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Abstract

Peridynamics is motivated in aid of modeling the problems from continuum mechanics

which involve the spontaneous discontinuity forms in the motion of a material system. By

replacing differentiation with integration, peridynamic equations remain equally valid both

on and off the points where a discontinuity in either displacement or its spatial derivatives

is located.

A functional analytical framework was established in literature to study the linear bond-

based peridynamic equations associated with a particular kind of nonlocal boundary condi-

tion. Investigated were the finite-dimensional approximations to the solutions of the equa-

tions obtained by spectral method and finite element method; as a result, two corresponding

general formulas of error estimates were derived. However, according to these formulas, one

can only conclude that the optimal convergence is algebraic.

Based on this theoretical framework, first we show that analytic data functions produce

analytic solutions. Afterwards, we prove these finite-dimensional approximations will achieve

exponential convergence under the analyticity assumption of data. At the end, we validate

our results by conducting a few numerical experiments.
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Chapter 1

Introduction

1.1 Origin of Peridynamics.

The purpose of mechanics is to study and describe the motion of material systems. As

a branch of mechanics, continuum1 mechanics deals with the analysis of the kinematics and

the mechanical behavior of materials such as solids, liquids and gases (fluids). For instance,

linear elastic behavior of solids is well described in classical solid mechanics2 by the partial

differential equaion3

ρ(x)∂2
tu(x, t) = (Lu)(x, t) + b(x, t), (x, t) ∈ Ω× (0, T ), (1.1)

where

(Lu)(x, t) := (λ+ µ) grad div u(x, t) + µ∆u(x, t),

which is derived from Newton’s Second Law. In the equation, ρ describes the density of

the body; variable u : Ω × [0, T ] → Rd with Ω ⊂ Rd and d ∈ {1, 2, 3} is the displacement

field; the right-hand side consists of the external force density b as well as inner tensions4

and macroscopic forces with Lamé parameters λ and µ. This equation is based on the

assumptions that all internal forces are contact forces (interactions between particles that are

in direct contact with each other), and the deformation is twice continuously differentiable.

1A material modeled as a continuum is assumed the matter in the body is continuously distributed and
fills the entire region of space it occupies.

2An area of continnum mechanics which studies the physics of continuous materials with a defined rest
shape.

3The classical Navier equation of linear elasticity.
4In continuum mechanics, the internal forces are not, in general, determined by the current positions

of the points alone, but also relates to the deformation of the body in the macroscopic sense. In contrast,
Molecular dynamics requires only the current positions of atoms to determine the internal forces on the
atoms. [35]
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However, some materials may naturally form discontinuities such as cracks or fractures in

the deforming structure. In such cases, the classical equations of continuum mechanics can

not be applied directly because the displacement field u is discontinuous on these features.

To overcome this difficulty, various remedies are formulated. For example, by redefining the

body, one can shift the crack to boundary. Such a redefinition of the body has been an

ingredient in essentially all of the work that has been done on the stress fields surrounding

cracks; see Hellan [30] for a summary of this work. On other aspect, the techniques of

fracture mechanics introduce relations5 that are extraneous to the basic field equations of

the classical theory. Specifically, linear elastic fracture mechanics (LEFM) considers a crack

to evolve according to a separate constitutive model that predicts, on the basis of nearby

conditions, how fast a crack grows, in what direction, whether it should arrest, branch, and

so on.

Both these techniques, the redefinition of the body in the case of cracks, and the sup-

plemental constitutive equations for determining the growth of defects, require us to know

where the discontinuity is located. This limits the usefulness of these techniques in the prob-

lems6 involving the spontaneous formation of discontinuities, in which we might not know

their location in advance. Moreover, for certain methods like that provided by fracture me-

chanics, it is not clear to what extent they can meet the future needs of fracture modeling

in complex media under general conditions, particularly at small length scales.

Materials modeled in continuum mechanics are conventionally treated in idealized cases

by assuming they are continuous mass, meaning the substance of the object completely

fills the space it occupies. Modeling objects in this way ignores the fact that matter is

5A constitutive relation, or constitutive equation, or constitutive model, is a relation between two physical
quantities that is specific to a material. It is the mathematical description of how materials repond to external
stimuli, usually as applied fields or forces. They are combined with other equations governing physical laws
to solve physical problems. The first constitutive equation was developed by Robert Hooke and is known as
Hooke’s law which deals with the case of linear elastic materials.

6A good example is concrete, a material in which the standard assumptions of LEFM do not apply, at least
on the macroscale, becasue it is heterogeneous and brittle unless large compressive confining stress is present.
The process of cracking in concrete tends to occur through the accumulation of damage over a significant
volume before localizing into a discontinuity, which itself usually follows a complex, three dimensional path.
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made of atoms separated by “empty” space, so is not continuous; however, on length scales

much greater than that of inter-atomic distance, such models are highly accurate. Never-

theless, technology increasingly involves the design and fabrication of devices at smaller and

smaller length scales, even inter-atomic dimensions. Therefore, it is worthwhile to investigate

whether the classical theory can be extended to permit relaxed assumptions of continuity,

to include the modeling of discrete particles such as molecules and atoms.

Molecular dynamics (MD) provides an approach to understand the mechanics of ma-

terials at the smallest length scales, and has met with important successes in recent years.

However even with the fastest computers, it is widely recognized that MD can not model

systems of sufficient size to make it a viable replacement for continuum modeling.

Peridynamics, a new approach for continuum mechanics, proposed by Dr.Stewart Silling

in 2000, attempts to unit the mathematical modeling of continuous media, cracks, and

discrete particles within a single framework. It does this with two considerations:

I. Replacing the partial differential equations (embracing smooth displacement field and

its partial derivatives with respect to the spatial coordinates) of the classical theory of

solid mechanics with integral or integro-differential equations.

II. Assuming a model of internal forces within a body in which material points separated

by a finite distance may exert forces on each other.

Part I enables minimal regularity assumptions on the deformation, with which the evo-

lution of discontinuities are treated according to the same field equations as for continuous

deformation; on the other side, part II allows discrete particles to employ the same field

equations as for continuous media, which suggests that peridynamics is a multiscale ma-

terial model for length scale ranging from MD (microscale) to those of classical elasticity

(macroscale). In addition, part II manifests that the method falls into the category of nonlo-

cal theories.7 The maximum distance across which a pair of material points can exert forces

7A kind of theory that takes into account effects of long-range interaction. Some of their applications to
problems of solid and fracture mechanics are discussed in [22, 28, 34].
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is called the horizon8 for the material which is treated as a constant material property. A

given point can not “see” past its horizon. The term “peridynamics” is originated from the

Greek roots peri and dyna which are for near and force respectively.

1.2 Peridynamic equation of motion.

Let B be the reference configuration of a closed, bounded body with reference mass

density ρ. Let y(·, ·) be a deformation of B, so y(x, t) is the position at time t ≥ 0 of a

material point x ∈ B. Define the velocity field by

v(x, t) = ∂ty(x, t) x ∈ B, t ≥ 0.

Let b be the external body force density field. Let L(x, t) be the force per unit volume

at time t on x due to interactions with other points in the body. The force vector on a

subregion P ⊂ B is given by ∫
P

(L+ b) dV.

Applying Newton’s Second Law to this subregion,

d

dt

∫
P
ρ ∂ty dV =

∫
P
ρ ∂2

t y dV =

∫
P

(L+ b) dV, (1.2)

hence, by localization, the equation of motion in terms of L is

ρ(x)∂2
t y(x, t) = L(x, t) + b(x, t) ∀x ∈ B, t ≥ 0. (1.3)

Newton’s Second Law applied to B requires that

d

dt

∫
B
ρ ∂ty dV =

∫
B
b dV. (1.4)

8In Greek, “peri” has the meaning of “horizon”.
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Comparing (1.4) with (1.2) shows that L must be self-equilibrated:

∫
B
L(x, t)dVx = 0 ∀t ≥ 0.

Now let u(x, t) be the displacement of x ∈ B, and f be a vector-valued function such that

L(x, t) =

∫
B
f(x′,x,u(x′, t),u(x, t), t)dVx′ ∀x ∈ B, t ≥ 0. (1.5)

The function f , which plays a fundamental role in the peridynamic theory, is called the

pairwise force density whose value is the force vector (per unit volume squared) that the

point x′ exerts on the point x.

In the following we will use the notation

ξ = x′ − x, η = u(x′, t)− u(x, t)

for relative position vectors and relative displacement vectors in the reference configuration,

repectively. Note that

y(x, t) = x+ u(x, t), (1.6)

so ξ+η (= y(x′, t)−y(x, t)) represents the current relative position vectors (in the deformed

configuration).

The vector ξ is called a bond9 (connected to x).

Certain restrictions on f arise from basic mechanical considerations. For example, if

the system is assumed to be invariant under rigid body motion and if the internal forces are

independent of time, then

f(x′,x,u(x′, t),u(x, t), t) = f(x′,x,η).

9The concept of a bond that extends over a finite distance is a fundamental difference between peridy-
namics and classical continuum mechanics.
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The body is homogeneous if

f(x′,x,η) = f(ξ,η)

is fulfilled for all ξ and η.

An important restriction on the form of f is provided by Newton’s Third Law which

gives

f(−ξ,−η) = −f(ξ,η) ∀ξ, η.

Finally, for a given material, there is a positive number δ (horizon), such that

|ξ| > δ =⇒ f(ξ,η) = 0 ∀η.

In the following, Bδ(x) will denote the spherical neighborhood of x with radius δ.

Incorporating these discussions on f with (1.6) into (1.3), we obtain the peridynamic

equation of motion

ρ(x)∂2
tu(x, t) =

∫
Bδ(x)

f
(
x′ − x,u(x′, t)− u(x, t)

)
dVx′ + b(x, t) ∀x ∈ B, t ≥ 0. (1.7)

By setting ∂2
tu = 0, the equilibrium equation is found to be

∫
Bδ(x)

f
(
x′ − x,u(x′)− u(x)

)
dVx′ + b(x) = 0 ∀x ∈ B.

A body composed of discrete particles (e.g., atoms) can be represented as a peridynamic

body and so applies the same equation of motion. For example [7], suppose a set of discrete

particles is given with reference positions xi and mass mi, i = 1, 2, . . . , n. Let the force

exerted by particles j on particles i after deformation of the system be denoted by F j,i(t).

With Dirac delta function δ(x), we define a peridynamic body by

ρ(x) =
∑
i

miδ(x− xi)

6



and the corresponding pairwise force density function as

f(x′,x, t) =
∑
i

n∑
j 6=i

F j,i(t) δ(x
′ − xj)δ(x− xi) for all x,x′ in R3.

Therefore, from (1.2), (1.5) and (1.6) with region P ⊂ R3 enclosing only xi,

∫
P
ρ(x) ∂2

tu(x, t) dVx =

∫
P
L(x, t) dVx

=

∫
P

∫
R3

f(x′,x, t) dVx′ dVx

=

∫
P

∫
R3\P

∑
i

n∑
j 6=i

F j,i(t) δ(x
′ − xj)δ(x− xi) dVx′ dVx,

by noticing the fact that ∫
P

∫
P
f(x′,x, t) dVx′ dVx = 0

due to Newton’s Third Law f(x,x′, t) = −f(x′,x, t). Substituting the expression of ρ(x)

into left-hand side yields

∑
i

mi∂
2
tu(xi, t) =

∑
i

n∑
j 6=i

F j,i(t),

i.e.,

mi∂
2
tu(xi, t) =

n∑
j 6=i

F j,i(t) i = 1, 2, . . . , n, t ≥ 0,

which is the familiar statement of Newton’s Second Law in the particle mechanics setting.

Notice that the integral in (1.7) expresses that the internal force at x is a summation

of forces over all bonds connected to x; moreover, the summands are independent from each

other. However, this assumption is an oversimplification for most materials and leads to

restrictions on the types of materials that can be modeled. In particular, it effectively limits

7



Poisson ratio10 to a value of 1/4 for linear11 isotropic solid materials, as demonstrated by

Silling [44, §11]. In the same paper, a generalization for the linear theory is presented that

augments the integral with the term e(v(x)), where12

v(x) =

∫
Bδ(x)

j
(
|x′ − x|

)
|y(x′, t)− y(x, t)| dVx′ .

