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Thesis Abstract
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We examine two proofs of Yamamoto’s theorem regarding the asymptotic relation-

ship between singular values and eigenvalue moduli of a matrix. The first proof is by T.

Yamamoto in 1967 and makes use of compound matrices. The second is by R. Mathias

in 1990 through utilization of an interlacing theorem for singular values. We compare

the two proofs.
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Chapter 1

Introduction

In this thesis, we investigate two proofs of Yamamoto’s theorem which provides

the relationship between eigenvalue moduli and singular values of a square matrix in an

asymptotic way.

Tools such as singular value decomposition, compound matrices, interlacing inequal-

ities for eigenvalues and singular values, and Jordan form are briefly discussed. Some

treatment is provided for developing notions of norms and other features that are neces-

sary for completing the proofs. We denote by Cn×n the vector space of all n×n complex

matrices and Cn the vector space of complex n-tuples. The theorem of Yamamoto [9] is

stated below:

Theorem 1.1 (Yamamoto)

Let A ∈ Cn×n. Then

lim
p→∞

[σi(Ap) ]
1
p = |λi(A)|, i = 1, 2, . . . , n, (1.1)

where σ1(A) ≥ · · · ≥ σn(A) ≥ 0 are the singular values of A and λ1(A), . . . , λn(A) are the

eigenvalues of A which are arranged in the non-increasing order |λ1(A)| ≥ · · · ≥ |λn(A)|

with respect to their moduli.

The case i = 1 of Theorem 1.1 is a special case of Gelfand’s Spectral Radius Theorem

(1941) which may take the following form.

1



Theorem 1.2 (Gelfand)

Let ‖A‖ := max ‖x‖=1‖Ax‖ be a matrix norm induced by a vector norm ‖ · ‖ : Cn → R

where A ∈ Cn×n. Then

lim
p→∞

‖Ap‖
1
p = ρ(A), (1.2)

where ρ(A) := |λ1(A)| is the spectral radius of A.

We remark that Gelfand’s Theorem is also valid for Hilbert space bounded operators

but the proof requires more advanced tools [2].

In Chapter 2, we will present and briefly discuss some concepts, in order to aid the

reader and clarify any confusion. Then, in Chapter 3 we will focus on the original proof

by Yamamoto [9], and in Chapter 4 we will examine and discuss the more recent proof by

Mathias [3]. Once these proofs are each fully analyzed, a comparison of the two proofs

will be presented in Chapter 5.

We finally remark that very recently Yamamoto’s theorem is extended in the context

of semi-simple Lie group by Tam and Huang [7].
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Chapter 2

Notations and Theorems

The eigenvalues of A ∈ Cn×n are the numbers λ such that Ax = λx, for some

nonzero vector x ∈ Cn. The vector x is known as an eigenvector corresponding to the

eigenvalue λ for the matrix A. According to the Fundamental Theorem of Algebra, each

A ∈ Cn×n has n eigenvalues λ1(A), . . . , λn(A) ∈ C, counting multiplicities. We order

them in such a way to have

|λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λn(A)|.

The spectral radius of A is the largest eigenvalue modulus and is denoted by

ρ(A) := |λ1(A)|.

A matrix A ∈ Cn×n is said to be Hermitian if A∗ = A where A∗ is the complex

conjugate transpose of A. It is said to be positive semi-definite (p.s.d.) if it is Hermitian

and has nonnegative eigenvalues, and it is said to be positive definite (p.d.) if it is

Hermitian and has positive eigenvalues. A matrix U ∈ Cn×n is said to be unitary if it

satisfies the condition U∗ = U−1. A matrix A ∈ Cn×n is said to be nilpotent if Ap = 0

for some p ∈ N.
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The singular values σ1(A) ≥ σ2(A) ≥ . . . ≥ σn(A) ≥ 0 of the matrix A ∈ Cn×n are

the square roots of the corresponding eigenvalues of the p.s.d. matrix A∗A, i.e.,

σi(A) :=
√

λi(A∗A), i = 1, . . . , n.

One can use AA∗ to define singular values: σi(A) :=
√

λi(AA∗) because AB and BA

have the same spectrum.

A norm on a vector space X is a map ‖ · ‖ : X → R satisfying the following

properties

1. ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0,

2. (Triangle inequality) ‖x + y‖ ≤ ‖x‖+ ‖y‖, x, y ∈ X,

3. ‖αx‖ = |α|‖x‖ for all scalars α and x ∈ X.

Example 2.1 Let X = Cn and x ∈ Cn.

The 2-norm is defined as

‖x‖2 =
√

x∗x = (
n∑

i=1

|xi|2)1/2

and ‖ · ‖2 is a special case of the p-norms

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

, 1 ≤ p < ∞.

For example ‖x‖1 =
∑n

i=1 |xi| and ‖x‖∞ = max 1≤i≤n|xi|.

