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The successful operation of RF wideband gap devices dissipating high levels of heat

flux requires effective cooling techniques. One of the most promising thermal management

strategies is the use of micro heat pipes (MHP). These devices are very thin profile heat

spreaders that can be directly attached to the GaAs or GaN substrate whose function is

to allow the spreading of the heat flux almost laterally within a 300 µm thickness. The

objective of the work presented was to estimate the convective heat transfer coefficient

of a micro-channel heat sink corresponding to a maximum amount of heat removed from

heat source placed on the top surface of the sink. This approach taken used an optimal

control technique in which the solution of the heat equation is controlled by the convective

boundary condition by taking the heat transfer coefficient as the control parameter. A

conjugate gradient method was used to solve the optimal control problem. The results

show that the temperature distributions corresponding to the controlled solution are lower

than those corresponding to the uncontrolled solution. The difference between the controlled
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and uncontrolled temperatures (4K −10K) is smaller than in the case of a planar spreader.

This suggests that the convective coefficient corresponding to a finned spreader approaches

by design an optimum distribution.

The effect of liquid charge on the performance of MHP sinks is important. A too

large amount of fluid leads to a condenser flooding, while a too low fluid charge leads to

an evaporator dry-out and an increase in channel wall temperature. An iterative scheme

was devised to compute the liquid charge corresponding to the maximum heat transport

capacity of the pipe.

This study can provide guidance in designing MHP sinks, which have emerged as an

effective technique for cooling electronic components.
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Nomenclature

a bilinear form

cl, clw, ci geometrical constants (functions of φ, θ, and r)

dc height of chip

fl friction coefficient for liquid phase

fv friction coefficient for vapor phase

h convective heat transfer coefficient

hfg latent heat of vaporization

kc coefficient of thermal conductivity for chip

ks coefficient of thermal conductivity for planar spreader

kSi coefficient of thermal conductivity for Si

kGaAs coefficient of thermal conductivity for GaAs

l width of channel

lc length of chip

p channel aspect ratio

qr maximum heat transport capacity of MHP as a fraction of the input heat

qv volumetric heat source

qw heat flux entering the MHP

r meniscus radius

rmax maximum radius of curvature

w1 length of heating area

w2 length of GaAs slab

wc width of chip
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Ai liquid-vapor interfacial area inside MHP

Al liquid cross sectional area inside MHP

Av vapor cross sectional area inside MHP

Alw wall/liquid area inside MHP

Avw wall/vapor area inside MHP

Bi Biot number

Bi∗ minimum Biot number

Bo Bond number

C0,1 space of Lipschitz continuous functions

Ca capillary number

Ds height of planar spreader

DH hydraulic diameter of empty pipe

DHl
hydraulic diameter of liquid phase

DHv hydraulic diameter of vapor phase

H1 (Ω) Sobolev space

H1 height of fin (channel)

H2 height of Si substrate

H3 height of GaAs slab

J functional to be minimized

L width of computational domain
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La length of MHP adiabatic section

Le length of MHP evaporator section
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Ls length of planar spreader

Lt width of MHP heat sink

N number of channels

P,P1, P2 search directions in conjugate gradient algorithm

Pl liquid pressure

Pv vapor pressure

Pref reference pressure

Q̇ dissipated power

RT total thermal resistance of a heat sink

Rel Reynolds number for liquid phase

Rev Reynolds number for vapor phase

S chip/planar spreader interfacial area

T∞ ambient temperature

T ∗ minimum temperature

Tc temperature distribution within the chip

Tf temperature of coolant

Ts temperature distribution within the spreader

Tw micro-channel wall temperature

TA temperature distribution within GaAs slab

TB temperature distribution within Si base plate

TC temperature distribution within separating wall (fin)

Uad set of admissible controls

Ul liquid velocity

3



Uv vapor velocity

Uref reference velocity

Vil liquid phase interfacial velocity

Viv vapor phase interfacial velocity

Ws width of planar spreader

W length of MHP sink

Greek letters
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γ, γ1, γ2 conjugate coefficient in conjugate gradient algorithm

∂Ω boundary of domain Ω

ζ1, ζ2 adjoint variables corresponding to chip and spreader respectively

θ wall/liquid contact angle

θ1 MHP sink tilt angle

λ1, λ2, λ3 adjoint variables associated with p

ξ1, ξ2, ξ3 adjoint variables associated with Bi

ρl liquid density

ρv vapor density

σ surface tension

τli interfacial shear stress for liquid phase

τvi interfacial shear stress for vapor phase

τlw liquid/wall shear stress
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τvw vapor/wall shear stress

φ pipe corner angle

Γ micro-channel cross section

Γs bottom surface of planar spreader

∆p small perturbation of p

∆Bi small perturbation of Bi

∆Tc sensitivity temperature within the chip

∆Ts sensitivity temperature within the planar spreader

∆T 1
A sensitivity temperature within GaAs slab when p is perturbed by ∆p

∆T 1
B sensitivity temperature within Si base plate when p is perturbed by ∆p

∆T 1
C sensitivity temperature within fin when p is perturbed by ∆p
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Ω computational domain for planar spreader
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Chapter 1

Introduction

1.1 Background

With the increase in heat dissipation from microelectronic devices and their size reduc-

tion, thermal management becomes a more important element of electronic product design.

Both the reliability and life expectancy of electronic equipment are inversely related to the

component temperature of the equipment. The relationship between the reliability and the

operating temperature of a typical silicon semi-conductor device shows that a reduction in

the temperature corresponds to an exponential increase in the reliability and life expectancy

of the device [35], [10], [75], [56]. Therefore, long life and reliable performance of a com-

ponent may be achieved by effectively controlling the device operating temperature within

the limits set by the device design engineers.

Heat sinks are devices that enhance heat dissipation from a hot surface, usually the case

of a heat generating component, to a cooler ambient. The primary purpose of a heat sink

is to maintain the device temperature below the maximum allowable temperature specified

by the device manufacturers.

When designing or selecting an appropriate heat sink one needs to examine various

parameters that affect not only the heat sink performance itself, but also the overall perfor-

mance of the system. The performance of a heat sink is measured by its thermal resistance

RT = ∆TS−C/Q̇ (1.1)

6



where ∆TS−C is the temperature rise of the electronic component above the input coolant

temperature and Q̇ is the dissipated power. The total thermal resistance is a sum of three

components that account for conduction through the silicon (aluminum/copper) substrate,

convection from the substrate to the cooling fluid, and resistance due to the heating of fluid

as it absorbs the energy passing through the substrate, respectively. The optimization of

a heat sink aims to minimize the total thermal resistance. The optimization procedure is

performed subject to design constraints such as:

• Available pressure drop;

• Cross sectional geometry of incoming flow;

• Ambient fluid temperature;

• Amount of required heat dissipation;

• Maximum size of the heat sink;

• Orientation with respect to gravity, etc.

Usually the sinks are equipped with extended surfaces (fins) that increase the amount of

heat removed. The parameters over which the designer has control when performing the

optimization of a heat sink typically include:

• Fin height;

• Fin length;

• Fin thickness;

• Number/density of fins;
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• Fin shape/profile;

• Base plate thickness;

• Heat sink material;

• Cooling fluid properties, etc.

There is always an interdependence among the above mentioned parameters. The impact

one parameter has on the performance of a heat sink can not be determined without con-

currently considering the contribution of the other parameters. For example, a greater fin

height provides additional surface area for heat dissipation and improves the overall thermal

performance. However, if the available volumetric flow rate is fixed, the overall performance

may deteriorate by increasing the fin height.

1.2 Objectives

The purpose of this work is to study the performance of a heat sink equipped with

an array of micro heat pipes. The geometrical parameters of the heat sink and the heat

transfer coefficient are optimized using an optimal control technique. These optimal design

parameters correspond to a maximum amount of heat removed from a heat source placed

on top of the heat sink. The liquid charge corresponding to the maximum heat transport

capacity of the pipe is then computed.

1.3 Literature review

During the last two decades, several cooling schemes ranging from simple planar ther-

mal spreaders [9], [19], to more sophisticated two-phase flow heat sinks and microjet cooling
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devices have been proposed and extensively studied both experimentally and theoretically.

Some of the most representative works are briefly presented in the sequel.

Peles et al. [48] analyzed the performance of micro pin fin heat sinks. A simplified

expression for the total thermal resistance was derived and experimentally validated. Geo-

metrical and thermo-hydraulic parameters affecting the total thermal resistance have been

discussed. It has been found that very low thermal resistances are achievable using a pin fin

heat sink. The thermal resistances achieved using micro pin fin heat sinks were as low as the

ones with micro-channel convective flows. The advantage of using pin fin configurations was

the design flexibility in the geometrical selection of the pin shapes and their spacing. Exper-

iments were performed by Wei and Honda [71] to study the effects of square micro pin fins

on boiling heat transfer from silicon chips immersed in a pool of degassed or gas-dissolved

FC-72. The micro pin finned chips showed a considerable heat transfer enhancement in the

nucleate boiling region and increase in the critical heat flux, as compared to the smooth

chip. The maximum value of allowable heat flux (84.5W/cm2), 4.2 times as large as that for

the smooth chip, was obtained for a fin height of 270µm, a fin width of 50µm, and a liquid

subcooling of 45K. Another numerical study on pin fin heat exchangers was carried out by

Saha and Acharya [55] to analyze the unsteady 3-D flow and heat transfer in a parallel-plate

channel heat exchanger with in line arrays of periodically mounted rectangular cylinders

(pins) at various Reynolds numbers and geometrical configurations. Results were presented

to highlight different parametric effects, using both the instantaneous snapshots of the flow

and heat transfer fields and the averaged (space- and time-averaged in case of unsteady

flows) integral parameters, such as the friction factor and the Nusselt number. It was found

that the thermal performance increases significantly when the flow becomes unsteady.
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The thermal performance of liquid cooling heat sinks is usually one or two orders of

magnitude greater than the one of the heat sinks using air for cooling. The air cooling

devices on the other hand, are cheap, easy to implement, and reliable. Micro-channel heat

exchangers combine the attributes of very high surface area to volume ratio, large convective

heat transfer coefficient, small mass and volume, and small coolant inventory. Numerous

investigations have been conducted on forced convection in micro-channels concerning both

single phase and two-phase flows. A comparison of single-phase and two-phase (liquid-

vapor) heat sinks shows that there is a significant enhancement in heat transfer in the

latter case. The latent heat transfer in the two-phase systems allows the same amount

of heat transfer at a much lower temperature difference (between the evaporator and the

condenser).

The micro-channel heat sink concept was first introduced by Tuckerman and Pease

in the early 1980s [68]. They performed an optimization of the micro-channel heat sink

design subject to a fully developed and laminar in nature flow through the channels and

a laminar Nusselt number. The channel to fin width ratio, the pressure drop through

the fin array, the pumping work, the planar dimensions and the fin efficiency were fixed.

They fabricated and tested several micro-channel heat sinks in a 1cm × 1cm silicon wafer.

The experimental findings were in good agreement with the theoretical predictions. The

heat sink with channels separated by 50µm thick walls, having a width of 50µm and a

depth of 302µm proved to be the optimal design solution. Using water as cooling fluid, the

micro-channel heat sink was capable of dissipating 790W/cm2 with a maximum substrate

temperature raise of 70◦C above the water inlet temperature for a pressure drop of 31psi.
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Following the work of Tuckerman and Pease [68] much research has been conducted for

micro-channel heat sinks.

Weisberg et al. [72] analyzed the micro-channel heat exchangers solving for the coupled

temperature fields within the solid substrate and the working fluid. A 2-D heat transfer was

considered in both the fins and the fluid charged channels. The minimum thermal resistance

was attained for a fin to channel width ratio equal to 1, this result being in accordance with

the one obtained by Tuckerman and Pease [68].

Knight et al. [32] performed a micro-channel heat sink optimization allowing the relax-

ation of the aspect ratio, the channel to fin width ratio, Nusselt number, flow regime and

volumetric flow rate. They also included in their analysis the effects of the developing chan-

nel flow. The results indicated that when the pressure drop through the channel is small,

laminar solutions yield lower thermal resistance than turbulent solutions. Conversely, when

the pressure drop is large the optimal thermal resistance is found in the turbulent region.

With the relaxation of the above constraints, configurations that produced significant im-

provement in thermal resistance over that presented by Tuckerman and Pease [68] were

found. When the turbulent regime was allowed, the thermal resistance was reduced by 35%

from that of Tuckerman and Pease [68]. These theoretical predictions were experimentally

verified [33]. Three heat sink systems from aluminum alloy with 5, 11 and 8 fins, respec-

tively were built and tested, using air as coolant. The fin system with the lowest thermal

resistance was predicted to occur for 9 channels, or 8 fins, and a ratio of fin to channel width

of 0.565. This configuration was predicted to yield a turbulent flow, and a lower resistance

than any laminar configuration operating under the same constraints. At 50W of power
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dissipation, the optimal design operated about 8◦C cooler than the 5 fin system, and about

4◦C cooler than the 11 fin system.

The entrance effects on the thermal performance of the micro-channel heat sink were

also examined by Ryu et al. [53]. They performed a 3-D heat transfer analysis which was

further incorporated in an optimization scheme to find the optimal design parameters of

the micro-channel heat sink, that minimize the thermal resistance subject to a specified

pumping power and a channel aspect ratio less than 10. They pointed out that the thermal

entrance effect is substantial when the working fluid is water (Pr ≈ 7). They varied the

number of channels and obtained the associated design variables and the thermal resistance.

A low sensitivity of the thermal resistance to the number of channels was found. When the

number of channels was reduced to half, the thermal resistance increased by about 15% of

the optimal value. It was shown that both the optimal dimensions and the thermal resistance

have a power-law dependence on the pumping power. The optimal design parameters for

a pumping power of 2.56W and an input heat flux of 100W/cm2 were found as follows:

the number of channels N = 124, the channel width W = 45.3µm, and the channel height

H = 453µm for a silicon substrate of 100µm. The correspnding thermal resistance was

0.069. The same authors studied the performance of the manifold micro-channel heat sinks

[54]. These heat sinks have an array of manifold dividers perpendicular to the micro-

channels and placed atop of them. The coolant flows through the alternating inlet and

outlet manifolds in the direction normal to the heat-sink base, to and from the segmented

micro-channels, reducing the flow path to a small fraction of the total length of a heat sink.

The shortened flow path reduces the pressure drop and restrains the growth of the thermal

boundary layer in the streamwise direction. Compared to the traditional heat sink for the
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identical heat load and pumping power, the thermal resistance was lowered by more than

50% while the maximum temperature variation on the heated wall was improved by tenfold.

Peng and Peterson [50] investigated experimentally the single-phase forced convective

heat transfer and flow characteristics of water in micro-channel structures/plates with small

rectangular channels having hydraulic diameters of 0.133mm−0.367mm and different aspect

ratios. The laminar heat transfer was found to be dependent on the aspect ratio H/W and

the ratio of the hydraulic diameter to the center-to-center distance of the micro-channels.

The turbulent heat transfer on the other hand was found to be a function of a new dimen-

sionless variable, Z = min(H,W )/max(H,W ), such that Z = 0.5 will give the optimum

configuration for turbulent heat transfer regardless of the groove aspect ratio. The friction

factor or flow resistance reached a minimum value as Z approached 0.5. Empirical corre-

lations were suggested for calculating both the heat transfer and pressure drop. Another

experimental work by Peng and Peterson [49], [51] showed that the range of the transition

zone, and the heat transfer characteristics of both the transition and laminar flow regimes,

were strongly affected by the liquid temperature, liquid velocity and micro-channel size.

