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In this paper, we discuss the proofs of the primary classical triangle centers and

Kiepert’s Hyperbola as a solution to Lemoine’s Problem. The definitions of terms which

will be used throughout the paper are presented. A brief description of well-known triangle

centers as well as complete proofs of the remaining classical triangle centers is provided.

Many of the proofs of the classical triangle centers require the use of Ceva’s Theorem.

Ceva’s Theorem is proven in the beginning prior to the introduction of the triangle cen-

ters. We also explore the proof of Kiepert’s Hyperbola as a solution to a problem posed by

Lemoine in 1868. A proof of the Nine-Point Circle is provided since the center of Kiepert’s

Hyperbola lies on the Nine-Point Circle. The trilinear coordinate system provides the basis

for the proof of Kiepert’s Hyperbola. A brief description of the system and the proofs of

its primary theorems are given. The proof of Kiepert’s Hyperbola is given along with its

properties.
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Chapter 1

Introduction

The field of Geometry is subdivided into many areas such as Euclidean, Non-Euclidean,

Convex, Discrete, Hyperbolic, and Algebraic. This paper explores the subject of triangle

centers as studied in Euclidean Geometry. We consider a triangle center in a general since

meaning that a triangle center is the point of concurrence of three ”special” lines of a refer-

ence triangle. For many centuries, mathematicians have been discovering triangle centers.

The most well-known centers, the incenter, the centroid, the circumcenter, and the ortho-

center were discovered by the ancient Greeks thus classifying them as ”classical”. However,

the height of the study of triangle centers occurred during the 1800’s, where mathematicians

such as Fermat and Lemoine continued the research on triangle centers. The subject was

revisited in the early 1990’s. The study of triangle centers provides a solid foundation for

the concept of triangles and a great teaching tool for Euclidean Geometry.

In this paper, thirteen triangle centers are examined. In Chapter 2, terms and def-

initions which will be used throughout the paper are presented. Chapter 3 provides de-

scriptions and proofs for the triangle centers. A review of the properties and proofs for the

incenter, centroid, circumcenter, and orthocenter are given. Ceva’s Theorem plays an im-

portant role in many of the existence proofs of the triangle centers. The theorem is proven

and provides a framework for the existence proofs of the centroid, Nagel Point, Gergonne

Point, and the Symmedian or Lemoine Point. The Mittenpunkt or Middles-point is pre-

sented following the Symmedian Point along with the Spieker Center and Steiner Point.

The Napoleon and Fermat Points are a result from the proof of Kiepert’s Hyperbola.
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In 1868, Lemoine posed a problem concerning the coordinates of a given triangle if the

coordinates of the peaks of equilateral triangles raised on the sides are known. In 1869, Lud-

wig Kiepert presented a solution to the problem known as Kiepert’s Hyperbola. Kiepert’s

Hyperbola passes through several of the triangle centers presented in Chapter 3. In Chapter

4, Kiepert’s Hyperbola is examined. The chapter begins with the proof of the Nine-Point

or Feuerbach Circle since the center of Kiepert’s Hyperbola lies on the Nine-Point Circle.

The asymptotes of Kiepert’s Hyperbola are Simson Lines. Therefore, the existence proof

of Simson Lines is provided. The proof for Kiepert’s Hyperbola involves the use of trilinear

coordinates. The coordinate system is introduced in Chapter 4 and many theorems regard-

ing the system are proven. Finally, the proof of Kiepert’s Hyperbola is given along with it’s

relationship to many of the triangle centers. Kiepert’s Hyperbola not only passes through

the vertices of the given triangle, but also passes through the centroid, orthocenter, Spieker

Center, Fermat Point, and Napoleon Point[2].
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Chapter 2

Terms and their Definitions

Altitude: The line passing through a vertex of a given triangle and perpendicular to

the opposite side.

Angle Bisector: The line which passes bisects a vertex of a given triangle.

Brocard Circle: The circle with the symmedian point and the circumcenter as its diam-

eter for a given triangle.

First Brocard Triangle: The triangle constructed by connecting the points on the

Brocard Circle where the perpendiculars through the circumcenter meet the Bro-

card Circle.

Centroid: The point of concurrence of the medians of a given triangle.

Circumcenter: The point of concurrence of the perpendicular bisectors of a given triangle.

Cyclic Quadrilateral: A quadrilateral in which all vertices lie on the same circle.

Euler Line: The line passing through the centroid, circumcenter, and orthocenter of a

given triangle.

Euler Points: The midpoints of the segments connecting the orthocenter to the vertices

of a given triangle.

Euler Triangle: The triangle connecting the three Euler Points.

Fermat Point: The point of concurrence of three lines, each passing through a vertex and

the peak of an equilateral triangle raised on the opposite side of a given triangle.

Feueurbach Circle: See Nine-Point Circle.

Gergonne Point: The point of concurrence of three lines, each passing through a vertex
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and the point of tangency of the opposite side and the incircle of a given triangle.

Incenter: The point of concurrence of the angle bisectors of a given triangle.

Kiepert’s Hyperbola: The rectangular hyperbola formed by the point of concurrence

of three lines, each connecting a vertex of a given triangle and the peak of a similar

isosceles triangle raised on the opposite side, as the base angle varies.

Lemoine Point: See Symmedian Point.

Medial Triangle: The triangle whose vertices are the midpoints for a given triangle.

Median: The line passing through the vertex and the midpoint of the opposite side of

a given triangle.

