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Abstract 

 

       The programming performance has been studied over several years. Researchers and 

scientists utilized various optimization technologies on algorithms and computer architectures to 

improve the performance. But, to date, few studies focus on the impact of human factors on the 

programming performance. In this study, we investigate the influence of human factors on the 

programming performance based on Mayer-Briggs Type Indicator (MBTI) personality, 

programming attitude and programming styles. Although some researchers have investigated the 

effects of personality based on the Five-Factor model on programming styles, two problems are 

not resolved: (1) Five-factor personality model does not theorize what goes inside people’s heads 

and focuses on actual people’s behaviors instead of the cognitive theory; (2) the programming 

styles were not validated and are out of date. To improve this research work, a theoretical 

personality model-- Myers–Briggs Type Indicator – is adopted. In addition, the programming 

styles have been updated since 2006 and validated using statistical metrics such as Cronbach’s 

Alpha. Finally, a new programming factor-- programming styles-- are added into our 

investigation. The objective of this proposal is: (1) to identify which human factors play a 

positive/negative role in programming performance; (2) to study the relationship among 

personality, programming styles and programming attitudes. The author firstly distributes three 

questionnaires on personality, programming attitudes and programming styles to students in 

department of computer science and software engineering at Auburn University. Three surveys 

towards programming will be measured via the self-assessed method. The programming 
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performance consists of: (1) run time from participants’ code; (2) grades of projects. The 

analysis, such as Pearson Correlation analysis and linear regression analysis, will be applied to 

investigate the links among personality, programming styles and programming attitudes.  
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Chapter 1 Introduction 
 

1.1 Motivation 

      The software development progresses through various phases, which ultimately leads to 

the final product. Among the phases, the coding’s performance and efficiency has a 

significant impact on the progress of the final software. If the software is a large and complex 

system such as Ubuntu, it may be divided into subsections which will be integrated later. 

Sometimes researchers use coding productivity to evaluate the efficiency/performance of 

programmers, and they notice that the programming style is one of the dominant factors in 

coding work. Pressman [1] conducted the empirical experiment and made the conclusion that 

programmers’ coding performance was on a different level for that same task although they 

have the same academic background. After analyzing all variances of the experiment, the 

author found that different human traits may result in the coding performance difference.  

 

      Also, the performance is one of the most important metrics in evaluating the code. In this 

study, we use both the running time of the code and the corresponding grades based on the 

rubrics, to define the performance with the following considerations: (1) the running time can 

objectively measure the quality of code written by programmers; and (2) from the 

perspective of human factors, we still need to evaluate whether the code, written by one 

programmer, can be easily read by other programmers if this coding work needs to be 

transferred between members in a big team. From the author’s experience, although there is a 

similar performance in the running time among code samples, some of those samples are 
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difficult for other programmers to understand or optimize. So, the rubric can perfectly detect 

and evaluate the performance from the perspective of human factors.    

 

    Some theorists noted that there were surprisingly large variations in individual 

productivity and accuracy while executing parts of the software development process [15]. 

We know the choice of programmers makes a significant performance impact, but we have 

little insight into how that choice impacts programming performance [39]. 

 

To date, human traits or individual characteristics can be evaluated through either Big 

Five-Factor model(FFM) or Myers-Briggs Type Indicator model(MBTI). For FFM model, 

some personality tests such as IPIP (International Personality Items Pool) [2] is widely used 

in academia. The Big Five-Factor traits are Openness, Conscientiousness, Extroversion, 

Agreeableness, and Neuroticism (OCEAN), and each trait is briefly introduced in the 

following sections [43]: 

 

Openness - People who like to learn new things and enjoy new experiences usually 

score high in openness. Openness includes traits like being insightful and 

imaginative and having a wide variety of interests. 

Conscientiousness - People that have a high degree of conscientiousness are reliable 

and prompt. Traits include being organized, methodic, and thorough. 

Extroversion - Extroverts get their energy from interacting with others, while 

introverts get their energy from within themselves. Extraversion includes the traits of 

energetic, talkative, and assertive. 
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Agreeableness - These individuals are friendly, cooperative, and compassionate. 

People with low agreeableness may be more distant. Traits include being kind, 

affectionate, and sympathetic. 

Neuroticism - Neuroticism is also sometimes called Emotional Stability. This 

dimension relates to one’s emotional stability and degree of negative emotions. 

People that score high on neuroticism often experience emotional instability and 

negative emotions. Traits include being moody and tense. 

 

     There has been numerous research studies carried out on human traits influencing work 

performance. Adrian et al. [45] investigated the relationship between personality, learning 

style and work performance based on responses of over 200 telephone sales staff. The 

Eysenck Personality Inventory (EPI) and Honey and Mumford’s Learning Style 

Questionnaire (LSQ) were used to evaluate human traits. Results showed that personality 

variables (extraversion, neuroticism) and certain learning styles (reflector, pragmatist) were 

statistically significant predictors of the rated performance.  

 

      In addition to the Five-Factor personality model, Myers-Briggs Type Indicator (MBTI) is 

another popular model which is widely used in academia. The Myers-Briggs Type Indicator 

measures preferences on four scales derived from Jung’s Theory of Psychological Types. 

People are classified in terms of their preference as the following [43]: 

 Introversion (I) (interest flowing mainly to the inner world of concepts and ideas) or 

Extroversion (E) (interest flowing mainly to the outer world of actions, objects, and 

persons); 
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 Sensing (S) (tending to perceive immediate, real, practical facts of experience and 

life) or 

Intuition (N) (tending to perceive possibilities, relationships, and meanings of 

experiences); 

 Thinking (T) (tending to make judgments or decisions objectively and impersonally) 

or 

Feeling (F) (tending to make judgments subjectively and personally); 

 Judging (J) (tending to live in a planned and decisive way) or 

Perceiving (P) (tending to live in a spontaneous and flexible way). 

 

           All possible permutations of preferences in the four dichotomies above yield sixteen 

different combinations, or personality types, representing which of the two poles in each of 

the four dichotomies dominates in a person; thus, defining sixteen different personality types. 

In Table 1, each personality type can be assigned a four-letter acronym as corresponding 

combinations of preferences. Since one specific type will be selected from each category, the 

final personality is a combination of four personality types. Figure 1 describes this selection 

process. 

      Table 1. The Sixteen Personality Types [43] 

ESTJ ISTJ ENTJ INTJ 

ESTP ISTP ENTP INTP 

ESFJ ISFJ ENFJ INFJ 

ESFP ISFP ENFP INFP 
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Figure 1. MBTI personality selection process [44] 

 

The Sixteen personality types are described and explained [44]: 

 ISTJ 

The people prefer to pay attention to physical factors in the real world such as 

specific standards lonely. The “Thinking” type indicates that people usually make 

decisions based on the objective truth instead of the feeling. And a planned or orderly 

life is usually conducted. So they are logical, detailed and organized people. 

 ISFJ 

Extroverted 
vs. 

Introverted 
 

Sensing  
vs. 

Intuition 

Thinking 
vs. 

Feeling 
 

 

Judging 
vs. 

Perceiving 
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When encountering the problems, they prefer to work alone based on the objective 

rubrics. But for making decisions, they would like to ask friends about what they care 

about instead of some basic principles. And for the outer life, they prefer to make a 

detailed plan instead of a flexible life. So they are quietly warm, realistic and 

organized people. 

 INFJ 

They prefer to think/work independently or with only few friends. During solving 

problems, they pay attention to the patterns of information instead of some physical 

facts. Also, decisions are usually made based on what friends care about instead of 

their own thoughts. And a planned life is their preference options. So they are 

organized, detailed but emotional people. 

 INTJ 

People would like to get the energy from dealing with memories and reactions in the 

inner world [44]. They prefer to pay more attention to the information’s pattern 

instead of “spotted” information in their mind. Also, when analyzing the problems, 

the basic truth or principle is applied in their decisions. And they live with a planned 

life. So they have original minds and great drive for implementing their ideas and 

achieving their goals.  

 ISTP 

They prefer to solve problems alone through analyzing advantages and disadvantages. 

Although they pay more attention to the physical realty based on what they touch, 

they live with a flexible style of life. So they are tolerant and flexible, quiet observers 

until a problem appears, then act quickly to find workable solutions [44].  
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 ISFP 

They solve problems alone with the objective standards and prefer to live a flexible 

life. But usually, decisions are made based on their friend. So they are quiet, friendly, 

sensitive, and kind and dislike disagreements and conflicts, do not force their 

opinions or values on others [44]. 

 INFP 

People utilize the pattern of information to solve problems alone and usually make 

decisions based on friends involved in the situation. For their outer world life, it is 

flexible. So they are idealistic, loyal and want an external life that is congruent with 

their values [44]. 

 INTP 

People pay attention to the pattern of information, try to solve problems 

independently and live a flexible life. So they seek to develop logical explanations for 

everything that interests them and are quiet, contained, flexible, and adaptable [44].  

 ESTP 

People prefer to work with other friends with the physical reality. When making 

decisions, they usually applied the basic principles, regardless of the specific situation 

involved. So, they are flexible, tolerant [44] and take a pragmatic approach focused 

on immediate results.  

 ESFP 

People would like to get energy from activities and to enjoy working with others. The 

decisions are usually made with other’s opinions instead of their own judgment. For 
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their outer world life, it is flexible. They are outgoing, friendly, and accepting and to 

bring common sense and a realistic approach to their work [44]. 

 ENFP 

People enjoy working with others. They apply the pattern of information received 

from external sources (i.e. outside world) to solve problems. When decisions need to 

be made, they care about opinions from others evolved in a situation. And a flexible 

life is their favorite life. They are warmly enthusiastic, imaginative and see life as full 

of possibilities [44]. They make connections between events and information very 

quickly, and confidently proceed based on the patterns they see [44].  