Zhao and Lu [76] used two approaches in analyzing the micro-channel heat sinks: the

porous medium model and the fin model. In the porous medium approach, the modified

Darcy equation for the fluid and the two-equation model for the heat transfer between

the solid and fluid phases were employed. It was shown that the overall Nusselt number

increases with increasing aspect ratio and decreases with increasing effective thermal con-

ductivity ratio. Whereas the porous medium model predicted the existence of an optimal

porosity, the fin approach predicted that the heat transfer capability of the heat sink in-

creases monotonically with the porosity (defined as the ratio of the void volume to the total
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volume). The effect of turbulent heat transfer within the micro-channel was also discussed

and it was found that turbulent heat transfer results in a decrease of optimum porosity in

comparison to that for laminar flow. The concept of micro-channel cooling in combination

with micro heat pipes was proposed. Using a lumped capacitance technique, the micro heat

pipes were modeled as homogeneous, solid regions embedded in the plates with an effective

thermal conductivity that was assumed to be approximately 10 times that of silicon or cop-

per. It was observed that the enhancement in heat transfer due to the incorporation of heat

pipes becomes significant as the channel aspect ratio increases and for highly conducting

coolants, such as water. Another porous medium model developed by Wang et al. [70] for

two phase flows in mini-channels was used to predict the capillary limit of an operating

micro heat pipe. Imke [26] developed a code to simulate the micro-channel flow and heat

transfer in compact heat exchangers. The method was based on a forced convection porous

medium approach combined with conventional pipe flow closure relations and solved for

outlet temperatures, pressure losses, and vapor volume fractions. The code was applied to

single phase cross flow and counter flow heat exchangers using water as working fluid. The

experimental findings were in good agreement with the theoretical predictions.

Vafai and Zhu [69] proposed the design of two-layer micro-channel heat sinks based

on stacking two layers of micro-channels one atop the other, with coolant flow in opposite

directions in each of the micro-channel layers. This solution aimed to reduce the undesirable

temperature gradients in the streamwise direction. The maximum temperature difference

along the pipe was found to be 3 times lower than that of a one-layer micro-channel system.

Some optimization issues for design parameters were addressed. The optimum ratio of

channel width to fin width was found to be 0.6. In the analysis of one-layer structure
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was pointed out that smaller channel size and higher aspect ratio can reduce the thermal

resistance. This observation proved to hold true for two-layer structures as well. For the

ratio of the pressure drop in the channel array closest to the heat source to the pressure

drop in the second array the recommended optimum value was 2.5− 3. Another parameter

discussed was the channel length and was shown that a longer micro-channel design can

indeed substantially reduce the streamwise temperature variation.

Wu and Cheng investigated the effect of surface condition on the performance of silicon

micro-channels [73]. Based on 168 experimental data points, dimensionless correlations for

the Nusselt number and the apparent friction constant were obtained for the flow of water

in trapezoidal micro-channels, having different geometric parameters, surface roughness and

surface hydrophilic properties. It was found that the laminar Nusselt number and apparent

friction constant of the trapezoidal micro-channels increase with the increase of surface

roughness. This increase is more obvious at large Reynolds numbers than at low Reynolds

numbers. The Nusselt number and apparent friction constant of the trapezoidal micro-

channels having strong hydrophilic surfaces (thermal oxide surfaces) were larger than those

having weak hydrophilic surfaces (silicon surfaces). This suggested that convective heat

transfer can be enhanced by increasing the surface hydrophilic capability.

A detailed 3-D analysis heat transfer in micro-channel heat sinks was provided by

Li et al. [39]. In their study the variation of the liquid thermophysical properties with

the bulk temperature was considered. For the 10mm long, 57µm wide, and 180µm deep

rectangular micro-channels analyzed, a variation in the reference temperature from 20◦C

to 32◦C changed the mean velocity from 1.11 to 1.31m/s. This resulted in a corresponding

change in Reynolds number from 96 to 144.
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Ambatipudi and Rahman [2] investigated numerically the heat transfer in a 〈101〉 silicon

substrate containing micro-channels. The effects of channel aspect ratio, Reynolds number,

and number of channels on the thermal performance of the device were investigated. It was

found that the Nusselt number is greater for a heat sink with a larger number of channels

and a larger Reynolds number. For Re = 673, the optimum channel depth that maximizes

Nusselt number occurred at 300µm.

Chein and Huang [5] studied the performance of micro-channel heat sinks using nanoflu-

ids as cooling fluids. The nanofluid was a mixture of pure water and nanoscale copper

particles with various volume fractions. It was found that nanofluids could enhance the

micro-channel heat sinks performance due to the increase in thermal conductivity of coolant

and the nanoparticle thermal dispersion effect.

Toh et al. [67] investigated the flow and heat transfer in micro-channels considering the

case of temperature dependent thermophysical properties. It was concluded that a drastic

change in the friction coefficient is due to the change in the viscosity of fluid. At lower

Reynolds numbers, the fluid attains higher temperatures leading to lower viscosities. This

results in lower pressure drop and hence the decrease in the value of the friction coefficient.

At higher Reynolds numbers, the fluid temperature at the exit is almost the same as the

inlet temperature. As a result the viscosity is almost constant and the friction coefficient

approaches the constant properties.

Two-phase micro-channel heat sinks (or micro heat pipes) are an alternative to single-

phase micro-channel heat sinks. They use the latent heat of vaporization to transfer heat

from the evaporator to the condenser, maintaining the sink at a uniform temperature.

Hassan et al. [18] present a state-of-the-art literature review of the research progress in the
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field of micro-channel heat sinks. Earlier research works using single-phase coolants in their

heat sinks and more recent works using two-phase coolants were presented. They pointed

out that single-phase flow in micro-channel heat sinks requires high flow rates or smaller

hydraulic diameters, consequently resulting in larger pressure drops.

Groll et al. [15] provide an extended literature survey on the micro heat pipes used

for thermal control of electronic equipment. From a review of more than 100 papers micro

heat pipe sinks were classified and compared according to their performances, designs, and

thermophysical parameters. Common working fluids and wall materials were discussed and

possibilities for combinations were presented. As a measure of heat transport capacity a

liquid transport factor Nl was defined, Nl = σhfg/νl, where σ is the surface tension, hfg

is the latent heat of vaporization, and νl the kinematic viscosity of the liquid. This factor

indicated that for the temperature range of 0◦C − 100◦C, typical for electronic applications

only acetone, methanol, ethanol, and water are suitable. Copper, aluminum, their alloys,

and stainless steel were mentioned as common heat pipe wall materials. Tested combinations

of fluid/wall material with theoretically no degradation were referred to as compatible

combinations (e.g. water and either copper, stainless steel, nickel, titanium). Investigations

on the effect of fluid-solid contact angle were presented. It was concluded that the use of a

wetting fluid (small contact angle) should enhance the micro heat pipe performance. The

effect of the micro heat pipe dimensions was discussed in terms of Bond number. For the

micro heat pipe to operate properly regardless of orientation, the capillary forces should

overcome the gravitational forces leading to Bo < 1. Therefore micro heat pipes can not

be too long.
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Experimental work on the performance of micro heat pipe arrays was conducted by

many researchers. Launay et al. [36] investigated the thermal behavior of two silicon micro

heat pipe arrays of triangular cross section. The first array made from two silicon wafers

included 55 triangular ethanol charged micro-channels, 230µm wide and 170µm deep. One

wafer contained the channels and the other one was used to seal them. The second array

made from three silicon wafers had 25 micro-channels 500µm wide and 342µm deep and

small triangular channels etched into the lower wafer which were used as arteries to drain the

liquid to the evaporator. Methanol was used as working fluid. With the assumption of no

heat losses and no heat conduction into the silicon wafer the effective thermal conductivity

of the second array was found to be 900W/mK, three times greater than the one of the

first array. This improvement was due to the increased flow cross sectional area and a

reduced pressure drop between the evaporator and condenser. The effect of liquid charge

on the performance of the first micro heat sink was also analyzed. It was found that

the enhancement factor for this micro heat pipe array, defined as the ratio between the

thermal conductivity of the charged and empty micro heat pipe, had a maximum value

of 7% corresponding to an optimum liquid charge of 24% of the channels’ volume. This

enhancement factor was nearly constant for power inputs ranging from 0.5 to 5W . The

reason for this low improvement is that a large part of the heat is transferred by conduction

through the silicon.

Le Berre et al. [4] studied experimentally the performance of a micro heat pipe array

for various filling charges under various experimental conditions. The micro heat pipe

array was 20mm × 20mm and consisted of 27 parallel triangular shaped channels, 500µm

wide and 350µm deep, giving a void fraction of 11%. They defined an effective thermal
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conductivity as the thermal conductivity of a homogeneous material which would lead to

the same temperature field under the same conditions. The measurements indicated that

the use of micro heat pipes increases the effective thermal conductivity to about 200W/mK.

This represents an increase of about 67% of the thermal conductivity if compared to the

empty micro heat pipe array for which the thermal conductivity was determined to be

120W/mK. The results showed that the performance of the micro heat pipe array is

favored by decreasing the input heat flux or increasing the coolant temperature.

The research team from the Electrotechnics Laboratory of Grenoble performed exper-

imental and analytical work on flat rectangular micro heat pipes [13], [34], [27]. In their

design solution the evaporator (in contact with the electronic device) and the condenser (in

contact with a cold plate) were on opposite faces of the heat pipe. The proposed solution

was able to work in any position, even against gravity. They analyzed the behavior of the

heat spreader with and without working fluid. For the empty device the heat transfered

from the hot source to the cold plate was due only to conduction through the heat pipe

walls. The same experiment was run with the heat spreader filled with pure water and an

optimum liquid charge was found. The results showed that the thermal resistance between

the power device and the heat sink can be decreased by about 65% for the heat spreader

filled with 105µl of pure water compared to the thermal resistance obtained with the same

prototype without working fluid. The same team studied the advantages and disadvan-

tages of two-phase micro-channel heat sinks over single-phase micro-channel heat sinks [14].

They found that the pumping power required by the single-phase heat exchangers is 10

times greater than the power necessary for the operation of the two-phase counterparts.

The drawbacks of the two-phase heat exchangers were related to the working constraints
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such as flow instabilities, local dry-out, critical heat flux and to the insertion of a condenser

in the cooling loop.

Suman and Hoda [63] analyzed the sensitivity of a V-shaped micro heat pipe to varia-

tions of the thermophysical properties and design parameters. They found that an increase

in the apex angle, viscosity, inclination, and length of the heat pipe reduces the performance

of the heat pipe. Suman et al [62] studied the performance of micro heat pipes having dif-

ferent polygonal cross sections. They showed that the critical heat input decreases with

increasing number of sides for regular polygons, due to an increase in the friction factor and

hence a decrease in liquid velocity and capillary pumping capacity. The radius of curvature

profile obtained by solving the coupled continuity, momentum, energy, and Laplace-Young

equations was used to predict the onset of the dry-out point and the propagation of the

dry-out length.

Microjet cooling devices are used as another solution for the thermal management

of microelectronic components. Kercher et al. [28] investigated the efficacy of synthetic

microjet technology for electronic cooling. Synthetic jets are formed from entrainment and

expulsion of the fluid in which they are embedded. The microjet cooling devices in this

study consist of a vibrating diaphragm, a diaphragm driver, and a housing with an orifice.

When the diaphragm is vibrated by the driver, air is drawn into the housing through the

orifice and ejected out from the same orifice, generating a series of vortex rings which

propagate away from the orifice. As a result a round turbulent jet is synthesized as these

vortex rings interact downstream. The cooling performance of the microjet cooling devices

was assessed using a thermal test die consisting of a diode-bridge temperature sensor and

a resistive heating element. It was shown that the performance of the microjet cooling
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device was strongly dependent on the spacing between the orifice and the thermal die, the

maximum cooling performance being achieved for a spacing of 15mm − 20mm. They also

concluded that the performance increases with increasing membrane resonance frequency

and increasing driving power. The influence of the orifice diameter on the performance was

also discussed and the 2.38mm orifice showed the best result, compared to the 1.98mm and

2.78mm orifices also used in this analysis. Fabbri and Dhir [11] performed a heat transfer

analysis using arrays of microjets which can improve the spatial uniformity of the heat

transfer coefficient. Ten different arrays were studied with the jet diameters varying from

69µm to 250µm and the Reynolds number from 73 to 3813. The best performance was

achieved using water jets of 173.6µm diameter and 3mm spacing, impinging at 12.5m/s on

a circular 19.3mm diameter copper surface.

A brief review of the results obtained by previous investigators on the effect of different

geometrical and thermophysical parameters of the heat sinks on their performance is pre-

sented in Tables 1.1-1.2. So far only experimental analysis has been done on the amount of

working fluid charging the MHP sinks. In this work an analytical methodology is devised

for assessing the performance of different configurations of MHP sinks and the amount of

liquid charge corresponding to a maximum heat transport capacity of the MHPs.
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Author(s) Heat sink type/ Methodology/Results
Coolant

Hingorani et al. (1994) Planar spreader -optimum thickness (Bi and radius given)
-optimum radius (Bi and thickness given)

Peles et al. (2005) Micro pin fin heat sink -low thermal resistances
-flexibility in pin shape selection and spacing

Saha and Acharya (2003) Micro pin fin heat sink -increase in thermal performance when the
flow becomes unsteady

Tuckerman and Pease (1981) Micro-channel heat sink/ -optimum heat sink design (wfin/wch = 1,
water dissipating 790W/mm2, for ∆T = 70◦C and

∆P = 30psi)

Knight et al. (1992) Micro-channel heat sink/ -allowed relaxation of the constraints used by
air Tuckerman and Pease obtaining designs with

improved performance

Weisberg et al. (1992) Micro-channel heat sink -optimum thermal resistance (wfin/wch = 1)

Vafai and Zhu (1999) 2-layer micro channel -reduced undesirable temperature gradients
heat sink in the streamwise direction

Ambatipudi and Rahman Micro-channel heat sink -Nu increases with increasing nr. of channels
(2000) -for Re = 673, maximum N is achieved for a

channel depth of 300µm

Ryu et al. (2002) Micro-channel heat sink -important thermal entrance effect when
the working fluid is water (Pr ≈ 7)
-thermal resistance increased by 15% when
nr. of channels was reduced by half

Toh et al. (2002) Micro-channel heat sink/ -investigated the temperature dependent
water thermophysical properties

Table 1.1: Literature review
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Author(s) Heat sink type/ Methodology/Results
Coolant

Zhao and Lu (2002) Micro-channel heat sink -MHP modeled as lumped capacitance with
and effective thermal conductivity ≈ 10 times
that of Si or Cu)

Wu and Cheng (2003) Micro-channel heat sink/ -convective heat transfer enhanced by
water increasing the surface hydrophilic capability

Peng and Peterson (2004) Micro-channel heat sink -laminar flow: performance depends upon
aspect ratio H/W , wch/wfin

-turbulent flow: performance depends on
Z = min(H,W )/max(H,W ), Zopt = 0.5

Chein and Huang (2005) Micro-channel heat sink/ -increase in thermal conductivity of coolant
nanofluids

Launay et al. (2004) MHP sink/ethanol, -1st array: 55 triangular channels,
methanol 230µm wide, 170µm deep

-2nd array: 25 triangular channels,
342µm deep, with arteries
-thermal conductivity of 2nd: 900W/mK
-optimum liquid charge for 1st: 24%

Suman and Hoda (2005) MHP sink/pentane -an increase in the apex angle, viscosity, tilt,
and length of MHP reduces the performance

Le Berre et al. (2006) MHP sink/methanol -tested a 20mm × 20mm sink, with 27
triangular channels, 500µm wide, 350µm deep
-10% volume charge increases the effective
thermal conductivity by 67% over
the empty MHP array

Table 1.2: Literature review cont’d
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Chapter 2

Optimal convective heat transfer coefficient of a planar spreader

2.1 Problem specification

Cooling of electronic devices requires the use of heat spreaders whose function is to

allow the spreading of the heat flux lines in the 3-D space and to increase the exchange area

with the coolant. This chapter is based on the work performed by Simionescu et al. [60]

in which the convective heat transfer coefficient on the bottom surface of a heat spreader

corresponding to a maximum heat removal from a heat source placed on the top surface of

the heat spreader is estimated (see Figure 2.1).

