
Securing Web Applications: Web Application Flow Whitelisting to Improve
Security

by

Haneen Khalid Alabdulrazzaq

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 6, 2017

Keywords: Secure Software Development, Web Application Security, Secure Coding,
Insecure Direct Object References, Missing Function Level Access Control, Whitelisting

Copyright 2017 by Haneen Khalid Alabdulrazzaq

Doctoral Committee

David Umphress, Chair, Professor of Computer Science and Software Engineering
James Cross, Professor of Computer Science and Software Engineering

Dean Hendrix, Associate Professor of Computer Science and Software Engineering
Anthony Skjellum, Professor of Computer Science and Software Engineering

Abstract

The explosion in the availability of data fueled by mobile devices has pushed security to

the forefront. As of 2016, Internet users worldwide are estimated at a staggering 3.47 billion.

Such large numbers of users dictate the importance of online presence for organizations across

different industries, and with that come security considerations for web-facing applications.

Many web development frameworks offer common security features, such as authentication

and session management out of the box (e.g. Rails, Django, and CakePHP). However,

developers must still direct their efforts toward addressing application specific security issues.

In this dissertation we introduce a novel web application security enhancing practice,

called web application flow whitelisting. It targets two of OWASP’s top ten web vulnerabili-

ties; A4: Insecure Direct Object References and A7: Missing Function Level Access Control.

Initially, we create a workflow based on intended behavior. From the workflow, we define

a whitelist as a tuple 〈C,D,W, S〉, where C is a set of all components within the system

boundary, D is a set containing conditions for transitions that occur within an application,

W is a set of all ordered pairs representing allowed transitions, and finally S is a matrix

containing safe components to redirect to in case a transition fails.

Validation of web application flow whitelisting was carried out in two phases. For phase

one, a static whitelist was created and applied to a total of 15 applications developed by

students in course COMP4970: Web Development with Django at Auburn University. For

phase two, a static whitelist was created and applied on an existing open source Django

application in production use. Application specific vulnerabilities were found and quantified

through manual testing methods. Our results show that by conforming to a whitelist of flow,

all unintended application behavior is eliminated while intended behavior is preserved.

ii

Acknowledgments

“Praise Allah, with whose blessings all good deeds are achieved”

I thank God everyday for giving me the strength and will to go through this long (and

emotionally draining!) journey toward a PhD degree. I could not have done this without

the support of so many people in my life and I would like to take this opportunity to thank

each and every one of them.

My deepest gratitude goes to Dr. David Umphress, my advisor, for his guidance, assis-

tance, and compassion. I am very fortunate to have had the opportunity to work under his

mentorship. Dr. Umphress, I finally saw the light at the end of the tunnel! I am forever

indebted to you and could not have accomplished this without all your help. Thank you

so much! I would like to thank my committee members: Dr. Cross, Dr. Hendrix, and Dr.

Skjellum for their valuable feedback on my work, and Dr. Jerry Davis for taking time out

of his busy schedule to serve as the University Reader for this dissertation. Also, a warm

“Thank you!” goes out to Dr. Jeffrey Overbey who served on my committee prior to leav-

ing the CSSE department at Auburn. His early guidance on this research has significantly

shaped its future direction. I would also like to thank all the Software Process research group

members who have bounced around ideas with me during the early stages of my research,

especially Dr. Bradley Dennis and Matthew Swann.

I would like to thank Mrs. Shoghig Sahakyan, my scholarship advisor at the Embassy of

Kuwait for the prompt replies to the many emails I sent over the past 5 years. Shoghig, you

are amazing! And, I would like to thank Ms. Anwar Al-Bader at the PAAET Scholarships

Department for speeding up the approval process of my extension request.

I would like to thank ALL my friends in both Auburn and Kuwait for being the wonderful

people that they are! To Yasmeen and Taha, friends I met during my first semester here

iii

at Auburn, I could not have survived without you! Thank you for all the late night study

sessions, scrambling to submit assignments on time, and for always offering help and advice

when I needed it. And, thank you for all the great laughs, fun times, and beautiful memories

I will cherish forever. To all my friends in Kuwait, I will see you soon!

My family means everything to me and I would not be the person I am today without

their love and encouragement. To my Dad, who I wish had lived to witness this moment, I

miss you. You are always in my thoughts and prayers. Mom, you are my role model. Thank

you for being so supportive of my decision to pursue a PhD, even though it meant I was

moving your granddaughters halfway across the world! I am so grateful to have a mother

like you. To my sisters: Shouq, Besma, Hala and my brother Yousef, thank you for your

unconditional love, support, and prayers. To my grandmother Luluwa and my aunts: Hind,

Nadia, and Ghada, thank you for your encouragement and prayers. To the rest of the family,

I can’t wait to be back home with y’all! (that’s southern meaning ‘you all’).

To my husband and best friend, Fahad, whose love, commitment, and support never

wavered throughout the years, I love you. I know this journey has tested our relationship at

times, but I do believe it made it stronger. Thank you for your reassurance when I doubted

my own abilities. Thank you for your (sometimes brutal) honesty whenever I needed a

sincere opinion. Thank you for everything! To my daughters, Awatif, Ibtesam, Sarah, and

Aishah, thank you for your love, patience, and understanding especially when I could not

be there for all your activities and school events. I appreciate all the things you’ve done for

me during the past 5 years. I love you all so much!

iv

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . viii

1 Introduction . 1

1.1 Importance of Secure Software Development 1

1.2 The Problem with Secure Software Development Processes 2

1.3 Web Application Security . 3

1.4 Research Scope . 5

2 Literature Review . 7

2.1 Addressing Security in the OSI Model . 7

2.1.1 Security of Layer 1: The Physical Layer 8

2.1.2 Security of Layer 2: The Data Link Layer 9

2.1.3 Security of Layer 3: The Network Layer 10

2.1.4 Security of Layer 4: The Transport Layer 10

2.1.5 Security of Layer 5: The Session Layer 12

2.1.6 Security of Layer 6: The Presentation Layer 12

2.1.7 Security of Layer 7: The Application Layer 13

2.1.8 Summary . 15

2.2 Secure Coding Practices and Common Web Vulnerabilities 16

2.2.1 Introduction . 16

2.2.2 The OWASP Secure Coding Practices 17

2.2.3 The OWASP Top Ten Web Vulnerabilities 19

3 Web Application Flow Whitelisting . 24

v

3.1 Background and Problem Domain . 24

3.2 Defining Web Application Flow Whitelisting 24

3.2.1 Formal Definition of the Whitelist . 25

3.2.2 Building the Whitelist . 28

3.2.3 A Web Application Flow Whitelisting Example 29

3.2.4 Perceived Benefits of Web Application Flow Whitelisting 32

4 Research Methodology: Phase1: Small Case Validation 34

4.1 Assumptions . 34

4.2 Background . 34

4.2.1 The Request-Response Cycle in Django 36

4.3 Writing Custom Middleware Class for Web Application Flow Whitelisting . . 37

4.4 Hypothesis . 40

4.5 Validation of Web Application Flow Whitelisting: Need-A-Nerd student apps 41

4.5.1 Zed Attack Proxy (ZAP) . 41

4.5.2 Apps from COMP4970: Web Development with Django 43

4.6 Analysis . 54

4.6.1 Application Specific Vulnerabilities 56

4.6.2 Results . 59

4.6.3 Limitations . 65

5 Research Methodology: Phase2: Large Case Validation 66

5.1 Background . 66

5.1.1 Overview of seekinglove.com . 67

5.2 Analysis . 73

5.2.1 Application Specific Vulnerabilities in seekinglove.com 74

5.2.2 Results . 89

5.2.3 Limitations . 91

6 Conclusions and Future Work . 92

vi

6.1 Summary . 92

6.2 Contributions . 94

6.3 Future Work . 95

References . 97

Appendices . 105

A Security in Django . 106

A.1 Django and the OWASP Top 10 Web Vulnerabilities 106

A.1.1 A1: Injection . 106

A.1.2 A2: Broken Authentication and Session Management 106

A.1.3 A3: Cross Site Scripting - XSS . 107

A.1.4 A4: Insecure Direct Object References 107

A.1.5 A5: Security Misconfiguration . 108

A.1.6 A6: Sensitive Data Exposure . 108

A.1.7 A7: Missing Level Access Control . 108

A.1.8 A8: Cross Site Request Forgery - CSRF 109

A.1.9 A9: Using Components with Known Vulnerabilities 109

A.1.10 A10: Unvalidated Redirects and Forwards 109

A.2 Mitigation for Common Attacks . 110

A.2.1 Clickjacking . 110

A.2.2 Brute Force Login . 110

A.3 Security Best Practices . 110

B Open source Django Applications on Github . 113

C ZAP Passive Scan Reports . 117

D Whitelist Middleware For Seekinglove.com . 127

E PhD. Research Progress Timeline . 131

vii

List of Figures

2.1 Protocols used in different layers of the OSI model [Ismail, 2012] 8

2.2 Common countermeasures in the OSI & TCP/IP Models. [Gregg and Watkins,

2006] . 16

2.3 Django, Rails, CakePHP, and the OWASP Top Ten 2013 Vulnerabilities 22

3.1 Steps for building a whitelist . 29

3.2 Workflow of a generic web application . 30

4.1 Overview of the Django framework [Yates, 2009] 36

4.2 Middleware processing order [Django, 2016] . 38

4.3 NaN Authorization workflow. 45

4.4 NaN Student workflow. 46

4.5 NaN Employer workflow. 46

4.6 Sample screenshot of a logical flaw in Team 2’s NaN app 64

5.1 Workflow diagram for seekinglove.com . 68

5.2 App behavior when typing in 127.0.0.1:8000/search/. 74

5.3 App behavior when typing in 127.0.0.1:8000/like/?category id=17&button type=dislike. . . . 75

viii

5.4 App behavior when typing in 127.0.0.1:8000/like/?category id=21&button type=like. 76

5.5 App behavior when typing in 127.0.0.1:8000/like/?category id=23&button type=delete. . . . 77

5.6 App behavior after reloading 127.0.0.1:8000/like/?category id=23&button type=delete. . . . 77

5.7 App behavior when typing in 127.0.0.1:8000/like/?category id=13&button type=wink. . . . 78

5.8 App behavior when typing in 127.0.0.1:8000/like/?category id=167&button type=markasread. 79

5.9 App behavior when typing in 127.0.0.1:8000/like/?category id=19&button type=crush. . . . 80

5.10 App behavior after reloading URL 127.0.0.1:8000/like/?category id=19&button type=crush.

several times . 80

5.11 App behavior when typing in 127.0.0.1:8000/activevalue/?category id=13. 81

5.12 App behavior before typing in 127.0.0.1:8000/createwink/13/. 82

5.13 App behavior after typing in 127.0.0.1:8000/createwink/13/. 82

5.14 App behavior before typing in 127.0.0.1:8000/addcrush/18/13/. 83

5.15 Typing in 127.0.0.1:8000/addcrush/18/13/. 84

5.16 App behavior after typing in 127.0.0.1:8000/addcrush/18/13/. 84

5.17 Notification sent to user 18 after in 127.0.0.1:8000/addcrush/18/13/. 85

5.18 App behavior before typing in 127.0.0.1:8000/addcrush/12/. 86

5.19 App behavior after typing in 127.0.0.1:8000/addcrush/12/. 86

5.20 App behavior after typing in 127.0.0.1:8000/addcrush/19/1/. 87

5.21 Error before removing notifications object. 88

5.22 Error after removing notifications object. 88

ix

Chapter 1

Introduction

1.1 Importance of Secure Software Development

The explosion in the availability of data fueled by mobile devices has pushed security

to the forefront. Yet, the software engineering community lags in identifying and using

processes that produce secure software. Davis [Davis et al., 2004] notes:

“Producing secure software is a multifaceted problem of software engineering,
security engineering, and management. Thus, producing secure software starts
with outstanding software engineering practices, augmented with sound technical
practices, and supported by management practices that promote secure software
development.”

Only now is the software industry recognizing the relevance of security, much less come to

grips with engineering approaches to address it.

Data breaches of big name companies such as JP Morgan Chase, Target, and Sony

Pictures Entertainment making headline news in 2014 appear to have pushed the importance

of security to the point where it is gaining traction. Wysopal [Wysopal, 2015] points out

that within the next 3 years, the expenditure on software security will increase to about

26.8% of what it is currently, with more focus on securing the application-layer rather than

the network layer.

While traditional heavy weight secure software development processes and practices

aid in producing more secure software they do not fit in with today’s agile development

environments. A survey conducted by [Ayalew et al., 2013] has found that none of the

practices in traditional secure software development processes were compatible and beneficial

in agile projects. Lane [Hazrati, 2012] goes so far as to posit that agile development teams

1

are not capable of producing secure software . Agile techniques focus on producing features

and functionality, leaving security as an after thought. Furthermore, developers shy away

from security processes and practices simply because they require extra time, extensive

knowledge, and training to implement. Training requires monetary investment, and for many

management teams, it is something they are not willing to accept. Putting aside training

costs, the extra effort needed to incorporate security into software practices has given the

perception of being very expensive [Davis et al., 2004]. Even when security is explicitly

expressed as a requirement, small and medium -sized software development organizations

have difficulty achieving security goals for web facing applications [Nicolaysen et al., 2010].

1.2 The Problem with Secure Software Development Processes

Several development processes and best practices that incorporate security do, in fact,

exist. Most are processes that have been tailored to include security, because, “building

processes from scratch is risky and involves high overhead, so developers often tailor existing

processes and standards” [Xu and Ramesh, 2008]. An example of this is Microsoft R© Security

Development Lifecycle for Agile Development, which takes the waterfall-like Security Devel-

opment Lifecycle and breaks down its requirements into every sprint requirements, bucket

requirements (performed regularly over the lifetime of the project), and one time require-

ments [Microsoft, 2009a]. Other examples include those for tailoring Extreme Programming

to support security requirements [Boström et al., 2006] [Beznosov, 2003].

In organizations requiring that a software process be followed during development, there

tends to be a negative connotation associated with following it [Wiegers, 2005]. As mentioned

earlier, many existing processes for developing secure software are considered heavyweight,

and with the existing attitude towards process in general, one can easily conclude that this

attitude also spreads to include secure software development processes. The alternative to

using a complete process for developing secure software, is the adaptation of security best

practices into one’s own software development process. By doing so, a development team is

2

essentially tailoring its process to satisfy security as a nonfunctional requirement. There are

practices in secure software development that are considered vital and are usually done in

the early phases of development. An example is Threat Modeling which is a design phase

activity that fits very well in a waterfall-like process. Usually in a waterfall-like approach,

a threat model diagram is produced, and when it is completed, the project can move on to

the next phase. However, no such clear cut distinction exists in agile sprints. This does not

necessarily mean that Threat Modeling cannot be incorporated in an agile manner. It just

requires some extra effort from agile teams whereby Threat Models are treated as “living

artifacts that should be updated and enhanced during every iteration or sprint” [Jeffries,

2012]. Other ways of combining agile and security are the use of security sprints [Bird, 2012],

abuser stories [Boström et al., 2006] [Peeters, 2005], and a security version of Planning Poker

called Protection Poker [Williams et al., 2009].

1.3 Web Application Security

The number of Internet users in 2016 worldwide was estimated at a staggering 3.47

billion [internetlivestats.com, 2016]. Contrasting this with 502 million users fifteen years ago

clearly shows the growth of Internet usage worldwide. In the United States alone, the US

Census Bureau reported that 74.4% of all households in the country use the Internet [File

and Ryan, 2014]. Such large numbers of users dictate the importance of online presence

for organizations across different industries, and with that comes security considerations for

web-facing applications.

The World Wide Web has extensively evolved from a handful of static HTML web pages

when it emerged in the early 1990’s to the form we know today. Most of the websites online

today are applications producing content dynamically [Stuttard and Pinto, 2011]. With

Web 2.0 technologies dominating the Internet and allowing for user generated content, web

application developers need to focus on securing their applications against malicious use. The

software engineering community in both academia and industry has focused the majority of

3

its research efforts on securing the network layer of the web [Bhimani, 1996] [Oppliger, 2003]

[Cheswick et al., 2003]. Several technologies were born from this research and some became

mainstream practices, such as using Secure Sockets Layer (SSL) and Hypertext Transfer

Protocol Secure (HTTPS). However, securing the application layer, from an application

development perspective, has not gained similar attention. While SSL encrypts data in

transit, it does not prevent its leakage, disclosure, or misuse at the source or destination.

This is something that can only be dealt with by the developer at the application layer.

A number of web development frameworks offer common website security features, such

as authentication and session management out of the box (e.g. Rails, Django, and CakePHP).

They address general security concerns that can be programmatically detected allowing the

developer to direct development efforts towards the application’s functionality, features, and

special case security. They do not address security issues that are domain or application

specific.

Stories about high profile data breaches abound, but many breaches are not publicized,

as pointed out, with some hyperbole, by FBI director James Comey: “There are two kinds

of big companies in the United States. There are those who’ve been hacked ... and those

who don’t know they’ve been hacked” [Walters, 2014]. Hackers have become more sophisti-

cated in their ways, with many working within organized groups and some funded by foreign

governments to gain unauthorized access to valuable information on the web. The Software

Engineering Institute estimates that 90% of reported security incidents resulted from exploit-

ing defects in the design or code of software [U.S. CERT, 2013]. Developers must pay special

attention to security during the design and implementation phases of software development.

Many industry and government agencies recognize now the importance of building security in

and are offering tools, practices, guidelines, and other resources to help software developers.

The Computer Emergency Readiness Team (CERT), the National Cyber Security Division,

and the National Institute of Standards and Technology (NIST), all support initiatives and

projects that help developers build security in [U.S. DHS, 2011] [NIST, 2014]. The industry

4

recognizes that “if we are going to fix the field of computer security, the only hope we have

is building security in” [McGraw, 2012].

In this dissertation a novel web application security practice, called web application

flow whitelisting, is proposed. It follows the concept of whitelisting which is increasingly

being used to protect against malware and spam. A whitelist is a list of elements (e.g. data,

applications, email addresses, etc.) that have the privilege to execute with granted special

access permissions. In contrast to a blacklist, which would contain those elements that do

not have execution privileges or access permissions, anything not on the whitelist would be

denied to run or would have constrained access permissions. Whitelists and blacklists have

both been used in network security [Schneier and Ranum, 2011], malware [Cobb, 2013], and

as a technique for input validation [SAFECode, 2011]. The term flow refers to the series and

order of navigational steps taken to complete a certain task on a web application. The idea

proposed by this research requires that the developer create a whitelist of allowed flow and

transitions between controllers in a web application built using the Model-View-Controller

pattern. Any transition or flow not specified in the whitelist would result in the application

resorting to a ‘safe state’ which is predefined by the developer.

1.4 Research Scope

The focus of this research will be on the software engineering practices that promote

production of secure software with the ability of being integrated into an existing agile

process. With the area of information security being vast and application types varied,

this research simply targets web application security. Moreover, only the secure coding

practices pertaining to web applications constructed using web development frameworks will

be examined. The research is also in line with the recent notion and initiative of building

security into a software product. The aim is to show the security best practices used today in

web application development and to explore the vulnerabilities that target web applications

in particular. Finally, the focus will be on the vulnerabilities that the developer is responsible

5

for mitigating; those handled by the web development framework will be disregarded. This

research will address the following question: will whitelisting a web application’s flow produce

more secure web applications?

6

Chapter 2

Literature Review

2.1 Addressing Security in the OSI Model

Caelli’s observation,

“It is an accepted principle of computer science and engineering that a com-
puter application can be no more secure than the libraries and middleware it
incorporates that can themselves be no more secure than the operating system
and sub-systems that support them which in turn can be no more secure than
the underlying hardware and firmware of the computer or network system.”

[Caelli, 2007] suggests that the most logical way to envision security is through the lens

of a layered system. In keeping with this idea, Meunier [Meunier, 2008] proposes the OSI

reference model (figure 2.1) as a natural taxonomy for classifying vulnerabilities according

to the layer to which they belong. We follow suit by traversing the OSI layers to examine

security vulnerabilities from the developer’s perspective, the goal being to identify how those

vulnerabilities might be eliminated in a light weight process.

7

Figure 2.1: Protocols used in different layers of the OSI model [Ismail, 2012]

2.1.1 Security of Layer 1: The Physical Layer

The physical layer of the OSI model deals with the transmission and reception of raw bits

of data over a physical medium [Myhre, 2000]. It, in essence, is electric signals, radio waves,

optical pulses, etc. that represent data. Security concerns at this layer are typically two fold:

physical security and signal security. The former entails safeguards such as guarding data

and transmission facilities, controlling the physical access of personnel; the latter aims to

protect connection confidentiality and traffic flow confidentiality [CCITT, 1991]. Common

vulnerabilities at this layer are hardware hacking, wiretapping, interception of signals, and

physical access attacks [Gregg and Watkins, 2006], as well as signal replay attacks, feature

replay attacks, and coercion attacks [Danev et al., 2012].

8

The extreme low level at which this layer operates means that exploiting vulnerabilities

that require domain or application specific knowledge is highly unlikely. The application

developer relies instead on low level protections such as, extracting physical fingerprints

from a device’s circuitry [Lofstrom et al., 2000] [Holcomb et al., 2009] [Su et al., 2007],

physically unclonable functions (PUFs) [Suh and Devadas, 2007] [Lim et al., 2005], integrated

circuit watermarking [Abdel-Hamid et al., 2003] [Torunoglu and Charbon, 2000] [Koushanfar

and Alkabani, 2010], and the physical properties of wireless channels [Faria and Cheriton,

2006] [Patwari and Kasera, 2007].

2.1.2 Security of Layer 2: The Data Link Layer

The data link layer of the OSI model is responsible for converting the data arriving from

the upper layers into bits to send across a physical medium (wire) and vice versa [Myhre,

2000]. It is divided into two sub-layers: Logical Link Control and Media Access Con-

trol. [CCITT, 1991] recommends that two security services be in place here, connection

confidentiality and connectionless confidentiality. Connection confidentiality service requires

that all (N) user-data on an (N) connection be confidential. Similarly, connectionless con-

fidentiality service requires protecting the confidentiality of all (N)-user-data in a single

connectionless (N)-service data unit. Common vulnerabilities in this layer are active and

passive sniffing, MAC spoofing, Wired Equivalent Privacy (WEP) cracking, Address Res-

olution Protocol (ARP) poisoning [Gregg and Watkins, 2006], Man-in-the-middle (MITM)

attacks, and Denial of Service (DoS) attacks [Gregg and Watkins, 2006] [Venkatramulu and

Rao, 2013].

The literature proposes several solutions for ARP poisoning. In [Puangpronpitag and

Masusai, 2009] a system called Dynamic ARP-spoof Protection Surveillance (DAPS) Sys-

tem is proposed to protect against both MITM and DoS attacks as well as a tool called

ARPWATCH [Wikipedia, 2015a]. These mitigation solutions are provided to aid network

9

administrators in monitoring ARP traffic. The developer need not be concerned with miti-

gation strategies at this layer, as they are out of the application development scope.

2.1.3 Security of Layer 3: The Network Layer

The network layer controls the operation of the subnet. It is concerned with routing

packets from their source to the final destination. Here, IP addresses are used to identify

nodes, and routing tables are used to identify overall paths and next-hops a packet might

take [Reed, 2003]. The vulnerabilities at this layer include: IP attacks, routing attacks, MAC

flooding, and ICMP attacks [Gregg and Watkins, 2006]. IP is a connectionless protocol which

means that other protocols need to work in conjunction with IP to complete the transfer of

packets. Protocols that work with IP at higher layers of the OSI model include ICMP, TCP,

UDP, HTTP, HTTPS, SMTP, etc. The more prominent protocols utilized at every layer of

the OSI model can be seen in Figure 2.1.

There have been several advances in the area of security at the Network Layer. The

main contribution being IPSec. IPSec encrypts and authenticates every IP packet of a

communication session [Firewall.cx, 2012]. IPSec VPNs operate at this layer, however, they

need certain software to be present on end user devices which makes it harder to maintain.

Currently, the preferred choice is it to connect with Secure Socket Layer VPNs which operate

at the higher levels of the OSI model [Phifer, 2003].

From an application developer’s perspective, attacks at this layer aimed at IP, are not

a concern. Securing IPSec VPNs, and maintaining licenses on end user machines are the

responsibility of IT departments that allow remote access through IPSec VPNs.

2.1.4 Security of Layer 4: The Transport Layer

The transport layer is responsible for ensuring that messages get delivered error-free,

in sequence, and without loss or duplication [Microsoft, 2014]. The focus of the transport

layer is on segments. It can either send data quickly or reliably [Gregg and Watkins, 2006].

10

The two main protocols that work at this layer are: UDP (a connectionless protocol) and

TCP (a connection-oriented protocol) [Gregg and Watkins, 2006]. Some of the common

vulnerabilities at this layer include: port scanning, DoS attacks, service enumeration and

flag manipulation [Gregg and Watkins, 2006].

An example of abusing UDP to achieve a DDoS attack is UDP flooding. This type of

attack floods random ports on a host with a large number of UDP packets. This would cause

the host to continuously check for the application listening at the port. If no application is

found, the host replies with an ICMP Destination Unreachable packet. This attack exhausts

the host’s resources and eventually deem the host unreachable; ultimately causing a DDoS

attack [Incapsula, 2011]. Similarly, an example of abusing TCP to achieve a DDoS attack is

SYN flooding. A SYN flooding attack exploits the TCP 3-way handshake mechanism. In a

3-way handshake, the client requests connection by sending a synchronize (SYN) message to

the server. The server acknowledges this by sending a synchronize-acknowledge (SYN-ACK)

message back. The client would then respond with an acknowledge (ACK) message. The

result is an established connection [Incapsula, 2011]. The attacker leverages this process

by never sending the ACK message back which results in the host constantly resending the

SYN-ACK message on the assumption that previous SYN-ACK messages were damaged or

lost. This consumes the host resources resulting in a DDoS [Gregg and Watkins, 2006].

Two major advances in securing the transport layer is the use of cryptography protocols

in higher layers, namely, the Secure Socket Layer (SSL) and the Transport Layer Security

(TLS). SSL is not an industry standard; it is a proprietary standard under the control of

Netscape. TLS is an Internet Engineering Task Force (IETF) standard which is described

in RFC 5246 [Dierks and Rescorla, 2008]. However, it should be noted that these protocols

operate on top of TCP/IP. Therefore, they belong in layers 5-7 of the OSI model.

11

Securing the server against SYN flood attacks is the sole responsibility of the network

administrator. Because attacks at this layer are aimed at servers and the network infrastruc-

ture, the application developer’s only concern, if any, is to review and choose which server

to deploy the application on (Apache, IIS, Nginx, etc.).

2.1.5 Security of Layer 5: The Session Layer

The session layer takes care of establishing, coordinating, managing, and terminating

sessions between 2 applications on different computers. Protocols used at this layer include

Structured Query Language (SQL), Remote Procedure Call (RPC), and Network File System

(NFS) [Gregg and Watkins, 2006] [Geneiatakis et al., 2006]. Common vulnerabilities at this

layer are session hijacking, DNS poisoning, and SSH Downgrade attacks [Pant and Khairnar,

2014] [Gregg and Watkins, 2006]. Session hijacking occurs when an attacker intercepts

communication between two machines; the hijacking occurs after the 3-way handshake is

completed. DNS poisoning is an attack whereby an adversary successfully diverts traffic

from a legitimate server to a fake one [Hoffman, 2015]. A SSH downgrade attack happens

when an attacker tricks a SSH server and client into negotiating a lower encryption protocol

(SSH1) instead of (SSH2) [Squad, 2015].

