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Abstract 

 

 Plenoptic imaging is a revolutionary photographic technique which has been brought to public 

awareness recently. It makes post-refocusing possible by capturing both spatial and directional 

information of light. In order to do that, a micro-lens is placed before the imaging plane of the 

camera. Each micro-lens records angular information from its location at the cost of spatial 

resolution. A focal stack is generated by stacking up refocused images of the same object. By 

adjusting the depth at which each image focuses, it models the light ray around the nominal focal 

plane of the camera in 3D. The main purpose of this thesis is to reconstruct the surface based on 

focal stacks. There were previous attempts to accomplish the same task, including the gradient 

method and the stereo method; however, they are unable to reconstruct a smooth object. Later 

research proposed a deconvolution method that can address the smooth object problem. The thesis 

demonstrates the limitation of the deconvolution method and proposes an iterative method to more 

precisely reconstruct the surface of the object. In order to implement the iterative algorithm, the 

thesis also mathematically models the process of image blur as the vectorized object multiplied 

with a convolution matrix which represents the point-spread function (PSF). The PSF describes 

the spread of light from the object across the entire focal stack. Various results of estimating depth 

from different methods are presented to compare the performance of each algorithm. 
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Chapter 1 

Introduction 

 

A plenoptic camera is a camera that uses a micro-lens array to capture both directional and 

spatial information of light rays [13]. The information consists not only of the intensity of the light 

but also where it comes from and at what angle it comes through the main lens. So the user is able 

to trace the light ray to recreate refocused images at different depths with the help of a computer. 

Furthermore, the camera still holds promising potential yet to be fully developed. For example, it 

is possible to reconstruct the surface of the object in the picture by processing the focal stack. A 

focal stack is a set of images of the same scene stacked up in order of their focused depth. It is like 

a model of the light ray. The convergence of light and the difference of the depth become 

distinguishable after proper handling of the focal stack, and it has made the use of plenoptic 

cameras in measuring distance and 3D modeling a likely possibility. 

This thesis is a continuation of the research 3D Surface Reconstruction Based On Plenoptic 

Image [23]. The deconvolution method models the blur in the focal stack as the object convolved 

with a PSF (point spread function), and the PSF is simply the focal stack of a point at the origin in 

the plenoptic image. By reversing the process—namely deconvolving the focal stack with this 

PSF—theoretically one is able to retrieve the surface information of the object. Initial experiments 

were conducted, and the result was compared to some of the traditional methods like gradient 

method and stereo method.  The deconvolution method was on par with them and even better in 

some cases.   

However, the deconvolution method failed to address the shift-variant nature in the focal stack. 

Because of the limitation of how far and how close one could refocus the image, there must be 

boundaries in the focal stack.  The blur of an object not in the center will be truncated 

asymmetrically, thus creating shift-variance in the stack. This thesis proposes an iterative algorithm 
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to work around the shift-variance issue by only using convolution.  By minimizing the error one 

hopes to get an accurate reconstruction of the object surface. 
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Chapter 2 

Plenoptic Imaging 

 

Plenoptic imaging is also known as light-field imaging is a type of photography that contrasts 

with a conventional camera, which only records the value of light deposited at certain spatial 

locations.  A plenoptic image captures both the intensity and direction of the light ray coming 

through the lens, hence recording a light field. By using this light field one can easily refocus an 

image taken previously at a different depth with the help of a computer.  

2.1  Previous Work 

The concept of a plenoptic camera was envisioned by Leonardo da Vinci as early as the 16th 

century. He imagined such a device should capture every optical aspect of a scene. He believed 

the light is like radiant pyramids. If one is able to obtain all the information contained within, 

he/she could go along the pyramid to recreate any view from any point in a space. This versatility 

of light rays has been proven to be true. In 1908 the first light-field camera was proposed 

by Gabriel Lippmann. Lippmann's experiment included using a plastic sheet embossed with a 

regular array of micro-lenses to capture the directional information. Crude integral photographs 

were made.  Despite having issues with stereo matching, his experiment still shed light on post-

refocusing with a plenoptic image.  

In 1992, Adelson and Wang proposed the design of a plenoptic camera which is almost the 

same as today’s standard plenoptic camera: an array of micro-lenses is placed at the focal plane of 

the camera main lens. The image sensor is positioned slightly behind the micro-lenses. Using such 

images, the displacement of image parts that are not in focus can be analyzed and depth 

information can be extracted [18]. 

Into the 21st century the fully digitized photography industry has made the use of computers 

https://en.wikipedia.org/wiki/Gabriel_Lippmann
https://en.wikipedia.org/wiki/Focal_plane
https://en.wikipedia.org/wiki/Image_sensor
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in processing photos universal. The digital plenoptic image can be easily connected to a computer.  

Through the use of some simple software, users can trace the light rays backwards/forwards to 

refocus anywhere inside a photo. 

2.2  Camera Structure and Fundamentals  

There are two primary architectures concerning the placement of the micro-lens array.  

Plenoptic 1.0 places the micro-lens one focal length 𝑓  from the sensor plane as opposed to 

Plenoptic 2.0, which places the array in such a way that it is focused at the sensor plane but not 

necessarily in the focal plane of the main lens. A comparison of two types of camera is in the figure 

2.1. The two architectures basically represent the fundamental trade-off in plenoptic imaging 

between spatial resolution and directional resolution, where 1.0 has more directional resolution 

than 2.0 and vice versa. Only Plenoptic 1.0 is considered in this thesis for simplicity. 

 

 

 

 

 

 

Figure 2.1: Plenoptic 1.0 (left) and Plenoptic 2.0 (right) [1] 

 

The plenoptic system uses a 2-plane approach to characterize the light field with the first plane 

being the camera main lens in which the points on the aperture are given by coordinates (𝑢, 𝑣) 

[10]. The second plane is the film or micro-lens plane in which the points are given by (𝑥, 𝑦) 

coordinates. Combining the information from both planes we get a light ray with its direction 

specified by where it passes through the two planes and its intensity specified by parameter 𝐿. 

Hence a light ray is defined as 𝐿(𝑥, 𝑦, 𝑢, 𝑣) as a four-dimensional impulse [9]. 

 

 

 

𝑓 
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Figure 2.2: Using 2-plane approach to characterize light field 

 

In reality the aperture itself does not specify at which location the light was coming through. 

In order to record the (𝑢, 𝑣) coordinates in the film plane we use a micro-lens array. Each micro-

lens acts like a viewpoint directing at the main lens gathering light coming from every (𝑢, 𝑣) 

point on the main lens and spread them to the corresponding pixel behind the said micro-lens on 

the film plane. Data-fetching of plenoptic image works like this: Each pixel represents one light 

ray. The value of the pixel is the intensity of the light. The location of the micro-lens under which 

the pixel is located indicates (𝑥, 𝑦). The micro-lens will bend the light rays coming through itself 

onto an area the shape of a lens on the film plane, and straightforwardly enough one can look at 

the pixel on the disc-shaped area to find the intensity coming from a specific (𝑢, 𝑣) location of 

the main lens. 

 

 

𝑢 

𝑦 

𝑥 

𝑣 

𝐿(𝑥, 𝑦, 𝑢, 𝑣) 
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Figure 2.3: Capture of the 2-plane 4-dimensional data. Raw plenoptic image (top). Magnified 

plenoptic image with spatial information (middle). Further magnified plenoptic image with 

angular information (bottom). 