 ENTP 

They would like to communicate with others and to work together. For problems, 

they apply the pattern of information to think independently based on the principles 

instead of others’ opinions. For the outer world life, it is flexible. Hence, they are 

quick, ingenious, stimulating, alert, and outspoken [44].  

 ESTJ 

They are “extraversion” people and would like a flexible life. The style of solving 

problem is to use the principles, regardless of the situation involved. Based on the 

characters explanations, they are practical, realistic, matter-of-fact, decisive, quickly 

move to implement decisions [44]. And they have a clear set of logical standards, 

systematically follow them and want others to also. Forceful in implementing their 

plans [44]. 
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 ESFJ 

People would like to work with others and make decisions with the consideration of 

others’ suggestions. They like the planned or orderly life and usually pay attention to 

the physical reality instead of the abstract pattern of information. Hence, they are  

warmhearted, conscientious, and cooperative, want harmony in their environment and 

work with determination to establish it [44].  

 ENFJ 

People would like to collaborate with others. They are boring at a planned life. But 

for solving problems, they apply the abstract pattern of information instead of the 

physical reality. Hence, they are warm, empathetic, responsive, and responsible and 

may act as catalysts for individual and group growth [44]. 

 ENTJ  

People enjoy the team work to solve problems and make decisions based on the true 

principles, regardless of the specific situation involved [44]. They are used to 

adopting the high-level type of thinking about problems and enjoy a planned life. 

Hence, they are frank, decisive, assume leadership readily, can quickly see illogical 

and inefficient procedures and policies and develop and implement comprehensive 

systems to solve organizational problems [44]. 

 

      Many related studies on the MBTI personality in computer science were conducted to 

suggest what type of personality fits for which phase of the programming process. For 

example, Bishop [4] used MBTI personality model to evaluate and analyze the personality 
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type of college students in some programming courses and concluded which type of 

personality is best in each phase of programming work. 

 

     Based on the introduction of both the FFM model and the MBTI model above, we explain 

the reason that the MBTI model is selected in our research work instead of the FFM model. 

The Five-Factor personality model does not theorize about what goes on inside people’s 

heads; it focuses on actual behaviors. But, the MBIT model characterizes people by their 

attitude towards the inner and outer world and is based on a cognitive theory that explains 

basic personality traits, as arising from differences in how we take in and process 

information. The theory of the MBIT model is what we use to understand the world. The 

Five-Factor model can only find correlations but not put them into any context – 

conservatives score high on Conscientiousness, liberals score high on Openness etc. 

Therefore, with the purpose of research work, we employed the MBIT model in measuring 

personality. 

 

      Although the personality is a psychological term and the programming performance is a 

metric in computer science, the relationship between the personality and the programming 

performance has been explored for several years. The first research on the potential 

interaction between two different disciplines was proposed by Weinberg [20] in 1971. The 

author explored the impact of diverse areas such as personality, motivation, intelligence, and 

experience on the various aspects of programming in groups. Also, the author suggested that 

different programming skills were required at each phase of the software development such 

as code review or code test, so few programmers can always make the best performance in 
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all phases, which is affected by their individual characteristics. Although this research did not 

present many statistical numbers to support his hypotheses, it guides us to conduct the 

relative experiments on the potential influence of the personality and programming activities. 

 

            Additionally, Zahra et al. [13] investigated personality’s influence on the programming 

styles. But the use of FFM is less accurate, and the programming styles were collected 

between 1982 and 2006, which is quite out of date. What is worse, the programming styles 

were not validated. To improve this work, we utilized MBIT to measure the personality, and 

the contemporary programming styles are collected after 2006. The results are validated with 

Cronbach alpha. 

 

      Finally, we cannot ignore another important impact on the programming: the 

programming attitude. Psychologically, the attitude is defined as an overall evaluation of an 

object that is based on cognitive, affective and behavioral information [35]. In computer 

science fields, Eric et al [5] developed the programming attitude in which five factors were 

validated: (1) Confidence in learning computer science and programming; (2) Attitude 

toward success in computer science; (3) Computer science as a male domain; (4) Usefulness 

of computer science and programming; and (5) Effective motivation in computer science and 

programming. 

 

      To our best knowledge, there is no empirical study on the following two topics: the 

effects of the MBTI personality on programming attitudes, and the link between 
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programming styles and programming attitudes. In the present study, we make a first attempt 

to investigate and report the results of this empirical study.  

 

1.2 General Research Area 

      Generally, the programming work is a human task, which is significantly affected by 

human factors such as the personality, programming styles, and programming attitudes. 

Although previous research work has investigated personality’s influence on the 

programming styles, one problem for those investigations is that the study of programming 

styles in the paper did not keep pace with contemporary programmers’ habits, such as 

parallel programming styles, the habits in a big team work and the way of rewriting the 

existing code. To extend the previous work, we collected the programming styles since 2006 

and conducted an empirical analysis of personality and the contemporary programming 

styles.  

 

In addition, programming attitudes also play an important role in programming work. In 

[21], authors developed a computer science attitude survey and collected 162 responses to 

validate the attitude survey. The results indicated that students with positive programming 

attitudes perform better on programming projects and are more likely to succeed by 

completing the class with a C or better. Therefore, we also add one more human factor-- 

programming attitude--into our empirical investigation. Specifically, the following research 

questions are investigated: (1) the influence of personality based on MBTI model on 

programming styles; (2) the influence of personality based on MBTI model on programming 

attitudes; (3) the influence of programming attitudes on programming styles; (4) the 
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influence of personality based on MBTI model on the programming performance; (5) the 

influence of programming attitudes on the programming performance; (6) the influence of 

programming styles on the programming performance. To clarify our research work, the 

relationship among them is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The research goals among personality, programming styles and programming 

attitudes 

 

     In order to complete programming work, many factors need to be seriously considered 

such as knowledge, programming skills, algorithms design, code synchronization and test, 

Personality 

Programming 

styles 
Programming 

attitude 

Influence 
Influence 

Extroverted 
vs. 

Introverted 
 

Sensing  
vs. 

Intuition 

Thinking 
vs. 

Feeling 
 

 

Judging 
vs. 

Perceiving 

Influence 

Performance 

Influence 

Influence Influence 
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and strategies in organizing the programming teams. Until now many research papers have 

investigated the relationship between the performance and human factors (i.e. personality, 

programming styles and programming attitudes). But researchers only used the test scores or 

the final grades to define the performance. Unfortunately, it is less convincing because code 

quality also needs to be considered seriously. For example, there could be the same grade for 

two code solutions of the same problem, but we cannot state they have the same code. 

Typically, a surprising difference usually exists between these two solutions such as code 

readability. To overcome this limitation, we enrich the previous performance definition with 

two factors: (1) running time of code; and (2) rubrics scores (subjectively evaluate the code). 

 

1.3 Research Problem 

       From the perspective of technologies, the performance of programming models, 

especially for parallel models such as CUDA and OpenACC, has been studied for several 

years based on optimization. However, few papers explore the programming performance 

from the impact of human factors such as personality, programming styles, and programming 

attitudes. Some researchers did empirical studies about the influence of personality on the 

programming styles. For example, Zahra et al. [13,14] found that programming experience is 

the most influential factor in programming styles. Although Pearson correlational analysis 

was employed to make conclusions, the results were not precisely based on the following 

five limitations: 

(1) The fact that programming performance was defined with final grades and exam scores 

makes their conclusions less convincing. More metrics need to enrich this definition. 
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(2) Although FFM has been widely used in the evaluation of the personality, this model does 

not theorize about what goes on inside people’s heads; it focuses on actual behaviors instead 

of the theory such as the cognition theory.  

(3) The survey of the personality using FFM [13,14] was conducted twice, but each time the 

questions were not consistent and the survey was not fully conducted. 

(4) A similar problem happened to the survey of programming styles. Authors adopted ten 

questions of fifty-six original questions from five categories of programming styles. 

Although a few questions were selected from each category, the results were less convincing 

because the samples were less reliable. 

(5) The programming styles were collected from research papers between 1985 and 2006, 

which are quite out of date. Before analyzing the relationship between the personality and 

programming styles, the author did not validate them. 

 

      Against those threats above, the FFM will be replaced by the MBTI model. And the 

evaluation of the personality and programming attitudes will be fully conducted in the 

department of computer science and software engineering. In addition, the programming 

styles will be updated to reflect styles that have been prevalent since 2006 and will assess the 

connection between personality and contemporary programming styles. We will preform a 

comprehensive exploration between the programming performance and human factors: 

personality, programming styles, and the programming attitude. We also will analyze the 

relationship among the personality, programming styles and the programming attitude with 

the expectation of guiding researchers in programming work.  
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1.4 Purpose of Research 

The purpose of this study is to investigate the influence of human factors on the 

programming performance and to analyze the relationship among personality, programming 

styles, and programming attitudes. For programming styles, we will collect and validate the 

contemporary programming styles since 2006. With the data from full items of MBTI 

personality, we will explore which factor is the most influential for programming styles. 

Additionally, we will define the running time as the coding performance and the grades as 

the academic performance. 

 

      For programming styles and programming attitudes, we expect to find which attitudes are 

helpful in improving the programming styles and which styles need to be avoided in 

programming work. For the programming performance, we expect to identify: (1) positive 

human factors to help programmers improve their performance, and (2) negative human 

factors to prevent from performance deterioration. This exploration can be used to guide 

programmers in programming work. Therefore, we expect to show researchers: (1) which 

personality factors can positively improve the programming performance and styles; (2) 

which programming attitudes can positively improve the programming performance and 

styles; (3) which programming styles can positively improve the programming performance; 

(4) the relationship between personality and programming attitude. 