Possible mitigation for DNS poisoning and SSH downgrade attacks are DNSSEC (an

extension to DNS) [Arends et al., 2005] and Signalling Ciphersuite Value (SCSV) and the

Renegotiation Information Extension (RIE) [Giesen et al., 2013]. Of the attacks mentioned

above, session hijacking, in particular needs special attention from the developer. Most

protocols that deal with it, however, work at the application layer. Therefore, it will be

presented and discussed in the Application Layer section.

2.1.6 Security of Layer 6: The Presentation Layer

The purpose of this layer is to present and deliver data to the application layer. Proto-

col conversions, encryption/decryption of messages, compression/expansion of messages, and

12

manipulation of XML objects all occur at this layer [Gregg and Watkins, 2006]. Common

vulnerabilities at the presentation layer include: NetBIOS enumeration, clear text extrac-

tion, and protocol attacks [Gregg and Watkins, 2006]. The protocol attacks that can occur

at the presentation layer are attacks against NetBIOS and Server Message Block (SMB)

protocols, both of these protocols facilitate resource sharing. NetBIOS relies on name res-

olution through local host files and DNS. While the NetBIOS enumeration attack was well

known since the early years of 2000, legacy systems are still vulnerable to it [Gregg and

Watkins, 2006]. Weak encryption techniques may also introduce different vulnerabilities at

the presentation layer. SMB attacks are still conducted with the latest example being the

attack on Sony Pictures Entertainment [Lennon, 2014].

The literature proposes several mechanisms for encryption which can be classified as

public-key encryption methods (asymmetric), identity based encryption methods (symmet-

ric), and certificate-less public key encryption [Dent, 2008]. From the perspective of the

developer, any sensitive data that the application handles must be protected with encryp-

tion. Session data containing user credentials or financial data must be secured with a

well known and tested encryption algorithm. The developer should choose from hashing

algorithms such as SHA-2, PBKDF2, or Bcrypt for encryption purposes depending on the

application’s own requirements.

2.1.7 Security of Layer 7: The Application Layer

The application layer is the entry and exit point of information in the OSI model. It is

the channel through which applications communicate. Application layer protocols were used

long before security was considered an issue, and their focus is more on functionality rather

than security [Gregg and Watkins, 2006]. The protocols that operate at the application layer

include: File Transfer Protocol (FTP), Telnet, Hyper Text Transfer Protocol (HTTP), Post

Office Protocol (POP3), and Internet Mail Access Protocol (IMAP4) [Gregg and Watkins,

2006].

13

Each protocol comes with its own set of security issues. The main security issue with

FTP is that traffic is transmitted without encryption. This makes FTP vulnerable to sniff-

ing attacks, FTP bounce attacks, and FTP brute force attack (whereby an FTP server’s

password is guessed by brute force) [Khandelwal, 2013].

As with FTP, Telnet also does not provide encryption, nor does it provide server au-

thentication mechanisms [Wikipedia, 2015d] [Gregg and Watkins, 2006]. Therefore, Telnet

suffers from the same vulnerabilities as FTP. Common attacks on Telnet include eavesdrop-

ping, sniffing, and telnet brute force attack [Popeskic, 2011]. Usage of Telnet is currently

not recommended. As an alternative, the recommendation is to switch to Secure Shell

(SSH) [Dye et al., 2007].

The HTTP protocol is utilized by web applications to transfer the files of web pages.

Most attacks on HTTP target those web applications [Gregg and Watkins, 2006]. The main

problem with HTTP is in the POST messages that upload information in plain text to

the server. This means that these messages can be captured and read [Dye et al., 2007].

The types of attacks on web applications are discussed below in the OWASP Top Ten

Vulnerabilities section.

POP3 is an internet standard protocol used to retrieve e-mail from a remote server

to local e-mail clients [Wikipedia, 2015c]. The security problem with POP3 is that email

messages are removed from the server and stored locally. Moreover, any attachments in the

email are downloaded with the message [Butler, 2008] [Liquidweb, 2011].

IMAP, which is also an email protocol, differs from POP3 in that messages are stored

on the server only. Mail servers IMAP/SMTP are vulnerable to what is referred to as

IMAP/SMTP injection. This vulnerability facilitates access to a mail server by bypassing

the controls in the webmail application and directly accessing the server [OWASP, 2014].

As security has become more of a concern, the technologies are being re-inforced with

mechanisms to enhance security. For example, Telnet was replaced with SSH, which provides

encrytption of data transmitted between clients and servers. Similarly, the development

14

of the Secure Socket Layer (SSL) provided encryption of HTTP traffic. Transport Layer

Security (TLS) is a standard for encrypting client/server data developed by the Internet

Engineering Task Force (IETF). SSL and TLS are currently being used interchangeably. The

two encryption standards are used to secure HTTP traffic, FTP traffic, POP3, and IMAP,

resulting in what is referred to as Hypertext Transfer Protocol Over SSL/TLS, File Transfer

Protocol Secure, Secure POP3, and IMAP4 secure [Rescorla, 2000] [Ford-Hutchinson, 2005]

[Microsoft, 2009b].

As an illustration of how complex secure software can be, even the security enhanced

replacements for older technology have been known to contain security flaws. The latest

versions of SSL and TLS have both been reported vulnerable to certain types of attacks such

as the recent POODLE bug that allows Man-in-the-middle Attacks to successfully decipher

messages [Möller et al., 2014]. OpenSSL also suffered recently from what is known as the

Heartbleed vulnerability, which exploits missing bound checks in TLS heartbeat extension

[Wikipedia, 2015b].

2.1.8 Summary

The discussion has thus far focused on network specific counter measures to resolve

security issues at every layer of the OSI model. Information security can be examined from

the perspective of network security, application security, user security, and systems security.

In layers 1 through 4, most security controls and countermeasures focus on the network pro-

tocols and infrastructure. Securing the upper layers (Layers 5 through 7) however, requires

more effort from the application developer. Secure coding practices are recommended dur-

ing software development. Figure 2.2 shows that secure coding principles and practices are

applied in layers 5 through 7 of the OSI model.

15

Figure 2.2: Common countermeasures in the OSI & TCP/IP Models. [Gregg and Watkins,
2006]

2.2 Secure Coding Practices and Common Web Vulnerabilities

2.2.1 Introduction

Practices in secure coding can help mitigate common vulnerabilities found in the ap-

plication layer. Secure coding refers to the practices and processes employed by application

developers to avoid introducing security flaws in the production code. There are a num-

ber of secure coding guidelines published for different application types and platforms such

as Apple [Apple, 2014], Oracle [Oracle, 2014], and Microsoft’s .NET framework [Microsoft,

2012]. The Computer Emergency Readiness Team (CERT) has published a general top ten

secure coding practices list [CERT, 2011], as did the Open Web Application Security Project

(OWASP) [OWASP, 2010]. Since the focus of this research is on securing web applications,

OWASP’s secure coding guidelines are chosen. OWASP’s guidelines are a better candidate

for consideration because they are more inclusive and target web applications in specific.

16

2.2.2 The OWASP Secure Coding Practices

OWASP is a non profit worldwide organization focusing on security of web applications

[OWASP, 2015]. In [OWASP, 2010], OWASP describes a checklist of practices to be followed

by developers in order to produce secure software that ensures Confidentiality, Integrity,

and Availability of information resources. The secure coding practices checklist includes

extensive recommendations in several categories. Below are sample recommendations for

each category:

1. Input Validation: Input data must be validated against the source type (whether it

originated from a trusted or untrusted source). Input data must be encoded into a

common character set, an act known as canonicalization, before validation takes place.

Furthermore, expected data type, range, and length checking must be done. If special

characters such as > < “ ’ % () & + \ \’ \” are allowed in the input, a proper

escaping mechanism should be employed.

2. Output Encoding: Output encoding refers to the act of escaping/encoding data for

appropriate context in which it will be displayed. For example, in html, a >character

would be replaced by its html number (>) or html name (>). All encoding

must take place on a trusted system. Also, data must be sanitized to avoid Cross Site

Scripting attacks and SQL injection attacks.

3. Authentication and Password Management: A standard, tested, authentication service

must be utilized. Rate limiters on failed log-in attempts must be employed. HTTP’s

POST requests must be used when transmitting credentials. Before any critical oper-

ation is executed, users must be re-authenticated.

4. Session Management: Controls provided by the server or framework to manage sessions

must be used. Session ids must be generated with any re-authentication step. URLs

must not expose session ids. Moreover, when using TLS, the secure attribute for cookies

must be set.

17

5. Access Control: Access to protected URLs, protected functions, application data, and

services should be restricted to authorized users only. Account auditing and disabling

of unused accounts is required.

6. Cryptographic Practices: Any cryptographic functions used by the application must be

implemented on a trusted server. There should also be a policy declared for managing

cryptographic keys.

7. Error Handling and Logging: Error handling should be gracefully done. An example

would be replacing generic error messages with custom ones without revealing any

sensitive information in them. A log event data must be maintained and it should

include information for both successful and failed security controls.

8. Data Protection: Least privilege rule must be implemented. Encryption of sensitive

stored information and removal of comments in production code accessible to users are

also recommended. Furthermore, sensitive information must not be included in HTTP

GET request parameters.

9. Communication Security: Encryption must be implemented for all sensitive informa-

tion being transmitted. Secure TLS connections must be used during the transmission

process.

10. System Configuration: Servers, frameworks, and system components should be running

the latest versions. Any existing patches would need to be applied. Safe exception

handling must be implemented.

11. Database Security: Variables must be strongly typed. Input validation and output

encoding should be carried out. Strongly typed parameterized queries must be used.

12. File Management: Authentication needed before uploading files. Types of uploaded

files should be limited. The absolute file path must never be revealed.

18

13. Memory Management: Buffer size and boundary issues must be tested. Allocated

memory should be freed once execution of functions is completed.

14. General Coding Practices: Approved managed code should be utilized for common

tasks. User supplied data must not be passed to dynamic execution functions. All

variables and data stores should be explicitly initialized during declaration or prior to

first usage.

2.2.3 The OWASP Top Ten Web Vulnerabilities

One of the main contributions OWASP offers is a list of top ten web applications vul-

nerabilities compiled every 3 years. The vulnerabilities presented in the 2013 OWASP top

ten list of web application vulnerabilities [OWASP, 2013] are detailed as follows:

1. A1: Injection: Occurs when untrusted data is sent to an interpreter and executed as a

command or query. Examples include SQL, OS, and LDAP injections. For example,

a flawed query would be:

String query = "SELECT * FROM accounts WHERE custID=’" + request.getParameter("id") + "’";

An adversary can modify the id parameter in the browser to be ’ or ’1’=’1, and the ex-

ecuted query would return all records in the accounts table. Injection can be mitigated

by not allowing untrusted data to execute directly in commands and queries.

2. A2: Broken Authentication and Session Management: Occurs when application func-

tions utilize improper implementations of authentication and session management. An

example of improper implementation would be exposing session ids in URLS. An ex-

ample of an attack that exploits this vulnerability is session hijacking (session fixation)

Mitigating attacks of this type requires protecting stored authentication credentials

with hashing or encryption. Placing stronger controls in account management functions

(e.g. password recovery). Employing session time-outs and ensuring that transmission

of credentials happens over TLS.

19

3. A3: Cross Site Scripting (XSS): Occurs when unsanitized user input is sent to the

interpreter in the browser which treats it as active content. [OWASP, 2013], gives the

following example:

(String) page += "<input name=’creditcard’ type=’TEXT value=’" + request.getParameter("CC") + "’>";

This code snippet shows that user supplied input is being used in the value attribute.

An adversary can modify the CC parameter to be:

’><script>document.location= ’http://www.attacker.com/cgi-bin/cookie.cgi? foo=’+document.cookie</script>’

This would allow the adversary to steal the session id and hijack this user’s session.

To prevent XSS attacks, untrusted data must be escaped.

4. A4: Insecure Direct Object References: Occurs when an adversary successfully changes

a parameter’s value that directly refers to a system object to another object that

he/she is not authorized for. [OWASP, 2013] uses the following example to illustrate

this concept:

String query = "SELECT * FROM accts WHERE account = ?";

PreparedStatement pstmt = connection.prepareStatement(query ,);

pstmt.setString(1, request.getParameter("acct"));

ResultSet results = pstmt.executeQuery();

http://example.com/app/accountInfo?acct=notmyacct

The code above (third line) shows an adversary can possibly modify the acct parameter

in his/her browser and send any account number accessing account information in

which he/she is not authorized to view. Preventing such attacks requires the utilization

per user or per session indirect object references. For instance, instead of using a

database key directly; a mapping scheme for authorized resources can be used.

5. A5: Security Misconfiguration: Can occur at any level of the application stack (plat-

form, server(s), database, framework, and any custom code used). Attackers can ex-

ploit this vulnerability and gain unauthorized access to unprotected files, unused pages,

and directories etc. Mitigating this vulnerability requires joint efforts from developers

and system administrators. To protect against an attack of this type, updates and

patches need to be applied regularly.

20

6. A6: Sensitive Data Exposure: Sensitive data such as credentials should never be ex-

posed. Data encryption must be employed for data both at rest and in transit. If

applicable, unnecessary sensitive data should be discarded and not saved. Protecting

against sensitive data exposure includes encrypting all sensitive data and using strong

validated cryptographic algorithms.

7. A7: Missing Function Level Access Control: Occurs when an adversary is able to

change a URL or a parameter to a privileged function and is granted access to this

function. An attacker exploiting this vulnerability can gain access to administrative

functions. Not displaying links and buttons to unauthorized functions in web-pages is

not sufficient protection. Mitigating this vulnerability requires implementing checks in

the controller.

8. A8: Cross Site Request Forgery (CSRF): Occurs when an authenticated user is tricked

into executing malicious requests. Since, the user is authenticated, the server will

not be able to differentiate between forged and legitimate requests. Preventing CSRF

attacks requires the presence of an unpredictable token preferably in a hidden field

within the body of the request.

9. A9: Using Components with Known Vulnerabilities: Occurs when an application uti-

lizes libraries, components, or third party applications without checking for existing

vulnerabilities in them. Moreover, component dependability makes this vulnerability

hard to discover. Preventing this vulnerability requires that all components, libraries,

and third party applications used be identified with version numbers. Public vulnerabil-

ity databases such as the Common Vulnerabilities and Exposures (CVE) and National

Vulnerability Database (NVD) must be constantly checked for reported vulnerabilities

in these libraries.

10. A10: Unvalidated Redirects and Forwards: Occurs when an attacker takes advantage

of a redirect specified in an unvalidated parameter to redirect a legitimate user to a

21

malicious site (e.g. phishing). Internal application forwards that route requests to

various parts of an application could also be targeted in a similar manner. An attacker

can utilize a parameter that forwards a user to a page within the application and

change the value to admin pages for example, bypassing access control checks.

Modern web development frameworks are able to handle, to a certain degree, the mit-

igation of some of the vulnerabilities in OWASP’s top ten list. For example, Ruby on

Rails [Rails, 2014], CakePHP [CakePHP, 2015], and Django [Django, 2015], all offer similar

protection levels for common attacks such as SQL injection, Cross Site Scripting (XSS), and

Cross Site Request Forgery (CSRF). Figure 2.3 below shows how common open source web

development frameworks compare in handling the OWASP top ten vulnerabilities of 2013.

Figure 2.3: Django, Rails, CakePHP, and the OWASP Top Ten 2013 Vulnerabilities

The popularity of web development frameworks depends on several factors. For a devel-

oper, the language the framework is built on plays a large role in deciding whether or not to

use that framework. Choosing a framework built with a language the developer is comfort-

able with minimizes the learning curve. An open source well-documented framework with a

22

large community of followers helps the developer resolve any issues that might arise during

development. Finally, the choice of a web development framework to use really depends on

what a project is trying to achieve. Since Django had the highest rank with 5 of the 10

OWASP vulnerabilities ranked as mostly mitigated, it will be used as the web development

framework of choice for implementing Web Application Flow Whitelisting.

23

Chapter 3

Web Application Flow Whitelisting

3.1 Background and Problem Domain

The increased usage of the Internet has mandated the presence of web-facing applica-

tions for many organizations. Following today’s nimble development trend, web application

developers employ web development frameworks to take advantage of pre-written common

features found across many web applications. Using frameworks, thus, allows developers to

focus on the unique requirements, functionalities, and security considerations particular to

the application under development.

There is a need for agile practices to address security issues in web applications. While

web development frameworks handle some of the common web application vulnerabilities

such as SQL injection and cross site scripting, they can not handle application specific

vulnerabilities; those vulnerabilities must be addressed by the developer. As hackers become

more sophisticated in exploiting vulnerabilities, developers need to build application specific

security into their web applications.

Web application flow whitelisting provides the developer with a way to make their

applications more secure by detecting bad behavior or malicious use, rejecting that behavior,

and redirecting the user to a safe view.

3.2 Defining Web Application Flow Whitelisting

The disparity between intended behavior and actual behavior of a web application may

be indicative of malicious use or implementation flaws. This research focuses on OWASP’s

4th and 7th web vulnerabilities; Insecure Direct Object References and Missing Function

24

Level Access Control. The objective of this research is to build security into the design of a

web application by predetermining its allowed flow. This needs to be done in a lightweight,

intuitive manner. When the developer designs the intended flow of a web application and the

interactions between the different components within it, he can monitor the actual behavior

against a list of allowed interactions. Any sequence of flow not specified in that list would

be rejected by the application’s logic and the application would then resort to a safe state.

The term interactions here encompasses user permissions, application flow, and, in MVC

terminology, what data each controller has access to. The term flow refers to the series and

order of navigational steps taken to complete a certain task on a web application.

This research defines, creates, and enforces a list of allowed interactions within a web

application’s flow. We refer to it as ‘web application flow whitelisting’. A ‘whitelist’ is

a list of allowed interactions. It dictates the flow of a web application and which HTTP

request/response exchanges occur within it. Defining the elements that comprise a whitelist

should be done during the design phase of development

Ideally, a ‘whitelist’ would be created dynamically by the web application through the

use of a behavior monitoring tool. However, for the purpose of proving whether or not a web

application’s security improves with whitelisting, a statically created ‘whitelist’ is sufficient.

The whitelist resides within a web application framework’s middleware to intercept HTTP

requests and render the allowed response. Every time a transition between one view and

the next occurs, the HTTP request is checked against the ‘whitelist’ before any response is

rendered. If a transition is not allowed by the whitelist, the flow redirects the user to a safe

view.

3.2.1 Formal Definition of the Whitelist

The whitelist is defined as a tuple 〈C,D,W, S〉, where:

• C is a set {u, c1, c2, .., cn}, where c1, c2, .., cn are components within the system bound-

ary and u represents a component outside the system boundary.

25

• D is a set {d1, d2, .., dn}, where d1, d2, .., dn are conditions for transitions that occur

within the application. Every cell in a matrix of size |C|X |C| contains a distinct

subset x, {x : x ⊆ D}. If the evaluation of the conditions in x returns TRUE, then

that ordered pair for the transition from corigin to cdestination is added to W.

• W is a set of all ordered pairs {(co, cd) : co, cd ∈ C} each pair represents an allowed

transition from an origin component co to a destination component cd and,

• S is a matrix of size |C|X |C| Scocd = cs specifies a safe component {cs : cs ∈ C} when

cd can not follow co

A transition between one component to another is dictated by a Transition Function

whereby a transition from corigin to cdestination occurs if and only if (co, cd) ∈ W , else the

transition function is called on (co, Scocd).

T (co, cd) =


cd, if(co, cd) ∈ W

otherwise,

T (co, Scocd)

There are several operations that are performed on the whitelist. The operations are

divided into two categories according to when they take place. The operations that are

carried out during development are:

• Create (co, cd) in W: adds an ordered pair to the relation.

• Delete (co, cd) from W: removes an ordered pair from the relation.

• Enter 〈dx〉 into D: adds a condition dx to the set D.

• Delete 〈dx〉 from D: removes the condition dx from the set D.

• Add 〈dx〉 to subset x in Wcocd .

• Remove 〈dx〉 from subset x in Wcocd .

26

• Enter 〈cs〉 into Scocd .

• Update 〈cs〉 in Scocd .

The operations carried out at runtime are:

• Compute T (co, cd)

• Verify co → cd:

cd can follow co IFF all conditions belonging to subset x in Wcocd evaluate to

TRUE.

Else the transition is to cs

The set of all components (C) and the relation W are represented in a zero-one matrix,

where 1 signifies an allowed transition and 0 means that the transition is disallowed. Each

cell in the matrix will have a zero or 1 value based on the evaluation of a subset of conditions.

Matrix (S) would contain a safe component to transition to in case the transition from co to

cd fails. Representations of W and S are shown in Tables 3.1, 3.2 and 3.3 respectively.

u c1 c2 c3 c4 c5

u NA distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} }

c1 distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} }

c2 distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} }

c3 distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} }

c4 distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} }

c5 distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} } distinct subset x {x : x ⊆ D} }

Table 3.1: Representation of W with every cell containing a subset of conditions - NA -
represents Not Applicable and a 1 is placed for transitions occurring outside the system boundary

27

u c1 c2 c3 c4 c5
u 1∗ {0,1} {0,1} {0,1} {0,1} {0,1}
c1 {0,1} {0,1} {0,1} {0,1} {0,1} {0,1}
c2 {0,1} {0,1} {0,1} {0,1} {0,1} {0,1}
c3 {0,1} {0,1} {0,1} {0,1} {0,1} {0,1}
c4 {0,1} {0,1} {0,1} {0,1} {0,1} {0,1}
c5 {0,1} {0,1} {0,1} {0,1} {0,1} {0,1}

Table 3.2: Representation of W with each cell containing a 0 or 1 from the resulting evaluation
of a subset of conditions - For the sake of completion, a 1 is placed for transitions occurring outside the
system boundary

u c1 c2 c3 c4 c5
u NA cs cs cs cs cc
c1 cs cs cs cs cs cs
c2 cs cs cs cs cs cs
c3 cs cs cs cs cs cs
c4 cs cs cs cs cs cs
c5 cs cs cs cs cs cs

Table 3.3: Representation of Matrix S - NA - represents Not Applicable and a 1 is placed for transitions
occurring outside the system boundary

3.2.2 Building the Whitelist

In order for a developer to build the whitelist, he/she must start with identifying the

web application’s intended behavior by creating a workflow that illustrates exactly how

the application is intended to behave. The workflow should contain all components of an

application and any intended transition that occurs from one component to another. Any

internal components (subroutines) must also be included in the workflow. Once the workflow

is completed, the developer should examine every transition within the workflow and identify

a subset of conditions that must be evaluated in order for the transition to succeed. The

developer would then place the subset(s) of conditions in the corresponding cocd cell in matrix

W. The developer must also identify safe components to redirect to in case any evaluation of

the subset(s) of conditions fail. The safe components are placed in the corresponding cocd cell

in matrix S. From the initial workflow and the evaluation results of the subset(s) of conditions,

the developer extracts a zero-one representation of W. For the sake of simplicity, let’s call

28

this representation M, where |C|X |C| = M with Mcocd = 1 if (co, cd) ∈ W and Mcocd = 0 if

(co, cd) /∈ W . The workflow and/or whitelist may be adjusted during development iterations

as deemed appropriate. It should be noted that the conditions in set D should be simple

conditions rather than compound. Figure 3.1 below provides a summary of the required

steps in building a whitelist.

Figure 3.1: Steps for building a whitelist

3.2.3 A Web Application Flow Whitelisting Example

To further clarify the concepts above, a simple part of a generic web application will

be used as an example. Suppose you have a web application that requires a user to be

authenticated before being able to use the application. The application allows for 3 attempts

at login. If the user fails 3 consecutive login attempts, the application will lock the user out.

Once the user is authenticated, the application redirects to a personalized user portal view.

Within the user portal, there is a view to edit the user profile and another view that allows

29

the user to contact other users within the application. The user is allowed to logout at any

time from the user portal view, the edit profile view, and the contact other users view. A

workflow for this example is illustrated in figure 3.2.

Figure 3.2: Workflow of a generic web application

The workflow above consists of 5 components. Set C will therefore be:

C = {u, c1, c2, c3, c4, c5}. Recall that u represents a component outside the system boundary

and is included into set C for the sake of completion. As for the global set of conditions D,

let’s assume it contains the following conditions:

• d1 : user is anonymous.

• d2 : user is authenticated.

• d3 : session expiry time is valid.

• d4 : previous view

• d5 : subsequent view

30

• d6 : login attempts ≤ 3.

The whitelist would contain a subset of D within each cell of the matrix. Just as an exam-

ple, the whitelist below shows the subset for an allowed transition from c1 to c2 and another

subset that resulted in a disallowed transition from c5 to c4. For an allowed transition from c1

to c2, the subset of conditions is, x = {d2, d3, d4 = login view, d5 = user portal view, d6}. All

the conditions in x must evaluate to TRUE. For a disallowed transition from c5 to c4, the sub-

set of conditions to be evaluated is, x = {d2, d3, d4 = edit profile view or user portal view, d6}.

Clearly, transitioning from c5 to c4 will not be allowed as the first condition in the subset

(d2) is not met once the user has logged out. Table 3.4 below shows a partially completed

matrix W.

u c1 c2 c3 c4 c5

u NA distinct subset
x

distinct subset
x

distinct subset
x

distinct subset
x

distinct subset
x

c1 distinct subset
x

distinct subset
x

x = {d2,d3,d4 = login,
d5 = user portal, d6} distinct subset

x
distinct subset

x
distinct subset

x

c2 distinct subset
x

distinct subset
x

distinct subset
x

distinct subset
x

distinct subset
x

distinct subset
x

c3 distinct subset
x

distinct subset
x

distinct subset
x

distinct subset
x

distinct subset
x

distinct subset
x

c4 distinct subset
x

distinct subset
x

distinct subset
x

distinct subset
x

distinct subset
x

distinct subset
x

c5 distinct subset
x

distinct subset
x

distinct subset
x

distinct subset
x

x = {d2,d3,
d4 = user portal or edit profile, d6} distinct subset

x

Table 3.4: A partially completed matrix W showing only subsets of transitions c1 to c2 and
c5 to c4 - NA - represents Not Applicable and a 1 is placed for transitions occurring outside the system
boundary

From the workflow and conditions, the set of ordered pairs in W are:

W = { (u, u) , (u, c1) , (c1, c1) , (c1, c2) , (c2, c2) , (c2, c3) , (c2, c4) , (c2, c5) ,

(c3, c2) , (c3, c3) , (c3, c4) , (c3, c5) , (c4, c2) , (c4, c3) , (c4, c4) , (c4, c5) , (c5, c1) }

A zero-one representation of W can be used after all subsets of conditions have been

evaluated. Table 3.5 shows a depiction of W as a zero-ones matrix with allowed flow

represented by 1 and disallowed flow by 0.

