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Abstract

We address what can be said of torsion-free finite rank modules A and B over a Dedekind
domain R when their Ext’s are isomorphic, extending an answer to Fuchs’ Problem 43 and
its dual by Goeters. We obtain a result for the covariant case when Rp has infinite rank over
R, noting that A and B are quasi-isomorphic iff the P-rank of their Hom sets match. In the
contravariant case, we see A and B are quasi-isomorphic implies their extension groups are
isomorphic, with the converse holding when again Rp has infinite rank over R. Along the
way, we find equivalent conditions that hold for Noetherian domains whose completions are

not complete in the P-adic topology.
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Chapter 1

Introduction

Problem 43 in [4] asks to characterize the relation between abelian groups A and B such
that Extz(A,C) = Euxtz(B,C) for all Abelian groups C. A solution to this problem and
its dual was given by Goeters in the case that A, B and C are torsion free Abelian groups
of finite rank in [6] and [8] respectively.

In the 80’s, it was commonly believed that results about Abelian groups extend canon-
ically to modules over Dedekind domains. Lee Lady suggested that Abelian group theorists
should work directly in the context of modules over Dedekind domains R. He showed the
feasibility of such an approach in [10] for countable Dedekind domains of characterization
0. However, Nagata showed that there exits an uncountable discrete valuation domain R of
characteristic 0 whose P-adic completion R of R has finite rank. In particular, this provides
an example of a Dedekind domain to which Goeters’s solution of Fuchs’ Problem cannot
readily be extended.

First, we will begin to motivate our problem by discussing Dedekind domains. We will
work to present several equivalent conditions Dedekind domains satisfy at the end of this

section.

Proposition 1.0.1. [9] Let T' be a multiplicative subset of an integral domain R such that

0¢&T. If R is integrally closed, then TR is integrally closed as well.

Proof. T'R is an integral domain, and R may be identified with a subring of T7'R. Ex-
tending this identification, the quotient field ) of R may be considered as a subfield of the
quotient field Q" of T~'R, so that Q = Q'.



Let u € Q' be integral over T~'R. Then for some r; € R and t; € T,
u" + (Tn,l/tn,l)unfl + -+ (7’1/t1>u + (rank/to) =0.

Multiplying by t" where t = tot;---t,_1 € T shows that tu is integral over R. Since
tu € Q' = Q and R is integrally closed, tu € R. Therefore, u = tu/t € T~'R, whence T~'R

is integrally closed. O]
Proposition 1.0.2. [10] If M and N are R-modules and S is a multiplicative set, then

i. Homg-1p(S™'M,S™'N) = Homg(S™'M,S™'N) = Homg(M, S'N).

. STIM ®g-15 STIN = S7IM ®@r STIN.

Proof. (i.) For ¢ € Hompz(S™'M,S™'N), m€ M, r € R, and s,s € S,

rm S rm T sm T m
() = S () = T () = T ().
sT S SS S SS S S

Thus every R-linear map from S™'M to S™'N is in fact ST'R-linear. Furthermore, every

R-linear map from M to S™'N extends uniquely to a map from S~*M to S'N.
(i2.) This follows from the fact that for m € S™'M, n € ST'N, r € R, and s € S, the

following holds in S™'M @ S™IN:

rm sm rn rm sn rm
S S S S S S

O

Proposition 1.0.3. [10] Let M be a finitely generated module over a Noetherian ring R. For
every R-module N and multiplicative set S, we have S~ 'Homp (M, N) = Hompg(S~'M,S™IN).
Proof. Let £ € S™'Homp(M, N), and define ¢ : S™'Homp(M,N) — Hompg(S~'M,S™'N)
by




1 is clearly an isomorphism when M = R, and thus when M = R! for finite {. Generally,
because M is finitely generated, there exists a surjection € : Rt — M for some finite ¢.
Since R is Noetherian, kere is also finitely generated, and we thus get an exact sequence
R®* — R' — M — 0. Since localization preserves exactness, applying Hom(_, N) and

localizing with respect to S yields a commutative diagram.

Proposition 1.0.4. [10] Let M, N, P be modules over a commutative ring R.

i. If my,mg € M, then my = my if and only if my/1 = my/1 € My for all mazimal ideals

I.
1. M =0 if and only if My =0 for all maximal ideals I.
i15. Suppose that N,P C M. Then N = P if and only if Ny = Py for all mazimal ideals I.

iv. If ¢ € Homg(M, N), then ¢ is monic [epic] if and only if ¢; : M — Nj is monic [epic]

for all maximal ideals 1.

v. A sequence M — N — P is exact if and only if the induced sequence My — N; — Py is

exact for all maximal ideals 1.

vi. If M is a submodule of a vector space over the quotient field F' of R, then M = (", Mp.

Next, we present Nakayama’s Lemma - a useful tool when dealing with finitely generated

modules.

Lemma 1.0.5 (Nakayama’s Lemma). [9] If J is an ideal in a commutative ring R with

identity, then the following conditions are equivalent.
(a) J is contained in every mazimal ideal of R.
(b) 1g — j is a unit for every j € J.

(c) If A is a finitely generated R-module such that JA = A, then A = 0.
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(d) If B is a submodule of a finitely generated R-module A such that A = JA + B, then
A= B.
Proof. (a — b) If j € J and 1g — j is not a unit, then the ideal (1g — J) is not R itself, and
therefore is contained in a maximal ideal M # R. But 1y, —j € M and j € j C M imply
that 1z € M, which is a contradiction. Therefore, 1z — j is a unit.
(b — ¢) Since A is finitely generated, there must be a minimal generating set X =
{a1,...,a,} of A. If A # 0, then a; # 0 by minimality. Since JA = A, a1 = j1a1++ -+ jnan

for some j; € J, whence 1gra; =1 so that

(1R—j1)a1:Oifn:1

and

(1 — j1)ay = jaag + - -+ + jpa, if n > 1.

Since 1z — ji, a1 = (1g — j1) " *ay. Thus, if n = 1, then a; = 0, which is a contradiction. If
n > 1, then a; is a linear combination of as, . .., a,. Consequently, {as, ..., a,} generates A,
which contradicts the choice of X.

(¢ — d) The quotient module A/B is such that J(A/B) = A/B, whence A/B = 0 and
A = B by assumption.

(d — a) If M is any maximal ideal, then the ideal J R+ M contains M. But JR+M # R,
otherwise R = M by assumption. Consequently, JR + M = M by maximality. Therefore,
J=JRCM. O
Corollary 1.0.6. [10] Let M be a finitely generated module over a local ring. M is projective
if and only if it is free.

Proposition 1.0.7. [10] A finitely generated projective module M over a local ring R is

free. In fact, if I is the maximal ideal in R and mq,...,my € M are such that the cosets
my,...,my are a basis for M/IM as a vector space over R/I, then my,...,m; are a basis
for M.



Proof. Let I be the unique maximal ideal in R. Choose my,...,m; € M so that the cosets
mi, ..., My are a basis for the vector space M/IM over the field R/I. Let ¢ : R — M
be defined by @(r1,...,7) = > rim;. It follows easily from Nakayama’s Lemma that ¢ is
surjective. Since M is a projective module, ¢ splits, so Rt = K & L with K = Kerp and
L = M. Then K is finitely generated. Since ¢ induces an isomorphism from R'/IR' to
M/IM, it follows that K/IK @& L/IL = M/IM These are finite dimensional vector spaces
over the field R/I and comparing dimensions yields K/IK = 0. Thus K = 0 by Nakayama’s

Lemma. Thus ¢ is monic and hence an isomorphism. O]

Proposition 1.0.8. [10] A finitely generated module M over a Noetherian ring R is projec-

tiwe if and only if Mp is a free Rp-module for all prime ideals P.

Proof. (—) Using the criterion that projective modules are just the direct summands of free
modules, it is easy to see that the localization of a projective R-module at P is a projective
module over Rp. It then follows from 1.0.7 that this localization is a free Rp-module.

(«<—) Suppose now that M is finitely generated and for all P, Mp is a free Rp-module. To
show that M is projective one must show that for every surjection ¢ : X — Y, the induced
map ¢, : Homg(M, X) — Hompg(M,Y') is surjective. By 1.0.4, it suffices to prove that for
all maximal ideals P, the localized map (Hompg(M, X))p — (Hompg(M,Y'))p is surjective.
But since M is finitely generated, by 1.0.2 and 1.0.3 there are natural isomorphisms yielding

the following commutative diagram:

(Homp(M, X)), — (Homp(M,Y)),

lg

HOIHRP(MP,XP) — HOII]RP(MP,YP) — 0

R

where the bottom map is surjective since Mp is a projective Rp-module. Thus (Homg(M, X))p —

(Hompg(M,Y))p is a surjection proving the result. O



Remark 1.0.9. [10] The hypothesis that M be finitely generated is essential here. There are
many examples of non-finitely generated non-projective modules M such that Mp is a free

Rp-module for all prime ideals P - they are called locally free.