𝑦 

𝑢 

𝑣 

𝑥 
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As mentioned above, the size of the micro-lens is directly related to the directional resolution, 

i.e., the resolution of (𝑢, 𝑣)  coordinates. However, a too-big micro-lens will sacrifice spatial 

resolution as we only have as many (𝑥, 𝑦) points as the number of micro-lens, and each (𝑥, 𝑦) 

point will be translated into one pixel in the refocused image.  Thus the spatial resolution will be 

worse than a conventional camera with the same lens and same film plane. Finding the point of 

balance in this directional-spatial tradeoff is crucial when designing a plenoptic camera for a 

certain purpose.   

2.3  Digital Refocusing 

Consider an object that is out of focus as in Figure 2.4. The object is placed at a distance less 

than the focal length of the camera. So, the light reflected by the object comes through the lens 

and converges onto a location behind the film plane. For a conventional camera only the light ray 

pattern as it intersects the film plane will be recorded, so we get a blurry image as the result of the 

energy of the light rays dispersed and overlapped with each other. 

 

 

 

 

 

 

 

Figure 2.4: An object focused on the right side of the film plane (too close to the lens) 

 

 In a plenoptic camera, not only the displacement of the light ray where it intersects the 

film plane gets recorded but also the direction, as illustrated by the arrows in Figure 2.4. With the 

intensity and the direction of light rays known, we can deduce the behavior of the light field in a 

3D space. By calculating both the location and intensity of the light at a virtual focal plane, the 

film plane 

object 

lens 
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out-of-focus object can be refocused as if we have moved the film plane backwards to meet the 

point of convergence of the light rays [15], as in Figure 2.4.   

 

 

 

 

 

 

 

Figure 2.5: Tracing the light ray to the virtual focal plane of the object 

 

2.3.1  Mathematical Model  

After we obtain the light-field data 𝐿(𝑥, 𝑦, 𝑢, 𝑣), the irradiance of a given pixel (𝑥, 𝑦) on the 

film plane is computed as follows: 

 

𝐸𝐹 =
1

𝐹2 ∬ 𝐿𝐹 (𝑥, 𝑦, 𝑢, 𝑣)𝑑𝑢𝑑𝑣                       (2.1) 

 

where 𝐹 is the distance between the camera aperture plane and the imaging plane. 𝐸𝐹 is the 

irradiance at (𝑥, 𝑦), calculated as the integration of all the light ray intersections with the film 

plane at (𝑥, 𝑦) from all the points (𝑢, 𝑣) on the main lens.  

Since we already know the light-field 𝐿𝐹(𝑥, 𝑦, 𝑢, 𝑣) on the sensor plane, it is straightforward 

to trace the light geometrically onto a virtual plane using similar triangle theorem. Suppose we 

want to refocus the image at a plane at a distance 𝐹′ from the main lens. As described in Figure 

2.5, 𝐿𝐹(𝑥, 𝑦, 𝑢, 𝑣) on the film plane will become 𝐿𝐹(𝑢 + (𝑥′ − 𝑢)
𝐹

𝐹′ , 𝑣 + (𝑦′ − 𝑣)
𝐹

𝐹′ , 𝑢, 𝑣) on 

the virtual plane. Defining the ratio of the new focal plane to the old as 𝛼 = 𝐹’/𝐹, the light field 

on a virtual plane 𝐹’ from the main lens becomes: 

 

film plane 

object 

lens virtual focal plane 
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𝐿𝐹′(𝑥′, 𝑦′, 𝑢, 𝑣) = 𝐿𝐹(𝑢 (1 −
1

𝛼
) +

𝑥′

𝛼
, 𝑣 (1 −

1

𝛼
) +

𝑦′

𝛼
, 𝑢, 𝑣)             (2.2) 

 

This equation formalizes the shear of the light field onto a different depth and lays the 

foundation for the refocusing algorithm. The focused depth of a refocused image will be referred 

to as relative depth 𝛼 in this thesis. 

                        

Figure 2.6: Tracing light-field onto another plane using similar triangle theorem [2] 

 

2.3.2  Integral-based Refocusing 

Section 2.3.1 derives the equation for calculating the light field at a specific depth. The light 

contributing to a pixel at a virtual plane is the set of light rays converging onto that location. If we 

already have the light field at the refocusing depth, Then the refocusing process simply involves 

integrating out the directional variables in 𝐿(𝑥, 𝑦, 𝑢, 𝑣): 

 

𝐸𝛼𝐹(𝑥′, 𝑦′) =
1

𝛼2𝐹2 ∬ 𝐿𝐹(𝑢 (1 −
1

𝛼
) +

𝑥′

𝛼
, 𝑣 (1 −

1

𝛼
) +

𝑦′

𝛼
, 𝑢, 𝑣)𝑑𝑢𝑑𝑣       (2.3) 

 

Since early plenoptic research, researchers have been using this algorithm to generate accurate 
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pictures focused at different depth. The integral-based refocusing algorithm is reliable but does 

have one major flaw—the number of integrations required is equal to the number of pixels in the 

refocused image, whichcan be computationally intensive. It usually takes minutes to generated a 

refocused image with a standard resolution of 256×256.   

2.3.3  FFT Method 

Because of the aforementioned issue with integral-based algorithm, a new method to more 

efficiently refocus plenoptic image was proposed. To understand this method, we must introduce 

the Fourier-slice theorem [4]. The theorem relates a 2D image to the 4D plenoptic data as follows: 

 

𝑭𝟐 ∘ 𝑰𝟐
𝟒 ∘ 𝑩𝜶 = 𝑺𝟐

𝟒 ∘
𝑩𝜶

−𝑻

|𝑩𝜶
−𝑻|

∘ 𝑭𝟒                        (2.4)   

  

where 𝑭𝑴  represents the M-dimensional Fourier transform, 𝑰𝑴
𝑵   represents the projection 

from M dimensions to N dimensions, 𝑺𝑴
𝑵  represents the slicing operation whereby the last N−M 

dimensions of a function are set to 0, and 𝑩𝜶 is the shearing operator. Here, 𝑩𝜶 is given by 

 

     𝑩𝜶 = (

𝛼 0 1 − 𝛼 0
0 𝛼 0 1 − 𝛼
0 0 1 0
0 0 0 1

)     

      

Let 𝑅  denote the 4D FFT of the radiance array.  By following the slice theorem the 

irradiance of a given pixel at a refocused plane can be computed by first taking a 2D slice of 𝑅 in 

the direction denoted by the shearing operator and then doing an inverse 2D FFT on the slice: 

 

𝐸𝛼𝐹 = 𝑭−𝟐 ∘
𝑺𝟐

𝟒

𝐹2
∘ 𝑩𝛼

−𝑻 ∘ 𝑭𝟒         (2.5)   

By implementing the FFT the algorithm greatly reduces the time for refocusing images, 

rendering them in a matter of seconds.  
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2.3.4  Focal Stack 

 A focal stack is a very important concept in this thesis. Namely, it is a stack of the refocused 

images of the same scene usually characterized by (𝑥, 𝑦, 𝑧) coordinates with (𝑥, 𝑦) representing 

the location on each image and z indexing the depth at which each refocused image is synthesized. 

There will be an 𝛼 relating to each slice of the image.   

 

 

 

Figure 2.7: A focal stack viewed from (𝑥, 𝑧) plane 

 

As shown in Figure 2.7, the focal stack was generated from the plenoptic image of two pieces 

of white metal plate with different depths as evident by their respective set of light rays converging 

on different 𝑧 locations. A focal stack records the behavior of light in 3D space: As light gets 

away from the plane of focus it radiates at different angles and its energy gets dispersed, thus 

creating the blurring effect in the defocused image [7]. With the blurring of objects modeled in the 

focal stack, it helps to further mathematically model the process of blurring so that this process 

can be reversed to retrieve the surface of the objects. 