Mittenpunkt or Middles-point: The point of concurrence of three lines, each passing

through the center of the excircle for a given side and the midpoint of that side for a

given triangle.

Nagel Point: The point of concurrence of three lines, each passing through a vertex

and the point of tangency of the opposite side and the opposite excircle of a given

triangle.

Napoleon Point: The point of concurrence of three lines, each passing through a ver-

tex and the centroid of an equilateral triangle raised on the opposite side of a given

triangle.

Nine-Point or Feuerbach Circle: The circle on which the medians, the feet of the

altitudes, and the Euler points of a given triangle lie.

Orthocenter: The point of concurrence of the altitudes of a given triangle.

Perpendicular Bisector: A line which bisects a side of a given triangle and is perpen-

dicular to that side.
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Simson Line: A line which passes through the three feet of the altitudes from any point

on the circumcircle.

Spieker Center: The point of concurrence of the angle bisectors of the medial triangle

of a given triangle.

Steiner Point: The point of concurrence of three lines, each passing through a vertex

which parallel to the opposite side of the First Brocard Triangle for a given triangle.

Symmedian Line: For a vertex of a given triangle it is the reflection of the medial line

at that vertex across the angle bisector at that vertex.

Symmedian or Lemoine Point: The point of concurrence of the three symmedian

lines of a triangle.

Trilinear coordinates: An set of ordered triples, α : β : γ, which are proportional to the

signed distances from a point to the sidelines of a given triangle.

Notation

Triangle ABC will be denoted as MABC.

Given MABC, a, b, and c will denote the sides BC, CA, and AB respectively.

∠ABC will denote the angle with point B as its vertex as well as the measure of that angle.

The line, segment, and segment length between two points A and B will be denoted as AB.

The symbol ”
−−→
AB” will be used for vector AB.

The symbol ”∼=” will be used for congruence.

The symbol”∼” will be used for similarity.

An altitude is understood to be the line passing through a vertex of a triangle which is

perpendicular to the opposite side.
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Chapter 3

Triangle Centers

In this chapter, we focus on the classical triangle centers. However, a list of both

classical and recent triangle centers can be found on Clark Kimberling’s website. The

website also includes an encyclopedia of all triangle centers. Kimberling also provides more

information on the centers presented in Chapter 3 including their trilinear coordinates and

properties [3]. Before proving the existence of several triangle centers, a theorem must be

introduced. Ceva’s Theorem is useful in determining whether three lines are concurrent.

Many of the proofs in this chapter utilize Ceva’s Theorem.

3.1 Ceva’s Theorem

Theorem 3.1 (Ceva’s Theorem) If D, E, and F are points on the sides c, a, and b respec-

tively of a given triangle, MABC, then the lines AE, BF, and CD concur at a point K if

and only if
AD

DB
· BE

EC
· CF

FA
= 1.

Proof.

A

F

E

D

C

BK

Figure 1: Ceva's Theorem
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First, assume that the segments AE, BF, and CD concur at a point K.(Figure 1) Triangles

CKE and BKE share altitude hK . Therefore

area(MCKE) = CE ·hk

2
and area(MBKE) = EB ·hk

2
.

Therefore

CE

EB
=

area(M CKE)
area(M BKE)

.

In the same manner,

CE

EB
=

area(M BAE)
area(M CAE)

.

Since MAKB = MBAE - MBKE and MAKC = MCAE - MCKE then

CE

EB
=

area(M CKA)
area(M AKB)

.

Likewise,

AF

FC
=

area(M AKB)
area(M CKB)

and
BD

DA
=

area(M CKB)
area(M CKA)

.

Therefore,

CE

EB
· AF

FC
· BD

DA
=

area(M CKA)
area(M BKA)

· area(M AKB)
area(M CKB)

· area(M BKC)
area(M AKC)

= 1.

Now, assume that for MABC with any points D, E, and F on it’s sides,

AD

DB
· BE

EC
· CF

FA
= 1.

Let the lines AE and BF intersect at a point K. Then there is some point, X, on side AB

such that CX passes through K.

Then

AX

XB
· BE

EC
· CF

FA
= 1.
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Therefore, by setting the two equations equal to each other,

AD

DB
=

AX

XB
.

So D = X. Thus, the lines AE, BF, and CD are concurrent at a point. ¤

3.2 Review of Centroid, Orthocenter, Circumcenter, and Incenter

The centroid, orthocenter, circumcenter, and incenter are perhaps the most well known

triangle centers. Euler found that the incenter, circumcenter, and orthocenter all lie on the

same line known as the Euler Line. This section provides a brief review of their proofs and

properties.

Centroid : The centroid is the point of concurrence of the medians of a given triangle.

The centroid is the center of mass for the given triangle. The existence of the centroid is

easily proven using Ceva’s Theorem.

Orthocenter : The orthocenter of a given triangle is the point of concurrence of the altitudes.

We will provide the proof which utilizes simple vector calculus.

Theorem 3.2 Given MABC, the three altitudes of the triangle concur at a point called the

orthocenter.

Proof.

8



O

P

M

A

BC

bc

a

Figure 2: Orthocenter

Given MABC let vectors a, b, and c be vectors from the circumcenter O to the vertices A,

B, and C respectively.(Figure 2) Let the circumcenter be O. Now Let OP be the vector from

the circumcenter O to the centroid P. Then

P =
a + b + c

3
.

