3.35, consider the following three

T (1, 2)-designs of order 8.

B8 = {T (2; 8, 5, 1, 7; 6, 4), T (1; 3, 4, 2, 5; 6, 7), T (4; 5, 6, 3, 7; 8, 1), T (3; 2, 1, 4, 7; 8, 6)}

Transposing vertices 7 and 8 in B8 yields the following design that is disjoint from B8.

B0
8 = {T (2; 7, 5, 1, 8; 6, 4), T (1; 3, 4, 2, 5; 6, 8), T (4; 5, 6, 3, 8; 7, 1), T (3; 2, 1, 4, 8; 7, 6)}

Transposing vertices 5 and 7 in B8 yields the following design that has exactly one block in

common with B8.

B1
8 = {T (2; 8, 5, 1, 7; 6, 4), T (1; 3, 4, 2, 7; 6, 5), T (4; 7, 6, 3, 5; 8, 1), T (3; 2, 1, 4, 5; 8, 6)}
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The last two blocks in B8 form a trade of volume 2 in the design. The trade and a mate

are illustrated in the subgraph of K8 shown in Figure 3.29.

Figure 3.29: A Trade of Volume 2 and a Mate in a T (1, 2)-Design of Order 8

Trade Mate

8

3

6

1

2

5

4

7

8

3

6

1

2

5

4

7

Thus IT (1,2)(8) = JT (1,2)(8).

As with the previous graphs, some elements of IT (1,2)(K7,7) must be shown in order to

solve the intersection problem for n ≥ 14 in the spectrum of T (1, 2).

Example 3.39. Looking at the T (1, 2)-design on K7,7 of Example 3.36,

B7,7 = {T ((i+ 6, 2); (i+ 2, 1), (i, 2), (i, 1), (i+ 1, 2); (i+ 2, 2), (i+ 6, 1)) | 0 ≤ i ≤ 6}

a disjoint design is readily found by changing the second coordinates of each vertex in each

block as shown below.

B0
7,7 = {T ((i+ 6, 1); (i+ 2, 2), (i, 1), (i, 2), (i+ 1, 1); (i+ 2, 1), (i+ 6, 2)) | 0 ≤ i ≤ 6}

(Note that addition is done modulo 7 in both designs.)

Transposing vertices (3, 2) and (4, 2) in B7,7 yields a design B3
7,7 on K7,7 that has exactly

three blocks in common with B7,7. For more insight, view Example A.5.
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Hence IT (1,2)(K7,7) ⊇ {0, 3, 7}.

Once again, the solution for order 14 is more easily handled separately from the higher

orders in the spectrum of T (1, 2).

Example 3.40. From Lemma 3.2 and Theorem 3.13, a T (1, 2)-design of order 14 can be

constructed using 2 T (1, 2)-designs of order 7, a T (1, 2)-design on K7,7, and a

{K7, K7,7}-decomposition of K14. From Lemma 3.3 and Examples 3.37 and 3.39,

IT (1,2)(14) ⊇ 2 ∗ IT (1,2)(7) + IT (1,2)(K7,7)

⊇ 2 ∗ {0, 1, 3}+ {0, 3, 7}

⊇ {0, 1, 2, 3, 4, 6}+ {0, 3, 7}

⊇ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13}

⊇ JT (1,2)(14).

Hence IT (1,2)(14) = JT (1,2)(14).

The intersection problem for the remaining orders n ∈ Spec(T (1, 2)) are solved in the

following theorem.

Theorem 3.14. If n ∈ Spec(T (1, 2)), then

IT (1,2)(n) = JT (1,2)(n).

Proof. As shown in Theorem 3.13, the values of n ∈ Spec(T (1, 2)) are n ≡ 0 or 1 (mod 7).

Thus the proof proceeds by considering two cases.

(i) Suppose n ≡ 0 (mod 7). For n = 7 and n = 14, IT (1,2)(n) = JT (1,2)(n) as shown in

Examples 3.37 and 3.40 respectively. For n = 7t with t ≥ 3 an integer, it was shown

in Theorem 3.13 that a T (1, 2)-design of order n can be constructed using a
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{K7, K7,7}-decomposition of K7t with t blocks isomorphic to K7 and
(
t
2

)
blocks

isomorphic to K7,7. From Lemma 3.3,

IT (1,2)(7t) ⊇ t ∗ IT (1,2)(7) +
(
t
2

)
∗ IT (1,2)(K7,7)

⊇ t ∗ {0, 1, 3}+
(
t
2

)
∗ {0, 7}

⊇
{

0, 1, 2, . . . , 1
7

(
7t
2

)
− 3, 1

7

(
7t
2

)
− 2, 1

7

(
7t
2

)}
(See proof of Theorem 3.6.)

⊇ JT (1,2)(7t).

(ii) Suppose n ≡ 1 (mod 7). For n = 8, IT (1,2)(n) = JT (1,2)(n) as shown in Example 3.38.

For n = 7t+1 with t ≥ 2 an integer, it was shown in Theorem 3.13 that a T (1, 2)-design

of order n can be constructed using a {K8, K7,7}-decomposition of K7t+1 with t blocks

isomorphic to K8 and
(
t
2

)
blocks isomorphic to K7,7.

Consequently

IT (1,2)(7t+ 1) ⊇ t ∗ IT (1,2)(8) +
(
t
2

)
∗ IT (1,2)(K7,7)

⊇ t ∗ {0, 1, 2, 4}+
{

7r | 0 ≤ r ≤
(
t
2

)}
⊇
{

0, 1, 2, . . . , 1
7

(
7t+1

2

)
− 3, 1

7

(
7t+1

2

)
− 2, 1

7

(
7t+1

2

)}
(See Theorem 3.6.)

⊇ JT (1,2)(7t+ 1).

Therefore, IT (1,2)(n) = JT (1,2)(n) for each n ∈ Spec(T (1, 2)).

