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Abstract

We address what can be said of torsion-free finite rank modules A and B over a Dedekind

domain R when their Ext’s are isomorphic, extending an answer to Fuchs’ Problem 43 and

its dual by Goeters. We obtain a result for the covariant case when R̂P has infinite rank over

R, noting that A and B are quasi-isomorphic iff the P -rank of their Hom sets match. In the

contravariant case, we see A and B are quasi-isomorphic implies their extension groups are

isomorphic, with the converse holding when again R̂P has infinite rank over R. Along the

way, we find equivalent conditions that hold for Noetherian domains whose completions are

not complete in the P -adic topology.
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Chapter 1

Introduction

Problem 43 in [4] asks to characterize the relation between abelian groups A and B such

that ExtZ(A,C) ∼= ExtZ(B,C) for all Abelian groups C. A solution to this problem and

its dual was given by Goeters in the case that A, B and C are torsion free Abelian groups

of finite rank in [6] and [8] respectively.

In the 80’s, it was commonly believed that results about Abelian groups extend canon-

ically to modules over Dedekind domains. Lee Lady suggested that Abelian group theorists

should work directly in the context of modules over Dedekind domains R. He showed the

feasibility of such an approach in [10] for countable Dedekind domains of characterization

0. However, Nagata showed that there exits an uncountable discrete valuation domain R of

characteristic 0 whose P -adic completion R̂ of R has finite rank. In particular, this provides

an example of a Dedekind domain to which Goeters’s solution of Fuchs’ Problem cannot

readily be extended.

First, we will begin to motivate our problem by discussing Dedekind domains. We will

work to present several equivalent conditions Dedekind domains satisfy at the end of this

section.

Proposition 1.0.1. [9] Let T be a multiplicative subset of an integral domain R such that

0 6∈ T . If R is integrally closed, then T−1R is integrally closed as well.

Proof. T−1R is an integral domain, and R may be identified with a subring of T−1R. Ex-

tending this identification, the quotient field Q of R may be considered as a subfield of the

quotient field Q
′

of T−1R, so that Q = Q
′
.
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Let u ∈ Q′ be integral over T−1R. Then for some ri ∈ R and ti ∈ T ,

un + (rn−1/tn−1)u
n−1 + · · ·+ (r1/t1)u+ (rank/t0) = 0.

Multiplying by tn where t = t0t1 · · · tn−1 ∈ T shows that tu is integral over R. Since

tu ∈ Q′ = Q and R is integrally closed, tu ∈ R. Therefore, u = tu/t ∈ T−1R, whence T−1R

is integrally closed.

Proposition 1.0.2. [10] If M and N are R-modules and S is a multiplicative set, then

i. HomS−1R(S−1M,S−1N) = HomR(S−1M,S−1N) = HomR(M,S−1N).

ii. S−1M ⊗S−1R S
−1N = S−1M ⊗R S−1N .

Proof. (i.) For ϕ ∈ HomR(S−1M,S−1N), m ∈M , r ∈ R, and s, s
′ ∈ S,

ϕ
(r
s

m

r′

)
=
s

s
ϕ
(rm
ss′

)
=
r

s
ϕ
(sm
ss′

)
=
r

s
ϕ
(m
s′

)
.

Thus every R-linear map from S−1M to S−1N is in fact S−1R-linear. Furthermore, every

R-linear map from M to S−1N extends uniquely to a map from S−1M to S−1N .

(ii.) This follows from the fact that for m ∈ S−1M , n ∈ S−1N , r ∈ R, and s ∈ S, the

following holds in S−1M ⊗R S−1N :

m⊗ rn

s
=
sm

s
⊗ rn

s
=
rm

s
⊗ sn

s
=
rm

s
⊗ n.

Proposition 1.0.3. [10] Let M be a finitely generated module over a Noetherian ring R. For

every R-module N and multiplicative set S, we have S−1HomR(M,N) ∼= HomR(S−1M,S−1N).

Proof. Let ϕ
s
∈ S−1HomR(M,N), and define ψ : S−1HomR(M,N) → HomR(S−1M,S−1N)

by

ψ
(ϕ
s

)(m
s′

)
=
ϕ(m)

ss′
.
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ψ is clearly an isomorphism when M = R, and thus when M = Rt for finite t. Generally,

because M is finitely generated, there exists a surjection ε : Rt → M for some finite t.

Since R is Noetherian, ker ε is also finitely generated, and we thus get an exact sequence

Rs → Rt → M → 0. Since localization preserves exactness, applying Hom( , N) and

localizing with respect to S yields a commutative diagram.

Proposition 1.0.4. [10] Let M,N,P be modules over a commutative ring R.

i. If m1,m2 ∈ M , then m1 = m2 if and only if m1/1 = m2/1 ∈ MI for all maximal ideals

I.

ii. M = 0 if and only if MI = 0 for all maximal ideals I.

iii. Suppose that N,P ⊆M . Then N = P if and only if NI = PI for all maximal ideals I.

iv. If ϕ ∈ HomR(M,N), then ϕ is monic [epic] if and only if ϕI : MI → NI is monic [epic]

for all maximal ideals I.

v. A sequence M → N → P is exact if and only if the induced sequence MI → NI → PI is

exact for all maximal ideals I.

vi. If M is a submodule of a vector space over the quotient field F of R, then M =
⋂
P MP .

Next, we present Nakayama’s Lemma - a useful tool when dealing with finitely generated

modules.

Lemma 1.0.5 (Nakayama’s Lemma). [9] If J is an ideal in a commutative ring R with

identity, then the following conditions are equivalent.

(a) J is contained in every maximal ideal of R.

(b) 1R − j is a unit for every j ∈ J .

(c) If A is a finitely generated R-module such that JA = A, then A = 0.
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(d) If B is a submodule of a finitely generated R-module A such that A = JA + B, then

A = B.

Proof. (a→ b) If j ∈ J and 1R − j is not a unit, then the ideal (1R − J) is not R itself, and

therefore is contained in a maximal ideal M 6= R. But 1R − j ∈ M and j ∈ j ⊆ M imply

that 1R ∈M , which is a contradiction. Therefore, 1R − j is a unit.

(b → c) Since A is finitely generated, there must be a minimal generating set X =

{a1, . . . , an} of A. If A 6= 0, then a1 6= 0 by minimality. Since JA = A, a1 = j1a1 + · · ·+ jnan

for some ji ∈ J , whence 1Ra1 =1 so that

(1R − j1)a1 = 0 if n = 1

and

(1R − j1)a1 = j2a2 + · · ·+ jnan if n > 1.

Since 1R − j1, a1 = (1R − j1)−1a1. Thus, if n = 1, then a1 = 0, which is a contradiction. If

n > 1, then a1 is a linear combination of a2, . . . , an. Consequently, {a2, . . . , an} generates A,

which contradicts the choice of X.

(c→ d) The quotient module A/B is such that J(A/B) = A/B, whence A/B = 0 and

A = B by assumption.

(d→ a) If M is any maximal ideal, then the ideal JR+M contains M . But JR+M 6= R,

otherwise R = M by assumption. Consequently, JR + M = M by maximality. Therefore,

J = JR ⊆M .

Corollary 1.0.6. [10] Let M be a finitely generated module over a local ring. M is projective

if and only if it is free.

Proposition 1.0.7. [10] A finitely generated projective module M over a local ring R is

free. In fact, if I is the maximal ideal in R and m1, . . . ,mt ∈ M are such that the cosets

m̄1, . . . , m̄t are a basis for M/IM as a vector space over R/I, then m1, . . . ,mt are a basis

for M .
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Proof. Let I be the unique maximal ideal in R. Choose m1, . . . ,mt ∈ M so that the cosets

m̄1, . . . , m̄t are a basis for the vector space M/IM over the field R/I. Let ϕ : Rt → M

be defined by ϕ(r1, . . . , rt) =
∑
rimi. It follows easily from Nakayama’s Lemma that ϕ is

surjective. Since M is a projective module, ϕ splits, so Rt = K ⊕ L with K = Kerϕ and

L ∼= M . Then K is finitely generated. Since ϕ induces an isomorphism from Rt/IRt to

M/IM , it follows that K/IK ⊕ L/IL ∼= M/IM These are finite dimensional vector spaces

over the field R/I and comparing dimensions yields K/IK = 0. Thus K = 0 by Nakayama’s

Lemma. Thus ϕ is monic and hence an isomorphism.

Proposition 1.0.8. [10] A finitely generated module M over a Noetherian ring R is projec-

tive if and only if MP is a free RP -module for all prime ideals P .

Proof. (→) Using the criterion that projective modules are just the direct summands of free

modules, it is easy to see that the localization of a projective R-module at P is a projective

module over RP . It then follows from 1.0.7 that this localization is a free RP -module.

(←) Suppose now that M is finitely generated and for all P , MP is a free RP -module. To

show that M is projective one must show that for every surjection ϕ : X → Y , the induced

map ϕ∗ : HomR(M,X) → HomR(M,Y ) is surjective. By 1.0.4, it suffices to prove that for

all maximal ideals P , the localized map (HomR(M,X))P → (HomR(M,Y ))P is surjective.