The elliptic partial differential equation for steady heat transfer is posed in a bounded,

3-D domain Ω = Ωc ∪Ωs of class C0,1 (with a Lipschitz continuous boundary; see [3]). The

temperature T satisfies

−∇ · (k∇T ) = qv in Ω (2.1)

∂T

∂n

∣

∣

∣

∣

∂Ω\Γ
= 0 (2.2)

ks
∂T

∂n

∣

∣

∣

∣

Γ
= − h(T |Γ − T∞) (2.3)

kc
∂Tc

∂n

∣

∣

∣

∣

S
= − ks

∂Ts

∂n

∣

∣

∣

∣

S
(2.4)

Tc|S = Ts|S , (2.5)
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Figure 2.1: Computational domain.

where k is the coefficient of thermal conductivity defined as:

k =















kc in Ωc

ks in Ωs.

Here Ωc and Ωs are the subdomains corresponding to the chip and spreader respectively, ∂Ω

is the boundary, n is the outward pointing normal vector to the boundary. The temperature

in the chip and spreader are Tc = T |Ωc
and Ts = T |Ωs

, respectively. For simplicity it is

assumed that the heat is generated uniformly by a source q within the chip and is removed

from the bottom surface of the heat sink (spreader) by convection, all the other surfaces

being insulated. Both the chip and the spreader are isotropic media having the thermal

conductivities kc and ks, respectively. The boundary conditions are of Robin type on Γ,

the bottom surface of the spreader, corresponding to Newton’s law of cooling, Eq.(2.3),

where T∞ is the ambient temperature. The boundary conditions on the remaining bound-

ary, ∂Ω\Γ are of homogeneous Neumann type corresponding to an insulated boundary,
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Eq.(2.2). Across the interface S between the two domains the temperature and heat flux

are continuous, Eq.(2.4)–(2.5).

Let H1 (Ω) be the usual Sobolev space of square integrable functions whose first dis-

tributional derivatives are also square integrable:

H1 (Ω) = {v:

∫

Ω
v2dx < ∞,

∫

Ω
|∇v|2 dx < ∞}, (2.6)

equipped with the inner product

(u, v)H1(Ω) =

∫

Ω
uv + ∇u · ∇vdx, (2.7)

and norm

‖v‖H1(Ω) = (v, v)
1/2
H1(Ω) =

(
∫

Ω
v2 + |∇v|2 dx

)1/2

. (2.8)

We also make use of the space of square integrable functions L2(Ω):

L2(Ω) =

{

v ∈ Ω:

∫

Ω
v2dx < ∞

}

, (2.9)

equipped with the inner product

(u, v)L2(Ω) =

∫

Ω
uvdx, (2.10)

and norm

‖v‖L2(Ω) = (v, v)
1/2
L2(Ω) = (

∫

Ω
v2dx)1/2. (2.11)
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Optimal control techniques have been applied successfully in the field of heat transfer

for solving boundary control and parameter estimation problems. Colaço and Orlande [7] es-

timated the boundary heat fluxes at two surfaces of a cavity, by using simulated temperature

measurements taken from its interior. Martin and Dulikravich [43] estimated the convec-

tion coefficient using an inverse boundary element method. They used in their approach

internal temperature measurements or overspecified boundary conditions on the boundary

portion not exposed to convection. Silieti [58] used a genetic algorithm to estimate the

heat transfer coefficients. Li and Yan [38] analyzed the unsteady temperature distribution

in a turbulent forced convection between parallel plates taking the heat flux applied on

the upper wall as the control. Huang and Yeh [25] used the boundary heat flux to control

the entrance temperatures of concurrent flows between two adjacent parallel plate channels

of a concurrent flow heat exchanger. Another study by Huang and Yeh [24] presents the

temperature and moisture distributions inside a porous slab controlled by the convective

boundary conditions. The controls are the heat and mass transfer coefficients, respectively.

In the paper by Park and Lee [45] two different boundary control problems were analyzed

in which the solution of the heat equation was controlled by the boundary temperature and

the boundary heat flux, respectively. Lenhart and Wilson [37] studied the optimal control

of a heat transfer problem with convective boundary conditions. They focused their efforts

on establishing the existence and uniqueness of the solution of the optimality system. The

optimal control problem is solved using a conjugate gradient method which consists of the

following basic steps [23], [24], [25]:

1. Direct problem formulation

2. Optimal control problem formulation
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3. Sensitivity problems formulation

4. Adjoint problems formulation

5. Gradient equations

6. Computational procedure

2.2 Existence and uniqueness of solution

We prove the existence and uniqueness of a weak solution to the problem (2.1)-(2.5)

by applying the Lax-Milgram lemma (see [3]).

Define H as:

H: = H1(Ωc ∪ Ωs)

= {v: v|Ωc
∈ H1(Ωc), v|Ωs

∈ H1(Ωs) and τ(v|Ωc
)
∣

∣

∣

S
= τ(v|Ωs

)
∣

∣

∣

S
}

where τ is the trace operator (see [3]). To obtain a weak formulation, the differential

equation (2.1) is multiplied by v ∈ H and then integrated over Ω. After applying Green’s

formula and the corresponding boundary conditions, we get:

∫

Ω
qvvdx =

∫

Ω
−∇ · (k∇T )vdx (2.12)

= −
∫

∂Ω
vk

∂T

∂n
ds +

∫

Ω
k∇T · ∇vdx

= −
∫

∂Ω\Γ
vk

∂T

∂n
ds −

∫

Γ
vks

∂T

∂n
ds +

∫

Ω
k∇T · ∇vdx

=

∫

Γ
h(T − T∞)vds +

∫

Ω
k∇T · ∇vdx.
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Define the linear form:

L(v) =

∫

Ω
qvvdx +

∫

Γ
hT∞vds (2.13)

and the bilinear form,

a(T, v) =

∫

Γ
hTvds +

∫

Ω
k∇T · ∇vdx. (2.14)

For our particular problem qv = const for x ∈ Ωc and qv = 0 for x ∈ Ωs. Now the weak

form of problem (2.1)-(2.5) can be written as: Find T ∈ H such that

a(T, v) = L(v) ∀v ∈ H. (2.15)

Obviously, L:H → R is a continuous, linear form and a:H × H → R is a symmetric,

continuous, and coercive bilinear form, i.e. there exist positive constants K1, K2, K3 such

that:

|L(v)| ≤ K1 ‖v‖H(Ω) ∀v ∈ H

|a(u, v)| ≤ K2 ‖u‖H(Ω) ‖v‖H(Ω) ∀u, v ∈ H

K3 ‖v‖2
H(Ω) ≤ a(v, v) ∀v ∈ H.

Hence the Lax-Milgram lemma guarantees the existence and uniqueness of a weak solution

to problem (2.1)-(2.5) (see [3]).

2.3 Optimal control for model problem

We now show the existence and uniqueness of an optimal control and describe a conju-

gate gradient algorithm which can be used to approximate solutions of the optimal control
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problem. The conjugate gradient algorithm requires the solution of three coupled problems,

the direct problem, sensitivity problem and adjoint problem. We consider a model problem

with a rectangular chip and rectangular heat spreader (see Figure 2.1).

2.3.1 The direct problem

The governing heat equation and the corresponding boundary conditions (2.1)-(2.5) for

both the chip and the spreader, which are in thermal contact represent the direct problem.

The two domains are made from materials with different thermophysical properties. The

only heat source is within the chip.

The following dimensionless variables are introduced:

Tc →
Tc − T∞

qvD2
s/ks

Ts →
Ts − T∞

qvD2
s/ks

x → x

Ds
y → y

Ds
z → z

Ds
.

Dimensionless heat equations in the chip (Ωc) and the in the heat sink (Ωs) are respec-

tively:

∂2Tc

∂x2
+

∂2Tc

∂y2
+

∂2Tc

∂z2
= −ks

kc
(2.16)

and

∂2Ts

∂x2
+

∂2Ts

∂y2
+

∂2Ts

∂z2
= 0 (2.17)

subject to the following boundary conditions:

∂Tc

∂x

∣

∣

∣

∣

x= Ls−lc
2

= 0
∂Tc

∂x

∣

∣

∣

∣

x= Ls+lc
2

= 0 (2.18)

∂Tc

∂y

∣

∣

∣

∣

y= Ws−wc
2

= 0
∂Tc

∂y

∣

∣

∣

∣

y= Ws+wc
2

= 0 (2.19)
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∂Ts

∂x

∣

∣

∣

∣

x=0
= 0

∂Ts

∂x

∣

∣

∣

∣

x=Ls

= 0 (2.20)

∂Ts

∂y

∣

∣

∣

∣

y=0

= 0
∂Ts

∂y

∣

∣

∣

∣

y=Ws

= 0 (2.21)

∂Tc

∂z

∣

∣

∣

∣

z=1+dc

= 0
∂Ts

∂z

∣

∣

∣

∣

z=0
= BiTs|z=0 (2.22)

and the conditions of temperature and flux continuity at the interface:

Tc|z=1 = Ts|z=1

∂Ts

∂z

∣

∣

∣

∣

z=1
=































































kc

ks

∂Tc

∂z

∣

∣

∣

z=1
if































Ls−lc
2 ≤ x ≤ Ls+lc

2

Ws−wc

2 ≤ y ≤ Ws+wc

2

0 otherwise.

(2.23)

Here Bi = hDs/ks is the Biot number which measures the ratio of conductive to convective

heat transfer resistance and represents the control variable.

The direct problem is solved using a finite difference scheme for an initial guess of the

control variable Bi.

2.3.2 The optimal control problem

In the optimal control problem, the optimal control Bi(x , y) is the unknown, and the

equations (2.16)-(2.23) represent constraints that have to be satisfied. The goal is to find

an optimal control that will maximize the amount of heat removed from the chip. This
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statement is equivalent to minimizing the following functional:

J =

∫ Ls+lc
2

L−l
2

∫ Ws+wc
2

Ws−wc
2

∫ 1+dc

1
T 2

c (x, y, z)dxdydz +
α

2

∫ Ls

0

∫ Ws

0
Bi2(x, y)dxdy (2.24)

where Tc is the computed temperature within the chip subject to the constraints (2.16)-

(2.23) and α is a weighting coefficient penalizing the control function. The goal of optimiza-

tion is to minimize the first term appearing in the definition of the functional J . The second

term is added to account for the cost of the control. The nonnegative penalty parameter α

can be used to change the relative importance of the second term in Eq.(3.50). The squares

of the integrands guarantee the existence of a minimum. Note that ideally Tc should be 0,

in which case the chip temperature is equal to the ambient temperature.

2.3.3 Existence and uniqueness of an optimal control

In proving the existence and uniqueness of a solution to the optimal control problem

we follow the procedure presented by Lions [40], De los Reyes [42], and Gunzburger and

Lee [16].

Define Uad: =
{

Bi ∈ L2(Γ)
}

as the set of admissible controls which is obviously not

empty. We want to prove the existence and uniqueness of a pair (T ∗, Bi∗) ∈ H × Uad that

minimizes the functional J , subject to equations (2.16)-(2.23).

Consider a minimizing sequence {(Tn, Bin)} such that

J(Tn, Bin) −→ inf
(T,Bi)∈H×Uad

J(T,Bi) (2.25)
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along with the weak formulation:

a(Tn, v) = L(v) ∀v ∈ H(Ω). (2.26)

From the definition of J we have α
2 ‖Bin‖2

L2(Γ) ≤ J(Tn, Bin) < ∞, which implies that Bin

is bounded. From the coercivity of the bilinear form a and continuity of the linear form L,

Tn is also bounded. So we may extract subsequences such that Bin ⇀ Bi∗ weakly in L2(Γ),

Tn ⇀ T ∗ weakly in H(Ω), Tn → T ∗ strongly in L2(Ω) for some (T ∗, Bi∗) ∈ H(Ω) × L2(Γ).

The last convergence follows from the compact embedding H(Ω) →֒→֒ L2(Ω). Now by the

weak lower semicontinuity of J we conclude that (T ∗, Bi∗) is an optimal solution, i.e.

J(T ∗, Bi∗) = inf
(T,Bi)∈H×Uad

J(T,Bi). (2.27)

Thus we have shown that the optimal control exists. The uniqueness of the optimal

solution follows from the convexity of the functional J .

2.3.4 Conjugate gradient algorithm

A minimizing sequence is constructed using the conjugate gradient method and the

following iterative scheme (see [6]):

Bi(n+1) = Bi(n) − β(n)P (n) (2.28)

where β(n) is the step size and P (n) is the search direction which is determined from:

P (n) = ∇J (n) + γ(n)P (n−1). (2.29)
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The conjugate coefficient γ(n) is given by:

γ(n) =

∫ Ls

0

∫Ws

0 |∇J (n)(x, y)|2dxdy
∫ Ls

0

∫Ws

0 |∇J (n−1)(x, y)|2dxdy
with γ(0) = 0. (2.30)

The iterative process described by Eq. (2.28)–(2.30) requires the step size β(n) and the

gradient of the functional, ∇J (n). These parameters will be computed from the sensitivity

and adjoint problem, respectively.