31

u c1 c2 c3 c4 c5
u 1∗ 1 0 0 0 0
c1 0 1 1 0 0 0
c2 0 0 1 1 1 1
c3 0 0 1 1 1 1
c4 0 0 1 1 1 1
c5 0 1 0 0 0 0

Table 3.5: A zero-one representation of W based on workflow and the evaluation of conditions

The next step would be to populate matrix S with ‘safe’ components to redirect to in

case the evaluation of conditions fails and the transition is disallowed. Table 3.6 shows

matrix S for the example above.

u c1 c2 c3 c4 c5
u NA c1 c1 c1 c1 c1
c1 c5 c1 c1 c1 c1 c1
c2 c5 c5 c5 c1 c1 c5
c3 c5 c5 c5 c5 c5 c5
c4 c5 c5 c5 c5 c5 c5
c5 c5 c5 c5 c5 c5 c5

Table 3.6: Matrix S containing safe components to redirect to if a transition is disallowed or
the conditions fail

3.2.4 Perceived Benefits of Web Application Flow Whitelisting

From the theoretical description and definition of web application flow whitelisting

above, we perceive the approach to have several benefits. Whitelisting flow ensures that

the web application is in compliance with its intended behavior. It also accounts for unin-

tended behavior by redirecting the flow of the application to a safe component. As is the

case with whitelists in general, it is easier to comprise a whitelist of interactions between an

application’s components and check against it rather than allow all and any possible interac-

tions. Ranum [Schneier and Ranum, 2011] states that a whitelist‘s effectiveness depends on

the ability of the person who created it to assess what should be on it. For web application

flow whitelisting, the best person to create the whitelist and maintain it is the application’s

32

developer. Finally, the simplicity of whitelisting flow makes it possible to adapt it into any

existing software process or as a stand-alone security strengthening practice.

33

Chapter 4

Research Methodology:

Phase1: Small Case Validation

4.1 Assumptions

The approach of whitelisting an application flow is based on the following assumptions:

• The underlying levels of the OSI model are secure.

• The web development framework mitigates common web vulnerabilities and is secure.

• The web application is analyzed in terms of desired flow and behavior.

Given the assumptions stated above, the choice of the web development framework to

be used becomes vital. Therefore, part of this chapter is dedicated to discuss Django as

the web development framework of choice for validating web application flow whitelisting.

Further information on security in Django can be found in appendix A.

4.2 Background

Web sites today are no longer the collection of static pages they were twenty five years

ago. Most have turned into web applications with dynamic content offering users a vast array

of services. Developers nowadays turn to web development frameworks when constructing

web applications because the frameworks offer ready-to-use common features that are found

across many web applications. The frameworks also offer protection from common security

vulnerabilities, however, they do not mitigate application-specific vulnerabilities.

Django is a web development framework that is built on the the Model-View-Controller

(MVC) design pattern [Holovaty and Kaplan-Moss, 2009]. The MVC pattern separates the

34

user interface functionality from the application’s functionality without compromising the

application’s ability to respond to user input. The three components of the MVC pattern are

the model, where the application’s data resides; the view which displays some of the data and

receives user input; and the controller which handles the application’s functionality [Bass

et al., 2012]. In Django terms, the MVC pattern translates to Model-Template-View (MTV).

The template component corresponds to the view in MVC and the view in Django is “the

Python callback function for a particular URL, because that callback function describes

which data is presented” [Django, 2016]. The controller in Django is essentially the frame-

work itself which processes a user request and returns a response according to the URL

configuration [Django, 2016]. The Django framework is a ‘batteries included’ framework

which means that it provides the common functionality required for building web applica-

tions without the need to resort to separate libraries or packages [Makai, 2016]. Django is

comprised of several main components [Django, 2016] [Makai, 2016] [Wikipedia, 2016b]:

• Lightweight web server for development and testing.

• Template system that can be used to create HTML content on pages.

• System to handle receiving, preparing and processing HTML forms.

• Caching framework that works with different types of caching methods.

• Series of built-in middleware classes (as well as the ability to add custom written ones)

that are invoked during the request-response processing cycle.

• Clean URL scheme where URLs are written as simple regular expressions and mapped

to Python callback functions.

• Object-relational mapper.

• Built-in commands for database schema migrations.

• Built-in admin interface.

35

• Support for internationalization.

Figure 4.1: Overview of the Django framework [Yates, 2009]

4.2.1 The Request-Response Cycle in Django

Django’s middleware classes are a set of hooks that are plugged into the request-response

life cycle. Each class in the built-in middleware classes provides certain functionality. For

instance, the SecurityMiddleware is used to enhance the application’s security, the Session-

Middleware provides support for sessions, and the AuthenticationMiddleware adds a user

attribute representing the currently logged in user to every HTTP request [Django, 2016].

Django also allows developers to write their own custom middleware classes. This feature

in Django facilitates the implementation of the whitelist. The basic structure of a Django

project is as follows:

– mysite/

– manage.py

– mysite/

36

– init .py

– settings.py

– urls.py

– wsgi.py

– myapp/

– init .py

– admin.py

– migrations/

– init .py

– models.py

– tests.py

– views.py

The settings.py file contains the global settings of a Django project which includes

database configuration, middleware classes, and other application-specific settings. Custom-

written middleware needs to be declared within the MIDDLEWARE CLASSES attribute in

settings.py.

4.3 Writing Custom Middleware Class for Web Application Flow Whitelisting

The order in which the middleware classes are declared in settings.py is significant

because Django applies the middleware in that order. Figure 4.2 below shows the order of

middleware classes as well as the hooks for the request-response cycle.

37

Figure 4.2: Middleware processing order [Django, 2016]

There are two hooks for the request phase of the cycle (process request() and pro-

cess view()) and three for the response phase (process exception(), process template response(),

and process response()). The functions of the hooks provided by Django are as follows

[Django, 2016] [Mele, 2015]:

• process request(request): takes an HttpRequest object (request) and is called on each

request before Django decides which view to execute.

• process view(request, view func, view args, view kwargs): is called just before a view

executes. It has access to view func which is the Python function Django is about to

use as well as the arguments it receives.

• process exception(request, exception): is called only if a view throws an exception,

where (request) is an HttpRequest object and (exception) is an Exception object raised

by the view function.

38

• process template response(request, response): is called once a view completes execu-

tion and only if the response instance has a render() method which indicates that it is

a TemplateResponse object.

• proces response(request, response): takes an HttpRequest object (request) and HttpRe-

sponse or StreamingHttpResponse object (response). It is called on all responses before

they are returned to the browser.

Whitelisting flow can be implemented in Django using custom written middleware. The

purpose of the whitelist middleware is to intercept an incoming request, inspect its com-

pliance (or lack thereof) with intended behavior, and invoke the corresponding response.

The whitelist middleware customizes the process request() and process view() hooks pro-

vided by Django’s request/response cycle. The psuedo code in whitelist middleware for

process request() is:

1. State any URLs that must be excluded from whitelisting (such as admin site URLs)

2. Set flag Notallowed to True (Initially all behavior is disallowed)

3. Check for allowed behavior by:

(a) Get the HTTP REFERER attribute.

(b) If flow from HTTP REFERER to a requested URL is allowed (the evaluation of

the subset of conditions for that particular transition resulted in 1), then set flag

Notallowed to False.

(c) Return None for the allowed flow to continue to process view() function.

The psuedo code for process view() is:

1. If Notallowed is True, then look for the safe view for that particular transitions

2. Return the safe view.

39

3. Else, Return None (for the allowed transition to continue the request/response cycle

and render a response).

Since the processing order of middleware is of utmost significance, the custom whitelist

middleware should be declared at the end of the MIDDLEWARE CLASSES attribute so that

it is the last middleware called when a request is being processed, and the first middleware

called when a response is being rendered. Furthermore, custom middleware is placed in

a folder named ’middleware’ and should be in the same folder that contains settings.py.

Custom written middleware fits within the structure of a Django project in the following

way:

– mysite/

– manage.py

– mysite/

– middleware/

– init .py

– mycustommiddleware.py

– init .py

– settings.py

– urls.py

– wsgi.py

– myapp/

– init .py

– admin.py

– migrations/

– init .py

– models.py

– tests.py

– views.py

4.4 Hypothesis

Based on the description of web application flow whitelisting and how to implement it

on apps written in Django, we derived the following hypothesis:

• H0: Django applications that have a whitelisted flow show a greater than or equal to

number of security vulnerabilities than Django applications that have not had their

flow whitelisted.

40

• H1: Django applications that have a whitelisted flow show a lesser number of security

vulnerabilities than Django applications that have not had their flow whitelisted.

The aim of this research is to reject the null hypothesis H0 in favor of the alternative

hypothesis H1.

4.5 Validation of Web Application Flow Whitelisting: Need-A-Nerd student

apps

The validation of web application flow whitelisting was carried out in two phases. Phase

one applies whitelisting on a set of applications created by students as a requirement for

course COMP4970: Web Development with Django at Auburn University. Phase two applies

whitelisting on an open source Django application in production use. Before whitelisting

the applications, we needed to investigate whether or not they had any vulnerabilities to

begin with and if the vulnerabilities were application- or non-application-specific. Since

whitelisting addresses only application-specific vulnerabilities, we elected to test for and

eliminate all other non-application-specific vulnerabilities in the applications. In order to

achieve that, we tested the applications using an open source security scanner - OWASP’s

Zed Attack Proxy (ZAP).

4.5.1 Zed Attack Proxy (ZAP)

ZAP is a free, open source, cross-platform web application security scanner that provides

the means to conduct both automated and manual security testing [OWASP, 2016]. The

reason ZAP was selected as the security scanner of choice is because it specifically tests for

OWASP’s top ten web vulnerabilities. The automated testing scans provided by ZAP are

divided into two types: passive scanning and active scanning. ZAP also provides several

manual testing tools such as Fuzzer, Spider, Diviner, and Plug-n-Hack. Table 4.1 below

provides details about ZAP tools used to test for OWASP’s top ten web vulnerabilities.

41

Method of Testing Common Components
The ’common components’ can be used for pretty much everything, so can be used to help detect all of the Top 10

Manual Intercepting proxy
Manual Manual request / resend
Manual Scripts
Manual Search

A1 Injection
Automated Active Scan Rules (Release, Beta* and Alpha*)
Automated SQL Map Injection Engine (Beta*)

Manual Fuzzer, combined with the FuzzDb (Release)* and SVN Digger (Beta)* files
Manual Diviner (Alpha)*

A2 Broken Authentication and Session Management
Manual Http Sessions
Manual Spider
Manual Forced Browse (Beta)
Manual Token Generator (Beta)*
Manual Diviner (Alpha)*
Manual Vehicle (Alpha)*

A3 Cross-Site Scripting (XSS)
Automated Active Scan Rules (Release)

Manual Fuzzer, combined with the FuzzDb (Release)* and SVN Digger (Beta)* files
Manual Plug-n-Hack (Beta)
Manual Diviner (Alpha)*

A4 Insecure Direct Object References
Manual Params tab
Manual Diviner (Alpha)*

A5 Security Misconfiguration
Automated Active Scan Rules (Release, Beta* and Alpha*)
Automated Passive Scan Rules (Release, Beta* and Alpha*)

Manual HttpsInfo (Alpha)*
Manual Port Scanner (Beta)*
Manual Technology detection (Alpha)*

A6 Sensitive Data Exposure
Automated Active Scan Rules (Release, Beta* and Alpha*)
Automated Passive Scan Rules (Release, Beta* and Alpha*)

A7 Missing Function Level Access Control
Manual Spider
Manual Ajax Spider (Beta)
Manual Session comparison
Manual Access Control (Currently only available in Weekly release)

A8 Cross-Site Request Forgery
Automated Active Scan Rules (Beta)*
Automated Passive Scan Rules (Beta)*

Manual Generate Anti CSRF Test Form
A9 Using Components with Known Vulnerabilities

Automated Passive Scan Rules (Alpha)* and Retire (Alpha)*
Manual Technology detection (Alpha)*
A10 Unvalidated Redirects and Forwards

Automated Active Scan Rules (Release)
Manual Fuzzer, combined with the FuzzDb (Release)* and SVN Digger (Beta)* files
Manual Diviner (Alpha)*

* The starred add-ons are not included by default in the full ZAP release
but can be downloaded from the ZAP Marketplace via the Manage add-ons button on the ZAP main toolbar.

Table 4.1: Automatic and manual components of ZAP recommended for testing OWASP
top 10 2013 vulnerabilities [OWASP, 2016].

ZAP’s automatic scans, both passive and active, were used to test all the apps for

non-application-specific vulnerabilities. The vulnerabilities found and the mitigation policy

applied are discussed in section 4.6.

42

4.5.2 Apps from COMP4970: Web Development with Django

As part of the course requirements, students taking COMP4970 were asked to develop a

working Django web app. The app, called Need-A-Nerd (NaN), is used by students looking

for software development jobs as well as employers who can post job offerings. The goal of

NaN is to link students that have a certain set of skills with jobs that require that skill set.

Overview of NaN

The main functional requirements of NaN can be categorized as follows:

1. User Authorization:

(a) NaN is restricted to registered users.

(b) NaN users are either Students or Employers. Employers can either be on-campus

(affiliated with Auburn University) or off-campus (not affiliated with Auburn

University).

(c) Students and on-campus employers are registered immediately upon request.

(d) For off-campus employers, NaN administrator approval is required upon registra-

tion.

(e) Registered users may un-register at any time.

2. Student functionality:

(a) Each student has a profile consisting of his/her name, email address, academic

major, and an optional resume. The resume lists the student’s skills.

(b) Students may edit their profile and create, delete, or edit their resume.

3. Employer functionality:

43

(a) Each employer has a profile consisting of his/her name, email address, phone num-

ber, a description (optional), and off-campus employers must include a mailing

address.

4. Student-Employer interaction:

(a) An employer can post a job description. The description would contain an ex-

planation of the job with the skills required, start date, stop date, and (optional)

salary information. Dates can be TBD (To Be Determined).

(b) The employer who posted a job can edit, delete, or make the posting ‘viewable’

for students.

(c) Employers can search for students by name. If no search criteria are provided, all

students would be listed in the search result.

(d) Employers can list all jobs posted by other employers.

(e) Students can search and list jobs available for viewing.

(f) Students are notified when a new job is posted.

(g) Students may NOT see other students’ profiles.

(h) A student can apply for a specific job, and the employer who posted the job would

be notified of the application.

(i) Students may apply for as many jobs as they wish.

(j) A student can view the jobs to which he/she has applied.

(k) Employers can view students’ profiles and contact a student for a specific job.

In order to whitelist NaN apps, we needed to construct a workflow that illustrates both

allowed and disallowed behavior based on the requirements listed above. For the sake of

clarity, the workflow is divided into three parts: A workflow for authorization functionality, a

workflow for student functionality, and a workflow for employer functionality. Each workflow

44

diagram below (figures 4.3, 5.1, and 4.5) shows both allowed behavior (depicted using solid

arrows) and disallowed application behavior (dashed arrows).

Figure 4.3: NaN Authorization workflow.

45

Figure 4.4: NaN Student workflow.

Figure 4.5: NaN Employer workflow.

46

Based on the authorization workflow of NaN, we derived the whitelist 〈C,D,W, S〉 as

follows:

Set C is the set of all components of NaN authorization and consists of: C = (u,

homepage, registration, Login, user portal, Deactivate Account, Unregister, Logout).

As for the global set of conditions D, it contains the following conditions (Table 4.2):

• d1: anonymous user permissions,

• d2: current authenticated user permissions and data,

• d3: valid session expiry time,

• d4: previous view,

• d5: login attempts ≤ 3.

u homepage registration login user portal deactivate ac unregister logout

u D={} D={} D={d1,
d4 = homepage}

D={d1,
d4 = homepage}

D={d2,
d4 = login}

D={d2,
d4 = login}

D={d2,
d4 = user portal}

D={d2,
d4 = user portal}

homepage D={d1,
d4 = homepage}

D={} D={d1,
d4 = homepage}

D={d1,
d4 = homepage}

D={d2,
d4 = login}

D={d2,
d4 = login}

D={d2,
d4 = user portal}

D={d2,
d4 = user portal}

registration D={d1,
d4 = homepage}

D={d1,
d4 = homepage} D={} D={d1,

d4 = registration}
D={d2,

d4 = login}
D={d2,

d4 = login}
D={d2,

d4 = user portal}
D={d2,

d4 = user portal}

login D={d1,
d4 = logout}

D={d2,
d4 = login}

D={d2,
d4 = login}

D={d1,
d5 <= 3}

D={d2,
d4 = login}

D={d2, d4 = login,
d5 >3}

D={d2,
d4 = user portal}

D={d2,
d4 = user portal}

user portal D={d2,
d4 = logout}

D={d2,
d4 = logout}

D={d2,
d4 = logout}

D={d2,
d4 = logout}

D={d2,
d3}

D={d2,
d4 = login}

D={d2,
d4 = user portal}

D={d2,
d4 = user portal}

deactivate ac D={d1,
d4 = login}

D={d1,
d4 = deactivate ac}

D={d1,
d4 = deactivate ac}

D={d1,
d4 = homepage}

D={d2,
d4 = login}

D={} D={d2,
d4 = user portal}

D={d2,
d4 = user portal}

unregister D={d1,
d4 = logout}

D={d2,
d4 = logout}

D={d2,
d4 = logout}

D={d2,
d4 = logout}

D={d2,
d4 = login}

D={d2,
d4 = login}

D={} D={d2,
d4 = unregister}

logout D={d1,
d4 = logout}

D={d1,
d4 = logout}

D={d1,
d4 = homepage}

D={d1,
d4 = logout}

D={d2,
d4 = login}

D={d2,
d4 = login}

D={d2,
d4 = user portal}

D={}

Table 4.2: Matrix W with a distinct subset of conditions in each cell

47

From evaluating the subset of conditions for each transition in 4.2, the set of ordered

pairs in W are:

W = { (u, u) , (u, homepage) , (homepage, u) , (homepage, homepage) ,

(homepage, registration) , (homepage, login) , (registration, homepage) ,

(registration, registration) , (registration, login) , (login, homepage) , (login, registration) ,

(login, login) , (login, user portal) , (login, deactivate account) , (user portal, user portal) ,

(user portal, unregister) , (user portal, logout) , (deactivate account, homepage) ,

(deactivate account, registration) , (deactivate account, deactivate account) ,

(unregister, registration) , (unregister, unregister) , (unregister, logout) , (logout, u) ,

(logout, homepage) , (logout, login) , (logout, logout) }

A zero-one representation of W is shown in table 4.3, where allowed flow is represented

by 1 and disallowed flow by 0.

u homepage registration login user portal deactivate ac unregister logout
u 1∗ 1 0 0 0 0 0 0

homepage 1 1 1 1 0 0 0 0
registration 0 1 1 1 0 0 0 0

login 0 1 1 1 1 1 0 0
user portal 0 0 0 0 1 0 1 1

deactivate ac 0 1 1 0 0 1 0 0
unregister 0 0 1 0 0 0 1 1

logout 1 1 0 1 0 0 0 1
* For the sake of completion, a 1 is placed for transitions outside the system boundary as they are

not under the jurisdiction of the whitelist.

Table 4.3: A zero-one representation of W for NaN Authorization workflow.

We specified matrix S containing the ‘safe’ components to redirect to in case the evalu-

ation of conditions fails and the transition is disallowed. Table 4.4 shows matrix S for NaN

authorization workflow.

48

u homepage registration login user portal deactivate ac unregister logout
u NA∗ homepage homepage homepage homepage homepage homepage homepage
homepage u homepage homepage homepage login login login login
registration homepage homepage registration homepage login login login login
login homepage homepage homepage login login login login login
user portal logout logout logout logout login logout login login
deactivate ac homepage homepage homepage homepage registration homepage login login
unregister homepage homepage homepage homepage homepage homepage homepage homepage
logout u homepage homepage login login login login logout
u represents a component outside the system boundary.
* NA represents Not Applicable and a 1 is placed for transitions outside the system boundary.

Table 4.4: Matrix S for NaN Authorization workflow with safe components to redirect to if
a transition is disallowed

Based on the Student workflow of NaN (figure 4.4), we derived the whitelist 〈C,D,W, S〉

as follows:

Set C is the set of all components of NaN Student workflow and consists of: C = (login,

student profile, edit profile, create resume, edit resume, all jobs, job search, job application,

unregister, logout).

As for the Student workflow, the set of conditions D contains the following:

• d1: anonymous user permissions,

• d2: current authenticated user permissions and data,

• d3: valid session expiry time,

• d4: previous view,

• d5: login attempts ≤ 3.

The conditions that must be checked for each transition to succeed are detailed in

(Table 4.5):

49

login
student
profile

edit profile create resume edit resume all jobs job search
job

applications
logout unregister

login D={d1, d5} D={d2,
d4 = login}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2, d4 = all jobs
or job search}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

student
profile

D={d2,
d4 = logout}

D={d2, d3} D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2, d4 = all jobs
or job search}

D={} D={d2,
d4 = stud profile}

edit
profile

D={d2,
d4 = logout}

D={d2,
d4 = edit profile}

D={d2, d3} D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2, d4 = all jobs
or job search}

D={} D={d2,
d4 = stud profile}

create
resume

D={d2,
d4 = logout}

D={d2,
d4 = create resume}

D={d2,
d4 = stud profile} D={d2, d3} D={d2,

d4 = stud profile}
D={d2,

d4 = stud profile}
D={d2,

d4 = stud profile}

D={d2, d4 = all jobs
or job search} D={} D={d2,

d4 = stud profile}

edit
resume

D={d2,
d4 = logout}

D={d2,
d4 = edit resume} D={d2,

d4 = stud profile}
D={d2,

d4 = stud profile}
D={d2, d3} D={d2,

d4 = stud profile}
D={d2,

d4 = stud profile}

D={d2, d4 = all jobs
or job search} D={} D={d2,

d4 = stud profile}

All
jobs

D={d2,
d4 = logout}

D={d2,
d4 = all jobs}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2, d3} D={d2,
d4 = stud profile}

D={d2,
d4 = all jobs}

D={} D={d2,
d4 = stud profile}

job
search

D={d2,
d4 = logout}

D={d2,
d4 = job search}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2, d3} D={d2,
d4 = job search}

D={} D={d2,
d4 = stud profile}

job
application

D={d2,
d4 = logout}

D={d2, d4 = all jobs
or job search}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = job application}

D={d2,
d4 = job application} D={d2, d3} D={} D={d2,

d4 = stud profile}

logout
D={d2,

d4 = logout} D={d2,
d4 = login}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = job search} D={} D={d2,

d4 = login}

unregister
D={d2,

d4 = logout} D={d2,
d4 = login}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = stud profile}

D={d2,
d4 = job search} D={} D={}

Table 4.5: Matrix W for Student workflow with a distinct subset of conditions in each cell

From evaluating the subset of conditions for each transition in 4.5, the set of ordered

pairs in matrix W for Student workflow are:

W = { (login, login) , (login, stud profile) , (stud profile, stud profile) ,

(stud profile, edit profile) , (stud profile, create resume) , (stud profile, edit resume) ,

(stud profile, all jobs) , (stud profile, job search) , (stud profile, logout) ,

(stud profile, unregister) , (edit profile, stud profile) , (edit profile, edit profile) ,

(edit profile, logout) , (create resume, stud profile) , (create resume, create resume) ,

(create resume, logout) , (edit resume, stud profile) , (edit resume, edit resume) ,

(edit resume, logout) , (all jobs, stud profile) , (all jobs, all jobs) ,

(all jobs, job application) , (all jobs, logout) , (job search, stud profile) ,

(job search, job search) , (job search, job application) , (job search, logout) ,

(job application, stud profile) , (job application, all jobs) , (job application, job search) ,

(job application, job application) , (job search, logout) , (logout, login) ,

(logout, logout) , (unregister, logout) , (unregister, unregister) }

50

A zero-one representation of W for Student workflow is shown in table 4.6.

login
student
profile

edit profile create resume edit resume all jobs job search
job

applications
logout unregister

login
1 1 0 0 0 0 0 0 0 0

student
profile

0 1 1 1 1 1 1 0 1 1

edit
profile

0 1 1 0 0 0 0 0 1 0

create
resume

0 1 0 1 0 0 0 0 1 0

edit
resume

0 1 0 0 1 0 0 0 1 0

All
jobs

0 1 0 0 0 1 0 1 1 0

job
search

0 1 0 0 0 0 1 1 1 0

job
application

0 1 0 0 0 1 1 1 1 0

logout
1 0 0 0 0 0 0 0 1 0

unregister
0 0 0 0 0 0 0 0 1 1

Table 4.6: A zero-one representation of W for NaN Student workflow.

We populated matrix S with ‘safe’ components to redirect to when the evaluation of

conditions fails and the transition is disallowed. Table 4.7 shows matrix S for NaN Student

workflow.

login stud profile edit profile create resume edit resume all jobs job search job applications logout unregister
login login login login login login login login login login login
stud profile logout logout logout logout logout logout logout logout logout logout
edit profile logout logout logout logout logout logout logout logout logout logout
create resume logout logout logout logout logout logout logout logout logout logout
edit resume logout logout logout logout logout logout logout logout logout logout
all jobs logout logout logout logout logout logout logout logout logout logout
job search logout logout logout logout logout logout logout logout logout logout
job application logout logout logout logout logout logout logout logout logout logout
logout login login login login login login login login login login
unregister homepage homepage homepage homepage homepage homepage homepage homepage homepage homepage

Table 4.7: Matrix S for NaN Student workflow with safe components to redirect to if a
transition is disallowed

Finally, for NaN Employer workflow (figure 4.5), we derived the whitelist 〈C,D,W, S〉

as follows:

Set C is the set of all components of NaN Employer workflow and consists of: C =

(login, employer profile, edit profile, create job, all jobs, specific job, student search, view

applicants, contact student, unregister, logout).

51

The Employer workflow has the set of conditions D which contain the following:

• d1: anonymous user permissions,

• d2: current authenticated user permissions and data,

• d3: valid session expiry time,

• d4: previous view,

• d5: login attempts ≤ 3.