𝑥 

𝑧 
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Figure 2.8: Raw plenoptic image of the focal stack in figure 2.5 

 

2.3.5  Plenoptic Image Toolkit 

 In this research the generation of most of the refocused images and focal stacks use the 

Plenoptic Image Toolkit, which was primarily developed by Jeffrey Bolan, a graduate student in 

Aerospace Engineering at Auburn University. The toolkit incorporates an easy-to-use graphical 

user interface (GUI) and FFT refocusing algorithm, which greatly reduces the trouble from data 

fetching, calibration, and FFT refocusing. 

As shown in Figure 2.5, the initialization GUI window requires you to select three directories. 

One is for a calibration image, which is the image for locating the position of each micro-lens. The 

second is for the plenoptic image you want to refocus. The last one is for the output refocused 

image. Also you need to input a few parameters mostly concerning the setting of the camera itself. 
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Figure 2.9: Initialization GUI window of plenoptic toolkit 

 

After the initialization, the toolkit will prompt you to select three adjacent points in the 

calibration image for measuring the distance between micro-lenses to be able to sample angular 

information. In the final GUI window you must choose the 𝛼 at which to refocus the image and 

then click Display and Save. Alternatively, you can choose to output a focal stack by specifying 

the range of 𝛼 you want it to cover and the step size of 𝛼 between adjacent slices in the stack.  
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Figure 2.10: Refocus image and export focal stack in the final GUI window 
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Chapter 3 

Surface Reconstruction 

 

 Surface information is stored in the focal stack as the alpha at which each slice is focused 

ranging from one extreme to the other.  Assuming the alpha covers the full depth of the scene, 

every bit of surface will be in focus at one point in one of those slices.  Finding the parts of the 

surface that are in focus and to which slice (and its depth) the in-focused surface belongs is the 

main task of surface reconstruction.  

3.1  Gradient Method  

 The gradient method makes use of the fact that a focused image is sharper than a defocused 

one; thus the former will have more gradient energy. If we could find an operator to filter the focal 

stack slice by slice and quantize the high-frequency components of a given location, then we would 

be able to tell where that location is focused by finding the biggest high-frequency component in 

the slice-wise direction [11]. One of the most commonly used high-pass filters in image processing 

is the Laplacian operator, mostly because of its capability to detect gradients in multiple directions. 

Image blur disperses the object in a radial fashion so a Laplacian operator will be most suitable.  
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Figure 3.1: The focal stack in Figure 2.4 processed with Laplacian operator 

 

 After filtering with a Laplacian operator, we square every pixel in the focal stack to get 

absolute value, then convolve each slice with an 𝐿×𝐿 window for data consistency. The value of 

𝐿 represents a tradeoff: The smaller the window the more accurate depth estimation can be by 

finding the point with the biggest high-frequency components. But it does get inconsistent when 

𝐿 is too small.  For example, when the window falls on a location right beside an edge of the 

focused image so the value of the according point in the focused image will be zero however it 

will not in a defocused one.  

 As can be seen in Figure 3.1, only the edges got recovered as the white lines in the picture. 

The area between the two white lines where there is supposed to be an object surface is dark. the 

gradient method cannot distinguish a smooth surface because there is no considerable transition of 

data in the surface area as in Figure 2.4, hence no gradient. 
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3.2  Stereo Algorithm 

 In order to implement the stereo algorithm [5] we start by introducing a sub-image generated 

from a raw plenoptic image. As mentioned above, the disc-shaped area behind each micro-lens 

represents angular information of light. The relative location of a point on the disc on the main 

lens is the angle at which the light came through. So if we only select the pixels with the same 

(𝑢, 𝑣) under every micro-lens and combine them into one picture then we will have a sub-image. 

 This sub-image is also called a perspective image.  As its name suggests, it provides one 

perspective of the object because every pixel has the same angular information. If we generate 

another sub-image with the set of pixels that have a different (𝑢, 𝑣) , then we will have two 

different perspectives of the same object. The stereo algorithm compares the difference between 

the two perspectives and estimates depth based on the fact that the depth of an object changes the 

perspective shift. 
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Figure 3.2: Two sub-images of the same plenoptic image with different perspectives. The top 

image is viewed from the right as opposed to the bottom image being viewed from the left. 

 

 Suppose we have a plenoptic camera with the focal length 𝐹 and the diameter of main lens 

d known. As shown in Figure 3.3: To generate two perspective images, we consider the projection 
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of light from two different locations on the main lens through the object onto a virtual plane [12] 

with distance to the main lens unknown. We begin by placing an object in the focal plane of the 

main lens. 

 

 

 

 

 

        

  

 

Figure 3.3: Generating two perspective images  

 

Each arrow in Figure 3.3 represents the location of the object in each sub-image. We measure 

the disparity between the same object in two sub-images to get 𝑥 [8]. The distance between the 

virtual plane and the main lens 𝐹0 can be easily calculated using the similar triangle theorem as 

 

𝐹0 = 𝐹(1 +
𝑥

𝑑
)                            (3.1) 

 

Next step we consider the images we want to measure which are taken by the same camera. 

We generate different perspective images (Figure 3.4) and measure the change of the location of 

the objects. The triangles at both sides of the object still satisfy the similar triangle theorem, and 

the depth 𝐷 of the object can be calculated as follows:    

 

𝐷 = 𝐹0(
𝑑

𝑑+𝑥′)                            (3.1) 
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Figure 3.4: Generate two perspective images of a random object  

 

 The limitation of the stereo algorithm is that it requires the surface of the object to have some 

recognizable feature or pattern to make comparison viable. If the object is smooth and blank, as in 

Figure 3.2, then stereo algorithm may not be a good choice.  

3.3  Deconvolution Method 

   Gradient and stereo methods both heavily rely on the object being characteristized by sharp 

edges and distinct patterns. The performance varies significantly on a case-by-case basis. Thus, 

we wish to develop an algorithm that works in every scenario and essentially reverses the blurring 

process. 

3.3.1  Convolution Model 

The deconvolution method treats the blur in the focal stack as the result of a surface 

convolving with a PSF. We define the blur in the focal stack as 𝑦, the original object or surface as 

𝑥, and the PSF as ℎ. The generation of focal stack can be written as [6]: 

 

     𝑦 = 𝑥 ∗ ℎ                               (3.1) 

 

According to the convolution theorem, taking the Fourier transform of both side of (3.1) yields: 

 

       𝑌 = 𝑋𝐻                                (3.2) 

d 

F 

object 

lens 

𝑥′ 

virtual plane 
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where the frequency arguments are suppressed for simplicity.  So if 𝐻  is known and 𝑌  is 

noiseless, 𝑥 can be easily recovered by dividing 𝑌 by 𝐻 and then taking an inverse FFT of 𝑋: 

 

𝑋 = 𝑌/𝐻                

𝑥 = 𝑖𝑓𝑓𝑡(𝑋)                            (3.3) 

 

However, that’s usually not the case. The process of imaging is hardly noiseless, and the PSF 

is often not perfectly matched with ℎ. If such noise exists, doing deconvolution by 𝑌/𝐻 will be 

undesirable due to the noise-amplifying issue [14]. Suppose 𝑦 = 𝑦0 + 𝑛 , with 𝑛  representing 

noise: 

 

𝑋 = (𝑌0 + 𝑁)/𝐻 = 𝑌0/𝐻 + 𝑁/𝐻                   (3.4) 

 

The error term 𝑁/𝐻 can be quite huge if 𝑁 is divided by a very small value in 𝐻. 