But since M is finitely generated, by 1.0.2 and 1.0.3 there are natural isomorphisms yielding

the following commutative diagram:

(HomR(M,X))P −−−→ (HomR(M,Y ))Py∼= y∼=
HomRP

(MP , XP ) −−−→ HomRP
(MP , YP ) −−−→ 0

where the bottom map is surjective sinceMP is a projectiveRP -module. Thus (HomR(M,X))P →

(HomR(M,Y ))P is a surjection proving the result.
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Remark 1.0.9. [10] The hypothesis that M be finitely generated is essential here. There are

many examples of non-finitely generated non-projective modules M such that MP is a free

RP -module for all prime ideals P - they are called locally free.

Proposition 1.0.10. [10] Let R be an integral domain with quotient field F and let P be

an R-submodule of F . Then the following conditions are equivalent:

(a) P is projective.

(b) There exist elements p1, . . . , pn ∈ P and f1, . . . , fn ∈ F such that fiP ⊆ R for all i and∑
fipi = 1.

(c) There exists a submodule M of F such that MP = R.

Furthermore in this case P is generated by p1, . . . , pn.

Proof. (a→ b) Since P is projective, it is a summand of a free module R(f), and there exist

maps σ : P → R(I) and π : R(I) → P such that πσ = 1P . Localizing at the zero ideal, σ

extends to a map σ0 : F → F (I) and π to a map π0 : F (I) → F . For each i ∈ I, let fi be

the ith coordinate of σ0(1 and let pi = π0(ei), where ei is the canonical ith basis vector of

F (I). Then the composition of σ0 with the projection of F (I) onto the ith coordinate is given

by x 7→ fix. Since this composition maps P into R, it follows that fiP ⊆ R. Furthermore,

since π is given by
∑
yiei 7→

∑
yi i, the equation π0σ0(1) = 1 translates to

∑
fipi = 1. This

sum can have only finitely many non-trivial terms, and at this point we can replace I by the

finite set of i ∈ I such that fipi 6= 0.

(b→ a) Map P onto Rn by σ : p 7→ (f1p, . . . , fnp) and map Rn to P by π : (r1, . . . , rn) 7→

σripi. Then πσ(p) = σpfipi = p1 = p. Thus σ is a split monomorphism and P is a summand

of a free module, hence is projective.

(b→ c) Let M be the submodule of F generated by f1, . . . , fn. Then clearly MP ⊆ R.

But 1 =
∑
fipi ∈ MP so MP = R. Note also that p1, . . . , pn generate P since for p ∈ P ,

we have p = p
∑
fipi =

∑
(fip)pi and all fip ∈ R.
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(c → b) If MP = R, then 1 ∈ MP so there exist fi ∈ M , pi ∈ P with
∑
fipi = 1.

Furthermore, for all i, fiP ⊆MP = R.

Lemma 1.0.11. [10] A commutative ring R is integrally closed if and only if RP is integrally

closed for all prime ideals p.

Proof. (→) S−1R is integrally closed for every multiplicative set S. Let Q denote the quotient

field of R, let q ∈ Q be integral over S−1R, and let f ∈ S−1R[X] be a monic polynomial

satisfied by q. Let d be the degree of f and let s ∈ S be a common denominator for the

coefficients of f . Then sdf(q) = 0, and sq satisfies some monic polynomial in R[X]. Thus,

sq ∈ R by assumption, whence q ∈ S−1R.

(←) Let q ∈ Q be integral over R. Then q is integral over each RP . If all RP are

integrally closed, then q ∈
⋂
RP = R.

Remark 1.0.12. Note that by the proposition, projective ideals are finitely generated. Hence,

if every ideal in an integral domain is projective, then that integral domain is also Noetherian.

Definition 1.0.13. [9] Let R be an integral domain with quotient field Q. A fractional

ideal of R is a nonzero R-submodule M of Q such that rM ⊆ R for some nonzero r ∈ R.

Example 1.0.14. [9] Every nonzero finitely generated R-submodule M of Q is a fractional

ideal. For if M is finitely generated by q1, . . . , qn ∈ Q, then M = Rq1 + · · · + Rqn and

for each i, qi = ri/si with 0 6= si, ri ∈ R. Let s = s1 · · · sn. Then s 6 0 and sM =

Rs2 · · · snr1 + · · ·+Rs1 · · · sn−1tn ⊆ R.

Remark 1.0.15. [9] If I is a fractional ideal of a domain R and aI ⊆ R for some nonzero

element a of R, then aI is an ordinary ideal in R and the map I → aI given by x 7→ ax is

an R-module isomorphism.

Lemma 1.0.16. [9] Let I1, I2, . . . , In be ideals in an integral domain R.

i. The ideal I1I2 · · · In is invertible if and only if each Ij is invertible.
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ii. If P1 · · ·Pm = I = P
′
1 · · ·P

′
n where Pi and P

′
j are prime ideals in R with every Pi

invertible, then m = n and Pi = P
′
i for each i = 1, . . . ,m after reindexing.

Proof. (i.) If J is a fractional ideal such that J(I1 · · · In) = R, then for each j = 1, . . . , n we

have Ij(I1 · · · Ij−1Ij+1 · · · In = R, whence Ij is invertible. Conversely, if each Ij is invertible,

then (I1 · · · In)(I−11 · · · I−1n = R, whence I1 · · · In is invertible.

(ii.) We proceed by induction on m. If m > 1, choose one of the Pi, say P1 such that

tP1 oes not properly contain Pi fo I = 2, . . . ,m. Since P
′
1 · · ·P

′
n = P1 · · ·Pm ⊂ P1 and P1 is

prime, some P
′
j , say P

′
1, is contained in P1. Similarly, we have Pi ⊆ P

′
1 for some i. Because

Pi ⊆ P
′
1 ⊆ P1, by the minimality of P1 we have Pi = P

′
1 = P1. Since P1 = P

′
1 is invertible,

then we have P2 · · ·Pm = P
′
2 · · ·P

′
n. By the induction hypothesis, m = n and Pi = Qi for

i = 1, . . . ,m after reindexing.

Lemma 1.0.17. [9] Every invertible fractional ideal of an integral domain R with quotient

field Q is a finitely generated R-module.

Proof. Let I be such an ideal. Since I−1I = R, there exist ai ∈ I−1 and bi ∈ I such

that 1R =
∑n

1 aibi. If c ∈ I, then c =
∑n

1 (cai)bi. Furthermore, each cai ∈ R since

ai ∈ I−1 = {q ∈ Q|qI ⊆ R}. Therefore, I is generated as an R-module by b1, . . . , bn.

Definition 1.0.18. A discrete valuation ring is a principal ideal domain that has exactly

one nonzero prime ideal.

Lemma 1.0.19. [9] If R is a Noetherian, integrally closed integral domain and R has a

unique nonzero prime ideal P , then R is a discrete valuation ring.

Proof. We need only show that every proper ideal in R is principal.

Claim 1: Let Q be the quotient field of R. For every fractional ideal I of R, the set

Ī = {q ∈ Q|qI ⊆ I} is R.

Proof. Clearly R ⊆ Ī. Because Ī is a subring of Q and a fractional ideal of R, Ī is isomorphic

as an R-module to an ideal of R. Thus since R is Noetherian, Ī is finitely generated, whence
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every element of Ī is integral over R. Therefore Ī ⊆ R since R is integrally closed. We

conclude Ī = R.

Claim 2: R is properly contained in P−1.

Proof. Let F be the set of all ideals J in R such that R is properly contained in J−1. Since

P is a proper ideal, every nonzero element of P is a nonunit. If J = (a) for some nonzero

a ∈ P , then 1r/a ∈ J−1, but 1r/a 6∈ R, whence R is properly contained in J−1 and F is

nonempty. Since R is Noetherian, F contains a maximal element M . We claim M is a prime

ideal of R. If ab ∈M with a, b ∈ R and a 6∈M , choose c ∈M−1\R. Then c(ab) ∈ R, whence

bc(aR + M) ⊆ R and bc ∈ (aR + M)−1. Therefore, bc ∈ R, else aR + M ∈ F contradicting

maximality of M . Consequently c(bR+M) ⊆ R, and thus c ∈ (bR+M)−1. Since c 6∈ R, the

maximality of M implies that bR+M = M , whence b ∈M . Therefore M is prime, whence

P = M by uniqueness. We conclude R (M−1 = P−1.

Claim 3: P is invertible.

Proof. Clearly P ⊆ PP−1 ⊆ R. By the argument following the claims, P is the unique

maximal ideal in R, so that P = PP−1 or PP−1 = R. If P = PP−1, then P−1 ⊆ P̄ and

by claims 1 & 2, R ( P−1 ⊆ P̄ = R, a contradiction. Therefore, PP−1 = R and P is

invertible.

Claim 4:
⋂
n∈N P

n = 0.

Proof. If
⋂
n∈N P

n 6= 0, then
⋂
n∈N is a fractional ideal of R. But by claims 1 & 2, R (

P−1 ⊆
⋂
n∈N P

n = R. So
⋂
n∈N P

n = 0.

Claim 5: P is principal.