Let
−−→
OM be the vector with same direction which is three times the length of

−−→
OP . Then

−−→
OM = a + b + c.

Now
−−→
AB = b - a and

−−→
MC = c - (a + b + c) = -a - b.

Therefore,

−−→
AB · −−→MC = (b - a) · (-a - b) = -b2 + a2 = 0

9



since b = a. Therefore,
−−→
MC is perpendicular to

−−→
AB. In the same manner,

−−→
MA is perpen-

dicular to
−−→
CB and

−−→
MB is perpendicular to

−→
AC. Thus, M is the point of concurrence of the

altitudes of triangle ABC. ¤

Circumcenter : The circumcenter of a given triangle is the point of concurrence of the

perpendicular bisectors of the triangle. The existence proof for the circumcenter follows

from the fact that the point lies equal distance from each vertex.

Incenter : The incenter of a given triangle is the point of concurrence of the angle bisectors

of the triangle. The existence proof shows that the incenter is equal distance from the

sidelines of the triangle.

3.3 Gergonne Point

Theorem 3.3 (Gergonne’s Theorem) Given MABC, let the incircle have center I and be

tangent to the sides c, a, and b at the points D, E, and F respectively. Then the lines AE,

BF, and CD concur at a point K called the Gergonne Point.(Figure 3)

I

E

D
F

C
B

A

K

Figure 3: Gergonne Point
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Proof.

I

E

D

F

C
B

A

Figure 4: Radii and Angle Bisectors

I lies on the angle bisectors of the triangle and the radii of the incircle, ID, IE, and

IF are perpendicular to the sides AB, BC, and CA.(Figure 4) Therefore, three pairs of

congruent triangles are formed such that BE = BD, CF = CE, and AD = AF then

AD

DB
· BE

EC
· CF

FA
= 1.

By Ceva’s Theorem the lines AE, BF, and CD are concurrent.

¤

3.4 Nagel Point

Theorem 3.4 (Nagel’s Theorem) Given MABC let E, I, and L be the points on the sides

c, a, and b respectively which are tangent to the side’s excircles. Then the lines AI, BL,

and CE concur at a point called the Nagel Point.(Figure 5)

Proof.
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C

J

K

M

D

L

I

E

B

A

H

F

Figure 5: Nagel Point

Since BM = BK, AM = AL, and CL = CK then BK = s where s is the semiperimeter

of MABC. Likewise CF = s. Therefore,

CL = EB = s - a.

Also

AE = CI = s - b and AL = IB = s - c.

Therefore,

12



AE

EB
· IB

CI
· CL

AL
=

s− b

s− a
· s− c

s− b
· s− a

s− c
= 1.

So by Ceva’s Theorem the lines AI, BL, and CE concur. ¤

3.5 Symmedian or Lemoine Point

Another application of Ceva’s Theorem is a proof involving the symmedian lines of a

triangle. A symmedian line of a given triangle at a vertex is the line reflection of the median

of that vertex across the angle bisector. The three symmedian lines of a given triangle are

concurrent by Ceva’s Theorem.

Theorem 3.5 Given MABC, the symmedian lines AS, BS’, and CS” are concurrent at a

point called the Symmedian or Lemoine Point.(Figure 6)

A

C S

S'

B

S"

Figure 6: Symmedian Point

Proof.

A

C S
B

M

Figure 7: Symmedian Line
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For MABC let the median from vertex A intersect BC at the point M. Let the sym-

median line from vertex A intersect BC at the point S.(Figure 7) Then by computing the

areas of triangles CAM and BAS,

area(M BAS)
area(M CAM)

=
BS

CM

since triangles BAS and CAM share a common height h.

Then using an alternative area formula,

2·area(BAS) = AB·AS sin(SAB)

and

2·area(CAM) = AM·AC sin(CAM).

Since ∠SAB = ∠CAM then,

area(M BAS)
area(M CAM)

=
AB ·AS

AM ·AC
=

BS

CM
.

For triangles ASC and AMB,

area(M ASC)
area(M AMB)

=
AC ·AS

AM ·AB
=

CS

BM
.

Since CM = BM , dividing the two equations gives

BS

CM
CS

BM

=
BS

CS
=

AB2

AC2
.

For the other vertices,

CS′

AS′
=

BC2

AB2
and

AS”
BS”

=
AC2

BC2

14



with S’ and S” being the point of intersection of the symmedian lines from vertex B and

vertex C respectively.

Now multiplying the three equalities yields

BS

CS
· CS′

AS′
· AS”
BS”

=
AB2

AC2
· BC2

AB2
· AC2

BC2
= 1.

By Ceva’s Theorem the symmedian lines AS, BS’, and CS” are concurrent.

¤

3.6 Mittenpunkt or Middles-point

Theorem 3.6 (Mittenpunkt or Middles-point) Given MABC with Oa, Ob, and Oc as the

excenters and A’, B’, and C’ as the midpoints of sides a, b, and c respectively, the lines

OaA
′, ObB

′, and OcC
′ are concurrent at a point called the Mittenpunkt.(Figure 8)

15



A
Oc

Oa

Ob

BC

L

M

N

   Figure 8: Mittenpunkt

S
R

Proof. Let L and M be points on the excircle with center Ob tangent to BA and BC

respectively. Let N be the point on the excircle with center Oc tangent to CA. (Figure 9)

The lines ObA and OcA bisect the external angles of vertex A.
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A

C'B'

Oc

Oa

Ob

BC
A'

L

M

N

S
R

Figure 9: Excircles and Excenters

Then

∠ObAC = ∠LAOb = α.