 A common way to deal with noise in deconvolution is to use a Wiener filter. A Wiener 

deconvolution is given by: 

 

  �̂�(𝜔𝑥, 𝜔𝑦, 𝜔𝑧) = [
𝐻∗(𝜔𝑥,𝜔𝑦,𝜔𝑧) 

|𝐻∗(𝜔𝑥,𝜔𝑦,𝜔𝑧)|2+𝐾
]𝐺(𝜔𝑥, 𝜔𝑦, 𝜔𝑧)              (3.5) 

 

𝐺 represents the focal stack you want to deconvolve and 𝐻∗ is the conjugate of PSF. 𝐾 is a 

regularization term. Increasing the value of 𝐾  will reduce the artifact and noise in the 

deconvolved image, but it makes the result fuzzier. A compromise has to be made between a sharp 

reconstruction and a less noisy one. In the figures below you can see the impact that different 

values of 𝐾 have on the reconstructed object:   

At a large regularization term (𝐾>0.0001), there is no significant artifact due to the error. 

However, the reconstruction of surface is fuzzy and stretched across multiple slices. Attempt to 

increase the reconstruction accuracy by reducing regularization term will result in an increase of 

artifact as well as shown in the last figure in Figure 3.5.  



22 

 

 

 

Figure 3.5: Reconstructed objects by Wiener filter with different values of 𝐾 

 

 

3.3.2  Point Spread Function  

 The main reason behind finding a PSF is to mathematically model the process of image blur 

in the focal stack. This model can be used in both the deconvolution method and the iterative 

algorithm. So it is very important to find a PSF that accurately represents the spread of objects in 

the focal stack [17]. Refocusing basically does light-tracing, as it traces the set of light rays coming 

from one object. Therefore, it should have a symmetric spread being on the left or the right of the 
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focal plane as shown in Figure 3.4. 

 

 

Figure 3.6: Spread of an object in focal stack 

 

In theory this PSF should resemble a double symmetric cone with the apex being the focal 

point. 

 The PSF in nature is the system impulse response [16]. In term of the focal stack, a PSF can 

well be a focal stack generated from one point. Generally, there are two ways of creating a PSF, 

analytically and experimentally [3]. To analytically generate a PSF requires mathematically 

modeling the imaging system, which is quite complicated and hard to account for system error and 

different camera setup. Because of the availability of the easy-to-use plenoptic toolkit, one can 

treat the whole imaging system as a black box.   The toolkit can compensate for all sorts of shift-

invariant error in the refocused image. This thesis mostly concerns generating PSF experimentally. 

 Since the PSF is the system impulse response, instinctively, one would want to take a picture 

of just one pixel to generate a focal stack, but that is incorrect. Recall that the disc-shaped area in 

the plenoptic image translates to only one pixel in the refocused image, which is why they are 

called virtual pixels. In short, a micro-lens is the smallest unit in a focal stack. So in order to 

generate a correct PSF it is necessary to light up all the area behind one micro-lens or alternatively 
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light up all the area that is sampled by the plenoptic toolkit, which is normally slightly smaller than 

the micro-lens. Failure to do so will result in the mismatch of the PSF as it is missing part of the 

angular information. A comparison of different PSFs generated from lighting up different areas in 

the raw plenoptic image can be seen in Figure 3.7. 

 

  

  

 

Figure 3.7: PSF generated with full angular coverage (top). PSF generated from one pixel 

(bottom). (all PSFs in this thesis are displayed in the log domain for better visualization). 

 

   Another thing to note is the sampling rate. In the plenoptic toolkit there is a setting about the 

angular sampling rate which relates to how many units of (𝑢, 𝑣) points get sampled per micro-

lens. Increasing the angular sampling rate will increase the quality of the refocused image at the 

cost of time simply because as the number of (𝑢, 𝑣) points increases the software will take into 

account more light rays. As with the default angular sampling rate with a multiplier of 1, a PSF at 

the end of the focal stack will appear sparse and contain a lot of dark areas. Because the refocusing 



25 

 

traces a small set of light rays that are collected by just one micro-lens. As the ray-tracing goes far 

away from the focal plane, the light rays will appear few and far between when intersecting with 

the virtual plane. By increasing the aforementioned setting, when there are more light rays to 

disperse, the PSF will retain its consistency further out in the focal stack. PSFs with different 

angular sampling rates can be seen in Figure 3.8. 

 

  

 

Figure 3.8: PSFs generated with different angular sampling rates. Super-sampling with a 

multiplier of 3 (left). Default sampling rate (right). viewed from (x, y) plane at 𝛼 = 1.2.  

 

 Although a super-sampled PSF may be good for demonstration, that’s not what we need. A 

normal refocused plenoptic image with the default sampling rate looks sufficiently good. Different 

sampling rates between the object stack and the PSF will result in huge mismatches. So there is 

really no need to super-sample in (𝑢, 𝑣) coordinates.   
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3.4  Iterative Algorithm 

 As mentioned previously, deconvolution cannot solve the shift-variance issue in the focal 

stack. As long as we are given an object that is not in the center of the focal stack (which usually 

is the nominal focal plane (α = 1) of the main lens), we can expect a lot of artifacts after the 

deconvolution. To generate a focal stack from an object away from the focal plane is equivalent to 

convolving that object with an asymmetric PSF. But strict deconvolution requires that we 

deconvolve that stack with a symmetric PSF. The algorithm makes up for the mismatch by creating 

negative values and converging energy onto the center as illustrated in Figure 3.9. 

However, if we could manage to find the actual asymmetric PSF, the objects can be 

reconstructed correctly without the artifact. But this would defeat the purpose of this research (to 

find surface depth), because you need to know the depth of the object first to calculate how you 

should modify the shape of the PSF correspondently. Besides, it will not work on an image with 

multiple objects or an object with an uneven surface. In conclusion, the convolution describing the 

generation of a focal stack is basically irreversible by a direct form. An algorithm that only involves 

convolution is needed for solving this problem. Iterative algorithms are very good examples of 

using an initial guess to generate successive approximations to solve shift-variant problem without 

formalizing an inverse function.  

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Approximation
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Figure 3.9: An asymmetric focal stack as the object is not on the nominal focal plane of the 

camera (top). artifact results from the mismatch (bottom). 

 

3.4.1  Mathematical Model for Iterative Algorithm 

If the data transformation (in this case: generating a focal stack) can be put into the form 

𝑓(𝑥) = 𝑦 and 𝑥 is an unknown fixed point of function 𝑓, then one may begin with a point 𝑥𝑘 

and by successively updating its value minimize the difference between 𝑓(𝑥)  and 𝑓(𝑥𝑘) . 

Through a series of well-conditioned iterations, it is possible to arrive at a solution that is almost 
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the same as 𝑥.  

 Form 𝑓(𝑥) = 𝑦 implies that 𝑦 is the observed focal stack; 𝑥 is the object/surface we want 

to recover; 𝑓 stands for the process of blurring and truncation. In the toolkit as we select the range 

of α we want it to cover in the focal stack, that α range essentially decides how far the object is 

going to spread before it is truncated by the boundary. In order to implement truncation in 𝑓 we 

start by doing a linear convolution of 𝑥 and the PSF, followed by truncating the result back to the 

size of 𝑥. Note that because we want the PSF to cover all the blur in the focal stack, consider the 

extreme case: When an object is on the boundary of the focal stack, to stretch it across the entire 

𝛼 range, the PSF needs to be twice as large as 𝑦 in the 𝑧 direction.  