Proposition 1.0.10. [10] Let R be an integral domain with quotient field F and let P be

an R-submodule of F'. Then the following conditions are equivalent:
(a) P is projective.

(b) There exist elements py,...,p, € P and fi,..., fn € F such that f;P C R for all i and

> fipi=1.
(c) There exists a submodule M of F' such that M P = R.
Furthermore in this case P s generated by p1, ..., pn-

Proof. (a — b) Since P is projective, it is a summand of a free module R, and there exist
maps o : P — RD and 7 : RY) — P such that mo = 1p. Localizing at the zero ideal, o
extends to a map oo : F — FU) and 7 to a map mp : FY) — F. For each i € I, let f; be
the " coordinate of og(1 and let p; = my(e;), where e; is the canonical i'* basis vector of
FU_ Then the composition of oy with the projection of F!) onto the i** coordinate is given
by x +— f;x. Since this composition maps P into R, it follows that f;P C R. Furthermore,
since 7 is given by > y;e; — > y;4, the equation myog(1) = 1 translates to Y fip; = 1. This
sum can have only finitely many non-trivial terms, and at this point we can replace I by the
finite set of ¢ € I such that f;p; # 0.

(b — a) Map P onto R" by o : p+— (fip, ..., fup) and map R" to P by m : (r1,...,7) —
or;p;. Then wo(p) = opfip; = pl = p. Thus o is a split monomorphism and P is a summand
of a free module, hence is projective.

(b — ¢) Let M be the submodule of F' generated by fi,..., f,. Then clearly M P C R.

But 1 =5 fipi € MP so MP = R. Note also that py,...,p, generate P since for p € P,

we have p =p > fipi = > _(fip)p; and all f;p € R.



(¢c - b) If MP = R, then 1 € MP so there exist f; € M, p; € P with Y _ fip; = 1.
Furthermore, for all 7, f,P C M P = R. ]

Lemma 1.0.11. [10] A commutative ring R is integrally closed if and only if Rp is integrally

closed for all prime ideals p.

Proof. (—) S™'Ris integrally closed for every multiplicative set S. Let @ denote the quotient
field of R, let ¢ € Q be integral over S7'R, and let f € ST'R[X] be a monic polynomial
satisfied by ¢. Let d be the degree of f and let s € S be a common denominator for the
coefficients of f. Then s?f(q) = 0, and sq satisfies some monic polynomial in R[X]. Thus,
sq € R by assumption, whence ¢ € S7'R.

(«) Let ¢ € @ be integral over R. Then ¢ is integral over each Rp. If all Rp are

integrally closed, then ¢ € (| Rp = R. O

Remark 1.0.12. Note that by the proposition, projective ideals are finitely generated. Hence,

if every ideal in an integral domain is projective, then that integral domain is also Noetherian.

Definition 1.0.13. [9] Let R be an integral domain with quotient field Q. A fractional

ideal of R is a nonzero R-submodule M of Q) such that rM C R for some nonzeror € R.

Example 1.0.14. [9] Every nonzero finitely generated R-submodule M of Q) is a fractional
tdeal. For if M 1is finitely generated by qi,...,q, € Q, then M = Rq; + --- + Rq, and
for each i, q; = ri/s; with 0 # s;,;r; € R. Let s = sy--+8,. Then s /0 and sM =

RS2..-Sn’,”1—|—"‘+Rsl"'8n—1tngR'

Remark 1.0.15. /9] If I is a fractional ideal of a domain R and al C R for some nonzero
element a of R, then al is an ordinary ideal in R and the map I — al given by x — az is

an R-module isomorphism.
Lemma 1.0.16. [9] Let I, I5, ..., I, be ideals in an integral domain R.

i. The tdeal I Iy - - - I, is invertible if and only if each I; is invertible.



i. If P,--- P, =1 = P{ . --P;I where P; and PJ' are prime ideals in R with every P,

invertible, then m =n and P; = PZ-/ for each 1 =1,...,m after reindexing.

Proof. (i.) If J is a fractional ideal such that J(I;---I,) = R, then for each j =1,...,n we
have [;([y---1j_11;41--- I, = R, whence I; is invertible. Conversely, if each [; is invertible,
then (I;---L,)(I;' - I7' = R, whence [ - - - I, is invertible.

(73.) We proceed by induction on m. If m > 1, choose one of the P;, say P; such that
t P, oes not properly contain P; fo I = 2,...,m. Since Pll e PT'L =P ---P, CP and P, is
prime, some PJ/», say Pll, is contained in P;. Similarly, we have P; C Pll for some 7. Because
P; C P, C Py, by the minimality of P, we have P, = P, = P,. Since P, = P, is invertible,
then we have Py --- P, = PZI .-~ P. By the induction hypothesis, m = n and P; = Q; for

1 =1,...,m after reindexing. O

Lemma 1.0.17. [9] Every invertible fractional ideal of an integral domain R with quotient

field Q) is a finitely generated R-module.

Proof. Let I be such an ideal. Since I7'I = R, there exist a; € I~! and b; € I such
that 1p = > T aibi. If ¢ € I, then ¢ = Y J(ca;)b;. Furthermore, each ca; € R since

a; € 7' = {q € Q|qI C R}. Therefore, I is generated as an R-module by by, ..., b,. ]

Definition 1.0.18. A discrete valuation ring is a principal ideal domain that has exactly

one nonzero prime ideal.

Lemma 1.0.19. /9] If R is a Noetherian, integrally closed integral domain and R has a

unique nonzero prime ideal P, then R is a discrete valuation ring.

Proof. We need only show that every proper ideal in R is principal.
Claim 1: Let Q) be the quotient field of R. For every fractional ideal I of R, the set
I={qeQ|qgl CI}isR.

Proof. Clearly R C I. Because [ is a subring of () and a fractional ideal of R, I is isomorphic

as an R-module to an ideal of R. Thus since R is Noetherian, I is finitely generated, whence
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every element of I is integral over R. Therefore I C R since R is integrally closed. We

conclude I = R. O
Claim 2: R is properly contained in P~!.

Proof. Let F be the set of all ideals .J in R such that R is properly contained in J~!. Since
P is a proper ideal, every nonzero element of P is a nonunit. If J = (a) for some nonzero
a € P, then 1,/a € J7!, but 1,/a ¢ R, whence R is properly contained in J~! and F is
nonempty. Since R is Noetherian, F contains a maximal element M. We claim M is a prime
ideal of R. If ab € M with a,b € R and a ¢ M, choose c € M~'\ R. Then c(ab) € R, whence
be(aR+ M) C R and be € (aR + M)~!. Therefore, bc € R, else aR + M € F contradicting
maximality of M. Consequently ¢(bR+ M) C R, and thus ¢ € (bR+ M)~'. Since ¢ € R, the
maximality of M implies that bR + M = M, whence b € M. Therefore M is prime, whence
P = M by uniqueness. We conclude R C M~ = P71, O

Claim 3: P is invertible.

Proof. Clearly P C PP~! C R. By the argument following the claims, P is the unique
maximal ideal in R, so that P = PP~ or PP~' = R. If P = PP~!, then P~!' C P and
by claims 1 & 2, R € P! C P = R, a contradiction. Therefore, PP™' = R and P is

invertible. OJ
Claim 4: (,en P" = 0.

Proof. If (,cy P" # 0, then [, .y is a fractional ideal of R. But by claims 1 & 2, R C

neN

Pt CNyen P =R. So N,y P" = 0. O

neN
Claim 5: P is principal.

Proof. There exists a € P such that a ¢ P? by claim 4. Then aP~! is a nonzero ideal in R

such that aP~! € P, otherwise a € aR = aPP~' C P?. The argument following this claim

shows that every proper ideal in R is contained in P, whence aP~! = R. Therefore by claim

3, (a) = (a)R = (a)P7'P = (aP~')P = RP = P, and P is principal. O

9



Now, let I be any proper ideal of R. Then [ is contained in a nonzero maximal ideal M
of R, which is necessarily prime. By uniqueness, M = P, whence I C P. Since [,y P" =0,
there is a largest integer m such that I C P™ and I ¢ P™*. Choose b € I\ P™"!. Since
P = (a) for some a € R, P" = (a)™ = (a™). Since b € P™, b = ua™. Furthermore,
u & P = (a), otherwise b € P™! = (a™*1). Therefore, P" = (a™) = (ua™) = (b) C I,
whence [ is the principal ideal P™ = (a™).