The conditions that must be checked for each transition to succeed are detailed in

(Table 4.8):

login
employer

profile
edit profile create job all jobs specific job stud search

view
applicants

contact
student

logout unregister

login D={d1, d5} D={d2,
d4 = login}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2, d4 = specific job
or contact stud}

D={d2, d4 = stud search
or view applicants}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

employer
profile

D={d2,
d4 = logout}

D={d2, d3} D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2, d4 = specific job
or contact stud}

D={d2, d4 = stud search
or view applicants}

D={} D={d2,
d4 = emp profile}

edit
profile

D={d2,
d4 = logout}

D={d2,
d4 = edit profile}

D={d2, d3} D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2, d4 = specific job
or contact stud}

D={d2, d4 = stud search
or view applicants}

D={} D={d2,
d4 = emp profile}

create
job

D={d2,
d4 = logout}

D={d2,
d4 = create job}

D={d2,
d4 = emp profile}

D={d2, d3} D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2, d4 = specific job
or contact stud}

D={d2, d4 = stud search
or view applicants}

D={} D={d2,
d4 = emp profile}

all
jobs

D={d2,
d4 = logout}

D={d2,
d4 = all jobs}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2, d3} D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2, d4 = specific job
or contact stud}

D={d2, d4 = stud search
or view applicants}

D={} D={d2,
d4 = emp profile}

specific
job

D={d2,
d4 = logout}

D={d2,
d4 = specific job}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2, d3} D={d2,
d4 = emp profile}

D={d2,
d4 = specific job }

D={d2,
d4 = view applicants}

D={} D={d2,
d4 = emp profile}

stud
search

D={d2,
d4 = logout}

D={d2,
d4 = stud search}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2, d3} D={d2, d4 = specific job
or contact stud}

D={d2,
d4 = stud search}

D={} D={d2,
d4 = emp profile}

view
applicants

D={d2,
d4 = logout}

D={d2,
d4 = view applicants}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = view applicants}

D={d2,
d4 = view applicants}

D={d2, d3} D={d2,
d4 = contact stud}

D={} D={d2,
d4 = emp profile}

contact
stud

D={d2,
d4 = logout}

D={d2,
d4 = contact stud}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = contact stud}

D={d2,
d4 = contact stud}

D={d2, d3} D={} D={d2,
d4 = emp profile}

logout
D={d2,

d4 = logout} D={d2,
d4 = login}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2, d4 = specific job
or contact stud}

D={d2, d4 = stud search
or view applicants}

D={} D={d2,
d4 = login}

unregister
D={d2,

d4 = logout} D={d2,
d4 = login}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2,
d4 = emp profile}

D={d2, d4 = specific job
or contact stud}

D={d2, d4 = stud search
or view applicants}

D={} D={d2,
d4 = login}

Table 4.8: Matrix W for Employer workflow with a distinct subset of conditions in each cell

52

From evaluating the subset of conditions for each transition in 4.8, the set of ordered

pairs in matrix W for Employer workflow are:

W = { (login, login) , (login, emp profile) , (emp profile, emp profile) ,

(emp profile, edit profile) , (emp profile, create job) , (emp profile, all jobs) ,

(emp profile, specific job) , (emp profile, stud search) , (emp profile, logout) ,

(emp profile, unregister) , (edit profile, emp profile) , (edit profile, edit profile) ,

(edit profile, logout) , (create job, emp profile) , (create job, create job) ,

(create job, logout) , (all jobs, emp profile) , (all jobs, all jobs) , (all jobs, specific job) ,

(all jobs, logout) , (specific job, emp profile) , (specific job, emp profile) ,

(specific job, all jobs) , (specific job, specific job) , (specific job, view applicants) ,

(specific job, logout) , (stud search, emp profile) , (stud search, stud search) ,

(stud search, contact stud) , (stud search, logout) , (view applicants, emp profile) ,

(view applicants, specific job) , (view applicants, view applicants) ,

(view applicants, contact stud) , (view applicants, logout) , (contact stud, emp profile) ,

(contact stud, stud search) , (contact stud, view applicants) , (contact stud, contact stud) ,

(contact stud, logout) , (logout, login) , (logout, logout) ,

(unregister, logout) , (unregister, unregister) }

A zero-one representation of W for Employer workflow is shown in table 4.9. Matrix

S (table 4.10) shows the ‘safe’ components to redirect to when the evaluation of conditions

fails and the transition is disallowed.

53

login
employer

profile
edit profile create job all jobs specific job stud search view applicants contact stud logout unregister

login
1 1 0 0 0 0 0 0 0 0 0

employer
profile

0 1 1 1 1 1 1 0 0 1 1

edit
profile

0 1 1 0 0 0 0 0 0 1 0

create
job

0 1 0 1 0 0 0 0 0 1 0

all
jobs

0 1 0 0 1 1 0 0 0 1 0

specific
job

0 1 0 0 1 1 0 1 0 1 0

stud
search

0 1 0 0 0 0 1 0 1 1 0

view
applicants

0 1 0 0 0 1 0 1 1 1 0

contact
stud

0 1 0 0 0 0 1 1 1 1 0

logout 1 0 0 0 0 0 0 0 0 1 0
unregister 0 0 0 0 0 0 0 0 0 1 1

Table 4.9: A zero-one representation of W for NaN Employer workflow.

login emp profile edit profile create job all jobs specific job stud search view applicants contact stud logout unregister
login login login login login login login login login login login login
emp profile logout logout logout logout logout logout logout logout logout logout logout
edit profile logout logout logout logout logout logout logout logout logout logout logout
create job logout logout logout logout logout logout logout logout logout logout logout
all jobs logout logout logout logout logout logout logout logout logout logout logout
specific job logout logout logout logout logout logout logout logout logout logout logout
stud search logout logout logout logout logout logout logout logout logout logout logout
view applicant logout logout logout logout logout logout logout logout logout logout logout
contact stud logout logout logout logout logout logout logout logout logout logout logout
logout login login login login login login login login login login login
unregister homepage homepage homepage homepage homepage homepage homepage homepage homepage homepage homepage

Table 4.10: Matrix S for NaN Employer workflow with safe components to redirect to if a
transition is disallowed

4.6 Analysis

There were a total of 19 teams who delivered NaN applications to fulfill the COMP4970

project requirement. Four apps were dismissed because they did not achieve a passing grade

on the project or they did not function due to their use of a third party package that was no

longer available. All apps were upgraded from Django 1.2 to Django 1.8.5 to take advantage

of the most recent version of Django. No feature changes were made to the projects. Since

the remaining 15 apps did not implemented all of NaN’s functionality, we based our whitelist

and workflow on the functionalities implemented by most teams. Table 4.11 below shows a

list of NaN features and the team projects which implemented them.

54

F
e
a
tu

re
L

is
t

Team1

Team2

Team3

Team4

Team5

Team6

Team7

Team8

Team9

Team10

Team11

Team12

Team13

Team14

Team15

TOTALCOUNT

Auth

1
.1

R
e
st

ri
c
te

d
to

re
g
is

te
re

d
u
se

rs
X

X
X

X
X

X
X

X
X

X
X

X
X

X
N

O
1
4

1
.2

.1
U

se
r

d
e
si

g
n
a
te

d
a
s

st
u
d
e
n
t

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
1
5

1
.2

.2
U

se
r

d
e
si

g
n
a
te

d
a
s

o
n

c
a
m

p
u
s

e
m

p
lo

y
e
r

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
1
5

1
.2

.3
U

se
r

d
e
si

g
n
a
te

d
a
s

o
ff

c
a
m

p
u
s

e
m

p
lo

y
e
r

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
1
5

1
.3

.1
R

e
g
is

te
re

d
u
se

rs
m

a
y

u
se

N
a
n

im
m

e
d
ia

te
ly

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
1
5

1
.3

.2
O

ff
c
a
m

p
u
s

e
m

p
lo

y
e
r

m
u
st

b
e

a
p
p
ro

v
e
d

b
4

re
g
is

te
re

d
N

O
N

O
N

O
N

O
N

O
N

O
N

O
N

O
N

O
N

O
N

O
N

O
N

O
N

O
N

O
0

1
.3

.3
R

e
g
is

te
re

d
u
se

rs
m

a
y

u
n
re

g
is

te
r

X
N

O
X

N
O

N
O

X
X

X
X

N
O

X
X

N
O

N
O

X
9

Std

2
.1

E
a
c
h

st
u
d
e
n
t

h
a
s

a
p
ro

fi
le

c
o
n
ta

in
in

g
n
a
m

e
,

e
m

a
il
,

m
a
jo

r,
a
n
d

(o
p
ti

o
n
a
l)

re
su

m
e

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
1
5

2
.2

E
a
c
h

st
u
d
e
n
t

c
a
n

e
d
it

h
is

/
h
e
r

p
ro

fi
le

a
n
d

c
re

a
te

,
d
e
le

te
o
r

e
d
it

th
e

re
su

m
e

X
N

O
X

X
N

O
X

N
O

X
X

N
O

N
O

N
O

N
O

X
X

8

Emp

3
.1

E
a
c
h

e
m

p
lo

y
e
r

h
a
s

a
p
ro

fi
le

c
o
n
ta

in
in

g
n
a
m

e
,

e
m

a
il
,

p
h
o
n
e

#
,

a
n
d

(o
p
ti

o
n
a
l)

d
e
sc

ri
p
ti

o
n

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
1
5

3
.2

o
ff

c
a
m

p
u
s

e
m

p
lo

y
e
rs

m
u
st

in
c
lu

d
e

a
m

a
il
in

g
a
d
d
re

ss
X

N
O

X
X

X
X

X
X

X
X

N
O

X
X

X
N

O
1
2

St-EmpInteraction

4
.1

A
jo

b
c
a
n

b
e

p
o
st

e
d

b
y

a
n

e
m

p
lo

y
e
r

c
o
n
ta

in
in

g
a

d
e
sc

ri
p
ti

o
n
,

sk
il
ls

re
q
u
ir

e
d
,

st
a
rt

,
e
n
d

a
n
d

(o
p
ti

o
n
a
l)

sa
la

ry
X

X
X

X
X

X
N

O
X

X
X

X
X

X
X

X
1
4

4
.2

T
h
e

e
m

p
lo

y
e
r

c
a
n

e
d
it

a
n
d

d
e
le

te
h
is

/
h
e
r

p
o
st

in
g

a
n
d

in
d
ic

a
te

if
p

o
st

in
g

is
v
ie

w
a
b
le

fo
r

st
u
d
e
n
ts

X
N

O
X

X
N

O
N

O
N

O
X

X
X

X
X

X
X

X
1
1

4
.3

E
m

p
lo

y
e
rs

c
a
n

se
a
rc

h
fo

r
a

st
u
d
e
n
t

b
y

n
a
m

e
,

if
n
o

n
a
m

e
p
ro

v
id

e
d

se
a
rc

h
re

tu
rn

s
a
ll

re
g
is

te
re

d
st

u
d
e
n
ts

X
N

O
N

O
X

X
X

N
O

X
X

X
X

N
O

X
X

X
1
1

4
.4

E
m

p
lo

y
e
rs

c
a
n

li
st

jo
b
s

p
o
st

e
d

b
y

o
th

e
r

e
m

p
lo

y
e
rs

X
X

X
X

X
N

O
N

O
X

X
N

O
X

N
O

X
X

X
1
1

4
.5

A
st

u
d
e
n
t

c
a
n

li
st

a
ll

jo
b
s

X
X

X
X

X
N

O
N

O
X

X
X

X
N

O
X

X
X

1
2

4
.6

A
st

u
d
e
n
t

c
a
n

o
n
ly

se
e

jo
b

d
e
sc

ri
p
ti

o
n
s

re
le

a
se

d
fo

r
v
ie

w
in

g
X

N
O

X
X

N
O

N
O

N
O

X
X

N
O

X
N

O
X

N
O

X
8

4
.7

S
tu

d
e
n
ts

a
re

n
o
ti

fi
e
d

w
h
e
n

a
n
e
w

jo
b

is
p

o
st

e
d

N
O

N
O

N
O

N
O

N
O

N
O

N
O

N
O

N
O

N
O

N
O

N
O

N
O

N
O

N
O

0
4
.8

S
tu

d
e
n
ts

c
a
n
n
o
t

se
e

o
th

e
r

st
u
d
e
n
ts

p
ro

fi
le

s
X

N
O

N
O

X
X

X
X

N
O

X
N

O
X

N
O

N
O

X
X

9

4
.9

A
st

u
d
e
n
t

c
a
n

a
p
p
ly

fo
r

a
jo

b
a
n
d

th
e

e
m

p
lo

y
e
r

w
h
o

p
o
st

e
d

th
e

jo
b

is
n
o
ti

fi
e
d

N
O

N
O

N
O

N
O

N
O

N
O

N
O

X
X

N
O

N
O

X
X

N
O

X
5

4
.1

0
A

st
u
d
e
n
t

c
a
n

se
e

jo
b
s

h
e
/
sh

e
a
p
p
li
e
d

fo
r

N
O

X
X

X
X

N
O

N
O

X
X

X
X

X
X

X
X

1
2

4
.1

1
A

n
e
m

p
lo

y
e
r

c
a
n

c
h
o
o
se

to
c
o
n
ta

c
t

a
st

u
d
e
n
t

re
g
a
rd

in
g

a
sp

e
c
ifi

c
jo

b
X

N
O

X
X

X
X

N
O

X
X

N
O

N
O

X
N

O
N

O
X

9

T
ab

le
4.

11
:

N
aN

te
am

p
ro

je
ct

s
w

it
h

im
p
le

m
en

te
d

(o
r

n
on

-i
m

p
le

m
en

te
d
)

fe
at

u
re

s

55

ZAP’s passive and active scans were run on each of the team project apps. The

non-application-specific vulnerabilities found and the mitigation strategy applied to all 15

projects are summarized in tables 4.12 and 4.13 below:

Issues found by testing using ZAP passive scans

Issue Place of occurrence Resolved by
No. of

Projects

1 CSRF Cookie set w/out HTTPOnly settings.py
adding: CSRF COOKIE HTTPONLY = True

15
adding: SESSION COOKIE HTTPONLY = True

2 Web browser XSS protection not enabled settings.py adding: SECURE BROWSER XSS FILTER = True 15

3 Missing X-Content-Type-Options Header settings.py adding: SECURE CONTENT TYPE NOSNIFF = True 15

4 Passowrd autocomplete in browser
templates with forms adding attribute autocomplete=”off”

15
containing a password field to all html forms containing password field

Table 4.12: Results of ZAP passive scans on NaN team projects

Issues found by testing using ZAP active scans

Issue Place of occurrence Resolved by
No. of

Projects

1

Application error disclosure access to Django admin within app removing access to Django admin from app

2
Internal server error

or a redirect to a non existing template
fixing redirect to an existing template

in views.py

2 views.py

replacing username = request.POST[’username’]

1
Application error disclosure with request.POST.get(”username”, ””) and
(MultiValueKeyDict) error password = request.POST[’password’] with

request.POST.get(”password”,””)

3 views.py adding an else clause to an if statement 1
Application error disclosure

uncaught exception

4 views.py 5
Password characters adding password = (widget=forms.PasswordInput())

not hidden or changing input type to password instead of text

Table 4.13: Results of ZAP active scans on NaN team projects

4.6.1 Application Specific Vulnerabilities

Once the vulnerabilities revealed by ZAP scans were mitigated, we began testing all

15 apps for application-specific vulnerabilities. We found application-specific vulnerabilities

in every one of the 15 apps we tested. Since every implementation was unique in terms of

structure and component names (view names, URLs, etc.), we used a generic description for

each vulnerability found.

1. Anonymous user accessing user portal views directly by typing in a view’s URL.

56

Example: Being able to search the app’s database by typing in

127.0.0.1:8000/nan/search/.

Explanation: By examining the workflow of NaN (figures 4.3, 4.4, 4.5), views that

are housed within the user portal such as ‘Job Search’ for Student portal or ‘Student

Search’ for Employer portal can not be accessed without authenticating the user first.

Apps exhibiting this vulnerability: Teams: 3, 4, and 15.

2. Anonymous user accessing the previous view after successful log out or unregister.

Example: A legitimate user logs in and navigates through his/her profile, then

decides to log out or unregister. After log out or un-registration is successful, the user

clicks the browser’s back button and is able to see the profile page he/she was on.

Explanation: By examining the authorization workflow of NaN (figures 4.3), upon

successful log out or un-registration, a user becomes anonymous and therefore must

not be able to access any profile view without first being authenticated.

Apps exhibiting this vulnerability: Teams: 1, 3, 8 and 10.

3. Authenticated user accessing another user’s profile views by typing in a URL containing

the other user’s name or id.

Example: A legitimate user logs in and edits his/her resume through URL:

127.0.0.1:8000/nan/editResume/2/, with 2 being the logged in user’s id. If the cur-

rently logged in user changes the URL to 127.0.0.1:8000/nan/editResume/5/, he/she

is able to access and edit the resume which belongs to user 5. The same behavior was

found in Student views and Employer views.

Explanation: When a user is authenticated, he/she gets access privileges to his/her

data records only. The app should not allow any authenticated user to access other

users’ data.

57

Apps exhibiting this vulnerability: Teams: 1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, and

15.

4. Authenticated user inadvertently (or illegitimately) accessing app functionality that

they should otherwise be restricted from.

Example: A student user logs in and clicks on search jobs link, jobs by employer

are listed, and when he/she clicks on a certain employer they are redirected to Em-

ployer portal and can now access employer functionality such as viewing other students’

profiles.

Explanation: When a user is authenticated, he/she belongs to a group of users

with certain access privileges. The app should not allow any authenticated user from

group A, for example, to access functionality that only group B is allowed to access.

Apps exhibiting this vulnerability: Teams: 2,6, and 14.

Following allowed NaN workflow described in section 4.5.2 above, a whitelist middleware

was created for each app. The whitelist middleware for all apps was constructed with the

following generic structure:

• In process request() hook:

1. Admin site URLs were excluded from whitelisting.

2. Flag Notallowed was set to True indicating that all behavior is initially disallowed.

3. We checked for allowed behavior by:

(a) Getting the HTTP REFERER attribute and the requested URL.

(b) Evaluating the subset of conditions for that particular transition

(from HTTP REFERER to requested URL) and if the evaluation resulted in 1, we

changed flag Notallowed to False.

(c) Returning None for the allowed flow to continue to process view() hook.

• In process view() hook:

58

1. We checked if flag Notallowed was True, if it is we flushed the user session and redirected

to the safe view for that particular transition.

2. Else, we returned None (for the allowed transition to continue and render the desired

response).

It should be noted that every app’s whitelist middleware had to be customized according

to the component names used by that app.

4.6.2 Results

All NaN apps were tested for behavior using the whitelist middleware. The apps were

tested to make sure the whitelist was not preventing any intended behavior or functionality.

This means that the intended behavior (allowed flow represented by 1s) was permitted by

the whitelist middleware. As for unintended behavior, the whitelisted apps were tested to

make sure the whitelist middleware was recognizing the disallowed flow and redirecting to

the corresponding safe view(s). Table 4.14 below summarizes the vulnerabilities that were

found in every app and were successfully mitigated by the whitelist middleware.

G
e
n
e
ri

c
V

u
ln

e
ri

b
il

it
y

N
u
m

b
e
r

Specific vulnerability T
e
a
m

w
it

h
v
u
ln

e
ra

b
il
it

y

M
it

ig
a
te

d
b
y

w
h
it

e
li
st

1 1 anonymous user can access http://127.0.0.1:8000/nan/allJobs/ 3 Y

1 2 anonymous user can access http://127.0.0.1:8000/employers/ 4 Y

1 3 anonymous user can access http://127.0.0.1:8000/search/jobs/ 4 Y

1 4 anonymous user can access http://127.0.0.1:8000/employers/ 15 Y

1 5 anonymous user can access http://127.0.0.1:8000/students/ 15 Y

1 6 anonymous user can access http://127.0.0.1:8000/allJobs/None/ 15 Y

59

G
e
n
e
ri

c
V

u
ln

e
ri

b
il

it
y

N
u
m

b
e
r

Specific vulnerability T
e
a
m

w
it

h
v
u
ln

e
ra

b
il
it

y

M
it

ig
a
te

d
b
y

w
h
it

e
li
st

2 1 in http://127.0.0.1:8000/profile/, unregister, hit browser back button, profile is displayed 1 Y

2 2 http://127.0.0.1:8000/nan/editResume/5/, log out, hit browser back button, resume can be edited 3 Y

2 3 http://127.0.0.1:8000/nan/editDegree/5/, log out, hit browser back button, degree can be edited 3 Y

2 4 http://127.0.0.1:8000/nan/editUniversity/5/, log out, hit browser back button, university can be edited 3 Y

2 5 http://127.0.0.1:8000/nan/editDegreeMajor/5/, log out, hit browser back button, major can be edited 3 Y

2 6 http://127.0.0.1:8000/nan/editDate/5/, log out, hit browser back button, degree date can be edited 3 Y

2 7 http://127.0.0.1:8000/nan/contactByJob/8/17/, log out, hit browser back button, a student may be contacted 3 Y

2 8 http://127.0.0.1:8000/editResume/5/, log out, hit browser back button, resume can be edited and saved 8 Y

2 9 http://127.0.0.1:8000/editDegree/12/, log out, hit browser back button, degree can be edited and saved 8 Y

2 10 http://127.0.0.1:8000/listAllJobs/, log out, hit browser back button, can view all jobs but can’t apply 8 Y

2 11 http://127.0.0.1:8000/JSearch/, log out, hit browser back button, job search page can be viewed 8 Y

2 12 http://127.0.0.1:8000/SSearch/, log out, hit browser back button, student search page can be viewed 8 Y

2 13 http://127.0.0.1:8000/editJob/1/, log out, hit browser back button, job details can be edited and saved 8 Y

2 14 http://127.0.0.1:8000/jobDesc/1/, log out, hit browser back button, job description can be viewed 8 Y

2 15

http://127.0.0.1:8000/home/student/18/resume/edit, 10 Y

log out, hit back button, resume can be edited and saved 10 Y

2 16 http://127.0.0.1:8000/home/student/18/searchJobs, log out, hit back button, jobs can be searched 10 Y

2 17

http://127.0.0.1:8000/home/employer/1/postedJobs/job/7/edit, 10 Y

log out, hit back button, job can be edited and saved 10 Y

2 18 http://127.0.0.1:8000/home/employer/searchStudents, log out, hit back button, students can be searched 10 Y

3 1 http://127.0.0.1:8000/job/8/, a student or employer can enter a job URL directly and view a hidden job 1 Y

3 2 http://127.0.0.1:8000/nan/students/1/, change it to /2/ and another student’s profile can be viewed 2 Y

3 3

http://127.0.0.1:8000/nan/students/1/jobs/,

2

Y

change it to /2/jobs/ and another student’s job applications can be viewed Y

3 4 http://127.0.0.1:8000/nan/employers/1/, change it to /2/ and another employer’s profile can be viewed 2 Y

3 5

http://127.0.0.1:8000/nan/employers/1/jobs/,

2

Y

change it to /2/jobs/ and another employer’s job applications can be viewed Y

3 6

http://127.0.0.1:8000/nan/editResume/5/,

3

Y

change the 5 to 6 and another student’s resume can be viewed and edited Y

3 7

http://127.0.0.1:8000/nan/editDegreee/5/,

3

Y

change the 5 to 6 and another student’s degree can be viewed and edited Y

3 8

http://127.0.0.1:8000/nan/editUniversity/5/,

3

Y

60

G
e
n
e
ri

c
V

u
ln

e
ri

b
il

it
y

N
u
m

b
e
r

Specific vulnerability T
e
a
m

w
it

h
v
u
ln

e
ra

b
il
it

y

M
it

ig
a
te

d
b
y

w
h
it

e
li
st

change the 5 to 6 and another student’s university can be viewed and edited Y

3 9

http://127.0.0.1:8000/nan/editDegreeMajor/5/,

3

Y

change the 5 to 6 and another student’s major can be viewed and edited Y

3 10

http://127.0.0.1:8000/nan/editDate/5/,

3

Y

change the 5 to 6 and another student’s degree date can be viewed and edited Y

3 11

http://127.0.0.1:8000/nan/editJobName/12/6/,

3

Y

change numbers to /11/17/ and a job posted by other employer can be viewed and edited Y

3 12

http://127.0.0.1:8000/nan/editJobDescription/12/6/,

3

Y

change numbers to /11/17/ and a job description posted by other employer can be viewed and edited Y

3 13

http://127.0.0.1:8000/nan/editJobStart/12/6/,

3

Y

change numbers to /11/17/ and a job start date posted by other employer can be viewed and edited Y

3 14

http://127.0.0.1:8000/nan/editJobStop/12/6/,

3

Y

change numbers to /11/17/ and a job end date posted by other employer can be viewed and edited Y

3 15

http://127.0.0.1:8000/nan/editJobSalary/12/6/,

3

Y

change numbers to /11/17/ and a job salary posted by other employer can be viewed and edited Y

3 16

http://127.0.0.1:8000/nan/editJobVisibility/12/6/,

3

Y

change numbers to /11/17/ and a job visibility posted by other employer can be viewed and edited Y

3 17

http://127.0.0.1:8000/nan/removeThisJob/12/6/,

3

Y

change numbers to /11/17/ and a job posted by other employer can be deleted Y

3 18

http://127.0.0.1:8000/nan/student/7/applicationlist/, change number to /1/ and another student

5

Y

applications can be viewed Y

3 19

http://127.0.0.1:8000/nan/student/7/notifications/, change number to /1/ and another student

5

Y

notifications can be viewed Y

3 20

http://127.0.0.1:8000/nan/employer/5/jobcreate/, change number to /6/ and you can create

5

Y

a job for another employer Y

3 21

employer logs in and is redirected to http://127.0.0.1:8000/nan/profile/, then types

6

Y

http://127.0.0.1:8000/nan/jobs/3/delete/, and another employer’s posted job is deleted Y

3 22 employer logs in, types http://127.0.0.1:8000/nan/jobs/7/visible/, and another employer’s job is made visible 6 Y

3 23 http://127.0.0.1:8000/employers/JohnDoe/, change it to /JackDoe/ and you access and edit Jack Doe’s profile 7 Y

3 24 http://127.0.0.1:8000/JaneDoe/applications/, change it to /JillDoe/ and you access and edit Jill’s applications 7 Y

3 25 http://127.0.0.1:8000/editResume/5/, change it to /2/ and another student’s resume can be viewed/edited 8 Y

3 26 http://127.0.0.1:8000/editDegree/10/, change it to /12/ and another student’s degree can be viewed/edited 8 Y

61

G
e
n
e
ri

c
V

u
ln

e
ri

b
il

it
y

N
u
m

b
e
r

Specific vulnerability T
e
a
m

w
it

h
v
u
ln

e
ra

b
il
it

y

M
it

ig
a
te

d
b
y

w
h
it

e
li
st

3 27 http://127.0.0.1:8000/editJob/1/, change it to /3/ and edit a job posted by another employer 8 Y

3 28 http://127.0.0.1:8000/jobDesc/1/, change it to /3/ and a job posted by another employer can be viewed 8 Y

3 29 http://127.0.0.1:8000/deleteJob/1/, change it to /3/ and a job posted by another employer can be deleted 8 Y

3 30 http://127.0.0.1:8000/nan/jobs/edit/2/, change it to /7/ and edit a job posted by another employer 9 Y

3 31 http://127.0.0.1:8000/home/student/17/resume/, change it to /18/ and edit another student’s resume 10 Y

3 32

http://127.0.0.1:8000/home/student/17/resume/delete/,

10

Y

change it to /18/ and another student’s resume can be deleted Y

3 33

http://127.0.0.1:8000/home/student/17/resume/addDegree/,

10

Y

change it to /18/ and add a degree to another student’s resume Y

3 34

http://127.0.0.1:8000/home/student/17/resume/degree/5/delete/,

10

Y

change it to /18/ and another student’s degree can be deleted Y

3 35

http://127.0.0.1:8000/home/employer/1/postedJobs/job/13/, change it to /2/postedJobs/job/14/

10

Y

a job posted by another employer can be viewed/edited Y

3 36

http://127.0.0.1:8000/student/4/degree/add/, change it to /2/degree/add/

11

Y

and add a degree to another student’s resume Y

3 37 http://127.0.0.1:8000/student/JaneDoe/resume/edit, change it to /JillDoe/ and Jill’s resume can be edited 12 Y

3 38 http://127.0.0.1:8000/Student/7/, change it to /3/ and another student’s resume can be viewed 13 Y

3 39

http://127.0.0.1:8000/student/degree/update/8/,

14

Y

change it to /9/ and another student’s degree can be edited Y

3 40

upon completing a job application, a student it redirected to http://127.0.0.1:8000/student/10/jobs/,

14

Y

change it to http://127.0.0.1:8000/student/11/jobs/ and another students applications can be viewed Y

3 41

http://127.0.0.1:8000/employer/5/, change it to /4/ and another employer’s profile is viewed and jobs can

14

Y

be edited Y

3 42 http://127.0.0.1:8000/resume/5/, change it to /4/ and another student’s resume can be viewed 15 Y

3 43 http://127.0.0.1:8000/deleteResume/4/10/, change it to /5/13/ and another student’s resume can be deleted 15 Y

3 44 http://127.0.0.1:8000/jobApplications/5/, change it to /4/ and another student’s applications can be viewed 15 Y

3 45 http://127.0.0.1:8000/employer/2/, change it to /3/ and another employer’s profile can be accessed 15 Y

3 46 http://127.0.0.1:8000/deleteJob/1/6/, change it to /3/2/ and another employer’s job can be deleted 15 Y

3 47

a user logs in and enters http://127.0.0.1:8000/clearNewApps/2/ and the notifications of employer 2 will

15

Y

be cleared Y

4 1

a student can log in, type in http://127.0.0.1:8000/nan/employers/1/search for students/ 2 Y

and can search other students (a functionality restricted to employers only) 2 Y

62

G
e
n
e
ri

c
V

u
ln

e
ri

b
il

it
y

N
u
m

b
e
r

Specific vulnerability T
e
a
m

w
it

h
v
u
ln

e
ra

b
il
it

y

M
it

ig
a
te

d
b
y

w
h
it

e
li
st

4 2

a student can log in, type in http://127.0.0.1:8000/nan/search/students/ and can view other students’ 6 Y

profiles (a functionality restricted to employers only) 6 Y

4 3

a student can log in, search for employers, select an employer, the app redirects to employers portal 14 Y

and the student can search and access other students’ profiles (a functionality restricted to employers only) 14 Y

Table 4.14: NaN vulnerabilitites mitigated by whitelist middleware

Discussion

From the results illustrated in table 4.14, we reject the null hypothesis in favor of the

alternative hypothesis. We observed that the whitelist was successful in mitigating all the

vulnerabilities found. The reason for that is the whitelist by default sets an initial flag for

all transitions as NotAllowed = True. Only when a transition is intended, which means the

evaluation of a specific subset of conditions returned True for every condition in the subset,

did the flag change to NotAllowed = False. This method guarantees that any behavior not

formally defined within the whitelist is rejected. Three NaN project apps demonstrated

serious logical flaws in their implementation. Team 2’s project allows a student to apply to

a job on behalf of another student by selecting the other student’s name from a drop-down

list of student names (figure 4.6). Team 5’s project did not implement logout functionality

at all. Team 12’s project allows a student to edit another student’s resume by selecting the

other student from a drop-down list of students. It also allows an employer to create a job

for another employer by selecting the other employer from a drop-down list of employers.