3.5 A Graph Containing a 4-Cycle with a Pendant Edge on One Vertex and a

Path of Length Two on an Adjacent Vertex in the Cycle

As with the previous graphs, some notation needs to be introduced before the solution

to the intersection problem is given.
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Definition 3.10. Let U(`,m) (` ≤ m) be the graph with a cycle of length 4, a path of

length ` > 0 incident on one vertex in the cycle, and a path of length m > 0 incident on an

adjacent vertex in the cycle.

Example 3.41. The graph U(1, 2) has vertex set V (U(1, 2)) = {a, b, c, d, e, f, g} and edge

set E(U(1, 2)) = {ab, bc, cd, de, be, ef, fg}. For brevity, this graph will be denoted by the

vector U(a; b, c, d, e; f, g) henceforth. The graph can be seen in Figure 3.30.

Figure 3.30: The Graph U(1, 2)
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The intersection problem for the graph U(1, 1) is solved in [13], and the following

discussion solves the intersection problem for U(1, 2). First the spectrum needs to be shown

for this graph which will be done through several examples and Lemma 3.2.

Example 3.42. The following set forms a U(1, 2)-design of order 7:

B7 = {U(5; 4, 7, 3, 1; 6, 2), U(6; 5, 7, 1, 2; 4, 3), U(4; 6, 7, 2, 3; 5, 1)}.

As graphs, the blocks are shown in Figure 3.31.

Figure 3.31: B7, a U(1, 2)-Design of Order 7
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Example 3.43. The following set forms a U(1, 2)-design of order 8:

B8 = {U(4; 5, 7, 2, 1; 3, 8), U(7; 8, 5, 3, 2; 6, 4), U(5; 6, 8, 4, 3; 7, 1), U(8; 1, 6, 7, 4; 2, 5)}.

As graphs, the blocks are shown in Figure 3.32.

Figure 3.32: B8, a U(1, 2)-Design of Order 8
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Example 3.44. If V (K7,7) = Z7 × {1, 2} with partitions A = Z7 × {1} and B = Z7 × {2},

then

B7,7 = {U((i+ 4, 1); (i+ 1, 2), (i, 1), (i, 2), (i+ 2, 1); (i+ 5, 2), (i+ 3, 1)) | 0 ≤ i ≤ 6},

where the addition in the first coordinates is done modulo 7, is a U(1, 2)-design on K7,7. To

see that this is a design on K7,7, notice that for each j ∈ Z7 there is some edge {(x, 1), (y, 2)}

in each block of B7,7 such that y − x = j. Thus each edge of K7,7 is in some block of B7,7,

and |B7,7| = 7 which is the number of blocks expected in a U(1, 2)-design on K7,7. Also, see

Figure 3.33.

Figure 3.33: B7,7, a Cyclic U(1, 2)-Design on K7,7
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For a complete listing of the blocks in B7,7, see Figure A.11 in the appendix.

The spectrum of U(1, 2) is outlined in the next theorem.

Theorem 3.15. There exists a U(1, 2)-design of order n if and only if n ≡ 0 or 1 (mod 7).

Proof. The necessity of the orders n ≡ 0 or 1 (mod 7) is clear given that these are the only

orders such that 7|
(
n
2

)
. Showing their sufficiency proceeds by checking two cases.

(i) Suppose n ≡ 0 (mod 7). For n = 7, a U(1, 2)-design of order n has been exhibited

in Example 3.42. For n = 7t (t ≥ 2), a U(1, 2)-design of order n exists according to

Proposition 3.1 and Lemma 3.2 because there exists both a U(1, 2)-design of order 7

and a U(1, 2)-design on K7,7 (Example 3.44). Hence there is a U(1, 2)-design of order

7t for each positive integer t.

(ii) Suppose n ≡ 1 (mod 7). For n = 8, a U(1, 2)-design of order n has been exhibited in

Example 3.43. For n = 7t + 1 (t ≥ 2), a U(1, 2)-design of order n exists according to

Proposition 3.1 and Lemma 3.2 because there exists both a U(1, 2)-design of order 8

and a U(1, 2)-design on K7,7. Thus there is a U(1, 2)-design of order 7t + 1 for each

positive integer t.

Therefore a U(1, 2)-design of order n exists if and only if n ≡ 0 or 1 (mod 7).

As usual, solving the intersection problem for U(1, 2) proceeds by considering a few

small cases.

Example 3.45. Starting with the U(1, 2)-design of order 7 given in Example 3.42,

B7 = {U(5; 4, 7, 3, 1; 6, 2), U(6; 5, 7, 1, 2; 4, 3), U(4; 6, 7, 2, 3; 5, 1)},

transposing vertices 6 and 7 yields the following design that is disjoint from B7.

B0
7 = {U(5; 4, 6, 3, 1; 7, 2), U(7; 5, 6, 1, 2; 4, 3), U(4; 7, 6, 2, 3; 5, 1)}
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There is not an easily observable permutation of the vertices that gives a design with one

block in common with B7. Instead a demonstration that the last two blocks in B7 form a

trade of volume 2 is given in Figure 3.34.

Figure 3.34: A Trade of Volume 2 and a Mate in a U(1, 2)-Design of Order 7
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Consequently IU(1,2)(7) = JU(1,2)(7).

Example 3.46. For the U(1, 2)-design of order 8 of Example 3.43

B8 = {U(4; 5, 7, 2, 1; 3, 8), U(7; 8, 5, 3, 2; 6, 4), U(5; 6, 8, 4, 3; 7, 1), U(8; 1, 6, 7, 4; 2, 5)},

a disjoint design can be found by transposing vertices 7 and 8 as shown in the design below.

B0
8 = {U(4; 5, 8, 2, 1; 3, 7), U(8; 7, 5, 3, 2; 6, 4), U(5; 6, 7, 4, 3; 8, 1), U(7; 1, 6, 8, 4; 2, 5)}.

Due to a lack of symmetry in the graph U(1, 2), there is no obvious permutation of vertices

that generates a design with one block in common with B8. A design with one block in

common with B8 does exist however and is given as follows.

