Dedekind Domains and the P-rank of Ext

by
Daniel James
\title{ A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy }

Auburn, Alabama
7 May 2017

Keywords: Dedekind, P-rank, Ext

Copyright 2017 by Daniel James

Approved by
Ulrich F. Albrecht, Professor of Mathematics
Ziqin Feng, Assistant Professor of Mathematics
Huajun Huang, Associate Professor of Mathematics
Tin-Yau Tam, Professor of Mathematics

Abstract

We address what can be said of torsion-free finite rank modules A and B over a Dedekind domain R when their Ext's are isomorphic, extending an answer to Fuchs' Problem 43 and its dual by Goeters. We obtain a result for the covariant case when $\hat{R_{P}}$ has infinite rank over R, noting that A and B are quasi-isomorphic iff the P-rank of their Hom sets match. In the contravariant case, we see A and B are quasi-isomorphic implies their extension groups are isomorphic, with the converse holding when again $\hat{R_{P}}$ has infinite rank over R. Along the way, we find equivalent conditions that hold for Noetherian domains whose completions are not complete in the P-adic topology.

Acknowledgments

Thanks to Dr. Albrecht, without whom this would not be possible, and Dr. Goeters for his guidance and friendship over the years.

Dedicated to my grandmother, LeeAnn Sweatt, whose perseverance and affability through great struggle will forever inspire me. I hope to pay forward everything you've done for me in my life ahead.

Table of Contents

Abstract ii
Acknowledgments iii
1 Introduction 1
2 Torsion-Free Modules of Finite Rank 18
3 The Covariant Case 23
4 The Contravariant Case 34
Bibliography 42

Chapter 1

Introduction

Problem 43 in [4] asks to characterize the relation between abelian groups A and B such that $\operatorname{Ext}_{\mathbb{Z}}(A, C) \cong \operatorname{Ext}_{\mathbb{Z}}(B, C)$ for all Abelian groups C. A solution to this problem and its dual was given by Goeters in the case that A, B and C are torsion free Abelian groups of finite rank in [6] and [8] respectively.

In the 80 's, it was commonly believed that results about Abelian groups extend canonically to modules over Dedekind domains. Lee Lady suggested that Abelian group theorists should work directly in the context of modules over Dedekind domains R. He showed the feasibility of such an approach in [10] for countable Dedekind domains of characterization 0 . However, Nagata showed that there exits an uncountable discrete valuation domain R of characteristic 0 whose P-adic completion \hat{R} of R has finite rank. In particular, this provides an example of a Dedekind domain to which Goeters's solution of Fuchs' Problem cannot readily be extended.

First, we will begin to motivate our problem by discussing Dedekind domains. We will work to present several equivalent conditions Dedekind domains satisfy at the end of this section.

Proposition 1.0.1. [9] Let T be a multiplicative subset of an integral domain R such that $0 \notin T$. If R is integrally closed, then $T^{-1} R$ is integrally closed as well.

Proof. $T^{-1} R$ is an integral domain, and R may be identified with a subring of $T^{-1} R$. Extending this identification, the quotient field Q of R may be considered as a subfield of the quotient field Q^{\prime} of $T^{-1} R$, so that $Q=Q^{\prime}$.

Let $u \in Q^{\prime}$ be integral over $T^{-1} R$. Then for some $r_{i} \in R$ and $t_{i} \in T$,

$$
u^{n}+\left(r_{n-1} / t_{n-1}\right) u^{n-1}+\cdots+\left(r_{1} / t_{1}\right) u+\left(\operatorname{rank} / t_{0}\right)=0 .
$$

Multiplying by t^{n} where $t=t_{0} t_{1} \cdots t_{n-1} \in T$ shows that $t u$ is integral over R. Since $t u \in Q^{\prime}=Q$ and R is integrally closed, $t u \in R$. Therefore, $u=t u / t \in T^{-1} R$, whence $T^{-1} R$ is integrally closed.

Proposition 1.0.2. [10] If M and N are R-modules and S is a multiplicative set, then
i. $\operatorname{Hom}_{S^{-1} R}\left(S^{-1} M, S^{-1} N\right)=\operatorname{Hom}_{R}\left(S^{-1} M, S^{-1} N\right)=\operatorname{Hom}_{R}\left(M, S^{-1} N\right)$.
ii. $S^{-1} M \otimes_{S^{-1} R} S^{-1} N=S^{-1} M \otimes_{R} S^{-1} N$.

Proof. (i.) For $\varphi \in \operatorname{Hom}_{R}\left(S^{-1} M, S^{-1} N\right), m \in M, r \in R$, and $s, s^{\prime} \in S$,

$$
\varphi\left(\frac{r}{s} \frac{m}{r^{\prime}}\right)=\frac{s}{s} \varphi\left(\frac{r m}{s s^{\prime}}\right)=\frac{r}{s} \varphi\left(\frac{s m}{s s^{\prime}}\right)=\frac{r}{s} \varphi\left(\frac{m}{s^{\prime}}\right) .
$$

Thus every R-linear map from $S^{-1} M$ to $S^{-1} N$ is in fact $S^{-1} R$-linear. Furthermore, every R-linear map from M to $S^{-1} N$ extends uniquely to a map from $S^{-1} M$ to $S^{-1} N$.
(ii.) This follows from the fact that for $m \in S^{-1} M, n \in S^{-1} N, r \in R$, and $s \in S$, the following holds in $S^{-1} M \otimes_{R} S^{-1} N$:

$$
m \otimes \frac{r n}{s}=\frac{s m}{s} \otimes \frac{r n}{s}=\frac{r m}{s} \otimes \frac{s n}{s}=\frac{r m}{s} \otimes n
$$

Proposition 1.0.3. [10] Let M be a finitely generated module over a Noetherian ring R. For every R-module N and multiplicative set S, we have $S^{-1} \operatorname{Hom}_{R}(M, N) \cong \operatorname{Hom}_{R}\left(S^{-1} M, S^{-1} N\right)$. Proof. Let $\frac{\varphi}{s} \in S^{-1} \operatorname{Hom}_{R}(M, N)$, and define $\psi: S^{-1} \operatorname{Hom}_{R}(M, N) \rightarrow \operatorname{Hom}_{R}\left(S^{-1} M, S^{-1} N\right)$ by

$$
\psi\left(\frac{\varphi}{s}\right)\left(\frac{m}{s^{\prime}}\right)=\frac{\varphi(m)}{s s^{\prime}}
$$

ψ is clearly an isomorphism when $M=R$, and thus when $M=R^{t}$ for finite t. Generally, because M is finitely generated, there exists a surjection $\varepsilon: R^{t} \rightarrow M$ for some finite t. Since R is Noetherian, ker ε is also finitely generated, and we thus get an exact sequence $R^{s} \rightarrow R^{t} \rightarrow M \rightarrow 0$. Since localization preserves exactness, applying $\operatorname{Hom}(-, N)$ and localizing with respect to S yields a commutative diagram.

Proposition 1.0.4. [10] Let M, N, P be modules over a commutative ring R.
i. If $m_{1}, m_{2} \in M$, then $m_{1}=m_{2}$ if and only if $m_{1} / 1=m_{2} / 1 \in M_{I}$ for all maximal ideals I.
ii. $M=0$ if and only if $M_{I}=0$ for all maximal ideals I.
iii. Suppose that $N, P \subseteq M$. Then $N=P$ if and only if $N_{I}=P_{I}$ for all maximal ideals I.
iv. If $\varphi \in \operatorname{Hom}_{R}(M, N)$, then φ is monic [epic] if and only if $\varphi_{I}: M_{I} \rightarrow N_{I}$ is monic [epic] for all maximal ideals I.
v. A sequence $M \rightarrow N \rightarrow P$ is exact if and only if the induced sequence $M_{I} \rightarrow N_{I} \rightarrow P_{I}$ is exact for all maximal ideals I.
vi. If M is a submodule of a vector space over the quotient field F of R, then $M=\bigcap_{P} M_{P}$.

Next, we present Nakayama's Lemma - a useful tool when dealing with finitely generated modules.

Lemma 1.0.5 (Nakayama's Lemma). [9] If J is an ideal in a commutative ring R with identity, then the following conditions are equivalent.
(a) J is contained in every maximal ideal of R.
(b) $1_{R}-j$ is a unit for every $j \in J$.
(c) If A is a finitely generated R-module such that $J A=A$, then $A=0$.
(d) If B is a submodule of a finitely generated R-module A such that $A=J A+B$, then $A=B$.

Proof. $(a \rightarrow b)$ If $j \in J$ and $1_{R}-j$ is not a unit, then the ideal $\left(1_{R}-J\right)$ is not R itself, and therefore is contained in a maximal ideal $M \neq R$. But $1_{R}-j \in M$ and $j \in j \subseteq M$ imply that $1_{R} \in M$, which is a contradiction. Therefore, $1_{R}-j$ is a unit.
$(b \rightarrow c)$ Since A is finitely generated, there must be a minimal generating set $X=$ $\left\{a_{1}, \ldots, a_{n}\right\}$ of A. If $A \neq 0$, then $a_{1} \neq 0$ by minimality. Since $J A=A, a_{1}=j_{1} a_{1}+\cdots+j_{n} a_{n}$ for some $j_{i} \in J$, whence $1_{R} a_{1}={ }_{1}$ so that

$$
\left(1_{R}-j_{1}\right) a_{1}=0 \text { if } n=1
$$

and

$$
\left(1_{R}-j_{1}\right) a_{1}=j_{2} a_{2}+\cdots+j_{n} a_{n} \text { if } n>1
$$

Since $1_{R}-j_{1}, a_{1}=\left(1_{R}-j_{1}\right)^{-1} a_{1}$. Thus, if $n=1$, then $a_{1}=0$, which is a contradiction. If $n>1$, then a_{1} is a linear combination of a_{2}, \ldots, a_{n}. Consequently, $\left\{a_{2}, \ldots, a_{n}\right\}$ generates A, which contradicts the choice of X.
$(c \rightarrow d)$ The quotient module A / B is such that $J(A / B)=A / B$, whence $A / B=0$ and $A=B$ by assumption.
$(d \rightarrow a)$ If M is any maximal ideal, then the ideal $J R+M$ contains M. But $J R+M \neq R$, otherwise $R=M$ by assumption. Consequently, $J R+M=M$ by maximality. Therefore, $J=J R \subseteq M$.

Corollary 1.0.6. [10] Let M be a finitely generated module over a local ring. M is projective if and only if it is free.

Proposition 1.0.7. [10] A finitely generated projective module M over a local ring R is free. In fact, if I is the maximal ideal in R and $m_{1}, \ldots, m_{t} \in M$ are such that the cosets $\bar{m}_{1}, \ldots, \bar{m}_{t}$ are a basis for $M / I M$ as a vector space over R / I, then m_{1}, \ldots, m_{t} are a basis for M.

Proof. Let I be the unique maximal ideal in R. Choose $m_{1}, \ldots, m_{t} \in M$ so that the cosets $\bar{m}_{1}, \ldots, \bar{m}_{t}$ are a basis for the vector space $M / I M$ over the field R / I. Let $\varphi: R^{t} \rightarrow M$ be defined by $\varphi\left(r_{1}, \ldots, r_{t}\right)=\sum r_{i} m_{i}$. It follows easily from Nakayama's Lemma that φ is surjective. Since M is a projective module, φ splits, so $R^{t}=K \oplus L$ with $K=\operatorname{Ker} \varphi$ and $L \cong M$. Then K is finitely generated. Since φ induces an isomorphism from $R^{t} / I R^{t}$ to $M / I M$, it follows that $K / I K \oplus L / I L \cong M / I M$ These are finite dimensional vector spaces over the field R / I and comparing dimensions yields $K / I K=0$. Thus $K=0$ by Nakayama's Lemma. Thus φ is monic and hence an isomorphism.

Proposition 1.0.8. [10] A finitely generated module M over a Noetherian ring R is projective if and only if M_{P} is a free R_{P}-module for all prime ideals P.

Proof. (\rightarrow) Using the criterion that projective modules are just the direct summands of free modules, it is easy to see that the localization of a projective R-module at P is a projective module over R_{P}. It then follows from 1.0.7 that this localization is a free R_{P}-module.
(\leftarrow) Suppose now that M is finitely generated and for all P, M_{P} is a free R_{P}-module. To show that M is projective one must show that for every surjection $\varphi: X \rightarrow Y$, the induced $\operatorname{map} \varphi_{*}: \operatorname{Hom}_{R}(M, X) \rightarrow \operatorname{Hom}_{R}(M, Y)$ is surjective. By 1.0.4, it suffices to prove that for all maximal ideals P, the localized map $\left(\operatorname{Hom}_{R}(M, X)\right)_{P} \rightarrow\left(\operatorname{Hom}_{R}(M, Y)\right)_{P}$ is surjective. But since M is finitely generated, by 1.0.2 and 1.0.3 there are natural isomorphisms yielding the following commutative diagram:

where the bottom map is surjective since M_{P} is a projective R_{P}-module. Thus $\left(\operatorname{Hom}_{R}(M, X)\right)_{P} \rightarrow$ $\left(\operatorname{Hom}_{R}(M, Y)\right)_{P}$ is a surjection proving the result.

Remark 1.0.9. [10] The hypothesis that M be finitely generated is essential here. There are many examples of non-finitely generated non-projective modules M such that M_{P} is a free $R_{P \text {-module for all prime }}$ ideals P - they are called locally free.

Proposition 1.0.10. [10] Let R be an integral domain with quotient field F and let P be an R-submodule of F. Then the following conditions are equivalent:
(a) P is projective.
(b) There exist elements $p_{1}, \ldots, p_{n} \in P$ and $f_{1}, \ldots, f_{n} \in F$ such that $f_{i} P \subseteq R$ for all i and $\sum f_{i} p_{i}=1$.
(c) There exists a submodule M of F such that $M P=R$.