 

 

 

 

 

 

 

 

 

Figure 3.10: observed focal stack (viewed from (𝑥, 𝑧) plane) with the object focused at the left 

boundary (top). PSF needed to cover all the blur (bottom). 

 

 As we are implementing linear convolution with FFTs in Matlab, there is a series of padding 

involved to avoid overlap due to circular convolution. Here are the steps for calculating 𝑓(𝑥𝑘) 

with 𝐾 being the number of iterations: 

1. Make sure 𝑥𝑘 has the same size as 𝑦. 

2. Pad 𝑥𝑘 in the z direction to the size of PSF. 

3. Pad both 𝑥𝑘  and PSF in the 𝑥  and 𝑦  direction to leave enough margin to contain 

𝑧 

𝑥 
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𝑧 

𝑥 

circularly extended blur generated by circular convolution which will be soon truncated. 

4. Perform circular convolution of 𝑥𝑘 and PSF by FFT. 

5. Truncate the result back to the size of 𝑦.  

Consider the extreme case when convolving the point in the top right corner of 𝑥𝑘 with the 

PSF in Figure 3.10. The circularly extended blur is illustrated by the yellows areas. The object 

space is illustrated by the red rectangle while the outer dash line rectangle representing the 

minimum padding required to contain all the circularly extended blur after the circular convolution. 

 

 

 

 

 

Figure 3.11: Avoiding the circularly extended blur into the object space by padding 

 

3.4.2  Steepest Descent  

 From the last section we learned how to model the process of generating a focal stack, and the 

remaining piece is to find an optimization algorithm to minimize the error term ||𝑦 − 𝑓(𝑥𝑘)|| 

iteratively. 

 Steepest descent—also known as gradient descent—is a first-order minimization algorithm. It 

finds the local minimum of a function by taking steps proportional to the negative of the gradient 

[21]. The function we want minimize is given by ||𝑦 − 𝑓(𝑥𝑘)||. If we can find its gradient 𝛁||𝑦 −

𝑓(𝑥𝑘)|| , then change 𝑥𝑘  to 𝑥𝑘+1 =  𝑥𝑘 − 𝛽×𝛁||𝑦 − 𝑓(𝑥𝑘)|| , if 𝛽  is small enough, it is 

guaranteed that ||𝑦 − 𝑓(𝑥𝑘)|| ≥ ||𝑦 − 𝑓(𝑥𝑘+1)||. As we continue to update the value of 𝑥𝑘 this 

way, hopefully 𝑥𝑘  will arrive at a location where ||𝑦 − 𝑓(𝑥𝑘)|| ≈ 0  and 𝑥𝑘  will closely 

https://en.wikipedia.org/wiki/Gradient
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resemble the object 𝑥 we are looking for. 

 The question remains, what is 𝛁||𝑦 − 𝑓(𝑥𝑘)||? It is tricky to calculate the gradient because 

𝑓 is shift-variant. But luckily we can include the convolution and the truncation into one single 

matrix 𝐻 , namely making ||𝑦 − 𝑓(𝑥𝑘)|| = ||𝑦 − 𝐻�⃗�|| . Taking the gradient of ||𝑦 − 𝐻�⃗�||2 

gives us −2𝐻𝑇(�⃗� − 𝐻�⃗�𝑘). As long as 𝐻𝑇 exists we can calculate 𝛁𝑓 pretty easily. The question 

remains how to define matrix 𝐻. Consider a very simple example. Suppose we want to use matrix 

convolution to calculate [1 1 1] ∗ [1 1]. The convolution is given by: 

 

[

1 0
1
1
0

1
1
1

] × [
1
1

] = [

1
2
2
1

] 

 

As you can see, each row of the convolution matrix is responsible for one point in the result. 

You are free to change how you arrange the order of rows in the matrix as long as you can map the 

resulting vector accordingly back to its original dimensions. Truncation wants to keep the size of 

the result the same as 𝑥. To implement that in 𝐻 we need to get rid of the rows which will be 

creating points outside of 𝑥, essentially making 𝐻 contain as many rows as the number of points 

in 𝑥. Because the number of columns in a convolution matrix is equal to the number of points of 

the object you want to convolve with, 𝐻 will be a square matrix with equal rows and columns.  

 The whole discussion about 𝐻 is not for analytically creating a convolution matrix that does 

the same thing as 𝑓. Quite the contrary, we need not know what 𝐻 is as long as it has been proven 

to exist. Consider the original problem again: Calculate 𝛁||𝑦 − 𝑓(𝑥𝑘)|| which is equivalent to 

𝛁||𝑦 − 𝑓(𝑥𝑘)||2in term of minimizing the function again equivalent to 𝛁||�⃗� − 𝐻�⃗�𝑘||2 which is 

equal to −2𝐻𝑇(�⃗� − 𝐻�⃗�𝑘) . 𝐻�⃗�𝑘  can be implemented by convolving 𝑥𝑘  with the PSF and 

truncating the result. 𝐻𝑇 is just the convolution matrix of what 𝐻 represents but with flipped 

(negated) coordinates. In this case 𝐻𝑇 will be implemented exactly the same as 𝐻 because PSF 

in theory is symmetric. So the final iterative form with steepest descent is given by: 

 

�⃗�𝑘+1 = �⃗�𝑘 +  𝛽[𝐻𝑇(�⃗� − 𝐻�⃗�𝑘)]                       (3.6) 

http://www.baidu.com/link?url=ROvgkqmGMD025X008HRISrDXubPOVB70aaLp91VnOoiB489_OLMAAZ8MLUTc8NzV0ZvuSmeXZGBVmv6zIxGZUGJEu_UBUtZaIlICoaomw1GKEYCgRHEhiDzyM4AitCrM
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𝐾 represents the number of iteration, and 𝛽 is the step size. Since we are dealing with real-

world intensity images, there will be no negative value.  Thus, it is helpful to further condition 

the iteration by using a nonnegativity constraint. The modified iterative form with steepest descent 

is given by: 

 

�⃗�𝑘+1 = 𝐶{�⃗�𝑘 +  𝛽[𝐻𝑇(�⃗� − 𝐻�⃗�𝑘)]}                      (3.7) 

 

𝐶{} sets every negative value to zero. 

3.4.3  Conjugate Gradients 

 Steepest descent searches the local minimum by going along the direction of local downhill 

gradient 𝛁𝑓 . The problem with that is that usually the negative gradient will not point right 

towards the minimum. This results in steepest descent going down a long narrow “valley”, taking 

many shifts and turns before finally reaching the destination. In Figure 3.9 you can see how 

inefficient doing line minimization with steepest decent can be: 

 

 

Figure 3.12: Convergence of steepest decent [4] 

 

Figure 3.9 shows the scenario with 2D minimization. However, we are dealing with a massive 

multidimensional problem to minimize ||𝑦 − 𝑓(𝑥𝑘)|| , which has as many dimensions as the 

number of pixels in the focal stack. The process of iteration is going to be very time-consuming. 

We need to find a better algorithm with faster convergence speed. One candidate is conjugate 

gradients. 

 Conjugate gradients minimizes the error term by proceeding not down the gradient but rather 
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in a direction constructed to be orthogonal to the old gradient in the range space and in so far as 

possible to all the previous gradients in that space. By making the directions of line minimization 

conjugate to one another, the algorithm is able to maintain the line search direction orthogonal to 

the previous gradient direction when it starts with a new direction. In other words, it will not spoil 

or redo the minimization obtained from the previous iterations [19], and that makes the algorithm 

much more efficient than steepest descent.  