Proof. There exists a ∈ P such that a 6∈ P 2 by claim 4. Then aP−1 is a nonzero ideal in R

such that aP−1 6⊆ P , otherwise a ∈ aR = aPP−1 ⊂ P 2. The argument following this claim

shows that every proper ideal in R is contained in P , whence aP−1 = R. Therefore by claim

3, (a) = (a)R = (a)P−1P = (aP−1)P = RP = P , and P is principal.
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Now, let I be any proper ideal of R. Then I is contained in a nonzero maximal ideal M

of R, which is necessarily prime. By uniqueness, M = P , whence I ⊆ P . Since
⋂
n∈N P

n = 0,

there is a largest integer m such that I ⊆ Pm and I 6⊆ Pm+1. Choose b ∈ I \ Pm+1. Since

P = (a) for some a ∈ R, Pm = (a)m = (am). Since b ∈ Pm, b = uam. Furthermore,

u 6∈ P = (a), otherwise b ∈ Pm+1 = (am+1). Therefore, Pm = (am) = (uam) = (b) ⊆ I,

whence I is the principal ideal Pm = (am).

Theorem 1.0.20. [9][10] The following conditions on an integral domain R are equivalent.

(a) Every proper ideal in R is a product of a finite number of prime ideals.

(b) Every proper ideal in R is uniquely a product of a finite number of prime ideals;

(c) Every nonzero ideal in R is invertible;

(d) Every fractional ideal of R is invertible;

(e) the set of all fractional ideals of R is a group under multiplication;

(f) every ideal in R is projective;

(g) every fractional ideal of R is projective;

(h) R is Noetherian, integrally closed, and every nonzero prime ideal is maximal;

(i) R is Noetherian, and for every nonzero prime ideal P of R, the localization RP of R at

P is a discrete valuation ring.

Proof. The equivalence (d) ↔ (e) is trivial. (a) → (b) and (b) → (c) follows from 1.0.16.

(c) ↔ (f) and (g) ↔ (d) are immediate consequences of 1.0.10. (f) → (g) follows from

1.0.15.

(c)→ (i) The ideals in RP have the form IP where I is an ideal in R. By hypothesis, I

is projective, so by 1.0.8 IP is a free RP -module. Thus all ideals of RP are free, so that RP

is a local principal ideal domain, hence a discrete valuation ring.
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(i) → (h) To see that R is integrally closed, it suffices by 1.0.11 to see that RP is

integrally closed for all primes P , which is true if RP is a discrete valuation ring since

principal ideal domains are integrally closed. Now, let P be a prime ideal in R. The prime

ideals contained in P correspond to the prime ideals of WP . Since WP is a discrete valuation

ring, its only prime ideals are PWP and 0. Thus there are no non-trivial prime ideals strictly

contained in P , so P has height one. It follows that all prime ideals of R are maximal.

(h)→ (f) Let I be an ideal in R. Since R is Noetherian, I is finitely generated. Hence,

by 1.0.8, it suffices to show that IP is a free RP -module for all primes P . But since RP is a

principal ideal domain, IP is in fact free.

(d) → (h) Every ideal of R is invertible by (d) and hence finitely generated by 1.0.17.

Therefore R is Noetherian. Let K be the quotient field of R. If u ∈ K is integral over R,

then R[u] is a finitely generated R-submodule of K. Consequently, 1.0.14 shows that R[u] is

a fractional ideal of R. Therefore, R[u] is invertible by (d). Thus since R[u]R[u] = R[u], we

have R[u] = RR[u] = (R−1[u]R[u])R[u] = R−1[u]R[u] = R, whence u ∈ R. Therefore, R is

integrally closed. Finally, if P is a nonzero prime ideal in R, then there is a maximal ideal

M of R that contains P . M is invertible by (d). Consequently M−1P is a fractional ideal of

R with M−1P ⊆M−1M = R, whence M−1P is an ideal in R.

(h) → (i) RP is an integrally closed integral domain by 1.0.1. Every ideal in RP is of

the form IP = {i/s|i ∈ I, s 6∈ P}, where I is an ideal of R. Since every ideal of R is finitely

generated by (h), it follows that every ideal of RP is finitely generated. Therefore, RP is

Noetherian. Every nonzero prime ideal of RP is of the form IP , where I is a nonzero prime

ideal of R contained in P . Since every nonzero prime ideal of R is maximal by (h), PP

must be the unique nonzero prime ideal in RP . Therefore, RP is a discrete valuation ring by

1.0.19.

(i) → (a) We first show that every nonzero ideal I is invertible. II−1 is a fractional

ideal of R conained in R, whence II−1 is an ideal in R. Suppose II−1 6= R. Then there

is a maximal ideal M containing II−1. Since M is prime, the ideal IM in RM is principal

11



by (i); say IM = (a/s) where a ∈ I and s ∈ R \M . Since R is Noetherian, I is finitely

generated, say I = (b1, . . . , bn). For each i, bi/1R ∈ IM , whence in RM , bi/1R = (ri/si)(a/s)

for some ri ∈ R, si ∈ R \M . Therefore sIsbi = ria ∈ I. Let t = ss1s2 · · · sn. Since R \M is

multiplicative, t ∈ R \M . In the quotient field of R, we have for every t, (t/a)bi = tbi/a =

ss1s2 · · · si−1si+1 · · · snri ∈ R, whence t/a ∈ I−1. Consequently, t = (t/a)a ∈ I−1I ⊆ M ,

which contradicts that t ∈ R \M . Therefore I−1I = R and I is invertible.

For each proper ideal I of R, choose a maximal ideal MI of R such that I ⊆MI ( R. If

I = R, then let MR = R. Then IM−1
I is a fractional ideal of R with IM−1

I ⊆ MIM
−1
I ⊆ R.

Therefore, IM−1
I is an ideal of R that clearly contains I. Also, we have I ( IM−1

I since

otherwise

MI = RMI = I−1IMI = I−1(IM−1
I )MI = RR = R,

which contradicts our choice of MI . Let S be the set of all ideals of R and define a function

f : S → S by I 7→ IM−1
I .

Let J be a proper ideal in R. We now show J is the product of maximal (hence prime)

ideals. There exists by the Recursion Theorem a function φ : N→ S such that φ(0) = J and

φ(n + 1) = f(φ(n)). If we denote φ(n) by Jn and MJn by Mn, then we have an ascending

chain of ideals J = J0 ⊆ J1 ⊆ J2 ⊆ · · · such that J = J0, and Jn+1 = f(Jn) = JnM
−1
n . Since

R is Noetherian and J is proper, there is a least integer k such that

J = J0 ( J1 ( · · · ( Jk = Jk+1.

Thus Jk = Jk+1 = f(Jk) = JkM
−1
k , which can occur only if Jk = R. Consequently, R =

Jk = f(Jk−1) = Jk−1M
−1
k−1, whence

Jk−1 = Jk−1R = Jk−1M
−1
k−1Mk−1 = RMk−1 = Mk−1.
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Since Mk−1 = Jk−1 ( Jk = R, Mk−1 is a maximal ideal. The minimality of k insures that

each of M0, . . . ,Mk−2 is also maximal, otherwise Mi = R so that Ji+1 = JiM
−1
I = JiR

−1 =

JiR = Ji. We have

Mk−1 = Jk−1 = Jk−2M
−1
k−2 = Jk−2M

−1
k−3M

−1
k−2 = · · · = JM−1

0 · · ·M−1
k−2.

Since each Mi is invertible,

J = Mk−1(M0 · · ·Mk−2).

Thus J is the product of maximal (hence prime) ideals.

Definition 1.0.21. [9] A Dedekind domain is an integral domain R satisfying any of the

conditions of the previous theorem.

Remark 1.0.22. Evidently, every principal ideal domain is Dedekind, but the converse is

false. For example, Z[
√

10] is Dedekind but not principal. We will see later that every

Dedekind domain is Noetherian.

Definition 1.0.23. [10] A module M over a ring R is said to have finite length if and

only if it has a composition series

0 = M0 (M1 ( . . . (Ml = M

where each quotient Mi/Mi−1 is a simple module. In this case, we define length(M) to be

the length l of this composition series.

Remark 1.0.24. [9] The Jordan-Hölder Theorem asserts that any two compositions series

of a module M are equivalent, so length(M) is well-defined. Another standard result is that

a module has finite length if and only if it is both Noetherian and Artinian.

Definition 1.0.25. [10][7] For any prime ideal P and torsion-free module A of the Dedekind

domain R, we define the P-rank rP (A) of A to be the length of A/PA. Equivalently, we

may define rP (A) as the dimension of A/PA as a vector space over R/P .
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Proposition 1.0.26. [10] Let A and B be torsion-free modules over Dedekind domain R,

and P a prime ideal in R.

i. rP (A⊕B) = rP (A)⊕ rP (B).

ii. If B is an essential submodule of A, then their ranks are the same and rP (B) ≥ rP (A).

iii. rP (A) = rP (AP ).

iv. rP (A) ≤ rank(A).

v. rank(A⊗B) = (rank(A))(rank(B)) and rP (A⊗B) = rP (A)rP (B).

vi. rank(A) = 0 if and only if A = 0.

vii. rP (A) = 0 if and only if A is P -divisible.

viii. rP (A) is the same as the number of summands QA/A isomorphic to R(P∞).

Definition 1.0.27. [10] Let R be a Dedekind domain, let M be a finite rank torsion free

R-module, and let p be a prime ideal of R. The p-adic filtration on M is the family of

submodules

M ⊇ pM ⊇ p2M ⊇ . . . .

The topology generated by taking the p-adic filtration on M as a neighborhood basis at 0 is

called the p-adic topology on M . The p-adic completion of M is the submodule M̂ of∏∞
1 M/pkM consisting of those sequences m1,m2, . . . ∈

∏∞
1 M/pkM such that mk+1 ≡ mk

(mod pkM) for all k.