2.3.5 Sensitivity problem and calculation of the search step size

When the control Bi(x, y) undergoes a small perturbation ∆Bi(x, y), the temperatures

within the chip and spreader are varied by ∆Tc(x, y, z) and ∆Ts(x, y, z) respectively. If we

replace Tc in the direct problem (2.1)-(2.5) by Tc +∆Tc, Ts by Ts+∆Ts and Bi by Bi+∆Bi

and then from the resulting equations subtract the equations describing the direct problem

the following sensitivity problem is obtained when the second order terms are neglected:

∂2∆Tc

∂x2
+

∂2∆Tc

∂y2
+

∂2∆Tc

∂z2
= 0 (2.31)

∂2∆Ts

∂x2
+

∂2∆Ts

∂y2
+

∂2∆Ts

∂z2
= 0 (2.32)

∂∆Tc

∂x

∣

∣

∣

∣

x= Ls−lc
2

= 0
∂∆Tc

∂x

∣

∣

∣

∣

x= Ls+lc
2

= 0 (2.33)

∂∆Tc

∂y

∣

∣

∣

∣

y= Ws−wc
2

= 0
∂∆Tc

∂y

∣

∣

∣

∣

y= Ws+wc
2

= 0 (2.34)

∂∆Ts

∂x

∣

∣

∣

∣

x=0
= 0

∂∆Ts

∂x

∣

∣

∣

∣

x=Ls

= 0 (2.35)
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∂∆Ts

∂y

∣

∣

∣

∣

y=0

= 0
∂∆Ts

∂y

∣

∣

∣

∣

y=Ws

= 0 (2.36)

∂∆Tc

∂z

∣

∣

∣

∣

z=1+dc

= 0
∂∆Ts

∂z

∣

∣

∣

∣

z=0
= Bi∆Ts|z=0 + ∆BiTs|z=0 (2.37)

and the conditions of temperature and flux continuity at the interface:

∆Tc|z=1 = ∆Ts|z=1

∂∆Ts

∂z

∣

∣

∣

∣

z=1
=































































kc

ks

∂∆Tc

∂z

∣

∣

∣

z=1
if































Ls−lc
2 ≤ x ≤ Ls+lc

2

Ws−wc

2 ≤ y ≤ Ws+wc

2

0 otherwise

(2.38)

where ∆Tc(x, y, z) and ∆Ts(x, y, z) represent the sensitivity functions. The functional

J (n+1) for the (n + 1)th iteration is written by replacing Bi(n+1) with the expression given

by Eq. (2.28):

J (n+1) =

∫ Ls+lc
2

Ls−lc
2

∫ Ws+wc
2

Ws−wc
2

∫ 1+dc

1
T 2

c (x, y, z,Bi(n) − β(n)P (n))dxdydz

+
α

2

∫ Ls

0

∫ Ws

0
(Bi(n) − β(n)P (n))2dxdy. (2.39)

Here Bi(n+1) is a parameter. In the above and following equation we abuse notation by

adding a variable to Tc to emphasize its dependence on the control. Using a Taylor se-

ries expansion for Tc(x, y, z,Bi(n) − β(n)P (n)), the following expression is obtained for the
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functional J at the (n + 1)th iteration:

J (n+1) =

∫ Ls+lc
2

Ls−lc
2

∫ Ws+wc
2

Ws−wc
2

∫ 1+dc

1
[Tc(x, y, z,Bi(n)) − β(n)∆Tc(P

(n))]2dxdydz

+
α

2

∫ Ls

0

∫ Ws

0
(Bi(n) − β(n)P (n))2dxdy. (2.40)

In the above equation Tc is the temperature distribution within the chip obtained by solving

the direct problem (2.16)-(2.23) using an initial guess of the control Bi, while ∆Tc is one of

the sensitivity functions obtained from the solution of the sensitivity problem (2.31)-(2.38).

The search step size β(n) is obtained from the line search at each iteration by taking the

derivative of Eq. (2.40) with respect to β(n) and equating to 0:

β(n) =

∫

Ls+lc
2

Ls−lc
2

∫

Ws+wc
2

Ws−wc
2

∫ 1+ds

1 2Tc(Bi(n))∆Tc(P
(n))dxdydz + α

∫ Ls

0

∫Ws

0 Bi(n)P (n)dxdy

∫

Ls+lc
2

Ls−lc
2

∫

Ws+wc
2

Ws−wc
2

∫ 1+dc

1 2∆T 2
c (P (n))dxdydz + α

∫ Ls

0

∫Ws

0 (P (n))2dxdy
.

(2.41)

2.3.6 The adjoint problem

The adjoint problem is obtained by multiplying Eq. (2.16) and Eq. (2.17) by the

Lagrange multipliers ζ1(x, y, z) and ζ2(x, y, z), respectively (see [6]). The obtained equations

are integrated over the specified domains and the integrals are added to the functional J :

J =

∫
Ls+lc

2

Ls−lc
2

∫
Ws+wc

2

Ws−wc
2

∫ 1+dc

1
T 2

c dxdydz +
α

2

∫ Ls

0

∫ Ws

0
Bi2dxdy

+

∫ Ls+lc
2

Ls−lc
2

∫ Ws+wc
2

Ws−wc
2

∫ 1+dc

1
ζ1(

∂2Tc

∂x2
+

∂2Tc

∂y2
+

∂2Tc

∂z2
+

ks

kc
)dxdydz

+

∫ Ls

0

∫ Ws

0

∫ 1

0
ζ2(

∂2Ts

∂x2
+

∂2Ts

∂y2
+

∂2Ts

∂z2
)dxdydz. (2.42)
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To obtain the variation ∆J we need to calculate J |Bi+∆Bi − J |Bi where J |Bi+∆Bi is found

by replacing Tc by Tc + ∆Tc, Ts by Ts + ∆Ts and Bi by Bi + ∆Bi in Eq. (2.42) and then

subtracting from the resulting expression the right hand side of Eq. (2.42):

∆J |Bi =

∫
Ls+lc

2

Ls−lc
2

∫
Ws+wc

2

Ws−wc
2

∫ 1+dc

1
2Tc∆Tcdxdydz + α

∫ Ls

0

∫ Ws

0
Bi∆Bidxdy

+

∫
Ls+lc

2

Ls−lc
2

∫
Ws+wc

2

Ws−wc
2

∫ 1+dc

1
ζ1(

∂2∆Tc

∂x2
+

∂2∆Tc

∂y2
+

∂2∆Tc

∂z2
+

ks

kc
)dxdydz

+

∫ Ls

0

∫ Ws

0

∫ 1

0
ζ2(

∂2∆Ts

∂x2
+

∂2∆Ts

∂y2
+

∂2∆Ts

∂z2
)dxdydz. (2.43)

Integrating Eq.(2.43) by parts and applying the boundary conditions of the sensitivity

problem the following adjoint problem is obtained:

∂2ζ1

∂x2
+

∂2ζ1

∂y2
+

∂2ζ1

∂z2
+ 2Tc = 0 (2.44)

∂2ζ2

∂x2
+

∂2ζ2

∂y2
+

∂2ζ2

∂z2
= 0 (2.45)

∂ζ1

∂x

∣

∣

∣

∣

x= Ls−lc
2

= 0
∂ζ1

∂x

∣

∣

∣

∣

x= Ls+lc
2

= 0 (2.46)

∂ζ1

∂y

∣

∣

∣

∣

y= Ws−wc
2

= 0
∂ζ1

∂y

∣

∣

∣

∣

y= Ws+wc
2

= 0 (2.47)

∂ζ2

∂x

∣

∣

∣

∣

x=0
= 0

∂ζ2

∂x

∣

∣

∣

∣

x=L
= 0 (2.48)

∂ζ2

∂y

∣

∣

∣

∣

y=0

= 0
∂ζ2

∂y

∣

∣

∣

∣

y=W

= 0 (2.49)

∂ζ1

∂z

∣

∣

∣

∣

z=1+dc

= 0
∂ζ2

∂z

∣

∣

∣

∣

z=0
= Biζ2|z=0 (2.50)
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ζ1|z=1 =
kc

ks
ζ2|z=1

∂ζ2

∂z

∣

∣

∣

∣

z=1
=































































∂ζ1
∂z

∣

∣

∣

z=1
if































Ls−lc
2 ≤ x ≤ Ls+lc

2

Ws−wc

2 ≤ y ≤ Ws+wc

2

0 otherwise.

(2.51)

The following integral is left after performing the integration by parts in Eq. (2.43)

and identifying the adjoint problem:

∆J |Bi =

∫ Ls

0

∫ Ws

0
(αBi − ζ2(x, y, 0)Ts(x, y, 0))∆Bidxdy. (2.52)

By the definition given in [1], the functional increment at Bi(x, y) can be written as:

∆J |Bi =

∫ Ls

0

∫ Ws

0
∇J∆Bidxdy. (2.53)

Hence we obtain the following expression for the gradient:

∇J = αBi − ζ2(x, y, 0)Ts(x, y, 0). (2.54)

2.3.7 Computational algorithm

The computational procedure for the solution of this problem may be summarized as

follows:

step 1 Solve the direct problem given by Eq. (2.16)–(2.23) to obtain Tc and Ts for an initial

guess of the control Bi;
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step 2 Solve the adjoint problem given by Eq. (2.44)–(2.51) to obtain ζ1 and ζ2;

step 3 Compute the gradient of the functional ∇J from Eq. (2.54);

step 4 Compute the conjugate coefficient γ(n) from Eq. (2.30) and the search direction P (n)

from Eq. (2.29);

step 5 Set ∆Bi(x, y) = P (n)(x, y) and solve the sensitivity problem given by Eq. (2.31)–

(2.38) to obtain ∆Tc and ∆Ts respectively;

step 6 Compute the search step size β(n) from Eq. (2.41);

step 7 Compute the new estimate for Bi from Eq. (2.28) and go back to step 1 until a

stopping criterion is achieved. The stopping criterion for our numerical experiments

was chosen as
∥

∥

∥Bi(n+1) − Bi(n)
∥

∥

∥ ≤ ǫ , where ǫ is a prescribed tolerance which was set

in our experiments to 10−6.

2.4 Implementation and numerical procedure

A finite difference scheme was implemented to solve the direct, sensitivity, and adjoint

problems. The centered approximation for the derivatives was used leading to the following

discrete heat transfer equations for the direct problem:

T i−1,j,k
c − 2T i,j,k

c + T i+1,j,k
c

∆x2
+

T i,j−1,k
c − 2T i,j,k

c + T i,j+1,k
c

∆y2

+
T i,j,k−1

c − 2T i,j,k
c + T i,j,k+1

c

∆z2
= −ks

kc
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T i−1,j,k
s − 2T i,j,k

s + T i+1,j,k
s

∆x2
+

T i,j−1,k
s − 2T i,j,k

s + T i,j+1,k
s

∆y2

+
T i,j,k−1

s − 2T i,j,k
s + T i,j,k+1

s

∆z2
= 0

at x = 0 T 0,j,k
s = T 2,j,k

s

at x = Ls Tm−1,j,k
s = Tm+1,j,k

s

at y = 0 T i,0,k
s = T i,2,k

s

at y = Ws T i,n−1,k
s = T i,n+1,k

s

at z = 0 T i,j,0
s −T i,j,2

s

2∆z = BiT i,j,1
s

at z = 1 T i,j,p
s = T i,j,p

c

T i,j,p−1
s − T i,j,p+1

s = kc

ks
(T i,j,p−1

c − T i,j,p+1
c )

at x = Ls−lc
2 T

m−m0
2

,j,k
c = T

m−m0
2

+2,j,k
c

at x = Ls+lc
2 T

m+m0
2

−1,j,k
c = T

m+m0
2

+1,j,k
c

at x = Ws−wc

2 T
i,

n−n0
2

,k
c = T

i,
n−n0

2
+2,k

c

at x = Ws+wc

2 T
i,

n+n0
2

−1,k
c = T

i,
n+n0

2
+1,k

c

at z = 1 + dc T i,j,p+p0−1
c = T i,j,p+p0+1

c

where T i,j,k
s and T i,j,k

c represent the spreader and chip temperature, respectively correspond-

ing to the (i, j, k) location of the mesh, m, n, p, represent the number of grid points in x,

y, and z direction in the spreader and m0, n0, p0, represent the number of grid points in

x, y, and z direction in the chip. The step sizes for the two domains have the same values.
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Figure 2.2: Structure of matrix A.

The discretization yields a linear system of equations:

AT = b.

Here A is a d × d matrix having the banded structure presented in Figure 2.2, where

d = (m + 1)(n + 1)(p + 1) + (m0 + 1)(n0 + 1)p0, T is the d vector of the temperatures at

the grid points and b is the d vector of the free terms corresponding to the heat source

component. Similar discretizations were used for the sensitivity and adjoint problems. A

Matlab code was implemented to solve the three coupled problems, using a mesh of 31×31×5

points for the spreader and 11 × 11 × 4 points for the chip.

2.5 Results and discussions

We now present some simulation results. Parameter values that were used in the

simulation were:

◦ volumetric heat source: qv = 144 W/mm3
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◦ heat source (chip) dimensions: 3mm × 3mm × 0.15mm

◦ heat sink (spreader) dimensions: 9mm × 9mm × 0.3mm

◦ chip thermal conductivity: kc = 0.1 W/mmK

◦ spreader thermal conductivity: ks = 0.1412 W/mmK

These values are typical of the ones for applications we have in mind. The controlled and

uncontrolled solutions for the temperature distributions are compared for different values of

α. The uncontrolled solution is obtained by solving the direct problem presented in section

2.3.1 with a constant Biot number over the entire surface Γ. The value used in each case

(for each value of the parameter α) would give the same cost as the cost of the optimal

Bi. The distribution of the temperature difference T − T∞ at the interface between the

chip and spreader for the controlled case is lower and displays a flatter profile than the

uncontrolled solution as we can see in Figure 4.1. We see that the difference between the

two distributions increases with increasing penalty parameter α (increasing the cost of the

control). Small variations of the penalty parameter α introduce significant variations of the

temperature distribution inside the domain. The greater the value assigned to α the larger

the cost of employing a control, resulting in a smaller Bi hence a smaller contribution of

convective cooling.

Figure 4.2 shows distributions of the Biot number for different values of the penalty pa-

rameter, α = 0.1, 0.5, 1, 5, 50. The corresponding distributions of the temperature difference

at the chip-spreader interface are presented in Figure 4.3. The profile of Bi resembles the

temperature profile at any horizontal cross section through the spreader. The smaller the

penalty parameter α, the higher the Biot number and the lower the domain temperature.

42



The temperature of the hottest point, which is the center of the chip’s upper face,

corresponding to α = 50 is approximately 50K higher than the one corresponding to α =

0.1. These temperatures are approximately 150K and 50K lower than the uncontrolled

temperatures, respectively.

Contour plots of the temperature distributions, trough a vertical symmetry plane are

presented in Figure 4.4 and show that the temperature difference between the hottest and

coolest point increases with increasing α and the contour curves are flatter for small values

of α.
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Chapter 3

Optimal design of a micro heat pipe

3.1 Problem specification

In this chapter the analysis is extended to heat sinks equipped with micro heat pipes.

The objective of this analysis is to estimate the geometry of a micro heat pipe (MHP) and

the amount of cooling fluid inside the pipes that will maximize the heat removed from a heat

source placed on the top surface of the heat sink (see Figure 3.1). Micro heat pipes are small

sealed devices filled with a working fluid whose phase change is used to transfer thermal

energy. A single micro heat pipe consists of a small non circular channel that uses the

sharp angled corners as liquid arteries. The vaporization-condensation process causes the

liquid-vapor interface to change along the pipe, resulting in a capillary pressure difference.

The capillary pumping pressure drives the liquid from the condenser back to evaporator.

An optimal control technique similar to that presented in chapter 2 is used to solve

two problems. In the first problem the solution of the heat equation is controlled by the

convective boundary condition taking the Biot number and the geometrical parameters

of the channel as controls. In the second problem an optimal Bi number distribution

corresponding to the MHP maximum heat transport capacity is found. The optimal heat

transfer coefficient can be obtained by prescribing the height and width of the channels,

the number of channels, and the amount of working fluid that charges the channels. The

importance of the channel geometry on the performance of a heat sink was pointed out by

many previous investigators as presented in chapter 1. Only experimental work was done

to study the influence of liquid charge on the performance of MHP sinks [36] and it was
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Figure 3.1: Schematic of a MHP sink.

shown that a too large amount of fluid leads to a condenser flooding, while a too low fluid

charge leads to an evaporator dry-out and an increase in channel wall temperature.