 To implement the conjugate gradient method, first we need to put the function into quadratic 

form [22]:  

 

𝑓(�⃗�) =
1

2
�⃗�𝑇𝐴�⃗� − �⃗�𝑇𝒃                         (3.8) 

 

where 𝐴  is an SPD (symmetric positive definite) matrix. With that form the gradient of the 

function can be calculated as: 

 

𝛁𝑓(�⃗�) = 𝐴�⃗� − 𝒃                             (3.9) 

 

 The change of gradient as we move along some direction can be further calculated as: 

 

𝛿(𝛁𝑓) = 𝐴 ∙ 𝛿(�⃗�)                            (3.10) 

 

 Suppose we have moved along direction �⃗⃗�, to ensure that gradient stays orthogonal to the 

next direction �⃗�, we need: 

 

0 = �⃗⃗� ∙ 𝛿(𝛁𝑓) = �⃗⃗� ∙ 𝐴 ∙ �⃗�                       (3.11) 

 

If (3.11) holds true for �⃗⃗� and �⃗�, they are said to be conjugate. A conjugate set is a set of 

vectors satisfy (3.11) pairwise. If line minimization is performed along the direction of a 

conjugate set, then you don’t need to redo any of those directions.  

For our problem, function ||𝑦 − 𝑓(𝑥𝑘)||  is equivalent to ||𝑦 − 𝑓(𝑥𝑘)||2  gradient-wise. 

Recall that this function is implemented as ||�⃗� − 𝐻�⃗�𝑘||2, and ||�⃗� − 𝐻�⃗�𝑘||2 is equal to (�⃗�𝑇 −
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�⃗�𝑘
𝑇

𝐻𝑇)(�⃗� − 𝐻�⃗�𝑘). Therefore, the SPD in form (3.9) should be 𝐻𝑇𝐻 regardless of the rest of the 

quadratic form. 

We begin by setting two initial vector 𝑟0 and �⃗�0 equal to the gradient of ||𝑦 − 𝑓(𝑥𝑘)||. The 

conjugate gradient method then constructs two sequences of vectors from the recurrence: 

 

𝑟𝑘+1 = 𝑟𝑘 − 𝜆𝑘𝐻𝑇𝐻�⃗�𝑘   �⃗�𝑘+1 = 𝑟𝑘+1 + 𝛾𝑘�⃗�𝑘   𝑘 = 0, 1, 2 … 

 

Those vectors will satisfy the orthogonality and conjugacy conditions: 

 

𝑟𝑖 ∙ 𝑟𝑗 = 0  �⃗�𝑖
𝑇 ∙ 𝐻𝑇𝐻 ∙ �⃗�𝑗=0   𝑟𝑖 ∙ �⃗�𝑗 = 0  𝑗 < 𝑖 

 

Scalars 𝜆𝑘, 𝛾𝑘 are given by 

 

𝜆𝑘 =
𝑟𝑘

𝑇
∙𝑟𝑘

||𝐻�⃗�𝑘||2   𝛾𝑘 =
𝑟𝑘+1

𝑇
∙𝑟𝑘+1

𝑟𝑘
𝑇

∙𝑟𝑘

  

 

If we follow the direction of �⃗�  successively with step size set to equal 𝜆𝑘  [21]. After N 

(number of dimensions) iterations we would exhaust all the “non-interfering” directions and 

efficiently arrive at the minimum of the function [20]. For example: A 2-dimensional line 

minimization problem can be solved by conjugate gradients with optimal step size in just 2 

iterations.  

 

 

 

Figure 3.13: Comparison of the convergence of steepest decent (in black) and conjugate gradient 

(in red) 
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Chapter 4 

Results from Surface Reconstruction 

 

 In terms of surface reconstruction, the gradient method and stereo method have problems in 

smooth areas, which accounts for most of objects in one image. Furthermore, these have been 

discussed and analyzed in full detail in a recent thesis1. Therefore, this chapter mainly focuses on 

showcasing results from deconvolution and iterative algorithms and demonstrates how much 

iterative algorithm can improve the results. 

 Considering the computationally intensive nature of iterative algorithms, it is best to start with 

a very simple or synthesized focal stack to check if it actually works in theory and work our way 

up to more complicated focal stacks generated from real data.   

4.1  Simple Synthesized Focal Stack 

 Figure 4.1 shows a synthesized focal stack with a size of 31×31×41, which is much smaller 

than a conventional focal stack generated from real data. A real focal stack usually contains tens 

of millions of pixels, and the computation time for iterative algorithm could rise dramatically. 

 

 

 

 

 

 

 

 

1Haiqiao Zhang 3D Surface Reconstruction Based On Plenoptic Image 



35 

 

                          

                                                                     

 

Figure 4.1: Synthesized focal stack (top). Theoretical reconstruction (bottom) 

 

It was generated by lighting up a very small area in a plenoptic image, then using the toolkit 

to export a focal stack and truncate the size accordingly. Because the area lighted up was smooth 

and uniform it should represent a surface that is perfectly focused on the nominal focal plane. The 

reconstructed surface should be in the center of the focal stack as indicated by the bottom figure 

in Figure 4.1. 
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4.1.1  Deconvolution Method 

 First we reconstruct the object using the deconvolution method: 

 

                 

 

Figure 4.2: Surface reconstruction by deconvolution (synthesized focal stack) 

 

As Figure 4.2 suggests, deconvolution works well as long as the object featured in the focal 

stack is on the nominal focal plane. What if it is not? Figure 4.3 depicts a synthesized focal stack 

of an object that is focused on the left side of the nominal focal plane.  
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Figure 4.3: Asymmetric synthesized focal stack 

 

This focal stack was generated from the same plenoptic images from Figure 4.1. It was focused 

at slice 𝑧 = 16. The shift in focal stack was done by changing the range of 𝛼 to be not symmetric 

about the nominal focal plane (𝛼 = 1). It is equivalent to moving the main lens away from the 

object, but this approach is much more convenient. The focal stack was then deconvolved by two 

PSFs— one the general symmetric PSF and the other the customized PSF to match the asymmetry 

in the stack. 
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Figure 4.4: General PSF used in the deconvolution (top). Reconstruction with different 

regularization term value (bottom). 

  

As you can see at 𝐾 = 1𝑒 − 07  the reconstruction was completely overshadowed by the 

artifact result from the mismatch. By increasing the value of 𝐾, the algorithm will try to mitigate 

the artifact by treating the mismatch as some kind of noise, making the reconstruction still retain 

its supposed location in the focal stack. But the precision is sacrificed as the reconstruction appears 

very fuzzy.  
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Figure 4.5: Customized PSF used in the deconvolution (top). Reconstruction (bottom) 

 

Figure 4.5 shows the mismatch issue is resolved by using the customized PSF. However, to 

customize a PSF for an asymmetric focal stack requires knowing the depth of the object before-

hand. Luckily we can do that because this is a synthesized focal stack with depth known. However, 

it would not be the case for any real data. Furthermore, the plenoptic image may contain multiple 

objects with different depths, which will totally invalidate the idea of customizing the PSF.     
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4.1.2  Steepest Descent Method 

When doing steepest descent one may need to adjust the step size β dynamically. Contrary 

to instinct, β does not really need to get smaller through time. As the iteration goes on, the line 

search may end up in an area where the change of gradient is slow, and it may point to the function 

minimum directly. In that scenario β can be increased considerably to speed up the convergence. 