Proposition 1.0.28. [10] Let R, M , and p be as in the previous definition. The topology

inherited by M̂ is the same as the inverse limit topology.

Proof. The neighborhood system at 0 in the inverse limit topology has a basis consisting of

those submodules Un consisting of elements whose first n coordinates are zero. Since the

first n coordinates live in M/pkM for k ≥ n, it follows that pnM̂ ⊆ Un. On the other hand,
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since the sequences in M̂ satisfy the condition mn+k ≡ mk (mod pn, it follows that if mr = 0

for r ≤ n, then mr ∈ pnM̂ for all r. Thus Un ⊆ pkM̂ . We conclude the inverse limit topology

and the p-adic topology are the same.

In the following, we assume that the Dedekind domain R with field of quotients Q is

not complete in the R-adic topology. As observed in [7], non-complete Dedekind domains

fall into two distinct cases [7]):

Type I For each maximal ideal P , the P -adic completion R̂P of the localization RP has infinite

RP -module rank.

Type II R is local and the completion of R, R̂ has finite rank.

Theorem 1.0.29. [7] A Dedekind domain R is not complete in the R-adic Topology if and

only if R is a type I or a type II domain

Since R is a domain, multiplication by r ∈ R on A or B induces multiplication by

r on Ext1R(A,B). Moreover, Ext1R(A,B) is a divisible module whenever R is Dedekind.

Therefore, it is of the form ⊕P∈spec(R)DP⊕D0 with P -primary component DP
∼= ⊕IPE(E/P )

and torsion-free component D0 = ⊕I0Q.

Given any maximal ideal P of R, the P-rank of a module A is denoted by rP (A) and is

defined as rP (A) = dimR/PA/PA. If a ∈ P \ P 2, then aRP = PRP since RP is a discrete

valuation domain. The sequence 0→ B
α→ B → B/aB → 0 induces

0→ Hom(A,B)
a→ Hom(A,B)→ Hom(A/aA,B/aB)→ S → 0

where S is the submodule of Ext(A,B) annihilated by a. Localizing at P , gives the formula;

rP (A)rP (B)− rP (Hom(A,B)) = {ε ∈ Ext(A,B) | Pε = 0}.
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Theorem 1.0.30. [7] Let R be a Dedekind domain and P ∈ spec(R). If A and C are

torsion-free R-modules of finite rank, then

Ext1R(A,C) ∼= ⊕PDP ⊕D0

with DP
∼= (Q/RP )eP and D0 torsion-free such that

eP = rP (A)rP (B)− rP (HomR(A,B)).

While this result appears to be independent of the type of the Dedekind domain, we

want to point out that D0 has finite rank exactly when R has type II. Thus the structure of

Ext actually varies according to D0 in the Type II case which, in turn, depends upon the

rank of R̂ [7]. A formula used to determine the rank of D0 will be given later,

Corollary 1.0.31. [7] A Dedekind R which is not complete satisfies exactly one of the

following;

i) For all P ∈ spec(R), the completion of RP has infinite rank, or

ii) R is local with maximal ideal P , and the completion of R, R̂, has finite rank over R.

For the rest of this chapter, R is a Dedekind domain with quotient field Q, unless

otherwise indicated.

Definition 1.0.32. [10] Define an equivalence relation ? on the set of all submodules of Q

by A?B if and only if A and B are isomorphic to a submodule of the other. The type t(A) of

A is the equivalence class of A under ?, and we write t(A) ≤ t(B) when A is isomorphic to a

submodule of B. We say t(A) and t(B) are incomparable if t(A) 6≤ t(B) and t(B) 6≤ t(A).

Definition 1.0.33. [10] Let A be a torsion-free finite rank module over a Dedekind domain

R. The typeset of A, denoted by T(A), is the set of types of all non-trivial elements of A,

or equivalently the set of types of all pure rank-one submodules of A. Dually, we define the
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cotype set of A, denoted by CT(A), to be the set of types of all rank-one homomorphic

images of A.

Proposition 1.0.34. [10] Let A = H ⊕ K. T(A) consists of T(H) ∪ T(K) together with

all types s ∧ t with s ∈ T(H) and t ∈ T(K).

Corollary 1.0.35. [10] If A = A1⊕· · ·⊕An where the Ai are rank 1 modules and ti = t(Ai),

then T(A) consists of {t1, . . . , tn} and all types obtained from this set by taking greatest lower

bounds.

Definition 1.0.36. [10] The inner type of a torsion-free finite rank module A over a

Dedekind domain is IT(A) = infT(A), and the outer type of A is OT(A) = supCT(A).

Proposition 1.0.37. [10] A torsion-free finite rank module A over a Dedekind domain R is

projective if and only if OT(A) = t(R).

Proof. Note that t ≤ t(R) is equivalent to t = t(R). By corollary 1.0.35 if A is projective

then CT(A) = t(R), so OT(A) = t(R). Conversely, if OT(A) = t(R), then CT(A) =

t(R) so every rank-one homomorphic image of A is projective. By induction on the rank of

A, we conclude that A is projective.
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Chapter 2

Torsion-Free Modules of Finite Rank

Throughout this chapter, let R be an integral domain with field of quotients Q. The

endomorphism ring E(A) = ER(A) of a R-module M is the R-module Hom(A,A) =

HomR(A,A) with composition of maps as multiplication. The quasi-endomorphism ring

is QE(A) = Q⊗RE(A). Our first results will explore some of the basic properties of torsion-

free modules of finite rank over an integral domain. Because there are striking similarities

to the situation in case of Abelian groups, we refer to that case instead of giving details

whenever possible.

If A is a torsion-free module of finite rank n over R, then A ⊆ Qn. Thus, E(A) can

be viewed as a subring of Matn(Q), and the quasi-endomorphism ring of R is Artinian as

a subring of Matn(Q). In particular, there are primitive idempotents e1, . . . , en of QE(A)

such that 1A = e1 + . . .+ en. Thus,

A
.
= Ak11 ⊕ . . .⊕ Aknn

where each Ai is a strongly indecomposable R-module and Ai ∼ Aj only if i = j. We

refer the reader to the case of Abelian groups, observing that Jónsson’s arguments about

quasi-decompositions of torsion-free groups of finite rank carry over literally to our setting.

Theorem 2.0.1. [10, Theorem 3.25] Let A be a torsion-free module of finite rank over an

integral domain R. If γ ∈ E(A), then A
.
= H ⊕K, where H and K are invariant under γ.

Moreover, the restriction of γ to H is a quasi-automorphism of H, and γn(K) = 0 for some

n ≥ 1.
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Proof. The ascending chain

ker γ ⊆ ker γ2 ⊆ . . .

of pure submodules of A has to stationary for some n < ω. Let K = ker γn and H = γn(A).

It is easy to see that H and K are invariant under γ, and γn(K) = 0.

Furthermore, if h ∈ H ∩ ker γ, then there exists a ∈ A such that h = γn(a), and

γn+1(a) = γ(h) = 0 so that a ∈ ker γn+1 = ker γn. Thus, h = γn(a) = 0; and H ∩ker γ = 0.

Since the restriction of γ to H is monic, it is a left regular element of QE(A). However,

QE(H) is a right and left Artinian ring, and left regular elements in such rings are units.

Thus, γ|H is a quasi-automorphism of H. If θ ∈ QE(H) is an inverse to the restriction of

γn to H, then θγn ∈ QHomR(A,H) and θγn restricts to the identity on H. Hence, θγn is a

quasi-projection, and A
.
= H ⊕ ker(θγn). But ker(θγn) = ker γn = K as desired.

Corollary 2.0.2. A torsion-free module A of finite rank over an integral domain R is strongly

indecomposable if and only if every (quasi-)endomorphism of A is either monic or belongs

to N(QE(A)). In particular, QE(A) is a local ring in this case.

Proof. If every endomorphism of A is either monic or belongs to

N(QE(A)), then QE(A) cannot have non-trivial idempotents. If e were a non-trivial idem-

potent, then there would exist a nonzero r ∈ R such that re ∈ E(G) and re is neither monic

nor nilpotent.

Conversely, consider γ ∈ E(A). By the previous theorem, A
.
= H ⊕K, where H and K

are invariant under γ, the restriction of γ to H is a quasi-automorphism of H, and γn(K) = 0

for some n ≥ 1. Since A is strongly indecomposable, either γ is a quasi-automorphism of A

or A = ker γn. In the latter case, γ is nilpotent.

Furthermore, if γ is not a quasi-automorphism, then it cannot not be monic since left

regular elements in left and right Artinian rings are units. Therefore, βγ is not a quasi-

automorphism for every β ∈ QE(A). Hence, it must also be nilpotent. Thus, the left ideal

generated by γ contains only nilpotent elements, and γ ∈ N(QE(A)). This shows that
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N(QE(A)) is a maximal left ideal (and necessarily the unique one), since any element not

in the nilradical is invertible in QE(A). Thus QE(A) is a local ring.

We continue with a result which originates in [2, Theorem 9.10], but needs to be slightly

modified to fit our setting.