O
Theorem 1.0.20. [9/[10] The following conditions on an integral domain R are equivalent.
(a) Every proper ideal in R is a product of a finite number of prime ideals.
(b) Every proper ideal in R is uniquely a product of a finite number of prime ideals;
(c) Every nonzero ideal in R is invertible;
(d) Every fractional ideal of R is invertible;
(e) the set of all fractional ideals of R is a group under multiplication;
(f) every ideal in R is projective;
(g9) every fractional ideal of R is projective;
(h) R is Noetherian, integrally closed, and every nonzero prime ideal is mazimal;

(i) R is Noetherian, and for every nonzero prime ideal P of R, the localization Rp of R at

P s a discrete valuation ring.

Proof. The equivalence (d) <> (e) is trivial. (a) — (b) and (b) — (c) follows from 1.0.16.
(¢) <> (f) and (g) <> (d) are immediate consequences of 1.0.10. (f) — (g) follows from
1.0.15.

(¢) — (i) The ideals in Rp have the form Ip where [ is an ideal in R. By hypothesis, [
is projective, so by 1.0.8 Ip is a free Rp-module. Thus all ideals of Rp are free, so that Rp

is a local principal ideal domain, hence a discrete valuation ring.
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(1) — (h) To see that R is integrally closed, it suffices by 1.0.11 to see that Rp is
integrally closed for all primes P, which is true if Rp is a discrete valuation ring since
principal ideal domains are integrally closed. Now, let P be a prime ideal in R. The prime
ideals contained in P correspond to the prime ideals of Wp. Since Wp is a discrete valuation
ring, its only prime ideals are PWp and 0. Thus there are no non-trivial prime ideals strictly
contained in P, so P has height one. It follows that all prime ideals of R are maximal.

(h) — (f) Let I be an ideal in R. Since R is Noetherian, I is finitely generated. Hence,
by 1.0.8, it suffices to show that Ip is a free Rp-module for all primes P. But since Rp is a
principal ideal domain, Ip is in fact free.

(d) — (h) Every ideal of R is invertible by (d) and hence finitely generated by 1.0.17.
Therefore R is Noetherian. Let K be the quotient field of R. If u € K is integral over R,
then Ru] is a finitely generated R-submodule of K. Consequently, 1.0.14 shows that R[u] is
a fractional ideal of R. Therefore, R[u| is invertible by (d). Thus since R[u|R[u] = R[u], we
have R[u] = RR[u] = (R™'[u]R[u])R[u] = R™'[u]R[u] = R, whence u € R. Therefore, R is
integrally closed. Finally, if P is a nonzero prime ideal in R, then there is a maximal ideal
M of R that contains P. M is invertible by (d). Consequently M ~'P is a fractional ideal of
R with M~'P C M~'M = R, whence M~ P is an ideal in R.

(h) — (i) Rp is an integrally closed integral domain by 1.0.1. Every ideal in Rp is of
the form Ip = {i/s|i € I,s ¢ P}, where I is an ideal of R. Since every ideal of R is finitely
generated by (h), it follows that every ideal of Rp is finitely generated. Therefore, Rp is
Noetherian. Every nonzero prime ideal of Rp is of the form Ip, where [ is a nonzero prime
ideal of R contained in P. Since every nonzero prime ideal of R is maximal by (h), Pp
must be the unique nonzero prime ideal in Rp. Therefore, Rp is a discrete valuation ring by
1.0.19.

(i) — (a) We first show that every nonzero ideal I is invertible. IT7! is a fractional
ideal of R conained in R, whence 17! is an ideal in R. Suppose I1-! # R. Then there

is a maximal ideal M containing /7-!. Since M is prime, the ideal I); in Ry, is principal

11



by (i); say Ipy = (a/s) where a € I and s € R\ M. Since R is Noetherian, I is finitely
generated, say I = (by,...,b,). For each i, b;/1r € I, whence in Ry, b;/1g = (1;/s:)(a/s)
for some r; € R, s; € R\ M. Therefore s;sb; = r;a € I. Let t = $s189 -+ 8,. Since R\ M is
multiplicative, t € R\ M. In the quotient field of R, we have for every t, (t/a)b; = tb;/a =
$818+++ 8i_15i41 "+ SaTi € R, whence t/a € I™'. Consequently, t = (t/a)a € 7' C M,
which contradicts that t € R\ M. Therefore [~'] = R and I is invertible.

For each proper ideal I of R, choose a maximal ideal M of R such that I C M; C R. If
I = R, then let Mz = R. Then IM; " is a fractional ideal of R with IM;' C M;M;* C R.
Therefore, IM; " is an ideal of R that clearly contains I. Also, we have I C IM; ' since
otherwise

M;=RM; =I"'IM; = I"'(IM;"“)M; = RR = R,

which contradicts our choice of M;. Let S be the set of all ideals of R and define a function
f:S—Sby v IM"

Let J be a proper ideal in R. We now show J is the product of maximal (hence prime)
ideals. There exists by the Recursion Theorem a function ¢ : N — S such that ¢(0) = J and
o(n+1) = f(é(n)). If we denote ¢(n) by J, and My, by M,, then we have an ascending
chain of ideals J = Jy C J; C Jo C - - such that J = Jy, and J,11 = f(J,) = J, M, '. Since

R is Noetherian and J is proper, there is a least integer k such that

J=Jh SN CJp=Jigr

Thus Ji = Jpr1 = f(Jg) = JkMk_l, which can occur only if J, = R. Consequently, R =
i = f(Jp_1) = Je_1 M, ', whence

Jp—1 = Jp1 R = kalM;;_lleq = RMj_y = My_;.

12



Since My_1 = Jx—1 C Jr = R, Mj_; is a maximal ideal. The minimality of k insures that
each of My, ..., My_5 is also maximal, otherwise M; = R so that J;;; = JiMI_1 = J,R!'=

J;R = J;. We have

My oy = Jey = JooMiy = T oM MY = <o = JMG - M,

Since each M; is invertible,

J = My_y(My- -~ My_).

Thus J is the product of maximal (hence prime) ideals. O

Definition 1.0.21. /9] A Dedekind domain is an integral domain R satisfying any of the

conditions of the previous theorem.

Remark 1.0.22. Euvidently, every principal ideal domain is Dedekind, but the converse is
false. For example, Z[v/10] is Dedekind but not principal. We will see later that every

Dedekind domain is Noetherian.

Definition 1.0.23. [10] A module M over a ring R is said to have finite length if and

only if it has a composition series

OZMonggng:M

where each quotient M;/M; 1 is a simple module. In this case, we define length(M) to be

the length | of this composition series.

Remark 1.0.24. [9] The Jordan-Hélder Theorem asserts that any two compositions series
of a module M are equivalent, so length(M) is well-defined. Another standard result is that

a module has finite length if and only if it is both Noetherian and Artinian.

Definition 1.0.25. [10/[7] For any prime ideal P and torsion-free module A of the Dedekind
domain R, we define the P-rank rp(A) of A to be the length of A/PA. Equivalently, we

may define rp(A) as the dimension of A/PA as a vector space over R/P.
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Proposition 1.0.26. [10] Let A and B be torsion-free modules over Dedekind domain R,

and P a prime ideal in R.
i. rp(A® B) =rp(A) ®rp(B).
ii. If B is an essential submodule of A, then their ranks are the same and rp(B) > rp(A).
iii. rp(A) =rp(Ap).
. rp(A) < rank(A).
v. rank(A ® B) = (rank(A))(rank(B)) and rp(A® B) = rp(A)rp(B).
vi. rank(A) =0 if and only if A= 0.
vii. rp(A) =0 if and only if A is P-divisible.
viti. Tp(A) is the same as the number of summands QA/A isomorphic to R(P>).

Definition 1.0.27. [10] Let R be a Dedekind domain, let M be a finite rank torsion free
R-module, and let p be a prime ideal of R. The p-adic filtration on M is the family of
submodules

MDOpMDp*MD....

The topology generated by taking the p-adic filtration on M as a neighborhood basis at 0 is
called the p-adic topology on M. The p-adic completion of M is the submodule M of
I M /p*M consisting of those sequences my,ma, ... € I M/p*M such that myy1 = my
(mod pE M) for all k.