B1
8 = {U(4; 5, 7, 2, 1; 3, 8), U(2; 8, 7, 4, 6; 3, 5), U(8; 4, 1, 7, 3; 2, 6), U(7; 6, 1, 8, 5; 2, 4)}.

Lastly, observe that the last two blocks of B8 form a trade of volume 2 in the design as

illustrated in Figure 3.35.

60



Figure 3.35: A Trade of Volume 2 and a Mate in a U(1, 2)-Design of Order 8
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Thus IU(1,2)(8) = JU(1,2)(8).

To solve the intersection problem for larger orders in Spec(U(1, 2)), the existence of

some of the elements in IU(1,2)(K7,7) needs to be shown.

Example 3.47. Looking at the U(1, 2)-design on K7,7 of Example 3.44,

B7,7 = {U((i+ 4, 1); (i+ 1, 2), (i, 1), (i, 2), (i+ 2, 1); (i+ 5, 2), (i+ 3, 1)) | 0 ≤ i ≤ 6},

a disjoint design is readily found by changing the second coordinates of each vertex in each

block as shown below.

B0
7,7 = {U((i+ 4, 2); (i+ 1, 1), (i, 2), (i, 1), (i+ 2, 2); (i+ 5, 1), (i+ 3, 2)) | 0 ≤ i ≤ 6}

(Note that addition is done modulo 7 in both designs.)

Transposing vertices (3, 2) and (4, 2) in B7,7 yields a design B2
7,7 on K7,7 that has exactly

two blocks in common with B7,7. For more information, see Example A.6.

Hence IU(1,2)(K7,7) ⊇ {0, 2, 7}.

The intersection problem for order 14 is more easily handled separately from the other

higher orders. The solution is shown in the next example.
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Example 3.48. From Lemma 3.2 and Theorem 3.15, a U(1, 2)-design of order 14 can be

constructed by combining two U(1, 2)-designs of order 7 and one U(1, 2)-design on K7,7 in a

{K7, K7,7}-decomposition of K14. From Lemma 3.3 and Examples 3.45 and 3.47,

IU(1,2)(14) ⊇ 2 ∗ ISE4(1,2)(7) + ISE4(1,2)(K7,7)

⊇ 2 ∗ {0, 1, 3}+ {0, 2, 7}

⊇ {0, 1, 2, 3, 4, 6}+ {0, 2, 7}

⊇ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13}

⊇ JU(1,2)(14).

Thus IU(1,2)(14) = JU(1,2)(14).

The solution to the intersection problem for U(1, 2) is completed in the following

theorem.

Theorem 3.16. If n ∈ Spec(U(1, 2)), then

IU(1,2)(n) = JU(1,2)(n).

Proof. For n = 7, n = 8, and n = 14, IU(1,2)(n) = JU(1,2)(n) as shown in Examples 3.45, 3.46,

and 3.48 respectively. For the remaining orders in Spec(U(1, 2)), two cases are considered.

(i) Suppose n ≡ 0 (mod 7) and n ≥ 21; that is, n = 7t for some integer t ≥ 3. From

Theorem 3.15, a U(1, 2)-design of order 7t (t ≥ 3) can be constructed containing t

U(1, 2)-designs of order 7 and
(
t
2

)
U(1, 2)-designs on K7,7. According to Lemma 3.3, if

t ≥ 3,

IU(1,2)(7t) ⊇ t ∗ IU(1,2)(7) +
(
t
2

)
∗ IU(1,2)(K7,7)

⊇ t ∗ {0, 1, 3}+
(
t
2

)
∗ {0, 7}
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⊇
{

0, 1, 2, . . . , 1
7

(
7t
2

)
− 3, 1

7

(
7t
2

)
− 2, 1

7

(
7t
2

)}
(See proof of Theorem 3.6.)

⊇ JU(1,2)(7t).

(ii) Suppose n ≡ 1 (mod 7) and n ≥ 15; that is, n = 7t + 1 for some integer t ≥ 2. From

Theorem 3.15, a U(1, 2)-design of order 7t+ 1 (t ≥ 2) can be constructed containing t

U(1, 2)-designs of order 8 and
(
t
2

)
U(1, 2)-designs on K7,7. By Lemma 3.3, if t ≥ 2,

IU(1,2)(7t+ 1) ⊇ t ∗ IU(1,2)(8) +
(
t
2

)
∗ IU(1,2)(K7,7)

⊇ t ∗ {0, 1, 2, 4}+
{

7r | 0 ≤ r ≤
(
t
2

)}
⊇
{

0, 1, 2, . . . , 1
7

(
7t+1

2

)
− 3, 1

7

(
7t+1

2

)
− 2, 1

7

(
7t+1

2

)}
(See Theorem 3.6.)

⊇ JU(1,2)(7t+ 1).

Therefore IU(1,2)(n) = JU(1,2)(n) for each n ∈ Spec(U(1, 2)).

3.6 The “Viper” Graph Containing a 4-Cycle and 7 Edges

One last time, some notation must be introduced for the graph whose intersection

problem is to be solved.

Definition 3.11. The viper graph V`(m)2 is the graph with m vertices and m edges, con-

taining a cycle of length `, a path of length m− `− 2 incident on a vertex in the cycle, and

two pendant edges at the opposite end of the path.

Example 3.49. The viper graph V4(7) is the graph with vertex set V (V4(7)) = {a, b, c, d, e, f, g}

and edge set E(V4(7)) = {ab, bc, cd, ad, de, ef, eg}. An example of this graph is shown

in Figure 3.36. From now on a graph with these vertex and edge sets will be denoted

V (a, b, c, d; e, f, g).

2Depending on the orientation of the vertices, the graph looks like a diamond shaped head with a forked
tongue which are traits common to the family of snakes known as vipers.
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Figure 3.36: The “Viper” Graph V4(7)
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In the following discussion, the intersection problem for V4(7) is solved, but first the

spectrum of V4(7) must be established. As usual, some small designs are given first.