The quantity v is a weighted average of the deformation of all the bonds x′ − x. It may be

thought of as essentially giving the volume of a deformed sphere that is centered at x in the

reference configuration; the quantity e then acts as a volume-dependent strain energy term

that incorporates the collective motion of all the bonds x′−x simultaneously. The modified

formula is then shown to circumvent the restriction of Poisson ratio to a value of one-fouth

to its allowable values.

Silling et al. [40] developes a new peridynamic theory, a subsequent generalization to the

approach introduced above. In the new theory, the forces within each bond are not conceived

as being determined independently of each other. Instead, each bond force depends on the

collective deformation of all the bonds connected to its endpoints. This strategy is realized

by introducing a mathematical object called force state that is in some ways similar to the

traditional stress tensor of classical continuum mechanics as a replacement for pairwise force

density function f . The integral in (1.7) hence becomes

∫
Bδ(x)

(
T[x, t]〈x′ − x〉 −T[x′, t]〈x− x′〉

)
dVx′ ,

10Poisson ratio is a measure of the Poisson effect, the phenomenon in which a material tends to expand in
directions perpendicular to the direction of compression, being the amount of transversal expansion divided
by the amount of axial compression. If the material is stretched rather than compressed, it usually tends to
contract in the directions transverse to the direction of stretching (imaging a rubber band), in which case
the Poisson ratio will be the ratio of relative contraction to relative expansion. The Poisson ratio of a stable,
isotropic, linear elastic material will be greater than −1 or less than 0.5. Most materials have Poisson ratio
values ranging between 0 and 0.5.

11A peridynamic material, peridynamic model or a peridynamic theory is called linear if the pairwise force
density f(ξ, ·) is a linear function of η while ξ is fixed.

12Both e and j are scalar-valued functions.
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where the force state T[x, t]13(or T[x′, t]) is a mapping from the bond x′ − x (x − x′)

to a force density at x (x′) and is assumed to be zero outside the horizon δ. Because of

the analogy to stress tensors, it is possible to apply constitutive equations14 in the classical

theory more or less directly in the peridynamic theory. By using this new concept, it is

shown [40] that the generalized peridynamic theory can include materials with any Poisson

ratio.

Since the mathematical objects that convey information about the collective deformation

of bonds are called states15, the resulting modified theory is named state-based. As an

opposite, the theory of original version is called bond-based.

1.2.1 States and equation of motion in terms of force states.

Consider a body B. Let δ be the horizon. For a given x ∈ B, let Bδ(x) be the

neighborhood of radius δ with center x. Define the family of bonds connected to x by

H = {ξ ∈ (R3\0)
∣∣ (ξ + x) ∈ Bδ(x) ∩ B}.

A state A〈·〉 is a function on H. The angle brackets 〈·〉 enclose the bond vector. A state

need not be a linear, differentiable or continuous function of the bonds in H.

If the value A〈·〉 is a scalar, i.e., A maps vectors (bonds) into scalars, then A is called

a scalar state. The set of all scalar states is denoted S. Scalar states are usually written as

lower case, non-bold font with an underscore, e.g., a. Two special scalar states are the zero

state and the unity state defined respectively by

0〈ξ〉 = 0, 1〈ξ〉 = 1 ∀ξ ∈ H.
13Square brackets indicate dependencies of the state on the position x and time t.
14They can be used to show how force states depend on deformed vectors y(x′, t)− y(x, t) and y(x, t)−

y(x′, t), and thus tell how force state T is determined for an equation of motion.
15The term “states” is chosen in analogy with the traditional usage of this term in thermodynamics: these

objects contain descriptions of all the relevant variables that affect the conditions at a material point in the
body. In the case of peridynamics, these variables are the nonlocal interactions between a point and its
neighbors.

9



If the value of A〈·〉 is a vector, then A is a vector state. The set of all vector states is denoted

V . Two special vector states are the null vector state and the identity state defined by

0〈ξ〉 = 0, X〈ξ〉 = ξ ∀ξ ∈ H

where 0 is the null vector.

An example of a scalar state is given by

a〈ξ〉 = 3c · ξ ∀ξ ∈ H,

where c is a constant vector. An example of a vector state is given by

A〈ξ〉 = ξ + c ∀ξ ∈ H.

Some elementary operations on states can be defined. In the following, a and b are

scalar states, A and B are vector states, and V is a vector. Then for any ξ ∈ H:

(a+ b)〈ξ〉 = a〈ξ〉+ b〈ξ〉, (ab)〈ξ〉 = a〈ξ〉b〈ξ〉,

(A + B)〈ξ〉 = A〈ξ〉+ B〈ξ〉, (A ·B)〈ξ〉 = A〈ξ〉 ·B〈ξ〉,

(A⊗B)〈ξ〉 = A〈ξ〉 ⊗B〈ξ〉, (A ◦B)〈ξ〉 = A
〈
B〈ξ〉

〉
,

(aB)〈ξ〉 = a〈ξ〉B〈ξ〉, (A ·V)〈ξ〉 = A〈ξ〉 ·V,

where the symbol · indicates the usual scalar product of two vectors in R3 and ⊗ denotes

the dyadic (tensor) product of two vectors. Also define a scalar state |A|, i.e., the magnitude

state of A by

|A|〈ξ〉 = |A〈ξ〉| (1.8)

10



and the dot products

a • b =

∫
H
a〈ξ〉b〈ξ〉 dVξ, A •B =

∫
H

A〈ξ〉 ·B〈ξ〉 dVξ

where once again, the symbol · denotes the scalar product of two vectors in R3. The norm

of a scalar state or a vector state is defined by

‖a‖ =
√
a • a, ‖A‖ =

√
A •A.

It is readily verified that both S and V are infinite dimensional real Euclidean spaces [32]

(assuming that H contains an infinite number of bonds).

The direction of a state A can be defined to be the state Dir A given by

(Dir A)〈ξ〉 =

 0 if |A|〈ξ〉 = 0,

A〈ξ〉/|A|〈ξ〉 otherwise
∀ξ ∈ H.

A state field is defined by

A[x, t],

a state valued function of position in B and time16. An example of a scalar state field is

given by

a[x, t]〈ξ〉 = |ξ + x|t ∀ξ ∈ H, x ∈ B, t ≥ 0.

A vector state is analogous17 to a second order tensor of the classical theory, because it

maps vectors into vectors. It therefore provide the fundamental objects on which constitutive

models act in peridynamics. In the classical theory, a constitutive model for a simple material

specifies a tensor (stress) as a function of another tensor (deformation gradient). In the

16Note that square brackets are employed to enclose the dependencies. With this notation, a sequence of
functions fn n = 1, 2, . . . will be rewritten as f [n] n = 1, 2, . . .

17In fact, vector states are more complex than second order tensors in that the mapping may be nonlinear
and even discontinuous. It can be precisely shown [47, §3] that second order tensors are in some sense a
special case of vector states.

11



peridynamic theory, a constitutive model instead provide a vector state (called the force

state) as a function of another vector state (called the deformation state).

The state that maps bonds connected to x into their deformed images is called the

deformation state and denoted Y[x, t]. For a motion y, at any t ≥ 0,

Y[x, t]〈x′ − x〉 = y(x′, t)− y(x, t)18

for any x ∈ B and any x′ ∈ B such that x′ − x ∈ H. Angle brackets are used to indicate

a bond that this state operates on. The force state T[x, t] is a state that maps the bond

x′ − x to a force density (per unit volume) at x which is given by

t(x′,x, t) = T[x, t]〈x′ − x〉. (1.9)

With this definition, the absorbed power density [42, §2.4 (42)] takes the form

pabs = T • Ẏ

where the dot product has just been defined. This absorbed power density is the peridynamic

analogue of the stress power σ · Ḟ, where σ is the Piola stress tensor and F = ∂y/∂x is the

deformation gradient tensor.

In terms of the force state, the equation of motion has the form

ρ(x)∂2
tu(x, t) =

∫
Bδ(x)

(
T[x, t]〈x′ − x〉 −T[x′, t]〈x− x′〉

)
dVx′ + b(x, t) ∀x ∈ B, t ≥ 0.

(1.10)

18It is assumed that at any t ≥ 0, y(·, t) is invertible, i.e., x1 6= x2 =⇒ y(x1, t) 6= y(x2, t), which means
that two distinct particles never occupy the same point as the deformation progresses. This assumption
implies Y〈ξ〉 6= 0 ∀ξ ∈ H.
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The equilibrium equation is then

∫
Bδ(x)

(
T[x]〈x′ − x〉 −T[x′]〈x− x′〉

)
dVx′ + b(x) = 0 ∀x ∈ B.

The force state will be provided by constitutive model (also called material model). For

a simple material and a homogeneous body, the force state depends only on the deformation

state19:

T[x, t] = T̂(Y[x, t])

where T̂ : V → V is a function whose value is a force state. Suppressing from the notation

dependence on x and t,

T = T̂(Y)

which is analogous to the Piola stress in a simple material in the classical theory, σ = σ̂(F).

If the body is heterogeneous, an explicit dependence on x is included:

T = T̂(Y,x).

If the material is rate dependent, the constitutive model would additionally depend on the

time derivative of the deformation state:

T = T̂(Y, Ẏ,x).

An example of a simple20 peridynamic material model is given by

T̂(Y) = a(|Y| − |X|) Dir Y, Dir Y =
Y

|Y|
∀Y ∈ V , (1.11)

19This is actually how a simple material is defined in peridynamics.
20An example of non-simple material is plastic, which involves the history of deformation as well as the

current deformation, discussed in [47, §16].
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where a is a constant. Writing this out in detail,

T〈ξ〉 = a
(
|Y〈ξ〉| − |ξ|

) Y〈ξ〉
|Y〈ξ〉|

∀Y ∈ V ,

for any bond ξ ∈ H. In this material, the magnitude of the force density t defined in (1.9)

is proportional to the bond extension (change in length of the bond), and its direction is

parallel to the deformed bond. In this example, the bonds respond independently of each

other: T〈ξ〉 depends only on Y〈ξ〉. Material with such property is called bond-based which

has been mentioned previously.

A much larger class of materials incorporates the collective response of bonds. This

means that the force density in each bond depends not only on its own deformation, but

also on the deformation of other bonds. A simple example is given by

T〈ξ〉 = a
(
|Y〈ξ〉| − |Y〈−ξ〉|

) Y〈ξ〉
|Y〈ξ〉|

.

In this material, the force density for any bond ξ is proportional to the difference in deformed

length between itself and the bond opposite to ξ. (Note that in general Y〈ξ〉 6= Y〈−ξ〉,

since the two bonds ξ and −ξ can deform independently of each other.) This is an example

of the material called bond-pair. A general form of such material is discussed in [42, §4.12],

which demonstrates that the bond-based materials are a special case of bond-pair materials.

From each example provided above, we can read that the state-based theory include

the bond-based theory as a special case. In general, for a given bond-based material, the

pairwise force density function f(x′ − x,u(x′, t) − u(x, t)) can be recovered via the force

states. In fact, we can let (the force density) T[x, t]〈x′−x〉 = 1/2f(x′−x,u(x′, t)−u(x, t))
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in that it depends only on the bond x′−x and relative displacement u(x′, t)−u(x, t), then

T[x, t]〈x′ − x〉 −T[x′, t]〈x− x′〉

=
1

2
f(x′ − x,u(x′, t)− u(x, t))− 1

2
f(x− x′,u(x, t)− u(x′, t))

= f(x′ − x,u(x′, t)− u(x, t)).

This identification reveals another important distinction between the bond-based and state-

based theories: that force interaction is carried by the bond in the former theory while the

interaction is split between the force density at x and x′ in the latter theory.

Example in (1.11) is one of the simplest nonlinear bond-based material models that has

been suggested in the literature, modeling the microelastic material21. By substituting ξ+η

for Y〈ξ〉, we obtain

T〈ξ〉 = a (|ξ + η| − |ξ|) ξ + η

|ξ + η|
.