 

1.5 Research Approach 
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      This empirical study was conducted in three phases. In the first phase, the survey 

questions in the surveys of personality, programming styles and programming attitudes were 

confirmed. For the personality survey, the MBTI items were employed. For the programming 

styles survey, we collected the styles after 2006 from research papers, technique reports, 

books, and presentations. After the data collection of programming style survey, we validated 

them. The programming attitude survey was adopted from Eric’s model [5].  

      In the second phase, students in the department of computer science and software 

engineering completed the self-assessed survey that was distributed to them in person or 

through an online survey that can be accessed at 

https://www.surveymonkey.com/r/ProgrammingStyle.  

In the third phase, we used statistical methods such as Pearson Correlational Analysis, an 

independent sample T-test, and linear regression analysis to find the most influential factors. 

 

1.6 Research Questions 

        Our empirical experiment aims to investigate (1) the relationship among personality, 

programming styles and programming attitude; and (2) effects of human factors on the 

programming performance. Since there are multiple aspects within each human personality 

category, we specifically analyzed the influence among each category with as many details as 

possible. Overall, the following questions will be investigated in this study: 

1. Can contemporary programming styles be validated? 

2. Which factors in a personality have positive/negative impacts on programming 

performance? 

https://www.surveymonkey.com/r/ProgrammingStyle
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3. Which factor in programming attitude has positive/negative impacts on programming 

performance? 

4. Which factor in programming styles has positive/negative impacts on programming 

performance? 

5. What is the linear relationship based on Pearson correlation analysis among personality, 

programming attitudes, and programming styles? 

 

1.7 Research Hypotheses  

       The MBTI personality model consists of four categories: (1) Where you focus on your 

attention – Extraversion (E) or Introversion (I); (2) The way you take in information – 

Sensing (S) or Intuition (N); (3) How you make decisions – Thinking (T) or Feeling (F); (4) 

How you deal with the world – Judging (J) or Perceiving (P). Under each category, one 

personality type indicator will be matched to a specific participant through self-assessment 

survey. Totally there are sixteen types: ISTJ, ISFJ, INFJ, INTJ, ISTP, ISFP, INFP, INTP, 

ESTP, ESFP, ENFP, ENTP, ESTJ, ESFJ, ENFJ, ENTJ. Based on the consideration of 

relationships between human factors and the performance, the following hypotheses are 

proposed in our study: 

1.  Since the Extroversion type indicates that people prefer to focus on the outer world, the 

programmers with this type of personality might like to write/debug the code in a group 

instead of working alone. And their solutions would be from different members in a group. 

So, the coding styles might not be consistent. The following hypotheses are proposed: 

H0: Extroversion indicator has a negative effect on the coding performance.  
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H1: Extroversion indicator has a positive effect on the academic performance. 

H2: Extroversion indicator has a positive effect on the programming style of group coding in 

an office. 

H3: Extroversion indicator has a negatively linear dependence on the coding performance and 

academic performance. 

2. Since the Introversion indicator indicates that people prefer to focus on their own inner 

world, the programmers with this type of personality might like to write/debug the code 

alone. Their code solution is consistent. The following hypotheses are proposed: 

H4: Introversion indicator has a positive effect on the coding performance and academic 

performance. 

H5: Introversion indicator has a positively linear dependence on the coding performance and 

academic performance. 

H6: Introversion indicator has a positive effect on the work-alone programming style. 

3. Since the Thinking indicator indicates that people prefer to look at logic and consistency, 

from the perspective of programming context, programmers might write code with a text-

based environment. The following hypotheses are proposed: 

H7: Thinking indicator has a positive effect and linear dependence on the coding performance 

and academic performance. 

H8: Thinking indicator has a positive effect on the programming style of the text-based 

programming environment. 
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H9: Thinking indicator has a positive effect on the programming style of writing efficient 

code but is hard to understand. 

4. Since the Feeling indicator indicates that people firstly prefer to look at the people and 

special circumstances, from the perspective of programming context, programmers might 

write code under the visual environment. The following hypotheses are proposed: 

H10: Feeling indicator has a negative effect and linear dependence on the coding performance 

and academic performance. 

H11: Feeling indicator has a positive effect on the programming style of the visual 

programming environment. 

H12: Feeling indicator has a positive effect on the programming style of writing redundant 

code, but is easy to understand. 

5. Since the Intuition indicator indicates that people prefer to interpret information and add 

meaning, when testing programming, a programmer might do it unit by unit. 

H13: Intuition indicator has a negative effect on the coding performance and a positive effect 

on the coding performance. 

H14: Intuition indicator has a positive effect on the “unit-by-unit” programs style.  

6. Since the Sensing indicator indicates that people prefer to focus on the structure of codes, a 

programmer might test all units at one time. 

H15: Sensing indicator has a positive effect on the academic performance and a negative 

impact on the coding performance. 

H16: Sensing indicator has a positive effect on the style of testing all units at one time 



21 
 

7. Since the Perceiving indicator indicates that people prefer to stay open to new options or 

information, programmers might like to synchronize their code with an automatic tool such 

as Github. 

H17: Thinking indicator has a positive effect and linear dependence on the coding 

performance and academic performance. 

H18: Perceiving indicator has a positive effect on the style of synchronizing project code 

automatically. 

8. Since the Judging indicator indicates that people prefer to get things decided, programmers 

might like to synchronize their code manually without extra coding workload such as USB 

drivers. 

H19: Thinking indicator has a positive effect and linear dependence on the coding 

performance and academic performance. 

H20: Perceiving indicator has a positive effect on the style of synchronizing project code 

manually. 

9. Positive confidence in learning computer science and programming has a positive role in: 

(1) the coding performance; (2) the academia performance; and (3) the collaboration style of 

developing software.  

H21: Positive confidence indicator has a positive effect and linear dependence on the coding 

performance and academic performance. 

H22: Confidence in learning computer science and programming affects the programmers’ 

performance and collaboration styles of developing software. 
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10. The programmers with positive attitudes toward success usually prefer to interpret 

information instead of simply taking in basic information. Also, they prefer to stay open to 

new information and options. 

H23: There exists a positive relationship between the programming attitude toward success 

and the time continuity of programming. 

H24: Programming attitude toward success has a positive effect and linear dependence on the 

coding performance.  

H25: Programming attitude toward success has a positive effect and linear dependence on the 

academic performance. 

H26: A positive linear relationship between attitude toward success in computer science and 

Perceiving indicator exists.  

H27: A positive linear relationship between attitude toward success in computer science and 

Intuition indicator exists.   

12. The programmers with a positive attitude of computer science as male domain might not 

affect the performance. 

H28: The strong linear dependence between performance and positive attitude of computer 

science as male domain does not exist. 

13. The programmers with a positive attitude toward usefulness and effective motivation in 

programming might prefer to focus on the outer world instead of their inner world. 

H29: A positive relationship between attitude toward success and effective motivation in 

programming in computer science and performance exists.   
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H30: Usefulness of computer science and programming has a positive effect on the 

Extroversion indicator. 

H31: Effective motivation in computer science and programming has a positive effect on the 

Extroversion indicator. 

H32: A positive relationship between attitude toward success and performance exists.   

15. When facing bugs or testing code, programmers can easily concentrate on specific 

problems if the code is debugged or tested unit by unit, so debugging/testing code with the 

unit-by-unit style can efficiently improve the programming performance. 

H33: The “unit by unit” programming style of testing/debugging code plays a positive role in 

the programming performance. 

16. In order to optimize the code, writing efficient code is compulsory. So naturally 

programmers with traits of writing efficient code but is hard to understand are highly possible 

to improve the programming performance. 

H34: The following programming style plays a positive role in improving programming 

performance: The programming style of creating thoughtful efficient code that increase 

program performance, as opposed to creating simple brute force solutions to programming 

problems. 

 

1.8 Limitations 

    Although we try to analyze the influence of human factors on the programming 

performance as clearly as possible, some threats from the real world on this research still 
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exist. So, the first limitation is the educational level of participants. In this study, our 

participants are students at the undergraduate level. If experts or graduate students are 

recruited, the results may be different. In addition, since few students have parallel 

programming experience, we do not explore the programming styles of parallel computing. 

Thirdly, since the programming styles are a human programming behavior and are easily 

changed based on different types of population. We may continue to update items in 

programming styles several years later because new technologies will generate new 

programming styles. 

 

1.9 Key Terms 

Five Factor Personality model – Openness, Conscientiousness, Extraversion, 

Agreeableness and Neuroticism. 

Myers-Briggs Type Indicator model – Introversion VS Extraversion, Sensing VS Intuition, 

Thinking VS Feeling, Judging VS Perceiving. 

Programming Style - A term used to describe the effort a programmer should take to make 

his or her code easy to read and easy to understand (McCann, 1997). 

Programming Attitude -  attitudes towards computer programming and computer science in 

general. 
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Chapter 2 Literature Review 
 

2.1 The related work in programming styles 

The quality, efficiency, and performance of the code is highly dependent on the users’ 

programming strategies. For example, some programmers prefer to divide the project into several 

sections and then to code each section, while some programmers would like to directly write the 

code to finish the whole project. Cox and Fisher [3] used the term “Programming Style” to 

describe these kinds of programming strategies for manipulating source code. In the paper of 

Cox et al. [3], the following conclusion has been made: experts or experienced programmers 

prefer to use systematic (breadth-first) to debug source code while novices focus on the 

specific(depth-first) line code to debug source code.  

 

       On the other hand, programming is a human task and different programmers work to code 

with different programming styles. In order to identify the human differences, we used the 

psychological term—personality—to distinguish behaviors, emotions, and cognitions among 

programmers. In the following section, the corresponding research work on programming styles 

is reviewed. 

 

Iris [1] conducted an exploratory study to investigate the different programming strategies in 

an expert-novice team. All participants were required to debug pieces of Cobol code and their 

voice was recorded and then transferred to the identification number in the paper. The author 

found that experts like to use a systematic approach (breadth-first) to debug, while novices used 
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the depth-first approach to debug programs. There is a more efficient way to debug the source 

code when the participants used a systematic approach to debugging.   