3.2 The direct problem

3.2.1 Heat transfer equations corresponding to the GaAs slab and silicon wafer

In this analysis the silicon wafer dimensions are constant and all the channels have

a uniform rectangular cross section of width 2l and height H1. A constant heat flux q is

supplied to a GaAs substrate through a Lt × w2 heating area. The GaAs slab of width Lt,

length w1, and height H3 is placed on the top of the silicon wafer, covering the evaporator

area of the micro heat pipes. Taking advantage of symmetry we consider the analysis of a

cell consisting of half of the channel and half of the separating fin, see Figure 3.2.
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Figure 3.2: Computational domain.

The heat transfer equations and the corresponding boundary conditions are written

for each subdomain depicted in Figure 3.2, i.e. GaAs slab, spreader, and fin. It is assumed

that the heat entering through the Lt×w2 heating area it is removed only from the channel

surface through the evaporator area of the MHP, all the other surfaces being insulated. The

dimensionless mathematical formulation of the heat conduction through the GaAs slab,

silicon substrate, and fin is obtained by introducing the following dimensionless variables:

TA → TA − Tf

qH2/kSi
TB → TB − Tf

qH2/kSi
TC → TC − Tf

qH2/kSi
x → x

H2
y → y

H2
z → z

H2
.

Here TA, TB , TC , Tf are the temperatures corresponding to the GaAs slab, silicon substrate,

fin, and cooling fluid respectively, q is the heat flux entering the heat sink, kSi is the

coefficient of thermal conductivity for silicon, and the reference length H2 is the thickness

of the silicon wafer. In what follows it is understood that all quantities - unless specified
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otherwise - are in dimensionless form. The governing equations are:

∂2TA

∂x2
+

∂2TA

∂y2
+

∂2TA

∂z2
= 0 (3.1)

∂2TB

∂x2
+

∂2TB

∂y2
+

∂2TB

∂z2
= 0 (3.2)

∂2TC

∂x2
+

∂2TC

∂y2
+

∂2TC

∂z2
= 0 (3.3)

subject to the following boundary conditions:

∂TA

∂x

∣

∣

∣

∣

x=0
= 0

∂TA

∂x

∣

∣

∣

∣

x=L
= 0 (3.4)

∂TA

∂y

∣

∣

∣

∣

y=0

= 0
∂TA

∂y

∣

∣

∣

∣

y=w1

= 0 (3.5)

∂TB

∂x

∣

∣

∣

∣

x=0
= 0

∂TB

∂x

∣

∣

∣

∣

x=L−l
= 0 (3.6)

∂TB

∂y

∣

∣

∣

∣

y=0

= 0
∂TB

∂y

∣

∣

∣

∣

y=W

= 0 (3.7)

∂TC

∂x

∣

∣

∣

∣

x=0
= 0

∂TC

∂x

∣

∣

∣

∣

x=L−l
=















−Bi TC |x=L−l if 0 ≤ y ≤ Le

0 if Le < y ≤ W

(3.8)

∂TC

∂y

∣

∣

∣

∣

y=0

= 0
∂TC

∂y

∣

∣

∣

∣

y=W

= 0 (3.9)

∂TC

∂z

∣

∣

∣

∣

z=0
= 0

∂TA

∂z

∣

∣

∣

∣

z=1+H3

=















kSi

kGaAs
if 0 ≤ y ≤ w2

0 if w2 < y ≤ w1

(3.10)
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and the conditions of temperature and flux continuity across the GaAs slab-silicon substrate

interface,

TB |z=1 = TA|z=1 if 0 ≤ y ≤ w1 (3.11)

∂TB

∂z

∣

∣

∣

∣

z=1
=















kGaAs

kSi

∂TA

∂z

∣

∣

∣

z=1
if 0 ≤ y ≤ w1

0 if w1 < y ≤ W

(3.12)

and across the silicon substrate-fin interface,

TB |z=H1
= TC |z=H1

if 0 ≤ x ≤ L − l (3.13)

∂TB

∂z

∣

∣

∣

∣

z=H1

=































































∂TC

∂z

∣

∣

∣

z=H1

if 0 ≤ x ≤ L − l

BiTB |z=H1
if















L − l < x ≤ L

0 ≤ y ≤ Le

0 if















L − l < x ≤ L

Le < y ≤ W.

(3.14)

For the convective boundary conditions corresponding to the silicon substrate and fin it is

assumed that the convective heat transfer coefficients are equal, h1 = h2 = h, and vary

only in y-direction. This is a simplifying assumption. In reality h is not constant at any

cross section of the channel, it depends on the channel wall temperature which has a 2-

D distribution. The convective boundary conditions are expressed in terms of the Biot

number:

Bi =
hH2

kSi
. (3.15)

48



If the Biot number is constant along the micro-channel cross section, Γ = {x : L − l ≤ x ≤ L}
⋃ {z : 0 ≤ z ≤ H1}, and Tw is the channel wall temperature the heat removed from the

source is:

∫ W

0

∫

Γ
qwdsdy =

∫ W

0

∫

Γ

∂Tw

∂n
dsdy

=

∫ W

0

(

∫ H1

0
− ∂TC

∂x

∣

∣

∣

∣

x=L−l
dz +

∫ L

L−l

∂TB

∂z

∣

∣

∣

∣

x=H1

dx

)

dy (3.16)

=

∫ W

0
Bi(y)

(

∫ H1

0
TC(y, z)|x=L−l dz +

∫ L

L−l
TB(x, y)|z=H1

dx

)

dy.

At any cross section y, the heat flux is:

qw|y =
1

Γ

∫

Γ
qwds =

Bi(y)

l + H1
(

∫ H1

0
TC(y, z)|x=L−l dz +

∫ L

L−l
TB(x, y)|z=H1

dx). (3.17)

Hence the local Biot number is:

Bi(y) =
qw|y (l + H1)

∫H1

0 TC(y, z)|x=L−l dz +
∫ L
L−l TB(x, y)|z=H1

dx
. (3.18)

3.2.2 1-D Micro heat pipe model

The micro heat pipe, which was first proposed by Cotter [8], has the advantage of large

latent energies associated with phase change. Another advantage of the micro heat pipes is

a nearly uniform temperature maintained throughout the device due to the phase change.

An overview of the state-of-the-art micro heat pipe sinks fabrication and analysis is provided

by Tien et al. [66] and Faghri [12]. Numerous analyses have been performed on micro heat

pipes, considering the thermodynamics of the liquid-vapor interface [61], [64], [17], [31], the

Marangoni effects [64], and the disjoining pressure [29], [64], [57]. Sartre et al. [57] developed
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a 3-D steady state model for predicting the heat transfer in a micro heat pipe array. They

assumed that the extended meniscus is typically divided into three regions: a macroscopic

region with a meniscus of constant mean curvature which is dominated by the capillary

forces (intrinsic meniscus region), a transition region or microregion (evaporating thin film

region) and a microscopic region which consists of an adsorbed film (non-evaporating region)

where the disjoining forces predominate. The results presented for an aluminum/ammonia

triangular micro heat pipe array show that the major part of the total heat input goes

through the microregion. The mathematical model presented by Khrustalev and Faghri

[29], [30] accounted for the effects of interfacial thermal resistance, disjoining pressure,

and surface roughness for a given meniscus contact angle. The free surface temperature

of the liquid film was determined using the extended Kelvin equation and the expression

for interfacial resistance given by the kinetic theory. In this study a 1-D model similar

to that proposed by Longtin et al. [41] for triangular cross section micro heat pipes is

employed. Longtin’s model used a uniform input heat flux while in this analysis the heat flux

has a 1-D distribution. The model is developed for the evaporator and adiabatic sections

and solved to yield pressure, velocity, and film thickness information in the lengthwise

direction of the pipe. Equations for the conservation of mass, momentum, and energy are

developed considering only axial variations. During operation the working fluid recedes into

the corners of the pipe, generating the necessary capillary driving pressure. Evaporation

in the evaporator and condensation in the condenser cause the liquid to accumulate in the

condenser section of the device (Figure 3.3).

The amount of liquid- hence the interfacial radius of curvature- varies as a function

of axial position y. The interfacial radius of curvature is related to the pressure difference
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Figure 3.3: Schematic of a MHP.

between the liquid and the vapor phases by the Laplace-Young equation,

Pv(y) − Pl(y) =
σ

r(y)
(3.19)

or by differentiating with respect to y,

dPv

dy
− dPl

dy
= − σ

r2

dr

dy
. (3.20)

The derivation of the conservation of mass and momentum equations is performed employing

the following assumptions:

• Both liquid and vapor flows are incompressible and the Reynolds number for both

flows does not exceed 50;

• Steady state operation;

• Constant fluid properties;
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• Negligible viscous dissipation as a consequence of the small velocities in both the

liquid and the vapor phases;

• Constant vapor temperature Tv;

• The mean radius of curvature is approximately equal to the radius of curvature normal

to the pipe axis;

• The interfacial radius of curvature is constant at any given y location.

Figure 3.4: Control volume used to derive the conservation equations

The heat pipe is divided into a series of small control volumes of length dy for which

the conservation principles are applied. Some geometrical parameters necessary in the

derivation of the governing equations are defined as functions of the contact angle θ, pipe

corner angle ϕ = π/2 and meniscus radius r(y) (see Figure 3.5).

The liquid cross sectional area (for the 2 corners of our computational domain) is:

Al = 2(A∆ − Aa) = 2(
η2

2
− Aa)

= 2(
η2

2
− Asect +

r2sinω

2
)

= r2(2sin2 ω

2
+ sinω − ω) = clr

2(y). (3.21)
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Figure 3.5: A cross section of the MHP with liquid recessed into the corner

The vapor cross sectional area is:

Av = lH1 − Al = lH1 − clr
2(y). (3.22)

The wall area in contact with the liquid phase and vapor phase, respectively for a control

volume of thickness dy is given by:

Alw = 4ηdy = 4
√

2sin
ω

2
rdy = clwrdy (3.23)

Avw = (2l + H1 − 4η)dy = (2l + H1 − 4
√

2sin
ω

2
r)dy = (2l + H1 − clwr)dy (3.24)

and the area of the liquid-vapor interface for a control volume dy is given by:

Ai = 2rωdy = cirdy. (3.25)
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In the above equations cl, clw, and ci are geometrical constants defined by:

cl = (2sin2 ω

2
+ sinω − ω), clw = 4

√
2sin

ω

2
, ci = 2ω. (3.26)

It should be mentioned that the radius of curvature must increase monotonically from the

evaporator to the condenser to avoid sign changes in the pressure gradient. A continuously

increasing radius of curvature results in a continuously increasing liquid cross sectional area.

If two liquid films meet in the evaporator or adiabatic section, the device will fail to operate

because dr/dy changes sign. The radius of curvature at this point is called the maximum

radius of curvature [41] and is given by:

rmax =
min(l,H1/2)√
2sin

(π
4 − θ

) . (3.27)

Conservation of energy. The heat entering the computational domain through the

L × w2 area is removed by the heat pipe through the evaporator section. It is assumed

that the heat load is uniformly distributed between the four corners of the pipe and is

entirely removed through the evaporator section. The following equation is obtained when

applying an energy balance on the computational domain (see Figure 3.2):

qLw2 =

∫ Le

0

∫

Γ
qwdsdy

=

∫ Le

0
h (y)

∫

Γ
(Tw − Tf ) dsdy (3.28)

where q is the heat flux applied to the heat sink, qw is the heat flux at channel wall, Tw

is the channel wall temperature, h is the convective heat transfer coefficient, and Le is
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the evaporator length. Since the micro heat pipe is nearly isothermal during operation,

the liquid film is very thin, and the Reynolds numbers are very low we can neglect the

conduction, convection and viscous dissipation in the liquid. The heat is transferred only by

vaporization at the liquid-vapor interface. The assumption of constant vapor temperature

along the pipes implies that only the liquid phase has an expression for the conservation of

energy. Applying an energy balance on a control volume of length dy, we get:

qw|y dy = h(y)

(

∫ L

L−l

(

TB |z=H1
− Tf

)

dx +

∫ H1

0

(

TC |x=L−l − Tf

)

dz

)

dy

= qH2
2Bi(y)

(

∫ H1

0
TC

∣

∣

∣

x=L−l
dz +

∫ L

L−l
TB

∣

∣

∣

z=H1

dx

)

dy

= ρlVilAihfg = ρlVilhfgcirdy (3.29)

where ρl is the liquid density, Vil is the liquid interface velocity, and hfg is the latent heat

of vaporization. The overscored quantities are in dimensionless form. From the equation

of energy conservation we can obtain the expression for the interfacial liquid velocity (in

dimensional form):

Vil =
qBi(y)

(

∫H1

0 TC(ȳ, z̄)
∣

∣

∣

x=L−l
dz +

∫ L
L−l

TB(x̄, ȳ)
∣

∣

∣

z=H1

dx

)

ρlhfgcir̄
(3.30)

Conservation of mass. Referring to Figure 3.6 and using the geometrical parameters

derived above, Eq.(3.21)-(3.26), after performing a mass balance on a control volume of

thickness dy the following continuity equations are obtained for the liquid and vapor, re-

spectively:
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Figure 3.6: Conservation of mass

2Ul
dr

dy
+ r

dUl

dy
− ci

cl
Vil = 0 (3.31)

(

lH1 − clr
2
) dUv

dy
− 2clr

dr

dy
Uv −

ρl

ρv
cirVil = 0 (3.32)

The continuity of mass across the interface, ρlVil = ρvViv is used in Eq.(3.32) to relate

the vapor interface velocity to that of the liquid.

Conservation of momentum. Due to the small velocities in both phases the convective

terms in the momentum equations are neglected. The body force (gravity) is significant

only for the liquid phase. The surface forces on the control volume are the pressures acting

on the cross sectional area and the shear stresses encountered at the liquid-vapor interface

and wall (see Figure 3.7). A balance of the body and surface forces on the control volume
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Figure 3.7: Conservation of momentum

yields the following equations for the liquid and vapor respectively:

2Pl
dr

dy
+

dPl

dy
r − ci

cl
τli −

clw

cl
τlw + ρlgrsinθ1 = 0 (3.33)

−2Pvclr
dr

dy
+
(

lH1 − clr
2
) dPv

dy
+ (2l + H1 − clr) τvw + cirτvi = 0. (3.34)

In the above equations τlw and τvw are the liquid-wall and vapor-wall shear stresses, τvi

is the shear stress at the liquid-vapor interface, and θ1 is the pipe inclination angle with

respect to gravity. Expressions for the shear stresses are derived by assuming that both

flows are fully developed. This assumption is justified since the convective terms are small

and the liquid and vapor cross sections vary slowly with y. The ratio of the vapor velocity

to the liquid velocity scales with the inverse ratio of the densities, ρl/ρv. For this reason,
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from the perspective of the vapor the liquid can be treated as another section of the wall.

This assumption was also employed by Thomas et al. [65] in their study of the two phase

laminar flow in trapezoidal grooves and by Khrustalev and Faghri [31] who modeled the

opposite flows of the vapor and liquid in miniature heat pipes. The interfacial shear stress

is computed for the vapor by assuming the liquid to be stationary. Since the liquid and

vapor shear stresses at the interface are equal and have opposite directions, the liquid shear

follows immediately. The interfacial shear stress due to countercurrent flow in a heat pipe

decreases the maximum heat transport. For cases in which the vapor velocity is high this

effect is more pronounced. Therefore the amount of liquid charge has a significant impact

on the heat pipe performance. The hydraulic diameters for the two phases are computed

using the parameters derived earlier in Eq.(3.21)-(3.26):

DHl
=

4Al

4η
=

rcl√
2sin

(

π
4 − θ

) (3.35)

DHv =
4Av

2l + H1 − clwr + Ai/dy
=

4
(

lH1 − clr
2
)

2l + H1 − clwr + cir
. (3.36)

The shear stresses are expressed as:

τvi = τvw =
1

2
ρvU

2
v fv, fv =

kv

Rev
, Rev =

ρvUvDHv

µv
(3.37)

τli = −τvi (3.38)

τlw =
1

2
ρlU

2
l fl, fl =

kl

Rel
, Rel =

ρlUlDHl

µl
(3.39)
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The component of the momentum due to the mass entering or leaving the interface during

the phase change is neglected [47] . The constants kv and kl depend upon the geometry of

the ducts. For the liquid flow a rectangular geometry is assumed. The following relation

was obtained by Wu and Cheng [73] for a trapezoidal cross section:

k = 11.43 + 0.8e2.67Wb/Wt (3.40)

where Wb and Wt are the bottom and top widths of the trapezoidal profile, with Wb ≤ Wt.