In this thesis the method I used is simply trial and error. First, set an initial β; Increase the value 

of β  per 100 iterations also record the last value of the reconstruction before changing β ; 

Compare the value of error term ||𝑦 − 𝑓(𝑥𝑘)|| to its value 100 iterations earlier. If it decreases, 

keep increasing the value of β, otherwise reset the reconstruction to the last value recorded and 

decrease the value of β by 10 times as much as the amount it increased per 100 iterations. The 

reason for doing so is to prevent possible deadlock. Line search may get stuck for a small change 

of β. 

Figure 4.6 shows the reconstruction of the shifted focal stack in Figure 4.3 using steepest 

descent. As iterations went over 12,000, artifacts and error are still significant, and they are not 

likely to get resolved in a short time. Figure 4.7 depicts the changing of error over iterations. One 

can clearly see the tendency of error reduction rate slowing down in later iterations. Since a real 

focal stack will be much larger, the time for one iteration rises significantly. To reconstruct a 

surface may easily take days or even weeks. In conclusion, steepest descent is not the ideal solution 

to the problem. 
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Figure 4.6: Reconstruction from steepest descent as iterations increase (synthesized focal stack, 

viewed from both (x, z) and (x, y) plane). “norm” is value of error term; “time” is the duration 

of iterations. 
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Figure 4.7: Error graph over iterations (steepest descent) 

 

4.1.3  Conjugate Gradient Method 

The conjugate gradient method is implemented exactly the same as in Section 3.4.3. First set 

two initial vectors, one the gradient of the function to minimize and the other in a way that 

maintains its conjugacy to the first one. Update the value of reconstruction with optimal step size 

𝛽 along the direction of the second vector. It should arrive at the minimum of ||𝑦 − 𝑓(𝑥𝑘)|| in 

𝑁 iterations with 𝑁 being the number of elements in 𝑥𝑘. So the duration of iteration is directly 

linked to the size of the plenoptic image. For the case of the synthesized focal stack, the number 

of iterations should be 31×31×41 = 39401. Of course it is not required to perform that many 

iterations. You only need to reduce the blur to a point where you can extract the object, and it is an 

observation-oriented problem. Future research should come up with an algorithm to decide the 

optimal iteration number. 
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Figure 4.8: Reconstruction from conjugate gradients as iterations increase (synthesized focal 

stack, viewed from both (x, z) and (x, y) plane). “norm” is the value of error term, “time” is 

the duration of iterations. 
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From Figure 4.8 you can see conjugate gradients speeds up the convergence quite significantly. 

The error was reduced to within 2000 in thousands of iterations (bottom figure in Figure 4.8). It 

looks almost the same as the result from deconvolution without the mismatch issue. 

However, it shares the same problem with steepest descent. First of all, they use the same 

“route” to locate the function minimum: they all went to the edges first then slowly recovered the 

information in the middle, and the speed of convergence is reduced exponentially as shown in both 

Figure 4.7 and 4.9. After both algorithms get close to a minimum, only the edges of the object are 

defined. The next thousands of iterations will have only a small effect. This poses a huge problem 

with the real data: simply because every iteration may take tens of seconds, even thousands of 

iterations will be unacceptable time-wise even though hundreds of thousands may be necessary. 

This problem will be further discussed in the next section. 

 

 

Figure 4.9: Error graph over iterations (conjugate gradient) 
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4.2  Focal Stack from Real Data 

 The plenoptic image in this experiment was made by taking pictures of two metal plates at 

different distances. The one on the right is in focus and the one on the left is further away and out 

of focus. Their respective distance from the camera is 28 cm and 57.6 cm.  

 

 

 

Figure 4.10: Raw plenoptic image used for reconstruction 

 

 As it is the convention in the plenoptic toolkit to arrange the image order in the focal stack as 

their refocused depth decreasing from left to right (with the center being the nominal focal plane). 

In Figure 4.11 the metal plate at 57.6 cm is on the left at slice 27 while the one at 28 cm is on the 

center at slice 51.  
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Figure 4.11: Focal stack of the real data 

 

 The number of slices in the focal stack was purposely reduced to 100 to save time when doing 

iterations. More slices mean more precision in object depth but more data to process. 

4.2.1 Deconvolution Method 

The general unmodified PSF was used for reconstruction. The result is given in Figure 4.12. 
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Figure 4.12: Reconstruction of real data with deconvolution method 

 

 In Figure 4.12, as the value of the regularization term decreases, the reconstruction becomes 

sharper. However, the algorithm cannot compensate for the mismatch of the object on the top with 

a small value of 𝐾. As a result the reconstruction starts getting shifted to the center as shown in 

the last figure in Figure 4.12. The verdict for deconvolution is the method is only useful when the 

following conditions are met:  

1. The object surface is smooth and in the same depth. 

2. The depth of the object is known.  

3. The object needs to be shifted to the center of the focal stack, which can be accomplished 

by the plenoptic toolkit. Or alternatively modify the PSF with the depth information to 

match the focal stack accordingly. 
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4.2.2  Conjugate Gradient Method 

 As discussed in Section 4.12, steepest descent has been proven to be incapable of providing 

an accurate reconstruction within a feasible amount of time. From this point the thesis will only 

consider conjugate gradients. 

 Figure 4.13 demonstrates the process of reconstruction by conjugate gradients. The algorithm 

is able to remove most of the noise around 1000 iterations. However, the same problem persists; 

the convergence speed slows down considerably after getting near the minimum (where object 

edges are reconstructed). It may be acceptable for a synthesized stack because it only contains 

39401 pixels, but in this case the focal stack generated from the real data contains 

198×284×100 = 5,623,200  pixels. In theory it will take millions of iterations to reach the 

function minimum while even thousands of iterations already take hours. The idea of recovering 

the surface from plenoptic image by an iterative method seems at this point unpromising. 

 However, there is still hope for an iterative algorithm. For example, it may help to find a better 

starting point other than zero or for the focal stack itself to bypass its current iterative “route”. For 

example, one might use another algorithm to initially construct a crude and fuzzy surface and then 

rely on the iterative algorithm to do the final polishing. Also the iterative algorithm can be better 

conditioned by using methods such as total variation. 

 

 

 

 



49 

 

   

  

 

Figure 4.13: Reconstruction from conjugate gradient method as iterations increase (real data, 

viewed from both (𝑥, 𝑧) and (x, y) plane at α = 1). “norm” is the value of error term; “time” 

is the duration of iterations. 
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4.3  Improved Conjugate Gradients with Total Variation 

The total variation method is usually used in iterative algorithms to produce a smoother result.  

By minimizing the total variation of the data it may speed up the convergence. Take Figure 4.8 as 

an example.  All that conjugate gradients does is locate the edges of the object, then slowly 

recover the surface information by converging towards the center. It is expected during the process 

that conjugate gradients is producing a gradient difference around the edges inwards. If we could 

condition the algorithm to go a direction that minimizes total variation with the influence of the 

original line minimization, we may be able to bring up the value in the lower half of the gradient 

while minimizing total variation and essentially speeding up the convergence.   

 

 

 

 

 

Figure 4.14: Surface reconstruction from conjugate gradient with insufficient iterations (left). 

Theoretically how total variation would modify the result with around the same amount of 

iterations(right).  