Let ‖ · ‖ be a vector norm on Cn. The map ‖ · ‖ : Cn×n → R:

‖A‖ = max x 6=0
‖Ax‖
‖x‖

= max ‖x‖=1‖Ax‖
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is called the induced matrix norm on Cn×n (induced by the vector norm ‖ · ‖). It is easy

to verify that an induced matrix norm is a norm and satisfies

1. ‖Ax‖ ≤ ‖A‖‖x‖ for all A ∈ Cn×n, x ∈ Cn.

2. (submultiplicative) ‖AB‖ ≤ ‖A‖‖B‖, for all A,B ∈ Cn×n.

3. ‖I‖ = 1.

Example 2.2 Let A ∈ Cn×n. Then

1. ‖A‖p = max x 6=0
‖Ax‖p

‖x‖p
, 1 ≤ p < ∞.

2. ‖A‖1 = max 1≤j≤n
∑n

i=1 |aij | (column sum norm).

3. ‖A‖∞ = max 1≤i≤n
∑n

j=1 |aij | (row sum norm) and thus ‖A‖1 = ‖A∗‖∞.

4. ‖A‖2 is the square root of the largest eigenvalue of A∗A (or AA∗). It is also called

the largest singular value.

The induced matrix norm ‖ · ‖2 is a very important norm on Cn×n and is called the

spectral norm. It is well-known [4] that for all A ∈ Cn×n,

1. ‖A∗‖2 = ‖A‖2, and

2. ‖A∗A‖2 = ‖A‖22.

We will specify which norm we use if there is a need.

Determinants are used often throughout this paper, and it is worthwhile to make

note of the properties they possess. Some useful properties of determinants [1] are:

1. A matrix A ∈ Cn×n is singular if and only if detA = 0. If A is nonsinuglar, then

det (A−1) = (det A)−1.
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2. For an upper triangular matrix A the determinant is the product of the diago-

nal entries of A, detA =
∏n

i=1 aii. This property holds true for lower triangular

matrices as well. A particular case is the identity matrix I, for which det I = 1.

3. The determinant of the product of two matrices A and B is equal to the product

of the determinant of A and the determinant of B, det (AB) = det A det B.

4. If U ∈ Cn×n is unitary, then det U = 1.

A Jordan block [4] Jk(λ) is a k × k upper triangular matrix of the form

Jk(λ) =



λ 1

λ
. . .

. . . 1

λ


∈ Ck×k

which can be expressed as Jk = λIk + Nk where Ik is the k × k identity matrix and

Nk =



0 1

0
. . .

. . . 1

0


∈ Ck×k.

A Jordan matrix J ∈ Cn×n is a direct sum of Jordan blocks and has the form:

J =



Jn1(λ1)

Jn2(λ2)

. . .

Jnk
(λk)


∈ Cn×n,

where n1 + n2 + · · ·+ nk = n. Neither the values λi and the orders ni need be distinct.
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Theorem 2.3 (Jordan Canonical Form Theorem)

Let A ∈ Cn×n. Then there exists a nonsingular matrix M ∈ Cn×n such that

M−1AM = J,

where J is a Jordan matrix.

The matrix J in the above theorem is called a Jordan form of A and is unique up to

permutation of the Jordan blocks.

We now prove the following classical result which gives a necessary and sufficient

condition for the powers of a given matrix to tend to zero. It will be used in the proof

of Gelfand’s result.

Theorem 2.4 Let B ∈ Cn×n. Then limp→∞ Bp = 0 if and only if ρ(B) < 1.

Proof: (⇒) Suppose limp→∞ Bp = 0. Let λ be any eigenvalue of B, that is, there exists

a nonzero x ∈ Cn such that Bx = λx. Then for any p ∈ N,

Bpx = λpx.

Now Bp → 0 implies that λpx → 0 and thus λp → 0. So |λ| < 1 for all eigenvalues λ of

B and hence ρ(B) < 1.

(⇐) Let B ∈ Cn×n such that ρ(B) < 1. Let

J :=



J1

J2

. . .

Jk


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be a Jordan form of B. Then by Theorem 2.3 there is a nonsingular matrix M ∈ Cn×n

such that B = MJM−1. Each block Ji ∈ Cni×ni (i = 1, . . . , k) can be written as the

sum of λI for some eigenvalue λ of B and a nilpotent matrix N , namely,

N =



0 1

0 1

. . . 1

0


∈ Cni×ni .

Taking the pth power of B yields Bp = MJpM−1 where

Jp =



Jp
1

Jp
2

. . .

Jp
k


.

To show that Bp → 0 it suffices to show Jp
i → 0 as p →∞. Since each Ji is of the form

λI + N , we need to show that limp→∞(λI + N)p = 0 under the assumption that |λ| < 1.

Now the binomial expansion gives

(λI + N)p = λp +

(
p

1

)
λp−1N +

(
p

2

)
λp−2N2 + · · ·+

(
p

p− 1

)
λ1Np−1 + Np.