Let

s(ξ,η) =
|ξ + η| − |ξ|

|ξ|
,

then the pairwise force density function will be

T[x, t]〈x′ − x〉 −T[x′, t]〈x− x′〉

= 2 T[x, t]〈x′ − x〉 = 2T〈ξ〉

= 2a s(ξ,η)
ξ + η

|ξ + η|
|ξ| ∀ξ ∈ H. (1.12)

s(ξ,η) denotes the bond stretch that is the relative change of the length of a bond.

21If a material is microelastic, every pair of points x and x′ is connected like by a spring in the sense that
the force between them depends only on their distance in the deformed configuration, i.e., |ξ + η|; see [44,
§4] for more details.
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1.3 Linear bond-based model with initial data and its mathematical analysis.

1.3.1 Linearization.

Let f(ξ,η) be the pairwise force density function of a bond-based model. A Taylor

expansion of f justifies for small η the linear ansatz

f(ξ,η) = f 0(ξ) +C(ξ)η

with a stiffness tensor (or micromodulus function) C = C(ξ) and f 0 denoting forces in the

reference configuration. Without loss of generality, we may assume f 0 ≡ 0 since otherwise

f 0 can be incorporated into the right-hand side b.

In general the stiffness tensor C is not definite. However, C has to be symmetric with

respect to Newton’s Third Law as well as with respect to its tensor structure such that

C(ξ) = C(−ξ) and C(ξ)T = C(ξ).

In view of horizon, we shall require

C(ξ) = 0 if |ξ| ≥ δ.

In the following, we only consider a linear microelastic material, then the stiffness tensor

can be shown to read as

C(ξ) = λd,δ(|ξ|)ξ ⊗ ξ

where ⊗ denotes the dyadic product. The function λd,δ : R+
0 → R with λd,δ(r) = 0 for r ≥ δ

determines the specific constitutive model and depends on the dimension d and the horizon
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δ. The linear peridynamic equation of motion now read as

ρ(x)∂2
tu(x, t) = (Ld,δu)(x, t) + b(x, t) (x, t) ∈ Ω× (0, T )22, (1.13)

with

(Ld,δu)(x, t) :=

∫
Bδ(x)

λd,δ
(
|x′ − x|

)
(x′ − x)⊗ (x′ − x) · (u(x′, t)− u(x, t))dVx′

Du et al. [19] also demonstrates how the one-dimensional equation above can be written

as two first-order in time nonlocal advection equations. Note that λd,δ can have a singularity

at r = 0. The standard example is the linearization of (1.12) with

λd,δ(r) =
2a

r3
, r ∈ (0, δ).

Unfortunately, in this model, the interaction jumps to zero if r = δ. This jump discontinuity

can be avoided by taking

λd,δ(r) =
c

r3
exp(−δ2/(δ2 − r2)) r ∈ (0, δ)

with a suitable constant of proportionality c, see also Emmrich & Weckner [26]. This is of

advantage also to the numerical approximation relying on quadrature.

Since there are no spatial derivatives, boundary conditions are not needed in general

for the partial integro-differential equation (1.13) (although this depends on the singularity

behavior of the integral kernel and the functional analytic setting). Nevertheless, “boundary”

conditions can be imposed by prescribing u in a strip along the boundary which constrains

22In order to introduce the related theoretical results, here we assume the body is defined in a set Ω ⊂ Rd
with d ∈ {1, 2, 3}, t is finite, and both u as well as b are the Rd-valued functions, i.e., u = u(x, t) :
Ω× [0, T ]→ Rd and b = b(x, t) : Ω× [0, T ]→ Rd.
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the solution along a nonzero volume. Hence, (1.13) is complemented with the initial data

u(·, 0) = u0 and ∂tu(·, 0) = u̇0. (1.14)

1.3.2 Mathematical analysis of the linear bond-based model in L2.

As usual, we denote by C the space of continuous functions, by Cb the space of bounded

continuous functions, by Lp (1 ≤ p < ∞) the space of Lebesgue-measurable functions u

such that |u|p is Lebesgue-integrable, by L∞ the space of essentially bounded Lebesgue-

measurable functions and by W k,p (1 ≤ p ≤ ∞) the Sobolev space consisting of the functions

whose derivatives (in the weak sense [39, p.343]) up to k order are belong to Lp 23, written

W k,p = Hk as p = 2. The canonical norm in a normed function space X is denoted by || · ||X .

Moreover, let Cm([0, T ];X) with m ∈ N be the space of m-times continuously differentiable

abstract functions u : [0, T ]→ X with norm

‖u‖Cm([0,T ];X) = max
t∈[0,T ]

m∑
j=0

∥∥∥∥dju(t)

dtj

∥∥∥∥
X

.

We also write C([0, T ];X) if m = 0. The function space L1(0, T ;X) consists of Bochner-

integrable abstract functions u : [0, T ] → X such that t 7→ ‖u(t)‖X is Lebesgue-integrable

and is equipped with the norm

‖u‖L1(0,T ;X) =

∫ T

0

‖u(t)‖dt.

First results on existence, uniqueness and qualitative behavior of solutions in L2 to the

linear peridynamic equation of motion have been presented in Emmrich & Weckner [25] for

the infinite bar. Besides well-posedness in L∞ also nonlinear dispersion relations as well as

jump relations for discontinuous solutions have been studied.

23W k,p(Ω) := {w ∈ Lp(Ω) |Djw ∈ Lp(Ω) for j ≤ k}.
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In [24], Emmrich and Weckner have proved results on existence, uniqueness, and con-

tinuous dependence of the solution for the linear model with data in an Lp-setting for p > 2

if d = 2 and p > 3/2 if d = 3. Moreover, a formal representation of the exact solution and

a priori estimates are given. In [26], Emmrich and Weckner proved well-posedness of the

linear model in L∞(Ω) and in L2(Ω) under the condition

∫ δ

0

|λd,δ(r)| rd+1dr <∞. (1.15)

Theorem 1.1. If (1.15) is fulfilled, then there exists for every u0, u̇0 ∈ L2(Ω), b ∈

L1(0, T ;L2(Ω)) a unique solution u ∈ C1([0, T ];L2(Ω)) to the initial value problem (1.13),

(1.14) that satisfies the priori estimate

‖u‖C1([0,T ];L2(Ω)) ≤ Cd,δ
(
‖u0‖L2(Ω) + ‖u̇0‖L2(Ω) + ‖b‖L1(0,T ;L2(Ω))

)
.

If b ∈ C([0, T ];L2(Ω)), then u ∈ C2([0, T ];L2(Ω)).

Moreover, other properties of the peridynamic integral operator defined through (1.13)

such as dissipativity and self-adjointness are analyzed in Emmrich & Weckner [26].

In [21, 20], Du and Zhou consider the case Ω = Rd. Let Mλ(Rd) be the space of

functions u ∈ L2(Rd) with

∫
Rd

(Fu)(y) · (I +M δ(y))(Fu)dy <∞,

depending on λd,δ since

M δ(y) =

∫ δ

0

λd,δ(|x′|)(1− cos(y · x′))x′ ⊗ x′dVx′

which is a real-valued and symmetric positive semi-definite d× d matrix. Here Fu denotes

the Fourier transform of u.
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A natural condition coming from the comparison of the deformation energy density

which arises from peridynamics with the energy density that is known from the classical

linear elasticity theory is ∫ δ

0

λd,δ(r)r
d+3dr <∞. (1.16)

Theorem 1.2. Assume λd,δ(r) > 0 for 0 < r < δ, (1.16) and u0 ∈ Mλ(Rd), u̇0 ∈ L2(Rd)

and b ∈ L2(0, T ;L2(Rd)). Then the initial value problem (1.13), (1.14) has a unique solution

u ∈ C([0, T ],Mλ(Rd)) with ut ∈ L2(0, T ;L2(Rd)).

If in addition (1.15) is valid, then Du and Zhou show that the spaceMλ(Rd) is equivalent

to the space L2(Rd).

1.3.3 Linear bond-based model in Hσ (σ ∈ (0, 1)).

The solution of Theorem 1.2 can take values in a fractional Sobolev space. Indeed, if

c1r
−2−d−2σ ≤ λd,δ(r) ≤ c2r

−2−d−2σ, ∀ 0 < r ≤ δ

for some exponent σ ∈ (0, 1) and positive constant c1 and c2, then Theorem 1.2 remains true

and the space Mλ(Rd) is equivalent to the fractional24 Sobolev space Hσ(Rd).

Additionally also the stationary problem is investigated in [21, 20].

1.3.4 A summary of the results on nonlinear bond-based model and state-based

model.

A first result towards the nonlinear model is Erbay, Erkip & Muslu [27] analyzing the

nonlinear elastic bar. They consider the one-dimensional initial value problem

utt =

∫
R
α(x′ − x)g

(
u(x′, t)− u(x, t)

)
dx′, x ∈ R, t > 0, (1.17)

u(x, 0) = u0, ut(x, 0) = u̇0, x ∈ R.

24σ > 0 is an noninteger.

20



Applying Banach’s fixed point theorem the following theorems ([27]) are proven.

Theorem 1.3. Let X = Cb(R) or Lp(R) ∩ L∞(R) with 1 ≤ p ≤ ∞. Assume α ∈ L1(R) and

g ∈ C1(R) with g(0) = 0. Then there exists T > 0 such that the Cauchy problem (1.17) is

locally well-posed with solution in C2([0, T ], X) for initial data u0, u̇0 ∈ X.

Theorem 1.4. Let X = C1
b (R) or W 1,p(R) with 1 ≤ p ≤ ∞. Assume α ∈ L1(R) and

g ∈ C2(R) with g(0) = 0. Then there exists T > 0 such that the Cauchy problem (1.17) is

locally well-posed with solution in C2([0, T ], X) for initial data u0, u̇0 ∈ X.

The authors of [27] remark that the proofs of the above theorems can be easily adapted to

the more general peridynamic equation with a nonlinear pairwise force function f(ξ, η), where

f is continuously differentiable in η for almost every ξ and fulfils additional assumptions.

For a more specific type of nonlinearities, Erbay, Erkip & Muslu [27] proved well-posedness

in fractional Sobolev spaces.

Theorem 1.5. Let σ > 0 and u0, u̇0 ∈ Hσ(R) ∩ L∞(R). Assume α ∈ L1(R) and g(η) = η3.

Then there exists T > 0 such that the Cauchy problem (1.17) is locally well-posed with

solution in C2([0, T ], Hσ(R) ∩ L∞(R)).

Furthermore, blow up conditions for these solutions are investigated, which we shall not

present here.

As for the state-based model, Du et al. [16, 17] consider a nonlocal vector calculus

building upon the ideas of Gunzburger & Lehoucq [29]. The nonlocal vector calculus is

applied to establish the well-posedness of the linear peridynamic state equilibrium equation;

see Du et al. [15] for the details.

1.3.5 Limit of vanishing nonlocality.

A fundamental question of the peridynamic theory was if it generalizes the conven-

tional linear elastic theory. More precisely, if a deformation is classically smooth, does the
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nonlocal25 linear peridynamic equation of motion converge towards the Navier equation of

linear elasticity (as δ → 0)? Indeed in [26], Emmrich and Weckner proved convergence in an

interior subdomain under smoothness assumptions of the solution. Therefore, let Λ ⊂ R+

be a null sequence bounded by some δ0 > 0, Ω0 be the interior subdomain defined as all

x ∈ Ω such that dist(x, ∂Ω) > δ0, Ld,δ the linear operator defined through (1.13) and L

the operator corresponding to the Navier equation of linear elasticity defined through (1.1)

(with λ = µ).

Theorem 1.6. ([26]) Let (1.15) be valid for all δ ∈ Λ and λd,δ be nonnegative. If v ∈ C2(Ω)

then

‖Ld,δv − Lv‖L∞(Ω0)
→ 0 as δ → 0 (δ ∈ Λ).