Example 3.50. The following block set is a V4(7)-design of order 7.

B7 = {V (2, 7, 6, 1; 4, 3, 5), V (3, 7, 4, 2; 5, 1, 6), V (1, 7, 5, 3; 6, 2, 4)}

The blocks are illustrated as graphs in Figure 3.37.

Figure 3.37: B7, a V4(7)-Design of Order 7
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Example 3.51. The following block set is a V4(7)-design of order 8.

B8 = {V (3, 4, 6, 1; 5, 7, 8), V (4, 1, 8, 2; 6, 5, 7), V (6, 8, 7, 3; 2, 1, 5), V (5, 3, 8, 4; 7, 1, 2)}

The blocks are illustrated as graphs in Figure 3.38.

64



Figure 3.38: B8, a V4(7)-Design of Order 8
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Example 3.52. Let V (K7,7) = Z7×{1, 2} with partitions A = Z7×{1} and B = Z7×{2}.

Then

B7,7 = {V ((i, 2), (i, 1), (i+ 1, 2), (i+ 2, 1); (i+ 6, 2), (i+ 3, 1), (i+ 4, 1)) | 0 ≤ i ≤ 6}

where the addition in the first coordinates is done modulo 7 is a V4(7)-design on K7,7. To see

that this is a design on K7,7, notice that for each j ∈ Z7 there is some edge {(x, 1), (y, 2)}

in each block of B7,7 such that y − x = j. Thus each edge of K7,7 is in some block of B7,7,

and |B7,7| = 7 which is the number of blocks expected in an V4(7)-design on K7,7. Also, see

Figure 3.39.

Figure 3.39: B7,7, a Cyclic V4(7)-Design on K7,7
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To see each of the blocks in B7,7 as graphs, look at Figure A.13 in the appendix.

Theorem 3.17. There exists a V4(7)-design of order n if and only if n ≡ 0 or 1 (mod 7).
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Proof. The necessity of n ≡ 0 or 1 (mod 7) is obvious since those are the only orders such

that 7|
(
n
2

)
. The proof of sufficiency proceeds by checking two cases.

(i) Suppose n ≡ 0 (mod 7). For n = 7, a V4(7)-design of order n exists as shown in

Example 3.50. Also, a V4(7)-design on K7,7 exists as shown in Example 3.52. By

Lemma 3.2, a {K7, K7,7}-decomposition of K7t exists for each t ≥ 2; consequently, a

V4(7)-design of order 7t exists for each positive integer t according to Proposition 3.1.

(ii) Suppose n ≡ 1 (mod 7). For n = 8, a V4(7)-design of order 8 exists as shown in

Example 3.51. Once again, a V4(7)-design on K7,7 exists as shown in Example 3.52.

By Lemma 3.2, a {K8, K7,7}-decomposition of K7t+1 exists for each t ≥ 2; thus, a

V4(7)-design of order 7t+1 exists for each positive integer t according to Proposition 3.1.

Therefore, a V4(7)-design of order n exists for each n ≡ 0 or 1 (mod 7).

With the spectrum of V4(7) established, the intersection problem is now solved by

considering a few small designs.

Example 3.53. Starting with B7 from Example 3.50, consider the following three

V4(7)-designs of order 7.

B7 = {V (2, 7, 6, 1; 4, 3, 5), V (3, 7, 4, 2; 5, 1, 6), V (1, 7, 5, 3; 6, 2, 4)}

Transposing vertices 6 and 7 in B7 yields the design

B0
7 = {V (2, 6, 7, 1; 4, 3, 5), V (3, 6, 4, 2; 5, 1, 7), V (1, 6, 5, 3; 7, 2, 4)}

which is disjoint from B7.

Transposing vertices 3 and 5 in B7 yields a design

B1
7 = {V (2, 7, 6, 1; 4, 3, 5), V (5, 7, 4, 2; 3, 1, 6), V (1, 7, 3, 5; 6, 2, 4)}
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that shares exactly 1 block with B7. Thus IV4(7)(7) = JV4(7)(7).

Example 3.54. Starting with B8 from Example 3.51, consider the following three

V4(7)-designs of order 8.

B8 = {V (3, 4, 6, 1; 5, 7, 8), V (4, 1, 8, 2; 6, 5, 7), V (6, 8, 7, 3; 2, 1, 5), V (5, 3, 8, 4; 7, 1, 2)}

Transposing vertices 6 and 8 in B8 yields the following design that is disjoint from B8.

B0
8 = {V (3, 4, 8, 1; 5, 7, 6), V (4, 1, 6, 2; 8, 5, 7), V (8, 6, 7, 3; 2, 1, 5), V (5, 3, 6, 4; 7, 1, 2)}

Transposing vertices 7 and 8 in B8 yields the following design that has exactly one block in

common with B8.

B1
8 = {V (3, 4, 6, 1; 5, 7, 8), V (4, 1, 7, 2; 6, 5, 8), V (6, 7, 8, 3; 2, 1, 5), V (5, 3, 7, 4; 8, 1, 2)}

The last two blocks in B8 form a trade of volume 2 in the design. The trade and a mate are

illustrated in the subgraph of K8 shown in Figure 3.40.

Figure 3.40: A Trade of Volume 2 and a Mate in a V4(7)-Design of Order 8

Trade Mate
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1
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3

2

Thus IV4(7)(8) = JV4(7)(8).
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As with the previous graphs, some elements of IV4(7)(K7,7) must be shown in order to

solve the intersection problem for n ≥ 14 in the spectrum of V4(7).

Example 3.55. Looking at the V4(7)-design on K7,7 of Example 3.52,

B7,7 = {V ((i, 2), (i, 1), (i+ 1, 2), (i+ 2, 1); (i+ 6, 2), (i+ 3, 1), (i+ 4, 1)) | 0 ≤ i ≤ 6}

a disjoint design is readily found by changing the second coordinates of each vertex in each

block as shown below.