Since N is nilpotent, Nm = 0 for some m ∈ N. Then for p ≥ m we have

(λI + N)p = λp +

(
p

1

)
λp−1N +

(
p

2

)
λp−2N2 + · · ·+

(
p

m− 1

)
λp−m+1Nm−1.

It is sufficient to show that for each j = 1, . . . ,m− 1,

lim
p→∞

(
p

j

)
λp−j = 0
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where |λ| < 1. Now

lim
p→∞

|
(p
j

)
λp−j |

|
(p−1

j

)
λp−1−j |

= lim
p→∞

∣∣∣∣ p

p− j
λ

∣∣∣∣ = |λ| lim
p→∞

∣∣∣∣ p

p− j

∣∣∣∣ = |λ| < 1

for any j = 0, . . . ,m − 1. The ratio test implies limp→∞
(p
j

)
λp−j = 0 and we have the

desired result.

There are other methods of matrix decomposition, two of which are defined in the

following theorems:

Theorem 2.5 [10] (Schur’s Triangularization Theorem)

Let λ1, λ2, . . . , λn be the eigenvalues of A ∈ Cn×n. Then there exists a unitary matrix

U ∈ Cn×n such that U∗AU is an upper triangular matrix, that is,

U∗AU =



λ1

λ2 *
. . .

λn


where the order of λ1, . . . , λn can be arbitrarily fixed.

Theorem 2.6 [10] (Singular Value Decomposition)

Let A ∈ Cm×n and let σ1, σ2, . . . , σr be the nonzero singular values of A. Then there

exist unitary matrices U ∈ Cm×m and V ∈ Cn×n such that

A = U

 D 0

0 0

V,

where D = diag (σ1, σ2, . . . , σr). Thus rank A = r which is the number of nonzero

singular values of A.
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Due to Theorem 2.6 the singular values remain the same under unitary equivalence, i.e.,

A and UAV have the same singular values if U and V are unitary matrices.

The rank of a matrix also has some important properties that will be needed. They

include [1]:

1. rank (AB) ≤ rank (A).

2. rank (AB) ≤ rank (B).

3. rank (A∗A) = rank (A).

Suppose A ∈ Cn×n and 1 ≤ k ≤ n. Then the kth compound of A is defined as the(n
k

)
×
(n
k

)
complex matrix Ck(A) whose elements are defined by

Ck(A)α,β = detA[α|β]. (2.1)

Here A[α|β] is the k × k submatrix of A obtained by choosing the rows indexed by α

and the columns indexed by β, where α, β ∈ Qk,n and

Qk,n := {ω = (ω(1), . . . , ω(k)) : 1 ≤ ω(1) < · · · < ω(k) ≤ n}

is the set of increasing sequences of length k chosen from 1, . . . , n. For example, if n = 3

and k = 2, then

C2(A) =


det A[1, 2|1, 2] det A[1, 2|1, 3] det A[1, 2|2, 3]

det A[1, 3|1, 2] det A[1, 3|1, 3] det A[1, 3|2, 3]

det A[2, 3|1, 2] det A[2, 3|1, 3] det A[2, 3|2, 3]

 .

In general C1(A) = A and Cn(A) = det A.

Some properties of the compound matrix [8] are listed in the following result.

10



Theorem 2.7 Let A,B ∈ Cn×n. Then

1. Ck(AB) = Ck(A)Ck(B).

2. [Ck(A)]∗ = Ck(A∗).

3. Ck(A−1) = [Ck(A)]−1 if A is nonsingular.

4. If A is normal, Hermitian, positive definite (or nonnegative) or unitary, then so is

Ck(A).

5. The eigenvalues of Ck(A) are the
(n
k

)
numbers λi1λi2 · · ·λik for (i1, . . . , ik) ∈ Qk,n,

where λ1, . . . , λn are the eigenvalues of A. In particular the eigenvalue of maximal

modulus of Ck(A) is |λ1(Ck(A))| = |λ1(A)| · · · |λk(A)|.

6. The singular values of Ck(A) are the
(n
k

)
numbers σi1σi2 · · ·σik for (i1, . . . , ik) ∈

Qk,n, where σ1, . . . , σn are the singular values of A. In particular, the largest

singular value of Ck(A) is σ1(Ck(A)) = σ1(A) · · ·σk(A).

Principal submatrices are used in Chapter 4, and the relationship between the eigenvalues

of a matrix A and the principal submatrices of A is described in the following theorem.

Theorem 2.8 [10] (Interlacing Inequalities for Eigenvalues)

Let H be an n× n Hermitian matrix partitioned as

H =

 A B

B∗ C


where A is an m×m principal submatrix of H, 1 ≤ m ≤ n. Then

λk(H) ≥ λk(A) ≥ λk+n−m(H), k = 1, 2, . . . ,m.