63

Figure 4.6: Sample screenshot of a logical flaw in Team 2’s NaN app

The whitelist is unable to rectify these logical flaws without major alteration to the code.

However, for the projects mentioned above, the whitelist prevents a currently logged in user

from changing the user-id or username portion of the URL directly. Ideally, the concept

of web flow whitelisting, should be applied during design and/or development phase(s) of

an application and would therefore be regarded as a way for building security into the

application. For validation purposes, we needed to use apps that were already built and

contained the types of vulnerabilities that the whitelist solves. In this case, web application

flow whitelisting was used as a vulnerability mitigation strategy after testing for and finding

application specific vulnerabilities. Furthermore, the whitelist helped in identifying and

mitigating OWASP’s vulnerabilities A4: Insecure Direct Object References and A7: Missing

function level access control.

64

4.6.3 Limitations

Some limitations of the whitelist were found during our validation process. We noticed

that the size of the whitelist is directly related to the number of components in an application.

If the number of components in an application is equal to n, then a whitelist of size n X

n would be generated for this application. The whitelist takes into account the possibility

of any transition occurring between two components in an application and it responds by

either allowing it to go through or redirecting to a safe component. Another limitation of the

whitelist is that it can not resolve any logical flaws in an application’s code. However, if the

whitelist is constructed during development, it might help the developer realize if any major

logical flaws exist in the application’s design. Furthermore, web application flow whitelisting

should be revisited any time the application changes. Any new components that are added

(or any that are removed) must be accounted for and the whitelist should be adjusted to

reflect the changes made.

65

Chapter 5

Research Methodology:

Phase2: Large Case Validation

5.1 Background

In order to validate web application flow whitelisting, we demonstrated it using a Django

application that was in production use. The selection process involved searching for all the

open source Django applications on Github. There were 8751 repositories that met the

search criteria. We further refined the search to Django apps with Python as the primary

programming language used and the results were further reduced to 5783 repositories. We

manually explored the results and eliminated any apps that were merely reproducing the

Django polls tutorial (the official tutorial of the Django website) as well as apps that were

add-ons and not stand-alone applications. Also, we eliminated applications that had not

been maintained in the last 2 years. The results were reduced to 52 applications. Appendix

B contains a table detailing the 52 results in terms of size, best match, most stars, most

forks, and most recently updated.

We selected a stand-alone application that is fully deployed and has been maintained

recently for validating web application flow whitelisting. The selected application is a dating

website written in Django version 1.8. The size of the application is 1106 LOC. Despite mul-

tiple requests, we were unable to obtain explicit permission from the application’s developer

to use its real name in our research. Because the app is on GitHub in a public account, it

is open to public scrutiny. Nevertheless, in order to protect the identity of the developer

and the application, we gave it a nonexistent domain name and for the remainder of this

discussion will refer to it as seekinglove.com.

66

5.1.1 Overview of seekinglove.com

The main functional requirements of seekinglove.com were found by exploring the code

base. The functionality extracted from the code base can be described as follows:

1. seekinglove.com is restricted to registered users only.

2. Users are registered immediately upon request.

3. Each user has a profile consisting of his/her name, email address, gender, and the

gender he/she is seeking. Other profile information may be included optionally, such

as birthday, home town, university, and interests.

4. A user may edit his/her profile and upload an optional picture.

5. A user may search for other users.

6. A user may add another user as a crush

7. A user may interact with other users by posting messages on his/her wall.

8. A user may unlock different icons depending on how active they are on the website.

In order to whitelist seekinglove.com we had to first construct a workflow that illustrates

the allowed and disallowed behavior based on the requirements above. In our workflow,

allowed behavior is depicted using solid arrows and disallowed application behavior using

dashed arrows. Furthermore, rectangles with double borders are used to depict internal

components or subroutines. The workflow for seekinglove is shown in figure 5.1 below.

67

Figure 5.1: Workflow diagram for seekinglove.com

Based on the workflow above, we derived the whitelist 〈C,D,W, S〉 as follows:

Set C is the set of all components of seekinglove.com and consists of: C = (u, reg-

ister, login, profile, edit profile, edit profilepicture, newsfeed, addcrush, removecrush, like,

activevalue, wall, createwink, search, users, logout).

As for the global set of conditions D, it contains the following conditions:

• d1: anonymous user permissions,

• d2: current authenticated user permissions and data,

• d3: valid session expiry time,

• d4: previous view,

• d5: subsequent view.

• d6: switch = true.

68

• d7: user is crush.

• d8: unsuccessful login attempt.

For clarity, we have assigned numbers for each subset of conditions as follows (Table

5.1):

Using the legend in table 5.1, we constructed a matrix containing the numbers of the

subset(s) of conditions that must be checked for each transition to succeed (table 5.2).

By evaluating the subset of conditions for each transition in 5.2, the set of ordered pairs

in W are:

W = { (u, u) , (u, register) , (u, login) , (register, u) , (register, register) ,

(register, login) , (login, u) , (login, register) , (login, login) ,

(login, profile) , (profile, profile) , (profile, edit profile) , (profile, newsfeed) ,

(profile, Addcrush) , (profile, Removecrush) , (profile, like) ,

(profile, Activevalue) , (profile, wall) , (profile, createwink) , (profile, search) ,

(profile, logout) , (edit profile, profile) , (edit profile, edit profile) ,

(edit profile, edit profilepicture) , (edit profile, newsfeed) , (edit profile, search) ,

(edit profile, logout) , (edit profilepicture, edit profile) ,

(edit profilepicture, edit profilepicture) , (newsfeed, profile) ,

(newsfeed, edit profile) , (newsfeed, newsfeed) , (newsfeed, like) , (newsfeed, search) ,

(newsfeed, logout) , (Addcrush, profile) , (Addcrush, users) , (removecrush, profile) ,

(like, profile) , (like, newsfeed) , (Activevalue, profile) , (wall, profile) ,

(createwink, profile) , (search, profile) , (search, edit profile) , (search, newsfeed)

(logout, u) , (logout, register) , (logout, login) }

69

subset # containing

1 {d2, d3, d4 = logout}

2 {d1, d8}

3 {d2, d3}

4 {d2,d3, d4 = login}

5 {d2, d3, d4 = profile or edit profilepicture, or newsfeed or search}

6 {d2, d3, d4 = profile or edit profile or like or createwink or search}

7 {d2, d3, d4 = edit profile}

8 {d2, d3, d4 = profile}

9 {d2, d3, d4 = profile, d7}

10 {d2, d3, d4 = profile or newsfeed}

11 {d2, d3, d4 = profile, d6}

12
{d2, d3, d4 = profile or edit profile or

newsfeed or like or createwink or search}

13 {d2, d3, d4 = addcrush}

14 {d2, d4 = profile or edit profile or newsfeed}

15 {d2, d3, d4 = newsfeed}

16
{d2, d3, d4 = profile or edit profile or newsfeed or like or search
or addcrush or wall or removecrush or createwink or activevalue}

17 {d2, d3, d4 = edit profilepicture, d5 = edit profile}

18 {d2, d3, d4 = removecrush}

19 {d2, d3, d4 = like}

20 {d2, d3, d4 = activevalue}

21 {d2, d3, d4 = wall, d6}

22 {d2, d3, d4 = createwink, d7}

23 {d2, d3, d4 = search}

Table 5.1: Legend for numbering the subsets of conditions

70

U R
e
g
is

te
r

L
o
g
in

P
ro

fi
le

E
d
it

p
ro

fi
le

E
d
it

p
ro

fi
le

p
ic

tu
re

N
e
w

sf
e
e
d

A
d
d

cr
u

sh

R
e
m

o
v
e
cr

u
sh

L
ik

e

A
ct

iv
e
v
a
lu

e

W
a
ll

C
re

a
te

w
in

k

S
e
a
rc

h

U
se

rs

L
o
g
o
u
t

U d1 d1 4 5 7 6 8 9 10 8 11 9 14 13 14

Register d1 d1 d1 4 5 7 6 8 9 10 8 11 9 14 13 14

Login 1 2 2 4 5 7 6 8 9 10 8 11 9 14 13 14

Profile 1 d1 d1 3 8 7 8 8 9 8 8 11 9 8 13 8

Edit profile 1 d1 d1 7 5 7 7 8 9 10 8 11 9 7 13 7

Edit profilepicture 1 d1 d1 16 17 7 6 8 9 10 8 11 9 14 13 14

Newsfeed 1 d1 d1 15 15 7 3 8 9 15 8 11 9 15 13 15

Addcrush 1 d1 d1 13 5 7 12 8 9 10 8 11 9 14 13 14

Removecrush 1 d1 d1 18 5 7 12 8 9 10 8 11 9 14 13 14

Like 1 d1 d1 19 5 7 12 8 9 10 8 11 9 14 13 14

Activevalue 1 d1 d1 20 5 7 12 8 9 10 8 11 9 14 13 14

Wall 1 d1 d1 21 5 7 12 8 9 10 8 11 9 14 13 14

Createwink 1 d1 d1 22 5 7 12 8 9 10 8 11 9 14 13 14

Search 1 d1 d1 23 5 7 12 8 9 10 8 11 9 14 13 14

Users 1 d1 d1 13 5 7 12 8 9 10 8 11 9 14 13 14

Logout 1 d1 d1 d2 5 7 12 8 9 10 8 11 9 14 13 14

Table 5.2: Matrix W for seekinglove.com containing distinct subset(s) of conditions in each
cell

71

Table 5.3 below shows a zero-one representation of W. Allowed flow is represented by

1 and disallowed flow is represented by 0.

U R
e
g
is

te
r

L
o
g
in

P
ro

fi
le

E
d

it
p
ro

fi
le

E
d

it
p

ro
fi

le
p

ic
tu

re

N
e
w

sf
e
e
d

A
d

d
cr

u
sh

R
e
m

o
v
e
cr

u
sh

L
ik

e

A
ct

iv
e
v
a
lu

e

W
a
ll

C
re

a
te

w
in

k

S
e
a
rc

h

U
se

rs

L
o
g
o
u
t

U 1* 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Register 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Login 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Profile 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1

Edit profile 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 1

Edit profilepicture 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

Newsfeed 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1

Addcrush 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

Removecrush 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Like 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

Activevalue 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Wall 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Createwink 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Search 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0

Users 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Logout 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.3: A zero-one representation of W for seekinglove.com

Table 5.4 below contains the safe components to redirect to in case the evaluation of

conditions fails and the transition is disallowed.

72

U R
e
g
is

te
r

L
o
g
in

P
ro

fi
le

E
d
it

p
ro

fi
le

E
d
it

p
ro

fi
le

p
ic

tu
re

N
e
w

sf
e
e
d

A
d
d
c
ru

sh

R
e
m

o
v
e
c
ru

sh

L
ik

e

a
c
ti

v
e
v
a
lu

e

W
a
ll

C
re

a
te

w
in

k

S
e
a
rc

h

U
se

rs

L
o
g
o
u
t

U NA register login login login login login login login login login login login login login login

Register u register login login login login login login login login login login login login login login

Login logout logout login logout logout logout logout logout logout logout logout logout logout logout logout logout

Profile logout logout logout login login logout login login login login login login login login login login

Edit profile logout logout logout login login login login login login login login login login login login login

Edit profilepicture logout logout logout logout login login logout logout logout logout logout logout logout logout logout login

Newsfeed logout logout logout login login logout login logout logout logout logout logout logout login logout login

Addcrush logout logout logout login logout logout logout logout logout logout logout logout logout logout login login

Removecrush logout logout logout login logout logout logout logout logout logout logout logout logout logout logout login

Like logout logout logout login logout logout login logout logout logout logout logout logout logout logout login

activevalue logout logout logout login logout logout logout logout logout logout logout logout logout logout logout login

Wall logout logout logout login logout logout logout logout logout logout logout logout logout logout logout login

Createwink logout logout logout login logout logout login logout logout logout logout logout logout logout logout login

Search logout logout logout login login logout login logout logout logout logout logout logout logout logout login

Users logout logout logout logout logout logout logout logout logout logout logout logout logout logout logout login

Logout logout logout logout login login logout login logout logout logout logout logout logout logout logout login

NA represents Not Applicable and a 1 is placed for transitions occurring outside the system boundary.
u - represents a component outside the system boundary

Table 5.4: Matrix S for seekinglove.com with safe components

5.2 Analysis

In order to whitelist seekinglove.com, we needed to first find out whether or not it

had any vulnerabilities and if the vulnerabilities found were application- or non-application-

specific. Because whitelisting tests for and mitigates application-specific vulnerabilities only,

we used OWASP’s Zed Attack Proxy (ZAP) tool to test for non-application-specific vulnera-

bilities. ZAP’s passive scans were run on seekinglove.com. The non-application-specific vul-

nerabilities found are summarized table 5.5. ZAP vulnerability reports for seekinglove.com

can be found in Appendix C.

Issues found by testing using ZAP passive scans

Issue Place of occurrence Resolved by

1 CSRF Cookie set w/out HTTPOnly settings.py adding: CSRF COOKIE HTTPONLY = True

2 Session Cookie set w/out HTTPOnly settings.py adding: SESSION COOKIE HTTPONLY = True

3 Web browser XSS protection not enabled settings.py adding: SECURE BROWSER XSS FILTER = True

4 Missing X-Content-Type-Options Header settings.py adding: SECURE CONTENT TYPE NOSNIFF = True

5 X-Frame-Options Header Not Set settings.py adding: X FRAME OPTIONS = ’SAMEORIGIN’

Table 5.5: Results of ZAP passive scans on seekinglove.com

73

5.2.1 Application Specific Vulnerabilities in seekinglove.com

We tested seekinglove.com for application specific vulnerabilities. A total of 14 vulner-

abilities were found. The vulnerabilities can be classified as follows:

1. Anonymous user accessing seekinglove.com views directly by typing in a view’s URL

Vulnerability: Being able to access the search functionality of the application by

directly typing in

127.0.0.1:8000/search/.

Explanation: By examining the workflow of seekinglove.com (figure 5.2), views

that are restricted to authenticated users such as ‘search’ cannot be accessed without

authenticating the user first.

Figure 5.2: App behavior when typing in 127.0.0.1:8000/search/.

2. Authenticated user inadvertently (or illegitimately) accessing application functionality

that they should otherwise be restricted from.

Vulnerability: Being able to access functionality of internal subroutines by directly

typing in a URL. When a legitimate user, for example John Doe, logs into the ap-

plication, he can type in URLs directly into the browser’s address bar and access

74

internal application functionality. The vulnerabilities found in this category include

the following:

(a) 127.0.0.1:8000/like/?category id=17&button type=dislike.

Explanation: category id 17 is the message with number 17 in the applica-

tion’s database. By typing the URL directly, the application displays the following

message (figure 5.3):

Figure 5.3: App behavior when typing in 127.0.0.1:8000/like/?category id=17&button type=dislike.

(b) 127.0.0.1:8000/like/?category id=21&button type=like.

Explanation: category id 21 is the message with number 21 in the applica-

tion’s database. By typing the URL directly, the application displays the following

message (figure 5.4) and creates a notification object that would be sent to the

author of the message saying “John Doe liked your message”:

75

Figure 5.4: App behavior when typing in 127.0.0.1:8000/like/?category id=21&button type=like.

(c) 127.0.0.1:8000/like/?category id=23&button type=delete.

Explanation: category id 23 is the message with number 23 in the applica-

tion’s database. By typing the URL directly, the application renders a blank

page (figure 5.5) and when its reloaded, an error page appears (figure 5.6). The

application deletes message 23, even though the currently logged in user (John

Doe) did not author this message:

76

Figure 5.5: App behavior when typing in 127.0.0.1:8000/like/?category id=23&button type=delete.

Figure 5.6: App behavior after reloading 127.0.0.1:8000/like/?category id=23&button type=delete.

(d) 127.0.0.1:8000/like/?category id=13&button type=wink.

Explanation: category id 13 is the user (Jane Doe) with id number 13 in the

application’s database. By typing the URL directly, the application renders a

blank page (figure 5.7). The application does not send a notification to user 13

77

(Jane Doe). It does, however, create a wink object in the database. If the user

with id 13 is a ‘crush’ of John Doe’s, he/she would receive a notification that says:

“John Doe winked at you!”.

Figure 5.7: App behavior when typing in 127.0.0.1:8000/like/?category id=13&button type=wink.

(e) 127.0.0.1:8000/like/?category id=167&button type=markasread.

Explanation: category id 167 is a notification object with id number 167 in

the application’s database. By typing the URL directly, the application renders

a blank page (figure 5.8). The application removes notification 167 from the no-

tifications database table. This vulnerability can be combined with vulnerability

(1) as it does not require a user to be logged in. Any adversary can type in the

URL directly from the main page and a notification object would be deleted.

78

Figure 5.8: App behavior when typing in 127.0.0.1:8000/like/?category id=167&button type=markasread.

(f) 127.0.0.1:8000/like/?category id=19&button type=crush.

Explanation: category id 19 is the user with id number 19 in the application’s

database. By typing the URL directly, the application will add user with id 19

as a crush of John Doe (see figure 5.9). Reloading the page with the same URL

over and over again will continuously add user with id 19 as a crush (see figure

5.10).

79

Figure 5.9: App behavior when typing in 127.0.0.1:8000/like/?category id=19&button type=crush.

Figure 5.10: App behavior after reloading URL 127.0.0.1:8000/like/?category id=19&button type=crush.
several times

(g) 127.0.0.1:8000/activevalue/?category id=13

Explanation: category id 13 is the user with id number 13 (Jane Doe) in the

application’s database. By typing the URL directly, the application will show

80

message number and content of messages that have not been viewed yet and are

intended for Jane Doe (figure 5.11). Changing the category id number will result

in viewing other users’ unseen messages.

Figure 5.11: App behavior when typing in 127.0.0.1:8000/activevalue/?category id=13.

(h) 127.0.0.1:8000/createwink/13/

Explanation: The number 13 in the URL refers to user with id number 13

(Jane Doe) in the application’s database. By logging in as John Doe and typing

the URL directly, the application will create a wink object in the database and

add a wink icon from user John Doe, even though John Doe should not be able

to send a wink to anyone who is not currently a crush of his. This is an internal

subroutine that should not be accessed directly. Figures 5.12 and 5.13 below

show the application’s behavior before and after typing in the URL.

81

Figure 5.12: App behavior before typing in 127.0.0.1:8000/createwink/13/.

Figure 5.13: App behavior after typing in 127.0.0.1:8000/createwink/13/.

(i) 127.0.0.1:8000/addcrush/18/13/

Explanation: The number 18 in the URL refers to user with id number 18

(Jared Doe) in the application’s database. By logging in as John Doe and typing

the URL directly, the application will create a new crush object in the database

82

and a new notification object will be created as well. User with id number 18

will get a notification that John Doe added him as a crush. This is an internal

subroutine that should not be accessed directly. Figures 5.14, 5.15, 5.16, and

5.17 below show the application’s behavior before and after typing in the URL.

Figure 5.14: App behavior before typing in 127.0.0.1:8000/addcrush/18/13/.

83

Figure 5.15: Typing in 127.0.0.1:8000/addcrush/18/13/.

Figure 5.16: App behavior after typing in 127.0.0.1:8000/addcrush/18/13/.

84

Figure 5.17: Notification sent to user 18 after in 127.0.0.1:8000/addcrush/18/13/.

(j) 127.0.0.1:8000/addcrush/12/

Explanation: The number 12 in the URL refers to user with id number 12

(John Doe) in the application’s database. John Doe is also the currently logged in

user. By typing the URL directly, the application will create a new crush object

in the database and a new notification object will be created as well. John Doe

is able to add himself as a crush and will get a notification that says: “John Doe

added you as a crush”. This is an internal subroutine that should not be accessed

directly. Figures 5.18 and 5.19 below show the application’s behavior before and

after typing in the URL.

85

Figure 5.18: App behavior before typing in 127.0.0.1:8000/addcrush/12/.

Figure 5.19: App behavior after typing in 127.0.0.1:8000/addcrush/12/.

(k) 127.0.0.1:8000/addcrush/19/1/

Explanation: The number 19 in the URL refers to user with id number 19

in the application’s database. The number 1 in the URL is used to redirect the

86

application to the users view (an internal view that can be accessed only from

addcrush view). By typing the URL directly, the application will display the users

page. There is no direct functionality in the application that displays the users

page. It is an internal subroutine that should not be accessed directly. Figure

5.20 below shows the application’s behavior after typing in the URL.

Figure 5.20: App behavior after typing in 127.0.0.1:8000/addcrush/19/1/.

3. Missing error handling

(a) Vulnerability: Typing in 127.0.0.1:8000/editprofile/ when a user is logged out

raises a TypeError: int() argument must be a string or number, not

‘SimpleLazyObject’ (5.21). This error appears because the application is try-

ing to access the notifications objects. If we comment out the lines that pertain to

accessing the notifications objects, another error appears: AttributeError: at

/editprofile/ ‘Anonymoususer’ Object has no attribute ‘ meta’ (5.22).

(b) Vulnerability: Typing in 127.0.0.1:8000/editprofilepicture/ when a user is logged

out raises the same error as in /edit/profile/ above.

87

Explanation: While this vulnerability does not reveal or alter the application’s

data, it is unintended behavior and should be addressed by the developer.

Figure 5.21: Error before removing notifications object.

Figure 5.22: Error after removing notifications object.

A whitelist middleware was created for seekinglove.com following the allowed workflow

described in section 5.1.1 above. Below is the psuedo code for the whitelist middleware of

seekinglove.com. For the actual code, please refer to Appendix D.

88

• In process request() hook:

1. Get the HTTP REFERER attribute and the requested URL.

2. Flag NotAllowed was set to True indicating that all behavior is initially disallowed.

3. Admin site URLs were excluded from whitelisting.

4. We checked for allowed behavior by:

(a) Evaluating the subset of conditions for each transition

(from HTTP REFERER to requested URL) and if the evaluation resulted in 1, we

changed flag NotAllowed to False.

(b) Returning None for the allowed flow to continue to process view() hook.

• In process view() hook:

1. We checked if flag NotAllowed was True, if it is we flushed the user session and redirected

to the safe view.

2. Else, we returned None (for the allowed transition to continue and render the desired

response).

5.2.2 Results

Seekinglove.com was tested for behavior using the whitelist middleware in appendix D.

We tested the whitelist to make sure it was not preventing any intended behavior or function-

ality. Seekinglove.com was also tested using the whitelist middleware for the vulnerabilities

described in section 5.2.1 above. Table 5.6 below summarizes the vulnerabilities that were

found in seekinglove.com and were successfully mitigated by the whitelist middleware.

Discussion

From the results we obtained in table 5.6, we can clearly reject the null hypothesis

(section 4.4) in favor of the alternative hypothesis. We have observed that the whitelist was

successful in mitigating all the vulnerabilities found. By initially setting the default value

89

N
u
m

b
er

Specific vulnerability M
it

ig
at

ed
b
y

w
h
it

el
is

t

1 anonymous user can access http://127.0.0.1:8000/search/ Y

2 Directly typing in URL: 127.0.0.1:8000/like/?category id=17&button type=dislike Y

3 Directly typing in URL: 127.0.0.1:8000/like/?category id=21&button type=like Y

4 Directly typing in URL: 127.0.0.1:8000/like/?category id=23&button type=delete Y

5 Directly typing in URL: 127.0.0.1:8000/like/?category id=13&button type=wink Y

6 Directly typing in URL: 127.0.0.1:8000/like/?category id=167&button type=markasread Y

7 Directly typing in URL: 127.0.0.1:8000/like/?category id=19&button type=crush Y

8 Directly typing in URL: 127.0.0.1:8000/activevalue/?category id=13 Y

9 Directly typing in URL: 127.0.0.1:8000/createwink/13/ Y

10 Directly typing in URL: 127.0.0.1:8000/addcrush/18/13/ Y

11 Directly typing in URL: 127.0.0.1:8000/addcrush/12/ Y

12 Directly typing in URL: 127.0.0.1:8000/addcrush/19/1/ Y

13 Typing in 127.0.0.1:8000/editprofile/ when a user is logged out Y

14 Typing in 127.0.0.1:8000/editprofilepicture/ when a user is logged out Y

Table 5.6: Vulnerabilities in seekinglove.com mitigated by whitelist middleware

90

of flag NotAllowed = True, the whitelist guarantees that only intended behavior is allowed

and all other behavior is rejected. As was stated before, the whitelist should ideally be

created during development, however, for validation purposes, it was applied on applications

that were already developed. Furthermore, Django provides built-in decorators that can

be added to views such the login required decorator (please refer to appendix A). While

seekinglove.com uses this decorator for some of its views, it did not prevent an authenti-

cated user from being able to access internal functionality that they should have otherwise

been restricted from. The whitelist did successfully mitigate those types of vulnerabilities.