 

       Cox and Fisher [3] developed a contextual, model-independent framework in which tasks, 

situation, and individual traits were combined. According to the components of this framework, 

educators can better understand how programmers produce source code. In addition, authors 

documented some components of programming styles. For example, some programmers like to 

work on a preferred amount of code for a preferred length of time. 

 

       Andrew and Bob [2] investigated the effect of individual differences on the program 

comprehension strategies under an unfamiliar debugging environment. To assess individual 

differences, the authors mainly tested the verbal intelligence, general problem solving ability, 

domain knowledge and basic information from the background questionnaire. Participants were 

required to debug two tasks under Intercooled Stata 7.0 environment. Results showed that 

individuals with stronger domain knowledge for specific bugs tended to be successful.  

 

2.2 The related work in programming attitudes 

      Another important factor affecting programming is computing attitudes. Allison et al [4] 

hired 447 introductory students to develop a newly designed computing attitudes survey in 2011. 

Through interviewing 11 faculties and 9 students from both research-intensive and teaching- 

intensive institutions, this survey was distributed to participants and validated statistically. In 

order to categorize responses to individual questions, an exploratory factor analysis was 
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conducted. Finally, eight candidate factors were identified in this survey. Another computer 

science attitude survey was developed by Eric et al. [5] in 2003. This survey is mainly for 

measuring the attitudes of computer programming and computer science in general. There are 

five survey subscales and each subscale consists of a series of positive and negative statements. 

The reliability of the survey was evaluated with the responses from 162 students based on the 

internal consistency of these five subscales. Finally, this survey was validated with the Cronbach 

alpha in the 0.7 level.  

 

       Laurie et al. [21] conducted a formal paired-programming experiment at North Carolina 

University in 2001. In this empirical experiment, the authors compared the performance of 

exams and of programming projects. The results showed that paired student are more self-

sufficient which reduces their reliance on the teaching staff. Qualitatively, paired students 

demonstrated higher-order thinking skills than students who worked alone. In addition, this 

computer science attitude survey was also validated with Cronbach’s Alpha value in the 

experiment.  

 

       To better understand the fact that the enrollment in computer science was declining, authors 

[37] proposed a valid and reliable survey to examine science and engineering students’ attitudes 

toward computer science. The participants were undergraduate students from Colorado School of 

Mines and the five constructs in this survey were identified and validated by Cronbach’s Alpha. 

The results showed that this instrument can accurately measured the five constructs that need to 

be assessed. 
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2.3 The related work in personality theory 

       The Myers-Briggs Type Indicator, developed to make C. G. Jung's personality type theory 

understandable and useful in people's lives [22,23], has become the most trusted and widely-used 

psychometric instruments for assessing personality characteristics in non-psychiatric 

populations. Researchers have proved the validity and reliability of the MBIT.  

 

       For reliability, early literature reviews [24,25] based on the first version of the MBTI manual 

[26] gave: (1) internal consistency reliabilities for the four scales ranging from 0.75 - 0.85 with a 

low coefficient of 0.44 for the TF index, and (2) test-retest correlations of about 0.70 for three of 

the scales and 0.48 for the TF index. They found these statistics were comparable to the leading 

personality inventories at the time, but stated the need for more reliability studies. Harvey [27] 

evaluated and summarized results of research on the MBTI’s reliability and validity in the ten 

years following the publication of the manual in the second edition.  Results of meta-analytic 

studies, using generally accepted standards applied to instruments with continuous scores, show 

that reliabilities of the MBTI continuous scores were quite good—average overall reliabilities of 

0.84 and 0.86 for internal consistency measures, and 0.76 for temporal stability.  

 

      For validity, Myers et al. [22] noted that the correlations could be expected to underestimate 

the magnitude of the relationships. Correlations with the Jungian Type Survey (JTS) indicates a 

significant commonality of constructs being tapped by both, though with more consistency for 

the EI and SN scales than the TF (E = 0.68, I = 0.66, S = 0.54, N = 0.47, T = 0.33, and F = 0.23). 



29 
 

Harvey in [27] summarized the expansion of validation research and increasing empirical 

evidence in support of the MBTI’s convergent, divergent, and predictive qualities in the recent 

decade. Fleenor in [28], in his critical review of Form M, concludes that Form M has 

significantly improved the MBTI, citing improved scoring procedures with the use of IRT, and 

eliminating of gender differences in some scales using DIF analysis. 

 

        An alternative measurement Five-Factor Model (FFM) for distinguishing individual 

differences--the measurement of the personality--is the most commonly used method in the 

academia. Normally, researchers would like to evaluate individual personality with Five-Factor 

Model [6] consisting of Openness to Experience, Conscientiousness, Extraversion, 

Agreeableness and Emotional Stability. Schmit and Ryan [7] analyzed the responses to 

individual items of a short form of NEO-PI (Personality Inventory) within applicant and non-

applicant samples. The results showed that an exploratory analysis (EFA) of a non-applicant 

sample demonstrated the expected five-factor solution. 

 

         In addition, some researchers tried to add other methods to improve the Five-Factor model. 

Cellar et al. [8] used the confirmatory factor analysis to estimate a sixth factor and they found 

that adding the sixth factor significantly improves NEO-PI model. Similarly, Lim and Ployhart 

[9] used a multi-trait, multi-method (MTMM) analysis of scale scores to find that adding two 

orthogonal factors, one associated with NEO_FFI data and one associated with International 

Personality Item Pool (IPIP), improved models. 
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       As discussed above, two of the most popular personality assessments are NEO-FFI and the 

IPIP scales. Although the NEO personality inventory developed by Costa et al. [10-11] is the 

most famous one, this is the commercial inventory, so researchers prefer to use IPIP 

(International personality Item Pool) to conduct the relative experiments. In paper [12], the 

structure of 50-item IPIP was validated in three different adult samples (N=906). The data from 3 

questionnaires showed that there is a high internal consistency in the IPIP model.  

 

        The statistical data in paper [36] state that until 2015, (1) 40% of studies used MBTI, and 

(2) 23% of empirical studies used FFM. Figure 3 indicates a higher increase happened to FFM 

model compared to MBTI model since 2000.   

 

Figure 3. The trend of personality tests used in studies on personality and computer 

programming 

 

2.4 The related work in links between programming styles and personality 
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      Although there is various research work on the personality assessment and the programming 

styles, few papers focused on the research of influence of personality on programming styles. 

Zahra et al. [13-14] hired 68 students at University of Stuttgart to finish a self-assessed survey on 

programming experience, five factor personality, attitude towards programming and 

programming style. To validate their questionnaires, authors conducted the piloted study twice 

before the true survey distribution was conducted among students. With Pearson correlational 

analysis, regression analysis and mean analysis, the findings showed that programming 

experience was the most influential factor in programming styles. In addition, among 

components of the Five-Factor model, authors also found a positive relation between Openness 

to experience and the systematic programming styles. Finally, the conclusion was made that 

conscientiousness is the most influential personality factor on programming styles.  

 

2.5 The related work in links between team/group/pair programming and personality 

        Mark [33] did a comprehensive investigation on the effects of group personality 

composition on project team performance. The hierarchical regression was employed in the 

statistical analysis of nine hypotheses. In his dissertation, the author separately analyzed the 

relationship between team performance and five group personality compositions: Team 

Conscientiousness, Team Extraversion, Team Emotional Stability, Team Openness to 

Experience and Team Agreeableness. The results showed that the group personality composition 

of a team significantly affected its performance and that each specific group personality trait 

predicted team performance. 
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      John et al. [34] developed a personality model of the Myers-Briggs Type Indicator (MBTI) 

to predict the team performance. In this model, the four factors (Leadership, Cohesion, 

Communication and Heterogeneity) were established and a modern information system (IS) was 

used to test the validity of this model between two teams. The results from the analysis of 

Critical thinking, IQ, Age and the components of MBIT showed that this model is useful to 

predict the team performance.  

 

       Pair programming is a practice, whereby two programmers work side by side at the same 

computer, continuously collaborating on the same design, algorithm, code, or test [31]. One of 

the programmers has the control of the keyboard and the mouse, actively implements the 

program, and explains the implementation to his or her partner. Studies indicated that students 

with pair programming style in introductory computer science courses had an equal or higher 

chance of passing the course with a C or higher, produced better programs, and were more likely 

to pursue the computer science major than students who solo programmed [32]. 

 

       Another research [29] was conducted among a pilot study of 34 introductory programming 

classes at a medium-size Midwestern university and a follow-up study of 114 college students 

attended a different campus of the university, taking the same computer programming class as 

the pilot study students.  This research indicated that there is a relationship between 

programming performances and the four MBTI personality dimensions. 
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       David Keirsey [30] conjectured that different types of people have different sets of strengths 

and weaknesses. The strengths and weaknesses of different types complement each other. They 

contended that if the students with different personality types are given an opportunity to work 

together, they could produce better results based on different opinions. 

 

2.6 The related work in links between performance and personality 

       Pressman [40] noticed that programmers with the same background performed differently at 

the same task (debugging a program). He said that there may be some “innate human-trait” 

behind such variation, as there are some programmers who are good at debugging, while others 

are not. 

 

       Amy et al. [41] noticed the fact that learning how to program is difficult, and failure and 

attrition rates in college level programming classes remain at an unacceptably high rate. 

Although many educators simply accept this high failure rate, authors tended to explain this 

phenomenon from cognitive profile. Krause’s cognitive profiles were distributed to 246 students 

at Southeast University. Through ANOVA analysis, authors recommend instructional strategies 

that may be used to reach fully motivated and intellectually capable sensor feeler. Eventually, 

Krause’s Cognitive Profile Inventory (CPI) classifies people on the areas from Myers-Briggs, so 

the CPI provides a valid and shorter alternative to Myer-Briggs. 
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      In [42] authors develop a model for assessing personality traits in Software Engineering(SE). 