Theorem 2.0.3. Let R be an integral domain, and let

A
.
= An1

1 ⊕ . . .⊕ Anm
m

be a torsion-free R-module of finite rank where each Ai is strongly indecomposable, and Ai

is quasi-isomorphic to Aj iff i = j. Suppose that N is the nilradical of E(A) and that J is

the Jacobson radical of QE(A).

a) N = J ∩ E(A); and N is nilpotent.

b) If Ti denotes the endomorphism ring of Ai for i = 1, . . . ,m, then

E(A)/N
.
=
∏
i

Mat (Ti/N(Ti)) .

c) If A = Ak11 ⊕ . . .⊕ Akrr , then

N = ⊕iNi ⊕ [⊕j 6=iHomR(Akii , A
kj
j )]

where Ni denotes the nilradical of E(Akii ).

Proof. a) Since QE(A) is Artinian, J is nilpotent and J ∩ E(A) ⊆ N . On the other hand,

every nilpotent right ideal I of E(A) gives rise to a nilpotent right ideal QI of QE(A). Thus,

I ⊆ J ∩ E(A); and N ⊆ J ∩ E(A). In particular, N = J ∩ E(A) is nilpotent.

b) Our arguments follow those of [2, Theorem 9.10]. Let B = An1
1 ⊕· · ·⊕Anm

m . Note that

E(A)
.
= E(B) when viewed as subrings ofQE(A). Hence, E(A)/N(E(A))

.
= E(B)/N(E(B))
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as subrings of QE(A)/J(QE(A)). Thus, it is sufficient to prove

E(B)/N(E(B)) =
∏
i

Matni
(Ti/N(Ti)) .

Represent E(B) as a matrix ring of the form
(
HomR(Ani

i , A
nj

j )
)
i,j

, and consider

I = (⊕i{N(E(Ani
i ))})⊕

(
⊕{HomR(Ani

i , A
nj

j )|i 6= j}
)
⊆ E(B).

It suffices to prove that I is an ideal of E(B) and I ⊆ N(E(B)). In this case,

E(B)/I '
∏
i

(E(Ani
i )/N(E(Ani

i )))

so that I = N(E(B)) since N(E(B)/I) = 0 and

E(B)/N(E(B)) '
∏
i

(E(Ani
i )/N(E(Ani

i )))

'
∏
i

Matni
(E(Ai)/N(E(Ai)))

'
∏

Matni
(Ti/N(Ti)) ,

as needed.

To show that I is an ideal of QE(A), let

f ∈ HomR(Ani
i , A

nj

j ),

x ∈ N(E(Ank
k )) ⊆ I

and

y ∈ HomR(Anr
r , A

ns
s )
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where r 6= s. Then, fx ∈ I, except possibly for the case that i = j = k. In this case,

fx ∈ N(E(Ani
i )) ⊆ I. Also, fy ∈ I, except possibly for the case that s = i and r = j.

In this case, y : A
nj

j → Ani
i and f induces maps Aj → Ai → Aj. If this latter composite

is nonzero, it must be an element of N(Tj). Otherwise, the composite is a monomorphism,

since Aj is strongly indecomposable so that Aj is a quasi-summand of Ai, contradicting the

choice of the Ai’s. Consequently,

fy ∈ Matnj
(N(Tj)) = N(Matnj

(Tj)) = N(E(A
nj

j )) ⊆ I.

Similarly, xf ∈ I and yf ∈ I.

To show that I ⊆ N(E(B)), it suffices to prove that I(l) = 0 for some l. If x ∈ I(l),

then x is the sum of elements which are the composition of l morphisms Ani
i → A

nj

j for i 6= j

and morphisms in N(E(Ani
i )). Choose k with N(E(Ani

i ))(k) = 0 for 1 ≤ i ≤ m. Choose l

large enough so that any composition of l morphisms, as described above, has some subscript

repeated at least k times. If Ani
i → A

nj

j → . . .→ Ani
i is a repetition of the subscript i then,

as above, the composition must be in N(E(Ani
i )). Consequently, I(l) = 0.

c) is a direct consequence of b).
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Chapter 3

The Covariant Case

In this section we present a numerical set of invariants that serve as complete set of quasi-

isomorphism invariants between modules A and B. These invariants are closely linked to the

structure of Ext ([7]). A module is called reduced when its maximal divisible submodule is

zero. If A and M are R-modules, then the A-socle SA(M) of M is SA(C) = Σf∈Hom(A,C)f(A).

Finally, if U is a submodule of a torsion-free module M , then U∗ = {x ∈ M | xr ∈

U for some 0 6= r ∈ R}.

Proposition 3.0.1. [10] Let A and B be torsion-free finite rank modules over a Dedekind

domain R.

(a) If A ⊆ B, then OT(A) ≤ OT(B).

(b) For any t ∈ T(A), t ≤ OT(A).

(c) If B / A, then OT(A/B) ≤ OT(A).

(d) OT(A) is P -divisible if and only if rP (A) < rank(A).

Proof. (a) If ϕ maps B onto a rank-one module M , then ϕ extends to a map ϕ
′
: A→ QM

and t(A) = t(ϕ(B)) ≤ t(ϕ
′
(A)) ∈ CT(A). Thus every type in CT(B) is less than or equal

to a type in CT(A), so OT(B) ≤ OT(A).

(b) If M is a rank 1 pure submodule of A, then t(M) = OT(M) ≤ OT(A) by (a).

(c) If M is a homomorphic image of A/B, then M is also a homomorphic image of A,

so CT(A/B) ⊆ CT(A) and OT(A/B) = sup(CT(A/B)) ≤ sup(sup CT(A)) = OT(A).

(d) rP (A) ≤ rank(A) if and only if A has a homomorphic image which is P -divisible.

This is the case if and only if A has a rank 1 P -divisble homomorphic image (since the
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homomorphic image of a P -divisble module is P -divisble) if and only if CT(A) contains a

P -divisble type. OT(A) is the least upper bound of a finite subset of CT(A), hence OT(A)

is P -divisble if and only if some element of CT(A) is P -divisible. Thus rP (A) < rank(A) if

and only if OT(A) is P -divisble.

Proposition 3.0.2. [10] Let A be a torsion-free finite rank module over a Dedekind domain

R, and let r = rank(A). If µ1, . . . , µn is a maximal linearly independent set in Hom(A,Q),

then OT(A) = sup{t(µ1(A)), . . . , t(µn(A))}.

Proof. We first have OT(A) ≥ sup{t(µ1(A)), . . . , t(µn(A))}. Since µ1, . . . , µn form a ba-

sis for Hom(A,Q), for any µ ∈ Hom(A,Q), there exist r, r1, . . . , rn ∈ R such that rµ =∑n
i=1 riµi. Then rµ(A) is contained in the submodule of Q generated by µ1(A), . . . , µn(A),

and we have t(µ(A)) = (rµ(A)) ≤ sup{t(µi(A))|i = 1, . . .n}. Thus

OT(A) ≤ sup{t(µ1(A)), . . . , t(µn(A))}.

The result follows.

Lemma 3.0.3. Let A and B be torsion-free finite rank modules over a Dedekind domain R.

If B/SA(B) and A/SB(A) are torsion, then A and B share a nonzero quasi-summand.

Proof. To simplify our notation, denote E(A) by E and Nil(E) by N . By Theorem 2.0.3,

the Jacobson radical J of QE satisfies N = J ∩ E. Moreover, J and N are nilpotent since

QE is left Artinian. Let N∗ = 〈NA〉∗ be the pure submodule of A generated by g(A) for

all g ∈ N . If Nn = 0 and Nn−1 6= 0, then Nn−1N∗ = 0 implies A/N∗ 6= 0. Since A/N∗ is

torsion-free and (SB(A) + N∗)/N∗ is full in A/N∗ by hypothesis, SB(A) 6⊆ N∗. Therefore,

there is an f : B → A with f(B) 6⊆ N∗.

We may write B ∼ B1 ⊕ · · · ⊕ Bk with each Bi strongly indecomposable by Theorem

2.0.3. Clearly,

SA(B) ∼ SA(B1)⊕ · · · ⊕ SA(Bk).
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For some i, f(SA(Bi)) 6⊆ N∗ since otherwise
∑k

i=1 f(SA(Bi)) ⊆ N∗ implying rf(SA(B)) ⊆ N∗

for some nonzero r ∈ R. Therefore, we would obtain f(SA(B)) ⊆ N∗. But, for any b ∈ B,

there is a 0 6= ` ∈ R with `b ∈ SA(B) by the hypothesis, so that f(`v) = `f(v) ∈ N∗. By the

purity of N∗, this implies f(v) ∈ N∗, contradicting that f(B) 6⊆ N∗. We may assume there

is a map g : A→ B1 such that fg(A) 6⊆ N∗.

From the definition of N∗, we have N ≤ Hom(A,N∗), so that fg 6∈ N . Now E/N is a

full subring of the semi-simple ring QE/J so there are h, h
′ ∈ E such that e = (hf)(gh

′
) is

not nilpotent mod N because QE/J is a direct product of matrix rings. Relabel hf and gh
′

as f and g respectively, and consider the restriction f : B1 → A.

We now have gf ∈ E(B1). As in Section 3, we use the fact that B1 is strongly inde-

composable to obtain that α = gf is invertible in QE(B1) or α is nilpotent. If (gf)n = 0,

then en+1 = f(gf)ng = 0, a contradiction. So α must be invertible. Consequently, there is

0 6= s ∈ R such that sα−1 ∈ E(B1) and s1B1 = sα−1gf . Call g
′
= sαg.