In the same manner,

∠BCOa = ∠OaCS = γ

where S is the point on tangency of the line AC with the excircle with center Oa.

Also

∠CBOa = ∠OaBR = β

where R is the point of tangency of the line AB to the excircle with center Oa.

So

17



∠CAB = π - 2α, ∠ABC = π - 2β, and ∠BCA = π - 2γ.

Therefore,

α =
π − ∠CAB

2
, β =

π − ∠ABC

2
, and γ =

π − ∠BCA

2
.

Then

∠BOaC = π −
(

π − ∠BCA

2

)
−

(
π − ∠ABC

2

)
=

∠BCA

2
+

∠ABC

2
=

π − ∠CAB

2
= α.

Likewise,

∠CObA = β

and

∠BOcA = γ.

Therefore, MAOcB is similar to M OcObOa. Let line OcT be the angle bisector of ∠AOcB.

Reflecting MAOcB about line OcT we get that MAOcB and MOcObOa are homothetic. Thus,

the image of the median OcC’ is the median OcC
′
r of M OcObOa. Therefore, line OcC’ is a

symmedian line for M OaOcOb.(Figure 10)

18



Oc

Oa

Ob

T

C'

A

B

     Figure 10: Symmedian Line

Ar

Br

C'r

Likewise the lines ObB’ and OaA’ are symmedian lines for M OaOcOb. Therefore, by

Theorem 3.5 the lines OaA
′, ObB

′, and OcC
′ are concurrent.

¤

3.7 Spieker Center

Theorem 3.7 Given MABC, let D, E, and F be the midpoints of the sides c, a, and b

respectively. Then the angle bisectors of the medial triangle, MDEF concur at a point K

known as the Spieker Center.(Figure 11)

19



A

C B

Figure 11: Spieker Center

F

E

D

Proof. Since the angle bisectors of any given triangle concur at a point, the angle bisectors

of medial triangle, MDEF, concur at a point. ¤

3.8 Steiner Point

Theorem 3.8 Given MABC with circumcircle having center X and Brocard Triangle, Ma’b’c’,

then the lines through the vertices MABC which are parallel to the ”opposite” sides of the

Brocard triangle concur at a point known as the Steiner Point.(Figure 12)

20



A

X

B

C

S

b'

a'

c'

K

Figure 12: Steiner Point

Proof. Let the line through vertex B and parallel to a’c’ and the line through vertex C

and parallel to a’b’ concur at a point K.(Figure 13)

A

X

B

C

S

b'

a'

c'

K

Figure 13: K on the circle

Then,

21



∠BKC = ∠BAC

since both angles cut off the same chord of the circumcircle with center X. Therefore, K

lies on the circumcircle of MABC. In the same manner, let the line through vertex B and

parallel to ac and the line through vertex A and parallel to cb concur at a point M.

Then,

∠BMA = ∠ACB

since both angles cut off the same chord of the circumcircle with center X. Therefore, M

also lies on the circumcircle.

Since line BK can only pass through a circle in at most two points, then

K = M.

Thus the lines BK, CK, and AK are concurrent at the point K on the circumcircle ¤

3.9 Napoleon Point

Theorem 3.9 Given MABC with equilateral triangles raised on it’s sides, the lines ,each

passing through a vertex and the centroid of the opposite equilateral triangle, concur at a

point called the Napoleon Point.(Figure 14)
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A

C
B

Figure 14: Napoleon Point

Proof. Refer to the proof of Kiepert’s Hyperbola in Chapter 4. ¤

3.10 Fermat Point

Theorem 3.10 Given MABC with equilateral triangles raised on it’s sides, the lines ,each

passing through a vertex and the peak of the opposite equilateral triangle, concur at a point

called the Fermat Point.

A

C
B

Figure 15: Fermat Point

Proof. Refer to the proof of Kiepert’s Hyperbola in Chapter 4. ¤
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Chapter 4

Kiepert’s Hyperbola

In 1868, Lemoine posed the following problem [2]: Construct a triangle, given the

peaks of the equilateral triangles constructed on the sides (p. 188). Ludwig Kiepert posed

a solution to the problem in 1869. Kiepert generalized the problem to isosceles triangles.

Kiepert’s solution is stated as follows[2]: If three triangles, MA’BC, MAB’C, and MABC’,

with equivalent base angles are constructed on the sides of a given triangle, MABC, then the

lines AA’, BB’, and CC’ concur. The locus of the point P as the base angle of the isosceles

triangles varies forms the equation

sin(B − C)
α

+
sin(C −A)

β
+

sin(A−B)
γ

= 0,

or equivalently,

bc(b2 − c2)
α

+
ca(c2 − b2)

β
+

ab(a2 − b2)
γ

= 0(p.189).

He showed that the lines, each passing through a vertex of the given triangle and a peak

of the constructed isosceles triangle, concur at a point. As the base angle of the isosceles

triangles vary the locus of the point of concurrence creates a rectangular hyperbola. The

hyperbola passes through the vertices of the given triangle and several triangle centers

including the centroid, orthocenter, Spieker center, Napoleon Point, Fermat Point, and

the Brocard point [5]. The Simson Lines of the given triangle are the asymptotes for

the rectangular hyperbola. The existence proof for Simson Lines is given in section two.