An assessment technique based on Big Five Factor model and Myer-Briggs model was designed 

to guide intending software engineers in choosing specialization areas based on their personality 

traits. Finally, 58 seniors were recruited to evaluate this model. Results showed that the current 

model can assist first-year student to make a correct decision in the selection of specific research 

direction. 

 

     Similarly, Cunha et al. [15] investigated whether or not the programming performance is 

linked to the personality type under the Myers Briggs Type Indicator (MBTI) models [16-19]. 

Participants were required to find the bugs in the software (Java code).  In order to analyze the 

results statistically, the various bugs were weighted according to the difficulty. The data from 

Pearson correlations showed that participants with thinking and sensing personality are best at 

solving problems so Weinberg [20] hypothesis was validated. 

 

2.7 Distinction of My Research 

      This study enriches factors in defining programming performance: coding performance 

(running time) and academic performance (grades) and is the first time to measure the run time 

in analyzing the influence of human factors on performance. Secondly, although researchers had 

investigated the influence of personality on the programming styles, all programming styles were 

collected from 1985 to 2006. With the development of programming languages such as the 

appearance of parallel models, a dramatic change has happened to programming styles. In our 

empirical study, we collected programming styles after 2006 and plan to validate them. Another 
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contribution is that we specifically investigate the effects of each factor of personality using the 

MBIT model on programming styles and performance. Also, computer science attitudes are 

investigated with the consideration from personality. Finally, we also add the programming 

experience and the programming attitude to our experiment. Therefore, we will present 

guidelines for educators in the programming field based on this comprehensive investigation. 
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Chapter 3 Method 
3.1 Participants 

      In our study, the participants with programming background are expected because we 

investigate the programming performance under the impact of programmers’ personality, 

programming styles and attitudes. In the initial phase, the students in the department of computer 

science are the target of the experiment. In the future work, we will invite experienced 

programmers and experts who have worked in programming for, at least, ten years to enrich our 

data.  

 

3.2 Subjects description 

Software development is a human task and the individual differences result in different 

programming styles. Although researchers did excellent work on extracting the programming 

styles such as Vessey’s exploratory study of debugging code in 1982 and Cox’s contextual 

framework in programming styles in 2005, few studies work on contemporary programming 

styles such as parallel programming styles, programming style in the team work and so on. To 

fill this gap, we update the programming styles after 2006 and also investigate the influence of 

contemporary programming styles on the programming performance.  

 

      For personality, the big Five-Factor model and Myers-Briggs model are mainstreams in 

currently academic research and career evaluation. Since the big Five-Factor model does not 

theorize people’s behavior, the Myers-Briggs model is naturally adopted in our research. The 

personality is fully evaluated with 48 questions of four main factors: Extroversion vs. 
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Introversion, Sensing vs. Intuition, Thinking vs. Feeling, and Judging vs. Perceiving. For each 

question, participants will check one of the five options: strongly agree, little agree, neutral, little 

disagree, strongly disagree.  

 

      To enrich items of programming styles, we add contemporary styles to the new programming 

habits. For example, currently hardware is updated faster and faster, which means it can afford 

more computing or bigger projects. So, the “group programming” style seems to become the 

mainstream in developing software. Based on the group programming styles, we are interested in 

the responses from participants. Besides, the programming styles on debugging/testing and the 

programming workplace are also investigated.  

 

     For the definition of programming performance, we define the running time of code as coding 

performance and programming scores based on rubrics as the academic performance to evaluate 

programmers’ performance as objectively as possible.  

 

3.3 Instrumentation  

      For data collection, we plan to distribute three questionnaires in the classroom or online. 

Forty-eight questions related to the Myers-Briggs Type Indicator personality, a survey of 

computer science attitude and the new questionnaire on programming styles are created to collect 

data. To verify whether participants have programming experience in some projects, background 

data are added as a pre-questionnaire. In the analysis phase, the correlation methods such as 
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Pearson correlation analysis are mainly employed to explore the relationship between each factor 

of personality and programming styles/the performance. And we also use the regression model to 

predict the impact of human factors on the performance. Finally, the independent T-test is 

employed to find whether there exists the significant performance difference among dimensions 

of human factors.  

 

3.4 Procedure 

     To perform the experimental tasks, participants might have access to the Internet through a web 

browser at https://www.surveymonkey.com/r/ProgrammingStyle. The questionnaires can also be 

accessed through hand-held devices, iPad, smart phones, laptops and desktops. For participants 

who are not able to login online, we will distribute a questionnaire of paper version to them.  

 

       Based on the feedback from participants, we will utilize statistical analysis such as Cronbach 

Alpha to validate the survey of contemporary programming styles, which consists of 9 

categories. We will use the survey categories whose Cronbach Alpha is greater than 0.7 in our 

research work. After the data collection, all responses will be protected by computers with 

password protection or stored in a locked room. 

 

3.5 Data Collection 

       The data collection of the research experiment is mainly based on the Internet. The subjects 

who have agreed to participate will be given a link to a website with the details of the study in 

order for them to become familiar with the study at their own convenience. Before taking part in 

https://www.surveymonkey.com/r/ProgrammingStyle
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the study, participants will be provided an IRB form to explain their rights. An Information 

Letter states that participation is purely voluntary, and that they can withdraw from the study at 

any time without any given reason. The experiment process will have five sections (Figure 4) 

that includes IRB forms, the completion of survey forms by participants via Internet or paper 

forms, the data stored and the data process. Approximately ninety-five questions will be 

provided. 

 

 

 

 

 

 

 

 

 

                                        

Figure 4. The experimental process 

 

3.6 Data analysis 

Approved IRB forms are 

provided to participants 

Participants complete a 

survey through Internet 

Participants complete a 

survey of paper version 

 

Data will be locked under a 

password-required account 

Data process 
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       We updated the original programming styles since 2006, so before analyzing the links 

among programming styles, personality and programming attitudes, the programming styles need 

to be validated. Because the Cronbach’s Alpha is a measure of internal consistency, that is, how 

closely related a set of items are as a group, it is considered to be a measure of scale reliability. 

Statistically, we adopted a 0.7 level to accept the dimension of programming styles. That is, if 

the Cronbach Alpha value of one dimension is greater than or equal to 0.7, we will use it in our 

analysis research work; if the Cronbach alpha value of one dimension is less than 0.7, we will 

remove this dimension from the analysis research work. 

 

Also, we analyzed the influence of human factors on the programming performance and the 

links among programming styles, personality and programming attitudes. We use Pearson 

Correlation Analysis and Linear Regression Analysis to make conclusions in our study because: 

(1) Pearson Correlation Analysis is a measure of the strength of a linear association between two 

variables, and (2) Linear Regression Analysis is used to describe data and to explain the 

relationship between the dependent variables and the independent variables. 

 

3.7 Experimental phases 

     In the experiment, we conducted three phases of assessments through questionnaires. In phase 

one, we preformed pre-design work such as requirement analysis and conceptual designs. To 

identify the items of programming styles, the researcher proposed a series of face-to-face 

interview with programming professors and performed a literature review on the topic of 

programming styles. The objectives in phase one are to: 



41 
 

1. Identify the contemporary programming styles published by researchers. 

2. Identify the contemporary programming styles after 2006. See Appendix C for a list of 

programming styles. 

3. Identify the available personality inventory. See Appendix A for a list of personality. 

4. Identify the available programming attitudes. See Appendix B for a list of programming 

attitudes. 

5. Gather information and conduct the proper questionnaires for our research. 

6. Based on information of personality and of programming styles, prepare for the form of 

research involving human subjects. 

 

In phase two, participants voluntarily attend the survey recruitment. The main activities include: 

 The project investigator will explain the purpose of the experiment and relevant 

instructions, and show participants the approved the form of research involving human 

subjects. 

 The link of the survey will be provided. For participants who prefer to fill out the survey 

of a paper version, we can also distribute the surveys to students in the classroom. 

 The survey tasks will be performed by participants at any time and at any place through 

Internet. 

 The data will be saved in the password-protected computers or the locked room. 

 

In phase three, all data will be compiled and processed based on statistical metrics: 

 Cronbach’s Alpha will be employed to validate the programming styles survey. 
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 Independent sample T-test, Pearson Correlation Analysis (PCA) and Linear Regression 

Analysis (LRA) is used to analyze the influence of human factors on the programming 

performance and the links among personality, programming styles, and programming 

attitudes. 
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Chapter 4 Comprehensive Evaluation 
 

       In this chapter, the empirical results are presented and discussed. And the conclusions are 

made based on experimental data and statistical analysis. The terminologies and background in 

the personality, programming attitudes, and programming styles are explained in details in 

section 4.1, 4.2 and 4.3. Also, the skeleton of three surveys are associated with the terminologies 

explanation. Secondly, because there are several categories of each survey in our empirical 

research, it is necessary to discuss the motivation in selecting statistical analysis methods when 

we analyzed the relationship between the programming performance and human factors. In 

section 4.5, it is presented that all empirical results and conclusions with statistical standards. For 

example, the value 0.05 was used as a threshold to make conclusions whether or not the 

comparative samples are significantly different.     

 

4.1 Empirical studies in the personality survey 

       Since the Myers-Briggs model is adopted in our research, four categories under this model 

are introduced based on the Myers & Briggs Foundation [44]. Table 2 illustrates each category, 

index of measurement, purposes of measurement, and corresponding questions used in the 

research. In the “Survey Questions” column, the question number corresponds to the order of 

Appendix A: Personality Questionnaire.  