Furthermore in this case P is generated by p_{1}, \ldots, p_{n}.

Proof. $(a \rightarrow b)$ Since P is projective, it is a summand of a free module $R^{(f)}$, and there exist maps $\sigma: P \rightarrow R^{(I)}$ and $\pi: R^{(I)} \rightarrow P$ such that $\pi \sigma=1_{P}$. Localizing at the zero ideal, σ extends to a map $\sigma_{0}: F \rightarrow F^{(I)}$ and π to a map $\pi_{0}: F^{(I)} \rightarrow F$. For each $i \in I$, let f_{i} be the $i^{\text {th }}$ coordinate of $\sigma_{0}\left(1\right.$ and let $p_{i}=\pi_{0}\left(e_{i}\right)$, where e_{i} is the canonical $i^{\text {th }}$ basis vector of $F^{(I)}$. Then the composition of σ_{0} with the projection of $F^{(I)}$ onto the $i^{t h}$ coordinate is given by $x \mapsto f_{i} x$. Since this composition maps P into R, it follows that $f_{i} P \subseteq R$. Furthermore, since π is given by $\sum y_{i} e_{i} \mapsto \sum y_{i} i$, the equation $\pi_{0} \sigma_{0}(1)=1$ translates to $\sum f_{i} p_{i}=1$. This sum can have only finitely many non-trivial terms, and at this point we can replace I by the finite set of $i \in I$ such that $f_{i} p_{i} \neq 0$.
$(b \rightarrow a)$ Map P onto R^{n} by $\sigma: p \mapsto\left(f_{1} p, \ldots, f_{n} p\right)$ and map R^{n} to P by $\pi:\left(r_{1}, \ldots, r_{n}\right) \mapsto$ $\sigma r_{i} p_{i}$. Then $\pi \sigma(p)=\sigma p f_{i} p_{i}=p 1=p$. Thus σ is a split monomorphism and P is a summand of a free module, hence is projective.
$(b \rightarrow c)$ Let M be the submodule of F generated by f_{1}, \ldots, f_{n}. Then clearly $M P \subseteq R$. But $1=\sum f_{i} p_{i} \in M P$ so $M P=R$. Note also that p_{1}, \ldots, p_{n} generate P since for $p \in P$, we have $p=p \sum f_{i} p_{i}=\sum\left(f_{i} p\right) p_{i}$ and all $f_{i} p \in R$.
$(c \rightarrow b)$ If $M P=R$, then $1 \in M P$ so there exist $f_{i} \in M, p_{i} \in P$ with $\sum f_{i} p_{i}=1$. Furthermore, for all $i, f_{i} P \subseteq M P=R$.

Lemma 1.0.11. [10] A commutative ring R is integrally closed if and only if R_{P} is integrally closed for all prime ideals p.

Proof. $(\rightarrow) S^{-1} R$ is integrally closed for every multiplicative set S. Let Q denote the quotient field of R, let $q \in Q$ be integral over $S^{-1} R$, and let $f \in S^{-1} R[X]$ be a monic polynomial satisfied by q. Let d be the degree of f and let $s \in S$ be a common denominator for the coefficients of f. Then $s^{d} f(q)=0$, and $s q$ satisfies some monic polynomial in $R[X]$. Thus, $s q \in R$ by assumption, whence $q \in S^{-1} R$.
(\leftarrow) Let $q \in Q$ be integral over R. Then q is integral over each R_{P}. If all R_{P} are integrally closed, then $q \in \bigcap R_{P}=R$.

Remark 1.0.12. Note that by the proposition, projective ideals are finitely generated. Hence, if every ideal in an integral domain is projective, then that integral domain is also Noetherian.

Definition 1.0.13. [9] Let R be an integral domain with quotient field Q. A fractional ideal of R is a nonzero R-submodule M of Q such that $r M \subseteq R$ for some nonzero $r \in R$.

Example 1.0.14. [9] Every nonzero finitely generated R-submodule M of Q is a fractional ideal. For if M is finitely generated by $q_{1}, \ldots, q_{n} \in Q$, then $M=R q_{1}+\cdots+R q_{n}$ and for each $i, q_{i}=r_{i} / s_{i}$ with $0 \neq s_{i}, r_{i} \in R$. Let $s=s_{1} \cdots s_{n}$. Then $s / 0$ and $s M=$ $R s_{2} \cdots s_{n} r_{1}+\cdots+R s_{1} \cdots s_{n-1} t_{n} \subseteq R$.

Remark 1.0.15. [9] If I is a fractional ideal of a domain R and $a I \subseteq R$ for some nonzero element a of R, then $a I$ is an ordinary ideal in R and the map $I \rightarrow a I$ given by $x \mapsto a x$ is an R-module isomorphism.

Lemma 1.0.16. [9] Let $I_{1}, I_{2}, \ldots, I_{n}$ be ideals in an integral domain R.
i. The ideal $I_{1} I_{2} \cdots I_{n}$ is invertible if and only if each I_{j} is invertible.
ii. If $P_{1} \cdots P_{m}=I=P_{1}^{\prime} \cdots P_{n}^{\prime}$ where P_{i} and P_{j}^{\prime} are prime ideals in R with every P_{i} invertible, then $m=n$ and $P_{i}=P_{i}^{\prime}$ for each $i=1, \ldots, m$ after reindexing.

Proof. (i.) If J is a fractional ideal such that $J\left(I_{1} \cdots I_{n}\right)=R$, then for each $j=1, \ldots, n$ we have $I_{j}\left(I_{1} \cdots I_{j-1} I_{j+1} \cdots I_{n}=R\right.$, whence I_{j} is invertible. Conversely, if each I_{j} is invertible, then $\left(I_{1} \cdots I_{n}\right)\left(I_{1}^{-1} \cdots I_{n}^{-1}=R\right.$, whence $I_{1} \cdots I_{n}$ is invertible.
(ii.) We proceed by induction on m. If $m>1$, choose one of the P_{i}, say P_{1} such that $\mathrm{t} P_{1}$ oes not properly contain P_{i} fo $I=2, \ldots, m$. Since $P_{1}^{\prime} \cdots P_{n}^{\prime}=P_{1} \cdots P_{m} \subset P_{1}$ and P_{1} is prime, some P_{j}^{\prime}, say P_{1}^{\prime}, is contained in P_{1}. Similarly, we have $P_{i} \subseteq P_{1}^{\prime}$ for some i. Because $P_{i} \subseteq P_{1}^{\prime} \subseteq P_{1}$, by the minimality of P_{1} we have $P_{i}=P_{1}^{\prime}=P_{1}$. Since $P_{1}=P_{1}^{\prime}$ is invertible, then we have $P_{2} \cdots P_{m}=P_{2}^{\prime} \cdots P_{n}^{\prime}$. By the induction hypothesis, $m=n$ and $P_{i}=Q_{i}$ for $i=1, \ldots, m$ after reindexing.

Lemma 1.0.17. [9] Every invertible fractional ideal of an integral domain R with quotient field Q is a finitely generated R-module.

Proof. Let I be such an ideal. Since $I^{-1} I=R$, there exist $a_{i} \in I^{-1}$ and $b_{i} \in I$ such that $1_{R}=\sum_{1}^{n} a_{i} b_{i}$. If $c \in I$, then $c=\sum_{1}^{n}\left(c a_{i}\right) b_{i}$. Furthermore, each $c a_{i} \in R$ since $a_{i} \in I^{-1}=\{q \in Q \mid q I \subseteq R\}$. Therefore, I is generated as an R-module by b_{1}, \ldots, b_{n}.

Definition 1.0.18. A discrete valuation ring is a principal ideal domain that has exactly one nonzero prime ideal.

Lemma 1.0.19. [9] If R is a Noetherian, integrally closed integral domain and R has a unique nonzero prime ideal P, then R is a discrete valuation ring.

Proof. We need only show that every proper ideal in R is principal.
Claim 1: Let Q be the quotient field of R. For every fractional ideal I of R, the set $\bar{I}=\{q \in Q \mid q I \subseteq I\}$ is R.

Proof. Clearly $R \subseteq \bar{I}$. Because \bar{I} is a subring of Q and a fractional ideal of R, \bar{I} is isomorphic as an R-module to an ideal of R. Thus since R is Noetherian, \bar{I} is finitely generated, whence
every element of \bar{I} is integral over R. Therefore $\bar{I} \subseteq R$ since R is integrally closed. We conclude $\bar{I}=R$.

Claim 2: R is properly contained in P^{-1}.

Proof. Let \mathcal{F} be the set of all ideals J in R such that R is properly contained in J^{-1}. Since P is a proper ideal, every nonzero element of P is a nonunit. If $J=(a)$ for some nonzero $a \in P$, then $1_{r} / a \in J^{-1}$, but $1_{r} / a \notin R$, whence R is properly contained in J^{-1} and \mathcal{F} is nonempty. Since R is Noetherian, \mathcal{F} contains a maximal element M. We claim M is a prime ideal of R. If $a b \in M$ with $a, b \in R$ and $a \notin M$, choose $c \in M^{-1} \backslash R$. Then $c(a b) \in R$, whence $b c(a R+M) \subseteq R$ and $b c \in(a R+M)^{-1}$. Therefore, $b c \in R$, else $a R+M \in \mathcal{F}$ contradicting maximality of M. Consequently $c(b R+M) \subseteq R$, and thus $c \in(b R+M)^{-1}$. Since $c \notin R$, the maximality of M implies that $b R+M=M$, whence $b \in M$. Therefore M is prime, whence $P=M$ by uniqueness. We conclude $R \subsetneq M^{-1}=P^{-1}$.

Claim 3: P is invertible.

Proof. Clearly $P \subseteq P P^{-1} \subseteq R$. By the argument following the claims, P is the unique maximal ideal in R, so that $P=P P^{-1}$ or $P P^{-1}=R$. If $P=P P^{-1}$, then $P^{-1} \subseteq \bar{P}$ and by claims $1 \& 2, R \subsetneq P^{-1} \subseteq \bar{P}=R$, a contradiction. Therefore, $P P^{-1}=R$ and P is invertible.

Claim 4: $\bigcap_{n \in N} P^{n}=0$.
Proof. If $\bigcap_{n \in N} P^{n} \neq 0$, then $\bigcap_{n \in N}$ is a fractional ideal of R. But by claims $1 \& 2, R \subsetneq$ $P^{-1} \subseteq \overline{\bigcap_{n \in N} P^{n}}=R$. So $\bigcap_{n \in N} P^{n}=0$.

Claim 5: P is principal.
Proof. There exists $a \in P$ such that $a \notin P^{2}$ by claim 4. Then $a P^{-1}$ is a nonzero ideal in R such that $a P^{-1} \nsubseteq P$, otherwise $a \in a R=a P P^{-1} \subset P^{2}$. The argument following this claim shows that every proper ideal in R is contained in P, whence $a P^{-1}=R$. Therefore by claim $3,(a)=(a) R=(a) P^{-1} P=\left(a P^{-1}\right) P=R P=P$, and P is principal.

Now, let I be any proper ideal of R. Then I is contained in a nonzero maximal ideal M of R, which is necessarily prime. By uniqueness, $M=P$, whence $I \subseteq P$. Since $\bigcap_{n \in N} P^{n}=0$, there is a largest integer m such that $I \subseteq P^{m}$ and $I \nsubseteq P^{m+1}$. Choose $b \in I \backslash P^{m+1}$. Since $P=(a)$ for some $a \in R, P^{m}=(a)^{m}=\left(a^{m}\right)$. Since $b \in P^{m}, b=u a^{m}$. Furthermore, $u \notin P=(a)$, otherwise $b \in P^{m+1}=\left(a^{m+1}\right)$. Therefore, $P^{m}=\left(a^{m}\right)=\left(u a^{m}\right)=(b) \subseteq I$, whence I is the principal ideal $P^{m}=\left(a^{m}\right)$.

Theorem 1.0.20. [9][10] The following conditions on an integral domain R are equivalent.
(a) Every proper ideal in R is a product of a finite number of prime ideals.
(b) Every proper ideal in R is uniquely a product of a finite number of prime ideals;
(c) Every nonzero ideal in R is invertible;
(d) Every fractional ideal of R is invertible;
(e) the set of all fractional ideals of R is a group under multiplication;
(f) every ideal in R is projective;
(g) every fractional ideal of R is projective;
(h) R is Noetherian, integrally closed, and every nonzero prime ideal is maximal;
(i) R is Noetherian, and for every nonzero prime ideal P of R, the localization R_{P} of R at P is a discrete valuation ring.