In addition, an expension of Ld,δv in terms of a series of differential operators of even

order 2n (n = 1, 2, . . . ) applied to v can be shown for smooth v, where the second-order

differential operator is the Navier operator and where the coefficients of the differential

operators behave like δ2(n−1).

Furthermore in [21], Du and Zhou have also investigated the limit of vanishing nonlocal-

ity in the case of the full space Ω = Rd being then able to show convergence of the sequence

of solutions.

Theorem 1.7. Let (1.16) be valid and λd,δ(r) > 0 for 0 < r < δ. If u0 ∈ H1(Rd),

u̇0 ∈ L2(Rd) and b ∈ L2(0, T ;L2(Rd)), then the solution of the initial value problem (1.13),

(1.14) converges to the solution of the initial value problem (1.1), (1.14) as δ → 0 in the

conventional norms of L2(0, T ;Mλ(Rd)) ∩H1(0, T ;L2(Rd)) if

∫
Bδ(0)

λd,δ(|x|) |x|4 dx→ 2d(d+ 2)µ as δ → 0,

where µ is the Lamé parameter appearing in (1.1).

25Given a function u = u(x), the operator L acted on it (such as Ld,δ in (1.13)) is deemed nonlocal if the
value of Lu at point x requires information about u at x′ 6= x; this is contrasted with local operators, e.g.,
the value of ∆u at a point x requires information about u only at x.
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Note that here no extra regularity of the solution is assumed.

The limit of vanishing nonlocality of the state-based model is investigated in Silling &

Lehoucq [41].

1.4 Numerical analysis for peridynamic models.

Nearly all of the applications of the peridynamic model to date rely on numerical solu-

tions. A numerical technique for approximating the peridynamic equations was proposed in

[43] . This numerical method simply replaces the volume integral in (1.7) with a finite sum:

ρi
h2

(
un+1
i − 2uni + un−1

i

)
=
∑
j∈H

f(unj − uni ,xj − xi)Vi + bni

where i is the node number, n is the time step number, h is the time step size, and Vi is the

volume (in the reference configuration) of node i. This numerical method is meshless in the

sense that there are no geometrical connections, such as elements, between the discretized

nodes. Adaptive refinement and convergence of the discretized method in one dimension

are discussed in [10]. Some examples and more details about the numerical method can be

found in [46, 48].

Finite element (FE) discretization techniques for the peridynamic equations have been

proposed by Zimmermann [51] and by Weckner et al. [49]. Macek [37] demonstrated that

standard truss elements available in the Abaqus commercial FE code can be used to repre-

sent peridynamic bonds. These peridynamic elements can be applied in part of an FE mesh

with standard elements in the remainder of the mesh. The resulting FE model of the peri-

dynamic equations was applied in [37] to penetration problems. A FE formualtion was also

developed by Chen and Gunzburger [13], who consider the one dimensional equations for

a finite bar. Weckner and Emmrich investigated certain discretizations of the peridynamic

equation of motion, including Gauss-Hermite quadrature, and applied these to initial value

problems to demonstrate convergence [23, 50]. Du and Zhou [20] discussed finite-dimensional
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approximations to nonlocal boundary value problems and the corresponding error estimates

which appeared to be the first of their kind in the literature. Convergence analysis and

conditioning estimates for the discretized system have been given in [4, 6, 16, 20]. Du et al.

[18] proposed a general abstract framework for a posteriori error analysis of finite element

methods for solving linear nonlocal diffusion and bond-based peridynamic models.

Among applications of the peridynamic model to real systems, Bobaru [8, 9] demon-

strated the application of a numerical model to small scale structures, including nanofibers

and nanotubes. The meshless property of the numerical method, as well as the ability to

treat long-range forces, is helpful in these applications because of the need to generate mod-

els of complex, random structures. Small scale numerical applications of the peridynamic

equations are also demonstrated by Agwai, Guven, and Madenci [1, 2].

1.5 Linear bond-based model on a finite bar with boundary conditions and

finite dimensional approximations to its solutions.

In (1.13), let

λd,δ(|x′ − x|) =
cδ

σ(|x′ − x|)

in which cδ > 0 is a normalization constant; σ = σ(|x′−x|) is a function depending only on

the scalar |x′ − x|, called the kernel function (of the stiffness tensor). Then we have the

peridynamic equation of the form

∂2
tu(x, t) = Lδu(x, t) + b(x, t)

with

Lδu(x, t) = cδ

∫
Bδ(x)

(x′ − x)⊗ (x′ − x)

σ(|x′ − x|)
(
u(x′, t)− u(x, t)

)
dVx′ ,
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where we can see the kernel function uniquely determines the properties of solutions. Such

equation (with different kernel functions) is studied in many existing works [5, 10, 13, 25,

26, 29, 40, 45].

In the following, we will mainly discuss the one-dimensional stationary (equilibrium)

problem, so the equation can be further simplified as:

Lδu(x) + b(x) = 0,

i.e.,

−Lδu(x) = b(x)

where

−Lδu(x) = −cδ
∫ x+δ

x−δ

|x′ − x|2

σ(|x′ − x|)
(
u(x′)− u(x)

)
dx′.

We call “−Lδ” the peridynamic (PD) operator.

Assuming that the equation is defined on the interval I = (0, π) and is associated with

the simple boundary conditions u(0) = 0 and u(π) = 0, we derive the following (nonlocal)

boundary value problem (BVP):

 −Lδu(x) = b(x) in (0, π),

u(0) = u(π) = 0.
(1.18)

Du and Zhou [20] studied (1.18) in depth; several of their results are original and

general. Here we briefly go over their work and leave the detailed investigation to the

following chapters.

First, by using Fourier expansions, they obtained a Fourier series representation of the

solution. Next, they defined an appropriate solution space explicitly relying on kernel func-

tion, in preparation for discussing the well-posedenss and regularity problems. Under suitable

assumptions of kernel function, the relations between the solution space and Sobolev spaces
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(especially the fractional Sobolev spaces) were then built; meanwhile, the corresponding in-

equalities of space embedding were derived. By virtue of variatonal theory as well as the

prescribed conditions for kernel function, they proved the BVP (1.18) is well-posed; further,

an additional assumption introduced previously on kernel function enabled them to acquire

an useful regularity result of the unique solution: an estimate of the solution in terms of

the data function b with lower regularity. So far the theorectical foundation had been set

up. Afterwards, the authors turned to seek approximations to the solution u by picking two

kinds of finite-dimensional subspaces (of the solution space). Applying the results that had

been established, first they showed, for the finite-dimensional subspace Vn spanned by the

first n Fourier sine modes, i.e., Vn = {v |v(x) =
n∑
k=1

vk sin(kx)},

Theorem 1.8. Let kernel function σ satisfy some conditions with a constant β ∈ [0, 2).

Then for b ∈ Hm, we have

‖u− un‖Hγ ≤ Cδ(β)−2 ‖b‖Hm

nm+β−γ for any γ ∈ [0,m], (1.19)

where un ∈ Vn; Cδ(β) is a constant only depending on β and δ.

Hs represents the fractional Sobolev space on the interval I for s ∈ [0, 1).

Second they proved, for subspace Vn
26 formed by continuous piecewise polynomials that

of degree m(≥ 1) and are subject to the boundary conditions of (1.18), with a mesh (a

partition of I into n subintervals) having meshwidth parameter h (the maximum length of

those subintervals),

Theorem 1.9. If the kernel function σ also satisfy some additional conditions, with a con-

stant α such that 0 ≤ β ≤ α ∈ (0, 2). Then for b ∈ Hm′−β with β ≤ m′ ≤ m + 1, we

have

‖u− un‖Hβ/2 ≤ cCδ(α)Cδ(β)−3 hm
′−α/2‖b‖Hm′−β , (1.20)

where un ∈ Vn; the constant c is independent of h, δ and b; h→ 0 as n→∞.

26For convenience we keep using the same notation for the other finite-dimensional subspace.
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The first way to find approximations of the solution is called Fourier spectral method

which is quite natural and can be easily implemented. As for the second one, because the

finite element polynomials are used to approximate the solution, the method demonstrated

is the Finite Element Method.

1.6 Exponential approximations to solutions.

Observing (1.19) and (1.20), one will find that the rate of convergence can be improved

by lifting the regularity of the data function b, i.e., by increasing m or m′ (β is fixed); in other

words, the smoother the function b, the more rapid the convergence. In this regard, one may

be concerned with if the best convergence rate is achievable by resorting to a suitable data

function.

The reply is affirmative! We are able to prove that the estimates in (1.19) and (1.20)

fulfill exponential convergence with the assumption that function b is (real) analytic27 (the

function that is not only infinitely differentiable, but also identical to its Taylor expansion

everywhere in the domain). Likewise, we merely roughly state our results, the elaboration

of which will be presented at Chapter 3.

For Fourier spectral method, we have:

Theorem 1.10. Assume kernel function σ, finite-dimensional space Vn and constant β are

same as those stated in the theorem 1.8. Then for b(x) analytic on Ī and any τ with 0 <

τ < τ0, we have

‖u− un‖Hγ ≤ cτCδ(β)−2 e−τn

nβ−γ
for any γ ≥ 0,

where un ∈ Vn; cτ is a constant only depends on b and τ .

With finite element method, we possess:

Theorem 1.11. Assume kernel function σ with constants β & α are maintained as those in

the theorem 1.9, but Vn is made up by all the continuous piecewise polynomials that of degree

27Smoothness brings about the algebraic convergence rate (i.e., O(n−k)) at best, which will be explained
in Chapter 3.
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through 0 to n and satisfy that boundary conditions. Then for b(x) analytic on Ī, we have

‖u− un‖Hβ/2 ≤ cCδ(α)Cδ(β)−1e−τn,

where un ∈ Vn; c and τ > 0 are some constants independent of n, δ and b.

This dissertation is organized as follows. The theoretical foundation (developed by [20])

is constructed in Chapter 2, where we precisely define the nonlocal BVP we shall discuss

and build the associated solution space, based on which we investigate the well-posedness

and regularity issues. In addition, our first finding about analyticity of solutions is presented

at the end of this chapter. We devote Chapter 3 to the expositions of our main results on

exponential convergence of finite-dimensional approximations. Some numerical experiments

are demonstrated in the last chapter with the aim of validating the results.
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Chapter 2

Theoretical foundation: nonlocal BVPs and solutions

We begin with defining the types of functions we will consider and the PD operator.

Definition 2.1. Assume u ∈ L2 defined on the interval (−δ, π + δ) satisfies either

odd in (−δ, δ) and (π − δ, π + δ)1, (2.1)

or

even in (−δ, δ) and (π − δ, π + δ)2. (2.2)

The PD operator −Lδ is defined by

−Lδu(x) = −cδ
∫ x+δ

x−δ

|x′ − x|2

σ(|x′ − x|)
(
u(x′)− u(x)

)
dx′ ∀x ∈ (0, π), (2.3)

where cδ > 0, and for a nonnegative function ρ = ρ(|x|) in L1(Bδ(0)), the kernel function

σ = σ(|y|) satisfies

|y|2

σ(|y|)
≥ ρ(|y|) ∀y ∈ (−δ, δ) and τδ := cδ

∫ δ

−δ

|y|4

σ(|y|)
dy <∞. (2.4)

Remark. The restrictions (2.1) and (2.2) will allow us to more easily form the natural nonlocal

boundary conditions and formulate the spectrum of the corresponing PD operator, as the

following shows.

1It means that the graph of u(x) on this interval is symmetric with respect to the point (π, 0).
2x = π is the symmetric line of the graph within this interval.
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For smooth enough functions, (2.1) implies u(0) = u(π) = 0, while (2.2) gives ux(0) =

ux(π) = 0. Moreover, with Fourier sine and cosine series expansions, we have

u(x) =
∞∑
k=1

uok sin(kx) and u(x) =
∞∑
k=1

uek cos(kx) (2.5)

with the coefficients {uok} or {uek} given by

uok =
2

π

∫ π

0

u(x) sin(kx)dx ∀k ≥ 1, uek =
2

π

∫ π

0

u(x) cos(kx)dx ∀k ≥ 1. (2.6)

Denoting the PD operator by −Loδ for functions satisfying (2.1) and by −Leδ for those

meeting (2.2), we have the following representations of operators:

Proposition.