Furthermore, the whitelist was helpful in identifying and mitigating OWASP vulnerabilities

A4: Insecure Direct Object References and A7: Missing Function Level Access Control.

5.2.3 Limitations

The same limitations from section 4.6.3 apply here, with the exception that there were

no major logical flaws found in seekinglove.com’s code base.

91

Chapter 6

Conclusions and Future Work

6.1 Summary

The increased usage of the Internet has mandated the presence of web-facing applications

for many organizations and with that comes security considerations for those applications.

The software engineering industry realizes that to fix the field of computer security, develop-

ers need to build security into their applications; a notion supported by many agencies such

as CERT, NIST, and NCSD. The problem, however, is that existing secure development pro-

cesses and practices are heavyweight and do not fit in with today’s nimble development trend.

There is a need for agile practices to address security issues present in web applications.

Many developers use web development frameworks to take advantage of pre-written

common features found across many web applications, such as authentication and session

management. However, developers can not rely solely on just those features to mitigate

application-specific vulnerabilities. To address application-specific vulnerabilities, developers

need to inspect the disparity between intended behavior and actual behavior of an application

as it may be indicative of malicious use or implementation flaws. Focusing on identifying

and enforcing intended behavior would aid in mitigating application specific vulnerabilities.

Our research provided a novel approach called web application flow whitelisting to build

security into a web application. The approach focused on mitigating OWASP’s A4 and A7

web vulnerabilities; Insecure Direct Object References and Missing Function Level Access

Control. The approach also specified a whitelist of allowed flow from one component to

another according to a web application’s intended behavior. A formal definition of the

whitelist which included operations that would need to be carried out during development

92

and during run-time was presented. Furthermore, a description of the steps required to build

the whitelist was provided.

The concepts introduced in this research were applied using the Django framework.

The validation process was carried out in two phases. Phase one used a body of applications

created by students in COMP4970: Web Development with Django at Auburn University.

Phase two was conducted on an open source application in production use. Despite multiple

attempts, we were unable to obtain explicit permission from the application’s developer to

use its real name in our research. Therefore, in order to protect the identity of the developer

and the application, we referred to it as seekinglove.com.

The validation process included scanning the applications using a web security scanner

called Zed Attack Proxy (ZAP) that targets OWASP’s top ten web vulnerabilities. The ZAP

scanner was used to find non application specific vulnerabilities. The vulnerabilities revealed

by ZAP scans were mitigated according to the scanner’s recommendations. Manual testing of

the applications was carried out to identify and quantify application specific vulnerabilities.

The vulnerabilities found were classified into 5 general categories:

1. Anonymous users accessing app functionality that they should otherwise be restricted

from by directly typing in a URL.

2. Anonymous user accessing a previous view after another user successfully logs out by

utilizing the browser’s back button.

3. Authenticated user accessing another user’s profile views by typing in a URL containing

the other user’s name or id.

4. Authenticated user inadvertently (or illegitimately) accessing application functionality

that they should otherwise be restricted from.

5. Missing error handling.

93

Using the formal definition and steps for building a whitelist, we created static whitelists of

flow and enforced them on all the applications we tested.

The results show that whitelisting web application flow was successful in producing more

secure web applications and specifically mitigated OWASP’s A4 and A7 web vulnerabilities

that existed in the applications. We found that whitelisting web application flow addressed

and mitigated the five general categories of vulnerabilities above.

There were two limitations observed when using the approach of whitelisting an appli-

cation’s flow:

1. The approach can not resolve any major logical flaws that exist in an application’s

implementation. However, if it was applied during the design and development phases

of an application, it may reveal whether or not logical flaws in the design exist and can

therefore be rectified before implementation takes place.

2. The validation process exposed a direct relationship between the number of components

within an application and the size of the whitelist. An application with n components

would have a whitelist of size n x n.

6.2 Contributions

This research aimed to find a simple approach for developers nowadays to incorporate

security into their web application development efforts. The main contributions of this

research are:

• Targeting security at the Application Layer in the OSI model. While security

is in place at many locations in the lower layers of the OSI model, it is often missed

at the application layer. The application layer is the layer that needs to be secured

the most since it is the entry and exit point of the OSI model. This research targets

the application layer and offers a simple approach for developers to build security into

their applications.

94

• Highlighting the ability to exploit different features in web development

frameworks. Many web development frameworks offer built-in security features, how-

ever, developers can not rely solely on these features to secure their applications. An

adversary may take advantage of the way that certain features are implemented within

a framework or how they are used by the developer and be able to access information

that he/she should otherwise be restricted from.

• Offering a mitigation strategy for two of the OWASP top ten web vulner-

abilities. This research offered a mitigation strategy for OWASP vulnerability A4:

Insecure direct object reference; and A7: Missing function level access control.

• Emphasizing the importance of an application’s workflow and behavior. In

order to build secure web applications, developers need to understand an application’s

workflow and the behavior that it depicts. Intended behavior occurs when certain con-

ditions are met and a transition from one component to another within an application

succeeds. Only this behavior should be allowed by the application. Furthermore, it is

equally important to instruct the application on how to behave when a transition is

disallowed. This is achieved by supplying the application with safe states to redirect

to when a transition fails.

6.3 Future Work

Whitelisting web application flow has unveiled several topics of significance that will

guide our direction for future research. The topics for future research include:

• Extending the concept of whitelisting flow to a set of authorized web applications is an

area that merits further investigation. Many web applications today are comprised of

several smaller applications and third party packages. Whitelisting the flow between

those applications at a higher level of abstraction may be beneficial in enhancing their

security level. Furthermore, the formal definition of whitelisting flow can be applied

95

to other types of applications not just web applications. However, the implementation

aspect would need to be adjusted according to the language, platform, and other

constraints that a particular application relies on.

• Creating a dynamic whitelist of web application flow is another promising area of

research. By monitoring an application’s behavior over a period of time, and with

the aid of machine learning, a dynamic whitelist of flow can be created and adjusted

according to a knowledge base of allowed behavior observed over that period of time.

• Automating the operations for creating the whitelist. The current definition of whitelist-

ing web application flow contains static operations that are done during the develop-

ment phase, such as adding an ordered pair to matrix W and entering a condition dx in

the global set of conditions D. These operations can be dynamically carried out during

the course of an application’s development. Moreover, the current set of conditions D,

holds simple conditions only. Further research can be done to explore the possibility

of making the conditions in set D compound conditions.

• Allowing more than a single option for safe state. The current web application flow

whitelisting approach redirects to a single safe state when a transition fails. This

feature of the whitelist may be enhanced by providing several options to choose from

as a safe state to redirect to. The safe state can redirect to a subset of components, as

long as they all have an equal level of access rights and permissions to data and other

components.

96

References

[Abdel-Hamid et al., 2003] Abdel-Hamid, A. T., Tahar, S., and Aboulhamid, E. M. (2003).
Ip watermarking techniques: survey and comparison. In System-on-Chip for Real-Time
Applications, 2003. Proceedings. The 3rd IEEE International Workshop on, pages 60–65.
IEEE.

[Apple, 2014] Apple (2014). Secure coding guide. https://developer.apple.com/library/
mac/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html. [On-
line; accessed 14-April-2015].

[Arends et al., 2005] Arends, R., Austein, R., Larson, M., Massey, D., and Rose, S. (2005).
Dns security introduction and requirements. Technical report, RFC 4033, March.

[Ayalew et al., 2013] Ayalew, T., Kidane, T., and Carlsson, B. (2013). Identification and
evaluation of security activities in agile projects. In Secure IT Systems, pages 139–153.
Springer.

[Bass et al., 2012] Bass, L., Clements, P., and Kazman, R. (2012). Software Architecture in
Practice. SEI Series in Software Engineering. Pearson Education.

[Bennett, 2012] Bennett, J. (2012). Django in depth. https://www.youtube.com/watch?v=
t ziKY1ayCo. [Online; accessed 27-October-2016].

[Beznosov, 2003] Beznosov, K. (2003). Extreme security engineering: On employing xp
practices to achieve’good enough security’without defining it. In First ACM Workshop on
Business Driven Security Engineering (BizSec), Fairfax, VA, volume 31.

[Bhimani, 1996] Bhimani, A. (1996). Securing the commercial internet. Commun. ACM,
39(6):29–35.

[Bird, 2012] Bird, J. (2012). Agile development teams can build secure software. http://
software-security.sans.org/blog/2012/02/22/agile-development-teams-can-build-secure-
software/. [Online; accessed 30-January-2015].

[Boström et al., 2006] Boström, G., Wäyrynen, J., Bodén, M., Beznosov, K., and Kruchten,
P. (2006). Extending xp practices to support security requirements engineering. In Pro-
ceedings of the 2006 international workshop on Software engineering for secure systems,
pages 11–18. ACM.

[Butler, 2008] Butler, S. (2008). Why you shouldn’t enable the pop3 server. http://blog.
sembee.co.uk/post/Why-You-Shouldnt-Enable-the-POP3-Server.aspx. [Online; accessed
13-April-2015].

97

https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html
https://www.youtube.com/watch?v=t_ziKY1ayCo
https://www.youtube.com/watch?v=t_ziKY1ayCo
http://software-security.sans.org/blog/2012/02/22/agile-development-teams-can-build-secure-software/
http://software-security.sans.org/blog/2012/02/22/agile-development-teams-can-build-secure-software/
http://software-security.sans.org/blog/2012/02/22/agile-development-teams-can-build-secure-software/
http://blog.sembee.co.uk/post/Why-You-Shouldnt-Enable-the-POP3-Server.aspx
http://blog.sembee.co.uk/post/Why-You-Shouldnt-Enable-the-POP3-Server.aspx

[Caelli, 2007] Caelli, W. J. (2007). Application security–myth or reality? In Information
Security Practice and Experience, pages 1–10. Springer.

[CakePHP, 2015] CakePHP (2015). Cakephp cookbook 3.x. url-
http://book.cakephp.org/3.0/en/index.html. Online; accessed 21-April-2015.

[CCITT, 1991] CCITT (1991). CCITT Recommendation X. 800: Data Communication
Networks: Open Systems Interconnection (OSI); Security, Structure and Applications:
Security Architecture for Open Systems Interconnection for CCITT Applications. Inter-
national Telecommunication Union. (International Telegraph and Telephone Consultative
Committee).

[CERT, 2011] CERT (2011). Top 10 secure coding practices. https://www.securecoding.
cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices. [Online; ac-
cessed 14-April-2015].

[Cheswick et al., 2003] Cheswick, W. R., Bellovin, S. M., and Rubin, A. D. (2003). Firewalls
and Internet security: repelling the wily hacker. Addison-Wesley Longman Publishing Co.,
Inc.

[Cobb, 2013] Cobb, M. (2013). Application whitelisting vs. blacklisting: Which is the
way forward? urlhttp://searchsecurity.techtarget.com/answer/Application-whitelisting-
vs-blacklisting-Which-is-the-way-forward. [Online; accessed 20-January-2015].

[Danev et al., 2012] Danev, B., Zanetti, D., and Capkun, S. (2012). On physical-layer iden-
tification of wireless devices. ACM Comput. Surv., 45(1):6:1–6:29.

[Davis et al., 2004] Davis, N., Humphrey, W., Redwine Jr, S. T., Zibulski, G., and McGraw,
G. (2004). Processes for producing secure software. Security & Privacy, IEEE, 2(3):18–25.

[Dent, 2008] Dent, A. W. (2008). A survey of certificateless encryption schemes and security
models. International Journal of Information Security, 7(5):349–377.

[Dierks and Rescorla, 2008] Dierks, T. and Rescorla, E. (2008). The transport layer security
(tls) protocol version 1.2 (rfc5246). http://www.rfc-editor.org/rfc/pdfrfc/rfc5246.txt.pdf.
[Online; accessed 10-April-2015].

[Django, 2015] Django (2015). Django 1.8 documentation. https://docs.djangoproject.com/
en/1.8/. [Online; accessed 19-April-2015].

[Django, 2016] Django (2016). Django 1.10 documentation. https://docs.djangoproject.
com/en/1.10/. [Online; accessed 26-August-2016].

[Dye et al., 2007] Dye, M., McDonald, R., and Rufi, A. (2007). Network Fundamentals,
CCNA Exploration Companion Guide. Cisco press.

[Faria and Cheriton, 2006] Faria, D. B. and Cheriton, D. R. (2006). Detecting identity-based
attacks in wireless networks using signalprints. In Proceedings of the 5th ACM workshop
on Wireless security, pages 43–52. ACM.

98

https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
http://www.rfc-editor.org/rfc/pdfrfc/rfc5246.txt.pdf
https://docs.djangoproject.com/en/1.8/
https://docs.djangoproject.com/en/1.8/
https://docs.djangoproject.com/en/1.10/
https://docs.djangoproject.com/en/1.10/

[File and Ryan, 2014] File, T. and Ryan, C. (2014). Computer and internet use in the united
states: 2013. http://www.census.gov/content/dam/Census/library/publications/2014/
acs/acs-28.pdf. [Online; accessed 6-January-2015].

[Firewall.cx, 2012] Firewall.cx (2012). Understanding vpn ipsec tunnel mode and ipsec trans-
port mode - what’s the difference? http://www.firewall.cx/networking-topics/protocols/
870-ipsec-modes.html. [Online; accessed 9-April 2015].

[Ford-Hutchinson, 2005] Ford-Hutchinson, P. (2005). Securing ftp with tls. http://tools.ietf.
org/html/rfc4217. [Online; accessed 14-April-2015].

[Geneiatakis et al., 2006] Geneiatakis, D., Dagiuklas, T., Kambourakis, G., Lambri-
noudakis, C., Gritzalis, S., Ehlert, S., Sisalem, D., et al. (2006). Survey of security
vulnerabilities in session initiation protocol. IEEE Communications Surveys and Tutori-
als, 8(1-4):68–81.

[Giesen et al., 2013] Giesen, F., Kohlar, F., and Stebila, D. (2013). On the security of
tls renegotiation. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 387–398. ACM.

[Gregg and Watkins, 2006] Gregg, M. and Watkins, S. (2006). Hack the Stack: Using Snort
and Ethereal to Master the 8 Layers of an Insecure Network. Syngress Publishing.

[Hazrati, 2012] Hazrati, V. (2012). Secure code development: A casualty with agile? http:
//www.infoq.com/news/2012/03/secure-code-with-agile. [Online; accessed 6-January-
2015].

[Hoffman, 2015] Hoffman, C. (2015). Htg explains: What is dns cache poisoning? http:
//www.howtogeek.com/161808/htg-explains-what-is-dns-cache-poisoning/. [Online; ac-
cessed 10-April-2015].

[Holcomb et al., 2009] Holcomb, D. E., Burleson, W. P., and Fu, K. (2009). Power-up sram
state as an identifying fingerprint and source of true random numbers. Computers, IEEE
Transactions on, 58(9):1198–1210.

[Holovaty and Kaplan-Moss, 2009] Holovaty, A. and Kaplan-Moss, J. (2009). The django
book: Version 2.0. The Django Book, 16.

[Incapsula, 2011] Incapsula (2011). Ddos attacks. https://www.incapsula.com/ddos/ddos-
attacks/. [Online; accessed 10-April-2015].

[internetlivestats.com, 2016] internetlivestats.com (2016). Internet users. http://www.
internetlivestats.com/internet-users/. [Online; accessed 6-October-2016].

[Ismail, 2012] Ismail (2012). Osi (open source interconnection) 7 layer model. https://
learningnetwork.cisco.com/docs/DOC-15624. [Online; accessed 9-April-2015].

[Jeffries, 2012] Jeffries, C. (2012). Threat modeling and agile development practices. http:
//technet.microsoft.com/en-us/security/hh855044.aspx. [Online; accessed 16-January-
2015].

99

http://www.census.gov/content/dam/Census/library/publications/2014/acs/acs-28.pdf
http://www.census.gov/content/dam/Census/library/publications/2014/acs/acs-28.pdf
http://www.firewall.cx/networking-topics/protocols/870-ipsec-modes.html
http://www.firewall.cx/networking-topics/protocols/870-ipsec-modes.html
http://tools.ietf.org/html/rfc4217
http://tools.ietf.org/html/rfc4217
http://www.infoq.com/news/2012/03/secure-code-with-agile
http://www.infoq.com/news/2012/03/secure-code-with-agile
http://www.howtogeek.com/161808/htg-explains-what-is-dns-cache-poisoning/
http://www.howtogeek.com/161808/htg-explains-what-is-dns-cache-poisoning/
https://www.incapsula.com/ddos/ddos-attacks/
https://www.incapsula.com/ddos/ddos-attacks/
http://www.internetlivestats.com/internet-users/
http://www.internetlivestats.com/internet-users/
https://learningnetwork.cisco.com/docs/DOC-15624
https://learningnetwork.cisco.com/docs/DOC-15624
http://technet.microsoft.com/en-us/security/hh855044.aspx
http://technet.microsoft.com/en-us/security/hh855044.aspx

[Kaplan-Moss, 2013] Kaplan-Moss, J. (2013). Building secure web apps: Python vs
the owasp top 10. https://www.youtube.com/watch?feature=player embedded&v=
sra9x44lXgU. [Online; accessed 27-October-2016].

[Khandelwal, 2013] Khandelwal, S. (2013). Security risks of ftp and benefits of managed file
transfer. http://thehackernews.com/2013/12/security-risks-of-ftp-and-benefits-of.html.
[Online; accessed 13-April-2015].

[Koushanfar and Alkabani, 2010] Koushanfar, F. and Alkabani, Y. (2010). Provably secure
obfuscation of diverse watermarks for sequential circuits. In Hardware-Oriented Security
and Trust (HOST), 2010 IEEE International Symposium on, pages 42–47. IEEE.

[Lennon, 2014] Lennon, M. (2014). Hackers used sophisticated smb worm tool to attack sony.
http://www.securityweek.com/hackers-used-sophisticated-smb-worm-tool-attack-sony.
[Online; accessed 12-April-2015].

[Lim et al., 2005] Lim, D., Lee, J. W., Gassend, B., Suh, G. E., Van Dijk, M., and Devadas,
S. (2005). Extracting secret keys from integrated circuits. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 13(10):1200–1205.

[Liquidweb, 2011] Liquidweb (2011). Imap vs. pop3 email. http://www.liquidweb.com/kb/
imap-vs-pop3-e-mail/. [Online; accessed 13-April-2015].

[Lofstrom et al., 2000] Lofstrom, K., Daasch, W. R., and Taylor, D. (2000). Ic identifica-
tion circuit using device mismatch. In Solid-State Circuits Conference, 2000. Digest of
Technical Papers. ISSCC. 2000 IEEE International, pages 372–373. IEEE.

[Makai, 2016] Makai, M. (2016). Django. https://www.fullstackpython.com/django.html.
[Online; accessed 1-September-2016].

[McGraw, 2012] McGraw, G. (2012). Gary mcgraw on software security assurance: Build
it in, build it right. http://searchsecurity.techtarget.com/opinion/Gary-McGraw-on-
software-security-assurance-Build-it-in-build-it-right. [Online; accessed 19-January-2015].

[Mele, 2015] Mele, A. (2015). Django By Example. Packt Publishing.

[Meunier, 2008] Meunier, P. (2008). Classes of vulnerabilities and attacks. Wiley Handbook
of Science and Technology for Homeland Security.

[Microsoft, 2009a] Microsoft (2009a). Security development lifecycle for agile development.
https://www.microsoft.com/en-us/SDL/Discover/sdlagile.aspx. [Online; accessed 8-
January-2015].

[Microsoft, 2012] Microsoft (2012). Secure coding guidelines. https://msdn.microsoft.com/
en-us/library/8a3x2b7f(v=vs.110).aspx. [Online;accessed 14-April-2015].

[Microsoft, 2014] Microsoft (2014). The osi model’s seven layers defined and functions ex-
plained. https://support.microsoft.com/en-us/kb/103884. [Online; accessed 10-April-
2015].

100

https://www.youtube.com/watch?feature=player_embedded&v=sra9x44lXgU
https://www.youtube.com/watch?feature=player_embedded&v=sra9x44lXgU
http://thehackernews.com/2013/12/security-risks-of-ftp-and-benefits-of.html
http://www.securityweek.com/hackers-used-sophisticated-smb-worm-tool-attack-sony
http://www.liquidweb.com/kb/imap-vs-pop3-e-mail/
http://www.liquidweb.com/kb/imap-vs-pop3-e-mail/
https://www.fullstackpython.com/django.html
http://searchsecurity.techtarget.com/opinion/Gary-McGraw-on-software-security-assurance-Build-it-in-build-it-right
http://searchsecurity.techtarget.com/opinion/Gary-McGraw-on-software-security-assurance-Build-it-in-build-it-right
https://www.microsoft.com/en-us/SDL/Discover/sdlagile.aspx
https://msdn.microsoft.com/en-us/library/8a3x2b7f(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8a3x2b7f(v=vs.110).aspx
https://support.microsoft.com/en-us/kb/103884

[Microsoft, 2009b] Microsoft, T. (2009b). Configuring tls and ssl for pop3 and imap4 ac-
cess. https://technet.microsoft.com/en-us/library/aa997149%28v=exchg.141%29.aspx.
[Online; accessed 14-April-2015].

[Möller et al., 2014] Möller, B., Duong, T., and Kotowicz, K. (2014). This poodle bites:
Exploiting the ssl 3.0 fallback. https://www.openssl.org/∼bodo/ssl-poodle.pdf. [Online;
accessed 14-April-2015].

[Myhre, 2000] Myhre, R. (2000). CCNA Certification: Routing Basics for Cisco Certified
Network Associates Exam 640-407. Prentice Hall PTR.

[Nicolaysen et al., 2010] Nicolaysen, T., Sasson, R., Line, M. B., and Jaatun, M. G. (2010).
Agile software development: The straight and narrow path to secure software? IJSSE,
1(3):71–85.

[NIST, 2014] NIST (2014). New nist guidelines aim to help it system developers build
security in from the ground up. http://www.nist.gov/itl/csd/sp800-160-051314.cfm.
[Online; accessed 19-February-2015].

[Oppliger, 2003] Oppliger, R. (2003). Security Technologies for the World Wide Web. Artech
House computer security series. Artech House.

[Oracle, 2014] Oracle (2014). Oracle software security assurance. http://www.oracle.com/
us/support/assurance/development/secure-coding-standards/index.html. [Online; ac-
cessed 14-April-2015].

[OWASP, 2010] OWASP (2010). Owasp secure coding practices quick reference guide. https:
//www.owasp.org/images/0/08/OWASP SCP Quick Reference Guide v2.pdf. [Online;
accessed 14-April-2015].

[OWASP, 2013] OWASP (2013). Owasp top 10 for 2013. https://www.owasp.org/index.
php/Category:OWASP Top Ten Project#tab=OWASP Top 10 for 2013. [Online; ac-
cessed 2-February-2015].

[OWASP, 2014] OWASP (2014). Testing for imap/smtp injection (otg-inpval011). https://
www.owasp.org/index.php/Testing for IMAP/SMTP Injection %28OTG-INPVAL-011%
29. [Online; accessed 13-April-2015].

[OWASP, 2015] OWASP (2015). Welcome to owasp the free and open software security
community. https://www.owasp.org/index.php/Main Page. [Online; accessed 14-April-
2015].

[OWASP, 2016] OWASP (2016). Zed attack proxy project version 2.4.3. https://www.owasp.
org/index.php/OWASP Zed Attack Proxy Project. [Online; accessed 08-September-
2016].

[Pant and Khairnar, 2014] Pant, R. and Khairnar, C. (2014). A cumulative security metric
for an information network. Network, 3(4).

101

https://technet.microsoft.com/en-us/library/aa997149%28v=exchg.141%29.aspx
https://www.openssl.org/~bodo/ssl-poodle.pdf
http://www.nist.gov/itl/csd/sp800-160-051314.cfm
http://www.oracle.com/us/support/assurance/development/secure-coding-standards/index.html
http://www.oracle.com/us/support/assurance/development/secure-coding-standards/index.html
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013
https://www.owasp.org/index.php/Testing_for_IMAP/SMTP_Injection_%28OTG-INPVAL-011%29
https://www.owasp.org/index.php/Testing_for_IMAP/SMTP_Injection_%28OTG-INPVAL-011%29
https://www.owasp.org/index.php/Testing_for_IMAP/SMTP_Injection_%28OTG-INPVAL-011%29
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

[Patwari and Kasera, 2007] Patwari, N. and Kasera, S. K. (2007). Robust location distinc-
tion using temporal link signatures. In Proceedings of the 13th annual ACM international
conference on Mobile computing and networking, pages 111–122. ACM.

[Peeters, 2005] Peeters, J. (2005). Agile security requirements engineering. In Symposium
on Requirements Engineering for Information Security.

[Phifer, 2003] Phifer, L. (2003). Tunnel vision: Choosing a vpn – ssl vpn vs. ipsec vpn.
http://searchsecurity.techtarget.com/feature/Tunnel-vision-Choosing-a-VPN-SSL-VPN-
vs-IPSec-VPN. Online; accessed: 26-4-2015.

[Popeskic, 2011] Popeskic, V. (2011). Telnet attacks ways to compromise remote connection.
http://howdoesinternetwork.com/2011/telnet-attacks. [Online; accessed 13-April-2015].

[Puangpronpitag and Masusai, 2009] Puangpronpitag, S. and Masusai, N. (2009). An effi-
cient and feasible solution to arp spoof problem. In Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technology, 2009. ECTI-CON 2009. 6th
International Conference on, volume 2, pages 910–913. IEEE.

[Rails, 2014] Rails, R. O. (2014). Ruby on rails guides (v4.2.1). http://guides.rubyonrails.
org/. Online; accessed 21-April-2015.

[Reed, 2003] Reed, D. (2003). Applying the osi seven layer network model to information
security. Sans Institute (November 2003).

[Rescorla, 2000] Rescorla, E. (2000). Http over tls. https://tools.ietf.org/html/rfc2818.

[SAFECode, 2011] SAFECode (2011). Fundamental practices for secure software develop-
ment, 2nd ed. https://www.safecode.org/publication/SAFECode Dev Practices0211.pdf.
[Online; accessed 20-December-2014].

[Schneier and Ranum, 2011] Schneier, B. and Ranum, M. (2011). Schneier-ranum face-off
on whitelisting and blacklisting. http://searchsecurity.techtarget.com/magazineContent/
Schneier-Ranum-Face-Off-on-whitelisting-and-blacklisting. [Online; accessed 20-January-
2015].

[Squad, 2015] Squad, C. D. (2015). Ssh mitm downgrade. https://sites.google.com/site/
clickdeathsquad/Home/cds-ssh-mitmdowngrade. [Online; accessed 10-April-2015.

[Stuttard and Pinto, 2011] Stuttard, D. and Pinto, M. (2011). The Web Application
Hacker’s Handbook: Finding and Exploiting Security Flaws, 2nd Edition: Finding and
Exploiting Security Flaws. Wiley.

[Su et al., 2007] Su, Y., Holleman, J., and Otis, B. (2007). A 1.6 pj/bit 96% stable chip-
id generating circuit using process variations. In Solid-State Circuits Conference, 2007.
ISSCC 2007. Digest of Technical Papers. IEEE International, pages 406–611. IEEE.