The proof of Kiepert’s Hyperbola requires the use of trilinear coordinates. Several theorems

involving trilinear coordinates will be proven prior to the completion of Kiepert’s Hyperbola
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theorem. The center of Kiepert’s Hyperbola lies on the Nine-Point Circle. The Nine-Point

Circle proof is well known. However, for completeness the proof is given in the first section

of this chapter.

4.1 Nine-Point Circle

The Nine-Point Circle or Feuerbach Circle passes through the medians, the feet of the

altitudes, and the Euler points of a given triangle. A lemma is needed to prove that all nine

points lie on the same circle.

Lemma 1 Let X be any point on a circle with center O and radius r. Let T be any fixed

point. Then the locus of M, the midpoint of segment TX, is on a circle with radius
r

2
and

center N which is the midpoint of segment OT.

Proof.

O

X

T

M

N

Figure 16: Midpoint Lemma

By Figure 16, MOXT is similar to MNMT. Therefore MN =
1
2

XO or MN =
r
2
. Thus

M lies on a circle with radius
r
2

and center N. ¤
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Theorem 4.1 For a given triangle the midpoints, the feet of the altitudes, and the Euler

points lie on a circle called the Nine-Point Circle.

Proof. Let a, b, and c be sides BC, CA, and AB respectively. For a given triangle, MABC,

let the midpoints of the sides a, b, and c be D, E, and F respectively. Let the feet of the

altitudes to sides a, b, and c be G, H, and I respectively. Let J be the orthocenter of MABC

and let K, L, and M be the midpoints of AJ, BJ, and CJ where K, L, and M are the Euler

Points of the triangle. Also, let O be the circumcenter of MABC with a circumcircle of

radius r. Let X be the midpoint of OJ.(Figure 17)

G

H

I

A

B

C D

E FJ

O

K

LM

Figure 17: Circumcircle, Medians, Feet of  Altitudes, and 
                  Euler Points

X

∠ACJ ∼= ∠ABH since both angles are complements of ∠CAB. Let J be the point on

which the line BH touches the circle. Then ∠ABN ∼= ∠ACN since they cut off arc NA.
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G

H

I

A

B

C D

E FJ

O

K

LM

N

X

Figure 18: H, I, G, K, L, and M are on the same circle

Therefore, ∠ACN ∼= ∠ACJ and ∠ABN ∼= ∠ACJ. Since ∠JHC ∼= ∠NHC then MHCN

∼= MHCJ. Thus JH = HN. By Lemma 1 J lies on the circle with X as the center and radius

r
2
. Likewise H and I lie on the circle. L is the midpoint of JB so L is on the circle with

center X and radius
r
2

by Lemma 1. Likewise M and K lie on the circle. Therefore H, I, J,

L, M, and K lie on the circle with center X and radius
r
2
.(Figure 18)
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I
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B

C D

E FJ

O

K

LM

N

Figure 19: E, F, and D lie on the circle

X

 

Y

Let line BO meet the circumcircle at the point Y.(Figure 19) Then YCJA is a parallelogram.

Therefore YJ and CA intersect at E since E is the midpoint of CA. Therefore E is also the

midpoint of YJ. By Lemma 1, E lies on the circle with center X and radius
r

2
as do D and

F.(Figure 20)
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Figure 20: Nine-Point Circle

X

¤

4.2 Simson Line

Since the asymptotes for Kiepert’s Hyperbola are Simson Lines, the existence proof of

Simson Lines will be given.

Theorem 4.2 Given MABC and a point P on it’s circumcircle then the feet of the perpen-

diculars, W, U , and V ,to the sides BC, AC, and AB respectively are collinear. The line

passing through the feet of the altitudes is called a Simson Line.(Figure 21)
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A

B

C

P

W

U

V

Figure 21: Simson Line

Proof. Quadrilateral CAPB is cyclic therefore

∠WCA + ∠WPB + ∠APW = 180·.

Likewise, quadrilateral CUPW is cyclic so

∠WCA + ∠UPA + ∠APW = 180·.

So

∠WPB = ∠UPA.

And since quadrilateral PVWB is also cyclic then

∠WPB = ∠WVB

since they cut off the same angle. Quadrilateral PVAU is cyclic therefore,

∠UPA = ∠UVA.
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Therefore,

∠WVB = ∠UVA.

Since ∠WVB and ∠UVA are vertical angles the U, V, and W are collinear. ¤

4.3 Trilinear Coordinates

Many coordinate systems are used to determine triangle properties. In cartesian

coordinates the distances from two given perpendicular axes are assigned to each point.

Polar coordinates are more useful for certain analytic computations. If the signed distance

from the origin O to a point P and the signed angle OP to the x-axis are assigned to P then

polar coordinates are being used. Barycentric coordinates are a set of ordered triples

of masses, w1 : w2 : w3, defined for a point P inside a given triangle such that P lies on the

centroid of the triangle. Trilinear coordinates can be very useful when exploring various

properties of triangles and their centers. Trilinear coordinates are a set of ordered triples,

α : β : γ, of numbers which are proportional to the signed distances from a point to the

sidelines of a given triangle.(Figure 22)

P

A

BC

b c

a

γβ

α

Figure 22: Trilinear Coordinates

In trilinear coordinates the ratio of the distances are important so that
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α : β : γ = k α : k β : k γ

for any nonzero constant k.