B0
7,7 = {V ((i, 1), (i, 2), (i+ 1, 1), (i+ 2, 2); (i+ 6, 1), (i+ 3, 2), (i+ 4, 2)) | 0 ≤ i ≤ 6}

(Note that addition is done modulo 7 in both designs.)

Transposing vertices (4, 2) and (5, 2) in B7,7 yields a design B4
7,7 on K7,7 that has exactly

four blocks in common with B7,7. For more details, see Example A.7.

Hence IV4(7)(K7,7) ⊇ {0, 4, 7}.

Once again, the solution for order 14 is more easily handled separately from the higher

orders in the spectrum of V4(7).

Example 3.56. From Lemma 3.2 and Theorem 3.17, a V4(7)-design of order 14 can be

constructed using 2 V4(7)-designs of order 7, a V4(7)-design on K7,7, and a

{K7, K7,7}-decomposition of K14. From Lemma 3.3 and Examples 3.53 and 3.55,

IV4(7)(14) ⊇ 2 ∗ IV4(7)(7) + IV4(7)(K7,7)

⊇ 2 ∗ {0, 1, 3}+ {0, 4, 7}

⊇ {0, 1, 2, 3, 4, 6}+ {0, 4, 7}

⊇ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13}

⊇ JV4(7)(14).
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Hence IV4(7)(14) = JV4(7)(14).

The intersection problem for the remaining orders n ∈ Spec(V4(7)) are solved in the

following theorem.

Theorem 3.18. If n ∈ Spec(V4(7)), then

IV4(7)(n) = JV4(7)(n).

Proof. As shown in Theorem 3.17, the values of n ∈ Spec(V4(7)) are n ≡ 0 or 1 (mod 7).

Thus the proof proceeds by considering two cases.

(i) Suppose n ≡ 0 (mod 7). For n = 7 and n = 14, IV4(7)(n) = JV4(7)(n) as shown in

Examples 3.53 and 3.56 respectively. For n = 7t with t ≥ 3 an integer, it was shown

in Theorem 3.17 that a V4(7)-design of order n can be constructed using a

{K7, K7,7}-decomposition of K7t with t blocks isomorphic to K7 and
(
t
2

)
blocks

isomorphic to K7,7. From Lemma 3.3,

IV4(7)(7t) ⊇ t ∗ IV4(7)(7) +
(
t
2

)
∗ IV4(7)(K7,7)

⊇ t ∗ {0, 1, 3}+
(
t
2

)
∗ {0, 7}

⊇
{

0, 1, 2, . . . , 1
7

(
7t
2

)
− 3, 1

7

(
7t
2

)
− 2, 1

7

(
7t
2

)}
(See proof of Theorem 3.6.)

⊇ JV4(7)(7t).

(ii) Suppose n ≡ 1 (mod 7). For n = 8, IV4(7)(n) = JV4(7)(n) as shown in Example 3.54.

For n = 7t+ 1 with t ≥ 2 an integer, it was shown in Theorem 3.17 that a V4(7)-design

of order n can be constructed using a {K8, K7,7}-decomposition of K7t+1 with t blocks

isomorphic to K8 and
(
t
2

)
blocks isomorphic to K7,7.
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Consequently

IV4(7)(7t+ 1) ⊇ t ∗ IV4(7)(8) +
(
t
2

)
∗ IV4(7)(K7,7)

⊇ t ∗ {0, 1, 2, 4}+
{

7r | 0 ≤ r ≤
(
t
2

)}
⊇
{

0, 1, 2, . . . , 1
7

(
7t+1

2

)
− 3, 1

7

(
7t+1

2

)
− 2, 1

7

(
7t+1

2

)}
(See Theorem 3.6.)

⊇ JSE4(1,2)(7t+ 1).

Therefore, IV4(7)(n) = JV4(7)(n) for each n ∈ Spec(V4(7)).

3.7 Comments on the Remaining Bipartite Graphs with Seven Edges

At first glance, there is nothing special about the bipartite graphs for which the

intersection problem has been solved in this chapter. That is, for any bipartite graph G

with eG = 7, Spec(G) = {n |n ≡ 0 or 1 (mod 7)}, IG(7) = JG(7), IG(8) = JG(8), and

IG(K7,7) ⊇ {0, k, 7} (k ∈ {1, 2, 3, 4, 5}), the solution to the intersection problem is

IG(n) = JG(n) for each n ≡ 0 or 1 (mod 7).

However, the remaining connected bipartite graphs with 7 edges do not satisfy all of

these conditions. There are no simple bipartite graphs with 7 edges and fewer than 6 vertices.

Those with 6 vertices are listed in Figure 3.41.

Figure 3.41: Bipartite Graphs with 6 Vertices and 7 Edges

G1 G2 G3
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The graphs G1 and G2 are shown to have spectra {n |n ≡ 0 or 1 (mod 7), n 6= 7, 8}

by constructions in [1]. The authors of that paper give credit for this result to [10], but

that thesis could not be obtained for verification at this time. For G3, the spectrum is

{n |n ≡ 0 or 1 (mod 7), n 6= 7} as shown in [7]. Thus for each of these graphs no design of

order 7 exists.

The connected bipartite graphs with 7 vertices and 7 edges for which the intersection

problem has not been solved in this chapter are listed in Figure 3.42.

Figure 3.42: Unsolved Bipartite Graphs with 7 Vertices and 7 Edges

G4 G5 G6

Proposition 3.19. There is no design of order 7 for G4, G5, or G6.

Proof. Since each of these graphs contain 7 vertices, every vertex of K7 must appear exactly

once in each block of a design of order 7. Moreover, there must be exactly 6 total edges

incident on any given vertex in the design because dK7(v) = 6 for each v ∈ V (K7).

In G4 there is a vertex with degree 5. In a proposed G4-design of order 7, a vertex that

has degree 5 in one of the blocks cannot possibly appear in both of the remaining blocks

because δ(G4) = 1. Thus there is no G4-design of order 7.