−Loδu(x) =
∞∑
k=1

ηδ(k)uok sin(kx), (2.7)

−Leδu(x) =
∞∑
k=1

ηδ(k)uek cos(kx), (2.8)

where

ηδ(k) = cδ

∫ δ

−δ
(1− cos(ky))

|y|2

σ(|y|)
dy ∀k ≥ 1. (2.9)

Proof. We only show (2.7). (2.8) can be derived by perfoming the similar process.

As to (2.6), the coefficients of −Loδu(x) in sine expansion are given by

2

π

∫ π

0

(
− Loδu(x)

)
sin(kx)dx. (2.10)
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With (2.3), we get

(2.10) = − 2

π
cδ

∫ π

0

∫ x+δ

x−δ

|x′ − x|2

σ(|x′ − x|)
(
u(x′)− u(x)

)
sin(kx)dx′dx

= − 2

π
cδ

∫ π

0

∫ x+δ

x−δ

|x′ − x|2

σ(|x′ − x|)

(∑
k′

uok′
(

sin(k′x′)− sin(k′x)
))

sin(kx)dx′dx

= − 2

π
cδ

∫ π

0

∫ x+δ

x−δ

|x′ − x|2

σ(|x′ − x|)

(∑
k′

uok′ sin(k′x′) sin(kx)−
∑
k′

uok′ sin(k′x) sin(kx)
)
dx′dx

let y = x′ − x,

= − 2

π
cδ

∫ δ

−δ

|y|2

σ(|y|)

(∑
k′

uok′

∫ π

0

sin(k′x+ k′y) sin(kx)dx−
∑
k′

uok′

∫ π

0

sin(k′x) sin(kx)dx
)
dy.

Notice that the first integral in the parenthese has value of
π

2
cos(ky) as k′ = k; otherwise

it is zero. The second integral takes the value of
π

2
if k′ = k, equal to zero for any k′ 6= k.

Thus, we finally gain

(2.10) = − 2

π
cδ

∫ δ

−δ

|y|2

σ(|y|)

(π
2
uok cos(ky)− π

2
uok

)
dy

= uok

(
cδ

∫ δ

−δ

|y|2

σ(|y|)
(
1− cos(ky)

)
dy
)

= uok ηδ(k),

which gives (2.7).

Similar to [20], we will mainly focus on the functions satisfying condition (2.1) with the

Fourier sine expansion; nevertheless, all the paralell conclusions are derivable to the functions

concerning condition (2.2).

Now we form our nonlocal BVP as follows: −L
o
δu = f in (0, π),

u(0) = u(π) = 0,
(2.11)
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where u satisfies (2.1).

2.1 Solution space M o
σ

Prior to a further investigation into (2.11), it is necessary to assign a solution space:

Definition 2.2. The space M o
σ, which depends on the kernel function σ, consists of all

functions u ∈ L2 for which (−Loδu, u) <∞. The M o
σ-norm is defined by

‖u‖Mo
σ

=
[ 2

π
(−Loδu, u)

]1/2

=
( ∞∑
k=1

ηδ(k)uo2k

)1/2

.

The corresponding inner product in M o
σ is given by

(u, v)Mo
σ

=
∑
k

ηδ(k)uokv
o
k ∀u, v ∈M o

σ .

In addition, given an exponent s, one can define the general space M so
σ by

M so
σ =

{
u ∈ L2 : ‖u‖Mso

σ
=
( ∞∑
k=1

ηsδ(k)uo2k

)1/2

<∞
}
.

Remark. We can see that M so
σ is a Hilbert space (refer to [21, Lemma 2.3] for the proof) and

varied with different conditions of σ.

2.2 The relations between M o
σ and Sobolev spaces

Let Hs
o denote the standard fractional order Sobolev space on (0, π) for s ∈ [0, 1). In

our circumstance, one can characterize the space and its norm as the following equivalent

form3:

Hs
o :=

{
v =

∞∑
k=1

vok sin(kx) | ‖v‖2
s =

∞∑
k=1

|vok|2k2s <∞
}
.

3The norm is equivalent to the regular Sobolev’s norm by Parseval formula.
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Note that as s = 0, H0
o = M0o

σ = L2
o.

In virtue of this representation of fractional order Sobolev space, we are able to show

the following natural relations of spaces:

Lemma 2.0.1. With the assumption of σ in (2.4), the space M o
σ satisfies4

H1
o ↪→M o

σ ↪→ L2
o,

with ηδ(k) satisfying

0 < inf
k≥1

cδ

∫ δ

−δ
(1− cos(ky))ρ(|y|)dy ≤ ηδ(k) ≤ τδ

2
k2 k ≥ 1. (2.12)

Proof. First, by (2.4), we have

ηδ(k) ≥ cδ

∫ δ

−δ
(1− cos(ky))ρ(|y|)dy > 0 ∀k ≥ 1.

Also by the Riemann lemma,

lim
k→∞

∫ δ

−δ
cos(ky)ρ(|y|)dy = 0,

which gives

lim
k→∞

∫ δ

−δ

(
1− cos(ky)

)
ρ(|y|)dy =

∫ δ

−δ
ρ(|y|)dy > 0. (2.13)

Thus the infimum in (2.12) is attainable and remains positive, which impiles that M o
σ ↪→

L2
o.

As to other assumptions of σ, we have

Lemma 2.0.2. (i) Assume σ is such that, for some constant γ1 > 0 and α ∈ (0, 2),

σ(|y|) ≥ γ1|y|3+α ∀|y| ≤ δ. (2.14)

4The symbol “↪→” is the conventional notation for the continuous embedding between spaces.
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Then for some constant Cδ
1(α),

0 ≤ ηδ(k) ≤ Cδ
1(α)2kα ∀k ≥ 1. (2.15)

Moreover,

‖u‖Mo
σ
≤ Cδ

1(α)‖u‖α/2 ∀u ∈ Hα/2
o , (2.16)

i.e., the space M o
σ satisfies H

α/2
o ↪→M o

σ.

(ii) Assume σ is such that, for some constant γ2 > 0 and β ∈ [0, 2),

σ(|y|) ≤ γ2|y|3+β ∀|y| ≤ δ. (2.17)

Then for some constant Cδ
2(β),

ηδ(k) ≥ Cδ
2(β)2kβ ∀k ≥ 1. (2.18)

Moreover,

Cδ
2(β)‖u‖β/2 ≤ ‖u‖Mo

σ
∀u ∈M o

σ , (2.19)

i.e., the space M o
σ satisfies M o

σ ↪→ H
β/2
o .

Proof. For (i), the coefficient ηδ(k) as defined in (2.9) satisfies

0 ≤ ηδ(k) ≤ cδ
γ1

∫ δ

−δ

(
1− cos(ky)

) |y|2
|y|3+α

dy

=
kα

γ1

cδ

∫ kδ

−kδ

1− cos(z)

|z|1+α
dz

≤ kα

γ1

cδ

∫ ∞
−∞

1− cos(z)

|z|1+α
dz, (>)

let

ωδ(α, χ) = cδ

∫ χ

−χ

1− cos(z)

|z|1+α
dz,
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and Cδ
1(α) = (ωδ(α,∞)/γ1)

1
2 , then

(>) = kα
ωδ(α,∞)

γ1

= kαCδ
1(α)2.

Note that the improper integral ωδ(α,∞) < ∞, as α ∈ (0, 2). Thus, we get done with

(2.15). The space relation of (2.16) then follows immediately.

Similarly for (ii),

ηδ(k) ≥ cδ
γ2

∫ δ

−δ

(
1− cos(ky)

) |y|2
|y|3+β

dy

=
kβ

γ2

cδ

∫ kδ

−kδ

1− cos(z)

|z|1+β
dz

≥ kβ

γ2

cδ

∫ δ

−δ

1− cos(z)

|z|1+β
dz

= kβ
ωδ(β, δ)

γ2

.

Let Cδ
2(β) = (ωδ(β, δ)/γ2)

1
2 . We obtain (2.18) which is followed by (2.19).

2.3 Properties of solutions

Fourier expansions (2.5) and (2.7) enable us to convert the PD equation in (2.11) to an

algebraic equation:
∞∑
k=1

ηδ(k)uok sin(kx) =
∞∑
k=1

f ok sin(kx),

from which we derive

uok =
f ok
ηδ(k)

.

Thus,

u(x) =
∞∑
k=1

f ok
ηδ(k)

sin(kx). (2.20)

Lemma 2.0.3. Under the assumption (2.4) on σ, (2.20) is the unique solution of nonlocal

BVP (2.11) in space M o
σ.
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Proof. First, (2.20) is a solution of the nonlocal problem (2.11) because of

‖u‖2
Mo
σ

=
∞∑
k=1

ηδ(k)uo2k =
∞∑
k=1

f o2k
ηδ(k)

≤ C‖f‖0 <∞,

where constant C can be obtained according to (2.13).

For uniqueness, we consider the variational problem:

find u ∈M o
σ such that J(u) = min

v∈Mo
σ

J(v), where

J(v) =
1

2
(−Loδv, v)− (f, v).

We claim this variational problem admits the only solution by the facts that the PD

operator −Loδ is a self-adjoint operator and M o
σ is a Hilbert space. Hence, we conclude (2.20)

is the unique solution of nonlocal BVP (2.11) in M o
σ .

A very important and useful result that can be derivable immediately from (2.20) is the

property of regularity :

Lemma 2.0.4. If σ satisfies both (2.4) and (2.17) with β ∈ [0, 2), then for f ∈ Hm
o (m ≥

−β), the unique solution u ∈ Hm+β
o . Moreover,

‖u‖m+β ≤ Cδ
2(β)−2‖f‖m. (2.21)

That is, an enhancing in regularity of order β for solutions comparing with data functions.

Proof.

‖f‖2
m =

∑
k

k2mf o2k =
∑
k

k2mη2
δ (k)uo2k ,

on the other hand,

∑
k

k2mη2
δ (k)uo2k ≥

∑
k

k2m · k2βCδ
2(β)4 · uo2k = Cδ

2(β)4 · ‖u‖2
m+β
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due to (2.18).

The lemma above implies that the smoother the data function is, the smoother the

solution will be. This observation directly leads to the consequence about analyticity of

solutions, i.e., analytic data functions bring about analytic solutions.

Before giving out our result, we shall learn about something on analytic functions.

Definition 2.3. A function f , with domain a set U and range either the real or complex

numbers, is said to be analytic at x0 ∈ U if its Taylor expansion at x0 converges to itself

nearby x0, i.e.,

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n in Brx0

(x0).

The function is said to be analytic on U if it is analytic at each point of U .

i) If the set U is an interval on R, then f is said to be (real) analytic on the interval

U .

ii) If the set U is a region of the complex plane and f is a function with complex variable

z defined in U , then f is said to be analytic in the region U .

Remark. f(x) analytic on [a, b] implies f(x) ∈ C∞[a, b].

The relationship between functions analytic on an interval and functions analytic in a

region is shown in the following propostion:

Proposition. The function f(x) is analytic on some interval I, if and only if, there exists

a region D containing I in which f(z) is analytic.

Proof. For each point x0 ∈ I, there is a quantity rx0 and an expansion

f(x) =
∞∑
n=0

an(x− x0)n valid in |x− x0| < rx0 .

When x is replaced by z = x+ iy, the expression above defines a complex function analytic

in the circle |z − x0| < rx0 . Let x0 run through the interval, the circles |z − x0| < rx0 will
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cover I. Let D be the union of these circles. Then D is an open set and is arcwise connected.

In fact, if p, q ∈ D, join p to x1 and q to x2, the centers of their respective circles, then the

arc px1x2q lies in D. D is therefore a region and f(x) can be continued analytically into

it such that f(z) is analytic inside.