Actual trilinear coordinates give the actual directed distances from a point to the sides

of a given triangle. Actual trilinear coordinates are given as

kα : kβ : kγ

where k =
2 M

aα + bβ + cγ
[3]. More information on trilinear coordinates can be found in the

works of Kimberling[3][4] and Coxeter[1].

To determine collinearity of three points in trilinear coordinates a determinant must be

evaluated.

Theorem 4.3 Given three points α1 : β1 : γ1, α2 : β2 : γ2, and α3 : β3 : γ3, the three

points are collinear if

∣∣∣∣∣∣∣∣∣∣∣

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

∣∣∣∣∣∣∣∣∣∣∣

= 0.

Proof. Let MABC be the reference triangle. Let P and P’ be points such that P = 0 and

P’ = 1 and let t be a point on the line passing through P and P’ such that 0 < t < 1.(Figure

23)
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1

0

t

γ1

γ1

γ1

1-t

γ2−γ1

x

Figure 23: Function γ(t)

From Figure 23, the distance from any point t between P and P’ is given by the function

γ = tγ1 + (1 - t)γ2.

In the same manner,

α = tα1 + (1 - t)α2,

β = tβ1 + (1 - t)β2.

Therefore,




α

β

γ




= (1− t)




α2

β2

α2




+ t




α1

β1

γ1




.

Thus, [α, β, γ] is a linear combination of [α1, β1, γ1] and [α2, β2, γ2].

Therefore,
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∣∣∣∣∣∣∣∣∣∣∣

α β γ

α1 β1 γ1

α2 β2 γ2

∣∣∣∣∣∣∣∣∣∣∣

= 0.

¤

A line in trilinear coordinates is defined in terms of three parameters: l, m, and n. Using

the theorem for collinearity, we can derive the equation of a line in trilinear coordinates.

Theorem 4.4 Given two points α1 : β1 : γ1 and α2 : β2 : γ2 a line through these two

points in trilinear coordinates has the form

l α + m β + n γ = 0

with

l = β1γ2 - γ1β2

m = γ1α2 - α1γ2

n = α1β2 - β1α2.

Proof. Using the collinearity theorem and replacing one set of coordinates with α : β : γ

we get,

∣∣∣∣∣∣∣∣∣∣∣

α β γ

α1 β1 γ1

α2 β2 γ2

∣∣∣∣∣∣∣∣∣∣∣

=
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(β1γ2 - γ1β2)α + (γ1α2 - α1γ2)β + (α1β2 - β1α2)γ = 0.

Therefore, the equation of the line passing through α1 : β1 : γ1 and α2 : β2 : γ2 is given by

lα + mβ + nγ = 0

where

l = β1γ2 - γ1β2

m = γ1α2 - α1γ2

n = α1β2 - β1α2.

¤

Now that we have determined the equation for a line in trilinear coordinates, a theorem

is introduced regarding line concurrence.

Theorem 4.5 Three trilinear lines

l1 α + m1 β + n1 γ = 0,

l2 α + m2 β + n2 γ = 0,

l3 α + m3 β + n3 γ = 0

concur at one point if

∣∣∣∣∣∣∣∣∣∣∣

l1 m1 n1

l2 m2 n2

l3 m3 n3

∣∣∣∣∣∣∣∣∣∣∣

= 0.
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Proof. If three lines,

l1α + m1β + n1γ = 0,

l2α + m2β + n2γ = 0,

l3α + m3β + n3γ = 0

are concurrent, then they meet at one point. Therefore, the system of equations has a

solution. Since trilinear coordinates define distances to the sides of a reference triangle,

then at most two of the coordinates can be zero. However, the trivial solution 0 : 0 : 0 is

also a solution of the system. Thus, two solutions exist.

Therefore,

∣∣∣∣∣∣∣∣∣∣∣

l1 m1 n1

l2 m2 n2

l3 m3 n3

∣∣∣∣∣∣∣∣∣∣∣

= 0.

Since

∣∣∣∣∣∣∣∣∣∣∣

l1 m1 n1

l2 m2 n2

l3 m3 n3

∣∣∣∣∣∣∣∣∣∣∣

= 0

then
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∣∣∣∣∣∣∣∣∣∣∣

l1 m1 n1

l2 m2 n2

l3 m3 n3

∣∣∣∣∣∣∣∣∣∣∣

=

l1

∣∣∣∣∣∣∣

m2 n2

m3 n3

∣∣∣∣∣∣∣
+ m1

∣∣∣∣∣∣∣

l2 n2

l3 n3

∣∣∣∣∣∣∣
+ n1

∣∣∣∣∣∣∣

l2 m2

l3 m3

∣∣∣∣∣∣∣
=

(m2n3 −m3n2)l1 + (l2n3 − l3n2)m1 + (l2m3 − l3m2)n1 = 0

The point of concurrence is given as

P = m2n3 −m3n2 : l2n3 − l3n2 : l2m3 − l3m2.

¤

Remark: The line at infinity in trilinear coordinates is given as

aα + bβ + cγ = 0

since the distances from the line at infinity to the vertices of the reference triangle become

equal in the limit.

4.4 Kiepert’s Hyperbola

For the proof of Kiepert’s Hyperbola, we assume that the given triangle is scalene.

We will, however, discuss the cases in which the given triangle is an equilateral or isosceles

triangle.
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Equilateral Triangle: If the given triangle, MABC, is equilateral then as the base angle of

the three isosceles triangles raised on the sides of the given triangle varies the lines, each

passing through a vertex and the peak of the isosceles triangle raised on the opposite side,

always concur at the centroid of the triangle.