Table 2. Myer-Briggs Personality basic concepts 

Category Index Purpose Survey 

Questions 

 

Favorite 

world 

 

Extraversion(E) or Introversion(I) 

Participants prefer to focus 

on the outer world or on 

  

 E: Q1-Q5 

 I:  Q6-Q10 
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 In order to classify the personality of each student, the data processing was described in the 

following steps. Since there are five potential options for each participant, the weight is relatively 

associated with each option. The weighted-option table is described in Table 3. 

Table 3.  Weight-Option values 

     Options A: Disagree B: Little    

Disagree 

C: Neutral D: Little  

Agree 

E: Agree 

Weights 1 2 3 4 5 

 

 The survey answers can be numerated between 1 and 5. Each category consists of a pair of 

preferences which are opposite. For example, there are two preferences in Decision category: 

Thinking (T) and Feeling (F). The Thinking preference is completely opposite to the Feeling 

preference. We use Thinking as the first preference and Feeling as the second preference.  

 

their own inner world or 

not 

 

Information 

 

Sensing (S) or Intuition (N) 

Participants prefer to focus 

on the basic information 

they take in or prefer to 

interpret and add meaning  

 

S: Q11-Q16 

N: Q17-Q22 

 

 

Decision 

 

 

Thinking (T) or Feeling (F) 

When making decisions, 

participants prefer to first 

look at logic and 

consistency or first look at 

the people and special 

circumstances 

 

 

T: Q23-Q29 

F: Q30-Q36 

 

 

Structure 

 

 

Judging (J) or Perceiving (P) 

In dealing with the outside 

world, participants prefer 

to get things decided or do 

you prefer to stay open to 

new information and 

options 

 

 

J: Q37-Q42 

P: Q43-Q48 
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 For all data in Decision category, we made a summation in the first preference. For the 

second preference, all questions are used to measure participants’ opposite preferences so the 

results can be obtained with a calculation of subtracting the points by total points. For example, 

the Feeling preference of the Decision category has 7 questions and total points are 35 by the 1-5 

point (i.e. Likert scale). In order to process the valuation for a student’s personality between 

Thinking and Feeling, there is a maximum of 35 points that can be attributed. If a student scores 

31 points in Thinking(T) preference and 21 points in the Feeling(F) category, we feel that this is 

not identified as strongly Thinking.  In order to attribute the proper amount of T/F preference, we 

record both values and calculate the T/F measurement. We calculate T/F by storing 35 then 

subtract 21 and the calculate T/F points for this student in Feeling preference is 14. And the last 

step is that we added the score (14 points) from opposite section to the score from the first 

section. Finally, the points in Decision category for this student is the value of 31 plus 14: 45.  

We define this conversion from the second preference to the first preference the normalization 

and applied it in all participants and all dimension of human factors. 

 

Until now we have normalized all scores for each category and then the mean value of the 

scores under this category is used as a middle point to classify participants’ personality. Taking 

the calculation of the “Decision” category as an example, the researcher assumes that the mean 

value is 35 among 320 results. Since the score is 44 for this student, it is classified as Thinking 

type. If the mean value is 45, this student will be classified as Feeling type. 

 

4.2 Empirical studies in the programming attitude survey 
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In measuring programming attitudes, the questionnaire was adapted from Eric [5], which was 

composed of five categories. Table 4 summarizes different categories, survey questions and the 

purposes of measuring each category. And the survey questions are indexed according to the 

order of Appendix B: Programming Attitude Questionnaire. 

Table 4. Programming attitude basic concepts 

Category Index Purpose Survey Questions 

Confidence Confidence(C) or     

Non-confidence(NC) 

Confidence in learning 

computer science and 

programming 

C:    Q1-Q6 

NC: Q7-Q12 

Success 

Attitude 

Success Attitude(SA) or 

Unsuccess Attitude(UA) 

Attitude toward success in 

computer science 

SA: Q13-Q18 

UA: Q19-Q24 

Gender 

domain 

Male Domain(MD) or 

Female Domain(FD) 
Computer science as a male 

domain 

MD: Q25-Q28 

FD:  Q29-Q32 

Usefulness Usefulness(U) or 

Unusefulness(UN) 

Usefulness of computer 

science and programming 

U: Q33-Q38 

UN: Q39-Q44 

Effectiveness Effectiveness(E) or 

Ineffectiveness(IE) 

Effective motivation in 

computer science and 

programming 

E: Q45-Q49 

IE: Q50-Q56 

        

     To normalize the survey results of programming attitudes from students, the data processing 

method is the same as the calculation in the personality survey. Also, the weight of each option 

for every question is the same value as shown in Table 3. 

 

4.3 Empirical studies in programming styles survey 

      Since more and more researchers and educators noticed that the performance of the source 

code and programmers’ efficiency is highly dependent on programming habits, which are called 

the programming styles in our research. Hence, we collected and developed a contemporary 

programming style survey since 2006 with the hope of assisting programmers, especially for 
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novices, in improving the performance and programming efficiency. As Appendix C shows, we 

investigated the participants’ academic background and totally there are 23 questions under 9 

categories. Details of programming styles are illustrated in Table 5. 

Table 5. Programming styles basic concepts 

Category Index Purpose Survey Questions 

 

Programming 

Collaboration 

Programming 

Alone(PA) or 

Programming in a 

Group(PG) 

Prefer to work 

alone or Prefer to 

work with others 

PA: Q7, Q10, Q11 

 

PG: Q8, Q9, Q12, Q13 

 

Programming Time 

Duration 

Continuous 

Programming(CP) or 

Intermittent 

Programming(IP) 

Program 

consecutively or 

Program 

intermittently 

CP: Q14 

IP: Q15 

 

Software 

Maintenance 

Open-Source(OS) or 

Closed-Source(CS) 

Software 

maintenance in the 

way of open-source 

or closed-source 

OS: Q16 

CS: Q17 

 

Programming 

Context 

Visual 

Programming(VP) or 

Text 

Programming(TP) 

Programming in a 

visual context or in 

a text context 

VP: Q18 

TP: Q19 

 

Programming 

Debugging 

Partially Test(PT) or 

All-Block Test(AT)  

Code debugging 

unit by unit or all-

unit test at a time 

PT: Q20 

AT: Q21 

 

Programming 

Environment 

Programming 

Remotely(PR) or 

Programming 

Together(PT)  

For programming, 

physically sit 

together to contact 

or contact in a 

remote way  

PR: Q22a 

PT: Q22b 

Software 

Requirement 

Analysis 

Concrete 

Discussion(CD) or 

Abstract 

Discussion(AD)  

Requirement 

discussion with a 

concrete picture or 

in an abstract way 

CD: Q22c 

AD: Q22d 

 

Code Understanding 

and Efficiency 

Efficient-But-

Confused Code(EC) 

or Redundant-But-

Clear Code(RC) 

Efficient code but 

hard to understand 

or redundant code 

but easy to 

understand 

EC: Q22e 

RC: Q22f 

 

Source Code 

Synchronization 

Manual 

Synchronization(MS) 

Synchronize group 

members’ code 

MS: Q22g 
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or Automatic 

Synchronization(AS) 

manually or 

automatically 

AS: Q22h 

 

 To normalize the results of the programming style survey from students, the data processing 

method is the same as the calculation in the personality survey. Also, the weight of each option 

for every question is the same value as shown in Table 3. 

 

4.4 Experiment Configuration 

      In Table 6, we list the demographic information of participants in our empirical experiment. 

Totally there were 421 participants, but 324 of them voluntarily participated in this research 

work. In Table 6 we can see: (1) the age of most participants was 18 years old or 19; (2) 257 of 

324 (79.3%) participant was male; (3) 74.3% participants only have 0-6 months programming 

experience; (4) most students have the programming experience of less than 1000 lines of code; 

and (5) overall academic achievement is B+ level. 

Table. 6 Participants demographics 

Biographical Variable Item Number of Participants 

 

 

 

 

Age 

17 2 

18 118 

19 113 

20 54 

21 22 

22 7 

23 4 

24 1 

25 2 

Gender Male 257 

Female 64 

 0 month 6 

0 month—6 months 241 



49 
 

Year of Programming 

Experience 

6 month—12 months 16 

>12 months 43 

 

 

Programming Language 

C/C++ 37 

Java 31 

C# 4 

Python 15 

CUDA 1 

 

Largest Code Contribution 

<100 LOC 190 

100 LOC – 1000 LOC 122 

1000 LOC – 5000 LOC 12 

Academic Achievement Average (B or above) 229 

Above Average (A) 93 

 

     Additionally, we briefly describe 7 projects used in the experiment. In Table 7, we can see 

that totally there are 4 assignments: (1) two simple projects are included in the first assignment; 

(2) there is only one project in assignment 2 which requires students to optimize the bubble sort 

algorithm; (3) the fourth project is included in assignment 3 which needs to implement a 

program to operate data from .txt files; (4) three projects are included in assignment 4, which is 

the hardest part of the experiment. 

Table 7. Programming problem description 

Assignment Project Description 

 

A1 

1 Solve a basic arithmetic statement: -3*3/5+13^2-(4*70)/(33*14) 

     2 Use the law of sines to calculate the length of the missing side c of a triangle 

Delta with built-in Matlab functions, basic arithmetic and algebra. 

A2 3 Implement an algorithm which improves bubble sort algorithm with a 

specific pseudo-code. 

 

A3 

 

4 

Write a program that will populate a file with an NxM matrix, then it will 

read the NxM matrix in from the file and perform some basic mathematical 

operations on it (calculate the mode, avg, and find the min, max, and median 

in the matrix). 