11



In particular, when m = n− 1,

λ1(H) ≥ λ1(A) ≥ λ2(H) ≥ · · · ≥ λn−1(H) ≥ λn−1(A) ≥ λn(H).

Proof: [10] It is sufficient to prove the m = n − 1 case. Let λ1 ≥ λ2 ≥ · · · ≥ λn be

the eigenvalues of H and let µ1 ≥ · · · ≥ µn−1 be the eigenvalues of A. By the Spectral

Theorem of Hermitian matrices, there is a unitary U ∈ Cn×n such that

H = U∗



λ1

λ2

. . .

λn


U.

Then

tI −H = U∗



t− λ1

t− λ2

. . .

t− λn


U,

and thus for t 6= λi, i = 1, 2, . . . , n,

(tI −H)−1 = U∗



1
t−λ1

1
t−λ2

. . .

1
t−λn


U. (2.2)

12



When t 6= λi, i = 1, 2, . . . , n,

(tI −H)−1 =
adj (tI −H)
det (tI −H)

, (2.3)

where adjA denotes the adjugate of A ∈ Cn×n. Upon computation, the (n, n)-entry of

(tI −H)−1 by using (2.2) is

|u1n|2

t− λ1
+
|u2n|2

t− λ2
+ · · ·+ |unn|2

t− λn

and the (n, n)-entry of adj (tI −H) is det (tI −A). Thus by (2.3)

ϕ(t) :=
det (tI −A)
det (tI −H)

=
|u1n|2

t− λ1
+
|u2n|2

t− λ2
+ · · ·+ |unn|2

t− λn
. (2.4)

Assume that λ1 > λ2 > · · · > λn. Note that ϕ(t) is continuous whose roots are µ1 ≥

. . . ≥ µn−1, which must interlace λ1, . . . , λn, i.e.,

µi ∈ [λi+1, λi], i = 1, 2, . . . , n− 1.

By continuity argument, we have the same conclusion for λ1 ≥ λ2 ≥ · · · ≥ λn.

Notations: Let 1 ≤ k ≤ n−1. We denote by A[k] the submatrix formed by selecting

the first k rows and columns of A. In other words, A[k] is upper-left corner principal

k × k submatrix of A:

13



A[k] =


k × k

n− k

n− k



Denote by A〈k〉 the submatrix generated by deleting the first k−1 rows and columns

of A. In other words, A〈k〉 is lower-right corner principal (n−k+1)×(n−k+1) submatrix

of A:

A〈k〉 =



k − 1

k − 1

n − k + 1× n − k + 1



Notice that the kth entry of the diagonal is a member in each submatrix.

Theorem 2.9 [3] (Interlacing Inequalities for Singular Values)

Let A ∈ Cn×n be given and let Ap ∈ Cn×(n−p) (respectively Ap ∈ C(n−p)×n) denote

a submatrix of A obtained by deleting any p columns (or respectively any p rows) from

A. Then

σi(A) ≥ σi(Ap) ≥ σi+p(A), i = 1, 2, . . . , n− p.

Proof: [10] It is sufficient to establish the p = 1 case and for definiteness suppose that

A1 is obtained by deleting the last column from A. Then A1 is a submatrix of A and

14



A∗
1A1 is a principal submatrix of A∗A. By Theorem 2.8 we have

λi(A∗A) ≥ λi(A∗
1A1) ≥ λi+1(A∗A).

By taking square roots, we obtain σi(A) ≥ σi(A1) ≥ σi+1(A).

Lemma 2.10 [3] Let A ∈ Cn×n be given, and consider B = (0 | A) ∈ Cn×(n+p) and

C =

 A

0

 ∈ C(n+p)×n obtained by adjoining p zero columns (respectively, rows) to A.

Then

σi(A) = σi(B) = σi(C), i = 1, 2, . . . , n.

Proof: The nonzero singular values of A are the square roots of the positive eigenvalues

of A∗A or AA∗. Now BB∗ = AA∗ and C∗C = A∗A. So σi(A) = σi(B) = σi(C),

i = 1, 2, . . . , n, when zero singular values are also counted.
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Chapter 3

Yamamoto’s original proof

Recall Yamamoto’s theorem as it was stated earlier in Theorem 1.1:

Let A ∈ Cn×n. Then

lim
p→∞

[σi(Ap) ]
1
p = |λi(A)|, i = 1, 2, . . . , n.

The largest singular value and largest eigenvalue modulus fall under i = 1 case and is

a special case of Gelfand’s Spectral Radius Theorem (Theorem 1.2) where the induced

matrix norm is the spectral norm. We may use the spectral norm and its properties to

achieve our goal in this case. In his proof, Yamamoto [9] first provides the following

lemma in order to establish Gelfand’s result which gives the case k = 1.