Proof. The equivalence $(d) \leftrightarrow(e)$ is trivial. $(a) \rightarrow(b)$ and $(b) \rightarrow(c)$ follows from 1.0.16. $(c) \leftrightarrow(f)$ and $(g) \leftrightarrow(d)$ are immediate consequences of 1.0.10. $(f) \rightarrow(g)$ follows from 1.0.15.
$(c) \rightarrow(i)$ The ideals in R_{P} have the form I_{P} where I is an ideal in R. By hypothesis, I is projective, so by 1.0.8 I_{P} is a free R_{P}-module. Thus all ideals of R_{P} are free, so that R_{P} is a local principal ideal domain, hence a discrete valuation ring.
$(i) \rightarrow(h)$ To see that R is integrally closed, it suffices by 1.0 .11 to see that R_{P} is integrally closed for all primes P, which is true if R_{P} is a discrete valuation ring since principal ideal domains are integrally closed. Now, let P be a prime ideal in R. The prime ideals contained in P correspond to the prime ideals of W_{P}. Since W_{P} is a discrete valuation ring, its only prime ideals are $P W_{P}$ and 0 . Thus there are no non-trivial prime ideals strictly contained in P, so P has height one. It follows that all prime ideals of R are maximal.
$(h) \rightarrow(f)$ Let I be an ideal in R. Since R is Noetherian, I is finitely generated. Hence, by 1.0.8, it suffices to show that I_{P} is a free R_{P}-module for all primes P. But since R_{P} is a principal ideal domain, I_{P} is in fact free.
$(d) \rightarrow(h)$ Every ideal of R is invertible by (d) and hence finitely generated by 1.0.17. Therefore R is Noetherian. Let K be the quotient field of R. If $u \in K$ is integral over R, then $R[u]$ is a finitely generated R-submodule of K. Consequently, 1.0.14 shows that $R[u]$ is a fractional ideal of R. Therefore, $R[u]$ is invertible by (d). Thus since $R[u] R[u]=R[u]$, we have $R[u]=R R[u]=\left(R^{-1}[u] R[u]\right) R[u]=R^{-1}[u] R[u]=R$, whence $u \in R$. Therefore, R is integrally closed. Finally, if P is a nonzero prime ideal in R, then there is a maximal ideal M of R that contains $P . M$ is invertible by (d). Consequently $M^{-1} P$ is a fractional ideal of R with $M^{-1} P \subseteq M^{-1} M=R$, whence $M^{-1} P$ is an ideal in R.
$(h) \rightarrow(i) R_{P}$ is an integrally closed integral domain by 1.0.1. Every ideal in R_{P} is of the form $I_{P}=\{i / s \mid i \in I, s \notin P\}$, where I is an ideal of R. Since every ideal of R is finitely generated by (h), it follows that every ideal of R_{P} is finitely generated. Therefore, R_{P} is Noetherian. Every nonzero prime ideal of R_{P} is of the form I_{P}, where I is a nonzero prime ideal of R contained in P. Since every nonzero prime ideal of R is maximal by $(h), P_{P}$ must be the unique nonzero prime ideal in R_{P}. Therefore, R_{P} is a discrete valuation ring by 1.0.19.
$(i) \rightarrow(a)$ We first show that every nonzero ideal I is invertible. $I I^{-1}$ is a fractional ideal of R conained in R, whence $I I^{-1}$ is an ideal in R. Suppose $I I^{-1} \neq R$. Then there is a maximal ideal M containing $I I^{-1}$. Since M is prime, the ideal I_{M} in R_{M} is principal
by (i); say $I_{M}=(a / s)$ where $a \in I$ and $s \in R \backslash M$. Since R is Noetherian, I is finitely generated, say $I=\left(b_{1}, \ldots, b_{n}\right)$. For each $i, b_{i} / 1_{R} \in I_{M}$, whence in $R_{M}, b_{i} / 1_{R}=\left(r_{i} / s_{i}\right)(a / s)$ for some $r_{i} \in R, s_{i} \in R \backslash M$. Therefore $s_{I} s b_{i}=r_{i} a \in I$. Let $t=s s_{1} s_{2} \cdots s_{n}$. Since $R \backslash M$ is multiplicative, $t \in R \backslash M$. In the quotient field of R, we have for every $t,(t / a) b_{i}=t b_{i} / a=$ $s s_{1} s_{2} \cdots s_{i-1} s_{i+1} \cdots s_{n} r_{i} \in R$, whence $t / a \in I^{-1}$. Consequently, $t=(t / a) a \in I^{-1} I \subseteq M$, which contradicts that $t \in R \backslash M$. Therefore $I^{-1} I=R$ and I is invertible.

For each proper ideal I of R, choose a maximal ideal M_{I} of R such that $I \subseteq M_{I} \subsetneq R$. If $I=R$, then let $M_{R}=R$. Then $I M_{I}^{-1}$ is a fractional ideal of R with $I M_{I}^{-1} \subseteq M_{I} M_{I}^{-1} \subseteq R$. Therefore, $I M_{I}^{-1}$ is an ideal of R that clearly contains I. Also, we have $I \subsetneq I M_{I}^{-1}$ since otherwise

$$
M_{I}=R M_{I}=I^{-1} I M_{I}=I^{-1}\left(I M_{I}^{-1}\right) M_{I}=R R=R,
$$

which contradicts our choice of M_{I}. Let S be the set of all ideals of R and define a function $f: S \rightarrow S$ by $I \mapsto I M_{I}^{-1}$.

Let J be a proper ideal in R. We now show J is the product of maximal (hence prime) ideals. There exists by the Recursion Theorem a function $\phi: \mathbb{N} \rightarrow S$ such that $\phi(0)=J$ and $\phi(n+1)=f(\phi(n))$. If we denote $\phi(n)$ by J_{n} and $M_{J_{n}}$ by M_{n}, then we have an ascending chain of ideals $J=J_{0} \subseteq J_{1} \subseteq J_{2} \subseteq \cdots$ such that $J=J_{0}$, and $J_{n+1}=f\left(J_{n}\right)=J_{n} M_{n}^{-1}$. Since R is Noetherian and J is proper, there is a least integer k such that

$$
J=J_{0} \subsetneq J_{1} \subsetneq \cdots \subsetneq J_{k}=J_{k+1} .
$$

Thus $J_{k}=J_{k+1}=f\left(J_{k}\right)=J_{k} M_{k}^{-1}$, which can occur only if $J_{k}=R$. Consequently, $R=$ $J_{k}=f\left(J_{k-1}\right)=J_{k-1} M_{k-1}^{-1}$, whence

$$
J_{k-1}=J_{k-1} R=J_{k-1} M_{k-1}^{-1} M_{k-1}=R M_{k-1}=M_{k-1} .
$$

Since $M_{k-1}=J_{k-1} \subsetneq J_{k}=R, M_{k-1}$ is a maximal ideal. The minimality of k insures that each of M_{0}, \ldots, M_{k-2} is also maximal, otherwise $M_{i}=R$ so that $J_{i+1}=J_{i} M_{I}^{-1}=J_{i} R^{-1}=$ $J_{i} R=J_{i}$. We have

$$
M_{k-1}=J_{k-1}=J_{k-2} M_{k-2}^{-1}=J_{k-2} M_{k-3}^{-1} M_{k-2}^{-1}=\cdots=J M_{0}^{-1} \cdots M_{k-2}^{-1} .
$$

Since each M_{i} is invertible,

$$
J=M_{k-1}\left(M_{0} \cdots M_{k-2}\right)
$$

Thus J is the product of maximal (hence prime) ideals.
Definition 1.0.21. [9] A Dedekind domain is an integral domain R satisfying any of the conditions of the previous theorem.

Remark 1.0.22. Evidently, every principal ideal domain is Dedekind, but the converse is false. For example, $\mathbb{Z}[\sqrt{10}]$ is Dedekind but not principal. We will see later that every Dedekind domain is Noetherian.

Definition 1.0.23. [10] A module M over a ring R is said to have finite length if and only if it has a composition series

$$
0=M_{0} \subsetneq M_{1} \subsetneq \ldots \subsetneq M_{l}=M
$$

where each quotient M_{i} / M_{i-1} is a simple module. In this case, we define length (M) to be the length l of this composition series.

Remark 1.0.24. [9] The Jordan-Hölder Theorem asserts that any two compositions series of a module M are equivalent, so length (M) is well-defined. Another standard result is that a module has finite length if and only if it is both Noetherian and Artinian.

Definition 1.0.25. [10][7] For any prime ideal P and torsion-free module A of the Dedekind domain R, we define the P-rank $r_{P}(A)$ of A to be the length of $A / P A$. Equivalently, we may define $r_{P}(A)$ as the dimension of $A / P A$ as a vector space over R / P.

Proposition 1.0.26. [10] Let A and B be torsion-free modules over Dedekind domain R, and P a prime ideal in R.
i. $r_{P}(A \oplus B)=r_{P}(A) \oplus r_{P}(B)$.
ii. If B is an essential submodule of A, then their ranks are the same and $r_{P}(B) \geq r_{P}(A)$.
iii. $r_{P}(A)=r_{P}\left(A_{P}\right)$.
iv. $r_{P}(A) \leq \operatorname{rank}(A)$.
v. $\operatorname{rank}(A \otimes B)=(\operatorname{rank}(A))(\operatorname{rank}(B))$ and $r_{P}(A \otimes B)=r_{P}(A) r_{P}(B)$.
vi. $\operatorname{rank}(A)=0$ if and only if $A=0$.
vii. $r_{P}(A)=0$ if and only if A is P-divisible.
viii. $r_{P}(A)$ is the same as the number of summands $Q A / A$ isomorphic to $R\left(P^{\infty}\right)$.

Definition 1.0.27. [10] Let R be a Dedekind domain, let M be a finite rank torsion free R-module, and let p be a prime ideal of R. The \boldsymbol{p}-adic filtration on M is the family of submodules

$$
M \supseteq p M \supseteq p^{2} M \supseteq \ldots
$$

The topology generated by taking the p-adic filtration on M as a neighborhood basis at 0 is called the p-adic topology on M. The p-adic completion of M is the submodule \hat{M} of $\prod_{1}^{\infty} M / p^{k} M$ consisting of those sequences $m_{1}, m_{2}, \ldots \in \prod_{1}^{\infty} M / p^{k} M$ such that $m_{k+1} \equiv m_{k}$ $\left(\bmod p^{k} M\right)$ for all k.

Proposition 1.0.28. [10] Let R, M, and p be as in the previous definition. The topology inherited by \hat{M} is the same as the inverse limit topology.

Proof. The neighborhood system at 0 in the inverse limit topology has a basis consisting of those submodules U_{n} consisting of elements whose first n coordinates are zero. Since the first n coordinates live in $M / p^{k} M$ for $k \geq n$, it follows that $p^{n} \hat{M} \subseteq U_{n}$. On the other hand,
since the sequences in \hat{M} satisfy the condition $m_{n+k} \equiv m_{k}\left(\bmod p^{n}\right.$, it follows that if $m_{r}=0$ for $r \leq n$, then $m_{r} \in p^{n} \hat{M}$ for all r. Thus $U_{n} \subseteq p^{k} \hat{M}$. We conclude the inverse limit topology and the p-adic topology are the same.

In the following, we assume that the Dedekind domain R with field of quotients Q is not complete in the R-adic topology. As observed in [7], non-complete Dedekind domains fall into two distinct cases [7]):

Type I For each maximal ideal P, the P-adic completion $\hat{R_{P}}$ of the localization R_{P} has infinite R_{P}-module rank.

Type II R is local and the completion of R, \hat{R} has finite rank.

Theorem 1.0.29. [7] A Dedekind domain R is not complete in the R-adic Topology if and only if R is a type I or a type II domain

Since R is a domain, multiplication by $r \in R$ on A or B induces multiplication by r on $\operatorname{Ext}_{R}^{1}(A, B)$. Moreover, $\operatorname{Ext}_{R}^{1}(A, B)$ is a divisible module whenever R is Dedekind. Therefore, it is of the form $\oplus_{P \in \operatorname{spec}(R)} D_{P} \oplus D_{0}$ with P-primary component $D_{P} \cong \oplus_{I_{P}} E(E / P)$ and torsion-free component $D_{0}=\oplus_{I_{0}} Q$.

Given any maximal ideal P of R, the P-rank of a module A is denoted by $r_{P}(A)$ and is defined as $r_{P}(A)=\operatorname{dim}_{R / P} A / P A$. If $a \in P \backslash P^{2}$, then $a R_{P}=P R_{P}$ since R_{P} is a discrete valuation domain. The sequence $0 \rightarrow B \xrightarrow{\alpha} B \rightarrow B / a B \rightarrow 0$ induces

$$
0 \rightarrow \operatorname{Hom}(A, B) \xrightarrow{a} \operatorname{Hom}(A, B) \rightarrow \operatorname{Hom}(A / a A, B / a B) \rightarrow S \rightarrow 0
$$

where S is the submodule of $\operatorname{Ext}(A, B)$ annihilated by a. Localizing at P, gives the formula;

$$
r_{P}(A) r_{P}(B)-r_{P}(\operatorname{Hom}(A, B))=\{\epsilon \in \operatorname{Ext}(A, B) \mid P \epsilon=0\} .
$$

Theorem 1.0.30. [7] Let R be a Dedekind domain and $P \in \operatorname{spec}(R)$. If A and C are torsion-free R-modules of finite rank, then

$$
\operatorname{Ext}_{R}^{1}(A, C) \cong \oplus_{P} D_{P} \oplus D_{0}
$$

with $D_{P} \cong\left(Q / R_{P}\right)^{e_{P}}$ and D_{0} torsion-free such that

$$
e_{P}=r_{P}(A) r_{P}(B)-r_{P}\left(\operatorname{Hom}_{R}(A, B)\right)
$$

While this result appears to be independent of the type of the Dedekind domain, we want to point out that D_{0} has finite rank exactly when R has type II. Thus the structure of Ext actually varies according to D_{0} in the Type II case which, in turn, depends upon the rank of $\hat{R}[7]$. A formula used to determine the rank of D_{0} will be given later,

Corollary 1.0.31. [7] A Dedekind R which is not complete satisfies exactly one of the following;
i) For all $P \in \operatorname{spec}(R)$, the completion of R_{P} has infinite rank, or
ii) R is local with maximal ideal P, and the completion of R, \hat{R}, has finite rank over R.

For the rest of this chapter, R is a Dedekind domain with quotient field Q, unless otherwise indicated.