Proposition 1.0.28. [10] Let R, M, and p be as in the previous definition. The topology

inherited by M s the same as the inverse limit topology.

Proof. The neighborhood system at 0 in the inverse limit topology has a basis consisting of
those submodules U,, consisting of elements whose first n coordinates are zero. Since the

first n coordinates live in M/p*M for k > n, it follows that p"M C U,. On the other hand,
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since the sequences in M satisfy the condition m,, = my (mod p", it follows that if m, =0
for r < n, then m,. € p”M for all ». Thus U,, C pkM . We conclude the inverse limit topology

and the p-adic topology are the same. O]

In the following, we assume that the Dedekind domain R with field of quotients @) is
not complete in the R-adic topology. As observed in [7], non-complete Dedekind domains

fall into two distinct cases [7]):

Type I For each maximal ideal P, the P-adic completion Rp of the localization Rp has infinite

Rp-module rank.
Type II R is local and the completion of R, R has finite rank.

Theorem 1.0.29. [7] A Dedekind domain R is not complete in the R-adic Topology if and

only if R is a type I or a type II domain

Since R is a domain, multiplication by » € R on A or B induces multiplication by
r on Extyp(A, B). Moreover, Exth(A, B) is a divisible module whenever R is Dedekind.
Therefore, it is of the form ® pegpec(r)Dp® Do with P-primary component Dp = @, E(E/P)
and torsion-free component Dy = @y, Q).

Given any maximal ideal P of R, the P-rank of a module A is denoted by rp(A) and is
defined as rp(A) = dimp/pA/PA. If a € P\ P2 then aRp = PRp since Rp is a discrete

valuation domain. The sequence 0 — B - B — B/aB — 0 induces

0 — Hom(A, B) % Hom(A, B) — Hom(A/aA,B/aB) — S — 0

where S is the submodule of Ext(A, B) annihilated by a. Localizing at P, gives the formula;

rp(A)rp(B) — rp(Hom(A, B)) = {e € Ext(A, B) | Pe = 0}.
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Theorem 1.0.30. [7] Let R be a Dedekind domain and P € spec(R). If A and C are

torsion-free R-modules of finite rank, then

Exty(A,C) 2 &pDp @ Dy

with Dp = (Q/Rp)* and Dy torsion-free such that

ep = TP(A)T’P<B) — rp(HomR(A, B))

While this result appears to be independent of the type of the Dedekind domain, we
want to point out that Dy has finite rank exactly when R has type II. Thus the structure of
Ext actually varies according to Dy in the Type II case which, in turn, depends upon the

rank of R [7]. A formula used to determine the rank of Dy will be given later,

Corollary 1.0.31. [7] A Dedekind R which is not complete satisfies exactly one of the

following;
i) For all P € spec(R), the completion of Rp has infinite rank, or
it) R is local with mazimal ideal P, and the completion of R, ]:2, has finite rank over R.

For the rest of this chapter, R is a Dedekind domain with quotient field (), unless

otherwise indicated.

Definition 1.0.32. [10] Define an equivalence relation x on the set of all submodules of @
by AxB if and only if A and B are isomorphic to a submodule of the other. The type t(A) of

A is the equivalence class of A under x, and we write t(A) < t(B) when A is isomorphic to a

submodule of B. We say t(A) and t(B) are incomparable if t(A) £ (B) and t(B) £ t(A).

Definition 1.0.33. [10] Let A be a torsion-free finite rank module over a Dedekind domain
R. The typeset of A, denoted by T(A), is the set of types of all non-trivial elements of A,

or equivalently the set of types of all pure rank-one submodules of A. Dually, we define the
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cotype set of A, denoted by CT(A), to be the set of types of all rank-one homomorphic

images of A.

Proposition 1.0.34. [10] Let A= H & K. T(A) consists of T(H) U T(K) together with

all types s At with s € T(H) and t € T(K).

Corollary 1.0.35. [10] If A= A1 ®---DA,, where the A; are rank 1 modules and t; = t(A;),
then T(A) consists of {t,, ..., t,} and all types obtained from this set by taking greatest lower

bounds.

Definition 1.0.36. [10] The inner type of a torsion-free finite rank module A over a
Dedekind domain is IT(A) = infT(A), and the outer type of A is OT(A) = supCT(A).

Proposition 1.0.37. [10] A torsion-free finite rank module A over a Dedekind domain R is

projective if and only if OT(A) = t(R).

Proof. Note that t < t(R) is equivalent to t = t(R). By corollary 1.0.35 if A is projective
then CT(A) = t(R), so OT(A) = t(R). Conversely, if OT(A) = t(R), then CT(A) =
t(R) so every rank-one homomorphic image of A is projective. By induction on the rank of

A, we conclude that A is projective. n
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Chapter 2

Torsion-Free Modules of Finite Rank

Throughout this chapter, let R be an integral domain with field of quotients ). The
endomorphism ring EF(A) = Egr(A) of a R-module M is the R-module Hom(A, A) =
Hompg(A, A) with composition of maps as multiplication. The quasi-endomorphism ring
is QF(A) = Qg E(A). Our first results will explore some of the basic properties of torsion-
free modules of finite rank over an integral domain. Because there are striking similarities
to the situation in case of Abelian groups, we refer to that case instead of giving details
whenever possible.

If A is a torsion-free module of finite rank n over R, then A C Q™. Thus, F(A) can
be viewed as a subring of Mat,(Q), and the quasi-endomorphism ring of R is Artinian as
a subring of Mat,(Q). In particular, there are primitive idempotents ey, ..., e, of QE(A)

such that 14 =e; + ...+ e,. Thus,

A=Arg. . @Ak

where each A; is a strongly indecomposable R-module and A; ~ A; only if 7 = j. We
refer the reader to the case of Abelian groups, observing that Jonsson’s arguments about

quasi-decompositions of torsion-free groups of finite rank carry over literally to our setting.

Theorem 2.0.1. [10, Theorem 3.25] Let A be a torsion-free module of finite rank over an
integral domain R. If v € E(A), then A= H @ K, where H and K are invariant under ~.
Moreover, the restriction of v to H is a quasi-automorphism of H, and y"*(K) = 0 for some

n>1.
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Proof. The ascending chain

kery C kery? C ...

of pure submodules of A has to stationary for some n < w. Let K = ker 7" and H = ~"(A).
It is easy to see that H and K are invariant under -, and v"(K) = 0.

Furthermore, if h € H Nker ~, then there exists a € A such that h = ~"(a), and
v (a) = v(h) = 0 so that a € ker "™ = ker 4". Thus, h = 7"(a) = 0; and H Nker~y = 0.
Since the restriction of v to H is monic, it is a left regular element of QF(A). However,
QE(H) is a right and left Artinian ring, and left regular elements in such rings are units.
Thus, v|H is a quasi-automorphism of H. If § € QE(H) is an inverse to the restriction of
v to H, then 0™ € QHompg(A, H) and 64" restricts to the identity on H. Hence, 04" is a

quasi-projection, and A = H & ker(0+"). But ker(67") = kery" = K as desired. ]

Corollary 2.0.2. A torsion-free module A of finite rank over an integral domain R is strongly
indecomposable if and only if every (quasi-)endomorphism of A is either monic or belongs

to N(QE(A)). In particular, QE(A) is a local ring in this case.

Proof. If  every  endomorphism of A is either monic or belongs to
N(QE(A)), then QE(A) cannot have non-trivial idempotents. If e were a non-trivial idem-
potent, then there would exist a nonzero r € R such that re € E(G) and re is neither monic
nor nilpotent.

Conversely, consider v € E(A). By the previous theorem, A = H & K, where H and K
are invariant under -, the restriction of v to H is a quasi-automorphism of H, and v"(K) =0
for some n > 1. Since A is strongly indecomposable, either v is a quasi-automorphism of A
or A = ker 4". In the latter case, v is nilpotent.

Furthermore, if v is not a quasi-automorphism, then it cannot not be monic since left
regular elements in left and right Artinian rings are units. Therefore, #v is not a quasi-
automorphism for every 8 € QFE(A). Hence, it must also be nilpotent. Thus, the left ideal

generated by v contains only nilpotent elements, and v € N(QE(A)). This shows that
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N(QE(A)) is a maximal left ideal (and necessarily the unique one), since any element not

in the nilradical is invertible in QF(A). Thus QE(A) is a local ring. O

We continue with a result which originates in [2, Theorem 9.10], but needs to be slightly

modified to fit our setting.