If in the above equation we make Wb = Wt, corresponding to a rectangular profile a value

of approximately 13 is obtained for kl. For the vapor flow the constant kv is obtained by

averaging between the rectangular cross section displayed in the evaporator section and the

almost circular profile attained at the end of the adiabatic section. For the circular cross

section k = 16 and hence the value resulting for kv is 14.5. Replacing the expressions for τlw,

τli, τvw, and τvi into the momentum Eq.(3.33)-(3.34) the following equations are obtained:

2Pl
dr

dy
+

dPl

dy
r − ci

cl

kvUvµv

DHv

− clw

cl

klUlµl

DHl

+ ρlgrsinθ1 = 0 (3.41)

−2Pvclr
dr

dy
+
(

lH1 − clr
2
) dPv

dy
+ (2l + H1 − clwr + cir)

kvUvµv

DHv

= 0 (3.42)

The transport Eq.(3.20), (3.31), (3.32), (3.33), (3.34) corresponding to the micro heat

pipe are cast into dimensionless form by introducing the following dimensionless variables:

ȳ → y

H2
, r̄ → r

H2
, D̄H → DH

H2

Ūl →
Ul

Uref
=

Ul

Q/
(

ρlD
2
Hhfg

) , Ūv → Uv

Uref
=

Uv

Q/
(

ρlD
2
Hhfg

) ,
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V̄il →
Vil

Uref
=

Bi(ȳ)
(

∫ H̄1

0 T̄C(ȳ, z̄)
∣

∣

x̄=L̄−l̄ dz̄ +
∫ L̄
L̄−l̄ T̄B(x̄, ȳ)

∣

∣

z̄=H̄1
dx̄
)

cir̄

D2
H

Lw2
(3.43)

P̄l →
Pl

σ/DH
=

Pl

Pref
P̄v → Pv

σ/DH
=

Pv

Pref
.

where DH = 2lH1/ (l + H1) is the hydraulic diameter of the empty pipe, Le is the evaporator

length, Q is the input power, Uref = Q/
(

ρlD
2
Hhfg

)

is the reference velocity, and Pref =

σ/DH is the reference pressure. The equations in dimensionless form for the micro heat

pipe are (the overbars are omitted):

dPv

dy
− dPl

dy
=

2lH1

l + H1

1

r2

dr

dy
(3.44)

2Ul
dr

dy
+ r

dUl

dy
− ci

cl
Vil = 0 (3.45)

(

lH1 − clr
2
) dUv

dy
− 2clr

dr

dy
Uv −

ρl

ρv
cirVil = 0 (3.46)

2Pl
dr

dy
+

dPl

dy
r − Ca

ci

cl
kv

µv

µl

2l + H1 − clwr + cir

4 (lH1 − clr2)
UvDH

− Ca
clw

c2
l

kl

√
2sinω

2

r
UlDH + Bo

DHrsinθ

W 2
= 0 (3.47)

−2Pvclr
dr

dy
+
(

lH1 − clr
2
) dPv

dy
+ Ca

(2l + H1 − clwr + cir)
2

4 (lH1 − clr2)
kvDHUv = 0. (3.48)

In the above equations (3.44)-(3.48), the geometrical parameters of the channel l, H1, W ,

DH are in dimensionless form. The dimensionless groups introduced,

Ca =
µlUref

σ
, Bo =

ρlgW 2

σ
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represent the capillary number and Bond number, respectively. The capillary number Ca

is the ratio of the viscous force to surface tension force and the Bond number Bo measures

the contribution of the gravitational and capillary forces. Since the transport equations for

the heat pipe are first order ordinary differential equations, boundary conditions are needed

at only one point. The solution of these equations has two parts, one corresponding to

the evaporator section and one to the adiabatic section. The boundary conditions for the

adiabatic section are taken from the solution of the evaporator section at the evaporator-

adiabatic interface. The boundary conditions used at the end of the evaporator (y = 0) in

nondimensional form are:

r|y=0 = r0, Ul|y=0 = 0, Uv|y=0 = 0, (3.49)

Pv|y=0 = Pv(Tv), Pl|y=0 = Pv|y=0 −
DH

r0
.

The boundary vapor pressure Pv|y=0 is taken to be the saturation pressure of the vapor at

temperature Tv. The liquid boundary pressure is related to the vapor boundary pressure

by the Laplace-Young equation. The value for the meniscus radius at y = 0, r0 is given as

an initial guess [41].

The direct problem associated with the mathematical formulation given by Eq.(3.1)-

(3.14), involves the determination of temperature fields in the GaAs substrate, silicon sub-

strate, and fin from the knowledge of domain geometry and the physical properties of GaAs

and silicon.
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3.3 The optimal control problem with Bi and geometrical parameters as con-

trols

An optimum Bi distribution for a finned heat sink was found previously by Simionescu

and Harris [59]. The analysis presented here uses two controls, i.e. the Biot number and

the aspect ratio, being an extension of the previous work. In the optimal control problem

Bi and p = l/H1 are the unknowns, where p is the channel aspect ratio, and Eq.(3.1)-(3.14)

are constraints that have to be satisfied. The problem is to find the optimum channel

geometry and the optimum Biot number that maximize the amount of heat removed from

the heat source (or minimize the thermal resistance). The difference between this problem

and the classic fin shape optimization problem studied previously [74], [22], [52] consists

in the consideration of the heat removed from the interfin area. This amount of heat was

neglected in previous works, but it is taken into account in this study since we made the

assumption of uniform heat load distribution between the four corners of the pipe. The

following functional is considered for minimization in our optimal control problem:

J =

∫ W

0

∫ L

0

∫ 1+H3

1
T 2

Adxdydz +
α

2

∫ Le

0
Bi2dy. (3.50)

Here TA is the computed temperature within the GaAs slab, subject to the constraints

dictated by the direct problem (3.1)-(3.14), and α is a weighting coefficient penalizing Bi.

The goal of optimization is to minimize the first term appearing in the definition of the

functional J . The second term is added to account for the cost of the control parameter

Bi. The nonnegative penalty parameter α can be used to change the relative importance

of the last term in Eq.(3.50).
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3.3.1 Conjugate gradient algorithm

Minimizing sequences are constructed using the conjugate gradient method and the

following iterative scheme (see [6]):

p(n+1) = p(n) − β
(n)
1 P

(n)
1 (3.51)

Bi(n+1) = Bi(n) − β
(n)
2 P

(n)
2 (3.52)

where β
(n)
1 and β

(n)
2 are the step sizes and P

(n)
1 and P

(n)
2 are the search directions which

are determined from:

P
(n)
1 =

(

∂J

∂p

)(n)

+ γ
(n)
1 P

(n−1)
1 (3.53)

P
(n)
2 =

(

∂J

∂Bi

)(n)

+ γ
(n)
2 P

(n−1)
2 . (3.54)

The conjugate coefficients γ
(n)
1 and γ

(n)
2 are given by:

γ
(n)
1 =

[

(

∂J
∂p

)(n)
]2

[

(

∂J
∂p

)(n−1)
]2 with γ

(0)
1 = 0 (3.55)

γ
(n)
2 =

∫ Le

0

[

(

∂J
∂Bi

)(n)
]2

dy

∫ Le

0

[

(

∂J
∂Bi

)(n−1)
]2

dy

with γ
(0)
2 = 0. (3.56)

The iterative process described by Eq.(3.51)–(3.56) requires the step sizes β
(n)
1 and β

(n)
2

and the gradient of the functional, ∇J (n) =

[

(

∂J
∂p

)(n)
,
(

∂J
∂Bi

)(n)
]

. These parameters will be

computed from the sensitivity and adjoint problems, respectively.
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3.3.2 Sensitivity problem and calculation of the search step sizes

The problem of finding the boundary configuration of the computational domain is

a shape identification problem. Shape identification problems were previously studied by

Huang and Shih [23], Huang and Chen [21], Huang and Chao [20], and Park and Shin

[46]. In these works either one or multiple surface configurations were recovered using the

conjugate gradient method. In this analysis the solution of the heat transfer is controlled by

the convective boundary condition, taking the Biot number and the aspect ratio as controls.

We need to solve two sensitivity problems corresponding to each control parameter. The

sensitivity problems are obtained from the direct problem, Eq.(3.1)-(3.14), by perturbing the

aspect ratio and Biot number, one at a time. When p is perturbed by ∆p, the temperatures

TA, TB , and TC are perturbed by ∆T 1
A, ∆T 1

B , and ∆T 1
C , respectively. If Bi undergoes a

perturbation Bi + ∆Bi, the temperatures TA, TB , and TC are perturbed by ∆T 2
A, ∆T 2

B ,

and ∆T 2
C , respectively. Then replacing in the direct problem p by p+∆p, TA by TA +∆T 1

A,

TB by TB + ∆T 1
B, and TC by TC + ∆T 1

C and subtracting from the resulting equations the

direct problem, the following sensitivity problem for the sensitivity functions ∆T 1
A, ∆T 1

B ,

and ∆T 1
C is obtained, if the second order terms are neglected:

∂2∆T 1
A

∂x2
+

∂2∆T 1
A

∂y2
+

∂2∆T 1
A

∂z2
= 0 (3.57)

∂2∆T 1
B

∂x2
+

∂2∆T 1
B

∂y2
+

∂2∆T 1
B

∂z2
= 0 (3.58)

∂2∆T 1
C

∂x2
+

∂2∆T 1
C

∂y2
+

∂2∆T 1
C

∂z2
= 0 (3.59)
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subject to the following boundary conditions,

∂∆T 1
A

∂x

∣

∣

∣

∣

∣

x=0

= 0
∂∆T 1

A

∂x

∣

∣

∣

∣

∣

x=L

= 0 (3.60)

∂∆T 1
A

∂y

∣

∣

∣

∣

∣

y=0

= 0
∂∆T 1

A

∂y

∣

∣

∣

∣

∣

y=w1

= 0 (3.61)

∂∆T 1
B

∂x

∣

∣

∣

∣

∣

x=0

= 0
∂∆T 1

B

∂x

∣

∣

∣

∣

∣

x=W

= 0 (3.62)

∂∆T 1
B

∂y

∣

∣

∣

∣

∣

y=0

= 0
∂∆T 1

B

∂y

∣

∣

∣

∣

∣

y=W

= 0 (3.63)

∂∆T 1
C

∂x

∣

∣

∣

∣

∣

x=0

= 0

∆T 1
C = TC (l + ∆l) − TC (l) ≈ ∂TC

∂x

∣

∣

∣

∣

x=L−l
H1∆p = −Bi TC |x=L−l H1∆p

∂∆T 1
C

∂x

∣

∣

∣

∣

∣

x=L−l

=















−Bi ∂TC

∂x

∣

∣

∣

x=L−l
H1∆p if 0 ≤ y ≤ Le

0 if Le < y ≤ W

(3.64)

∂∆T 1
C

∂y

∣

∣

∣

∣

∣

y=0

= 0
∂∆T 1

C

∂y

∣

∣

∣

∣

∣

y=W

= 0 (3.65)

∂∆T 1
C

∂z

∣

∣

∣

∣

∣

z=0

= 0
∂∆T 1

A

∂z

∣

∣

∣

∣

∣

z=1+H3

= 0 (3.66)

and the conditions of temperature and flux continuity across the GaAs slab-silicon substrate

interface,

∆T 1
B

∣

∣

∣

z=1
= ∆T 1

A

∣

∣

∣

z=1
if 0 ≤ y ≤ w1 (3.67)
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∂∆T 1
B

∂z

∣

∣

∣

∣

∣

z=1

=















kGaAs

kSi

∂∆T 1
A

∂z

∣

∣

∣

∣

z=1
if 0 ≤ y ≤ w1

0 if w1 < y ≤ W

(3.68)

and across the silicon substrate-fin interface,

∆T 1
B

∣

∣

∣

z=H1

= ∆T 1
C

∣

∣

∣

z=H1

if 0 ≤ x ≤ L − l (3.69)

∂∆T 1
B

∂z

∣

∣

∣

∣

∣

z=H1

=



































































∂∆T 1
C

∂z

∣

∣

∣

∣

z=H1

if 0 ≤ x ≤ L − l

Bi ∆T 1
B

∣

∣

z=H1
if















L − l < x ≤ L

0 < y ≤ Le

0 if















L − l < x ≤ L

Le < y ≤ L.

(3.70)

The solution of the sensitivity problem corresponding to a variation of the Biot number

∆Bi is obtained by solving the following equations:

∂2∆T 2
A

∂x2
+

∂2∆T 2
A

∂y2
+

∂2∆T 2
A

∂z2
= 0 (3.71)

∂2∆T 2
B

∂x2
+

∂2∆T 2
B

∂y2
+

∂2∆T 2
B

∂z2
= 0 (3.72)

∂2∆T 2
C

∂x2
+

∂2∆T 2
C

∂y2
+

∂2∆T 2
C

∂z2
= 0 (3.73)

with the corresponding boundary conditions,

∂∆T 2
A

∂x

∣

∣

∣

∣

∣

x=0

= 0
∂∆T 2

A

∂x

∣

∣

∣

∣

∣

x=L

= 0 (3.74)
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∂∆T 2
A

∂y

∣

∣

∣

∣

∣

y=0

= 0
∂∆T 2

A

∂y

∣

∣

∣

∣

∣

y=w1

= 0 (3.75)

∂∆T 2
B

∂x

∣

∣

∣

∣

∣

x=0

= 0
∂∆T 2

B

∂x

∣

∣

∣

∣

∣

x=W

= 0 (3.76)

∂∆T 2
B

∂y

∣

∣

∣

∣

∣

y=0

= 0
∂∆T 2

B

∂y

∣

∣

∣

∣

∣

y=W

= 0 (3.77)

∂∆T 2
C

∂x

∣

∣

∣

∣

∣

x=0

= 0
∂∆T 2

C

∂x

∣

∣

∣

∣

∣

L−l

=































Bi ∆T 2
C

∣

∣

x=L−l + ∆Bi TC |x=L−l if 0 ≤ y ≤ Le

0 if Le < y ≤ W

(3.78)

∂∆T 2
C

∂y

∣

∣

∣

∣

∣

y=0

= 0
∂∆T 2

C

∂y

∣

∣

∣

∣

∣

y=W

= 0 (3.79)

∂∆T 2
C

∂z

∣

∣

∣

∣

∣

z=0

= 0
∂∆T 2

A

∂z

∣

∣

∣

∣

∣

z=1+H3

= 0 (3.80)

and the conditions of temperature and flux continuity across the GaAs slab-silicon substrate

interface,

∆T 2
B

∣

∣

∣

z=1
= ∆T 2

A

∣

∣

∣

z=1
if 0 ≤ y ≤ w1 (3.81)

∂∆T 2
B

∂z

∣

∣

∣

∣

∣

z=1

=















kGaAs

kSi

∂∆T 2
A

∂z

∣

∣

∣

∣

z=1
if 0 ≤ y ≤ w1

0 if w1 < y ≤ W

(3.82)

and across the silicon substrate-fin interface,

∆T 2
B

∣

∣

∣

z=H1

= ∆T 2
C

∣

∣

∣

z=H1

if 0 ≤ x ≤ L − l (3.83)
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∂∆T 2
B

∂z

∣

∣

∣

∣

∣

z=H1

=



































































∂∆T 2
C

∂z

∣

∣

∣

∣

z=H1

if 0 ≤ x ≤ L − l

Bi ∆T 2
B

∣

∣

z=H1
+ ∆Bi TB |z=H1

if















L − l < x ≤ L

0 < y ≤ Le

0 if















L − l < x ≤ L

Le < y ≤ L.