Lemma 3.1 Let ‖ · ‖ : Cn×n → R be a matrix norm induced by a vector norm ‖ · ‖ :

Cn → R. Given A ∈ Cn×n, for every p ∈ N, we have

ρ(A) ≤ ‖ Ap‖
1
p ≤ ‖ A‖,

where ρ(A) is the spectral radius of A.

Proof: Let A ∈ Cn×n. For any eigenvalue λ of A, let x ∈ Cn be a unit eigenvector

corresponding to λ. That is, ‖x‖ = 1 and

Ax = λx.
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So we have

Apx = λpx.

By taking the norm of this equality we have ‖Apx‖ = ‖λpx‖. The homogeneous and

sub-multiplicative property yield

‖A‖p = ‖A‖p ‖x‖ ≥ ‖Ap‖ ‖x‖ ≥ ‖Apx‖ = ‖λpx‖ = |λp| ‖x‖ ≥ |λ|p ‖x‖ = |λ|p.

By taking the pth-root on both sides we obtain

‖A‖ ≥ ‖Ap‖
1
p ≥ |λ| = ρ(A)

since ‖x‖ = 1. In particular it is true for λ = λ1.

We now have the tools to prove Gelfand’s Spectral Radius Theorem which states

that for any induced matrix norm ‖ · ‖ on Cn×n and any A ∈ Cn×n,

lim
p→∞

‖Ap‖
1
p = ρ(A). (3.1)

Proof: By Lemma 3.1 the sequence {‖Ap‖
1
p }p∈N is contained in the closed and bounded

interval [ρ(A), ‖A‖]. Let α be any limit point of the sequence {‖Ap‖
1
p }p∈N. So there

is a convergent subsequence in [ρ(A), ‖A‖], denoted by {‖Api‖
1
pi }i∈N where 1 ≤ p1 ≤

p2 ≤ · · ·, such that ‖Api‖
1
pi converges to the limit point α ∈ [ρ(A), ‖A‖]. We claim that

α = ρ(A).

Suppose on the contrary ρ(A) < α. There would exist some positive number α′ such

that 0 ≤ ρ(A) < α′ < α. Then

ρ(A)
α′

= ρ(
A

α′
) < 1

17



which implies
(

A
α′

)pi → 0 as pi →∞ by Theorem 2.4. So

‖
(

A

α′

)pi

‖ → 0 as pi →∞.

Thus, for a fixed constant ε > 0, there exists a positive integer N(ε) such that

‖
(

A

α′

)pi

‖ < ε

for every i > N(ε). Then

1 <
α

α′
=

1
α′

lim
i→∞

‖Api‖
1
pi = lim

i→∞
‖
(

A

α′

)pi

‖
1
pi < lim

i→∞
ε

1
pi = 1,

a contradiction! So ρ(A) = α. Since α is arbitrary we have established that there is only

one limit point, ρ(A).

Suppose that limp→∞ ‖Ap‖
1
p were not equal to ρ(A). Then there would exist an

ε > 0 such that for every j ∈ N, there would exist pj > m with |‖Apj‖
1

pj − ρ(A)| ≥ ε. So

there would exist a subsequence {‖Apj‖
1

pj }j∈N of {‖Ap‖
1
p }p∈N such that for all j ∈ N

|‖Apj‖
1

pj − ρ(A)| ≥ ε. (3.2)

But {‖Apj‖
1

pj }j∈N is a subsequence of {‖Ap‖
1
p }p∈N which is contained in the closed and

bounded interval [ρ(A), ‖A‖]. So there is a convergent subsequence of {‖Apj‖
1

pj }j∈N,

namely {‖Apjk‖
1

pjk }k∈N, and this convergent subsequence must converge to the limit

point ρ(A) since ρ(A) is the only limit point of ‖Ap‖
1
p , i.e. limk→∞ ‖Apjk‖

1
pjk = ρ(A).

So for the same ε > 0, there exists N(ε) ∈ N such that

|‖Apjk‖
1

pjk − ρ(A)| < ε

18



whenever k > N(ε), contradicting (3.2).

Hence we have limp→∞ ‖Ap‖
1
p = ρ(A). When ‖ · ‖ = ‖ · ‖2 we have the k = 1 case

of Yamamoto’s Theorem as a corollary since ‖A‖2 = σ1(A).

Corollary 3.2 Let A ∈ Cn×n. Then limp→∞[σ1(Ap)]
1
p = |λ1(A)|.

We now prove the remaining cases k = 2, . . . , n of (1.1).

Proof: The properties of compound matrices allow the use of the k = 1 case (Corollary

3.2) to show the result true for the finishing case. By Theorem 2.7 we have

|λ1(Ck(A))| =
k∏

i=1

|λi(A)|, σ1(Ck(A)) =
k∏

i=1

σi(A). (3.3)

Apply Corollary 3.2 on the kth compound Ck(A) of A:

lim
p→∞

[
k∏

i=1

σi(Ap)]
1
p =

k∏
i=1

|λi(A)|. (3.4)

Case 1: A is nilpotent, i.e., |λ1(A)| = 0. Then for all j = 2, . . . , n,

0 = |λ1(A)| = lim
p→∞

[σ1(Ap)]1/p ≥ lim
p→∞

[σj(Ap)]1/p ≥ 0.