Definition 1.0.32. [10] Define an equivalence relation \star on the set of all submodules of Q by $A \star B$ if and only if A and B are isomorphic to a submodule of the other. The type $\boldsymbol{t}(A)$ of A is the equivalence class of A under \star, and we write $\boldsymbol{t}(A) \leq \boldsymbol{t}(B)$ when A is isomorphic to a submodule of B. We say $\boldsymbol{t}(A)$ and $\boldsymbol{t}(B)$ are incomparable if $\boldsymbol{t}(A) \not \leq \boldsymbol{t}(B)$ and $\boldsymbol{t}(B) \not \leq \boldsymbol{t}(A)$.

Definition 1.0.33. [10] Let A be a torsion-free finite rank module over a Dedekind domain R. The typeset of A, denoted by $\mathbf{T}(\mathbf{A})$, is the set of types of all non-trivial elements of A, or equivalently the set of types of all pure rank-one submodules of A. Dually, we define the
cotype set of A, denoted by $\mathbf{C T}(\mathbf{A})$, to be the set of types of all rank-one homomorphic images of A.

Proposition 1.0.34. [10] Let $A=H \oplus K . \mathbf{T}(\mathbf{A})$ consists of $\mathbf{T}(\mathbf{H}) \cup \mathbf{T}(\mathbf{K})$ together with all types $\mathbf{s} \wedge \mathbf{t}$ with $\mathbf{s} \in \mathbf{T}(\mathbf{H})$ and $\mathbf{t} \in \mathbf{T}(\mathbf{K})$.

Corollary 1.0.35. [10] If $A=A_{1} \oplus \cdots \oplus A_{n}$ where the A_{i} are rank 1 modules and $\boldsymbol{t}_{i}=\boldsymbol{t}\left(A_{i}\right)$, then $\boldsymbol{T}(A)$ consists of $\left\{\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{n}\right\}$ and all types obtained from this set by taking greatest lower bounds.

Definition 1.0.36. [10] The inner type of a torsion-free finite rank module A over a Dedekind domain is $\mathbf{I T}(\mathbf{A})=\inf \mathbf{T}(\mathbf{A})$, and the outer type of A is $\mathbf{O T}(\mathbf{A})=\operatorname{supCT}(\mathbf{A})$.

Proposition 1.0.37. [10] A torsion-free finite rank module A over a Dedekind domain R is projective if and only if $\mathbf{O T}(\mathbf{A})=\mathbf{t}(\mathbf{R})$.

Proof. Note that $\mathbf{t} \leq \mathbf{t}(\mathbf{R})$ is equivalent to $\mathbf{t}=\mathbf{t}(\mathbf{R})$. By corollary 1.0.35 if A is projective then $\mathbf{C T}(\mathbf{A})=\mathbf{t}(\mathbf{R})$, so $\mathbf{O T}(\mathbf{A})=\mathbf{t}(\mathbf{R})$. Conversely, if $\mathbf{O T}(\mathbf{A})=\mathbf{t}(\mathbf{R})$, then $\mathbf{C T}(\mathbf{A})=$ $\mathbf{t}(\mathbf{R})$ so every rank-one homomorphic image of A is projective. By induction on the rank of A, we conclude that A is projective.

Chapter 2

Torsion-Free Modules of Finite Rank

Throughout this chapter, let R be an integral domain with field of quotients Q. The endomorphism ring $E(A)=E_{R}(A)$ of a R-module M is the R-module $\operatorname{Hom}(A, A)=$ $\operatorname{Hom}_{R}(A, A)$ with composition of maps as multiplication. The quasi-endomorphism ring is $Q E(A)=Q \otimes_{R} E(A)$. Our first results will explore some of the basic properties of torsionfree modules of finite rank over an integral domain. Because there are striking similarities to the situation in case of Abelian groups, we refer to that case instead of giving details whenever possible.

If A is a torsion-free module of finite rank n over R, then $A \subseteq Q^{n}$. Thus, $E(A)$ can be viewed as a subring of $\operatorname{Mat}_{n}(Q)$, and the quasi-endomorphism ring of R is Artinian as a subring of $\operatorname{Mat}_{n}(Q)$. In particular, there are primitive idempotents e_{1}, \ldots, e_{n} of $Q E(A)$ such that $1_{A}=e_{1}+\ldots+e_{n}$. Thus,

$$
A \doteq A_{1}^{k_{1}} \oplus \ldots \oplus A_{n}^{k_{n}}
$$

where each A_{i} is a strongly indecomposable R-module and $A_{i} \sim A_{j}$ only if $i=j$. We refer the reader to the case of Abelian groups, observing that Jónsson's arguments about quasi-decompositions of torsion-free groups of finite rank carry over literally to our setting.

Theorem 2.0.1. [10, Theorem 3.25] Let A be a torsion-free module of finite rank over an integral domain R. If $\gamma \in E(A)$, then $A \doteq H \oplus K$, where H and K are invariant under γ. Moreover, the restriction of γ to H is a quasi-automorphism of H, and $\gamma^{n}(K)=0$ for some $n \geq 1$.

Proof. The ascending chain

$$
\operatorname{ker} \gamma \subseteq \operatorname{ker} \gamma^{2} \subseteq \ldots
$$

of pure submodules of A has to stationary for some $n<\omega$. Let $K=\operatorname{ker} \gamma^{n}$ and $H=\gamma^{n}(A)$. It is easy to see that H and K are invariant under γ, and $\gamma^{n}(K)=0$.

Furthermore, if $h \in H \cap$ ker γ, then there exists $a \in A$ such that $h=\gamma^{n}(a)$, and $\gamma^{n+1}(a)=\gamma(h)=0$ so that $a \in \operatorname{ker} \gamma^{n+1}=\operatorname{ker} \gamma^{n}$. Thus, $h=\gamma^{n}(a)=0$; and $H \cap \operatorname{ker} \gamma=0$. Since the restriction of γ to H is monic, it is a left regular element of $Q E(A)$. However, $Q E(H)$ is a right and left Artinian ring, and left regular elements in such rings are units. Thus, $\gamma \mid H$ is a quasi-automorphism of H. If $\theta \in Q E(H)$ is an inverse to the restriction of γ^{n} to H, then $\theta \gamma^{n} \in Q \operatorname{Hom}_{R}(A, H)$ and $\theta \gamma^{n}$ restricts to the identity on H. Hence, $\theta \gamma^{n}$ is a quasi-projection, and $A \doteq H \oplus \operatorname{ker}\left(\theta \gamma^{n}\right)$. But $\operatorname{ker}\left(\theta \gamma^{n}\right)=\operatorname{ker} \gamma^{n}=K$ as desired.

Corollary 2.0.2. A torsion-free module A of finite rank over an integral domain R is strongly indecomposable if and only if every (quasi-)endomorphism of A is either monic or belongs to $N(Q E(A))$. In particular, $Q E(A)$ is a local ring in this case.

Proof. If every endomorphism of A is either monic or belongs to $N(Q E(A))$, then $Q E(A)$ cannot have non-trivial idempotents. If e were a non-trivial idempotent, then there would exist a nonzero $r \in R$ such that $r e \in E(G)$ and $r e$ is neither monic nor nilpotent.

Conversely, consider $\gamma \in E(A)$. By the previous theorem, $A \doteq H \oplus K$, where H and K are invariant under γ, the restriction of γ to H is a quasi-automorphism of H, and $\gamma^{n}(K)=0$ for some $n \geq 1$. Since A is strongly indecomposable, either γ is a quasi-automorphism of A or $A=$ ker γ^{n}. In the latter case, γ is nilpotent.

Furthermore, if γ is not a quasi-automorphism, then it cannot not be monic since left regular elements in left and right Artinian rings are units. Therefore, $\beta \gamma$ is not a quasiautomorphism for every $\beta \in Q E(A)$. Hence, it must also be nilpotent. Thus, the left ideal generated by γ contains only nilpotent elements, and $\gamma \in N(Q E(A))$. This shows that
$N(Q E(A))$ is a maximal left ideal (and necessarily the unique one), since any element not in the nilradical is invertible in $Q E(A)$. Thus $Q E(A)$ is a local ring.

We continue with a result which originates in [2, Theorem 9.10], but needs to be slightly modified to fit our setting.

Theorem 2.0.3. Let R be an integral domain, and let

$$
A \doteq A_{1}^{n_{1}} \oplus \ldots \oplus A_{m}^{n_{m}}
$$

be a torsion-free R-module of finite rank where each A_{i} is strongly indecomposable, and A_{i} is quasi-isomorphic to A_{j} iff $i=j$. Suppose that N is the nilradical of $E(A)$ and that J is the Jacobson radical of $Q E(A)$.
a) $N=J \cap E(A)$; and N is nilpotent.
b) If T_{i} denotes the endomorphism ring of A_{i} for $i=1, \ldots, m$, then

$$
E(A) / N \doteq \prod_{i} M a t\left(T_{i} / N\left(T_{i}\right)\right)
$$

c) If $A=A_{1}^{k_{1}} \oplus \ldots \oplus A_{r}^{k_{r}}$, then

$$
N=\oplus_{i} N_{i} \oplus\left[\oplus_{j \neq i} \operatorname{Hom}_{R}\left(A_{i}^{k_{i}}, A_{j}^{k_{j}}\right)\right]
$$

where N_{i} denotes the nilradical of $E\left(A_{i}^{k_{i}}\right)$.

Proof. a) Since $Q E(A)$ is Artinian, J is nilpotent and $J \cap E(A) \subseteq N$. On the other hand, every nilpotent right ideal I of $E(A)$ gives rise to a nilpotent right ideal $Q I$ of $Q E(A)$. Thus, $I \subseteq J \cap E(A)$; and $N \subseteq J \cap E(A)$. In particular, $N=J \cap E(A)$ is nilpotent.
b) Our arguments follow those of [2, Theorem 9.10]. Let $B=A_{1}^{n_{1}} \oplus \cdots \oplus A_{m}^{n_{m}}$. Note that $E(A) \doteq E(B)$ when viewed as subrings of $Q E(A)$. Hence, $E(A) / N(E(A)) \doteq E(B) / N(E(B))$
as subrings of $Q E(A) / J(Q E(A))$. Thus, it is sufficient to prove

$$
E(B) / N(E(B))=\prod_{i} M a t_{n_{i}}\left(T_{i} / N\left(T_{i}\right)\right)
$$

Represent $E(B)$ as a matrix ring of the form $\left(\operatorname{Hom}_{R}\left(A_{i}^{n_{i}}, A_{j}^{n_{j}}\right)\right)_{i, j}$, and consider

$$
I=\left(\oplus_{i}\left\{N\left(E\left(A_{i}^{n_{i}}\right)\right)\right\}\right) \oplus\left(\oplus\left\{\operatorname{Hom}_{R}\left(A_{i}^{n_{i}}, A_{j}^{n_{j}}\right) \mid i \neq j\right\}\right) \subseteq E(B) .
$$

It suffices to prove that I is an ideal of $E(B)$ and $I \subseteq N(E(B))$. In this case,

$$
E(B) / I \simeq \prod_{i}\left(E\left(A_{i}^{n_{i}}\right) / N\left(E\left(A_{i}^{n_{i}}\right)\right)\right)
$$

so that $I=N(E(B))$ since $N(E(B) / I)=0$ and

$$
\begin{aligned}
E(B) / N(E(B)) & \simeq \prod_{i}\left(E\left(A_{i}^{n_{i}}\right) / N\left(E\left(A_{i}^{n_{i}}\right)\right)\right) \\
& \simeq \prod_{i} \operatorname{Mat}_{n_{i}}\left(E\left(A_{i}\right) / N\left(E\left(A_{i}\right)\right)\right) \\
& \simeq \prod M a t_{n_{i}}\left(T_{i} / N\left(T_{i}\right)\right),
\end{aligned}
$$

as needed.
To show that I is an ideal of $Q E(A)$, let

$$
\begin{aligned}
& f \in \operatorname{Hom}_{R}\left(A_{i}^{n_{i}}, A_{j}^{n_{j}}\right), \\
& x \in N\left(E\left(A_{k}^{n_{k}}\right)\right) \subseteq I
\end{aligned}
$$

and

$$
y \in \operatorname{Hom}_{R}\left(A_{r}^{n_{r}}, A_{s}^{n_{s}}\right)
$$

where $r \neq s$. Then, $f x \in I$, except possibly for the case that $i=j=k$. In this case, $f x \in N\left(E\left(A_{i}^{n_{i}}\right)\right) \subseteq I$. Also, $f y \in I$, except possibly for the case that $s=i$ and $r=j$. In this case, $y: A_{j}^{n_{j}} \rightarrow A_{i}^{n_{i}}$ and f induces maps $A_{j} \rightarrow A_{i} \rightarrow A_{j}$. If this latter composite is nonzero, it must be an element of $N\left(T_{j}\right)$. Otherwise, the composite is a monomorphism, since A_{j} is strongly indecomposable so that A_{j} is a quasi-summand of A_{i}, contradicting the choice of the A_{i} 's. Consequently,

$$
f y \in \operatorname{Mat}_{n_{j}}\left(N\left(T_{j}\right)\right)=N\left(\operatorname{Mat}_{n_{j}}\left(T_{j}\right)\right)=N\left(E\left(A_{j}^{n_{j}}\right)\right) \subseteq I .
$$

Similarly, $x f \in I$ and $y f \in I$.
To show that $I \subseteq N(E(B))$, it suffices to prove that $I^{(l)}=0$ for some l. If $x \in I^{(l)}$, then x is the sum of elements which are the composition of l morphisms $A_{i}^{n_{i}} \rightarrow A_{j}^{n_{j}}$ for $i \neq j$ and morphisms in $N\left(E\left(A_{i}^{n_{i}}\right)\right)$. Choose k with $\left.N\left(E\left(A_{i}^{n_{i}}\right)\right)^{(} k\right)=0$ for $1 \leq i \leq m$. Choose l large enough so that any composition of l morphisms, as described above, has some subscript repeated at least k times. If $A_{i}^{n_{i}} \rightarrow A_{j}^{n_{j}} \rightarrow \ldots \rightarrow A_{i}^{n_{i}}$ is a repetition of the subscript i then, as above, the composition must be in $N\left(E\left(A_{i}^{n_{i}}\right)\right)$. Consequently, $I^{(l)}=0$.
c) is a direct consequence of b).