 

 Recall that the error function we want to minimize in the iterative algorithm is given by 

 ||𝑦 − 𝑓(𝑥𝑘)||. To implement total variation, we modify the function by adding another error term 

to it: ϕ(𝑥𝑘) = ||𝑦 − 𝑓(𝑥𝑘)|| + 𝛼||𝐷(𝑥𝑘)||. ||𝐷(𝑥𝑘)|| is calculated as:  

∑ {|𝑥(𝑚, 𝑛, 𝑝) − 𝑥(𝑚 − 1, 𝑛, 𝑝)| + |𝑥(𝑚, 𝑛, 𝑝) − 𝑥(𝑚, 𝑛 − 1, 𝑝)| + |𝑥(𝑚, 𝑛, 𝑝) − 𝑥(𝑚, 𝑛, 𝑝 − 1)|}

𝑚,𝑛,𝑝

 

 

 

 



51 

 

4.3.1  Result from Total Variation   

In this experiment the same focal stack from Section 4.1 was used, by adjusting the scale 

factor α accordingly (in this case α = 3200000). As shown in Figure 4.15, the iteration required 

to reconstruct a surface could be considerably reduced: 

 

 

Figure 4.15: Reconstruction from total variation with synthesized focal stack 

 

Compared to Figure 4.8, total variation closed in much faster at 400 iterations, while conjugate 

gradients alone would take about 2000. But this is still not satisfactory. We need a way to 

exponentially reduce the iterative duration.  Even if we manage to reduce it to one quarter of its 

original duration, that is still unacceptably long for real data. 
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Figure 4.16: Reconstruction from total variation with real data 

Original focal stack (top). Reconstruction at 300 iterations (middle). Reconstruction passes 300 

iterations (bottom). 
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 As shown in Figure 4.16, total variation does speed up the convergence to some degree. 

However, as total variation proceeds inwards much faster than the original line search, the latter 

can no longer catch up with total variation to continuously generate more gradient difference. As 

a result, the convergence speed slows down again after a certain amount of information was filled 

in. It became worse after the line search was totally overwhelmed by total variation in the late 

stage of iterations. The reconstruction starts going outside the edges of the object because line 

search has such a little influence over the data. 

4.4  Unstable Modified Conjugate Gradient  

A few more modified conjugate gradient algorithms like negative penalty and preconditioning 

were considered. Unfortunately, those algorithms hardly provide any improvement.  Thus, 

another modification was tested which showed some promise.  However, it is unstable.  

Recall that in conjugate gradients vector 𝑟 was calculated as the negative of the function 

gradient: 𝑟𝑘+1 = 𝑟𝑘 − 𝜆𝑘𝐻𝑇𝐻�⃗�𝑘. We investigated adding a term �⃗�𝑘
3
 to the end of the equation, 

making it: 𝑟𝑘+1 = 𝑟𝑘 − 𝜆𝑘𝐻𝑇𝐻�⃗�𝑘 + 𝛼�⃗�𝑘
3
. The iterations required to recover the surface could be 

greatly reduced with a proper scale factor 𝛼. 

As shown in Figure 4.17, in just 1400 iterations, we have managed to recover the surface 

information. The reason behind it we theorized is because when �⃗�𝑘
3
 is added to 𝑟𝑘+1 it brings 

𝑟𝑘+1  closer to �⃗�𝑘 .  When you calculate �⃗�𝑘+1  by �⃗�𝑘+1 = 𝑟𝑘+1 + 𝛾𝑘�⃗�𝑘 .you are making �⃗�𝑘+1 

partially conjugate and partially orthogonal to the previous �⃗� . That way you are going non-

overlapping directions every time and that is why it converged much faster. 
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Figure 4.17: Reconstruction at 400 iterations (top). Reconstruction at 1200 iterations (middle). 

Reconstruction at 1400 iterations (bottom). 

 

However, the algorithm does have one flaw. It could be very unstable depending on the scale 
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factor. As the size of the data gets bigger it is harder to choose a proper 𝛼. If 𝛼 is too small, the 

modification would not be able to make any difference. If 𝛼 is too big �⃗� tends to blow up to 

infinity at some point.  Because you are constantly adding one �⃗�𝑘
3
 per iteration, it is likely with 

a big 𝛼 the two vectors would go out of bounds before the reconstruction can be finished.  
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Figure 4.18: Reconstruction blows up before it can be finished  
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4.5  Surface Reconstruction Using a Direct Line Search Approach 

The failure of the iterative method is due to the ill-conditioned line minimization. The 

directions the algorithm can go to reduce the error term are simply too diverse especially in a 3D 

space, which is the reason we chose to condition those iterative algorithms with total variation, 

negative penalty, etc. However, they all failed to address one of the most important issues, the 

opacity of the object in the slice-wise direction. The object being opaque means there is only one 

slice of surface in the reconstruction per (𝑥, 𝑦) unit. The intention to constrain the reconstruction 

within only one slice per (𝑥, 𝑦) unit leads to a very simple line search approach, yet it actually 

yields some conclusive results worth presenting. 

The algorithm starts by assuming the opacity of the object by creating only one small surface 

in the focal stack space. Then it proceeds to “slide” this surface along the 𝑧 axis while generating 

the corresponding focal stack using convolution with a PSF. When this surface is matched with the 

actual object surface, it should yield the smallest error by subtracting the full object focal stack 

from the surface focal stack. Therefore, we refer to this method as Stack Matching. We select a 

different (𝑥, 𝑦) location to create another small surface and repeat the above processes until the 

entire plenoptic image is searched. 
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Figure 4.19: A focal stack covers a long range of relative focal length 𝛼 

 

 As Figure 4.19 suggests, the focal stack used in this method needs to cover enough range of 

𝛼 so that the influence of superimposed image blur can be reduced at both ends to make stack 

matching possible. 

By making the stack-matching surface a 9 by 9 square, I was able to get a crude estimation of 

the surface location as shown in the figure below: 
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Figure 4.20: Reconstruction by Stack Matching method (top) with comparison 

to the actual object surface location (characterized by the two straight lines) 
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 The dilemma in this method is that the size of the surface used in the Stack Matching cannot 

be so small that it makes too little difference in the error calculation due to the superposition in the 

focal stack. But a big surface does not have a very good precision for matching small surface 

details. 

 

Figure 4.21: Reconstruction by Stack Matching method by 3 by 3 surfaces 
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Chapter 5 

Conclusion and Future Work 

 

There are various methods of estimating depth from plenoptic image. However, their 

practicality is very limited as they are unable to detect smooth objects, making most surface 

reconstruction unviable. Thus, a new method was presented called the deconvolution method. By 

modeling the process of image blur in a focal stack as the result of convolution with a PSF, in 

theory one is able to retrieve the surface information by reversing the convolution—thus 

deconvolution. 

Again, however, deconvolution has been shown to be impractical in this thesis. Because of the 

shift-variant nature of the focal stack, objects not in the center of the focal stack will be truncated 

asymmetrically thus creating mismatch between the stack and the PSF. If the depth of the object 

is unknown, the convolution is irreversible by a direct form. The thesis presents a new way of 

reconstructing a surface by iterative algorithms. Steepest decent and conjugate gradient methods 

were implemented and tested. The conjugate gradient method is able to reconstruct a synthesized 

surface. However, it fails when trying to reconstruct surface from real data due to the sheer amount 

of time the iterations requires. A few modified conjugate gradient techniques were implemented. 

Total variation increases the convergence speed to a certain degree but not fast enough; modifying 

the conjugate vector accelerates convergence greatly but remains an unstable and ill-theorized 

algorithm.  Future testing is still needed.   

Future research should focus on finding a better conditioned iterative algorithm to shorten the 

computation time. Even better would be finding a non-iterative algorithm to reconstruct a surface 

at a much faster speed. Neural networks may be a good candidate to consider.   
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