(3.84)

The functional J (n+1) for the (n + 1)th iteration is written by replacing p(n+1) and Bi(n+1)

with the expressions given by Eq.(3.51)-(3.52):

J (n+1) =

∫ 1+H3

1

∫ w1

0

∫ L

0

[

TA

(

x, y, z, p(n) − β
(n)
1 P

(n)
1 , Bi(n) − β

(n)
2 P

(n)
2

)]2
dxdydz

+
α

2

∫ Le

0

(

Bi(n) − β
(n)
2 P

(n)
2

)2
dy. (3.85)

By expanding in Taylor series TA, p, and Bi the following expression is obtained for the

functional J at the (n + 1)th iteration:

J (n+1) =

∫ 1+H3

1

∫ w1

0

∫ L

0

[

TA

(

x, y, z, p(n), Bi(n)
)

− β
(n)
1 ∆T 1

A

(

P
(n)
1

)

− β
(n)
2 ∆T 2

A

(

P
(n)
2

)]2
dxdydz +

α

2

∫ Le

0

(

Bi(n) − β
(n)
2 P

(n)
2

)2
dy. (3.86)

The search step sizes β1 and β2 are found from the line search in each direction at each

iteration by taking partial derivatives of Eq.(3.86) with respect to β1 and β2 and equating

the obtained expressions to zero. The following system of equations is obtained:

β
(n)
1 =

∫ 1+H3

1

∫ w1

0

∫ L
0 2∆T 1

A

(

TA − β2∆T 2
A

)

dxdydz
∫ 1+H3

1

∫ w1

0

∫ L
0 2

(

∆T 1
A

)2
dxdydz

(3.87)
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β
(n)
2 =

∫ 1+H3

1

∫ w1

0

∫ L
0 2∆T 2

A

(

TA − β1∆T 1
A

)

dxdydz + α
2

∫ Le

0 Bi(n)P
(n)
2 dy

∫ 1+H3

1

∫ w1

0

∫ L
0 2

(

∆T 2
A

)2
dxdydz + α

2

∫ Le

0

(

P
(n)
2

)2
dy

. (3.88)

3.3.3 Adjoint problems

The Lagrangian associated with the optimization problem defined by Eq.(3.50), the

constraints (3.1)-(3.14), and the control parameter p is:

J |p =

∫ 1+H3

1

∫ W

0

∫ L

0
T 2

Adxdydz +
α

2

∫ Le

0
Bi2dy

+

∫ 1+H3

1

∫ W

0

∫ L

0
λ1

(

∂2TA

∂x2
+

∂2TA

∂y2
+

∂2TA

∂z2

)

dxdydz

+

∫ 1

H1

∫ W

0

∫ L

0
λ2

(

∂2TB

∂x2
+

∂2TB

∂y2
+

∂2TB

∂z2

)

dxdydz

+

∫ H1

0

∫ W

0

∫ L−pH1

0
λ3

(

∂2TC

∂x2
+

∂2TC

∂y2
+

∂2TC

∂z2

)

dxdydz (3.89)

where λ1, λ2, and λ3 are Lagrange multipliers. The differential of Lagrangian corresponding

to ∆p is:

J |p+∆p − J |p =

∫ 1+H3

1

∫ W

0

∫ L

0
2TA∆T 1

Adxdydz

+

∫ 1+H3

1

∫ W

0

∫ L

0
λ1

(

∂2∆T 1
A

∂x2
+

∂2∆T 1
A

∂y2
+

∂2∆T 1
A

∂z2

)

dxdydz

+

∫ 1

H1

∫ W

0

∫ L

0
λ2

(

∂2∆T 1
B

∂x2
+

∂2∆T 1
B

∂y2
+

∂2∆T 1
B

∂z2

)

dxdydz

+

∫ H1

0

∫ W

0

∫ L−H1p

0
λ3

(

∂2∆T 1
C

∂x2
+

∂2∆T 1
C

∂y2
+

∂2∆T 1
C

∂z2

)

dxdydz. (3.90)
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Integration of the above expression leads to the following adjoint problem after boundary

conditions from the sensitivity problem (3.57)-(3.70) are applied:

∂2λ1

∂x2
+

∂2λ1

∂y2
+

∂2λ1

∂z2
+ 2TA = 0 (3.91)

∂2λ2

∂x2
+

∂2λ2

∂y2
+

∂2λ2

∂z2
= 0 (3.92)

∂2λ3

∂x2
+

∂2λ3

∂y2
+

∂2λ3

∂z2
= 0 (3.93)

subject to the following boundary conditions,

∂λ1

∂x

∣

∣

∣

∣

x=0
= 0

∂λ1

∂x

∣

∣

∣

∣

x=L
= 0 (3.94)

∂λ1

∂y

∣

∣

∣

∣

y=0

= 0
∂λ1

∂y

∣

∣

∣

∣

y=w1

= 0 (3.95)

∂λ2

∂x

∣

∣

∣

∣

x=0
= 0

∂λ2

∂x

∣

∣

∣

∣

x=L−l
= 0 (3.96)

∂λ2

∂y

∣

∣

∣

∣

y=0

= 0
∂λ2

∂y

∣

∣

∣

∣

y=W

= 0 (3.97)

∂λ3

∂x

∣

∣

∣

∣

x=0
= 0

∂λ3

∂x

∣

∣

∣

∣

x=L−l
= 0 (3.98)

∂λ3

∂y

∣

∣

∣

∣

y=0

= 0
∂λ3

∂y

∣

∣

∣

∣

y=W

= 0 (3.99)

∂λ3

∂z

∣

∣

∣

∣

z=0
= 0

∂λ1

∂z

∣

∣

∣

∣

z=1+H3

= 0 (3.100)
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and the conditions of temperature and flux continuity across the GaAs slab-silicon substrate

interface,

λ2|z=1 =
kGaAs

kSi
λ1|z=1 if 0 ≤ y ≤ w1 (3.101)

∂λ2

∂z

∣

∣

∣

∣

z=1
=















∂λ1

∂z

∣

∣

∣

z=1
if 0 ≤ y ≤ w1

0 if w1 < y ≤ W

(3.102)

and across the silicon substrate-fin interface,

λ2|z=H1
= λ3|z=H1

if 0 ≤ x ≤ L − l (3.103)

∂λ2

∂z

∣

∣

∣

∣

z=H1

=































































∂λ2

∂z

∣

∣

∣

z=H1

if 0 ≤ x ≤ L − l

Biλ2|z=H1
if















L − l < x ≤ L

0 ≤ y ≤ Le

0 if















L − l < x ≤ L

Le < y ≤ W.

(3.104)

After identifying the adjoint problem, the following integral term is left:

∆J |p = J |p+∆p − J |p

=

∫ H1

0

∫ Le

0
Bi

∂TC

∂x
λ3

∣

∣

∣

∣

x=L−pH1

∆pdydz

=

∫ H1

0

∫ Le

0

∂J

∂p
∆pdydz (3.105)
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and the following expression for ∂J
∂p is obtained,

∂J

∂p
= Bi

∂TC

∂x
λ3

∣

∣

∣

∣

x=L−pH1

. (3.106)

The adjoint problem corresponding to Bi is obtained in a similar way. The associated

Lagrangian in this case is:

J |Bi =

∫ 1+H3

1

∫ W

0

∫ L

0
T 2

Adxdydz +
α

2

∫ Le

0
Bi2dy

+

∫ 1+H3

1

∫ W

0

∫ L

0
ξ1

(

∂2TA

∂x2
+

∂2TA

∂y2
+

∂2TA

∂z2

)

dxdydz

+

∫ 1

H1

∫ W

0

∫ L

0
ξ2

(

∂2TB

∂x2
+

∂2TB

∂y2
+

∂2TB

∂z2

)

dxdydz

+

∫ H1

0

∫ W

0

∫ L−pH1

0
ξ3

(

∂2TC

∂x2
+

∂2TC

∂y2
+

∂2TC

∂z2

)

dxdydz (3.107)

and the differential of Lagrangian corresponding to ∆Bi is:

J |Bi+∆Bi − J |Bi =

∫ 1+H3

1

∫ W

0

∫ L

0
2TA∆T 2

Adxdydz + α

∫ Le

0
Bi∆Bidy

+

∫ 1+H3

1

∫ W

0

∫ L

0
ξ1

(

∂2∆T 2
A

∂x2
+

∂2∆T 2
A

∂y2
+

∂2∆T 2
A

∂z2

)

dxdydz

+

∫ 1

H1

∫ W

0

∫ L

0
ξ2

(

∂2∆T 2
B

∂x2
+

∂2∆T 2
B

∂y2
+

∂2∆T 2
B

∂z2

)

dxdydz

+

∫ H1

0

∫ W

0

∫ L−pH1

0
ξ3

(

∂2∆T 2
C

∂x2
+

∂2∆T 2
C

∂y2
+

∂2∆T 2
C

∂z2

)

dxdydz.

(3.108)
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The following adjoint problem is obtained after performing the integration by parts in

Eq.(3.108):

∂2ξ1

∂x2
+

∂2ξ1

∂y2
+

∂2ξ1

∂z2
+ 2TA = 0 (3.109)

∂2ξ2

∂x2
+

∂2ξ2

∂y2
+

∂2ξ2

∂z2
= 0 (3.110)

∂2ξ3

∂x2
+

∂2ξ3

∂y2
+

∂2ξ3

∂z2
= 0 (3.111)

subject to the following boundary conditions,

∂ξ1

∂x

∣

∣

∣

∣

x=0
= 0

∂ξ1

∂x

∣

∣

∣

∣

x=L
= 0 (3.112)

∂ξ1

∂y

∣

∣

∣

∣

y=0

= 0
∂ξ1

∂y

∣

∣

∣

∣

y=w1
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z=0
= 0

∂ξ1

∂z

∣

∣

∣

∣

z=1+H3

= 0 (3.118)

and the conditions of temperature and flux continuity across the GaAs slab-silicon substrate

interface,

ξ1|z=1 =
kGaAs

kSi
ξ2|z=1 if 0 ≤ y ≤ w1 (3.119)
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and across the silicon substrate-fin interface,

ξ2|z=H1
= ξ3|z=H1

if 0 ≤ x ≤ L − l (3.121)
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



L − l < x ≤ L
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(3.122)

After identifying the adjoint problem, the following integral term is left:

∆J |Bi = J |Bi+∆Bi − J |Bi

=

∫ Le

0

(

αBi −
∫ H1

0
ξ3TC |x=L−pH1

dz −
∫ L

L−pH1

ξ2TB |z=H1
dx

)

∆Bidy

(3.123)

and the following expression for ∂J
∂Bi is obtained,

∂J

∂Bi
= αBi −

∫ H1

0
ξ3TC |x=L−pH1

dz −
∫ L

L−pH1

ξ2TB |z=H1
dx. (3.124)
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3.3.4 Computational algorithm

The computational procedure for the solution of this problem may be summarized as

follows:

step 1 Solve the direct problem given by Eq.(3.1)-(3.14) to obtain TA, TB and TC for an

initial guess of the controls p and Bi;

step 2 Solve the adjoint problems given by Eq.(3.91)-(3.104) and Eq.(3.109)-(3.122), respec-

tively to obtain λ1 λ2, λ3, ξ1, ξ2, and ξ3;

step 3 Compute the gradients of the functional ∂J
∂p and ∂J

∂Bi from Eq.(3.106) and Eq.(3.124),

respectively;

step 4 Compute the conjugate coefficients γ
(n)
1 and γ

(n)
2 from Eq.(3.55) and Eq.(3.56), and

the search directions P
(n)
1 and P

(n)
2 from Eq.(3.53) and Eq.(3.54);

step 5 Set ∆p = P
(n)
1 , ∆Bi = P

(n)
2 and solve the sensitivity problems given by Eq.(3.57)-

(3.70) and Eq.(3.71)-(3.84) to obtain ∆T 1
A, ∆T 1

B, ∆T 1
C and ∆T 2

A, ∆T 2
B, ∆T 2

C , respec-

tively;

step 6 Compute the search step sizes β
(n)
1 and β

(n)
2 from Eq.(3.87) and Eq.(3.88);

step 7 Compute the new estimates for p and Bi from Eq.(3.51) and Eq.(3.52) and go back

to step 1 until a stopping criterion is achieved. The stopping criterion was chosen as
∥

∥

∥p(n+1) − p(n)
∥

∥

∥ ≤ ǫ1,
∥

∥

∥Bi(n+1) − Bi(n)
∥

∥

∥ ≤ ǫ2, where ǫ1 and ǫ2 are prescribed tolerances

which were set to 10−6 and 10−7, respectively.
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3.3.5 Implementation and numerical procedure

The direct, adjoint, and sensitivity problems are solved using a centered finite difference

scheme. The following geometrical and thermophysical parameters are given:

• GaAs dimensions: Lt × w1 × H3 = 9mm × 3.6mm × 0.075mm;

• Si wafer dimensions: Lt × W × H2 = 9mm × 9mm × 0.3mm;

• Coefficient of thermal conductivity for GaAs: kGaAs = 0.1W/mmK;

• Coefficient of thermal conductivity for Si: kSi = 0.1421W/mmK;

• Input heat flux: q = 12W/mm2.

A Matlab code is implemented to solve the three coupled problems using a mesh of 15×11×4

for the GaAs slab and 15 × 25 × 12 for the Si substrate.

3.3.6 Results and discussions

The optimization of the MHP sink is performed for 4 different channel heights, H1 =

75µm, 100µm, 125µm, 150µm. The number of channels is also varied to study the sensitivity

of the heat sink performance on the number of channels. The optimum channel to fin width

ratio is 1, this finding being in agreement with the results obtained by previous investigators

[68], [32], [53]. The obtained aspect ratios result in reasonable fin widths and arrays of

fins that can be manufactured. Distributions of optimum Bi are found for each case study,

considering five values of the weighting coefficient, α = 0.1, 0.5, 1, 5, 50. It is noticed that the

optimum Biot number distribution decreases with increasing channel depth and increases

with decreasing number of channels (see Figures 4.5-4.8). As in the planar heat sink case

studied in the previous chapter, Bi decreases with the increase of cost α.
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The controlled and uncontrolled temperature distributions on the top surface of the Si

substrate through the symmetry plane of the fin are compared for different values of the

weighting coefficient α (see Figures 4.9-4.12). The uncontrolled temperature is obtained

using a constant Biot number, BI along the boundary, that gives the same cost as the

optimal Bi. It can be noticed that the controlled temperatures display flatter profiles,

resulting in smaller temperature gradients. Underneath the heat source, the controlled

temperature is lower than the uncontrolled temperature. The difference between the two

temperatures corresponding to the hottest point is about 4K − 10K. This difference is

much smaller than in the planar spreader case, suggesting that the heat transfer coefficient

of a finned structure approaches by design an optimum distribution. Since the differences

between the controlled and uncontrolled temperatures are small, the constant Biot number

BI is used to assess the effect of the number of channels on the performance of the MHP sink.