Chapter 3

The Covariant Case

In this section we present a numerical set of invariants that serve as complete set of quasiisomorphism invariants between modules A and B. These invariants are closely linked to the structure of Ext ([7]). A module is called reduced when its maximal divisible submodule is zero. If A and M are R-modules, then the A-socle $S_{A}(M)$ of M is $S_{A}(C)=\Sigma_{f \in H o m(A, C)} f(A)$. Finally, if U is a submodule of a torsion-free module M, then $U_{*}=\{x \in M \mid x r \in$ U for some $0 \neq r \in R\}$.

Proposition 3.0.1. [10] Let A and B be torsion-free finite rank modules over a Dedekind domain R.
(a) If $A \subseteq B$, then $\mathbf{O T}(\mathbf{A}) \leq \mathbf{O T}(\mathbf{B})$.
(b) For any $\mathbf{t} \in \mathbf{T}(\mathbf{A}), \mathbf{t} \leq \mathbf{O T}(\mathbf{A})$.
(c) If $B \triangleleft A$, then $\mathbf{O T}(\mathbf{A} / \mathbf{B}) \leq \mathbf{O T}(\mathbf{A})$.
(d) $\mathbf{O T}(\mathbf{A})$ is P-divisible if and only if $r_{P}(A)<\operatorname{rank}(A)$.

Proof. (a) If φ maps B onto a rank-one module M, then φ extends to a map $\varphi^{\prime}: A \rightarrow Q M$ and $\mathbf{t}(\mathbf{A})=\mathbf{t}(\varphi(\mathbf{B})) \leq \mathbf{t}\left(\varphi^{\prime}(\mathbf{A})\right) \in \mathbf{C T}(\mathbf{A})$. Thus every type in $\mathbf{C T}(\mathbf{B})$ is less than or equal to a type in $\mathbf{C T}(\mathbf{A})$, so $\mathbf{O T}(\mathbf{B}) \leq \mathbf{O T}(\mathbf{A})$.
(b) If M is a rank 1 pure submodule of A, then $\mathbf{t}(\mathbf{M})=\mathbf{O T}(\mathbf{M}) \leq \mathbf{O T}(\mathbf{A})$ by (a).
(c) If M is a homomorphic image of A / B, then M is also a homomorphic image of A, so $\mathbf{C T}(\mathbf{A} / \mathrm{B}) \subseteq \mathbf{C T}(\mathbf{A})$ and $\mathrm{OT}(\mathrm{A} / \mathrm{B})=\sup (\mathbf{C T}(\mathrm{A} / \mathrm{B})) \leq \sup (\sup \mathbf{C T}(\mathrm{A}))=\mathrm{OT}(\mathrm{A})$.
(d) $r_{P}(A) \leq \operatorname{rank}(A)$ if and only if A has a homomorphic image which is P-divisible. This is the case if and only if A has a rank $1 P$-divisble homomorphic image (since the
homomorphic image of a P-divisble module is P-divisble) if and only if $\mathbf{C T}(\mathbf{A})$ contains a P-divisble type. OT(A) is the least upper bound of a finite subset of $\mathbf{C T}(A)$, hence $\mathbf{O T}(\mathbf{A})$ is P-divisble if and only if some element of $\mathbf{C T}(\mathbf{A})$ is P-divisible. Thus $r_{P}(A)<\operatorname{rank}(A)$ if and only if $\mathbf{O T}(\mathbf{A})$ is P-divisble.

Proposition 3.0.2. [10] Let A be a torsion-free finite rank module over a Dedekind domain R, and let $r=\operatorname{rank}(A)$. If μ_{1}, \ldots, μ_{n} is a maximal linearly independent set in $\operatorname{Hom}(A, Q)$, then $\mathbf{O T}(\mathbf{A})=\sup \left\{\mathbf{t}\left(\mu_{\mathbf{1}}(\mathbf{A})\right), \ldots, \mathbf{t}\left(\mu_{\mathbf{n}}(\mathbf{A})\right)\right\}$.

Proof. We first have $\mathbf{O T}(\mathbf{A}) \geq \sup \left\{\mathbf{t}\left(\mu_{\mathbf{1}}(\mathbf{A})\right), \ldots, \mathbf{t}\left(\mu_{\mathbf{n}}(\mathbf{A})\right)\right\}$. Since μ_{1}, \ldots, μ_{n} form a basis for $\operatorname{Hom}(A, Q)$, for any $\mu \in \operatorname{Hom}(A, Q)$, there exist $r, r_{1}, \ldots, r_{n} \in R$ such that $r \mu=$ $\sum_{i=1}^{n} r_{i} \mu_{i}$. Then $r \mu(A)$ is contained in the submodule of Q generated by $\mu_{1}(A), \ldots, \mu_{n}(A)$, and we have $\mathbf{t}(\mu(\mathbf{A}))=(\mathbf{r} \mu(\mathbf{A})) \leq \sup \left\{\mathbf{t}\left(\mu_{\mathbf{i}}(\mathbf{A})\right) \mid \mathbf{i}=\mathbf{1}, \ldots \mathbf{n}\right\}$. Thus

$$
\mathbf{O T}(\mathbf{A}) \leq \sup \left\{\mathbf{t}\left(\mu_{\mathbf{1}}(\mathbf{A})\right), \ldots, \mathbf{t}\left(\mu_{\mathbf{n}}(\mathbf{A})\right)\right\}
$$

The result follows.

Lemma 3.0.3. Let A and B be torsion-free finite rank modules over a Dedekind domain R. If $B / S_{A}(B)$ and $A / S_{B}(A)$ are torsion, then A and B share a nonzero quasi-summand.

Proof. To simplify our notation, denote $E(A)$ by E and $N i l(E)$ by N. By Theorem 2.0.3, the Jacobson radical J of $Q E$ satisfies $N=J \cap E$. Moreover, J and N are nilpotent since $Q E$ is left Artinian. Let $N_{*}=\langle N A\rangle_{*}$ be the pure submodule of A generated by $g(A)$ for all $g \in N$. If $N^{n}=0$ and $N^{n-1} \neq 0$, then $N^{n-1} N_{*}=0$ implies $A / N_{*} \neq 0$. Since A / N_{*} is torsion-free and $\left(S_{B}(A)+N_{*}\right) / N_{*}$ is full in A / N_{*} by hypothesis, $S_{B}(A) \nsubseteq N_{*}$. Therefore, there is an $f: B \rightarrow A$ with $f(B) \nsubseteq N_{*}$.

We may write $B \sim B_{1} \oplus \cdots \oplus B_{k}$ with each B_{i} strongly indecomposable by Theorem 2.0.3. Clearly,

$$
S_{A}(B) \sim S_{A}\left(B_{1}\right) \oplus \cdots \oplus S_{A}\left(B_{k}\right)
$$

For some $i, f\left(S_{A}\left(B_{i}\right)\right) \nsubseteq N_{*}$ since otherwise $\sum_{i=1}^{k} f\left(S_{A}\left(B_{i}\right)\right) \subseteq N_{*}$ implying $r f\left(S_{A}(B)\right) \subseteq N_{*}$ for some nonzero $r \in R$. Therefore, we would obtain $f\left(S_{A}(B)\right) \subseteq N_{*}$. But, for any $b \in B$, there is a $0 \neq \ell \in R$ with $\ell b \in S_{A}(B)$ by the hypothesis, so that $f(\ell v)=\ell f(v) \in N_{*}$. By the purity of N_{*}, this implies $f(v) \in N_{*}$, contradicting that $f(B) \nsubseteq N_{*}$. We may assume there is a map $g: A \rightarrow B_{1}$ such that $f g(A) \nsubseteq N_{*}$.

From the definition of N_{*}, we have $N \leq \operatorname{Hom}\left(A, N_{*}\right)$, so that $f g \notin N$. Now E / N is a full subring of the semi-simple ring $Q E / J$ so there are $h, h^{\prime} \in E$ such that $e=(h f)\left(g h^{\prime}\right)$ is not nilpotent $\bmod N$ because $Q E / J$ is a direct product of matrix rings. Relabel $h f$ and $g h^{\prime}$ as f and g respectively, and consider the restriction $f: B_{1} \rightarrow A$.

We now have $g f \in E\left(B_{1}\right)$. As in Section 3, we use the fact that B_{1} is strongly indecomposable to obtain that $\alpha=g f$ is invertible in $Q E\left(B_{1}\right)$ or α is nilpotent. If $(g f)^{n}=0$, then $e^{n+1}=f(g f)^{n} g=0$, a contradiction. So α must be invertible. Consequently, there is $0 \neq s \in R$ such that $s \alpha^{-1} \in E\left(B_{1}\right)$ and $s 1_{B_{1}}=s \alpha^{-1} g f$. Call $g^{\prime}=s \alpha g$.

Any $a \in A$ satisfies

$$
s a=s a-f\left(g^{\prime}(a)\right)+f\left(g^{\prime}(a)\right) .
$$

Because sa-f(g'(a)) $\operatorname{ker}\left(g^{\prime}\right)$, we have $A \sim A^{\prime} \oplus \operatorname{ker}\left(g^{\prime}\right)$. Since f is a monomorphism, $A^{\prime} \cong B_{1}$.

The following result was originally shown by Beaumont and Pierce in the case that A is a subring of a finite dimensional \mathbb{Q}-algebras, but it carries over to torsion-free finite rank rings over integral domains:

Theorem 3.0.4. ([3, Theorem 1.4] and [10, Proposition 7.21]) Let R be an integral domain whose field of quotients Q is a perfect field. Let A be a torsion-free free R-algebra which has finite rank as an R-module. Let $Q A=S_{1} \oplus N_{1}$ where $N_{1}=N(Q A)$ and S_{1} is a subring of QA. Then, $N(A)=N_{1} \cap A$ and $A \doteq\left(S_{1} \cap A\right) \oplus\left(N_{1} \cap A\right)$.

Observe that Q is a perfect field whenever R^{+}is torsion-free as an Abelian group.

Theorem 3.0.5. Let A and B be reduced torsion-free finite rank modules over a Dedekind domain R with field of quotients Q.
a) If $A \sim B$, then $r_{P}(\operatorname{Hom}(A, C))=r_{P}(\operatorname{Hom}(B, C))$ for all primes P and all finite rank modules C.
b) If Q is perfect, then $A \sim B$ whenever $r_{P}(\operatorname{Hom}(A, C))=r_{P}(\operatorname{Hom}(B, C))$ for all primes P and all finite rank modules C.

Proof. a) Since $\operatorname{Hom}(A, C)$ is quasi-isomorphic to $\operatorname{Hom}(B, C)$ and r_{P} is quasi-isomorphism invariant, the result follows.
b) We will show that $S_{A}(B)$ is full in B; the result follows from Lemma 3.0.3 via induction on the rank of A.

Let B_{1} be a pure, strongly indecomposable quasi-summand of B and $S_{1}=S_{A}\left(B_{1}\right)_{*}$. To simplify the argument, we may assume that B_{1} is a summand of B, say $B=B_{1} \oplus K$, since we can replace B by a module quasi-isomorphic to it. Consider the exact sequences

$$
0 \rightarrow \operatorname{Hom}\left(A, S_{1}\right) \rightarrow \operatorname{Hom}\left(A, B_{1}\right) \xrightarrow{\alpha} \operatorname{Hom}\left(A, B_{1} / S_{1}\right)
$$

and

$$
0 \rightarrow \operatorname{Hom}\left(B, S_{1}\right) \rightarrow \operatorname{Hom}\left(B, B_{1}\right) \xrightarrow{\beta} \operatorname{Hom}\left(B, B_{1} / S_{1}\right) .
$$

By the definition of $S_{A}\left(B_{1}\right)$, we have $i m \alpha=0$. By the hypothesis, $r_{P}($ im $\beta)=$ $r_{P}\left(\operatorname{Hom}\left(B, B_{1}\right)\right)-r_{P}\left(\operatorname{Hom}\left(B, S_{1}\right)\right)=r_{P}\left(\operatorname{Hom}\left(A, B_{1}\right)\right)-r_{P}\left(\operatorname{Hom}\left(A, S_{1}\right)\right)=r_{P}(i m \alpha)=0$ for all P. Thus, $i m \beta$ is divisible by [10]. Moreover, $\operatorname{ker} \beta=\operatorname{Hom}\left(B_{1}, S_{1}\right) \oplus \operatorname{Hom}\left(K, S_{1}\right)$ is a pure submodule of $\operatorname{Hom}\left(B, B_{1}\right)=\operatorname{Hom}\left(B_{1}, B_{1}\right) \oplus \operatorname{Hom}\left(K, B_{1}\right)$ with a divisible cokernel. Hence, $\operatorname{Hom}\left(B_{1}, B_{1}\right) / \operatorname{Hom}\left(B_{1}, S_{1}\right)$ is divisible as a direct summand of a divisible module.