Theorem 2.0.3. Let R be an integral domain, and let
A=AT"®...0 A"

be a torsion-free R-module of finite rank where each A; is strongly indecomposable, and A;
is quasi-isomorphic to A; iff i = j. Suppose that N is the nilradical of E(A) and that J is
the Jacobson radical of QE(A).

a) N=JNE(A); and N is nilpotent.

b) If T; denotes the endomorphism ring of A; fori=1,...,m, then

B(A)/N =[] Mat (1;/N(Ty))

¢) fA=A"@ ... @ AF | then

where N; denotes the nilradical of E(AM).

Proof. a) Since QFE(A) is Artinian, J is nilpotent and J N E(A) € N. On the other hand,
every nilpotent right ideal I of F/(A) gives rise to a nilpotent right ideal QI of QE(A). Thus,
ICJNE(A); and N C JN E(A). In particular, N = J N E(A) is nilpotent.

b) Our arguments follow those of [2, Theorem 9.10]. Let B = A7*@---@® A". Note that
E(A) = E(B) when viewed as subrings of QF(A). Hence, E(A)/N(E(A)) = E(B)/N(E(B))
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as subrings of QF(A)/J(QFE(A)). Thus, it is sufficient to prove
E(B)/N(E(B)) = IZIMatni (T;/N(T3)) -
Represent E(B) as a matrix ring of the form (Hompg(A}", A}” ))i’j, and consider
I = (@{N(E(A])}) & (S{Homp(A", AY)]i # j}) € E(B).
It suffices to prove that [ is an ideal of E(B) and I C N(E(B)). In this case,
B)/I =~ H E(A7)/N(E(AT)))

so that I = N(E(B)) since N(E(B)/I) =0 and

12

E(B)/N(E(B)) H( (A7) /N(E(AT)))
= HMat A;)/N(E(A)))

HMatm‘ TZ/N( l))v

12

as needed.

To show that I is an ideal of QE(A), let

f S HOIIlR(An Anj)

v e N(E(AM) C 1

and

y € Homp(A}", A7*)
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where r # s. Then, fx € I, except possibly for the case that ¢ = 7 = k. In this case,
fx € N(E(A]")) C I. Also, fy € I, except possibly for the case that s = i and r = j.
In this case, y : A?j — A’ and f induces maps A; — A, — A;. If this latter composite
is nonzero, it must be an element of N(7}). Otherwise, the composite is a monomorphism,
since A; is strongly indecomposable so that A, is a quasi-summand of A;, contradicting the

choice of the A;’s. Consequently,

fu € Mat,,, (N(T3)) = N(Mat,, (T))) = N(E(A})) C 1.

Similarly, xf € [ and yf € I.

To show that I C N(E(B)), it suffices to prove that 1) = 0 for some [. If 2 € I®),
then z is the sum of elements which are the composition of [ morphisms A" — A?j fori # 7
and morphisms in N(E(A}")). Choose k with N(E(A}*))k) =0 for 1 < i < m. Choose I
large enough so that any composition of [ morphisms, as described above, has some subscript
repeated at least k times. If A} — A;” — ... — A" is a repetition of the subscript i then,
as above, the composition must be in N(E(A}")). Consequently, I) = 0.

c) is a direct consequence of b). O
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Chapter 3

The Covariant Case

In this section we present a numerical set of invariants that serve as complete set of quasi-
isomorphism invariants between modules A and B. These invariants are closely linked to the
structure of Ext ([7]). A module is called reduced when its maximal divisible submodule is
zero. If A and M are R-modules, then the A-socle Sy(M) of M is S4(C) = Ecroma,c)f(A).
Finally, if U is a submodule of a torsion-free module M, then U, = {x € M | ar €

U for some 0 # r € R}.

Proposition 3.0.1. [10] Let A and B be torsion-free finite rank modules over a Dedekind

domain R.

(a) If A C B, then OT(A) < OT(B).

(b) For anyt € T(A), t <OT(A).

(c) If B< A, then OT(A/B) < OT(A).

(d) OT(A) is P-divisible if and only if rp(A) < rank(A).

Proof. (a) If ¢ maps B onto a rank-one module M, then ¢ extends to a map ¢ : A — QM
and t(A) = t(¢(B)) < t(¢'(A)) € CT(A). Thus every type in CT(B) is less than or equal
to a type in CT(A), so OT(B) < OT(A).

(b) If M is a rank 1 pure submodule of A, then t(M) = OT(M) < OT(A) by (a).

(c) If M is a homomorphic image of A/B, then M is also a homomorphic image of A,
so CT(A/B) C CT(A) and OT(A/B) = sup(CT(A/B)) < sup(supCT(A)) = OT(A).
(d) rp(A) < rank(A) if and only if A has a homomorphic image which is P-divisible.

This is the case if and only if A has a rank 1 P-divisble homomorphic image (since the
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homomorphic image of a P-divisble module is P-divisble) if and only if CT(A) contains a
P-divisble type. OT(A) is the least upper bound of a finite subset of CT(A), hence OT(A)
is P-divisble if and only if some element of CT(A) is P-divisible. Thus rp(A) < rank(A) if
and only if OT(A) is P-divisble. O

Proposition 3.0.2. [10] Let A be a torsion-free finite rank module over a Dedekind domain
R, and let r = rank(A). If uy, ..., iy, is a mazimal linearly independent set in Hom(A, @),

then OT(A) = sup{t(u1(A)),...,t(un(A))}.

Proof. We first have OT(A) > sup{t(u1(A)),...,t(un(A))}. Since py,. .., u, form a ba-
sis for Hom(A4, @), for any p € Hom(A, @), there exist r,7q,...,r, € R such that ru =
> ripyi- Then ru(A) is contained in the submodule of @ generated by p(A), ..., p,(4),
and we have t(u(A)) = (ru(A)) < sup{t(ui(A))|i=1,...n}. Thus

OT(A) < sup{t(ua(A)),..., t(un(A))}.

The result follows. O

Lemma 3.0.3. Let A and B be torsion-free finite rank modules over a Dedekind domain R.

If B/Sa(B) and A/Sp(A) are torsion, then A and B share a nonzero quasi-summand.

Proof. To simplify our notation, denote F(A) by E and Nil(E) by N. By Theorem 2.0.3,
the Jacobson radical J of QF satisfies N = J N E. Moreover, J and N are nilpotent since
QF is left Artinian. Let N, = (NA), be the pure submodule of A generated by g(A) for
allg € N. If N* =0 and N ! # 0, then N""!N, = 0 implies A/N, # 0. Since A/N, is
torsion-free and (Sp(A) + N,)/N, is full in A/N, by hypothesis, Sg(A) € N,. Therefore,
there is an f : B — A with f(B) € N.,.

We may write B ~ By & --- @ By with each B; strongly indecomposable by Theorem
2.0.3. Clearly,

Sa(B) ~ Sa(B1) @ --- @ Sa(By).
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For some i, f(Sa(B;)) € N. since otherwise Zle f(Sa(B;)) € N, implying r f(Sa(B)) C N,
for some nonzero r € R. Therefore, we would obtain f(Sa(B)) C N,. But, for any b € B,
there is a 0 # ¢ € R with b € S4(B) by the hypothesis, so that f(fv) = {f(v) € N,. By the
purity of N, this implies f(v) € N,, contradicting that f(B) € N,. We may assume there
is a map g : A — Bj such that fg(A)  N,.

From the definition of N,, we have N < Hom(A, N,), so that fg ¢ N. Now E/N is a
full subring of the semi-simple ring QE/.J so there are h, k" € E such that e = (hf)(gh’) is
not nilpotent mod N because QE/.J is a direct product of matrix rings. Relabel hf and gh’
as f and g respectively, and consider the restriction f : B; — A.

We now have gf € E(B;). As in Section 3, we use the fact that B is strongly inde-
composable to obtain that a = gf is invertible in QE(By) or « is nilpotent. If (gf)" =0,
then "™ = f(gf)"g = 0, a contradiction. So o must be invertible. Consequently, there is
0 # s € R such that sa~' € E(B,) and slp, = sa 'gf. Call ¢ = sag.

Any a € A satisfies

sa=sa— f(g(a)) + (g (a)).

Because sa — f(g (a)) € ker(g'), we have A ~ A" @ ker(g'). Since f is a monomorphism,
A = B,. O

The following result was originally shown by Beaumont and Pierce in the case that A
is a subring of a finite dimensional Q-algebras, but it carries over to torsion-free finite rank

rings over integral domains:

Theorem 3.0.4. (/3, Theorem 1.4] and [10, Proposition 7.21]) Let R be an integral domain
whose field of quotients Q) is a perfect field. Let A be a torsion-free free R-algebra which has
finite rank as an R-module. Let QA = S @ Ny where Ny = N(QA) and Sy is a subring of
QA. Then, N(A)=N1NAand A= (S1NA) &N, NA).