In G5 there are 3 vertices with degree 3. In a proposed G5-design of order 7, there will be

9 total vertices with degree 3 among the blocks. Consequently, any labeling of these vertices

using the vertices in K7 will have at least one repetition. However any vertex that appears

twice on these vertices of degree 3 cannot appear in all 3 blocks, because G5 is connected and

all of the edges incident on that vertex in K7 have already been used in two of the blocks.

Hence there is no G5-design of order 7.

71



For a proposed G6-design of order 7, in each of the blocks we must label the vertex with

degree 3 with some a ∈ V (K7) and the vertex with degree 4 with some b ∈ V (K7) where

a and b are distinct. Once this labeling is made, a must appear on vertices with degrees 2

and 1 in the remaining two blocks while b must appear on vertices both with degree 1 in

the two remaining blocks. In G6 no vertices with degree 1 have a neighbor with degree 2 or

less which means the edge {a, b} ∈ E(K7) will not be an edge in any block of such a design.

Thus a G6-design of order 7 does not exist.

If a graph has at least 8 vertices and has 7 edges, then there is certainly no design of

order 7 for that graph.

Since no design of order 7 exists for any of the graphs mentioned in this section, the

solution to the intersection problem is not readily accessible using the techniques from earlier

in this chapter. For the seven vertex graphs, the spectrum has not even been determined

yet. However, the minimum possible value of n that satisfies the necessary condition of

n ≡ 0 (mod 7) for which a design of order n can exist for these graphs is 14. Solving

the intersection problem for a design of order 14 for these graphs will be much harder

because there will be 13 blocks in such a design which means 13 intersection values must

be determined. Few cases where a graph has at least 8 vertices and has 7 edges have been

investigated, but one such graph has been solved previously, that is, the star with seven

edges S7 (or K1,7) in [5].
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Chapter 4

Summary of Results and Discussion

In the preceding chapters, several results regarding intersections of G-designs were

shown. Chapter 2 establishes that for a graph G and two arbitrary G-designs B1 and B2

of order n there is a G-design B′2 of order n such that B2
∼= B′2 and B1 ∩ B′2 = ∅ for suffi-

ciently large n with the exception of the graphs , , , and possibly .

In Chapter 1 a graph that satisfies this condition for an order n was called T3 for order n.

Moreover, if a graph G is T3 for all n that are sufficiently large, it is called a Teirlinck graph.

For the first three of the excluded graphs it was shown by either a simple argument or

a counterexample that they are not T3 for each n for which a nontrivial design of order n

exists. However, for the last graph (the path of length 2) no such counterexamples could be

found, but the graph does not fall under the purview of the results found in Chapter 2. For

completeness, either a counterexample to show that P2 is not T3 for sufficiently large n or a

proof that it is a Teirlinck graph is still an open problem.

Luc Teirlinck’s result for K3-designs, which inspired the work presented in Chapter 2,

shows that K3 is T3 for each n ≥ 7. His result gives a best case scenario, that is, n = 7 is

the smallest possible value for which the graph can be T3. All other graphs besides the four

listed above are shown to be Teirlinck graphs in Chapter 2, but the proof techniques used

do not necessarily provide the smallest possible integers n for which the graphs are T3 for

order n. Instead the values NG for each graph G that can be found using the techniques

of Chapter 2 are merely lower bounds for G to be T3 for orders n ≥ NG. This raises the

question of what is the least upper bound on NG for a graph G; that is, what is the smallest

value of NG for which G is T3 for each n ≥ NG? Furthermore, for what graphs, if any, does
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this least upper bound match the lowest number that can be found by the techniques of

Chapter 2?

In the end of Chapter 2, the notion of Teirlinck graphs is extended to determining for

a graph G with k ≥ 2 arbitrary G-designs of order n if k corresponding isomorphic designs

which are pairwise disjoint can be found provided n is sufficiently large. What was found

is that if G is nontrivial and vG ≥ 5, then for any k ≥ 2 and a collection of k arbitrary

G-designs of order n, there is a positive integer NG,k such that the k isomorphic designs that

are pairwise disjoint could be found for each order n ≥ NG,k. The technique for proving

this result is similar to that for showing the result for Teirlinck graphs in the preceding

paragraphs. So a natural question for a graph G and an integer k ≥ 2 is what is the smallest

positive integer NG,k for which k pairwise disjoint G-designs of order n can be found that

are correspondingly isomorphic to an arbitrary set of k G-designs for each order n ≥ NG,k.

Additionally, it is of interest when the techniques for proving the general result yield these

optimum values.

Lastly, the extension of the T3 condition to k arbitrary G-designs using the techniques

presented in Chapter 2 does not allow for arbitrarily large k if vG = 4. Instead there is

an upper bound on k for guaranteeing to find the k pairwise disjoint designs using those

techniques. However, other techniques not used in this dissertation might yield larger upper

bounds on the values of k or even that there is no upper bound provided the order of the

G-design is large enough. Moreover, the techniques of this dissertation tell us nothing about

P2-designs or K3-designs. The proof of Teirlinck’s result about K3-designs is different from

the proofs for G-designs in Chapter 2. Thus, it is possible that Teirlinck’s result could be

extended for k > 2 arbitrary K3-designs for sufficiently large orders n.
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4.1 Results for the Intersection Problem

In Chapter 3, a couple of key results are given for each of the graphs in the set

G = {D4(7), D6(7), R4(1, 2), SE4(1, 2), T (1, 2), U(1, 2), V4(7)}.

For each graph G ∈ G, the Theorems 4.1 and 4.2 were proven in Chapter 3. A summary of

these results is given in Table 4.1.

Theorem 4.1. A G-design of order n exists if and only if n ≡ 0 or 1 (mod 7).

Theorem 4.2. For each n ∈ Spec(G),

IG(n) = JG(n).

The graphs in G are each bipartite, have 7 vertices, and 7 edges. Furthermore, for each

of the graphs G ∈ G, there exists a G-design of order 7, a G-design of order 8, and a G-design

on K7,7. These commonalities among the graphs in G lead to a common proof technique for

establishing the spectrum of each of the graphs which is to combine the smaller designs into

a larger design of order 7t or 7t+ 1 for positive integers t.