Let R_{1} denote the nilradical of $E\left(B_{1}\right)$ and $N_{1}=\left(R_{1} C_{1}\right)_{*} \leq B_{1}$. As in the previous lemma, $N_{1} \neq B_{1}$. As mentioned before, every endomorphism of B_{1} is either in R_{1} or else is a monomorphism. Hence, $R_{1}=\operatorname{Hom}\left(B_{1}, N_{1}\right)$. Therefore, if $\operatorname{Hom}\left(B_{1}, S_{1}\right) \nsubseteq \operatorname{Hom}\left(B_{1}, N_{1}\right)=$
R_{1}, then there is a monomorphism $f: B_{1} \rightarrow B_{1}$ with $\operatorname{im} f \leq S_{1}$. In this case, $\operatorname{rank}\left(B_{1}\right)=$ $\operatorname{rank}\left(S_{1}\right)$ implies $S_{1}=B_{1}$ since S_{1} is pure in B_{1}. We now show that the case $\operatorname{Hom}\left(B_{1}, S_{1}\right) \subseteq$ R_{1} is not possible.

Suppose $I=\operatorname{Hom}\left(B_{1}, S_{1}\right) \subseteq \operatorname{Hom}\left(B_{1}, N_{1}\right)=R_{1}$. From above, we have that $E\left(B_{1}\right) / I$ is divisible. Consequently, $E\left(B_{1}\right) / R_{1}$ is divisible. By Theorem 3.0.4, $E\left(B_{1}\right) / R_{1}$ is a quasisummand of $E\left(B_{1}\right)$. But $E\left(C_{1}\right)$ is reduced, a contradiction. Thus, $I \nsubseteq R_{1}$.

Write $B \sim B_{1} \oplus \cdots \oplus B_{k}$ for strongly indecomposable B_{i}. Then $\left\langle S_{A}\left(B_{i}\right)\right\rangle_{*}=C_{i}$ implies $\left\langle S_{A}(B)\right\rangle_{*}=B$. Therefore, $S_{A}(B)$ is full in B and by symmetry $S_{C}(A)$ is full in A. From Lemma 3.0.3, A and B share a nonzero quasi-summand, say $A \sim M \oplus A^{\prime}$ and $B \sim M \oplus B^{\prime}$ with $M \neq 0$. Then

$$
\begin{aligned}
r_{P}(\operatorname{Hom}(A, C)) & =r_{P}(\operatorname{Hom}(G, C))+r_{P}\left(\operatorname{Hom}\left(A^{\prime}, C\right)\right) \\
& =r_{P}(\operatorname{Hom}(G, C))+r_{P}\left(\operatorname{Hom}\left(B^{\prime}, C\right)\right) \\
& =r_{P}(\operatorname{Hom}(B, C))
\end{aligned}
$$

for all P and all C. Thus

$$
r_{P}\left(\operatorname{Hom}\left(A^{\prime}, C\right)\right)=r_{P}\left(\operatorname{Hom}\left(B^{\prime}, C\right)\right)
$$

for all P and C. The result follows by induction on $\operatorname{rank}(A)$.

Lemma 3.0.6. Let R be a Dedekind domain, $P \in \operatorname{spec}(R)$, and A a torsion-free R-module of finite rank. Then, $\operatorname{Ext}\left(A, R_{P}\right)=0$ if and only if $O T(A) \leq \operatorname{type}\left(R_{P}\right)$.

Proof. Suppose $\operatorname{Ext}\left(A, R_{P}\right)=0$. For a pure corank 1 submodule U of A, consider the exact sequence

$$
0 \rightarrow U \rightarrow A \rightarrow A / U \rightarrow 0
$$

We apply the functor $\operatorname{Hom}_{R}\left(-, R_{P}\right)$ to get the induced sequence

$$
\begin{gathered}
0 \rightarrow \operatorname{Hom}\left(A / U, R_{P}\right) \rightarrow \operatorname{Hom}\left(A, R_{P}\right) \rightarrow \operatorname{Hom}\left(U, R_{P}\right) \\
\rightarrow \operatorname{Ext}\left(A / U, R_{P}\right) \rightarrow \operatorname{Ext}\left(A, R_{P}\right)=0 .
\end{gathered}
$$

Since $\operatorname{Hom}\left(U, R_{P}\right)$ is a finite rank R-module, $\operatorname{Ext}\left(A / U, R_{P}\right)$ has finite rank too. We want to show $\operatorname{Hom}\left(A / U, R_{P}\right) \neq 0$ from which we obtain $\mathbf{t}(A / U) \leq \mathbf{t}\left(R_{P}\right)$. Consequently, $O T(A) \leq$ $\mathbf{t}\left(R_{P}\right)$.

If $\operatorname{Hom}\left(A / U, R_{P}\right)=0$, then A / U is P-divisible by [10]. We consider the sequence $0 \rightarrow A / U \rightarrow Q \rightarrow D \rightarrow 0$ where D is divisible and torsion with $D[P]=0$ since A / U is P-divisible. It induces

$$
0=\operatorname{Ext}\left(D, R_{P}\right) \rightarrow \operatorname{Ext}\left(Q, R_{P}\right) \rightarrow \operatorname{Ext}\left(A / U, R_{P}\right) \rightarrow 0
$$

Observe that $\operatorname{Ext}\left(Q, R_{P}\right)=\operatorname{Ext}_{R_{P}}\left(Q, R_{P}\right)$. Considering the sequence $0 \rightarrow R_{P} \rightarrow Q \rightarrow$ $Q / R_{P} \rightarrow 0$ of R_{P}-modules, we obtain the sequences

$$
\begin{aligned}
& 0=\operatorname{Hom}_{R_{P}}\left(Q, R_{P}\right) \rightarrow \operatorname{Hom}_{R_{P}}\left(R_{P}, R_{P}\right) \\
& \rightarrow \operatorname{Ext}_{R_{P}}\left(Q / R_{P}, R_{P}\right) \rightarrow \operatorname{Ext}_{R_{P}}(Q, R) \rightarrow 0
\end{aligned}
$$

and

$$
\begin{aligned}
0 & =\operatorname{Hom}_{R_{P}}\left(Q / R_{P}, Q\right) \rightarrow \operatorname{Hom}_{R_{P}}\left(Q / R_{P}, Q / R_{P}\right) \\
& \rightarrow \operatorname{Ext}_{R_{P}}\left(Q / R_{P}, R_{P}\right) \rightarrow \operatorname{Ext}_{R_{P}}\left(Q / R_{P}, Q\right)=0
\end{aligned}
$$

Since R_{P} is a discrete valuation domain such that $\hat{R_{P}}$ has infinite rank as an R_{P}-module, we obtain that

$$
\operatorname{Ext}_{R_{P}}\left(Q, R_{P}\right)=\operatorname{Ext}\left(Q, R_{P}\right) \cong \operatorname{Ext}\left(A / U, R_{P}\right)
$$

has infinite rank contradicting what has already been shown.
Conversely, observe that $O T(A) \leq \mathbf{t}\left(R_{P}\right)$ implies that there exists an exact sequence

$$
0 \rightarrow A \rightarrow \oplus_{n} R_{P}(E)
$$

To see this, let $F=\oplus_{i=1}^{n} x_{i} R \subseteq A$ be a free submodule such that A / F is torsion. For $i=1, \ldots, n$, consider the pure corank 1 submodule $U_{i}=\left(\oplus j \neq i x_{i} R\right)_{*}$ of A. Since $\mathbf{t}\left(A / U_{i}\right) \leq$ $\mathbf{t}\left(R_{P}\right)$, there exists a map $\varphi_{i}: A \rightarrow R_{P}$ with $\varphi_{i}\left(U_{i}\right)=0$ and $\varphi\left(x_{i}\right) \neq=0$. Define $\varphi: A \rightarrow R_{P}^{n}$ by $\varphi(a)=\left(\varphi_{1}(a), \ldots, \varphi_{n}(a)\right)$. If $\varphi(a)=0$, then

$$
r a=r_{1} x_{1}+\ldots+r_{n} x_{n} \in F
$$

for some nonzero $r \in R$ since A / F torsion. But, $\varphi(a)=0$ implies $\varphi_{i}(a)=0$ for all i. Hence $0=\varphi_{i}(r a)=\varphi_{i}\left(r_{1} x_{1}+\ldots+r_{n} x_{n}\right)=\varphi_{i}\left(r_{i} x_{i}\right)$ But, $\varphi_{i}\left(x_{i}\right) \neq 0$ yields $r_{i}=0$. Hence φ is a monomorphism.

The sequence E induces

$$
0=\operatorname{Ext}\left(\oplus_{n} R_{P}, R_{P}\right) \rightarrow \operatorname{Ext}\left(A, R_{P}\right) \rightarrow 0
$$

because

$$
\operatorname{Ext}\left(\oplus_{n} R_{P}, R_{P}\right) \cong \operatorname{Ext}_{R_{P}}\left(\oplus_{n} R_{P}, R_{P}\right)=0
$$

Lemma 3.0.7. Let R be a Dedekind domain, and X a rank $1 R$-module. A torsion-free R module A of finite rank satisfies $O T(A) \leq \boldsymbol{t}(X)$ if and only if $\operatorname{rank}(\operatorname{Hom}(A, X))=\operatorname{rank}(A)$. Proof. Suppose $O T(A) \leq \mathbf{t}(X)$, and consider a free submodule $F=\oplus x_{i} R$ of A such that A / F is torsion. If $U_{i}=\left(\oplus_{j \neq i} x_{i} R\right)_{*}$, then

$$
\mathbf{t}\left(A / U_{i}\right) \leq O T(A) \leq \mathbf{t}(X)
$$

yields that there exists $0 \neq \varphi_{i}: A \rightarrow R_{p_{i}}$ with $\varphi_{i}\left(U_{i}\right)=0$. To see that $\left\{\varphi_{i}, \ldots, \varphi_{n}\right\}$ is R-independent, suppose $r_{1} \varphi_{1}+\cdots+r_{n} \varphi_{n}=0$. For $i=1, \ldots, n$, we have $0=r_{1} \varphi_{1}\left(x_{i}\right)+$ $\cdots+r_{n} \varphi_{n}\left(x_{i}\right)=r_{i} \varphi_{i}\left(x_{i}\right)$. Since $\varphi_{i}\left(x_{i}\right) \neq 0$, we have $r_{i}=0$.

Conversely, suppose that $\alpha_{1}, \ldots, \alpha_{n} \in \operatorname{Hom}(A, X)$ linearly independent where $n=$ $\operatorname{rank}(A)$. Since $\operatorname{rank}(\operatorname{Hom}(A, Q))=n=\operatorname{rank}(\operatorname{Hom}(A, X)$, we obtain

$$
O T(A)=\left\{\mathbf{t}\left(\alpha_{1}(A)\right), \ldots, \mathbf{t}\left(\alpha_{n}(A)\right)\right\} \leq \mathbf{t}(X)
$$

by Proposition 3.0.2.

Theorem 3.0.8. Let A and B finite rank torsion-free modules over a Dedekind domain R such that $\hat{R_{P}}$ has infinite rank over R for all $P \in \operatorname{spec}(R)$.
a) If $\operatorname{Ext}(A, C) \cong \operatorname{Ext}(B, C)$ for all torsion-free R-modules C of finite rank, then $A \cong$ $P_{1} \oplus A_{1} \oplus D_{1}$ and $B \cong P_{2} \oplus B_{1} \oplus D_{2}$ where $O T(A)=O T(B), P_{1}$ and P_{2} are finitely generated projective, D_{1} and D_{2} are torsion-free divisible of finite rank, and A_{1} and B_{1} are reduced with $r_{P}\left(A_{1}\right)=r_{P}\left(B_{1}\right)$ and $r_{P}\left(\operatorname{Hom}_{R}\left(A_{1}, C\right)\right)=r_{P}\left(\operatorname{Hom}_{R}\left(B_{1}, C\right)\right)$ for all $P \in \operatorname{Spec}(R)$ and all torsion-free finite rank modules C. Moreover, if Q is a perfect field, then $A_{1} \sim B_{1}$.
b) If $O T(A)=O T(B)$ and $A \cong P_{1} \oplus A_{1} \oplus D_{1}$ and $B \cong P_{2} \oplus B_{1} \oplus D_{2}$ where P_{1} and P_{2} are finitely generated projective, D_{1} and D_{2} are torsion-free divisible of finite rank, and $A_{1} \sim B_{1}$ are reduced, then $\operatorname{Ext}(A, C) \cong \operatorname{Ext}(B, C)$ for all torsion-free R-modules C of finite rank.

Proof. a) Since every finite rank torsion-free R-module X can be written as $X=P \oplus Y$ with P projective and $\operatorname{Hom}_{R}(Y, P)=0$, it suffices to consider the case that

$$
\operatorname{Hom}_{R}(A, R)=\operatorname{Hom}_{R}(B, R)=0
$$

In particular, $\operatorname{Ext}(A, C) \cong \operatorname{Ext}(B, C)$ for all C of rank at most n. Write $A \cong A_{1} \oplus D_{1}$ and $B \cong B_{1} \oplus D_{2}$ where D_{1} and D_{2} are torsion-free divisible of finite rank. Since $\operatorname{Ext}_{R}\left(D_{i}, C\right)$ is torsion-free divisible, we have $r_{P}\left(\operatorname{Ext}_{R}\left(A_{1}, C\right)\right)=r_{P}\left(\operatorname{Ext}_{R}(A, C)\right)=r_{P}\left(\operatorname{Ext}_{R}(B, C)\right)=$ $r_{P}\left(\operatorname{Ext}_{R}\left(B_{1}, C\right)\right)$. Since we only consider the P-ranks of Ext_{R} in the following, we may assume that A and B are reduced.