Any a ∈ A satisfies

sa = sa− f(g
′
(a)) + f(g

′
(a)).

Because sa − f(g
′
(a)) ∈ ker(g

′
), we have A ∼ A

′ ⊕ ker(g
′
). Since f is a monomorphism,

A
′ ∼= B1.

The following result was originally shown by Beaumont and Pierce in the case that A

is a subring of a finite dimensional Q-algebras, but it carries over to torsion-free finite rank

rings over integral domains:

Theorem 3.0.4. ([3, Theorem 1.4] and [10, Proposition 7.21]) Let R be an integral domain

whose field of quotients Q is a perfect field. Let A be a torsion-free free R-algebra which has

finite rank as an R-module. Let QA = S1 ⊕ N1 where N1 = N(QA) and S1 is a subring of

QA. Then, N(A) = N1 ∩ A and A
.
= (S1 ∩ A)⊕ (N1 ∩ A).

Observe that Q is a perfect field whenever R+ is torsion-free as an Abelian group.
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Theorem 3.0.5. Let A and B be reduced torsion-free finite rank modules over a Dedekind

domain R with field of quotients Q.

a) If A ∼ B, then rP (Hom(A,C)) = rP (Hom(B,C)) for all primes P and all finite rank

modules C.

b) If Q is perfect, then A ∼ B whenever rP (Hom(A,C)) = rP (Hom(B,C)) for all primes

P and all finite rank modules C.

Proof. a) Since Hom(A,C) is quasi-isomorphic to Hom(B,C) and rP is quasi-isomorphism

invariant, the result follows.

b) We will show that SA(B) is full in B; the result follows from Lemma 3.0.3 via

induction on the rank of A.

Let B1 be a pure, strongly indecomposable quasi-summand of B and S1 = SA(B1)∗. To

simplify the argument, we may assume that B1 is a summand of B, say B = B1 ⊕K, since

we can replace B by a module quasi-isomorphic to it. Consider the exact sequences

0→ Hom(A, S1)→ Hom(A,B1)
α−→ Hom(A,B1/S1)

and

0→ Hom(B, S1)→ Hom(B,B1)
β−→ Hom(B,B1/S1).

By the definition of SA(B1), we have im α = 0. By the hypothesis, rP (im β) =

rP (Hom(B,B1))− rP (Hom(B, S1)) = rP (Hom(A,B1))− rP (Hom(A, S1)) = rP (imα) = 0 for

all P . Thus, im β is divisible by [10]. Moreover, ker β = Hom(B1, S1) ⊕ Hom(K,S1) is

a pure submodule of Hom(B,B1) = Hom(B1, B1) ⊕ Hom(K,B1) with a divisible cokernel.

Hence, Hom(B1, B1)/Hom(B1, S1) is divisible as a direct summand of a divisible module.

Let R1 denote the nilradical of E(B1) and N1 = (R1C1)∗ ≤ B1. As in the previous

lemma, N1 6= B1. As mentioned before, every endomorphism of B1 is either in R1 or else is

a monomorphism. Hence, R1 = Hom(B1, N1). Therefore, if Hom(B1, S1) 6⊆ Hom(B1, N1) =
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R1, then there is a monomorphism f : B1 → B1 with im f ≤ S1. In this case, rank(B1) =

rank(S1) implies S1 = B1 since S1 is pure in B1. We now show that the case Hom(B1, S1) ⊆

R1 is not possible.

Suppose I = Hom(B1, S1) ⊆ Hom(B1, N1) = R1. From above, we have that E(B1)/I

is divisible. Consequently, E(B1)/R1 is divisible. By Theorem 3.0.4, E(B1)/R1 is a quasi-

summand of E(B1). But E(C1) is reduced, a contradiction. Thus, I 6⊆ R1.

Write B ∼ B1⊕ · · · ⊕Bk for strongly indecomposable Bi. Then 〈SA(Bi)〉∗ = Ci implies

〈SA(B)〉∗ = B. Therefore, SA(B) is full in B and by symmetry SC(A) is full in A. From

Lemma 3.0.3, A and B share a nonzero quasi-summand, say A ∼M ⊕A′ and B ∼M ⊕B′

with M 6= 0. Then

rP (Hom(A,C)) = rP (Hom(G,C)) + rP (Hom(A
′
, C))

= rP (Hom(G,C)) + rP (Hom(B
′
, C))

= rP (Hom(B,C))

for all P and all C. Thus

rP (Hom(A
′
, C)) = rP (Hom(B

′
, C))

for all P and C. The result follows by induction on rank(A).

Lemma 3.0.6. Let R be a Dedekind domain, P ∈ spec(R), and A a torsion-free R-module

of finite rank. Then, Ext(A,RP ) = 0 if and only if OT (A) ≤ type(RP ).

Proof. Suppose Ext(A,RP ) = 0. For a pure corank 1 submodule U of A, consider the exact

sequence

0→ U → A→ A/U → 0.
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We apply the functor HomR( , RP ) to get the induced sequence

0→ Hom(A/U,RP )→ Hom(A,RP )→ Hom(U,RP )

→ Ext(A/U,RP )→ Ext(A,RP ) = 0.

Since Hom(U,RP ) is a finite rank R-module, Ext(A/U,RP ) has finite rank too. We want to

show Hom(A/U,RP ) 6= 0 from which we obtain t(A/U) ≤ t(RP ). Consequently, OT (A) ≤

t(RP ).

If Hom(A/U,RP ) = 0, then A/U is P -divisible by [10]. We consider the sequence

0 → A/U → Q → D → 0 where D is divisible and torsion with D[P ] = 0 since A/U is

P -divisible. It induces

0 = Ext(D,RP )→ Ext(Q,RP )→ Ext(A/U,RP )→ 0.

Observe that Ext(Q,RP ) = ExtRP
(Q,RP ). Considering the sequence 0 → RP → Q →

Q/RP → 0 of RP -modules, we obtain the sequences

0 = HomRP
(Q,RP )→ HomRP

(RP , RP )

→ ExtRP
(Q/RP , RP )→ ExtRP

(Q,R)→ 0

and

0 = HomRP
(Q/RP , Q)→ HomRP

(Q/RP , Q/RP )

→ ExtRP
(Q/RP , RP )→ ExtRP

(Q/RP , Q) = 0.

Since RP is a discrete valuation domain such that R̂P has infinite rank as an RP -module, we

obtain that

ExtRP
(Q,RP ) = Ext(Q,RP ) ∼= Ext(A/U,RP )
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has infinite rank contradicting what has already been shown.

Conversely, observe that OT (A) ≤ t(RP ) implies that there exists an exact sequence

0→ A→ ⊕nRP (E).

To see this, let F = ⊕ni=1xiR ⊆ A be a free submodule such that A/F is torsion. For

i = 1, . . . , n, consider the pure corank 1 submodule Ui = (⊕j 6= ixiR)∗ of A. Since t(A/Ui) ≤

t(RP ), there exists a map ϕi : A→ RP with ϕi(Ui) = 0 and ϕ(xi) 6== 0. Define ϕ : A→ Rn
P

by ϕ(a) = (ϕ1(a), . . . , ϕn(a)). If ϕ(a) = 0, then

ra = r1x1 + . . .+ rnxn ∈ F

for some nonzero r ∈ R since A/F torsion. But, ϕ(a) = 0 implies ϕi(a) = 0 for all i. Hence

0 = ϕi(ra) = ϕi(r1x1 + . . . + rnxn) = ϕi(rixi) But, ϕi(xi) 6= 0 yields ri = 0. Hence ϕ is a

monomorphism.

The sequence E induces

0 = Ext(⊕nRP , RP )→ Ext(A,RP )→ 0

because

Ext(⊕nRP , RP ) ∼= ExtRP
(⊕nRP , RP ) = 0.

Lemma 3.0.7. Let R be a Dedekind domain, and X a rank 1 R-module. A torsion-free R-

module A of finite rank satisfies OT (A) ≤ t(X) if and only if rank(Hom(A,X)) = rank(A).

Proof. Suppose OT (A) ≤ t(X), and consider a free submodule F = ⊕xiR of A such that

A/F is torsion. If Ui = (⊕j 6=ixiR)∗, then

t(A/Ui) ≤ OT (A) ≤ t(X)
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yields that there exists 0 6= ϕi : A → Rpi with ϕi(Ui) = 0. To see that {ϕi, . . . , ϕn} is

R-independent, suppose r1ϕ1 + · · · + rnϕn = 0. For i = 1, . . . , n, we have 0 = r1ϕ1(xi) +

· · ·+ rnϕn(xi) = riϕi(xi). Since ϕi(xi) 6= 0, we have ri = 0.

Conversely, suppose that α1, . . . , αn ∈ Hom(A,X) linearly independent where n =

rank(A). Since rank(Hom(A,Q)) = n = rank(Hom(A,X), we obtain

OT (A) = {t(α1(A)), . . . , t(αn(A))} ≤ t(X)

by Proposition 3.0.2.