Analytic functions on an interval can be completely characterized by the growth of their

derivatives, which is shown in [14]:

Lemma 2.0.5. ([14, Theorem 1.9.3]) The function f(x) is analytic on an interval I if and

only if there exist Cf , r > 0 depending only on f such that for ∀x ∈ I,

|f (n)(x)| ≤ Cf r
nn!, ∀n ∈ N, (2.22)

Proof. “=⇒” . Suppose x0 is a fixed point in I and (2.22) holds. By Taylor expansion we

have for x ∈ I,

f(x) =
n−1∑
k=0

f (k)(x0)

k!
(x− x0)k +

f (n)(ξ)

n!
(x− x0) for all n, (2.23)

where ξ is between x and x0.

According to (2.22),

∣∣∣f (n)(ξ)

n!
(x− x0)n

∣∣∣ ≤ Cf r
n|x− x0|n < (dr)n|x− x0|n, where d = max(1, Cf ),

so that if |x − x0| <
1

dr + 1
, the remainder in (2.23) will converge to 0. The function f

possesses a power series expansion valid in a neiborhood of x0, which means f is analytic on

I.

“⇐=”. Assume f is analytic on I, then by proposition, we can find a simply connected

region R containing I in which f(z) is analytic. Let C be a curve surrounding I and lying
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in R. Then for x ∈ I, we have Cauchy integral formula:

|f (n)(x)| ≤ n!

2π

∫
C

|f(z)|
|z − x0|n+1

ds.

If L(C) denotes the length of C and δ is the minimum distance from C to I, then

|f (n)(x)| ≤
max
z∈C
|f(z)|L(C)n!

2π δn+1
=
Mn!

δn
∀x ∈ I,

where M and δ are the constants depending only on f . Here we derive (2.22).

Theorem 2.1 (Analyticity of solutions). If σ satisfies (2.4), (2.14) and (2.17) with 0 ≤

β ≤ α ∈ (0, 2), then for f(x) =
∞∑
k=1

f ok sin(x) analytic on [0, π] and admiting an analytic

continuation to the strip |Imz| < τ0 in the complex plane C, the solution u(x) is analytic on

[0, π].

Proof. Note that f(z) is analytic on the rectangular region R : [0, π]× (−τ0, τ0) and can be

transformed into the formal Fourier expansion:

f(z) =
∞∑
k=1

f ok sin(kz) =
∞∑
k=1

f ok ·
eikz − e−ikz

2i

=
∞∑
k=1

(f ok
2i
eikz − f ok

2i
e−ikz

)
=

∞∑
k=−∞

f ok
2i

eikz (0 ≤ Rez ≤ π).

Making the change of variables ζ = eiz (i.e., z = arg ζ − i ln |ζ|) yields

v(ζ) = f(arg ζ − i ln |ζ|) =
∞∑

k=−∞

f ok
2i

ζk.

Therefore, f(z) analytic on R corresponds with v(ζ) analytic in the upper annulus e−τ0 <

|ζ| < eτ0 .
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Next, we consider the similar transformation of u(z):

u(z) =
∞∑
k=1

uok sin(kz) =
∞∑
k=1

f ok
ηδ(k)

sin(kz)

=
∞∑

k=−∞

f ok
2i · ηδ(k)

eikz (0 ≤ Re z ≤ π).

Let ζ = eiz, then

w(ζ) = u(arg ζ − i ln |ζ|) =
∞∑

k=−∞

f ok
2i · ηδ(k)

ζk.

Combining (2.15) with (2.18) obtains Cδ
1(α)−2k−α ≤ 1/ηδ(k) ≤ Cδ

2(β)−2k−β. Thus, the

series w(ζ) has the same maximal convergent annulus as v(ζ) because the relations of their

coefficients satisfy

r ≤ lim
k→∞

∣∣∣∣ f ok
2Cδ

2(β)2 kβ

∣∣∣∣−1/k

≤ lim
k→∞

∣∣∣∣ f ok
2i ηδ(k)

∣∣∣∣−1/k

≤ lim
k→∞

∣∣∣∣ f ok
2Cδ

1(α)2 kα

∣∣∣∣−1/k

≤ r,

where r is lim
k→∞
|f ok |−1/k.

w(ζ) is hence analytic in annulus e−τ0 < |ζ| < eτ0 as well and u(z) follows being analytic

on R. By proposition, u(x) is analytic on the interval [0, π].
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Chapter 3

Finite-dimensional approximations to solutions

3.1 Fourier spectral method

Making use of (2.21), Du and Zhou [20] obtained an error estimate by replacing u with

u− un:

Theorem 3.1. If σ satisfies both (2.4) and (2.17) with β ∈ [0, 2), then for f ∈ Hm
o , we have

‖u− un‖γ ≤ Cδ
2(β)−2 ‖f‖m

nm+β−γ for any γ ∈ [0,m], (3.1)

where un ∈ Vn, the finite-dimensional subspace of M o
σ which is spanned by the first n Fourier

sine modes.

This approach to derive error estimates is Fourier spectral method.

As we pointed out, the error estimates (3.1) can be improved if f is assumed to be

analytic:

Theorem 3.2 (Exponential approximations by Fourier spectral method). If σ satisfies (2.4)

and (2.17) with β ∈ [0, 2), then for f(x) =
∞∑
k=1

f ok sin(x) analytic on [0, π] and admiting

an analytic continuation to the strip |Imz| < τ0 in the complex plane C, and any τ with

0 < τ < τ0, we have

‖u− un‖γ ≤
2
√

2M(τ)Cδ
2(β)−2

(1− e−2τ )1/2
· nγ−βe−τn ∀γ ≥ 0,

where un ∈ Vn, M(τ) = max
|Im z|≤τ

|f(z)|.
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Proof. From the proof of Theorem 2.1, we know that f(z) takes the form of

f(z) =
∞∑

k=−∞

f ok
2i

eikz (0 ≤ Rez ≤ π)

which is analytic on the rectangular region R : [0, π] × (−τ0, τ0). Making the change of

variable ζ = eiz, we derive

v(ζ) = f(arg ζ − i ln |ζ|) =
∞∑

k=−∞

f ok
2i

ζk

which is found to be analytic in the upper annulus e−τ0 < |ζ| < eτ0 . The right-hand side is

a Laurent expansion whose coefficients are given by

f ok
2i

=
1

2πi

∫
|ζ|=r

v(ζ)

ζk+1
dζ, where e−τ0 < r < eτ0 ,

from which we solve for f ok to obtain

f ok =
1

π

∫
|ζ|=r

v(ζ)

ζk+1
dζ, k = 0,±1,±2, · · · .

For convenience, we choose r = eτ . So r > 1.

On the other hand, Lemma (2.0.4) implies that both

u(x) =
∞∑
k=1

f ok
ηδ(k)

sin(kx) and un(x) =
n∑
k=1

f ok
ηδ(k)

sin(kx)
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are infinitely differentiable on [0, π]. Thus, for ∀γ ≥ 0, we obtain with (2.18)

‖u− un‖2
γ =

∑
k>n

k2γ |f ok |2

|ηδ(k)|2

≤
∑
k≥n

k2γ |f ok |2

|ηδ(k)|2

≤ Cδ
2(β)−4n−2β

∑
k≥n

k2γ|f ok |2.

Next we focus on the term
∑
k≥n

k2γ|f ok |2;

∑
k≥n

k2γ|f ok |2 =
1

π2

∑
k≥n

k2γ
∣∣∣ ∫
|ζ|=r

v(ζ)

ζk+1
dζ
∣∣∣2

≤ M2(τ)

π2

(∫
|ζ|=r

1

|ζ|
ds
)2

·
∑
k≥n

k2γr−2k

= 4M2(τ) ·
∑
k≥n

k2γr−2k

= 4M2(τ)
[∑
k≥n

k2γr−2k
]
. (3.2)

It is left to estimate
∑
k≥n

k2γr−2k. Let Sγ(x) =
∑
k≥n

k2γxk. The following recursion formula

can be found:

Sγ+1(x) = x2S
′′

γ (x) + xS
′

γ(x).

With S1(x) =
∑
k≥n

k2xk =
n2 xn

1− x
·
[
1 +O

( 1

n

)]
, we conclude for ∀γ ≥ 0,

Sγ(x) =
n2γxn

1− x
·
[
1 +O

( 1

n

)]
≤ 2n2γxn

1− x
, as n is large enough.

Therefore, ∑
k≥n

k2γr−2k = Sγ(r
−2) ≤ 2n2γr−2n

1− r−2
.
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Substituting it into (3.2) yields

∑
k≥n

k2γ|f ok |2 ≤
8M2(τ)

1− r−2
· n2γr−2n.

To sum up, we have shown

‖u− un‖2
γ ≤

∑
k≥n

k2γ · |f
o
k |2

|ηδ(k)|2

≤ Cδ
2(β)−4n−2β ·

∑
k≥n

k2γ|f ok |2

≤ Cδ
2(β)−4n−2β · 8M2(τ)

1− r−2
· n2γr−2n

= 8M2(τ)
Cδ

2(β)−4

1− r−2
· n2(γ−β)r−2n.

Replacing r with eτ and taking squre root of both sides, we finally acquire

‖u− un‖γ ≤ 2
√

2M(τ)
Cδ

2(β)−2

(1− e−2τ )1/2
· nγ−βe−τn.

3.2 Finite element method

Recall that in Lemma 2.0.3 we prove the uniqueness by applying the following principle:

nonlocal BVP (2.11) is equivalent to the variational problem:

find u = u(x) ∈M o
σ which is a minimizer of the functional

J(v) =
1

2
(v, v)Mo

σ
− (f, v) for ∀v ∈M o

σ .

Since
(
M o

σ , (·, ·)Mo
σ

)
is a Hilbert space, the variational problem has an unique solution

u∗ ∈M o
σ . Thus (2.11) possess the only solution u∗ (namely, (2.20)) as well.
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Now let Vn be the finite-dimensional subspace of M o
σ which is made up by continuous

piecewise polynomials satisfying (2.1) with degree m(≥ 1), on a regular and quasiuniform

mesh having n grid points with meshwidth parameter h (→ 0, as n→∞).

We can form the approximation problem: find un = un(x) ∈ Vn minimizing the func-

tional

J(v) =
1

2
(v, v)Mo

σ
− (f, v) for ∀v ∈ Vn.

Similar to the variational problem, there exists a sole un ∈ Vn that solves it, by noticing

that
(
Vn, (·, ·)Mo

σ

)
is a Hilbert space in its own right.

It can be proved [12] that un is the best approximation of u∗ in Vn measured with the

norm of M o
σ , i.e.,

‖u∗ − un‖Mo
σ

= min
v∈Vn
‖u∗ − v‖Mo

σ
. (3.3)

Du and Zhou [20] gained the following error estimate by applying finite element method:

Theorem 3.3. Let σ satisfies (2.4), (2.14) and (2.17) with 0 ≤ β ≤ α ∈ (0, 2). Then for

f ∈ Hm′−β with β ≤ m′ ≤ m+ 1, we have

‖u− un‖β/2 ≤ cCδ
1(α)Cδ

2(β)−3 hm
′−α/2‖f‖m′−β, (3.4)

where un ∈ Vn; the constant c is independent of h, δ and f .

Notice that if f is smooth, arbitrary high algebraic rate of convergence is obtainable as

the polynomial degree m is raised. Nevertheless, the exponential decay is untouchable. In

view of this, we turn to other method.

3.3 P−version finite element method

The finite element method used above to generate approximate solution un is more

classical, called h-version FEM where convergence is brought by mesh refinement (that is,

letting the meshwidth h tend to zero) and the polynomial degree is constant and fixed; In
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contrast, there exists an “opposit” approach named p-version FEM, consisting in keeping

the mesh fixed and letting the polynomial degrees p→∞.

In what follows, we will see that the p-version FEM can achieve exponential convergence

provided that data function is analytic.

By convention of notation, we use N to denote the set of positive integers and N0 the

set of non-negative integers. Moreover, C(I) represents the space of continuous functions on

an interval I and Pn the space of polynomials of degree less than or equal to n.