We know that, for all torsion-free modules X and Y of finite rank,

$$
r_{p}(\operatorname{Ext}(X, Y))=r_{p}(X) r_{p}(Y)-r_{p}(\operatorname{Hom}(X, Y))
$$

as was shown shown in another paper. Using this for A and B and a module C having rank $\leq n$, we get

$$
r_{p}(A) r_{p}(C)-r_{p}(\operatorname{Hom}(A, C))=r_{p}(B) r_{p}(C)-r_{p}(\operatorname{Hom}(B, C))
$$

Because $\operatorname{Hom}(A, R)=\operatorname{Hom}(B, R)=0$, we have

$$
r_{p}(\operatorname{Hom}(A, R))=r_{p}(\operatorname{Hom}(B, R))=0
$$

and

$$
r_{p}(A)=r_{p}(A) r_{p}(R)=r_{p}(B) r_{p}(R)=r_{p}(B)
$$

But then, $r_{p}(\operatorname{Hom}(A, C))=r_{p}(\operatorname{Hom}(B, C))$ using the above formula. By Theorem 3.0.5, A and B are quasi-isomorphic.

Assume not both $O T(A)$ and $O T(B)$ are the type of Q. Without loss of generality, we may assume $\tau=O T(A) \neq \operatorname{type}(Q)$. Observe that there has to be $P \in \operatorname{Spec}(R)$ such that no rank 1 quotient of A is P-divisible. If we could find a rank 1 quotient of A for every P which is P-divisible, then its type at that prime would be infinite. Then the sup of the types of the rank 1 quotients of A would be infinite for all primes, and $O T(A)=\operatorname{type}(Q)$, a contradiction. In particular, $A / U \subseteq R_{P}$ for all pure corank 1 submodules U of A.

Observe that $O T(X) \leq \operatorname{type}\left(R_{P}\right)$ if and only if $X \neq P X$ for all finite rank torsionfree modules X. By Lemma 3.0.6, $\operatorname{Ext}\left(A, R_{p}\right)=0$ if and only if $O T(A) \leq \operatorname{type}\left(R_{P}\right)$. Since the Ext-modules are isomorphic, $\operatorname{Ext}\left(B, R_{p}\right)=0$, and we obtain $O T(B) \leq \operatorname{type}\left(R_{p}\right)$ using Lemma 3.0.6 once more. Moreover, $r_{P}(A)=\operatorname{rank}(A)$ and $r_{P}(B)=r_{0}(B)$ by [10, Proposition 2.34]. If X is a rank 1 module of type τ, then $\operatorname{Hom}(A, X)$ can be embedded into a finite direct sum of copies of X and $r_{0}(\operatorname{Hom}(A, X))=r_{0}(A)$ by Lemma 3.0.7. By [10, Proposition 2.34], $O T\left(\operatorname{Hom}_{R}(A, X) \leq \tau\right.$. Another application of [10, Proposition 2.34] yields

$$
r_{p}(\operatorname{Hom}(A, X))=r_{0}(\operatorname{Hom}(A, X))=\operatorname{rank}(A)=r_{p}(A)
$$

Since

$$
O T\left(\operatorname{Hom}_{R}(B, X) \leq \tau \leq \operatorname{type}\left(R_{P}\right),\right.
$$

we obtain $r_{p}\left(\operatorname{Hom}_{R}(B, X)=r_{0}(\operatorname{Hom}(B, X))\right.$. On the other hand

$$
r_{P}(A) r_{P}(X)-r_{P}(\operatorname{Hom}(A, X))=r_{P}(B) r_{P}(X)-r_{P}(\operatorname{Hom}(B, X))
$$

and $r_{P}(A)=r_{P}(B)$ yield $r_{P}(\operatorname{Hom}(A, X))=r_{P}(\operatorname{Hom}(B, X))$. Thus,

$$
\begin{aligned}
r_{P}(B) & =r_{P}(A)=r_{P}\left(\operatorname{Hom}_{R}(A, X)\right) \\
& =r_{P}\left(\operatorname{Hom}_{R}(B, X)\right)=r_{0}\left(\operatorname{Hom}_{R}(B, X)\right) \\
& \leq r_{0}(B)=r_{P}(B)
\end{aligned}
$$

In particular, $r_{0}(\operatorname{Hom}(B, X))=r_{0}(B)$. Another application of Lemma 3.0.7 yields $O T(B) \leq$ $\tau=O T(A)<\operatorname{type}(Q)$. By symmetry, $O T(A)=O T(B)$.
b) Standard homological arguments show that

$$
r_{0}\left(\operatorname{Ext}_{R}(A, C)\right)=r_{0}(\operatorname{Ext}(Q, C)
$$

is infinite for all reduced torsion-free groups C of finite rank if $O T(A)=\operatorname{type}(Q)$. To see this, observe that there exists an exact sequence $0 \rightarrow U \rightarrow A^{n} \rightarrow Q \rightarrow 0$ for some $n<\omega$. It induces

$$
\operatorname{Hom}(U, C) \rightarrow \operatorname{Ext}_{R}(Q, C) \rightarrow \operatorname{Ext}_{R}\left(A^{n}, C\right)
$$

Since $\hat{R_{P}}$ has infinite rank for all $P \in \operatorname{spec}(R)$ and C is not algebraically compact, we have $0<r_{0}(\operatorname{Ext}(Q, C))$ is infinite. Since $\operatorname{Hom}(U, C)$ has finite rank,

$$
r_{0}\left(\operatorname{Ext}_{R}(A, C)\right)=r_{0}(\operatorname{Ext}(Q, C)
$$

Since $O T(A)=O T(B), r_{0}(\operatorname{Ext}(B, C))=r_{0}\left(\operatorname{Ext}(Q, C)\right.$ is also infinite. Since $r_{0}\left(\operatorname{Ext}\left(D_{i}, C\right)\right)=$ $r_{0}(\operatorname{Ext}(Q, C)$ is infinite, we obtain that $\operatorname{Ext}(A, C)$ and $\operatorname{Ext}(B, C)$ have the same infinite torsion-free rank in this case too. On the other hand, the P-ranks of the Ext-modules are determined completely by A_{1} and B_{1}. Since $A_{1} \sim B_{1}$, the P-ranks have to coincide. On the other hand, if $O T(A)=O T(B)<\operatorname{type}(Q)$, then $D_{1}=D_{2}=0$. Since the Ext-modules are divisible, their structure is completely determined by their torsion-free and their P-ranks.

Chapter 4

The Contravariant Case

If R_{P} is complete in the P-adic topology for some $P \in \operatorname{spec}(R)$, then $\operatorname{Ext}_{R_{P}}^{1}\left(A, R_{P}\right) \cong$ $\operatorname{Ext}_{R_{P}}\left(B, R_{P}\right)=0$ for all torsion-free R_{P}-modules A and B. In particular A and B need not be quasi-isomorphic. We continue our discussion by showing that the discussion of the isomorphism of Ext-modules restricts to the case that R is a Dedekind domain such that $\hat{R_{P}}$ has infinite rank for all $P \in \operatorname{spec}(R)$:

Proposition 4.0.1. The following conditions are equivalent for a Noetherian integral domain R with field of quotients Q such that R_{P} is not complete in the P-adic topology for any $P \in \operatorname{spec}(R):$
a) R is a Dedekind domain such that $\hat{R_{P}}$ has infinite rank for all $P \in \operatorname{spec}(R)$.
b) If M and N are quasi-isomorphic torsion-free R-modules of finite rank and D_{1} and D_{2} are torsion-free divisible of finite rank, then $\operatorname{Ext}\left(M \oplus D_{1}, A\right) \cong \operatorname{Ext}\left(N \oplus D_{2}, A\right)$ for all torsion-free R-modules A.

Proof. $a) \rightarrow b$): Observe that $\operatorname{Ext}(M, A)$ is divisible if M is torsion-free and R is a Dedekind domain. However, quasi-isomorphic divisible modules over Dedekind domains are isomorphic. Moreover, consider the exact sequence

$$
0 \rightarrow \operatorname{Hom}(R, R) \rightarrow \operatorname{Ext}(Q / R, R) \rightarrow \operatorname{Ext}(Q, R) \rightarrow 0
$$

If we can show that $\operatorname{Ext}(Q / R, R)$ has infinite torsion-free rank, then $\operatorname{Ext}\left(Q^{n}, A\right) \cong \operatorname{Ext}\left(Q^{m}, A\right)$ for all $n, m<\omega$. However, the Ext-module fits into the exact sequence

$$
0 \rightarrow \operatorname{Hom}(Q / R, Q / R) \rightarrow \operatorname{Ext}(Q / R, R) \rightarrow 0
$$

from which we obtain

$$
\operatorname{Ext}(Q / R, R) \cong \Pi_{P \in \operatorname{spec}(R)} \operatorname{End}_{R}(E(R / P))
$$

However, $\operatorname{End}_{R}(E(R / P)) \cong \hat{R_{P}}$ by [10, Proposition 0.83]. By a), $\operatorname{Ext}(Q / R, R)$ has infinite rank.
b) $\rightarrow a)$: Let I be a nonzero ideal of R. Since $I \sim R$, we obtain $\operatorname{Ext}(I, M) \cong$ $\operatorname{Ext}(R, M)=0$ for all torsion-free modules R-modules M of finite rank. We consider an exact sequence $0 \rightarrow U \rightarrow F \rightarrow I \rightarrow 0$ in which F is finitely generated free. Since U has finite rank, $\operatorname{Ext}(I, U) \cong \operatorname{Ext}(R, R)=0$. Thus, the sequence splits, and I is projective.

Let $P \in \operatorname{spec}(R)$, and assume that $\operatorname{rank}\left(\hat{R_{P}}\right)<\infty$. Arguing as in $\left.a\right) \rightarrow b$) with R_{P} replacing R, we obtain that $\operatorname{Ext}\left(Q, R_{P}\right)$ is an epimorphic image of $\operatorname{Ext}\left(Q / R_{P}, R_{P}\right) \cong$ $\operatorname{End}\left(Q / R_{P}\right) \cong \hat{R_{P}}$. Thus, $0<\operatorname{rank}\left(\operatorname{Ext}\left(Q, R_{P}\right)\right)<\infty$ observing that R_{P} is no complete in the P-adic topology. But then

$$
\operatorname{rank}\left(\operatorname{Ext}_{R}^{1}\left(Q, R_{P}\right)\right)<\operatorname{rank}\left(\operatorname{Ext}_{R}^{1}\left(Q \oplus Q, R_{P}\right)\right)
$$

contradicting b).

If A and B are torsion-free finite rank R-modules over an integral domain, then $A[B]=$ $\cap\left\{\operatorname{ker}(f) \mid f \in \operatorname{Hom}_{R}(A, B)\right\}$ denotes the B-radical of A. In particular, if $A[B]=0$, then A can be viewed as a submodule of B^{n} for some n.

Theorem 4.0.2. Let A and B be torsion-free modules of finite rank over an integral domain R. If $A[B]=0$ and $B[A]=0$, then $A \doteq A_{1} \oplus A_{2}$ and $B \doteq B_{1} \oplus B_{2}$ such that A_{1} and B_{1} are nonzero and strongly indecomposable and $A_{1} \sim B_{1}$.

Proof. We consider the two-sided ideal $S=\operatorname{Hom}(B, A) \operatorname{Hom}(A, B)$ of $E(A)$. For $0 \neq a \in A$, there exists $f: A \rightarrow B$ with $f(a) \neq 0$ since $A[B]=0$. Similarly, $B[A]=0$ yields that we can find $g: B \rightarrow A$ with $g f(a) \neq 0$. In particular, S cannot be contained in N. To see this,
choose $k>0$ such that $N^{k}=0$ but $N^{k-1} \neq 0$, and select $0 \neq x \in N^{k-1} A$. By what has been shown, there is $s \in S$ with $0 \neq s x$. If $S \subseteq N$, then $s x \in S N^{k-1} \subseteq N^{k} A=0$, a contradiction.

By Theorem 2.0.3, $J \cap E(A)=N$ so that

$$
E(A) / N=E(A) / J \cap E(A) \cong[E(A)+J] / J
$$

can be viewed as a subring of the semi-simple ring $Q E(A) / J$. As mentioned before, $A \sim$ $A_{1}^{k_{1}} \oplus \cdots \oplus A_{r}^{k_{r}}$ such that each A_{i} strongly indecomposable and A_{i} is not quasi-isomorphic to A_{j} if $i \neq j$. Without loss of generality, we may assume $A=A_{1}^{k_{1}} \oplus \ldots \oplus A_{r}^{k_{r}}$. By Theorem 2.0.3, we obtain

$$
N=\oplus_{i} N_{i} \oplus\left[\oplus_{j \neq i} \operatorname{Hom}_{R}\left(A_{i}^{k_{i}}, A_{j}^{k_{j}}\right]\right.
$$

where N_{i} denotes the nilradical of $E\left(A_{i}^{k_{i}}\right)$. Hence,

$$
E(A) / N \cong \prod_{i} \operatorname{Mat}_{k_{i}}\left(R_{i}\right)=T
$$

where $R_{i}=E\left(A_{i}\right) / N\left(E\left(A_{i}\right)\right)$.
Let $\sigma \in S \backslash N$, and write $\sigma=\beta \alpha$ for $\alpha \in \operatorname{Hom}_{R}(A, B)$ and $\beta \in \operatorname{Hom}_{R}(B, A)$. Identifying $\sigma+N$ with its image in the ring T under the previous ring isomorphism, we obtain that one of the components of $\sigma+N$ in T is nonzero. Without loss of generality, we may assume that the numbering of $\left\{A_{1}, \ldots, A_{n}\right\}$ has been chosen in such a way that say the first component is nonzero.