Theorem 3.0.8. Let A and B finite rank torsion-free modules over a Dedekind domain R

such that R̂P has infinite rank over R for all P ∈ spec(R).

a) If Ext(A,C) ∼= Ext(B,C) for all torsion-free R-modules C of finite rank, then A ∼=

P1 ⊕ A1 ⊕D1 and B ∼= P2 ⊕ B1 ⊕D2 where OT (A) = OT (B), P1 and P2 are finitely

generated projective, D1 and D2 are torsion-free divisible of finite rank, and A1 and B1

are reduced with rP (A1) = rP (B1) and rP (HomR(A1, C)) = rP (HomR(B1, C)) for all

P ∈ Spec(R) and all torsion-free finite rank modules C. Moreover, if Q is a perfect

field, then A1 ∼ B1.

b) If OT (A) = OT (B) and A ∼= P1 ⊕ A1 ⊕D1 and B ∼= P2 ⊕ B1 ⊕D2 where P1 and P2

are finitely generated projective, D1 and D2 are torsion-free divisible of finite rank, and

A1 ∼ B1 are reduced, then Ext(A,C) ∼= Ext(B,C) for all torsion-free R-modules C of

finite rank.

Proof. a) Since every finite rank torsion-free R-module X can be written as X = P ⊕Y with

P projective and HomR(Y, P ) = 0, it suffices to consider the case that

HomR(A,R) = HomR(B,R) = 0.
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In particular, Ext(A,C) ∼= Ext(B,C) for all C of rank at most n. Write A ∼= A1 ⊕D1 and

B ∼= B1 ⊕ D2 where D1 and D2 are torsion-free divisible of finite rank. Since ExtR(Di, C)

is torsion-free divisible, we have rP (ExtR(A1, C)) = rP (ExtR(A,C)) = rP (ExtR(B,C)) =

rP (ExtR(B1, C)). Since we only consider the P -ranks of ExtR in the following, we may

assume that A and B are reduced.

We know that, for all torsion-free modules X and Y of finite rank,

rp(Ext(X, Y )) = rp(X)rp(Y )− rp(Hom(X, Y ))

as was shown shown in another paper. Using this for A and B and a module C having rank

≤ n, we get

rp(A)rp(C)− rp(Hom(A,C)) = rp(B)rp(C)− rp(Hom(B,C)).

Because Hom(A,R) = Hom(B,R) = 0, we have

rp(Hom(A,R)) = rp(Hom(B,R)) = 0

and

rp(A) = rp(A)rp(R) = rp(B)rp(R) = rp(B).

But then, rp(Hom(A,C)) = rp(Hom(B,C)) using the above formula. By Theorem 3.0.5, A

and B are quasi-isomorphic.

Assume not both OT (A) and OT (B) are the type of Q. Without loss of generality, we

may assume τ = OT (A) 6= type(Q). Observe that there has to be P ∈ Spec(R) such that

no rank 1 quotient of A is P -divisible. If we could find a rank 1 quotient of A for every

P which is P -divisible, then its type at that prime would be infinite. Then the sup of the

types of the rank 1 quotients of A would be infinite for all primes, and OT (A) = type(Q), a

contradiction. In particular, A/U ⊆ RP for all pure corank 1 submodules U of A.
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Observe that OT (X) ≤ type(RP ) if and only if X 6= PX for all finite rank torsion-

free modules X. By Lemma 3.0.6, Ext(A,Rp) = 0 if and only if OT (A) ≤ type(RP ).

Since the Ext-modules are isomorphic, Ext(B,Rp) = 0, and we obtain OT (B) ≤ type(Rp)

using Lemma 3.0.6 once more. Moreover , rP (A) = rank(A) and rP (B) = r0(B) by [10,

Proposition 2.34]. If X is a rank 1 module of type τ , then Hom(A,X) can be embedded

into a finite direct sum of copies of X and r0(Hom(A,X)) = r0(A) by Lemma 3.0.7. By

[10, Proposition 2.34], OT (HomR(A,X) ≤ τ . Another application of [10, Proposition 2.34]

yields

rp(Hom(A,X)) = r0(Hom(A,X)) = rank(A) = rp(A).

Since

OT (HomR(B,X) ≤ τ ≤ type(RP ),

we obtain rp(HomR(B,X) = r0(Hom(B,X)). On the other hand

rP (A)rP (X)− rP (Hom(A,X)) = rP (B)rP (X)− rP (Hom(B,X))

and rP (A) = rP (B) yield rP (Hom(A,X)) = rP (Hom(B,X)). Thus,

rP (B) = rP (A) = rP (HomR(A,X))

= rP (HomR(B,X)) = r0(HomR(B,X))

≤ r0(B) = rP (B).

In particular, r0(Hom(B,X)) = r0(B). Another application of Lemma 3.0.7 yields OT (B) ≤

τ = OT (A) < type(Q). By symmetry, OT (A) = OT (B).

b) Standard homological arguments show that

r0(ExtR(A,C)) = r0(Ext(Q,C)
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is infinite for all reduced torsion-free groups C of finite rank if OT (A) = type(Q). To see

this, observe that there exists an exact sequence 0→ U → An → Q→ 0 for some n < ω. It

induces

Hom(U,C)→ ExtR(Q,C)→ ExtR(An, C).

Since R̂P has infinite rank for all P ∈ spec(R) and C is not algebraically compact, we have

0 < r0(Ext(Q,C)) is infinite. Since Hom(U,C) has finite rank,

r0(ExtR(A,C)) = r0(Ext(Q,C).

SinceOT (A) = OT (B), r0(Ext(B,C)) = r0(Ext(Q,C) is also infinite. Since r0(Ext(Di, C)) =

r0(Ext(Q,C) is infinite, we obtain that Ext(A,C) and Ext(B,C) have the same infinite

torsion-free rank in this case too. On the other hand, the P -ranks of the Ext-modules are

determined completely by A1 and B1. Since A1 ∼ B1, the P -ranks have to coincide. On the

other hand, if OT (A) = OT (B) < type(Q), then D1 = D2 = 0. Since the Ext-modules are

divisible, their structure is completely determined by their torsion-free and their P -ranks.
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Chapter 4

The Contravariant Case

If RP is complete in the P -adic topology for some P ∈ spec(R), then Ext1RP
(A,RP ) ∼=

ExtRP
(B,RP ) = 0 for all torsion-free RP -modules A and B. In particular A and B need

not be quasi-isomorphic. We continue our discussion by showing that the discussion of the

isomorphism of Ext-modules restricts to the case that R is a Dedekind domain such that R̂P

has infinite rank for all P ∈ spec(R):

Proposition 4.0.1. The following conditions are equivalent for a Noetherian integral domain

R with field of quotients Q such that RP is not complete in the P -adic topology for any

P ∈ spec(R):

a) R is a Dedekind domain such that R̂P has infinite rank for all P ∈ spec(R).

b) If M and N are quasi-isomorphic torsion-free R-modules of finite rank and D1 and D2

are torsion-free divisible of finite rank, then Ext(M ⊕D1, A) ∼= Ext(N ⊕D2, A) for all

torsion-free R-modules A.

Proof. a)→ b): Observe that Ext(M,A) is divisible if M is torsion-free and R is a Dedekind

domain. However, quasi-isomorphic divisible modules over Dedekind domains are isomor-

phic. Moreover, consider the exact sequence

0→ Hom(R,R)→ Ext(Q/R,R)→ Ext(Q,R)→ 0.

If we can show that Ext(Q/R,R) has infinite torsion-free rank, then Ext(Qn, A) ∼= Ext(Qm, A)

for all n,m < ω. However, the Ext-module fits into the exact sequence

0→ Hom(Q/R,Q/R)→ Ext(Q/R,R)→ 0
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from which we obtain

Ext(Q/R,R) ∼= ΠP∈spec(R)EndR(E(R/P )).

However, EndR(E(R/P )) ∼= R̂P by [10, Proposition 0.83]. By a), Ext(Q/R,R) has infinite

rank.

b) → a): Let I be a nonzero ideal of R. Since I ∼ R, we obtain Ext(I,M) ∼=

Ext(R,M) = 0 for all torsion-free modules R-modules M of finite rank. We consider an

exact sequence 0 → U → F → I → 0 in which F is finitely generated free. Since U has

finite rank, Ext(I, U) ∼= Ext(R,R) = 0. Thus, the sequence splits, and I is projective.

Let P ∈ spec(R), and assume that rank(R̂P ) < ∞. Arguing as in a) → b) with

RP replacing R, we obtain that Ext(Q,RP ) is an epimorphic image of Ext(Q/RP , RP ) ∼=

End(Q/RP ) ∼= R̂P . Thus, 0 < rank(Ext(Q,RP )) < ∞ observing that RP is no complete in

the P -adic topology. But then

rank(Ext1R(Q,RP )) < rank(Ext1R(Q⊕Q,RP ))

contradicting b).

If A and B are torsion-free finite rank R-modules over an integral domain, then A[B] =

∩{ker(f)|f ∈ HomR(A,B)} denotes the B-radical of A. In particular, if A[B] = 0, then A

can be viewed as a submodule of Bn for some n.

Theorem 4.0.2. Let A and B be torsion-free modules of finite rank over an integral domain

R. If A[B] = 0 and B[A] = 0, then A
.
= A1⊕A2 and B

.
= B1⊕B2 such that A1 and B1 are

nonzero and strongly indecomposable and A1 ∼ B1.