So

lim
p→∞

[σj(Ap)]1/p = |λj(A)|.

Case 2: A is not nilpotent, i.e., |λ1(A)| 6= 0. Let A have k nonzero eigenvalues for

some 1 ≤ k ≤ n, i.e., |λ1| ≥ · · · ≥ |λk| > |λk+1| = · · · = |λn| = 0. Utilizing Theorem

2.5 we have U∗AU = T where T is upper triangular with λ1, λ2, . . . , λn on the diagonal.
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Raising both sides to the power p, we have

(U∗AU)p = U∗ApU = T p

and due to the upper triangular form of T we have λp
1, λ

p
2, . . . , λ

p
n on the diagonal of T p.

Since k of the eigenvalues are nonzero, rank (T p) ≥ k. Notice

rank (T p) = rank (U∗ApU) = rank (Ap).

So there are at least k nonzero singular values of Ap since the rank of a matrix is the

number of nonzero singular values. Then we have for any p,

t∏
i=1

σi(Ap) > 0, 1 ≤ t ≤ k. (3.5)

Then for 1 ≤ j ≤ k + 1 we have

lim
p→∞

[σj(Ap)]
1
p = lim

p→∞

[∏j
i=1 σi(Ap)∏j−1
i=1 σi(Ap)

] 1
p

=
limp→∞

[∏j
i=1 σi(Ap)

] 1
p

limp→∞
[∏j−1

i=1 σi(Ap)
] 1

p

(nonzero denominator by (3.5))

=
∏j

i=1 |λi(A)|∏j−1
i=1 |λi(A)|

(by Corollary 3.2)

= |λj(A)|.

In particular when j = k + 1

lim
p→∞

[σk+1(Ap)]
1
p = 0. (3.6)
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If j > k + 1 we have by (3.6)

0 ≤ [σj(Ap)]
1
p ≤ [σk+1(Ap)]

1
p → 0.

So, limp→∞[σj(Ap)]
1
p = |λj(A)| = 0. Then for any i = 1, . . . , n,

lim
p→∞

[σi(Ap)]
1
p = |λi(A)|.
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Chapter 4

Mathias’ proof

Mathias [3] provides a different method of proving Yamamoto’s theorem. Like Ya-

mamoto, he also makes use of Gelfand’s Spectral Radius Theorem to show the k = 1

case. Recall Gelfand’s result (Theorem 1.2):

Let ‖A‖ := max ‖x‖=1‖Ax‖ be a matrix norm induced by a vector norm ‖·‖ : Cn → R

where A ∈ Cn×n. Then

lim
p→∞

‖Ap‖
1
p = ρ(A),

where ρ(A) := |λ1(A)| is the spectral radius of A.

The proof of Gelfand’s result provided by Mathias proceeds as follows.

Proof: For any eigenvalue λ associated with A ∈ Cn×n, let x be a unit eigenvector

corresponding to λ. Now

Ax = λx ⇒ Apx = λpx.

By taking the norm of both sides we obtain:

‖Ap‖‖x‖ ≥ ‖Apx‖ = ‖λpx‖ = |λ|p‖x‖.

Now since ‖x‖ is a unit vector, we have ‖Ap‖
1
p ≥ |λ|. In particular this is true for the

largest eigenvalue λ1. So ρ(A) ≤ ‖Ap‖
1
p . Now define

Ã =
A

ρ(A) + ε
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for an arbitrary ε > 0. Clearly ρ(A) + ε > 0. Then we have

ρ(Ã) = ρ

(
A

ρ(A) + ε

)
=

ρ(A)
ρ(A) + ε

< 1

and ‖Ãp‖ → 0 as p → ∞ by Theorem 2.4. So in particular there exists an integer

N(ε, A) such that ‖Ãp‖ ≤ 1 whenever p > N(ε, A). This actually provides the upper

bound we need, since

1 ≥ ‖Ãp‖ = ‖
(

A

ρ(A) + ε

)p

‖ =
‖Ap‖

(ρ(A) + ε)p
.

Thus ‖Ap‖ ≤ (ρ(A) + ε)p and by taking the pth root we obtain

‖Ap‖
1
p ≤ ρ(A) + ε.

Now putting all of this together provides a nice small interval around ‖Ap‖
1
p , that is,

ρ(A) ≤ ‖Ap‖
1
p ≤ ρ(A) + ε.

As ε → 0, then p →∞ and thus

lim
p→∞

‖Ap‖
1
p = ρ(A) = |λ1(A)|.