We write $C=A_{1}^{k_{1}}$, and let $\delta: C \rightarrow A$ and $\pi: A \rightarrow C$ be the natural maps associated with the given decomposition of A. Then, we obtain that $\pi \sigma \delta=(\pi \beta)(\alpha \delta) \in$ $\operatorname{Hom}_{R}(B, C) \operatorname{Hom}_{R}(C, B)$ is not an element of $N(E(C))$ by what just has been shown. Since $E(C))=\operatorname{Mat}_{k_{1}}\left(A_{1}\right)$, some (i, j)-entry of $\pi \beta \alpha \delta$ is a non-nilpotent endomorphism of A_{1}. Let γ_{j} be the projection onto the $j^{t h}$-coordinate and λ_{i} be the embedding into the $i^{\text {th }}$-coordinate.

Then

$$
\iota=\left(\gamma_{j} \pi \beta\right)\left(\alpha \delta \lambda_{i}\right) \in \operatorname{Hom}_{R}\left(B, A_{1}\right) \operatorname{Hom}_{R}\left(A_{1}, B\right)
$$

does not belong to $N E\left(A_{1}\right)$. As in the proof of Theorem 2.0.3, this means that $\iota \notin$ $J\left(Q E\left(A_{1}\right)\right)$. Hence, ι is invertible in $Q E\left(A_{1}\right)$ since the latter is a local ring. We can find $0 \neq r \in R$ and $\eta \in E\left(A_{1}\right)$ such that $\eta \iota$ and $\iota \eta$ are multiplication by r on A_{1}. Thus, $\eta \gamma_{j} \pi \beta: B \rightarrow A_{1}$ and $\alpha \delta \lambda_{i}: A_{1} \rightarrow B$ satisfy

$$
\left(\eta \gamma_{j} \pi \beta\right)\left(\alpha \delta \lambda_{i}\right)=r 1_{A_{1}}
$$

Thus, B has a quasi summand isomorphic to A_{1}

Observe that all nonzero prime ideals of a Dedekind domain R are maximal. We let $\operatorname{spec}(R)$ denote the collection of maximal ideals of R in this case. In particular, we can define the P-rank of a torsion-free R-module A as the composition length of the module $A / P A$ [10]. We refer the reader to [10] and [1] for details on the P-rank of a module.

Lemma 4.0.3. If A and B are quasi-isomorphic torsion-free modules of finite rank over a Dedekind domain R, then $r_{P}(A)=r_{P}(B)<\infty$ for all $P \in \operatorname{spec}(R)$.

Proof. [10, Proposition 1.26] yields $r_{P}(A) \leq \operatorname{rank}(A)<\infty$ and $r_{P}(A) \leq r_{P}(U)$ whenever A is a finite rank module over a Dedekind domain R and U is an essential submodule of A. Hence, $r_{P}(A) \leq r_{P}(B)$ and vice-versa.

Theorem 4.0.4. Let A and B be torsion-free reduced modules of finite rank over a Dedekind domain R. Then

$$
r_{P}\left(\operatorname{Hom}_{R}(C, A)\right)=r_{P}\left(\operatorname{Hom}_{R}(C, B)\right)
$$

for all $P \in \operatorname{spec}(R)$ and all torsion-free modules C of finite rank if and only if $A \sim B$.
Proof. Suppose that A and B are quasi-isomorphic. Since the P-rank of a module is a quasiisomorphism invariant, and $\operatorname{Hom}_{R}(C, A)$ and $\operatorname{Hom}_{R}(C, B)$ are quasi-isomorphic modules, their P-ranks are the same for all $P \in \operatorname{spec}(R)$ and torsion-free modules C of finite rank.

Conversely, we show that A is quasi-isomorphic to B if

$$
r_{P}\left(\operatorname{Hom}_{R}(C, A)\right)=r_{P}\left(\operatorname{Hom}_{R}(C, B)\right)
$$

for all $P \in \operatorname{spec}(R)$ and any torsion-free homomorphic image C of A or B. For such modules C, we obtain that

$$
r_{P}\left(\operatorname{Hom}_{R}(C, A)\right)=r_{P}\left(\operatorname{Hom}_{R}(C, B)\right)
$$

is finite for all P since the homomorphism modules have finite torsion-free rank.
Let $A^{\prime}=A[B]$ and consider the exact sequence

$$
0 \rightarrow A^{\prime} \rightarrow A \rightarrow A / A^{\prime} \rightarrow 0 .
$$

It induces the exact sequences

$$
0 \rightarrow \operatorname{Hom}_{R}\left(A / A^{\prime}, B\right) \rightarrow \operatorname{Hom}_{R}(A, B) \xrightarrow{\alpha} \operatorname{Hom}_{R}\left(A^{\prime}, B\right)
$$

and

$$
0 \rightarrow \operatorname{Hom}_{R}\left(A / A^{\prime}, A\right) \rightarrow \operatorname{Hom}_{R}(A, A) \xrightarrow{\beta} \operatorname{Hom}_{R}\left(A^{\prime}, A\right) .
$$

By the definition of $A[B]$, the map

$$
0 \rightarrow \operatorname{Hom}_{R}\left(A / A^{\prime}, B\right) \rightarrow \operatorname{Hom}_{R}(A, B)
$$

is an isomorphism so that $\operatorname{im} \alpha=0$. By our hypothesis, we obtain

$$
\begin{aligned}
r_{P}(i m \beta) & =r_{P}\left(\operatorname{Hom}_{R}(A, A)\right)-r_{P}\left(\operatorname{Hom}_{R}\left(A / A^{\prime}, A\right)\right) \\
& =r_{P}\left(\operatorname{Hom}_{R}(A, B)\right)-r_{P}\left(\operatorname{Hom}_{R}\left(A / A^{\prime}, B\right)\right) \\
& =r_{P}(i m \alpha)=0
\end{aligned}
$$

for all prime ideals P. Therefore, $\operatorname{im} \beta$ is divisible.
If $\operatorname{im} \beta \neq 0$, then $\operatorname{Hom}_{R}\left(A^{\prime}, A\right) A^{\prime} \subseteq A$ contains a nonzero divisible submodule which is not possible. Thus, $\operatorname{im} \beta=0$. In particular, $A^{\prime}=\beta\left(i d_{A}\right) A^{\prime}=0$. Therefore, $A[B]=0$. Similarly, we show $B[A]=0$.

By Theorem 4.0.2, there is a nonzero K such that A is quasi-isomorphic to $K \oplus A_{1}$ and B is quasi-isomorphic to $K \oplus B_{1}$ for some A_{1} and B_{1}. If C is an epimorphic image of B_{1} or A_{1}, then C is quasi-isomorphic to an epimorphic image of B or A respectively. Therefore

$$
\begin{aligned}
& r_{P}(\operatorname{Hom}(C, K))+r_{P}\left(\operatorname{Hom}\left(C, A_{1}\right)\right)=r_{P}(\operatorname{Hom}(C, A)) \\
= & r_{P}(\operatorname{Hom}(C, B))=r_{P}(\operatorname{Hom}(C, K))+r_{P}\left(\operatorname{Hom}\left(C, B_{1}\right)\right),
\end{aligned}
$$

which implies $r_{P}\left(\operatorname{Hom}\left(C, A_{1}\right)\right)=r_{P}\left(\operatorname{Hom}\left(C, B_{1}\right)\right)$ for all P. Inducting on the rank of $A+B$, we obtain that A_{1} is quasi-isomorphic to B_{1}.

Our next result shows that Warfield's formula for the P-rank of Hom holds for modules over Dedekind domain. Observe that $\operatorname{Ext}(A,-)$ is divisible whenever R is Dedekind and A is a torsion-free R-module. Thus, the P-rank of the module $\operatorname{Ext}(A,-)$ as defined before would be 0 . If D is a divisible module, then we replace the notion of P-rank by that of the R / P-dimension of the P-socle $D[P]=\{x \in D \mid P x=0\}$.

Proposition 4.0.5. Let R be a Dedekind domain, and M and N torsion-free R-modules of finite rank. For all $P \in \operatorname{spec}(R)$,

$$
r_{P}\left(\operatorname{Hom}_{R}(M, N)\right)=r_{P}(M) r_{P}(N)-\operatorname{dim}_{R / P}\left(\operatorname{Ext}_{R}^{1}(M, N)[P]\right)
$$

Proof. The result is a direct consequence of Theorem 1.0.30.

Corollary 4.0.6. Let A and B be torsion-free modules of finite rank over a Dedekind domain R. If A and B are quasi-isomorphic, then $\operatorname{Ext}(C, A) \cong \operatorname{Ext}(C, B)$ for all torsion-free finite
rank modules C. Moreover, if the P-adic completion of R_{P} has infinite rank for all $P \in$ $\operatorname{spec}(R)$, then the converse holds.

Proof. Since R is a Dedekind domain, $\operatorname{Ext}(M,-)$ is divisible whenever M is torsion-free. Since divisible quasi-isomorphic modules are isomorphic, we obtain $\operatorname{Ext}(C, A) \cong \operatorname{Ext}(C, B)$ for all torsion-free finite rank modules C if A and B have the desired form.
b) Write $A=D_{A} \oplus A^{\prime}$ and $B=D_{B} \oplus B^{\prime}$, with D_{A} and D_{B} divisible, and A^{\prime} and B^{\prime} reduced. Then,

$$
\operatorname{Ext}\left(C, A^{\prime}\right)=\operatorname{Ext}(C, A) \cong \operatorname{Ext}(C, B) \cong \operatorname{Ext}\left(C, B^{\prime}\right)
$$

Thus, we may assume that A and B are reduced. For any finite rank torsion-free R-module C, we obtain

$$
r_{P}(\operatorname{Hom}(C, A))=r_{P}(C) r_{P}(A)-\operatorname{dim}_{R / P}(\operatorname{Ext}(C, A)[P])
$$

and

$$
r_{P}(\operatorname{Hom}(C, B))=r_{P}(C) r_{P}(B)-\operatorname{dim}_{R / P}(\operatorname{Ext}(C, B)[P])
$$

from which we get

$$
r_{P}(C) r_{P}(A)-r_{P}(\operatorname{Hom}(C, A))=r_{P}(C) r_{P}(B)-r_{P}(\operatorname{Hom}(C, B))
$$

We fix $P \in \operatorname{spec}(R)$, and consider the P-adic completion $\hat{R_{P}}$ of the module R_{P} as in [10]. Since $\hat{R_{P}}$ has infinite rank as an R-module, we can find a pure submodule C of $\hat{R_{P}}$ containing R_{P} with

$$
\operatorname{rank}(C)=\operatorname{rank}(A)+\operatorname{rank}(B)+1
$$

If $\alpha: C \rightarrow A$, then ker $\alpha \neq 0$, and $C /$ ker α is divisible since $r_{P}(C)=1$ and $r_{Q}(C)=0$ for $P \neq Q \in \operatorname{spec}(R)$. Hence, $\operatorname{Hom}(C, A)=0$. In the same way, $\operatorname{Hom}(C, B)=0$. Hence,

$$
\begin{aligned}
r_{P}(A) & =r_{P}(C) r_{P}(A)-r_{P}\left(\operatorname{Hom}_{R}(C, A)\right) \\
& =r_{P}(C) r_{P}(B)-r_{P}\left(\operatorname{Hom}_{R}(C, B)\right)=r_{P}(B) .
\end{aligned}
$$

By Theorem 4.0.4, A and B are quasi-isomorphic.

If R is a maximal discrete valuation domain, then all torsion-free R-modules C of finite rank are projective, so $\operatorname{Ext}(C, M)=0$ for all M. In particular, $\operatorname{Ext}(C, M) \cong \operatorname{Ext}(C, N)$ does not yield that M and N need to be quasi-isomorphic. Thus, the condition on the rank of $\hat{R_{P}}$ cannot be omitted.

Bibliography

[1] Albrecht, Ulrich, Stefan Friedenberg, and Lutz Strungmann. "The Torsion-Freeness of Ext." International Journal of Algebra. 6 (2012): 399-414.
[2] Arnold, D.; Finite Rank Torsion-Free Groups and Rings, Lecture Notes in Mathematics 931, Springer-Verlag, New York, 1982.
[3] Beaumont, R. A., and R. S. Pierce. "Torsion-Free Rings." Illinois Journal of Mathematics. University of Illinois at Urbana-Champaign, Department of Mathematics, n.d. Web. 18 Apr. 2017.
[4] Fuchs, L. Infinite Abelian Groups. Vol. 2. New York: Academic, 1979.
[5] Goeters, H. Pat. "Torsion-Free Abelian Groups with Finite Rank endomorphism Rings." Quaestiones Mathematicae 14 (1991): 111-115.
[6] Goeters, H. Pat. "Fuchs' Problem 43." Rocky Mountain Journal of Mathematics 22.1 (1992): 197-201.
[7] Goeters, H. Pat. "The Structure of Ext for Torsion-Free Modules of Finite Rank over Dedekind Domains." Communications in Algebra 31.7 (2003): 3251-263.
[8] Goeters, H. Pat. "Torsion-Free Abelian Groups With Finite Rank Endomorphism Rings." Quaestiones Mathematicae 14.1 (1991): 111-15.
[9] Hungerford, Thomas W. Algebra. New York: Springer-Verlag, 1974.
[10] Lady, E. L.; Finite Rank Torsion Free Modules Over Dedekind Domains. Lee Lady: Finite Rank Torsion Free Modules over Dedekind Domains (a Book). N.p., 1998. Web. <http://www.math.hawaii.edu/ lee/book/index.html>.
[11] Reid, James D.; "On Quasi-Decompositions of Torsion-Free Abelian Groups", Proceedings of the American Mathematical Society 13 (1962), 550-554.
[12] Reiner, Irving. Maximal Orders. New York: Academic, 1975.
[13] Warfield, R. B.; "Extensions of Torsion-Free Abelian Groups of Finite Rank." Archiv der Mathematik 23 (1972): 145-150.