Proof. We consider the two-sided ideal S = Hom(B,A)Hom(A,B) of E(A). For 0 6= a ∈ A,

there exists f : A → B with f(a) 6= 0 since A[B] = 0. Similarly, B[A] = 0 yields that we

can find g : B → A with gf(a) 6= 0. In particular, S cannot be contained in N . To see this,
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choose k > 0 such that Nk = 0 but Nk−1 6= 0, and select 0 6= x ∈ Nk−1A. By what has been

shown, there is s ∈ S with 0 6= sx. If S ⊆ N , then sx ∈ SNk−1 ⊆ NkA = 0, a contradiction.

By Theorem 2.0.3, J ∩ E(A) = N so that

E(A)/N = E(A)/J ∩ E(A) ∼= [E(A) + J ]/J

can be viewed as a subring of the semi-simple ring QE(A)/J . As mentioned before, A ∼

Ak11 ⊕ · · · ⊕ Akrr such that each Ai strongly indecomposable and Ai is not quasi-isomorphic

to Aj if i 6= j . Without loss of generality, we may assume A = Ak11 ⊕ . . .⊕Akrr . By Theorem

2.0.3, we obtain

N = ⊕iNi ⊕ [⊕j 6=iHomR(Akii , A
kj
j ]

where Ni denotes the nilradical of E(Akii ). Hence,

E(A)/N ∼=
∏
i

Matki(Ri) = T

where Ri = E(Ai)/N(E(Ai)).

Let σ ∈ S\N , and write σ = βα for α ∈ HomR(A,B) and β ∈ HomR(B,A). Identifying

σ+N with its image in the ring T under the previous ring isomorphism, we obtain that one

of the components of σ+N in T is nonzero. Without loss of generality, we may assume that

the numbering of {A1, . . . , An} has been chosen in such a way that say the first component

is nonzero.

We write C = Ak11 ,and let δ : C → A and π : A → C be the natural maps as-

sociated with the given decomposition of A. Then, we obtain that πσδ = (πβ)(αδ) ∈

HomR(B,C)HomR(C,B) is not an element of N(E(C)) by what just has been shown. Since

E(C)) = Matk1(A1), some (i, j)-entry of πβαδ is a non-nilpotent endomorphism of A1. Let

γj be the projection onto the jth-coordinate and λi be the embedding into the ith-coordinate.
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Then

ι = (γjπβ)(αδλi) ∈ HomR(B,A1)HomR(A1, B)

does not belong to NE(A1). As in the proof of Theorem 2.0.3, this means that ι /∈

J(QE(A1)). Hence, ι is invertible in QE(A1) since the latter is a local ring. We can

find 0 6= r ∈ R and η ∈ E(A1) such that ηι and ιη are multiplication by r on A1. Thus,

ηγjπβ : B → A1 and αδλi : A1 → B satisfy

(ηγjπβ)(αδλi) = r1A1 .

Thus, B has a quasi summand isomorphic to A1

Observe that all nonzero prime ideals of a Dedekind domain R are maximal. We let

spec(R) denote the collection of maximal ideals of R in this case. In particular, we can define

the P -rank of a torsion-free R-module A as the composition length of the module A/PA

[10]. We refer the reader to [10] and [1] for details on the P -rank of a module.

Lemma 4.0.3. If A and B are quasi-isomorphic torsion-free modules of finite rank over a

Dedekind domain R, then rP (A) = rP (B) <∞ for all P ∈ spec(R).

Proof. [10, Proposition 1.26] yields rP (A) ≤ rank(A) < ∞ and rP (A) ≤ rP (U) whenever A

is a finite rank module over a Dedekind domain R and U is an essential submodule of A.

Hence, rP (A) ≤ rP (B) and vice-versa.

Theorem 4.0.4. Let A and B be torsion-free reduced modules of finite rank over a Dedekind

domain R. Then

rP (HomR(C,A)) = rP (HomR(C,B))

for all P ∈ spec(R) and all torsion-free modules C of finite rank if and only if A ∼ B.

Proof. Suppose that A and B are quasi-isomorphic. Since the P -rank of a module is a quasi-

isomorphism invariant, and HomR(C,A) and HomR(C,B) are quasi-isomorphic modules,

their P -ranks are the same for all P ∈ spec(R) and torsion-free modules C of finite rank.
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Conversely, we show that A is quasi-isomorphic to B if

rP (HomR(C,A)) = rP (HomR(C,B))

for all P ∈ spec(R) and any torsion-free homomorphic image C of A or B. For such modules

C, we obtain that

rP (HomR(C,A)) = rP (HomR(C,B))

is finite for all P since the homomorphism modules have finite torsion-free rank.

Let A
′

= A[B] and consider the exact sequence

0→ A
′ → A→ A/A

′ → 0.

It induces the exact sequences

0→ HomR(A/A
′
, B)→ HomR(A,B)

α−→ HomR(A
′
, B)

and

0→ HomR(A/A
′
, A)→ HomR(A,A)

β−→ HomR(A
′
, A).

By the definition of A[B], the map

0→ HomR(A/A
′
, B)→ HomR(A,B)

is an isomorphism so that im α = 0. By our hypothesis, we obtain

rP (im β) = rP (HomR(A,A))− rP (HomR(A/A
′
, A))

= rP (HomR(A,B))− rP (HomR(A/A
′
, B))

= rP (im α) = 0
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for all prime ideals P . Therefore, im β is divisible.

If im β 6= 0, then HomR(A
′
, A)A

′ ⊆ A contains a nonzero divisible submodule which

is not possible. Thus, im β = 0. In particular, A′ = β(idA)A′ = 0. Therefore, A[B] = 0.

Similarly, we show B[A] = 0.

By Theorem 4.0.2, there is a nonzero K such that A is quasi-isomorphic to K ⊕A1 and

B is quasi-isomorphic to K ⊕B1 for some A1 and B1. If C is an epimorphic image of B1 or

A1, then C is quasi-isomorphic to an epimorphic image of B or A respectively. Therefore

rP (Hom(C,K)) + rP (Hom(C,A1)) = rP (Hom(C,A))

= rP (Hom(C,B)) = rP (Hom(C,K)) + rP (Hom(C,B1)),

which implies rP (Hom(C,A1)) = rP (Hom(C,B1)) for all P . Inducting on the rank of A+B,

we obtain that A1 is quasi-isomorphic to B1.

Our next result shows that Warfield’s formula for the P -rank of Hom holds for modules

over Dedekind domain. Observe that Ext(A,−) is divisible whenever R is Dedekind and

A is a torsion-free R-module. Thus, the P -rank of the module Ext(A,−) as defined before

would be 0. If D is a divisible module, then we replace the notion of P -rank by that of the

R/P -dimension of the P -socle D[P ] = {x ∈ D|Px = 0}.

Proposition 4.0.5. Let R be a Dedekind domain, and M and N torsion-free R-modules of

finite rank. For all P ∈ spec(R),

rP (HomR(M,N)) = rP (M)rP (N)− dimR/P (Ext1R(M,N)[P ]).

Proof. The result is a direct consequence of Theorem 1.0.30.

Corollary 4.0.6. Let A and B be torsion-free modules of finite rank over a Dedekind domain

R. If A and B are quasi-isomorphic, then Ext(C,A) ∼= Ext(C,B) for all torsion-free finite
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rank modules C. Moreover, if the P -adic completion of RP has infinite rank for all P ∈

spec(R), then the converse holds.

Proof. Since R is a Dedekind domain, Ext(M,−) is divisible whenever M is torsion-free.

Since divisible quasi-isomorphic modules are isomorphic, we obtain Ext(C,A) ∼= Ext(C,B)

for all torsion-free finite rank modules C if A and B have the desired form.

b) Write A = DA ⊕ A
′

and B = DB ⊕ B
′
, with DA and DB divisible, and A

′
and B

′

reduced. Then,

Ext(C,A′) = Ext(C,A) ∼= Ext(C,B) ∼= Ext(C,B′).

Thus, we may assume that A and B are reduced. For any finite rank torsion-free R-module

C, we obtain

rP (Hom(C,A)) = rP (C)rP (A)− dimR/P (Ext(C,A)[P ])

and

rP (Hom(C,B)) = rP (C)rP (B)− dimR/P (Ext(C,B)[P ])

from which we get

rP (C)rP (A)− rP (Hom(C,A)) = rP (C)rP (B)− rP (Hom(C,B)).

We fix P ∈ spec(R), and consider the P -adic completion R̂P of the module RP as in

[10]. Since R̂P has infinite rank as an R-module, we can find a pure submodule C of R̂P

containing RP with

rank(C) = rank(A) + rank(B) + 1.

If α : C → A, then ker α 6= 0, and C/ ker α is divisible since rP (C) = 1 and rQ(C) = 0 for

P 6= Q ∈ spec(R). Hence, Hom(C,A) = 0. In the same way, Hom(C,B) = 0. Hence,

rP (A) = rP (C)rP (A)− rP (HomR(C,A))

= rP (C)rP (B)− rP (HomR(C,B)) = rP (B).

40



By Theorem 4.0.4, A and B are quasi-isomorphic.

If R is a maximal discrete valuation domain, then all torsion-free R-modules C of finite

rank are projective, so Ext(C,M) = 0 for all M . In particular, Ext(C,M) ∼= Ext(C,N) does

not yield that M and N need to be quasi-isomorphic. Thus, the condition on the rank of

R̂P cannot be omitted.
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