[Suh and Devadas, 2007] Suh, G. E. and Devadas, S. (2007). Physical unclonable functions
for device authentication and secret key generation. In Proceedings of the 44th Annual
Design Automation Conference, DAC ’07, pages 9–14, New York, NY, USA. ACM.

102

http://searchsecurity.techtarget.com/feature/Tunnel-vision-Choosing-a-VPN-SSL-VPN-vs-IPSec-VPN
http://searchsecurity.techtarget.com/feature/Tunnel-vision-Choosing-a-VPN-SSL-VPN-vs-IPSec-VPN
http://howdoesinternetwork.com/2011/telnet-attacks
http://guides.rubyonrails.org/
http://guides.rubyonrails.org/
https://tools.ietf.org/html/rfc2818
https://www.safecode.org/publication/SAFECode_Dev_Practices0211.pdf
http://searchsecurity.techtarget.com/magazineContent/Schneier-Ranum-Face-Off-on-whitelisting-and-blacklisting
http://searchsecurity.techtarget.com/magazineContent/Schneier-Ranum-Face-Off-on-whitelisting-and-blacklisting
https://sites.google.com/site/clickdeathsquad/Home/cds-ssh-mitmdowngrade
https://sites.google.com/site/clickdeathsquad/Home/cds-ssh-mitmdowngrade

[Torunoglu and Charbon, 2000] Torunoglu, I. and Charbon, E. (2000). Watermarking-
based copyright protection of sequential functions. Solid-State Circuits, IEEE Journal
of, 35(3):434–440.

[U.S. CERT, 2013] U.S. CERT, C. E. R. T. (2013). Software assurance. https://www.
us-cert.gov/sites/default/files/publications/infosheet SoftwareAssurance.pdf. [Online;
accessed 01-December-2016].

[U.S. DHS, 2011] U.S. DHS, N. C. S. D. (2011). What is build security in? https://
buildsecurityin.us-cert.gov/. [Online; accessed 19-February-2015].

[Venkatramulu and Rao, 2013] Venkatramulu, S. and Rao, C. G. (2013). Various solutions
for address resolution protocol spoofing attacks. International Journal of Scientific and
Research Publications, 3(7).

[Walters, 2014] Walters, R. (2014). Cyber attacks on u.s. companies in 2014. http://www.
heritage.org/research/reports/2014/10/cyber-attacks-on-us-companies-in-2014. [Online;
accessed 9-January-2015].

[Wiegers, 2005] Wiegers, K. (2005). Software process improvement handbook: A practical
guide. Process Impact, Eigenverlag.

[Wikipedia, 2015a] Wikipedia (2015a). Arpwatch — wikipedia, the free encyclopedia. [On-
line; accessed 8-April-2015].

[Wikipedia, 2015b] Wikipedia (2015b). Heartbleed — wikipedia, the free encyclopedia. [On-
line; accessed 14-April-2015].

[Wikipedia, 2015c] Wikipedia (2015c). Post office protocol — wikipedia, the free encyclo-
pedia. [Online; accessed 13-April-2015].

[Wikipedia, 2015d] Wikipedia (2015d). Telnet — wikipedia, the free encyclopedia. [Online;
accessed 13-April-2015].

[Wikipedia, 2016a] Wikipedia (2016a). Clickjacking — wikipedia, the free encyclopedia.
[Online; accessed 11-September-2016].

[Wikipedia, 2016b] Wikipedia (2016b). Django (web framework) — wikipedia, the free en-
cyclopedia. [Online; accessed 26-August-2016].

[Williams et al., 2009] Williams, L., Gegick, M., and Meneely, A. (2009). Protection poker:
Structuring software security risk assessment and knowledge transfer. In Engineering
Secure Software and Systems, pages 122–134. Springer.

[Wysopal, 2015] Wysopal, C. (2015). 3 reasons we’ll finally get serious about security in 2015.
http://venturebeat.com/2015/01/07/3-reasons-well-finally-get-serious-about-security-in-
2015/. [Online; accessed 9-January-2015].

[Xu and Ramesh, 2008] Xu, P. and Ramesh, B. (2008). Using process tailoring to manage
software development challenges. IT Professional, 10(4):39–45.

103

https://www.us-cert.gov/sites/default/files/publications/infosheet_SoftwareAssurance.pdf
https://www.us-cert.gov/sites/default/files/publications/infosheet_SoftwareAssurance.pdf
https://buildsecurityin.us-cert.gov/
https://buildsecurityin.us-cert.gov/
http://www.heritage.org/research/reports/2014/10/cyber-attacks-on-us-companies-in-2014
http://www.heritage.org/research/reports/2014/10/cyber-attacks-on-us-companies-in-2014
http://venturebeat.com/2015/01/07/3-reasons-well-finally-get-serious-about-security-in-2015/
http://venturebeat.com/2015/01/07/3-reasons-well-finally-get-serious-about-security-in-2015/

[Yates, 2009] Yates, R. (2009). Jumpstart django the web framework for perfectionists with
deadlines. http://www.slideshare.net/ryates/jumpstart-django. [Online; accessed 06-
September-2016].

104

http://www.slideshare.net/ryates/jumpstart-django

Appendices

105

Appendix A

Security in Django

A.1 Django and the OWASP Top 10 Web Vulnerabilities

Django offers protection from several common vulnerabilities in OWASP’s top 10 web

vulnerabilities. We examine each vulnerability in terms of what Django offers as a mitigation

strategy for that vulnerability. The information below was compiled and obtained from

[Django, 2016], [Kaplan-Moss, 2013], [Bennett, 2012], :

A.1.1 A1: Injection

Django offers protection against SQL injection attacks by escaping user supplied input

used in query construction by default. Django uses an Object-Relational Mapper which is

its model backend; django.db.models. It must be noted though that the use of any raw

queries would have to be properly escaped and handled by the developer. Developers that

use NoSQL and MongoDB while safe from SQL injection attacks, are not safe from other

types of injection such as javascript injection.

A.1.2 A2: Broken Authentication and Session Management

Django recommends serving all of the pages in a website over SSL to protect against

Man-in-the-Middle (MITM) attacks. Django provides session management via django.contrib.sessions

and a built-in middleware called django.contrib.sessions.middleware.SessionMiddleware. Django

stores sessions in the application’s database by default using the model django.contrib.sessions.models.Session.

The Django sessions framework is entirely cookie-based and session ids are never displayed

in URLs. Cookies contain a session ID and not the data (unless cookie-based sessions are

106

being utilized). Django also allows storing session data using cache-based sessions, file-based

sessions, and cookie-based sessions. The developer needs to be aware that session data is

signed but not encrypted when using cookie-based sessions. Another issue that arises when

it comes to session security is that sub-domains within a site are able to set cookies on

the client for the whole domain. This allows session fixation if cookies are permitted from

sub-domains which are not controlled by trusted users. Django also provides guidelines for

developers wishing to utilize the protection provided by HTTPS.

A.1.3 A3: Cross Site Scripting - XSS

Django has its own template language called the Django Template Language and comes

with built-in backends. Django’s template system protects against most XSS attacks by

escaping characters considered dangerous to HTML. Developers need to make sure that all

attribute values within HTML tags are quoted. In addition, certain tags should be used

with care such as is safe with custom template tags, the safe template tag, and mark safe.

Also, Django 1.10 comes with a boolean called ‘autoescape’ that controls whether HTML

autoescaping is enabled and is set to True by default.

A.1.4 A4: Insecure Direct Object References

Django, out-of-the-box, does not protect against this vulnerability. It is the developer’s

responsibility to do so. One common approach is to use throw away identifiers known as

slugs. Django provides a class called SingleObjectMixin that contains several methods to in-

corporate slugs such as query pk and slug(). This helps in mitigating Insecure Direct Object

references but is not a complete solution as it depends on the developer’s implementation.

For instance, if a slug is comprised of a user’s first name initial and then the last name

(http://example.com/profile/JDoe), it would be easy for an adversary to guess such a slug.

107

A.1.5 A5: Security Misconfiguration

This vulnerability is very difficult to protect from and frameworks can not provide

protection for it by default. One major mistake many developers fall into is deploying

or publishing their production code with the setting Debug = True. This causes error

pages to display sensitive information that an adversary might take advantage of. Django

documentation supplies developers with a deployment checklist to utilize before putting a app

in production. Developers may automate the process using run manage.py chech –deploy.

A.1.6 A6: Sensitive Data Exposure

Django by default provides protection of sensitive data such as passwords by using

the Password-Based Key Derivation Function 2 (PBKDF2), a cryptographic function for

password storage and retrieval purposes. Django uses the PBKDF2 algorithm with a SHA256

hash. A developer may opt to choose other password hashing techniques and Django offers

an attribute called PASSWORD HASHERS in settings.py, where a developer can list several

hashing algorithms. Django will use the first entry specified in this list.

A.1.7 A7: Missing Level Access Control

Django does not offer protection from this vulnerability. Frameworks by default can not

protect against this vulnerability as it is the developer’s responsibility to restrict access to

certain privileged functions. While Django provides authentication out-of-the-box through

django.contrib.auth, a developer should create another layer of abstraction on top of Django’s

authentication mechanism to handle access control. For example, an adversary might be able

to access a function to reset a user’s password without that user being currently logged-in.

While Django does provide decorators for methods such as the login required decorator,

using it would not stop a legitimate user from resetting another user’s password. There

is nothing inherent in Django to prevent a view from accessing more information than it

should. Access control is an issue that should be addressed in the function’s internal logic.

108

It is the responsibility of the developer to put these checks that need to be performed in the

actual code.

A.1.8 A8: Cross Site Request Forgery - CSRF

Django provides built-in protection against many types of CSRF attacks. Django has

a CSRF middleware which is activated by default, however, sub-domains within a site are

able to set cookies on the client for the whole domain. Sub-domains, can therefore bypass

Django’s CSRF protection. A CSRF secret token is required for every POST in a form and

the CSRF middleware checks for this secret token. Developers have the ability to turn off

this check per view using the csrf exempt decorator, although it is highly inadvisable to do

so.

A.1.9 A9: Using Components with Known Vulnerabilities

Developers who choose to utilize packages and third party libraries are responsible for en-

suring that they are patched, updated, and do not have any reported vulnerabilities. Django,

and other frameworks, do not not provide any protection from this type of vulnerability.

A.1.10 A10: Unvalidated Redirects and Forwards

One possible approach for protecting against this vulnerability is to declare a whitelist of

allowed hosts that are authorized for redirects. Django has a setting called ALLOWED HOSTS

in settings.py where a developer can list allowed hosts to redirect to. Furthermore, in order

to protect against redirect poisoning, Django offers a utility function called is safe url in

django.utils.http. The function checks the URL and hostname to ensure the prevention of

redirects to random third party sites.

109

A.2 Mitigation for Common Attacks

Attacks and vulnerabilities are often used interchangeably although there is a distinct

difference between the two. A vulnerability refers to a weakness in the application (design

flaw or an implementation bug) that might be exploited by an attacker to cause harm to

the stakeholders of an application [OWASP, 2015]. An attack is the actual exploitation of a

vulnerability.

A.2.1 Clickjacking

Clickjacking, also known as User Interface Redress Attack, is an attack where users

are tricked into clicking on something different from what they perceive they’re clicking

on [Wikipedia, 2016a]. Usually a malicious site wraps the legitimate site in a frame. Django

provides a middleware called X-Frame-Options which, in a browser that supports these

options, can prevent a side from loading within a frame.

A.2.2 Brute Force Login

This is one of the security issues Django out-of-the-box does not protect against. In

order to guard against brute force login attempts at the application layer, the developer

would need to be aware of where to apply rate limiters and timeout mechanisms. While

Django does not implement rate limiters out-of-the-box, there are some third party plug-ins

that can be utilized to throttle authentication requests. Another form of protection would

be to incorporate multiple factor authentication methods when appropriate.

A.3 Security Best Practices

Django provides a more thorough protection from OWASP’s top ten vulnerabilities. For

example, Django protects against SQL injections by escaping the user supplied input used

to construct a SQL query. It also provides protection against Cross Site Scripting attacks,

110

CSRF attacks, and clickjacking among others. However, developers must not rely only on

what web development frameworks offer to mitigate security issues in their applications.

Vulnerabilities exist at each layer of the OSI model and countermeasures to prevent them

need to be present at every layer. Network administrators and IT personnel are responsible

for securing the lower layers, however, security at the higher layers is the responsibility of

the application developer(s). Every application developed has its own set of unique require-

ments, functionalities, and security considerations and that leaves the developer with various

issues to tackle during development efforts. For instance, how does the application handle

brute force trial attempts? While a Denial of Service attack (DoS) is possible at each level of

the OSI model, the first line of defense against it is in the application. The best practices to

guard against brute force trial attempts, suggest that developers use proper security controls

such as limiting the number of log-in attempts and possibly utilizing multiple factor authen-

tication methods when appropriate. Another issue of concern is information leaked from the

application. Does the application unintentionally leak information? Information might leak

in several places within the application such as in error messages, developer comments left

in the code, or URLs. Security experts recommend that applications follow the principle of

graceful error handling and not reveal unnecessary information in messages presented to the

end user. Web based applications, for example, need to have special attention paid to state

information carried in cookies and sessions. Pages with sensitive information must use SSL

and sessions need to have short timeouts. Access to information should be addressed when

designing different components and their interactions in an application. This includes users

of the application, internal components to the application, and external components that

use the application. The security community advises developers to employ the Least Privi-

lege principle for dealing with access and permissions. User permissions can be managed in

a structured manner using a web development framework for example, but this is not the

case for component and inter-component access privileges. The developer must explicitly

state which data each component has access to and can this data be inadvertently accessed

111

by other components. Dealing with inappropriate access is entirely left at the developer’s

discretion. One of the OWASP Application Security Principles is that an application should

be able to detect intrusions. Current best practices call for the use of Intrusion Detection

Systems (IDSs) which rely on blacklisting known threats and keeping logs of security in-

formation monitored regularly. Both these approaches are insufficient in facing zero day

attacks. The problem with IDSs is that it detects previously known threats and not emerg-

ing ones. As for monitoring security logs, they help in understanding how an adversary was

able to illegitimately penetrate an application’s defenses. They can not help in finding a

security hole before it has been exploited. The developer must not rely on these practices

alone, but rather build applications that are able to dynamically detect bad behavior and

defend against it. In conclusion, there are many issues that need to be addressed when it

comes to securing web applications. Web development frameworks such as Django provide

protection against some of the most common web application vulnerabilities. However, it

remains the responsibility of the developer to correctly utilize the protection methods offered

by web development frameworks as well as take into account the frameworks’ shortcomings

and employ security best practices during development efforts.

112

Appendix B

Open source Django Applications on Github

b
es

t
m

a
tc

h

m
os

t
st

ar
s

m
os

t
fo

rk
s

re
ce

n
tl

y
u

p
d

at
ed

p
y
th

on
L

O
C

Django-tastypie X X X 13265

Django-basic-apps X X X 4242

Django-rest-auth X X X 1483

Django-avatar X X X 912

Django-hvad X X 8180

django crud X 226

Django-appconf X 368

Django-appsettings X 470

Django-categories X X 3310

Django-schedule X X X 2625

djangoappengine X 3168

Django-locking X 556

Openshift-django17 X 113

Django-recaptcha X X 284

Django-tables2 X X X 3744

Django-shorturls X 343

Django-notifications X X X 848

113

b
es

t
m

a
tc

h

m
o
st

st
a
rs

m
o
st

fo
rk

s

re
ce

n
tl

y
u

p
d

a
te

d

p
y
th

on
L

O
C

Django-medusa X 465

Django-rq X X 1217

Django-crispy-forms X X 3608

Django-cors-headers X X 494

merchant X X 7808

wooey X 4099

fabulous X 171

Django-secure X 853

Pinax-stripe X X 6084

Django-cron X 918

djangae X X 12542

Flask-xxl X 2630

Django-oauth2-provider X 1805

Django-calaccess-raw-data X X 17309

Django-form-designer X 1788

oauth2app X 2431

Django-scheduler X 3976

Django-chartit X 3411

Django-ditto X 11119

Django-frequently X 950

django ecommerce2 X 1712

mealy X 1165

114

b
es

t
m

a
tc

h

m
o
st

st
a
rs

m
o
st

fo
rk

s

re
ce

n
tl

y
u

p
d

a
te

d

p
y
th

on
L

O
C

Django-canvas-oauth X 242

Django-htk X 30699

Django-web-app X 140020

pipelion X 744

chembiohub ws X 7222

Correctiv-ttip-barometer X 232

Django-updown X 442

Djangocms-blogit X 1211

Django-edx-courseware X 123

polls X 234

Edc-sync X 2800

Django-people X 3614

SUM LOC 318275

AVG LOC 6241

MAX 140020

MIN 113

AVG W/OUT MAX 3638

Table B.1: Django Applications on Github

115

seekinglove
python LOC

1106

Table B.2: Seekinglove size in python LOC

116

Appendix C

ZAP Passive Scan Reports

117

ZAP Scanning Report

Summary of Alerts

Risk Level Number of Alerts

High 0
Medium 1
Low 5
Informational 0

Alert Detail

Medium (Medium) X­Frame­Options Header Not Set

Description X­Frame­Options header is not included in the HTTP response to protect against
'ClickJacking' attacks.

URL http://127.0.0.1:8000/static/css/non­responsive.css

URL http://127.0.0.1:8000/static/css/base.css

URL http://127.0.0.1:8000/static/css/landing.css

URL http://127.0.0.1:8000/static/css/profile.css

URL http://127.0.0.1:8000/static/css/newsfeed.css

URL http://127.0.0.1:8000/static/css/introjs.css

URL http://127.0.0.1:8000/static/js/jquery­1.11.3.js

URL http://127.0.0.1:8000/static/js/ajax.js

URL http://127.0.0.1:8000/static/js/justgage.js

URL http://127.0.0.1:8000/static/js/raphael­2.1.4.min.js

URL http://127.0.0.1:8000/static/js/intro.js

Instances 11
Solution Most modern Web browsers support the X­Frame­Options HTTP header. Ensure it's set on

all web pages returned by your site (if you expect the page to be framed only by pages on
your server (e.g. it's part of a FRAMESET) then you'll want to use SAMEORIGIN, otherwise
if you never expect the page to be framed, you should use DENY. ALLOW­FROM allows
specific websites to frame the web page in supported web browsers).

Other information At "High" threshold this scanner will not alert on client or server error responses.

Reference http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/combating­clickjacking­with­x­frame­
options.aspx

Low (Medium) Cookie set without HttpOnly flag

Description A cookie has been set without the HttpOnly flag, which means that the cookie can be
accessed by JavaScript. If a malicious script can be run on this page then the cookie

seekinglove.com ZAP Passive Scanr Report 1 1

118

will be accessible and can be transmitted to another site. If this is a session cookie
then session hijacking may be possible.

URL http://127.0.0.1:8000/

 Parameter csrftoken=631cqjNN59eqWf3yTAP1kiObtv1sgnQs; expires=Mon, 10­Apr­2017 14:38:06
GMT; Max­Age=31449600; Path=/

 Evidence csrftoken=631cqjNN59eqWf3yTAP1kiObtv1sgnQs; expires=Mon, 10­Apr­2017 14:38:06
GMT; Max­Age=31449600; Path=/

URL http://127.0.0.1:8000/

 Parameter csrftoken=LgTyYmdWZfhd9gWBPDAvGeIVCrTcvVUv; expires=Mon, 10­Apr­2017
14:38:06 GMT; Max­Age=31449600; Path=/

 Evidence csrftoken=LgTyYmdWZfhd9gWBPDAvGeIVCrTcvVUv; expires=Mon, 10­Apr­2017
14:38:06 GMT; Max­Age=31449600; Path=/

Instances 2
Solution Ensure that the HttpOnly flag is set for all cookies.
Reference www.owasp.org/index.php/HttpOnly
WASC Id 13

Low (Medium) Cross­Domain JavaScript Source File Inclusion

Description The page at the following URL includes one or more script files from a third­party
domain

URL http://127.0.0.1:8000/

 Parameter https://getbootstrap.com/assets/js/ie­emulation­modes­warning.js

 Evidence https://getbootstrap.com/assets/js/ie­emulation­modes­warning.js

URL http://127.0.0.1:8000/

 Parameter https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js

 Evidence https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js

URL http://127.0.0.1:8000/

 Parameter https://getbootstrap.com/dist/js/bootstrap.min.js

 Evidence https://getbootstrap.com/dist/js/bootstrap.min.js

URL http://127.0.0.1:8000/

 Parameter https://getbootstrap.com/assets/js/ie10­viewport­bug­workaround.js

 Evidence https://getbootstrap.com/assets/js/ie10­viewport­bug­workaround.js

Instances 4
Solution Ensure JavaScript source files are loaded from only trusted sources, and the sources

can't be controlled by end users of the application
Reference

seekinglove.com ZAP Passive Scanr Report 1 2

119

Low (Medium) Web Browser XSS Protection Not Enabled

Description Web Browser XSS Protection is not enabled, or is disabled by the configuration of the 'X­
XSS­Protection' HTTP response header on the web server

URL http://127.0.0.1:8000/

URL http://127.0.0.1:8000/robots.txt

URL http://127.0.0.1:8000/sitemap.xml

URL http://127.0.0.1:8000/static/css/non­responsive.css

URL http://127.0.0.1:8000/static/css/base.css

URL http://127.0.0.1:8000/static/css/landing.css

URL http://127.0.0.1:8000/static/css/profile.css

URL http://127.0.0.1:8000/static/css/newsfeed.css

URL http://127.0.0.1:8000/static/css/introjs.css

URL http://127.0.0.1:8000/static/js/jquery­1.11.3.js

URL http://127.0.0.1:8000/static/js/ajax.js

URL http://127.0.0.1:8000/static/js/justgage.js

URL http://127.0.0.1:8000/static/js/raphael­2.1.4.min.js

URL http://127.0.0.1:8000/static/js/intro.js

URL http://127.0.0.1:8000/login/

Instances 15
Solution Ensure that the web browser's XSS filter is enabled, by setting the X­XSS­Protection HTTP

response header to '1'.
Other information The X­XSS­Protection HTTP response header allows the web server to enable or disable

the web browser's XSS protection mechanism. The following values would attempt to enable
it:

X­XSS­Protection: 1; mode=block

X­XSS­Protection: 1; report=http://www.example.com/xss

The following values would disable it:

X­XSS­Protection: 0

The X­XSS­Protection HTTP response header is currently supported on Internet Explorer,
Chrome and Safari (WebKit).

Note that this alert is only raised if the response body could potentially contain an XSS
payload (with a text­based content type, with a non­zero length).

Reference https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

seekinglove.com ZAP Passive Scanr Report 1 3

120

https://blog.veracode.com/2014/03/guidelines­for­setting­security­headers/
CWE Id 933
WASC Id 14

Low (Medium) Password Autocomplete in browser

Description AUTOCOMPLETE attribute is not disabled in HTML FORM/INPUT element containing
password type input. Passwords may be stored in browsers and retrieved.

URL http://127.0.0.1:8000/

 Parameter input

 Evidence <input id="id_password" name="password" placeholder="password" type="password" />

Instances 1
Solution Turn off AUTOCOMPLETE attribute in form or individual input elements containing

password by using AUTOCOMPLETE='OFF'
Reference http://msdn.microsoft.com/library/default.asp?

url=/workshop/author/forms/autocomplete_ovr.asp
CWE Id 525

Low (Medium) X­Content­Type­Options Header Missing

Description The Anti­MIME­Sniffing header X­Content­Type­Options was not set to 'nosniff'. This allows
older versions of Internet Explorer and Chrome to perform MIME­sniffing on the response
body, potentially causing the response body to be interpreted and displayed as a content
type other than the declared content type. Current (early 2014) and legacy versions of
Firefox will use the declared content type (if one is set), rather than performing MIME­
sniffing.

URL http://127.0.0.1:8000/

URL http://127.0.0.1:8000/robots.txt

URL http://127.0.0.1:8000/sitemap.xml

URL http://127.0.0.1:8000/static/css/non­responsive.css

URL http://127.0.0.1:8000/static/css/base.css

URL http://127.0.0.1:8000/static/css/landing.css

URL http://127.0.0.1:8000/static/css/profile.css

URL http://127.0.0.1:8000/static/css/newsfeed.css

URL http://127.0.0.1:8000/static/css/introjs.css

URL http://127.0.0.1:8000/static/js/jquery­1.11.3.js

URL http://127.0.0.1:8000/static/js/ajax.js

URL http://127.0.0.1:8000/static/js/justgage.js

URL http://127.0.0.1:8000/static/js/raphael­2.1.4.min.js

seekinglove.com ZAP Passive Scanr Report 1 4

121

URL http://127.0.0.1:8000/static/js/raphael­2.1.4.min.js

URL http://127.0.0.1:8000/static/js/intro.js

URL http://127.0.0.1:8000/login/

Instances 15
Solution Ensure that the application/web server sets the Content­Type header appropriately, and that

it sets the X­Content­Type­Options header to 'nosniff' for all web pages.

If possible, ensure that the end user uses a standards­compliant and modern web browser
that does not perform MIME­sniffing at all, or that can be directed by the web
application/web server to not perform MIME­sniffing.

Other information This issue still applies to error type pages (401, 403, 500, etc) as those pages are often still
affected by injection issues, in which case there is still concern for browsers sniffing pages
away from their actual content type.

At "High" threshold this scanner will not alert on client or server error responses.

Reference http://msdn.microsoft.com/en­us/library/ie/gg622941%28v=vs.85%29.aspx

https://www.owasp.org/index.php/List_of_useful_HTTP_headers
WASC Id 15

seekinglove.com ZAP Passive Scanr Report 1 5

122

ZAP Scanning Report

Summary of Alerts

Risk Level Number of Alerts

High 0
Medium 1
Low 3
Informational 0

Alert Detail

Medium (Medium) X­Frame­Options Header Not Set

Description X­Frame­Options header is not included in the HTTP response to protect against
'ClickJacking' attacks.

URL http://127.0.0.1:8000/static/css/non­responsive.css

URL http://127.0.0.1:8000/static/css/base.css

URL http://127.0.0.1:8000/static/css/landing.css

URL http://127.0.0.1:8000/static/css/profile.css

URL http://127.0.0.1:8000/static/css/newsfeed.css

URL http://127.0.0.1:8000/static/css/introjs.css

URL http://127.0.0.1:8000/static/js/jquery­1.11.3.js

URL http://127.0.0.1:8000/static/js/ajax.js

URL http://127.0.0.1:8000/static/js/justgage.js

URL http://127.0.0.1:8000/static/js/raphael­2.1.4.min.js

URL http://127.0.0.1:8000/static/js/intro.js

Instances 11
Solution Most modern Web browsers support the X­Frame­Options HTTP header. Ensure it's set on

all web pages returned by your site (if you expect the page to be framed only by pages on
your server (e.g. it's part of a FRAMESET) then you'll want to use SAMEORIGIN, otherwise
if you never expect the page to be framed, you should use DENY. ALLOW­FROM allows
specific websites to frame the web page in supported web browsers).

Other information At "High" threshold this scanner will not alert on client or server error responses.