In particular since ‖A‖2 = σ1(A) we have

lim
p→∞

[σ1(Ap)]
1
p = |λ1(A)|. (4.1)
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Our next step is to examine the case k = n for

lim
p→∞

[σk(Ap)]
1
p = |λk(A)|. (4.2)

When k = n we consider two possibilities for the matrix A, the singular and nonsingular

cases. Recall that when k = n, we are dealing with the smallest of the singular values

and eigenvalue moduli of A.

Proof: of (4.2).

Case1: A is singular. So detA =
∏n

i=1 λi(A) = 0. For each p ∈ N by Theorem 2.6

there are unitary matrices U and V such that

Ap = UDV = Udiag (σ1, σ2, . . . , σn)V.

So we have

0 = |det A|p = |det Ap| = |det (UDV )| = |det U ||det D||det V | = |det D| =
n∏

i=1

σi(Ap).

So at least one of each of the eigenvalues and singular values is equal to zero, namely

the smallest ones, |λn(A)| and σn(Ap), respectively. Then we have

lim
p→∞

[σn(Ap)]
1
p = |λn(A)| = 0.

Case 2: Now consider the case when A is nonsingular. Of course nonsingularity

indicates that A has an inverse and we can use this to our advantage as follows:

Ax = λx ⇒ 1
λ

x = A−1x.
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Then the smallest eigenvalue of A, with respect to modulus, |λn|, is the reciprocal of the

largest eigenvalue of A−1 with respect to modulus, that is, 1
|λn(A)| = ρ(A−1). We also

have σ1(A) = [λ1(A∗A)]
1
2 so that

σ1(A−1) =
(

1
[λn(A∗A)]

) 1
2

=
1

[λn(A∗A)]
1
2

=
1

σn(A)
.

By (4.1),

1

limp→∞[σn(Ap)]
1
p

= lim
p→∞

[
1

σn(Ap)
]
1
p = lim

p→∞
[σ1(A−p)]

1
p = |λ1(A−1)| = 1

|λn(A)|
.

By reciprocating each side of the equality we obtain

lim
p→∞

[σn(Ap)]
1
p = |λn(A)|. (4.3)

So far we have established Yamamoto’s result (1.1) when k = 1 and when k = n. To

show the case for 1 < k < n, Mathias employs Theorem 2.9 and Lemma 2.10 and uses

the properties of principle submatrices. In particular there are two principle submatrices

that we shall consider: A[k], the upper-left corner principal k × k submatrix of A and

A〈k〉 lower-right corner principal (n− k +1)× (n− k +1) submatrix of A . The last case

of his proof proceeds as follows:

Proof: By Theorem 2.5 there exist a unitary matrix U such that U∗AU = T where T

is an upper triangular matrix T having λ1(A), λ2(A), . . . , λn(A) on the diagonal. Then

U∗ApU = T p. (4.4)

25



Since T is an upper triangular matrix,

(T[k])
p = (T p)[k], (T〈k〉)

p = (T p)〈k〉. (4.5)

So by Theorem 2.9 and (4.5) we have

σk(Ap) = σk(T p) ≥ σk((T p)[k]) = σk((T[k])
p). (4.6)

Hence σk(Ap) is bounded below by σk((T[k])p).

In order to construct an upper bound for σk(Ap) employ Theorem 2.9, Lemma 2.10,

and (4.5) to obtain

σk(Ap) = σk(T p) (by unitary invariance (4.4))

= σ1+(k−1)(T
p)

≤ σ1(L) (by Theorem 2.9)

= σ1((T p)〈k〉) (by Lemma 2.10)

= σ1((T〈k〉)
p) (by (4.5)), (4.7)

where L is the submatrix of T p by deleting the first k − 1 rows of T p. This establishes

the upper bound we were looking for. Putting (4.6) and (4.7) together we have

σk((T[k])
p) ≤ σk(Ap) ≤ σ1((T〈k〉)

p).

By taking the pth root we obtain

[σk((T[k])
p)]

1
p ≤ [σk(Ap)]

1
p ≤ [σ1((T〈k〉)

p)]
1
p .
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Taking the limit yields

lim
p→∞

[σk((T[k])
p)]

1
p ≤ lim

p→∞
[σk(Ap)]

1
p ≤ lim

p→∞
[σ1((T〈k〉)

p)]
1
p . (4.8)

By applying (4.3) on the principal submatrix T[k] ∈ Ck×k of T ,

lim
p→∞

[σk((T[k])
p)]

1
p = |λk(T[k])|. (4.9)

Likewise, applying (4.1) on the principal submatrix T[k] ∈ C(n−k+1)×(n−k+1) of T

lim
p→∞

[σ1((T〈k〉)
p)]

1
p = |λ1(T〈k〉)|. (4.10)

Then by putting together (4.8), (4.9), ( 4.10) we have bounds on the limit of σk(Ap):

|λk(T[k])| ≤ lim
p→∞

[σk(Ap)]
1
p ≤ |λ1(T〈k〉)|.