 

 

 

 

 

       A4 

 

5 

Write a program that stores all grades and weights in a text file called 

“grades.txt” to calculate the percentage based on the grade with the following 

two function: (1) process_file; and (2) calc_grade 

 

 

6 

Write a program that is able to read in expressions and values from a file then 

solve them using the function you created. The file is constructed: (1) The 

first line of the input file will tell you how many expressions are in the file; 

(2) Each subsequent pair of lines will consist of coefficients for x, y, and z; 

(3) the actual values you should substitute for x, y, and z 
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7 

Write a program that is able to read in equations from a file and then solve 

them using the solve function. Assuming solving linear equations with 3 

unknowns. The file is constructed: (1) The first line of the input file will tell 

you how many triplets of expressions are in the file; 

 

Since there are 7 projects tested in the research, we need to convert the data of all projects into 

a normalization value to predict the impact of human factors on the performance. The following 

steps are described in order to normalize the data. This process is listed in the following steps: 

 (1) For each project, find the maximum and minimum numbers; 

 (2) Convert the number to a standardization value with the formula: 0.1+0.8*(x-   min)/(max-

min) (x is the specific students’ score); 

 (3) Mathematically calculate the average number for each student. 

 

4.5 Influence of human factors on the programming performance and quality 

     Currently, the most evaluation of the code performance is conducted based on the running 

time. But other details of code writing are ignored such as the conciseness of codes, the clean of 

codes, the readability of codes and so on. Therefore, we develop the rubrics of assessing “non-

running-time” factors before participants’ projects were graded. The running time of codes is 

used to evaluate code performance. And grades of projects are used to evaluate academic 

performance. To achieve the evaluation statistically, the independent T-test is applied in 

exploring significant differences with a standard level of 0.05. The analysis of Pearson 

correlation and linear regression are employed in predicting effects of the human factor in 

performance. The R-square of 0.7 in linear regression is typically used to determine whether the 

prediction is convincing or not. And the value of 0.7 in Pearson correlation analysis is used to 
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make conclusions on linear correlation relationship among performance and human factors. 

Finally, novel programming styles were developed and verified with Cronbach Alpha. 

Statistically, if the value of Cronbach Alpha for each subscale in programming styles is greater 

than 0.7, we believe this subscale is verified. Otherwise, if the value is less than 0.7, this subscale 

would not be accepted. 

 

     Since three human factors (i.e. personality, programming attitude and programming styles) 

are investigated in their impact on programming performance, the following relationships are 

comprehensively explored, discussed and analyzed.  

(1) which factors of personality significantly play a positive/negative role in the coding 

performance; 

(2) which factors of personality significantly play a positive/negative role in the academic     

performance;  

(3) which factors of programming attitude significantly play a positive/negative role in the 

coding performance; 

(4) which factors of programming attitude significantly play a positive/negative role in the 

academic performance;  

(5) Whether the programming styles can be verified; 

(6) which factors of programming styles significantly play a positive/negative role in the coding 

performance; 
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(7) which factors of programming styles significantly play a positive/negative role in the 

academic performance;  

(8) whether there exists a strong linear relationship among factors of personality and the code 

performance or not; 

(9) whether there exists a strong linear relationship among factors of personality and the 

academic performance or not; 

(10) whether there exists a strong linear relationship among factors of programming attitude and 

the code performance or not; 

(11) whether there exists a strong linear relationship among factors of programming attitude and 

the academic performance or not; 

(12) whether there exists a strong linear relationship among factors of programming styles and 

the code performance or not; 

(13) whether there exists a strong linear relationship among factors of programming styles and 

the academic performance or not; 

(14) whether the impact of personality factors on the code performance can be predicted or not; 

(15) whether the impact of personality factors on the academic performance can be predicted or 

not; 

(16) whether the impact of factors of programming attitude on the code performance can be 

predicted or not; 

(17) whether the impact of factors of programming attitude on the academic performance can be 

predicted or not; 
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(18) whether the impact of factors of programming styles on the code performance can be 

predicted or not; 

(19) whether the impact of factors of programming styles on the academic performance can be 

predicted or not; 

(20) whether there exists a strong linear relationship between the personality and the 

programming styles or not; 

(21) whether there exists a strong linear relationship between the programming attitudes and the 

programming styles or not; 

(22) whether there exists a strong linear relationship between the personality and the 

programming attitudes or not. 

4.5.1 Influence of personality on performance 

Since there are four subscales of the personality, we respectively analyzed the impact of each 

subscale on the performance. And the performance under each subscale also was compared with 

the p-value metric of the independent sample T-test. In Table 8, the data illustrates the coding 

performance difference under each subscale with 7 projects.  

 

       For “Favorite World” category, the participants with Introversion characteristic can write 

more efficient code than participants with Extraversion characteristic except Project 4. In Project 

4, although the running time of code written by Introversion students is slightly longer than one 

of code written by Extraversion students, the P-value 0.3826 indicates that there is no significant 

difference. Hence, statistically the coding performance of introversion is not worse than one of 
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extraversion in Project 4. We made a conclusion that generally, the introversion programmers 

outperform the extraversion programmers.  

 

For “Information” category, since Intuition people pay the most attention to impressions or 

the meaning and patterns of the information rather than the physical reality in Sensing, we 

propose that the Intuition students would write more efficient code than Sensing students. All 

testing data from 7 projects support our hypothesis. Under each project, the running time in 

Intuition is significantly shorter than the running time in Sensing and all p-value is less than 0.05. 

Hence we make a conclusion that the Intuition programmers can write more efficient code than 

Sensing programmers.  

 

The third category of personality is the “Decision” type. Some people would like to 

independently think about problems based on basic truth or principles while someone would like 

to make decisions based on weighing what people care about in a specific situation [4].  Hence, 

we propose the hypothesis that “Thinking” students are able to write more efficient code than 

“Feeling” students. This proposal was tested with 7 projects and in Table 8 the running time of 

code written by Thinking students is significantly shorter than running time of code written by 

Feeling student because of the corresponding p-value is less than 0.05. 

 

      The “Structure” category of the personality describes how people like to live in the outer life. 

Someone would prefer a planned or orderly way of life while someone like a flexible way of life. 

Based on the data from 7 projects, we found that Perceiving programmers are more efficient in 
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writing code than Judging programmers. Since all p-values are less than 0.05, we make a 

conclusion that statistically the Perceiving programmers outperforms the Judging programmers. 

   Table 8. Impact of personality subscales on coding performance 

Personality Project Index Running time(second) P-value(one-tail) 

Favorite 
World 

1 Extraversion Mean 0.000816, Std. 0.0048, n=158           0.0298 

Introversion Mean 0.001627, Std. 0.001576, n=71 

2 Extraversion Mean 0.005567, Std. 0.0340, n=159 0.0380 

Introversion Mean 0.000469, Std. 0.000998, n=74 

3 Extraversion Mean 0.01136, Std. 0.0431, n=143 0.0121 

Introversion Mean 0.00275, Std. 0.009578, n=67 

4 Extraversion Mean 0.1724, Std. 0.1754, n=77 0.3826 

Introversion Mean 0.1813, Std. 0.1420, n=42 

5 Extraversion Mean 0.01545, Std. 0.0406, n=132 0.0219 

Introversion Mean 0.007763, Std. 0.0102, n=56 

6 Extraversion Mean 0.4826, Std. 1.7265, n=106 0.0387 

Introversion Mean 0.1816, Std. 0.1276, n=45 

7 Extraversion Mean 0.6963, Std. 0.3659, n=95 0.0319 

Introversion Mean 0.5802, Std. 0.3263, n=44 

Information 1 Sensing Mean 0.002, Std. 0.00478, n=174 5.81E-07 

Intuition Mean 1.73E-04, Std. 2.29E-04, n=55 

2 Sensing Mean 0.0065, Std. 0.0343, n=174 0.0085 

Intuition Mean 2.08E-04, Std. 3.09E-04, n=58 

3 Sensing Mean 0.0116, Std. 0.0421, n=158 0.00924 

Intuition Mean 0.0028, Std. 0.0114, n=52 

4 Sensing Mean 0.2056, Std. 0.1645, n=91 1.45E-05 

Intuition Mean 0.0778, Std. 0.1189, n=28 

5 Sensing Mean 0.0225, Std. 0.0612, n=147 1.05E-04 

Intuition Mean 0.00320, Std. 0.00406, n=41 

6 Sensing Mean 0.4927, Std. 1.653, n=118 0.0351 

Intuition Mean 0.2124, Std. 0.1136, n=33 

7 Sensing Mean 0.6996, Std. 0.391, n=104 5.91E-04 

Intuition Mean 0.4345, Std. 0.3994, n=35 

Decisions 1 Thinking Mean 0.0017, Std. 0.0045, n=198 0.039 

Feeling Mean 0.0029, Std. 0.003, n=31 

2 Thinking Mean 0.005, Std. 0.032, n=200 0.0141 

Feeling Mean 0.083, Std. 0.194, n=33 

3 Thinking Mean 0.0104, Std. 0.0104, n=180 0.0237 

Feeling Mean 0.0037, Std. 0.008, n=30 

4 Thinking Mean 0.179, Std. 0.179, n=101 0.0157 

Feeling Mean 0.382, Std. 0.363, n=18 

5 Thinking Mean 0.019, Std. 0.0193, n=162 0.0158 

Feeling Mean 0.1698, Std. 0.3365, n=26 

6 Thinking Mean 0.478, Std. 0.478, n=126 0.0158 
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Feeling Mean 0.9078, Std. 0.676, n=25 

7 Thinking Mean 0.6919, Std. 0.692, n=115 0.00667 

Feeling Mean 1.033, Std. 0.608, n=24 

Structure 1 Judging Mean 0.002, Std. 0.00503, n=154 6.67E-07 

Perceiving Mean 0.00019, Std. 0.00037, n=75 

2 Judging Mean 0.0072, Std. 0.0364, n=154 0.01 

Perceiving Mean 0.0003, Std. 0.000862, n=79 

3 Judging Mean 0.0113, Std. 0.0353, n=136 1.86E-04 

Perceiving Mean 0.00023, Std. 0.0082, n=74 

4 Judging Mean 0.2415, Std. 0.1685, n=74 2.5E-12 

Perceiving Mean 0.067, Std. 0.2082, n=45 

5 Judging Mean 0.0267, Std. 0.066, n=122 5.3E-05 

Perceiving Mean 0.00264, Std. 0.003, n=66 

6 Judging Mean 0.345, Std. 0.358, n=100 0.0338 

Perceiving Mean 0.2749, Std. 0.092, n=51 

7 Judging Mean 0.715, Std. 0.7148, n=87 0.0051 

Perceiving Mean 0.559, Std. 0.301, n=52 

 

In some cases, one student writes more efficient codes than another student, it was possible 

that both students may get the same score or that the grade of the student with more efficient 

codes may be lower than the grade with less efficient codes. Hence, the second evaluation work 

was conducted in the impact of personality on academic performance. 