Definition 3.1 (Gauss-Lobatto points). Given Legendre polynomials defined on [-1,1] with

degree n ∈ N0:

Ln(x) =
1

n!2n
dn

dxn
(x2 − 1)n (3.5)

The Gauss-Lobatto points on [0, π] are the zeros of the polynomial

g(x) := x(π − x)L̃′n(x) on [0, π],

where L̃n(x) := Ln

(
2

π
x− 1

)
.

It is a well known fact that this polynomial has n + 1 distinct zeros lying in [0, π].

Clearly, both endpoints 0 and π are included, and by symmetry properties of the Legendre

polynomials, those points are symmetric with respect to the midpoint π/2 of the interval.

We denote the set of Gauss-Lobatto points by GLn := {xi|i = 0, 1, . . . , n}.

Notice that (3.5) is a basis (complete orthogonal system [33]) of the space L2[−1, 1];

that is, every funcion f ∈ L2[−1, 1] can be represented as f(x)
L2

=
∞∑
n=0

anLn(x), where

an =
2n+ 1

2

∫ 1

−1

f(x)Ln(x)dx (3.6)

and the convergence is understood in the sense of the norm on the space. However, if the

function is analytic, the convergence should be pointwise because f can be expanded by
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Taylor series (definition 2.3) and hence by a linear combinition of (3.5). In fact, there is a

more general result towards this assertion:

Theorem 3.4 (K. Neumann). Let f(z) be analytic in the interior of Eρ (an ellipse in the

complex plane with foci ±1 and sum of semi-axes ρ (> 1), i.e.,

Eρ = {z ∈ C||z − 1|+ |z + 1| < ρ+ ρ−1}),

but not in the interior of any Eρ′ with ρ′ > ρ. Then

f(z) =
∞∑
n=0

anLn(z) (3.7)

with (3.6).

The series converges absolutely and uniformly on any closed set in the interior of Eρ.

The series diverges exterior to Eρ. Moreover,

lim sup
n→∞

|an|1/n =
1

ρ
. (3.8)

The complete proof of the theorem can be found at [14, p.312]. Here we will only focus

on deriving an estimate (shown in that proof) of the coefficents (3.6) for future use.

Proposition. For ∀n ∈ N0, an defined in (3.6) satisfies

|an| ≤ C(2n+ 1)(ρ′)−n 1 < ρ′ < ρ, (3.9)

where C is a constant that depends upon ρ′ but not on n.

Proof. According to the assumption on the theorem, f(z) is analytic in and on Eρ′ . Thus

we may write for t ∈ [−1, 1] by Cauchy integral formula [3]:

f(t) =
1

2πi

∫
Eρ′

f(z)

z − t
dz.
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Combining it with (3.6),

an =
2n+ 1

4πi

∫ 1

−1

Pn(t)

∫
Eρ′

f(z)

z − t
dz dt

=
2n+ 1

4πi

∫
Eρ′
f(z)

∫ 1

−1

Pn(t)

z − t
dt dz =

2n+ 1

2πi

∫
Eρ′
f(z)Qn(z)dz,

where the function

Qn(z) =
1

2

∫ 1

−1

Pn(t)

z − t
dt n ∈ N0

is known as the Legendre function of the second kind, which is linearly independent of Pn(z)

[14, p.311]. Therefore

|an| ≤
2n+ 1

2π
L(Eρ′) max

z∈Eρ′
|f(z)|max

z∈Eρ′
|Qn(z)| (3.10)

where L(Eρ′) designates the length of L(Eρ′). From the inequality in [14, p.311],

max
z∈Eρ′
|Qn(z)| ≤ π(ρ′)−n

ρ′ − 1
.

(3.10) hence pass to

|an| ≤ C(2n+ 1)(ρ′)−n

where C is a constant depending only on ρ′.

We define the Gauss-Lobatto interpolation operator in for the function u ∈ C[0, π]

by interpolation in the n+ 1 Gauss-Lobatto points, i.e.,

(inu)(x) :=
n∑
i=0

u(xi)l
(n)
i (x),
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where the Lagrange polynomials l
(n)
i (x)(of degree n) are defined as

l
(n)
i (x) =

n∏
j=0
j 6=i

x− xj
xi − xj

.

For an analytic function defined on the interval [0, 1], there is an approximation result

in terms of its Gauss-Lobatto interpolation which is the key to our theorem of exponential

approximations with p-version finite element method. The conclusion remains valid if the

interval is replaced with [0, π], which can be seen by applying the transformation formula

y =
x

π
to the function considered.

With regard to the proof of this result, we introduce two important inequalities before-

hand.

Proposition. 1. ([38, Lemma 3.2.1]) There is C > 0 independent of n such that

‖inf‖L∞(I) ≤ C(1 + lnn)‖f‖L∞(I) ∀f ∈ C(I). (3.11)

2. ([39, Theorem 3.92]) For every v ∈ Pn it holds that

‖v′‖L∞(I) ≤ 2n2‖v‖L∞(I). (3.12)

(3.12) is refered to as Markov’s inequality.

Now we state the approximation result. Because of its fundamental role in deriving our

theorem of exponential approximations, we also present its proof in what follows.

Lemma 3.4.1. ([38, Lemma 3.2.6]) Let u be analytic on the interval I = [0, 1] and satisfy

for some Cu, γ > 0 and h ∈ (0, 1]

‖Dmu‖L∞(I) ≤ Cu (γh)mm! ∀m ∈ N.
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Then there are C, σ > 0 depending only on γ such that the Gauss-Lobatto interpolant inu

satisfies

‖u− inu‖L∞(I) + ‖(u− inu)′‖L∞(I) ≤ CCu

( h

h+ σ

)n+1

∀n ∈ N.

Proof. The proof proceeds in three steps.

Step 1: Let ū ∈ R be the average of u, i.e., ū =
∫
I
udx. By the mean value theorem,

there is ξ ∈ I with ū = u(ξ). Thus, ũ(x) := u(x)− ū satisfies

‖Dmũ‖L∞(I) ≤ max{1, 2γ}Cu(γh)mm! m ∈ N0.

These bounds on the derivative of ũ(x) imply the existence of σ, C > 0 depending only on

γ such that ũ(z) is holomorphic on Eρ with ρ ≥ 1 + σ/h; additionally, it satisfies on Eρ

‖ũ‖L∞(Eρ) ≤ CCu.

Step 2: From theorem 3.4 and (3.9), we get the existence of C such that (after appro-

priately adjusting σ)

ũ(x) =
∞∑
i=0

uiL̃i(x) uniformly on I,

|ui| ≤ CCu(1 + σ/h)−i ∀i ∈ N0,

where L̃i(x) := Li(2x − 1). Now we define un(x) :=
n∑
i=0

uiL̃i(x) + ū (∈ Pn(I)). Markov’s

inequality (3.12) yields

‖(u− un)′‖L∞(I) ≤ ‖(ũ−
n∑
i=0

uiL̃i)
′‖L∞(I) ≤

∞∑
i=n+1

|ui|‖L̃′i‖L∞(I)

≤ CCu

∞∑
i=n+1

i2(1 + σ/h)−i ≤ CCu

( h

h+ σ′

)n+1
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for some σ′ < σ and C > 0. An analogous result holds for ‖u − un‖L∞(I). Thus, we have

proved

‖u− un‖L∞(I) + ‖(u− un)′‖L∞(I) ≤ CCu

( h

h+ σ

)n+1

. (3.13)

Step 3: We employ inequality (3.11) in order to obtain bounds for u− inu:

‖u− inu‖L∞(I) ≤ ‖u− un‖L∞(I) + ‖un − inu‖L∞(I)

≤ ‖u− un‖L∞(I) + ‖in(un − u)‖L∞(I)

≤ C(1 + lnn)‖u− un‖L∞(I),

‖(u− inu)′‖L∞(I) ≤ ‖(u− un)′‖L∞(I) + ‖(un − inu)′‖L∞(I)

≤ ‖(u− un)′‖L∞(I) + 2n2‖un − inu‖L∞(I)

≤ ‖(u− un)′‖L∞(I) + Cn2(1 + lnn)‖u− un‖L∞(I).

Inserting (3.13) gives the desired bounds on u − inu after appropriately adjusting the

constant σ.

Slightly modifying the preconditions and conclusion, we derive a more convenient version

of the lemma:

Lemma 3.4.2. Let u be analytic on the interval I = [0, π] and satisfy for some Cu, r > 0

‖Dmu‖L∞(I) ≤ Cu r
mm! ∀m ∈ N.

Then there are C, τ > 0 depending only on r such that the Gauss-Lobatto interpolant inu

satisfies

‖u− inu‖L∞(I) + ‖(u− inu)′‖L∞(I) ≤ CCue
−τn ∀n ∈ N.

A combination of this lemma and lemma 2.0.5 will produce a very concise state of the

result above:
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Lemma 3.4.3. Assume u is analytic on the interval I = [0, π]. Then there are c, τ > 0

depending only on u such that the Gauss-Lobatto interpolant inu satisfies

‖u− inu‖L∞(I) + ‖(u− inu)′‖L∞(I) ≤ ce−τn ∀n ∈ N.

So far it has been ready to show our theorem of exponential convergence with p-version

FEM. We denote Vn as the space composed of continuous piecewise polynomials that of

degree from 0 to n and yield to (2.1).

Theorem 3.5 (Exponential approximations by p-finite element method). If σ satisfies

(2.4),(2.14) and (2.17) with 0 ≤ β ≤ α ∈ (0, 2), then for f(x) =
∞∑
k=1

f ok sin(x) analytic

on [0, π] and admiting an analytic continuation to the strip |Imz| < τ0 in the complex plane

C, we have

‖u− un‖β/2 ≤ cCδ
1(α)Cδ

2(β)−1e−τn,

where un ∈ Vn; c, τ > 0 are some constants independent of n and δ.

Proof. As 0 ≤ β ≤ α ∈ (0, 2), lemma 2.0.2 with interpolation theory of Sobolev space

demonstrate the following relations of spaces:

Vn ⊂ H1
o ⊂ Hα/2

o ⊂M o
σ ⊂ Hβ/2

o ⊂ L2.

Thus Vn is a finite-dimensional subspace of M o
σ .

Since
(
Vn, (·, ·)Mo

σ

)
is a Hilbert space, the following variational problem:

find un ∈ Vn such that E(un) = min
v∈Vn

E(v), where

E(v) =
1

2
(v, v)Mo

σ
− (f, v),
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has a unique solution un ∈ Vn which is also the best approximation of the solution u (2.20)

in Vn by M o
σ ’s norm, i.e.,

‖u− un‖Mo
σ

= min
v∈Vn
‖u− v‖Mo

σ
.

Thus, with (2.16) and (2.19) we have

‖u− un‖β/2 ≤ Cδ
2(β)−1‖u− un‖Mo

σ
= Cδ

2(β)−1 min
vn∈Vn

‖u− vn‖Mo
σ

≤ Cδ
1(α)Cδ

2(β)−1 min
vn∈Vn

‖u− vn‖α/2. (3.14)

On the other hand, theorem 2.1 indicates the solution u is analytic on [0, π]. By lemma

3.4.3, there exists a polynomial pn of degree n such that

‖u− pn‖L∞(I) + ‖(u− pn)′‖L∞(I) ≤ ce−τn,

where c, τ > 0 are independent of n. It follows that1

min
vn∈Vn

‖u− vn‖α/2 ≤ ‖u− pn‖α/2

≤ c‖u− pn‖1 ≤ c
(
‖u− pn‖L∞(I) + ‖(u− pn)′‖L∞(I)

)
≤ ce−τn,

where c is some constant independent of n and δ.

After incorporating the derivation into (3.14), we obtain the ultimate result.

It can be seen that our theorems of exponential approximations are based upon assorted

conditions. In the next chapter, we will provide several examples to verify these conclusions

are practically ture.

1Note that pn is the inu and the endpoints 0, π are sampling points to the interpolation, thus pn(0) =
u(0) = 0 and pn(π) = u(π) = 0. Extending pn oddly at left up to −δ and right up to π + δ gains p∗n ∈ Vn
satisfying p∗n

∣∣
[0,π]

= pn.
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Chapter 4

Numerical experiments

In both Theorems 3.2 and 3.5, data functions f are supposed to be analytic on the

interval [0, π] and provided with the form of Fourier sine series, i.e.,

f(x) =
∞∑
k=1

f ok sin(kx), x ∈ [0, π].