Isosceles Triangle: If the given triangle, MABC, is an isosceles triangle with side AB equal

to side CA, then the point of concurrence lies on the perpendicular bisector of side BC. But

in the limit case where φ is approaching
π

2
the lines, each passing through a vertex and the

peak of the isosceles triangle raised on the opposite side, are parallel.

Theorem 4.6 If three triangles, MA’BC, MAB’C, and MABC’, with equivalent base angles

are raised on the sides of a given triangle, MABC, then the lines AA’, BB’, and CC’ concur.

The locus of the point P as the base angle of the isosceles triangles varies forms a hyperbola

with equation

sin(B − C)
α

+
sin(C −A)

β
+

sin(A−B)
γ

= 0,

or equivalently,

bc(b2 − c2)
α

+
ca(c2 − b2)

β
+

ab(a2 − b2)
γ

= 0.

Before we prove Theorem 4.6, note that some of the special cases have already been proven.

Case 1 : If φ = 0 then the lines AA’, BB’, and CC’ are the medians of MABC. Thus, the

lines concur at the centroid of MABC.(Figure 24)
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B

A

A'

B' C'

Figure 24: Centroid

Case 2 : In the limit case, as φ approaches
π

2
, the lines AA’, BB’, and CC’ get closer

to the altitudes of MABC. Therefore, in the limit case, the hyperbola passes through the

orthocenter but the orthocenter, is not a point of concurrence.(Figure 25)

B'

A'C

A

B

C'

P

Figure 25: Orthocenter

Proof. In the general case, let MABC be acute and let the constructed isosceles triangles

lie outside the given triangle. Let φ represent the base angle of the constructed triangles.
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Also let A, B, and C represent the angle at vertex A, vertex B, and vertex C respectively.

In trilinear coordinates, let

A = 1 : 0 : 0,

B = 0 : 1 : 0,

C = 0 : 0 : 1.

Letting x be the length of side A’C then the distance from vertex A’ to side BC is x

sin(φ).(Figure 26)

A

BC

B' C'

A'

φφ

Figure 26: Trilinear Coordinates

A

C B

x

Since the incenter of 4ABC and A’ lie on opposite sides of BC, the trilinear coordinates

for the distance is -x sin(φ). Likewise, the distance from A’ to side AC and side AB is

x sin(C + φ) and x sin(B + φ) respectively. Therefore,

A’= -x sin(φ) : x sin(C + φ) : x sin(B + φ)

or equivalently

A’ = -sin(φ) : sin(C + φ) : sin(B + φ).
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In the same manner,

B’ = sin(C + φ) : -sin(φ) : sin(A + φ)

and

C’ = sin(B + φ) : sin(A + φ) : -sin(φ).

By the definition of a trilinear line, the line passing through the points A and A’ have

parameters l, m, and n as follows: l = 0, m = -sin(B + φ), and n = sin(C + φ). Therefore,

the equation for line AA’ is -sin(B + φ)β + sin(C + φ)γ = 0. The equations for lines BB’

and CC’ can be obtained in the same way so that

AA’ = -sin(B + φ)β + sin(C + φ)γ = 0,

BB’ = -sin(C + φ)γ + sin(A + φ)α = 0,

CC’ = -sin(A + φ)α + sin(B + φ)β = 0.

The lines AA’, BB’, and CC’ concur if the matrix of their coefficients has a determinant of

0.

∣∣∣∣∣∣∣∣∣∣∣

0 − sin(B + φ) sin(C + φ)

sin(A + φ) 0 − sin(C + φ)

− sin(A + φ) sin(B + φ) 0

∣∣∣∣∣∣∣∣∣∣∣

=

0 ((sin(B + φ)(sin(C + φ))− (− sin(B + φ)((− sin(A + φ)(sin(C + φ)) + (sin(C +

φ))((sin(A + φ)(sin(B + φ)) = 0
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Therefore the lines AA’, BB’, and CC’ concur. The point, P, of concurrence is given by the

trilinear coordinates

sin(B + φ) sin(C + φ) : sin(A + φ) sin(C + φ) : sin(A + φ) sin(B + φ).(Figure 27)

A

B
C

B'
C'

A'

φφ

Figure 27: Concurrence

P

Finally, notice that the same linear algebra computation holds in the case of the given

triangle being an obtuse triangle and for the isosceles triangles being constructed on the

interior of the given triangle. In these cases, signed distances are used.

As the base angle φ varies, the locus of the point P forms a curve with the equation,

sin(B − C)
α

+
sin(C −A)

β
+

sin(A−B)
γ

= 0,

or equivalently,

bc(b2 − c2)
α

+
ca(c2 − b2)

β
+

ab(a2 − b2)
γ

= 0.

To show that the point P of concurrence is a solution to the equation above, we substitute

the trilinear coordinates of point
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P = sin(B = φ) sin(C + φ) : sin(A + φ) sin(C + φ) : sin(A + φ) sin(B + φ)

in the formula

sin(B − C)
α

+
sin(C −A)

β
+

sin(A−B)
γ

= 0

for α, β, and γ respectively.

Thus,

sin(B − C)
α

+
sin(C −A)

β
+

sin(A−B)
γ

=,

sin(B − C)
sin(B + φ) sin(C + φ)

+
sin(C −A)

sin(C + φ) sin(A + φ)
+

sin(A−B)
sin(A + φ) sin(B + φ)

=,

sin(B − C) sin(A + φ) + sin(C −A) sin(B + φ) + sin(A−B) sin(C + φ)
sin(A + φ) sin(B + φ) sin(C + φ)

.