Observe that @ is a perfect field whenever R™ is torsion-free as an Abelian group.
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Theorem 3.0.5. Let A and B be reduced torsion-free finite rank modules over a Dedekind

domain R with field of quotients ().

a) If A~ B, then rp(Hom(A, C)) = rp(Hom(B, C)) for all primes P and all finite rank

modules C'.

b) If Q is perfect, then A ~ B whenever rp(Hom(A, C)) = rp(Hom(B, C)) for all primes
P and all finite rank modules C'.

Proof. a) Since Hom(A, C) is quasi-isomorphic to Hom(B, C') and rp is quasi-isomorphism
invariant, the result follows.

b) We will show that S(B) is full in B; the result follows from Lemma 3.0.3 via
induction on the rank of A.

Let B; be a pure, strongly indecomposable quasi-summand of B and S; = Sa(Bj).. To
simplify the argument, we may assume that B; is a summand of B, say B = B; @ K, since

we can replace B by a module quasi-isomorphic to it. Consider the exact sequences
0 — Hom(A4, S;) — Hom(A4, B;) - Hom(A4, B,/S;)

and

0 — Hom(B, Sy) — Hom(B, B;) -2 Hom(B, B,/S1).

By the definition of S4(Bj), we have im « = 0. By the hypothesis, rp(im §) =
rp(Hom(B, By)) —rp(Hom(B, S1)) = rp(Hom(A, By)) —rp(Hom(A, Sy)) = rp(ima) = 0 for
all P. Thus, 9m f is divisible by [10]. Moreover, ker 5 = Hom(By,S;) @ Hom(K,S;) is
a pure submodule of Hom(B, By) = Hom(Bj, By) @ Hom(K, By) with a divisible cokernel.
Hence, Hom(By, By)/Hom(By, S;) is divisible as a direct summand of a divisible module.

Let R; denote the nilradical of E(B;) and N; = (R1C}). < Bj. As in the previous
lemma, N7 # B;. As mentioned before, every endomorphism of Bj is either in Ry or else is

a monomorphism. Hence, Ry = Hom(By, N1). Therefore, if Hom(By,S;) € Hom(B;, N;) =
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Ry, then there is a monomorphism f : By — By with im f < S;. In this case, rank(B;) =
rank(S7) implies S; = By since S is pure in B;. We now show that the case Hom(By, S;) C
Ry is not possible.

Suppose I = Hom(By,S;) € Hom(B;, N;) = R;. From above, we have that E(B;)/I
is divisible. Consequently, E(By)/R; is divisible. By Theorem 3.0.4, E(B;)/R; is a quasi-
summand of E(B;). But E(C}) is reduced, a contradiction. Thus, I Z R;.

Write B ~ By & - - - @ By, for strongly indecomposable B;. Then (S4(B;)). = C; implies
(Sa(B)). = B. Therefore, S4(B) is full in B and by symmetry Sc(A) is full in A. From
Lemma 3.0.3, A and B share a nonzero quasi-summand, say A~ M @ A" and B~ M @ B’
with M # 0. Then

rp(Hom(A,C)) = rp(Hom(G,C)) + rp(Hom(A/,C))
= rp(Hom(G,C)) + rp(Hom(B', C))

= rp(Hom(B,(C))

for all P and all C. Thus

rp(Hom(A', C)) = rp(Hom(B', C))

for all P and C. The result follows by induction on rank(A). O

Lemma 3.0.6. Let R be a Dedekind domain, P € spec(R), and A a torsion-free R-module
of finite rank. Then, Ext(A, Rp) = 0 if and only if OT(A) < type(Rp).

Proof. Suppose Ext(A, Rp) = 0. For a pure corank 1 submodule U of A, consider the exact
sequence

0-U—-A— A/U—0.
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We apply the functor Homg(_, Rp) to get the induced sequence

0— HOHI(A/U, Rp) — HOHI(A, Rp) — HOHI(U, RP>

Since Hom (U, Rp) is a finite rank R-module, Ext(A/U, Rp) has finite rank too. We want to
show Hom(A/U, Rp) # 0 from which we obtain t(A/U) < t(Rp). Consequently, OT'(A) <
t(Rp).

If Hom(A/U, Rp) = 0, then A/U is P-divisible by [10]. We consider the sequence
0 — A/U - @ — D — 0 where D is divisible and torsion with D[P] = 0 since A/U is

P-divisible. It induces

0 = Ext(D, Rp) — Ext(Q, Rp) — Ext(4/U, Rp) — 0.

Observe that Ext(Q, Rp) = Extg,(Q, Rp). Considering the sequence 0 — Rp — Q —

Q/Rp — 0 of Rp-modules, we obtain the sequences

0= HomRP(Q, Rp) — HOIIIRP(RP, RP)

— EXtRP(Q/Rp, Rp) — El’tRP(Q, R) — 0

and

0= HOIIlRP (Q/Rp, Q) — HOHlRP (Q/Rp, Q/RP>
— EXtRP(Q/RP,Rp) — EXtRP(Q/Rp,Q> =0.

Since Rp is a discrete valuation domain such that Ffp has infinite rank as an Rp-module, we
obtain that

Extp,(Q, Rp) = Ext(Q, Rp) = Ext(A/U, Rp)
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has infinite rank contradicting what has already been shown.

Conversely, observe that OT'(A) < t(Rp) implies that there exists an exact sequence

0—A—®,Rp (E).

To see this, let F' = @& ;2,8 C A be a free submodule such that A/F is torsion. For
i=1,...,n, consider the pure corank 1 submodule U; = (&5 # ix;R), of A. Since t(A/U;) <
t(Rp), there exists a map ¢; : A — Rp with ¢;(U;) = 0 and ¢(x;) #= 0. Define p : A — R}

by p(a) = (pi(a),...,en(a)). If p(a) =0, then

ra=rx1+...+r,x, € F

for some nonzero r € R since A/F torsion. But, p(a) = 0 implies ¢;(a) = 0 for all i. Hence
0 = pi(ra) = @;(rzy + ... + raz,) = pi(ra;) But, ¢i(x;) # 0 yields r; = 0. Hence ¢ is a
monomorphism.

The sequence E induces

0= EXt(EBnRP, Rp) — EXt(A, Rp) — 0

because
Ext(®nRp, Rp) = Extr, (9o Rp, Rp) = 0.
]

Lemma 3.0.7. Let R be a Dedekind domain, and X a rank 1 R-module. A torsion-free R-
module A of finite rank satisfies OT(A) < H(X) if and only if rank(Hom(A, X)) = rank(A).

Proof. Suppose OT(A) < t(X), and consider a free submodule F' = @z; R of A such that
A/F is torsion. If U; = (@47, R)., then

t(A/U;) < OT(A) < t(X)
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yields that there exists 0 # ¢; : A — R, with ¢;(U;) = 0. To see that {¢;,...,p,} is
R-independent, suppose r1p; + -+ + rpp, = 0. For ¢ = 1,...,n, we have 0 = r1(x;) +
oo rppn(i) = ripi(z). Since ;(x;) # 0, we have r; = 0.

Conversely, suppose that aj,...,a, € Hom(A, X) linearly independent where n =

rank(A). Since rank(Hom(A, @)) = n = rank(Hom(A, X), we obtain

OT(4) = {t(ar(A)). ..., tan(4))} < t(X)

by Proposition 3.0.2. O

Theorem 3.0.8. Let A and B finite rank torsion-free modules over a Dedekind domain R

such that Rp has infinite rank over R for all P € spec(R).

a) If Ext(A,C) = Ext(B,C) for all torsion-free R-modules C' of finite rank, then A =
PL® A @ Dy and B= P, ® By @ Dy where OT(A) = OT(B), P, and Py are finitely
generated projective, D1 and Dy are torsion-free divisible of finite rank, and A; and B,
are reduced with rp(Ay) = rp(By) and rp(Homg(Ay,C)) = rp(Homg(By,C)) for all
P € Spec(R) and all torsion-free finite rank modules C'. Moreover, if Q is a perfect
field, then Ay ~ Bj.

b) If OT(A) = OT(B) and A2 P, ® Ay @ Dy and B = P, @ By @ Dy where Py and Py
are finitely generated projective, Dy and Dy are torsion-free divisible of finite rank, and
Ay ~ By are reduced, then Ext(A, C) = Ext(B, C) for all torsion-free R-modules C' of

finite rank.