Reference http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/combating­clickjacking­with­x­frame­
options.aspx

Low (Medium) Cross­Domain JavaScript Source File Inclusion

Description The page at the following URL includes one or more script files from a third­party
domain

URL http://127.0.0.1:8000/

seekinglove.com ZAP Passive Scan 2 1

URL http://127.0.0.1:8000/

 Parameter https://getbootstrap.com/assets/js/ie­emulation­modes­warning.js

 Evidence https://getbootstrap.com/assets/js/ie­emulation­modes­warning.js

URL http://127.0.0.1:8000/

 Parameter https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js

 Evidence https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js

URL http://127.0.0.1:8000/

 Parameter https://getbootstrap.com/dist/js/bootstrap.min.js

 Evidence https://getbootstrap.com/dist/js/bootstrap.min.js

URL http://127.0.0.1:8000/

 Parameter https://getbootstrap.com/assets/js/ie10­viewport­bug­workaround.js

 Evidence https://getbootstrap.com/assets/js/ie10­viewport­bug­workaround.js

Instances 4
Solution Ensure JavaScript source files are loaded from only trusted sources, and the sources

can't be controlled by end users of the application
Reference

Low (Medium) Web Browser XSS Protection Not Enabled

Description Web Browser XSS Protection is not enabled, or is disabled by the configuration of the 'X­
XSS­Protection' HTTP response header on the web server

URL http://127.0.0.1:8000/static/css/non­responsive.css

URL http://127.0.0.1:8000/static/css/base.css

URL http://127.0.0.1:8000/static/css/landing.css

URL http://127.0.0.1:8000/static/css/profile.css

URL http://127.0.0.1:8000/static/css/newsfeed.css

URL http://127.0.0.1:8000/static/css/introjs.css

URL http://127.0.0.1:8000/static/js/jquery­1.11.3.js

URL http://127.0.0.1:8000/static/js/ajax.js

URL http://127.0.0.1:8000/static/js/justgage.js

URL http://127.0.0.1:8000/static/js/raphael­2.1.4.min.js

seekinglove.com ZAP Passive Scan 2 2

URL http://127.0.0.1:8000/static/js/intro.js

Instances 11
Solution Ensure that the web browser's XSS filter is enabled, by setting the X­XSS­Protection HTTP

response header to '1'.
Other information The X­XSS­Protection HTTP response header allows the web server to enable or disable

the web browser's XSS protection mechanism. The following values would attempt to enable
it:

X­XSS­Protection: 1; mode=block

X­XSS­Protection: 1; report=http://www.example.com/xss

The following values would disable it:

X­XSS­Protection: 0

The X­XSS­Protection HTTP response header is currently supported on Internet Explorer,
Chrome and Safari (WebKit).

Note that this alert is only raised if the response body could potentially contain an XSS
payload (with a text­based content type, with a non­zero length).

Reference https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

https://blog.veracode.com/2014/03/guidelines­for­setting­security­headers/
CWE Id 933
WASC Id 14

Low (Medium) X­Content­Type­Options Header Missing

Description The Anti­MIME­Sniffing header X­Content­Type­Options was not set to 'nosniff'. This allows
older versions of Internet Explorer and Chrome to perform MIME­sniffing on the response
body, potentially causing the response body to be interpreted and displayed as a content
type other than the declared content type. Current (early 2014) and legacy versions of
Firefox will use the declared content type (if one is set), rather than performing MIME­
sniffing.

URL http://127.0.0.1:8000/static/css/non­responsive.css

URL http://127.0.0.1:8000/static/css/base.css

URL http://127.0.0.1:8000/static/css/landing.css

URL http://127.0.0.1:8000/static/css/profile.css

URL http://127.0.0.1:8000/static/css/newsfeed.css

URL http://127.0.0.1:8000/static/css/introjs.css

URL http://127.0.0.1:8000/static/js/jquery­1.11.3.js

URL http://127.0.0.1:8000/static/js/ajax.js

URL http://127.0.0.1:8000/static/js/justgage.js

URL http://127.0.0.1:8000/static/js/raphael­2.1.4.min.js

seekinglove.com ZAP Passive Scan 2 3

URL http://127.0.0.1:8000/static/js/intro.js

Instances 11
Solution Ensure that the application/web server sets the Content­Type header appropriately, and that

it sets the X­Content­Type­Options header to 'nosniff' for all web pages.

If possible, ensure that the end user uses a standards­compliant and modern web browser
that does not perform MIME­sniffing at all, or that can be directed by the web
application/web server to not perform MIME­sniffing.

Other information This issue still applies to error type pages (401, 403, 500, etc) as those pages are often still
affected by injection issues, in which case there is still concern for browsers sniffing pages
away from their actual content type.

At "High" threshold this scanner will not alert on client or server error responses.

Reference http://msdn.microsoft.com/en­us/library/ie/gg622941%28v=vs.85%29.aspx

https://www.owasp.org/index.php/List_of_useful_HTTP_headers
WASC Id 15

seekinglove.com ZAP Passive Scan 2 4

Appendix D

Whitelist Middleware For Seekinglove.com

127

1 '''

2 Created on May 18, 2016

3

4 @author: Haneen

5 '''

6 # whitelist middleware to intercept requests and redirect to a safe component if

request is not within

7 # the application's intended behavior

8 from django.conf import settings

9 from django.http import HttpResponseRedirect

10 from django.core.urlresolvers import reverse

11 from django.template import RequestContext

12 from django.shortcuts import render_to_response

13 from accounts.views import *

14 from django.template.context_processors import request

15 from accounts.forms import UserRegistrationForm, UserLoginForm

16 #from django.contrib.sites.shortcuts import get_current_site

17

18 class WhitelistMiddleware(object):

19

20 def process_request(self, request):

21

22 referrer = request.META.get('HTTP_REFERER')

23 requested_url = request.path_info

24

25

26 # assume initially that all requests are not allowed

27 request.notallowed = True

28

29 # exclude admin site urls from this middleware

30 if request.path.startswith(reverse('admin:index')):

31 request.notallowed = False

32 return None

33

34 # to account for error: AttributeError at / ... 'NoneType' object has no

attribute 'startswith'

35 if referrer == None:

36 referrer = '|'

37

38 else:

39

40 register_allowed_referrers = ['http://127.0.0.1:8000/']

41 login_allowed_referrers = ['http://127.0.0.1:8000/', '

http://127.0.0.1:8000/login/']

42 login_requested_urls = ['/login/', '/profile/']

43 profile_allowed_referrers = ['http://127.0.0.1:8000/', '

http://127.0.0.1:8000/profile/', 'http://127.0.0.1:8000/editprofile/', '

http://127.0.0.1:8000/newsfeed/',

44 'http://127.0.0.1:8000/search/']

45 profile_requested_urls = ['/profile/', '/editprofile/', '/newsfeed/',

'/search/', '/activevalue/', '/like/']

46

47

48 # to allow access to media pictures

49 if request.path.startswith('/media/'):

50

51 request.notallowed = False

-1-

52 return None

53 #allowing flow to registration view from unknown component when user is

anonymous

54 if request.user.is_anonymous():

55 if (referrer in register_allowed_referrers) and ((requested_url ==

'/register/') or (requested_url == '/') or

56 (requested_url ==

'///logout/')):

57

58 request.notallowed = False

59 return None

60

61 # allowing login from specific views

62 elif ((referrer in login_allowed_referrers) and (requested_url in

login_requested_urls)):

63

64 request.notallowed = False

65 return None

66 #stopping direct access to createwink

67 elif request.method == "GET" and 'createwink' in request.GET:

68

69 request.notallowed = True

70 return None

71

72 else:

73 request.notallowed = True

74 else:

75

76 # being able to logout from any view within the profile portal

77 if ((referrer in profile_allowed_referrers) and (requested_url ==

'///logout/' or requested_url == '//logout/')):

78

79 request.notallowed = False

80 return None

81 #allowing access between internal profile views

82 elif ((referrer in profile_allowed_referrers or referrer.startswith('

http://127.0.0.1:8000/profile/')) and (requested_url in

profile_requested_urls or requested_url.startswith('/profile/')

83 or requested_url.startswith('/addcrush/') or

requested_url.startswith('/removecrush/')

84 or requested_url.startswith('/wall/'))):

85

86 request.notallowed = False

87 return None

88

89 # to allow access to activevalue
90 elif referrer.startswith('http://127.0.0.1:8000/activevalue/') and

requested_url.startswith('/activevalue/'):
91

92 request.notallowed = False

93

94

return None
to allow access from profile/ activevalue to newsfeed and

edit_profile and profile

95 elif referrer.startswith('http://127.0.0.1:8000/activevalue/') and

requested_url in profile_requested_urls:

96

97 request.notallowed = False

-2-

98 return None

99

100

101 else:

102 # if a transition from one view to another is not specified in

the above whitelist, then request.notallowed flag to set to True

103 request.notallowed = True

104

105

106 def process_view(self, request, view_func, view_args, view_kwargs):

107 referrer = request.META.get('HTTP_REFERER')

108 requested_url = request.path_info

109

110 if request.notallowed:

111

112 request.session.flush()

113

114 #returning the safe view

115 return render_to_response('landing.html', {'form': UserRegistrationForm

(), 'form2': UserLoginForm()}, context_instance=RequestContext(request))

116 else:

117

118 return None

119

120

121

122

-3-

Appendix E

PhD. Research Progress Timeline

131

The following timeline is for the purpose of documenting and tracking my research progress over

the past 3 years.

Hyperlinks in this document are private.

Date

1 12-Feb-14 IDEA: TDD-Like approach to achieve security as a Non-Functional Requirement

NOTES: Use a sekeltal SW process and add necessary security practices

APPROACH: Start with a minimal instance of PCSE and document any necessary

tailoring for achieving security

RESOURCE: Haneen's Quest for Finding A Research Topic

2 24-Feb-14 IDEA: Tailor an instance of PCSE for security as a NFR

NOTES: prepare presentation of the idea for PCSE reasearch group

APPROACH: MSA - Analyze --> set security goals and identify assets

MSA - Architect --> Threat Modeling with STRIDE

MSA - Architect --> Threat Modeling with STRIDE

MSA - Construct --> TDD-like approach to conduct pen tests alongside

functionality tests

MSA - Interpret --> How can I evaluate achieving security as a NFR???

RESOURCE: Secure TDD Skeleton Process

3 10-Mar-14 PLAN: Apply ideas above to a real SW development project

 NOTES: Document the instance of PCSE & indicate reasons behind any deviations

from it.

APPROACH: Use project Need-A-Nerd to apply idea

4 9-May-14 GOAL: Learn Django from now to the end of the semester.

RESOURCE: django_bookmarks (Django Project)

5 27-Aug-14 DEADEND: Validating a tailored process for security is currently unfeasible

 PLAN: Brainstorm for a different idea

6 2-Sep-14 QUESTION: Can a SW system monitor its own security & detect possible breaches before

 they happen?

RESOURCE: DASADA Project Analysis. Mandak and Stowell

7 8-Sep-14 IDEA: Asset/Component/Threat Matrix (ACT-Matrix)

NOTES: From matrix you should be able to elicit:

1) Threat frequency / number per component

2) Asset value

APPROACH: Construct working example on Need A Nerd projects. Come up with a formula

to measure component's likelihood of breach or req'd security attention.

8 12-Sep-14 PLAN: Review how can 'good enough' security be measured

 Methodolgy for evaluating security controls based on key performance indicators

and stake holder mission

Description

RESOURCE:

PhD Research Progress Timeline

IDEA: Measure risk per asset factoring in an asset's value

IDEA: link effect of a proposed threat to the component that must mitigate it

NOTES:

1) An asset may have a different value according to different threats it faces

2) A threat may carry a different value for different assets

3) Fill an asset/threat matrix similar to Protection Poker AV(A1, T1) - value of

asset 1 in light of existing threat 1

4) Fill a threat/component matrix TC(T1, C1) - values populated by approx. impact

RESOURCES: Adapting secure TROPOS for Security Risk Management

TRIKE

NOTES: Threats are never technology specific but attacks are

1) An asset's intiial value is calculated from taking avg. of value/stakeholder

2) A component's value is taken from effort req'd for development; acquisition cost

 if the component was outsourced

3) Fill an asset/threat matrix similar to Protection Poker AV(A1, T1) - value of

 asset 1 in light of existing threat 1

4) Fill a threat/component matrix TC(T1, C1) - values populated by approx. impact

9 7-Oct-14 QUESTION: How can vulnerabilties be linked to attacks?

NOTES:

1) is there a gap between vulnerabilities and attacks

2) is there a gap between implementation and design

10 8-Oct-14 IDEA: (Reevaluated) Asset/Component/Threat Matrix (ACT-Matrix)

RESOURCE: See ACT Estimation Matrix Document

11 28-Oct-14 DEADEND: Validating the efficacy of ACT Extimation Matrix is currently unfeasible

12 4-Nov-14 PLAN: Understand innerworkings of Django to extract its capabilities and shortcomings

RESOURCE: See Django in Depth

13 28-Nov-14 IDEA: Whitelist a Web Application's flow according to intended behavior

 NOTES:

1) Test idea on Need A Nerd Django student apps

2) Identify access control of different Django views to data fields

3) Incorporate user permissions into whitelisted flow

See What security issues should a developer be concerned with

14 4-Dec-14 PLAN: Work on dissertation proposal for whitelisting an app's flow

15 16-Jan-15 QUESTION: Can whitelisting a web application's flow improve security?

16 21-Jan-15 PLAN: Write Introduction Chapter of Proposal

 RESEARCH QUESTIONS:

1) What are the security best practices used nowadays in web app development?

2) What are the vulnerabilities that target web applications?

3) What mitigation strategies are offered in modern web frameworks?

4) What vulnerabilities must be addressed by the developer?

5) How can whitelisting an app's flow be utilized by the developer to address

vulnerabilities not mitigated by the framework

6) Would whitelisting a web application's flow improve its security?

PROPOSAL WRITING PROGRESS: See Proposal draft 1/21/2015

See Proposal draft 1/26/2015

See Proposal draft 1/28/2015

17 29-Jan-15 PLAN: Outline for dissertation proposal

 NOTES:

1) State the problem

2) Give a big picture for the whitelisting idea

3) State the specific part the dissertation will focus on - Scope

4) State any assumptions made

5) Describe validation method (proof of feasibility)

6) Indicate research goals and how they'll be achieved

PROPOSAL WRITING PROGRESS: See Proposal draft 2/4/2015

18 12-Feb-15 PLAN: Investigate state info of a request in Django

 NOTES:

1) Use OSI model to separate concerns between developer and network admin

2) What are the major threats that occur at each level of the OSI

3) Web frameworks deal with levels 5 and 6; developer deals with level 7

PROPOSAL WRITING PROGRESS: See Proposal draft 2/18/2015

See Proposal draft 2/25/2015

See Proposal draft 3/4/2015

See Proposal draft 3/11/2015

19 12-Mar-15 PLAN: Add section called Research Description

 NOTES:

1) Include research objectives

2) Describe whitelisting and how it is accomplished

3) Describe how to articulate and enforce the whitelist

4) Indicate what happens when the whitelist is violated

5) Describe validation methodology

PROPOSAL WRITING PROGRESS: See Proposal draft 3/18/2015

20 19-Mar-15 PLAN: Write Literature Review chapter

 NOTES:

1) Describe security at every level in the OSI model

2) Decribe OWASP's top 10 web vulnerabilities

3) Show what web frameworks protect against and what they don't protect against

4) Re-arrange proof of concept example:

Show detailed example of a compromised view - what information was leaked?

Show same example with whitelisted flow and how it prevents the vulnerability

PROPOSAL WRITING PROGRESS: See Proposal draft 4/1/2015

21 3-Apr-15 PLAN: Send out doodle request for proposal defense date

 PROPOSAL WRITING PROGRESS: See Proposal draft 4/8/2015

See Proposal draft 4/15/2015

22 16-Apr-15 PLAN: Map OWASP's secure coding practices with Django security controls

 NOTES:

1) Construct a table that maps every OWASP secure coding practice to a Django

 security control

2) Create comparison figure of Django/Rails/CakePHP Vs. OWASP top 10

3) Discuss at end of Literature Review what common vulnerabilities are mitigated

 by frameworks out of the box

4) Confirmed proposal date and time: May 6th, 2015. 2-3pm

PROPOSAL WRITING PROGRESS: See Proposal draft 4/21/2015

See Proposal draft 4/22/2015

See Proposal draft 4/26/2015

23 27-Apr-15 PLAN: Work on Proposal Defense Presentation

 NOTES:

1) Limit presentation to approx. 20 slides

2) Email final dissertation proposal to committee

3) Email invitation to proposal defense scheduled on May 6th, 2015 at 2pm

PROPOSAL WRITING PROGRESS: See Final Proposal 4/29/2015

PROPOSAL DEFENSE SLIDES: See Presentation Draft 5/1/2015

See Presentation Draft 5/4/2015

See Final Proposal Presentation 5/5/2015

24 6-May-15 PROPOSAL DEFENSE: 2-3 pm

25 12-May-15 PLAN: Work on a paper about Using Whitelisted Flow Between Application Components

26 25-Aug-15 NOTES: Get feedback on paper

 RESOURCE: Employing Whitelists in Interactions Between Application Components

27 3-Sep-15 PLAN: Participate in School of Engineering Graduate Research Showcase

NOTES: Registration deadline 9/14/15

28 7-Sep-15 PLAN: Research and Choose Web Vulnerability Scanning Tool

 NOTES: Choice: Zed Attack Proxy (ZAP)

RESOURCES: See Vulnerability Scanning Tools

See Zed Attack Proxy (ZAP)

29 10-Sep-15 PLAN: Work on a formal definition for the Whitelist AND Poster for research showcase

 FORMAL DEFINITION PROGRESS: Formal Definition Version 1

Formal Definition Version 2

Formal Definition Version 3

Formal Definition Version 4

Formal Definition Version 5

Formal Definition Version 6

Formal Definition Final Version

RESEARCH SHOWCASE POSTER: See Poster Draft 1

See Poster Draft 2

See Poster Final Version

30 2-Nov-15 PLAN: Scan Need A Nerd student projects with ZAP and document vulnerability reports

NOTES:

1) Research what OWASP vulnerabilities ZAP tests for

2) Conduct passive testing using ZAP

3) Conduct active testing using ZAP (proxy through ZAP)

ZAP SCANNING REPORTS: Need A Nerd Scan Reports for all Team Projects

31 2-Dec-15 PLAN: Rework paper on whitelisting a web application's flow

STATUS: Awaiting advisor's comments

RESOURCE: Whitelisting Paper Version 1

32 14-Jan-16 PLAN: Create Generic Workflow for All Need A Nerd Apps

NOTES:

1) Make a list of features/ functionality implemented by team projects

2) Construct workflow based on functionality implemented by most teams

3) Apply mitigation policy for non-application specific vulnerabilities found using ZAP

RESOURCES: NaN Implemented Functionality List

ZAP Results for all NaN Projects

NaN Workflow Initial Draft

NaN Workflow Final Draft

33 8-Feb-16 PLAN: Conduct Manual Testing on All NaN Apps to Find Application Specific Vulnerabilities

AND Create Whitelisting Middleware for Every NaN Project.

NOTES:

1) Test for all disallowed flow as indicated in NaN Workflow

2) Document findings for every project tested

3) Create whitelist middleware for every NaN project

4) Retest NaN projects for all disallowed flow as indicated in NaN Workflow

5) Document findings for every project tested with whitelist middleware enabled

RESOURCE: Whitelist Middleware Classes for All NaN Projects

34 23-Mar-16 GRADUATION DEFFERED TO SPRING 2017

35 28-Mar-16 PLAN: Find Open Source Django App in Production Use to Whitelist

NOTES:

1) Search for a Django App in DjangoSites

2) Search for a Django App in Github

POTENTIAL APP: Codesters DEADEND: App not maintained

POTENTIAL APP: OSQA DEADEND: App's codebase is extremely large

POTENTIAL APP: Parsifal DEADEND: App does not contain many features

RESOURCE: Django Apps on Github LOC Count

36 11-Apr-16 CHOSEN APP: seekinglove.com

RESOURCE: Codebase for seekinglove.com

37 15-Apr-16 PLAN: Scan seekinglove.com with ZAP and document vulnerability reports

AND Create workflow based on intended behavior.

NOTES:

1) Test seekinglove.com using ZAP to find non-application specific vulnerabilities

2) Document results.

3) Apply mitigation policy for non-application specific vulnerabilities found

using ZAP

4) Extract features from codebase review

5) Construct workflow based on app features and functionality

RESOURCES: seekinglove.com ZAP Scan Report 1

seekinglove.com ZAP Scan Report 2

seekinglove.com settings file

seekinglove.com Workflow

38 20-Apr-16 PLAN: Conduct Manual Testing on seekinglove.com to Find Application Specific Vulnerabilities

AND Create a whitelisting middleware for it.

NOTES:

1) Test for all disallowed flow as indicated in Workflow

2) Document application specific vulnerabilities found through manual testing

3) Create whitelist middleware for seekinglove.com

4) Retest the application for all disallowed flow as indicated in its Workflow

5) Document results from testing the application with whitelist middleware enabled

RESOURCES: seekinglove.com application-specific vulnerabilities

seekinglove.com whitelist middleware class

39 30-May-16 PLAN: Contact seekinglove.com developer to get approval on using his work

NOTES: Email sent to developer 5/31/2016

40 7-Jul-16 PLAN: Contact seekinglove.com developer to get approval on using his work

NOTES: 2nd attempt - Email sent to developer 7/7/2016

41 17-Aug-16 PLAN: Rewrite Chapter 3 - Web Application Flow Whitelisting

 NOTES:

1) Restate problem

2) Decribe Wwb application flow whitelisting

3) Include formal definition as well as how a whitelist would be built

4) Include a generic example to illustrate the concept.

DISSERTATION WRITING PROGRESS: See Dissertation draft 8/25/2016

42 19-Aug-16 PLAN: Ask Dr. Skjellum to join my PhD committee

REASON: Due to Dr. Overbey's departure from CSSE; Dr. Skjellum will be the 4th

committee member

43 25-Aug-16 PLAN: Write Chapter 4 - Research Methodology and Validation

 NOTES:

1) Incorporate Dr. Umphress's suggested changes in Ch.3

2) Add section: Assumptions

3) Include background on Django's architecture

4) Describe writing custom middleware for web application flow whitelisting

5) Write validation section for Need A Nerd apps

DISSERTATION WRITING PROGRESS: See Dissertation draft 9/8/2016

See Dissertation draft 9/12/2016

See Dissertation draft 9/15/2016

See Dissertation draft 9/20/2016

See Dissertation draft 9/21/2016

44 19-Sep-16 NOTE: Committee member officially changed.

45 22-Sep-16 PLAN: Write Chapter 5 - Validation for seekinglove.com

 NOTES:

1) Change title of Ch.4 to Research Methodology Phase 1: Small Case Validation

2) Write title of Ch.5 as Research Methodology Phase 2: Large Case Validation

3) Describe process for selecting seekinglove.com

4) Give an overview of seekinglove.com functionality

5) Describe applying the formal definition of whitelisting to seekinglove.com

DISSERTATION WRITING PROGRESS: See Dissertation draft 9/30/2016

See Dissertation draft 10/6/2016

46 11-Oct-16 PLAN: Make minor adjustments to:

NOTES:

1) Emphasize that whitelisting targeted A4 and A7 vulnerabilities

2) Update statistics of internet users in intro and abstract

3) Group vulnerabilities under missing error handing

4) Ch. 6 must havea contributions section

47 25-Oct-16 PLAN: Write Chapter 6 - Conclusion and Future Work

NOTES:

1) Incorporate Dr. Umphress's suggested changes in Ch.4 and 5

2) Start Ch. 6 with a brief summary of this research

3) Write contributions section

4) Write future work section

5) Fix margin issues in bibliography entries with urls

DISSERTATION WRITING PROGRESS: See Dissertation draft 10/28/2016

See Dissertation draft 10/31/2016

48 15-Nov-16 NOTES: Work on security in Django paper/practices table

49 29-Nov-16 PLAN: Prepare to submit dissertation to committee for review

NOTES:

1) University Reader: Contact Dr. Jerry Davis in Industrial Engineering to be the reader

2) Write acknowledgements section

3) Email initial dissertation to committee members and graduate school for review

DISSERTATION WRITING PROGRESS: See Dissertation for committee review 12/6/2016

50 24-Jan-17 PLAN: Set final defense date and time

NOTES:

1) Dry run set for Mon, 1/30/2017 at 1 pm

2) Send out doodle poll to committee for week of 2/12/17 - 2/17/17

51 7-Feb-17 PLAN: Get feedback on whitelisting paper

NOTES:

1) Incorporate Dr. Umphress's suggested changes in whitelisting paper

2) Make sure paper and figures are inline with submission guidelines

52 9-Mar-17 PLAN: Submit whitelisting paper

NOTES: Submitted 3/20/2017

53 2-Apr-17 PLAN: Work on PhD Progress Timeline

NOTES:

1) Proof read dissertation and prepare for ETD submission

2) Complete PhD Progress Timeline appendix

3) Deadline for ETD final submission: 4/24/2017

	Abstract
	Acknowledgments
	List of Figures
	Introduction
	Importance of Secure Software Development
	The Problem with Secure Software Development Processes
	Web Application Security
	Research Scope

	Literature Review
	Addressing Security in the OSI Model
	Security of Layer 1: The Physical Layer
	Security of Layer 2: The Data Link Layer
	Security of Layer 3: The Network Layer
	Security of Layer 4: The Transport Layer
	Security of Layer 5: The Session Layer
	Security of Layer 6: The Presentation Layer
	Security of Layer 7: The Application Layer
	Summary

	Secure Coding Practices and Common Web Vulnerabilities
	Introduction
	The OWASP Secure Coding Practices
	The OWASP Top Ten Web Vulnerabilities

	Web Application Flow Whitelisting
	Background and Problem Domain
	Defining Web Application Flow Whitelisting
	Formal Definition of the Whitelist
	Building the Whitelist
	A Web Application Flow Whitelisting Example
	Perceived Benefits of Web Application Flow Whitelisting

	Research Methodology: Phase1: Small Case Validation
	Assumptions
	Background
	The Request-Response Cycle in Django

	Writing Custom Middleware Class for Web Application Flow Whitelisting
	Hypothesis
	Validation of Web Application Flow Whitelisting: Need-A-Nerd student apps
	Zed Attack Proxy (ZAP)
	Apps from COMP4970: Web Development with Django

	Analysis
	Application Specific Vulnerabilities
	Results
	Limitations

	Research Methodology: Phase2: Large Case Validation
	Background
	Overview of seekinglove.com

	Analysis
	Application Specific Vulnerabilities in seekinglove.com
	Results
	Limitations

	Conclusions and Future Work
	Summary
	Contributions
	Future Work

	References
	Appendices
	Security in Django
	Django and the OWASP Top 10 Web Vulnerabilities
	A1: Injection
	A2: Broken Authentication and Session Management
	A3: Cross Site Scripting - XSS
	A4: Insecure Direct Object References
	A5: Security Misconfiguration
	A6: Sensitive Data Exposure
	A7: Missing Level Access Control
	A8: Cross Site Request Forgery - CSRF
	A9: Using Components with Known Vulnerabilities
	A10: Unvalidated Redirects and Forwards

	Mitigation for Common Attacks
	Clickjacking
	Brute Force Login

	Security Best Practices

	Open source Django Applications on Github
	ZAP Passive Scan Reports
	Whitelist Middleware For Seekinglove.com
	PhD. Research Progress Timeline