The structure with N = 60 channels is taken as reference and variation percentages of BI are

computed when the number of channels is changed to N = 58, 56 and 30, respectively (see

Table 4.1). For a given number of channels no significant variations are noticed for different

values of α. As can be observed from Figures 4.9-4.12, for a given channel depth H1 and

weighting coefficient α the same temperature distributions (controlled and uncontrolled) are

obtained for values of the Biot number that increase with decreasing number of channels.

For the same number of channels lower temperatures are obtained for larger values

of the channel depth. By increasing the channel depth the surface exposed to convective

cooling is expanded.

Comparing the thermal performance of the planar spreader studied in the previous

chapter and the finned heat sinks, it can be concluded that the same temperatures can be
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attained for smaller Bi using the finned heat sinks. This is due to an increase in area for

heat dissipation.

3.4 Liquid charge corresponding to maximum heat transport capacity of the

pipe

In this section we will compute the liquid charges corresponding to the maximum heat

transport capacity of the MHPs having the optimum geometry found in the previous section.

It is expected that the optimum Bi found in the previous section leads to an amount of

heat removed from the source greater than the heat transport capacity of the MHP. The

maximum heat transport capacity of the pipe is found iteratively, decreasing the optimum

Bi by a quantity ∆Bi(i) = i × 10−7 × Bi, i = 0..107 .

Q
(i)
inMHP = qin (H1 + l)

∫ Le

0

(

Bi − ∆Bi(i)
)

Twdy. (3.125)

In the above equation qin is the heat flux entering the heat sink and Tw is the channel wall

temperature. The maximum heat applied to the MHP for which the pressure gradients

dPl

dy , dPv

dy do not change signs along the evaporator and adiabatic sections, and the meniscus

radius at the end of the adiabatic section does not exceed the rmax value (see Eq.(3.27)) is

the maximum heat transport capacity of the MHP. A new optimum Bi is computed taking

the maximum heat transport capacity of the pipe as the input heat for the heat sink. The

liquid charge is found by adding the amount of liquid in the evaporator, adiabatic section,

and condenser and the amount of liquid that vaporizes:
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mliquid =

(

2

∫ Le+La

0
Aldy + 2lH1 (W − Le − La)

)

ρl

+

(

2lH1 (Le + La) − 2

∫ Le+La

0
Aldy

)

ρv. (3.126)

3.4.1 Computational procedure

The algorithm used in computing the optimum liquid charge may be summarized as

follows:

step 1 For a given r|y=0 = r0 set the heat entering the MHP to Q0
inMHP (i=0);

step 2 Solve the transport Eq.(3.44)-(3.48) for the MHP to obtain the distributions for Pl,

Pv , Ul, Uv, and r;

step 3 Check the conditions for the pressure gradients and the radius of curvature:

dPl

dy
< 0,

dPv

dy
> 0, r ≤ rcrit y ≤ Le + La; (3.127)

step 4 If all of the above conditions are satisfied, then the heat transport capacity of the

MHP is Qmax = Qi
inMHP , otherwise increase ∆Bi (set the input heat to Q

(i+1)
inMHP )

and repeat step 2 -step 4 until the above conditions are satisfied simultaneously;

step 5 Take Qmax as the input heat for the MHP heat sink and compute the optimum

Bi using a conjugate gradient algorithm, similar to those presented in the previous

sections;

step 6 Compute the liquid charge using Eq.(3.126).
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3.4.2 Results and discussions

In this analysis water was considered as working fluid. The following geometrical and

thermophysical parameters are used:

• MHP height: H1 = 75µm, 100µm, 125µm, 150µm;

• MHP width: l = pH1, where p is the optimum aspect ratio found in the previous

section;

• MHP length: W = 9mm;

• Evaporator length: Le = 1.8mm;

• Adiabatic section length: La = 3mm;

• Liquid density: ρl = 983.284kg/m3 ;

• Vapor density: ρv = 0.130366kg/m3

• Liquid viscosity: µl = 466.4 · 10−6kg/ms;

• Vapor viscosity: µv = 10.93 · 10−6kg/ms;

• Surface tension: σ = 0.06624N/m;

• Contact angle: θ = π/6;

• Tilt angle: θ1 = pi/18

• Latent heat of vaporization: hfg = 2358.48kJ/kg.
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The properties for water are taken at 55◦C.

The transport equations (3.44)-(3.48) for the MHP are solved using a Runge-Kutta

scheme. Distributions of the meniscus radius over the axial direction for the evaporator

and adiabatic sections are shown in Figure 4.13. These distributions correspond to the

maximum heat transport capacity of MHP sinks with N = 60 channels and different channel

depths. It is noticed that the meniscus radius increases with increasing channel depth.

Figures 4.14-4.17 show the velocity distributions of the liquid and vapor phases computed

for the maximum heat transport capacity of the above mentioned heat sink designs. Higher

velocities are achieved for greater channel depths. The increase of radius of curvature in

the axial direction causes an increase in liquid cross section area in this direction and a

decrease in vapor area. Consequently the vapor velocity increases in y direction while the

liquid velocity decreases. The vapor velocity is about two orders of magnitude greater than

the liquid velocity. This is due to the high liquid/vapor density ratio. Pressure distributions

for the liquid and vapor phases are presented in Figure 4.18. The vapor pressure drop is

about one order of magnitude less than that of the liquid phase.

Optimal distributions of Bi corresponding to the maximum heat transport capacity

of the MHP are presented in Figures 4.19-4.22 for heat sinks with different number of

channels and different channel depths. The new optimum Bi represents only a fraction

of the optimum Bi computed in the previous section (’ideal’ Bi). For a given number of

channels the optimum Bi increases with increasing channel depth H1. Values of the liquid

charge corresponding to the maximum heat transport capacity of the pipe are plotted in

Figure 4.25. For a given number of channels the optimum liquid charge increases with

increasing channel depth. Small increases in the liquid charge are noticed for increasing
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weighting coefficient α. The optimum liquid charge increases with decreasing number of

channels.

The maximum heat transport capacity is expressed as a fraction qr of the input heat.

Variations of the MHP heat transport capacity for different design parameters are shown

in Figure 4.27. For a given number of channels, the heat transport capacity increases with

increasing channel depth and weighting coefficient α.

The sensitivity of the MHP performance on the value of the meniscus radius at y = 0 is

also studied. Four values of r0 were considered, 7.7µm, 8µm, 8.5µm and 9.5µm. The results

obtained for the optimum liquid charge (see Figure 4.23) and maximum heat transport

capacity (see Figure 4.24) do not display significant variations when r0 is varied within

25%.

3.5 Conclusions

In this work the performance of several configurations of rectangular cross section

micro heat pipe sinks using water as working fluid was investigated. The geometry and

the convective heat transfer coefficient were optimized. The critical path to an optimum

design started with the analysis of a planar heat spreader for which an optimum convective

heat transfer coefficient corresponding to a maximum amount of heat removed from a heat

source was obtained. An optimal control technique was employed to solve this problem,

using Biot number as control. The existence and uniqueness of a solution and of an optimal

control were proven. Then the analysis was extended to finned heat sinks for which an

optimization of the convective heat transfer coefficient and the aspect ratio was performed.
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The last part of this study focused on obtaining the amount of liquid charge corresponding

to the maximum heat transport capacity of the micro heat pipes.

For the planar spreader, distributions of the Biot number corresponding to different

values of the weighting coefficient α were presented, showing that Bi decreases with in-

creasing α. The greater the value assigned to α, the greater the cost of employing a control,

and the smaller the contribution of convective cooling. Controlled and uncontrolled tem-

perature distributions were compared. The controlled temperatures displayed lower and

flatter profiles than the uncontrolled temperatures. The difference between the two profiles

increased with increasing penalty parameter α.

A similar optimal control technique was used to optimize the geometry and the con-

vective coefficient of finned heat sinks. The results show that the optimum aspect ratio

corresponds to a channel to fin width ratio equal to 1. The distributions of the optimum

Biot number are lower than in the case of a planar spreader, due to an increase in heat

transfer area. An analysis of heat sink configurations with different channel depths, i.e.

75µm, 100µm, 125µm, and 150µm, showed that the performance of the heat sink increases

with increasing channel depth. The performance sensitivity on the number of channels was

studied. The sink with 60 channels was taken as reference and computations of the varia-

tion percentage of Biot number were performed when the number of channels was changed

to 58, 56, and 30. When the number of channels was reduced to half, the Biot number

was increased by 35%-43%, suggesting that the performance of a heat sink increases with

increasing channel density.

The maximum heat transport capacities of MHP sinks with an optimum geometry were

computed, and found to be about 5%−15% of the original input heat flux of 12W/mm2, i.e.
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between 0.6W/mm2 and 1.8W/mm2. The heat transport capacity increases with increasing

channel density and increasing aspect ratio. The liquid charge found was about 9% − 11%

(see Figure 4.26) of the pipe volume.

The algorithm used in computing the liquid charge can be applied to any working

fluid. The only change that has to be made in the simulation consists in replacing the

thermophysical properties of water with the ones corresponding to the new working fluid.

For applications where the removal of higher heat fluxes is necessary, different working fluids

have to be used, such as mercury [44].

This study can provide guidance and a methodology for design of efficient heat sinks

using micro heat pipes. The design procedure can be followed as given:

• Choose the depth of the micro-channels. Typical values are in the range of 100µm,

but can vary from 50mm up to several hundred microns. The determining factor lies

in the thickness of the spreader and the location of heat generation. In general, the

channels should be as close to the heat source as possible.

• For the given dimensions of the heat sink, length by width (with the width being

defined as the dimension transverse of the direction of the heat pipe channel axial

dimension) prescribe the number of channels and find the channel width using the

recommended pitch ratio (channel to fin width ratio) of 1 as described in section 3.3,

e.g. for a 10mm (width) by 10mm (length) heat spreader with a 0.5mm border on

all edges and 100µm deep channels, if the recommended number of channels is 60

across the width, then the channel width is 75µm. The number of channels is selected

considering the amount of heat that has to be dissipated. For example, the above

mentioned configuration is able to handle a heat flux of 0.9W/mm2 (see Figure 4.27).
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• The corresponding liquid charge can be found using the algorithm described in section

3.4.1. This value is somewhere between 9 and 11%.

As designers we look for a heat sink configuration able to spread the largest amount of heat

for a particular application. From the study presented earlier the best performance was

achieved by a heat sink with 60 channels using a channel depth of 150µm, which was able

to handle a heat flux of 1.8W/mm2 for a 11% volume charge.
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Chapter 4

Appendix

Table 4.1: Variation percentage of BI for different number of channels
H1 = 75µm H1 = 100µm H1 = 125µm H1 = 150µm

N = 58 1.8124% 1.9558% 2.1194% 2.2216%

N = 56 3.8110% 3.9912% 4.1710% 4.3048%

N = 30 34.9441% 39.3297% 40.7426% 43.2075%
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Figure 4.1: Graphs of controlled and uncontrolled solutions for different values of α.
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Figure 4.3: Distributions of T − T∞ at the chip-spreader interface for different values of α.
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Figure 4.5: Distributions of optimal Bi corresponding to N = 60 and different channel
depths.
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Figure 4.6: Distributions of optimal Bi corresponding to N = 58 and different channel
depths.

92



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

N=56, H
1
=75µm, p

crit
=1.0048

y [mm]

B
i

α=0.1

α=0.5

α=1

α=5

α=50

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

N=56, H
1
=100µm, p

crit
=0.7536

y [mm]

B
i

α=0.1

α=0.5

α=1

α=5

α=50

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

N=56, H
1
=125µm, p

crit
=0.6029

y [mm]

B
i

α=0.1

α=0.5

α=1

α=5

α=50

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

N=56, H
1
=150µm, p

crit
=0.5024

y [mm]

B
i

α=0.1

α=0.5

α=1

α=5

α=50

Figure 4.7: Distributions of optimal Bi corresponding to N = 56 and different channel
depths.
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Figure 4.8: Distributions of optimal Bi corresponding to N = 30 and different channel
depths.
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Figure 4.9: Temperature distributions T − T∞ corresponding to N = 60.
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Figure 4.10: Temperature distributions T − T∞ corresponding to N = 58.
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Figure 4.11: Temperature distributions T − T∞ corresponding to N = 56.
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Figure 4.12: Temperature distributions T − T∞ corresponding to N = 30.
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Figure 4.13: Distribution of the meniscus radius for different values of α and channel depths
(N = 60).
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Figure 4.14: Distributions of the liquid and vapor velocities for H1 = 75µm and different
values of α (N = 60).
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Figure 4.15: Distributions of the liquid and vapor velocities for H1 = 100µm and different
values of α (N = 60).
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Figure 4.16: Distributions of the liquid and vapor velocities for H1 = 125µm and different
values of α (N = 60).
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Figure 4.17: Distributions of the liquid and vapor velocities for H1 = 150µm and different
values of α (N = 60).
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Figure 4.18: Distributions of the liquid and vapor pressures for different values of α and
channel depths (N = 60).
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Figure 4.19: Distributions of the ’ideal’ optimum Bi and the optimum Bi corresponding to
the maximum heat transport capacity of the pipe, for N = 60 and different channel depths.
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Figure 4.20: Distributions of the ’ideal’ optimum Bi and the optimum Bi corresponding to
the maximum heat transport capacity of the pipe, for N = 58 and different channel depths.
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Figure 4.21: Distributions of the ’ideal’ optimum Bi and the optimum Bi corresponding to
the maximum heat transport capacity of the pipe, for N = 56 and different channel depths.
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Figure 4.22: Distributions of the ’ideal’ optimum Bi and the optimum Bi corresponding to
the maximum heat transport capacity of the pipe, for N = 30 and different channel depths.
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Figure 4.23: Variations of the liquid charge with r0 for different channel depths (N = 60).
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Figure 4.24: Variations of MHP heat transport capacity with r0 for different channel depths
(N = 60).
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Figure 4.25: Variations of liquid charge with channel depth for different values of α.
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Figure 4.26: Percent of volume charge corresponding to maximum heat transport capacity
of the pipe.
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Figure 4.27: Variations of MHP heat transport capacity with channel depth for different
values of α.

113



Bibliography

[1] O.M. Alifanov. Inverse Heat Transfer Problems. Springer, 1994.

[2] K.K. Ambatipudi and M.M. Rahman. Analysis of conjugate heat transfer in microchan-
nel heat sinks. Numerical Heat Transfer, Part A, 37:711–731, 2000.

[3] K. Atkinson and W. Han. Theoretical Numerical Analysis- A Functional Analysis

Framework. Springer, 2001.

[4] M. Le Berre, G. Pandraud, P. Morfouli, and M. Lallemand. The performance of
micro heat pipes measured by integrated sensors. Journal of Micromechanics and

Microengineering, 16:1047–1050, 2006.

[5] R. Chein and G. Huang. Analysis of microchannel heat sink performance using nanoflu-
ids. Applied Thermal Engineering, 25(17-18):3104–3114, December 2005.
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