Proof. a) Since every finite rank torsion-free R-module X can be written as X = P®Y with

P projective and Hompg(Y, P) = 0, it suffices to consider the case that

HOIHR(A, R) = HOIHR(B, R) =0.
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In particular, Ext(A, C) = Ext(B, C) for all C of rank at most n. Write A = A; & D; and
B = By @ Dy where Dy and D, are torsion-free divisible of finite rank. Since Extg(D;, C)
is torsion-free divisible, we have rp(Extg(A;,C)) = rp(Extr(A,C)) = rp(Extg(B,C)) =
rp(Extr(By,C)). Since we only consider the P-ranks of Extg in the following, we may
assume that A and B are reduced.

We know that, for all torsion-free modules X and Y of finite rank,

rp(Ext(X,Y)) = rp(X)ry(Y) — rp(Hom(X, Y'))

as was shown shown in another paper. Using this for A and B and a module C' having rank

< n, we get

p(A)rp(C) — rp(Hom(A, C)) = 1,(B)ry(C) — ry(Hom(B, C)).

Because Hom(A, R) = Hom(B, R) = 0, we have

rp,(Hom(A, R)) = r,(Hom(B, R)) =0

and

Tp(A) = 1p(A)rp(R) = rp(B)rp(R) = 1p(B).

But then, r,(Hom(A, C)) = r,(Hom(B, C')) using the above formula. By Theorem 3.0.5, A
and B are quasi-isomorphic.

Assume not both OT'(A) and OT'(B) are the type of Q. Without loss of generality, we
may assume 7 = OT(A) # type(Q). Observe that there has to be P € Spec(R) such that
no rank 1 quotient of A is P-divisible. If we could find a rank 1 quotient of A for every
P which is P-divisible, then its type at that prime would be infinite. Then the sup of the
types of the rank 1 quotients of A would be infinite for all primes, and OT(A) = type(Q), a

contradiction. In particular, A/U C Rp for all pure corank 1 submodules U of A.
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Observe that OT'(X) < type(Rp) if and only if X # PX for all finite rank torsion-
free modules X. By Lemma 3.0.6, Ext(A, R,) = 0 if and only if OT(A) < type(Rp).
Since the Ext-modules are isomorphic, Ext(B, R,) = 0, and we obtain OT(B) < type(R,)
using Lemma 3.0.6 once more. Moreover , rp(A) = rank(A) and rp(B) = ro(B) by [10,
Proposition 2.34]. If X is a rank 1 module of type 7, then Hom(A, X) can be embedded
into a finite direct sum of copies of X and ro(Hom(A, X)) = r9(A) by Lemma 3.0.7. By
[10, Proposition 2.34], OT'(Homg(A, X) < 7. Another application of [10, Proposition 2.34]
yields

rp(Hom(A, X)) = ro(Hom(A, X)) = rank(A) = ry(A).

Since

OT(Hompg(B, X) < 7 < type(Rp),

we obtain r,(Hompg(B, X) = ro(Hom(B, X)). On the other hand

rp(A)rp(X) — rp(Hom(A, X)) = rp(B)rp(X) — rp(Hom(B, X))

and rp(A) = rp(B) yield rp(Hom(A, X)) = rp(Hom(B, X)). Thus,

TP(B) = Tp(A):Tp(HOIHR(A,X))

= Tp(HOHlR(B,X)) = TO(HomR(BvX»

IN

To(B) = TP(B).

In particular, ro(Hom(B, X)) = ro(B). Another application of Lemma 3.0.7 yields OT'(B) <
T =O0T(A) < type(Q). By symmetry, OT(A) = OT(B).

b) Standard homological arguments show that

ro(Extr(A4, C)) = ro(Ext(Q, C)
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is infinite for all reduced torsion-free groups C' of finite rank if OT(A) = type(Q). To see
this, observe that there exists an exact sequence 0 — U — A™ — () — 0 for some n < w. It

induces

Hom(U, C) = Extg(Q, C) — Extr(A",C).

Since Rp has infinite rank for all P € spec(R) and C' is not algebraically compact, we have

0 < ro(Ext(Q, C)) is infinite. Since Hom(U, C') has finite rank,

ro(Extr(A, C)) = ro(Ext(Q, C).

Since OT(A) = OT(B), ro(Ext(B, C)) = ro(Ext(Q, C) is also infinite. Since ro(Ext(D;,C)) =
ro(Ext(Q, C) is infinite, we obtain that Ext(A,C) and Ext(B,C) have the same infinite
torsion-free rank in this case too. On the other hand, the P-ranks of the Ext-modules are
determined completely by A; and B;. Since A; ~ By, the P-ranks have to coincide. On the
other hand, if OT(A) = OT(B) < type(Q), then D; = Dy = 0. Since the Ext-modules are

divisible, their structure is completely determined by their torsion-free and their P-ranks. [

33



Chapter 4

The Contravariant Case

If Rp is complete in the P-adic topology for some P € spec(R), then Ext}qP(A, Rp) =
Extg, (B, Rp) = 0 for all torsion-free Rp-modules A and B. In particular A and B need
not be quasi-isomorphic. We continue our discussion by showing that the discussion of the
isomorphism of Ext-modules restricts to the case that R is a Dedekind domain such that ffp

has infinite rank for all P € spec(R):

Proposition 4.0.1. The following conditions are equivalent for a Noetherian integral domain
R with field of quotients Q) such that Rp is not complete in the P-adic topology for any
P € spec(R):

a) R is a Dedekind domain such that Rp has infinite rank for all P € spec(R).

b) If M and N are quasi-isomorphic torsion-free R-modules of finite rank and Dy and D
are torsion-free divisible of finite rank, then Ext(M @ Dy, A) = Ext(N @ Dy, A) for all

torsion-free R-modules A.

Proof. a) — b): Observe that Ext(M, A) is divisible if M is torsion-free and R is a Dedekind
domain. However, quasi-isomorphic divisible modules over Dedekind domains are isomor-

phic. Moreover, consider the exact sequence

0 — Hom(R, R) — Ext(Q/R, R) — Ext(Q, R) — 0.

If we can show that Ext(Q/R, R) has infinite torsion-free rank, then Ext(Q", A) = Ext(Q™, A)

for all n, m < w. However, the Ext-module fits into the exact sequence

0 — Hom(Q/R, Q/R) — Ext(Q/R, R) — 0
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from which we obtain

Ext(Q/R, R) = Upespee(r) Endr(E(R/P)).

However, Endgr(E(R/P)) = Rp by [10, Proposition 0.83]. By a), Ext(Q/R, R) has infinite
rank.

b) — a): Let I be a nonzero ideal of R. Since I ~ R, we obtain Ext(I, M) =
Ext(R, M) = 0 for all torsion-free modules R-modules M of finite rank. We consider an
exact sequence 0 - U — F' — I — 0 in which F is finitely generated free. Since U has
finite rank, Ext(I,U) = Ext(R, R) = 0. Thus, the sequence splits, and I is projective.

Let P € spec(R), and assume that rank(Rp) < co. Arguing as in a) — b) with
Rp replacing R, we obtain that Ext(Q, Rp) is an epimorphic image of Ext(Q/Rp, Rp) =
End(Q/Rp) = Rp. Thus, 0 < rank(Ext(Q, Rp)) < co observing that Rp is no complete in

the P-adic topology. But then

vank(Exth(Q. Rp)) < rank(Exth(Q & Q. Rp)

contradicting b). O

If A and B are torsion-free finite rank R-modules over an integral domain, then A[B] =
N{ker(f)|f € Hompg(A, B)} denotes the B-radical of A. In particular, if A[B] =0, then A

can be viewed as a submodule of B™ for some n.

Theorem 4.0.2. Let A and B be torsion-free modules of finite rank over an integral domain
R. If A|[B] =0 and B[A] =0, then A= A, & Ay and B = B; & By such that Ay and By are

nonzero and strongly indecomposable and A, ~ Bjy.

Proof. We consider the two-sided ideal S = Hom(B, A)Hom(A, B) of E(A). For 0 # a € A,
there exists f : A — B with f(a) # 0 since A[B] = 0. Similarly, B[A] = 0 yields that we

can find g : B — A with ¢gf(a) # 0. In particular, S cannot be contained in N. To see this,
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choose k > 0 such that N* = 0 but N*~1 £ 0, and select 0 # x € N¥~'A. By what has been
shown, there is s € S with 0 # sz. If S C N, then sz € SN*¥~! C N¥A = 0, a contradiction.