Likewise, for each graph G ∈ G the intersection problem for orders 7 and 8 are solved

with results IG(7) = JG(7) and IG(8) = JG(8). Showing that IG(K7,7) ⊇ {0, 7} (and that

the intersection set contains one other value between 0 and 7 which is possibly different for

each graph G) solves the intersection problem for the remaining n ∈ Spec(G) by combining

appropriate smaller design into a pair of larger designs.
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Table 4.1: Summary of Intersection Problem Results for 7-Edge Graphs

G Spec(G) IG(n)

D4(7)

n ≡ 0 or 1 (mod 7) JG(n)

D6(7)

n ≡ 0 or 1 (mod 7) JG(n)

R4(1, 2)

n ≡ 0 or 1 (mod 7) JG(n)

SE4(1, 2)

n ≡ 0 or 1 (mod 7) JG(n)

T (1, 2)

n ≡ 0 or 1 (mod 7) JG(n)

U(1, 2)

n ≡ 0 or 1 (mod 7) JG(n)

V4(7)

n ≡ 0 or 1 (mod 7) JG(n)
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4.2 Further Inquiries into the Intersection Problem

The number of open intersection problems is too numerous to cover in this discussion,

but some specific cases closely related to the results of this dissertation may be of interest.

Prior to the results found in this paper, the intersection problem has been solved for

very few graphs with 7 or more edges. In fact, the only graphs with 7 or more edges for

which the intersection problem has been solved are the cycles C7, C8, and C9 and the star

graphs Sn (i.e. K1,n) where n ≥ 7. As stated before, the results presented here extend this

collection of solved intersection problems by 7 graphs with 7 vertices and 7 edges each of

which is bipartite. The most accessible graphs using the techniques presented in Chapter

3 seem to be the remaining connected bipartite graphs with 7 edges and no more than 7

vertices. (The reason for wanting 7 vertices or fewer is the possibility of having a design of

order 7.) Pictures of these graphs are given in Figure 4.1.

Figure 4.1: Unsolved Bipartite Graphs with 7 Edges and No More Than 7 Vertices

G1 G2 G3 G4 G5 G6

Unfortunately, as shown in [1], [7], and Proposition 3.19, there is no design of order 7 for

any of these remaining graphs. Thus the smallest possible order n divisible by 7 for which

there could be a design of order n for these graphs is n = 14. Finding the spectrum of these

graphs may or may not be overly difficult, but the intersection problem certainly is if trying

to employ the techniques of this dissertation. Since n = 14 is the smallest possible order

divisible by 7 for designs of order n and the number of blocks in these designs of order 14,

if they exist for these graphs, is 13, the intersection problem for even small designs proves

quite difficult. Consequently, the complete solution to the intersection problem for any of

these graphs (and other bipartite graphs with 7 edges) will prove much harder to find than
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the solutions for the other graphs found in the results of Chapter 3 because of the lack of

designs of order 7.

Indeed, finding solutions to some bipartite graphs with 9 or fewer vertices and 9 edges

using similar techniques to those shown in Chapter 3 may actually be easier than finding the

solutions to the remaining bipartite graphs with 7 edges due to the fact that small designs,

that is, designs of order 9 and 10 may exist. (Solving the intersection problem for graphs

with 8 edges using similar techniques is somewhat difficult because the smallest possible

order for a design is 16.) If the designs of order 9 and 10 exist along with a design on K9,9

and we have the necessary intersection values for these small designs, then the techniques

used in Chapter 3 can be used to solve the intersection problem for these graphs quite easily.
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Appendix A

Intersections of Designs on K7,7

In the solutions to the intersection problem for each graph G presented in Chapter 3,

the existence of some values in IG(K7,7) needed to be shown. In order to avoid being bogged

down in figures, some details of finding those values were omitted. The details are developed

fully in the following examples.

Example A.1. Recall that the D4(7)-design on K7,7 from Example 3.4 is

B7,7 = {((i, 2), (i+ 2, 1), (i+ 1, 2), (i, 1); (i+ 3, 2), (i+ 1, 1), (i+ 5, 2) | 0 ≤ i ≤ 6},

where addition in the first coordinates is done modulo 7. The blocks of the design can be

viewed in Figure A.1.

Figure A.1: B7,7, a D4(7)-Design on K7,7

(5, 2)

(1, 1)

(3, 2)

(0, 1)

(0, 2)

(2, 1)

(1, 2)

(6, 2)
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(2, 2)
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(4, 1)

(6, 2)

(3, 1)

(3, 2)

(5, 1)

(4, 2)

(2, 2)

(5, 1)

(0, 2)

(4, 1)

(4, 2)

(6, 1)

(5, 2)

(3, 2)

(6, 1)

(1, 2)

(5, 1)

(5, 2)

(0, 1)

(6, 2)

(4, 2)

(0, 1)

(2, 2)

(6, 1)

(6, 2)

(1, 1)

(0, 2)

As claimed in Example 3.7, swapping vertices (0, 2) and (1, 2) in B7,7 creates a design

B1
7,7 on K7,7 that has exactly one block in common with B7,7. The blocks of B1

7,7 are listed

in Figure A.2 with the shared block having solid edges and the other blocks having dashed

edges.
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Figure A.2: B1
7,7, a D4(7)-Design on K7,7 with Exactly One Block in Common with B7,7
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Example A.2. In Example 3.12, a D6(7)-design on K7,7 is found cyclically as

B7,7 = {((i, 2), (i+ 4, 1), (i+ 6, 2), (i+ 2, 1), (i+ 1, 2), (i, 1); (i+ 5, 2)) | 0 ≤ i ≤ 6}.

The listing of the blocks as graphs in Figure A.3 gives more insight into finding a second

design that has exactly two blocks in common with B7,7.