Using trigonometric identities, it can be shown that

sin(B − C) sin(A + φ) + sin(C −A) sin(B + φ) + sin(A−B) sin(C + φ)
sin(A + φ) sin(B + φ) sin(C + φ)

= 0.

Therefore, the locus of the point P as the base angle φ varies is given by,

sin(B − C)
α

+
sin(C −A)

β
+

sin(A−B)
γ

= 0.

Next we show that the equation

sin(B,−C)
α

+
sin(C −A)

β
+

sin(A−B)
γ

= 0,

is equivalent to the equation

bc(b2 − c2)
α

+
ca(c2 − b2)

β
+

ab(a2 − b2)
γ

= 0.

First, construct the circumcircle of MABC. By moving vertex A along the circumcircle a

right triangle, MABC, is constructed with AB having a length of twice the radius of the

circumcircle and no change in ∠A.(Figure 28)
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Figure 28: Circumcircle

Therefore, sinA =
a

2r
. The angles sinB and sinC can be found in a similar manner such

that

sinA =
a

2r
, sinB =

b

2r
, and sinC =

c

2r
.

By the law of cosines

cosA =
b2 + c2 − a2

2bc
, cosB =

a2 + c2 − b2

2ac
, cosC =

a2 + b2 − c2

2ab
.

And sin(B − C) = sinB cosC + sin C cosB =

b

2r

a2 + b2 − c2

2ab
+

c

2r

a2 + c2 − b2

2ac
=

1
4r

∣∣∣∣
a2 + b2 − c2

a
− a2 + c2 − b2

a

∣∣∣∣
abc

abc
=

1
4abcr

(2bc(b2 − c2)) =

1
2rabc

bc(b2 − c2).
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sin(C −A) and sin(A−B) can be derived in the same way so that,

sin(B − C) =
1

2rabc
(b2 − c2)bc,

sin(C −A) =
1

2rabc
(c2 − a2)ca,

sin(A−B) =
1

2rabc
(c2 − a2)ab.

Therefore,

sin(B − C)
α

+
sin(C −A)

β
+

sin(A−B)
γ

=

1
2rabc

(b2 − c2)bc

α
+

1
2rabc

(c2 − a2)ca

β
+

1
2rabc

(c2 − a2)ab

γ
=

bc(b2 − c2)
α

+
ca(c2 − a2)

β
+

ab(c2 − a2)
γ

= 0.

Now we must show that the equation

bc(b2 − c2)
α

+
ca(c2 − a2)

β
+

ab(c2 − a2)
γ

= 0

is the equation of a conic section.

Using a different notation let,

α = da,

β = db,

γ = dc,

where da, db, and dc are the distances to sides a, b, and c respectively. Also let the vertices

have the following coordinates,
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A = (x1, y1),

B = (x2, y2),

C = (x3, y3).

The vector perpendicular to
−−→
AB is

v =

∣∣∣∣∣∣∣

y2 − y1

−(x2 − x1)

∣∣∣∣∣∣∣
.

Let
−→
PA be the vector from any point P = (x,y) to A and be given by

r =

∣∣∣∣∣∣∣

x− x1

y − y1

∣∣∣∣∣∣∣
.

Then the distance from P to side AB is given by projecting r onto v which gives

dc =
|(x− x1)(y2 − y1)− (x2 − x1)(y − y1)|

c
.

In the same manner,

da =
|(y3 − y2)(x− x2)− (x3 − x2)(y − y2)|

a
,

db =
|(y1 − y3)(x− x3)− (x1 − x3)(y − y3)|

b
.

Therefore,
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α =
|(y3 − y2)(x− x2)− (x3 − x2)(y − y2)|

a
,

β =
|(y1 − y3)(x− x3)− (x1 − x3)(y − y3)|

b
,

γ =
|(x− x1)(y2 − y1)− (x2 − x1)(y − y1)|

c
.

Plugging these values in for

bc(b2 − c2)
α

+
ca(c2 − b2)

β
+

ab(a2 − b2)
γ

= 0.

we get

(b2−c2)
(y3−y2)(x−x2)−(x3−x2)(y−y2) + (c2−b2)

(y1−y3)(x−x3)−(x1−x3)(y−y3) + (a2−b2)
(x−x1)(y2−y1)−(x2−x1)(y−y1) = 0.

By getting a common denominator, the equation becomes a quadratic involving x2, y2, and

xy terms. This quadratic is the equation of a conic section. The equation actually defines a

rectangular hyperbola. The proof that this conic section is a rectangular hyperbola is given

by Eddy and Fritsch [2].

A

BC

O

I

Figure 29:  Kiepert's Hyperbola
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Kiepert’s Hyperbola is a solution to Lemoine’s problem. Therefore, the values of φ are

given which will provide the coordinates of the given triangle. The point of concurrence,

P, lies on the vertex A when φ = -A and ∠A is acute. When ∠A is acute and φ = -A the

lines BB’ and CC’ pass through vertex A. In Figure 30, BB’, CC’, and AA’ intersect at the

vertex A.

A

C B

B'

A'C'

Figure 30: Concurrence at A 

If ∠A is obtuse, then φ = 180 - A when P = A. For vertices B and C, P = B and P = C

when φ = -B and φ = -C respectively. ¤
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