But |λk(T[k])| = |λk(T )| = |λk(A)| and |λ1(T〈k〉)| = |λk(T )| = |λk(A)|. Thus

|λk(A)| ≤ lim
p→∞

[σk(Ap)
1
p ] ≤ |λk(A)|

Hence, limp→∞[σk(Ap)
1
p ] = |λk(A)| for 1 ≤ k ≤ n.
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Chapter 5

Comparing Approaches

About 23 years after T. Yamamoto introduced his proof that

lim
p→∞

[σi(Ap)]
1
p = |λi(A)|,

R. Mathias introduced a different proof. The proofs share some common characteristics

but the main ingredient in each is different and that leads to several distinguishing

characteristics. We will consider the development of the proofs by comparing the cases

k = 1 and 1 ≤ k ≤ n for each author.

Initially both Yamamoto and Mathias use Gelfand’s Spectral Radius Theorem. They

offer proofs for Gelfand’s result in which both make use of Theorem 2.4. Yamamoto leads

into the theorem by introducing a lemma (3.1) which bounds ‖Ap‖
1
p by ρ(A) and ‖A‖.

This is followed by the use of the closed and bounded interval to manipulate subsequences

that show that

lim
p→∞

‖Ap‖]
1
p = ρ(A).

Mathias defines a matrix Ã in order to bound ‖Ap‖
1
p below and above by ρ(A) and

ρ(A) + ε respectively. Then let ε → 0 so that limp→∞ ‖Ap‖
1
p = ρ(A). Both authors use

properties of norms, and the fact that ‖A‖ = σ1(A). Since Mathias approach is very

different from Yamamoto we will discuss each separately from this point forward.

For Yamamoto the procession from the k = 1 case to the 1 < k ≤ n case is a natural

step eased by the use of the compound matrix Ck(A). Once the k = 1 case is applied
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to Ck(A), only a few details need to be checked for the completion of the proof. If A is

nilpotent (|λi(A)| = 0, i = 1, . . . , n) and the k = 1 case limp→∞[σ1(Ap)]
1
p = |λ1(A)| = 0

to obtain

lim
p→∞

[σj(Ap)]
1
p = |λj(A)| = 0

since the eigenvalues and singular values are ordered in non-increasing order. Now when

A is not nilpotent with k nonzero eigenvalues, Yamamoto applies Schur’s Triangulariza-

tion Theorem (Theorem 2.5) and uses the rank argument to show that the number of

nonzero singular values is at least k. Then by manipulation of the product of the first k

singular values he is able to establish that

lim
p→∞

[σi(Ap)]
1
p = |λi(A)|, i = 1, . . . , n

Of course through this final step by necessity he divides the product up in order to

isolate the jth term. The fact that k of the singular values are nonzero guarantees the

denominator is nonzero and then application of Corollary 3.2 transforms the notation to

eigenvalues and the desired result falls out.

In comparison Mathias’ method requires him to split up the case where 1 < k ≤ n.

He establishes the k = n case easily by considering the singular and nonsingular cases.

Using the fact that for a singular matrix λi(A) = 0 and employing Singular Value

Decomposition (Theorem 2.6) he gets that σi(Ap) = 0. The invertibility of a nonsingular

matrix allows the use of the k = 1 result to be applied to A−1 to obtain the equality for

the smallest eigenvalue and singular value. He continues with the 1 < k < n case only

after finishing the k = 1 and k = n cases. Now armed with the two limits obtained in

the cases for k = 1 and k = n, Mathias incorporates the use of principal submatrices to

show the desired result is true. Since Schur’s Triangularization Theorem (Theorem 2.5)
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allows conversion of Ap into an upper triangular matrix through unitary similarity, he

can simplify the process by engaging the Singular Value Interlacing Theorem (Theorem

2.9) as well as Lemma 2.10 to obtain upper and lower bounds on [σi(Ap)]
1
p . Having

these bounds basically finishes the proof since the triangular form of T together with the

application of the results for k = 1 and k = n gives the desired result.

Clearly the tools needed to finish the proofs for the case(s) where 1 < k ≤ n are

varied for each approach. Yamamoto’s use of compound matrices reduces the additional

tools he is required to use to properties of nilpotent matrices and Schur’s Triangular-

ization Theorem. The approach Mathias chose to take requires more steps since he has

separate cases for k = n and 1 < k < n. Also he needs to have at hand the benefits of

Schur’s Triangularization Theorem (2.5), Singular Value Decomposition (Theorem 2.5),

properties of principal submatrices as well as the Singular Value Interlacing Theorem

(Theorem 2.9). While the approach of R. Mathias is nice, the original method of Ya-

mamoto is a more elegant approach, since it relies on only a few tools. Mathias’ reasoning

is easy to follow and understand, but requires a wider base of knowledge to establish the

result.
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