Figure A.3: B7,7, a D6(7)-Design on K7,7
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As stated in Example 3.15, transposing vertices (2, 2) and (3, 2) in B7,7 yields a design

B2
7,7 on K7,7 that has exactly two blocks in common with B7,7. In Figure A.4 the blocks of

B2
7,7 are shown with the common blocks having solid edges and the remaining blocks having

dashed edges.

Figure A.4: B2
7,7, a D6(7)-Design on K7,7 with Exactly Two Blocks in Common with B7,7
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Example A.3. As a reminder, the R4(1, 2)-design on K7,7 from Example 3.20 is

B7,7 = {R((i+ 5, 1); (i, 2), (i+ 2, 1), (i+ 1, 2), (i, 1); (i+ 3, 2), (i+ 4, 2)) | 0 ≤ i ≤ 6}.

The blocks of this design are shown individually in Figure A.5.

Figure A.5: B7,7, an R4(1, 2)-Design on K7,7
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As proposed in Example 3.23, switching the vertices (3, 2) and (4, 2) in each block of

B7,7 creates a design B2
7,7 on K7,7 that has exactly two blocks in common with B7,7. In

Figure A.6, the blocks of B2
7,7 are shown with the blocks that are also in B7,7 having solid

edges and those that are not in B7,7 having dashed edges.

Figure A.6: B2
7,7, an R4(1, 2)-Design on K7,7 with Exactly Two Blocks in Common with B7,7
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Example A.4. The set

B7,7 = {SE((i, 2), (i, 1), (i+ 2, 2), (i+ 1, 1); (i+ 5, 2), (i+ 6, 2), (i+ 3, 1)) | 0 ≤ i ≤ 6}

where addition in the first coordinates is done modulo 7 is an SE4(1, 2)-design on K7,7. (See

Example 3.28.) Figure shows each of the blocks in B7,7.
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Figure A.7: B7,7, an SE4(1, 2)-Design on K7,7
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As stated in Example 3.31, swapping vertices (0, 2) and (2, 2) in B7,7 gives a design B2
7,7

on K7,7 that shares exactly two blocks with B7,7. The blocks of B2
7,7 are listed in Figure A.8

with the shared blocks of the two designs having solid edges and the remaining blocks having

dashed edges.

Figure A.8: B2
7,7, an SE4(1, 2)-Design on K7,7 with Exactly Two Blocks in Common with

B7,7
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Example A.5. Recall that the T (1, 2)-design on K7,7 from Example 3.36 is

B7,7 = {T ((i+ 6, 2); (i+ 2, 1), (i, 2), (i, 1), (i+ 1, 2); (i+ 2, 2), (i+ 6, 1)) | 0 ≤ i ≤ 6},

where addition in the first coordinates is done modulo 7. The blocks of the design can be

viewed in Figure A.9.

Figure A.9: B7,7, a T (1, 2)-Design on K7,7

(6, 1)

(2, 2)

(0, 1)

(0, 2) (1, 2)

(2, 1)

(6, 2)

(0, 1)

(3, 2)

(1, 1)

(1, 2) (2, 2)

(3, 1)

(0, 2)

(1, 1)

(4, 2)

(2, 1)

(2, 2) (3, 2)

(4, 1)

(1, 2)

(2, 1)

(5, 2)

(3, 1)

(3, 2) (4, 2)

(5, 1)

(2, 2)

(3, 1)

(6, 2)

(4, 1)

(4, 2) (5, 2)

(6, 1)

(3, 2)

(4, 1)

(0, 2)

(5, 1)

(5, 2) (6, 2)

(0, 1)

(4, 2)

(5, 1)

(1, 2)

(6, 1)

(6, 2) (0, 2)

(1, 1)

(5, 2)

84



As claimed in Example 3.39, switching vertices (3, 2) and (4, 2) in B7,7 creates a design

B3
7,7 on K7,7 that has exactly three blocks in common with B7,7. The blocks of B3

7,7 are listed

in Figure A.10 with the shared blocks having solid edges and the other blocks having dashed

edges.

Figure A.10: B3
7,7, a T (1, 2)-Design on K7,7 with Exactly Three Blocks in Common with B7,7
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Example A.6. In Example 3.44, a U(1, 2)-design on K7,7 is found cyclically as

B7,7 = {U((i+ 4, 1); (i+ 1, 2), (i, 1), (i, 2), (i+ 2, 1); (i+ 5, 2), (i+ 3, 1)) | 0 ≤ i ≤ 6}.

The listing of the blocks as graphs in Figure A.11 gives more insight into finding a second

design that has exactly two blocks in common with B7,7.

Figure A.11: B7,7, a U(1, 2)-Design on K7,7
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As proposed in Example 3.47, transposing the vertices (3, 2) and (4, 2) in each block

of B7,7 creates a design B2
7,7 on K7,7 that has exactly two blocks in common with B7,7. In

Figure A.12, the blocks of B2
7,7 are shown with the blocks that are also in B7,7 having solid

edges and those that are not in B7,7 having dashed edges.
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Figure A.12: B2
7,7, a U(1, 2)-Design on K7,7 with Exactly Two Blocks in Common with B7,7
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Example A.7. As a reminder, the V4(7)-design on K7,7 from Example 3.52 is

B7,7 = {V ((i, 2), (i, 1), (i+ 1, 2), (i+ 2, 1); (i+ 6, 2), (i+ 3, 1), (i+ 4, 1)) | 0 ≤ i ≤ 6}.

The blocks of this design are shown individually in Figure A.13.

Figure A.13: B7,7, a V4(7)-Design on K7,7
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As stated in Example 3.55, switching vertices (4, 2) and (5, 2) in B7,7 yields a design B4
7,7

on K7,7 that shares exactly four blocks with B7,7. The blocks of B4
7,7 are listed in Figure A.14

with the shared blocks of the two designs having solid edges and the remaining blocks having

dashed edges.

Figure A.14: B4
7,7, a V4(7)-Design on K7,7 with Exactly Four Blocks in Common with B7,7
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