In practice, for convenience we instead seek a function in the same fashion that is analytic

and periodic on the whole real line1. Such a function is selected in light of the following

theorem.

Theorem 4.1. Suppose f(z) is defined on the line Imz = 0 (x-axis) in the complex plane.

(i) Assume f(z) is analytic in a strip S: −∞ ≤ τ1 < Imz < τ2 ≤ ∞ and have period 2π.

Then

f(z) =
∞∑

k=−∞

fke
ikz, (4.1)

where

fk =
1

2π

∫ π

−π
f(z)e−ikzdz. (4.2)

The series (4.1) converges uniformly and absolutely in every substrip S ′ : τ1 < τ ′1 ≤

Imz ≤ τ ′2 < τ2.

Conversely,

1Such a function must be analytic on both endpoints of the interval.
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(ii) Assume f(z) satisfies (4.1), where

lim sup
k→∞

ln |fk|
k

= A, (4.3)

lim inf
k→∞

ln |f−k|
k

= B (4.4)

and

∞ ≤ A < B ≤ ∞.

Then f(z) is analytic and periodic in the strip A < Imz < B. This is also the maximum

strip of analyticity of f(z).

Proof. (i) Make the change of variable:

ζ = eiz, (4.5)

then z = arg ζ − i ln |ζ|. (4.5) maps the strip S into the annulus

A : e−τ2 < |ζ| < e−τ1

in the ζ−plane.

In view of the analyticity and periodicity of f(z), the function g(ζ) = f(arg ζ − i ln |ζ|)

will be single valued and analytic in the annulus. It therefore has a Laurent expansion

g(ζ) =
∞∑

k=−∞

gkζ
k (4.6)

with

gk =
1

2πi

∫
|ζ|=r

g(ζ)

ζk+1
dζ k = 0,±1,±2, · · ·

where e−τ2 < r < e−τ1 . The series (4.6) converges uniformly and absolutely in any sub-

annulus.
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Passing back to the variable ζ,

f(z) = g(eiz) =
∞∑

k=−∞

gke
ikz.

The integrals for gk become

gk =
1

2πi

∫ π

−π

f(z)

ei(k+1)z
· ieizdz.

This is identical to (4.2).

As for (ii), consider the series
∞∑
k=0

fkζ
k +

∞∑
k=1

f−kζ
−k ≡ g1(ζ) + g2(ζ). The radius of

convergence r1 of g1 is given by

r1 = lim sup
k→∞

|gk|−1/k = e−A.

The radius of convergence r2 of g2 is

r2 = lim inf
k→∞

|g−k|−1/k = e−B.

Since A < B, g1 + g2 is analytic in the annulus e−B < |ζ| < e−A and can not be continued

analytically into any larger annulus. Applying (4.5), f(z) is analytic in the strip

A < Imz < B,

but in no larger strip.

According to (4.3) and (4.4), it is not difficult to see that, for any r > 1, the real-valued

function

f(x) =
∞∑
k=1

r−k sin(kx)

is periodic and analytic in R.
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4.1 Exponential convergence via Fourier spectral method

Let σ(|y|) = y4 and cδ = 1/δ2, then

|y|2

σ(|y|)
=

1

|y|2
>

1

δ2
, ∀y ∈ (−δ, δ)

and

τδ = cδ

∫ δ

−δ

|y|4

σ(|y|)
dy =

1

δ2

∫ δ

−δ
1dy =

2

δ
<∞,

i.e., the kernel function σ satisfies the condition (2.4).

Next, take β = 0, γ2 = 1; also assume δ is small enough (at least less than 1). Then

σ(|y|) ≤ |y|3, ∀|y| ≤ δ.

Thus σ satisfies condition (2.17) as well.

Choose the data function

f(x) =
∞∑
k=1

2−k sin(kx). (4.7)

To sum up, the nonlocal BVP (2.11) is


− 1

δ2

∫ x+δ

x−δ

u(x′)− u(x)

(x′ − x)2
dx′ = f(x), x ∈ (0, π),

u(0) = u(π) = 0,

with its unique solution expressed as

u(x) =
∞∑
k=1

2−k

ηδ(k)
sin(kx), (4.8)
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where

ηδ(k) = cδ

∫ δ

−δ

(
1− cos(ky)

) y2

σ(|y|)
dy

=
1

δ2

∫ δ

−δ

1− cos(ky)

y2
dy

=
1

δ2

∫ δ

−δ

2 sin2(ky
2

)

y2
dy

=
4

δ2

∫ δ

0

sin2(ky
2

)

y2
dy

=
2k

δ2

∫ kδ
2

0

sin2(θ)

θ2
dθ

=
2k

δ2

[
− 2 sin2(kδ/2)

kδ
+

∫ kδ

0

sin(θ)

θ
dθ

]
.

Applying Sobolev norm ‖ · ‖1 yields error estimates of Fourier spectral method, i.e.,

||u(x)− un(x)||1 =
∞∑

k=n+1

∣∣∣∣ f ok
ηδ(k)

∣∣∣∣2k2 =
δ4

4

∞∑
k=n+1

2−2k[
− 2 sin2(kδ/2)

kδ
+
∫ kδ

0
sin(θ)
θ
dθ

]2 .

Take n = 1 to 10. For comparison, we consider δ in different values: 0.5, 0.05 and 0.005,

respectively.

The numberical results are presented in Fig. 4.1. From the one on the top, we can see

that the value of error drops sharply as n becomes larger. The decay is so steep at first

that the order of magnitude of data changes quickly. To facilitate the observation, we apply

instead the semi-log graph where the y-axis is plotted on a logarithmic (to base 10) scale

and x-axis maintains the linear scale. On such a semi-log graph the y value is supposed to

be the logarithm of the number but represented by the number itself.

As we expected, the error shown in Fig. 4.1 on the bottom is decreasing proportionally

to n. Moreover, it can be seen that the orders of convergence (i.e., τ) stay constant through

varied δs.
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Figure 4.1: Exponential convergence via Fourier spectral method.
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4.2 Exponential convergence via p-version finite element method

Retain σ(|y|) = y4 and cδ = 1/δ2; β = 0, γ2 = 1. Also assume δ is a small number less

than 1. Thus the kernel function σ satisfies both conditions (2.4) and (2.17).

Furthermore, take α = 1 and γ1 = 1 so that σ satisfies condition (2.14).

We are still using the data function given in (4.7), then the solution (4.8) will be written

as

u(x) =
δ2

2

∞∑
k=1

2−k

k
(
− 2 sin2(kδ/2)

kδ
+
∫ kδ

0
sin(θ)
θ
dθ
) sin(kx). (4.9)

Recall in the proof of theorem 3.5, the finite element solution un ∈ Vn was such that

‖u− un‖β/2 ≤ Cδ
1(α)Cδ

2(β)−1 min
vn∈Vn

‖u− vn‖α/2;

on the other hand,

min
vn∈Vn

‖u− vn‖α/2 ≤ ‖u− pn‖α/2

≤ c
(
‖u− pn‖L∞(I) + ‖(u− pn)′‖L∞(I)

)
≤ ce−τn

Thus, to sum up, we can see that

‖u− un‖β/2 ≤ c
(
‖u− pn‖L∞(I) + ‖(u− pn)′‖L∞(I)

)
≤ ce−τn.
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Note that pn = inu, i.e., the Gauss-Lobatto interpolation of solution u, and β = 0.

Hence, in fact we derive

‖u− un‖0 ≤ c
(
‖u− inu‖L∞(I) + ‖(u− inu)′‖L∞(I)

)
≤ ce−τn.

That is to say, for verifing the exponential convergence of the error estimate, it suffices

to numerically demonstrate

‖u− inu‖L∞(I) + ‖(u− inu)′‖L∞(I) ≤ ce−τn.

The following table lists n+ 1 Gauss-Lobatto points in the interval [−1, 1]:

Number of points (n+ 1) Gauss-Lobatto Points
3 0, ±1

4 ±
√

1

5
, ±1

5 0, ±
√

3

7
, ±1

6 ±

√
1

3
− 2
√

7

21
, ±

√
1

3
+

2
√

7

21
, ±1

7 0, ±

√
5

11
− 2

11

√
5

3
, ±

√
5

11
+

2

11

√
5

3
, ±1

Table 4.1: Gauss-Lobatto points in the interval [−1, 1].

Applying transformation formula: y =
π

2
(x+ 1), we will obtain the corresponding n+ 1

Gauss-Lobatto points in the interval [0, π].

Denote the set of Gauss-Lobatto points in [0, π] by {xi|i = 0, 1, . . . , n}. Then the

Lagrange interpolation polynomial of the solution (4.9) is expressed as

(inu)(x) :=
n∑
i=0

u(xi)l
(n)
i (x), (4.10)
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where the polynomials l
(n)
i (x) (of degree n) are defined as

l
(n)
i (x) =

n∏
j=0
j 6=i

x− xj
xi − xj

.

Moreover, the derivative of (4.10) is computed as

d

dx

[
(inu)(x)

]
=

n∑
i=0

u(xi)
d

dx

[
l
(n)
i (x)

]
, (4.11)

where

d

dx

[
l
(n)
i (x)

]
=

d

dx

[ n∏
j=0
j 6=i

x− xj
xi − xj

]

=
1

xi − x0

n∏
j=1
j 6=i

x− xj
xi − xj

+
1

xi − x1

n∏
j=0
j 6=1,i

x− xj
xi − xj

+ · · ·

+
1

xi − xi−1

n∏
j=0

j 6=i−1,i

x− xj
xi − xj

+
1

xi − xi+1

n∏
j=0

j 6=i,i+1

x− xj
xi − xj

+ · · ·

+
1

xi − xn

n∏
j=0
j 6=i,n

x− xj
xi − xj

=
n∑
k=0
k 6=i

(
1

xi − xk

n∏
j=0
j 6=i,k

x− xj
xi − xj

)

=
n∑
k=0
k 6=i

(
1

x− xk

n∏
j=0
j 6=i

x− xj
xi − xj

)

=
n∑
k=0
k 6=i

1

x− xk
l
(n)
i (x)

= l
(n)
i (x)

( n∑
k=0
k 6=i

1

x− xk

)
.
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Substituting into (4.11), we finally derive

d

dx

[
(inu)(x)

]
=

n∑
i=0

(
u(xi)l

(n)
i (x)

n∑
k=0
k 6=i

1

x− xk

)
.

For convenience we let

S(n) = max
x∈[0,π]

|u(x)− inu(x)|+ max
x∈[0,π]

|u′(x)− (inu)′(x)|.

As before, we set δ = 0.5, 0.05 and 0.005 respectively. Note that the number “n”

corresponds to the case of “n+ 1” Gauss-Lobatto points.

Observing Fig. 4.2 (top), we find the value of S(n) falls quickly in the beginning, but

then slowly down all the while. Furthermore, the semi-log graph in the Fig. 4.2 (bottom)

demonstrates that the orders of convergence are identical for different δs.
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Figure 4.2: Exponential convergence via p-version finite element method.
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Chapter 5

Conclusion

We demonstrated through both theoretical analysis and numerical experiments the ex-

ponential convergence (EC) of Fourier spectral and p−finite element approximations to the

solution of linear bond-based peridynamic BVP, provided that data function was analytic.

Some different techniques can also be considered to acquire EC. The hp-version finite

element method [39], equipped with proper combination of mesh refinement and increasing

polynomial degree, is shown to be superior over h−and p−finite element methods. In ad-

dition, the recently developed Fourier continuation (or termed Fourier extension [11, 31])

techniques have demonstrated highly accurate approximations for non-periodic functions.

The analysis [36] indicates that EC can be obtained with this method on evenly spaced

points until the parameter dependent accuracy threshold is reached. The applications of all

these methods to linear peridynamic BVPs remain to be investigated in the future.
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