By Theorem 2.0.3, J N E(A) = N so that
E(A)/N = E(A)/JNE(A) =2 [E(A)+ J]|/J

can be viewed as a subring of the semi-simple ring QE(A)/J. As mentioned before, A ~
A’fl @ - @ AP such that each A; strongly indecomposable and A; is not quasi-isomorphic
to A; if ¢ # j . Without loss of generality, we may assume A = A .@® Ak By Theorem
2.0.3, we obtain

N = @zNz ) [@j;&iHomR(Ai‘%7 Ajj]

where N; denotes the nilradical of E(A%). Hence,
E(A)/N = [[Maty, (R) =T

where R; = E(A;)/N(E(A)).

Let 0 € S\ N, and write 0 = fa for @ € Hompg(A, B) and § € Hompg(B, A). Identifying
o+ N with its image in the ring 7" under the previous ring isomorphism, we obtain that one
of the components of o + N in T' is nonzero. Without loss of generality, we may assume that
the numbering of {A;,..., A,} has been chosen in such a way that say the first component
is nonzero.

We write ¢ = AP and let § : ¢ — A and 7 : A — C be the natural maps as-
sociated with the given decomposition of A. Then, we obtain that 7od = (75)(ad) €
Hompg (B, C)Hompg(C, B) is not an element of N(E(C')) by what just has been shown. Since
E(C)) = Maty, (A1), some (i, j)-entry of mfad is a non-nilpotent endomorphism of A;. Let

7; be the projection onto the jt"-coordinate and )\; be the embedding into the i*-coordinate.
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Then

v = (y;mB)(ad);) € Hompg(B, A;)Homp(A;, B)

does not belong to NE(A;). As in the proof of Theorem 2.0.3, this means that ¢ ¢
J(QE(Ay)). Hence, ¢ is invertible in QF(A;) since the latter is a local ring. We can
find 0 # r € R and n € E(A;) such that nt and tn are multiplication by r on A;. Thus,

ny;mB : B — A and ad); : Ay — B satisty

(mmB) (@b Ai) = rla,.

Thus, B has a quasi summand isomorphic to A; O

Observe that all nonzero prime ideals of a Dedekind domain R are maximal. We let
spec(R) denote the collection of maximal ideals of R in this case. In particular, we can define
the P-rank of a torsion-free R-module A as the composition length of the module A/PA

[10]. We refer the reader to [10] and [1] for details on the P-rank of a module.
Lemma 4.0.3. If A and B are quasi-isomorphic torsion-free modules of finite rank over a
Dedekind domain R, then rp(A) = rp(B) < oo for all P € spec(R).

Proof. [10, Proposition 1.26] yields rp(A) < rank(A) < oo and rp(A) < rp(U) whenever A
is a finite rank module over a Dedekind domain R and U is an essential submodule of A.
Hence, rp(A) < rp(B) and vice-versa. O
Theorem 4.0.4. Let A and B be torsion-free reduced modules of finite rank over a Dedekind
domain R. Then

rp(Hompg(C, A)) = rp(Hompg(C, B))

for all P € spec(R) and all torsion-free modules C' of finite rank if and only if A ~ B.

Proof. Suppose that A and B are quasi-isomorphic. Since the P-rank of a module is a quasi-
isomorphism invariant, and Hompg(C, A) and Hompg(C, B) are quasi-isomorphic modules,

their P-ranks are the same for all P € spec(R) and torsion-free modules C' of finite rank.
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Conversely, we show that A is quasi-isomorphic to B if
rp(Hompg(C, A)) = rp(Hompg(C, B))

for all P € spec(R) and any torsion-free homomorphic image C' of A or B. For such modules
C, we obtain that

TP(HOIDR(C, A)) = TP(HOIHR(C’ B))

is finite for all P since the homomorphism modules have finite torsion-free rank.

Let A" = A[B] and consider the exact sequence
0—+A A= A/A 0.
It induces the exact sequences
0 — Homp(A/A', B) — Hompg(A, B) % Homp(A', B)

and

0 — Homp(A/A', A) — Homp(A, A) 5 Homp(A', A).

By the definition of A[B], the map
0 — Homp(A/A', B) — Hompg(A, B)
is an isomorphism so that ¢m a = 0. By our hypothesis, we obtain

rp(im B) = rp(Homp(A, A)) — rp(Homp(A/A', A))
= rp(Homp(A, B)) — rp(Homg(A/A', B))

= rp(ima)=0
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for all prime ideals P. Therefore, im (3 is divisible.

If im § # 0, then Homp(A', A)A" C A contains a nonzero divisible submodule which
is not possible. Thus, ém [ = 0. In particular, A’ = §(ids)A’ = 0. Therefore, A[B] = 0.
Similarly, we show B[A] = 0.

By Theorem 4.0.2, there is a nonzero K such that A is quasi-isomorphic to K @& A; and
B is quasi-isomorphic to K @ B for some A; and By. If C' is an epimorphic image of B; or

Ay, then C' is quasi-isomorphic to an epimorphic image of B or A respectively. Therefore

rp(Hom(C, K)) + rp(Hom(C, A;y)) = rp(Hom(C, A))

= rp(Hom(C, B)) = rp(Hom(C, K)) + rp(Hom(C, By)),

which implies rp(Hom(C, A)) = rp(Hom(C, By)) for all P. Inducting on the rank of A+ B,

we obtain that A; is quasi-isomorphic to Bj. O]

Our next result shows that Warfield’s formula for the P-rank of Hom holds for modules
over Dedekind domain. Observe that Ext(A, —) is divisible whenever R is Dedekind and
A is a torsion-free R-module. Thus, the P-rank of the module Ext(A, —) as defined before
would be 0. If D is a divisible module, then we replace the notion of P-rank by that of the
R/ P-dimension of the P-socle D[P] = {x € D|Px = 0}.

Proposition 4.0.5. Let R be a Dedekind domain, and M and N torsion-free R-modules of
finite rank. For all P € spec(R),

rp(Homp(M, N)) = rp(M)rp(N) — dimp,p(Extp(M, N)[P]).
Proof. The result is a direct consequence of Theorem 1.0.30. [

Corollary 4.0.6. Let A and B be torsion-free modules of finite rank over a Dedekind domain
R. If A and B are quasi-isomorphic, then Ext(C, A) = Ext(C, B) for all torsion-free finite
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rank modules C. Moreover, if the P-adic completion of Rp has infinite rank for all P €

spec(R), then the converse holds.

Proof. Since R is a Dedekind domain, Ext(M, —) is divisible whenever M is torsion-free.
Since divisible quasi-isomorphic modules are isomorphic, we obtain Ext(C, A) = Ext(C, B)
for all torsion-free finite rank modules C' if A and B have the desired form.
b) Write A = Dy @ A" and B = Dp @ B', with D4 and Dp divisible, and A" and B’
reduced. Then,
Ext(C, A") = Ext(C, A) 2 Ext(C, B) = Ext(C, B').

Thus, we may assume that A and B are reduced. For any finite rank torsion-free R-module

C, we obtain

rp(Hom(C, A)) = rp(C)rp(A) — dimg/p(Ext(C, A)[P])

and

rp(Hom(C, B)) = rp(C)rp(B) — dimg,/p(Ext(C, B)[P])

from which we get
rp(C)rp(A) — rp(Hom(C, A)) = rp(C)rp(B) — rp(Hom(C, B)).

We fix P € spec(R), and consider the P-adic completion Rp of the module Rp as in
[10]. Since Rp has infinite rank as an R-module, we can find a pure submodule C' of Rp
containing Rp with

rank(C) = rank(A) 4 rank(B) + 1.

If a:C — A, then ker a # 0, and C/ker « is divisible since rp(C) = 1 and rg(C) = 0 for
P # Q € spec(R). Hence, Hom(C, A) = 0. In the same way, Hom(C, B) = 0. Hence,

TP(A) = Tp(C)’/’p(A) - TP(HOHIR(C, A))
= Tp(C)’f’p(B) - T’p(HOIIlR(C, B)) = TP(B).
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By Theorem 4.0.4, A and B are quasi-isomorphic. O]

If R is a maximal discrete valuation domain, then all torsion-free R-modules C' of finite
rank are projective, so Ext(C, M) = 0 for all M. In particular, Ext(C, M) = Ext(C, N) does
not yield that M and N need to be quasi-isomorphic. Thus, the condition on the rank of

Rp cannot be omitted.
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