 

For “Favorite World” category, grades of all projects in Introversion are significantly higher 

than grades in Extraversion. Since Extraversion students like to discuss questions with others, the 

programming habits and styles are less consistent compared to the coding styles written by 

Introversion students. Hence, the grades with Extraversion deteriorate when the rubrics were 

used to evaluate the academic performance  
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       For “Information” category, “Sensing” programmers pay attention to physical reality. So, in 

our empirical experiment, they focus on the rubrics requirement. But “Intuition” programmers 

would like to pay more attention to the correctness of code. Hence, as Table 9 showed, Sensing 

students outperforms Intuition students in projects grades. 

For “Decision” category, obviously, we reasonably believe that “Thinking” students can 

achieve a better grade than “Feeling” students. Data in Table 9 support our hypothesis. With a 

four-project test, the “Thinking” students got a higher grade than “Feeling” students, which is 

supported by a p-value of less than 0.05. Hence, we make a conclusion that “Thinking” 

programmer outperforms “Feeling” programmers in program grading work. 

 

     For “Structure” category, “Judging” students prefer a planned or orderly way of life such as 

having things settled or organized. Specifically in project tests, they feel comfortable if they plan 

their code style organized. But for “Perceiving” students, they prefer a flexible life. When they 

plan to finish the projects, the correctness is the priority instead of the requirement of rubrics. As 

Table 9 showed, the p-value in first 3 projects was less than 0.05. In project 4 although 

“Perceiving” students achieved a better grade than “Judging” students, the p-value is greater than 

0.05. So statistically the grade in Perceiving was not significantly better than the grade in 

Judging. Based on the analysis above, we make a conclusion that “Judging” programmers can 

achieve a better grade than “Perceiving” programmers. 

                               Table 9. Impact of personality subscales on academic performance 

Personality Assignment Index Grade P-value(one-tail) 

Favorite 
World 

1 Extraversion Mean 88.34, Std. 15.13, n=182 0.0193 

Introversion Mean 91.70, Std. 10.53, n=83 

2 Extraversion Mean 79.11, Std. 22.35, n=184 0.017 
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Introversion Mean 84.18, Std. 15.50, n=82 

3 Extraversion Mean 83.09, Std. 22.51, n=171 0.037 

Introversion Mean 87.77, Std. 16.81, n=74 

4 Extraversion Mean 83.27, Std. 20.15, n=172 0.0025 

Introversion Mean 89.85, Std. 14.39, n=69 

 
Information 

1 Sensing Mean 88.95, Std. 14.34, n=197 0.0037 

Intuition Mean 80.99, Std. 22.43, n=68 

2 Sensing Mean 80.58, Std. 20.32, n=195 0.0104 

Intuition Mean 73.04, Std. 23.99, n=70 

3 Sensing Mean 83.58, Std. 21.78, n=186 0.0456 

Intuition Mean 77.16, Std. 26.10, n=59 

4 Sensing Mean 85.28, Std. 18.75, n=179 0.0258 

Intuition Mean 78.49, Std. 24.73, n=62 

Decisions 1 Thinking Mean 89.07, Std. 14.94, n=228 0.2273 

Feeling Mean 87.35, Std. 12.51, n=37 

2 Thinking Mean 79.41, Std. 21.11, n=228 0.0124 

Feeling Mean 70.14, Std. 22.80, n=37 

3 Thinking Mean 83.53, Std. 22.23, n=212 0.0038 

Feeling Mean 69.90, Std. 26.90, n=34 

4 Thinking Mean 84.06, Std. 20.10, n=206 0.0387 

Feeling Mean 76.07, Std. 24.75, n=35 

Structure 1 Judging Mean 89.85, Std. 13.62, n=173 0.0014 

Perceiving Mean 82.48, Std. 21.00, n=92 

2 Judging Mean 79.86, Std. 21.08, n=174 0.0338 

Perceiving Mean 74.49, Std. 23.42, n=92 

3 Judging Mean 83.73, Std.21.84, n=161 0.0140 

Perceiving Mean 76.29, Std. 26.49, n=85 

4 Judging Mean 83.96, Std. 20.70, n=159 0.2840 

Perceiving Mean 85.40, Std. 17.41, n=82 

 

We also explored whether there exists a linear correlation between each category of the 

personality and the coding performance in Table 10. Since we converted the value of 

Introversion to the value of Extraversion in Personality row (Table 10), we use EI’ to denote the 

conversion from Introversion to Extraversion. The similar conversion can be applied in the rest 

of three categories: SN’, TF’ and JP’.  

The rules in the correlation are explained as follows: taking EI’ column as an example, if the 

correlation value is a positive number, the coding performance is linearly relative to 
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Extraversion. If the correlation value is a negative number, the coding performance is linearly 

relative to the opposite category of Extraversion: Introversion. Also, this explanation of 

correlation numbers was applied to the rest of three categories: SN’, TF’ and JP’.  

 

In “ EI’ ” column of Table 10, the coding performance in most projects is, negatively, linearly 

dependent to the Extroversion character. Namely, the coding performance increases when the 

weight of Introversion character gets higher. And the coding performance becomes deteriorated 

when programmers are more and more extraverted. But an exception happened to the project 7. 

The correlation value is 0.6801, which is less than 0.7. In Matlab course, there are 7 projects 

assigned to students and the last one is complicated, time-consuming assignment. So, it 

suppresses the distinguish in coding performance.  

 

      In “ SN’ ” column, the correlation values from all projects show that the coding performance 

is, positively, linearly dependent to Sensing instead of Intuition. And in “ TF’ ” column, we 

found the coding performance rises when programmers prefer to solve problems in a “Thinking” 

way instead of a “Feeling” way. Although the experimental value of 0.6955 is made in project 2, 

we still believe our conclusion that the coding performance is, positively, linearly dependent to 

the “Thinking” category.  

      In “ JP’ ” column, the students with a planned or orderly way of life obviously outperforms 

ones who prefer a flexible way of life in coding performance. All values in “ JP’ ” column is 

greater than 0.7 so we reasonably believe that the coding performance is, positively, linearly 

dependent to Judging characteristic.   
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Table 10. Correlation of influence of personality subscales on coding performance 

 Personality 

Project 

EI' SN' TF' 

 

JP' 

 

1 -0.7986 0.8111 0.7137 0.7663 

2 -0.7121 0.8350 0.6955 0.7332 

3 -0.7467 0.9425 0.7831 0.7690 

4 -0.7172 0.9429 0.7290 0.7523 

5 -0.7990 0.9534 0.8129 0.8346 

6 -0.7701 0.8346 0.7173 0.7729 

7 -0.6801 0.8740 0.7380 0.7358 

 

Additionally, we also explored the correlation between students’ academic performance and 

the personality. For “Favorite World” category, we found there exists a strong linear dependence 

between students’ grade and their Introversion character in project 2 and project 3. 

Unfortunately, we did not find this linear dependence in project 1 and project 4.  

 

       For “Information” category, since students with Sensing character would like to pay 

attention to the physical reality, their grade is highly linearly dependent to Sensing if the rubrics 

were presented by the instructor. Also, for “Structure” and “Decision” categories, the academic 

performance is positively linearly dependent to “Thinking” and “Judging”. 

Table 11. Correlation of influence of personality subscales on academic performance 

 Personality 

Assignment 

EI' SN' TF' 

 

JP' 

 

1 -0.05496 

 

0.933958 

 

0.847646 

 

0.789044 

2 -0.75081 

 

0.949684 

 

0.831769 

 

0.831429 

 

3 -0.72657 

 

0.945148 

 

0.790098 

 

0.778046 

 

4 -0.12858 

 

0.894694 

 

0.744781 

 

0.906151 
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      To determine the strength of the relationship between the coding performance or the 

academic performance and a series of variables in the personality, we also utilized the multiple 

linear regressions to predict the impact of each category of personality on the coding 

performance and academic performance in Table 12 and Table 13. So that it can help educators 

and researchers to value: (1) personality categories, and (2) the relationship among personality 

subscales and their coding performance or academic performance.  

 

In Table 12, totally 58 students correctly completed all projects and the R-square is 0.96. 

Although R-square can describe how close the data are to the fitted regression line, the residual 

plots need to be checked before we make a conclusion about our prediction model in (1) coding 

performance and personality; (2) academic performance and personality. Residual plots can 

reveal unwanted residual patterns that indicate biased results more effectively than numbers. 

Here we used statistical terms to define residual: the difference between the observed value of 

the dependent variable and the predicted value. 

 

     In Fig. 5, the independent variable Extraversion is denoted on the horizontal axis and the 

residual is showed on the vertical axis. Clearly, all points are randomly dispersed around the 

horizontal axis. Hence, the linear model of Extraversion is appropriate for that data. Similarly, in 

Figs. 6-8, most points are randomly distributed around the horizontal axis. Based on this 

observation, we make a conclusion that the linear regression model in Table 12 is valid for 

personality and coding performance. 

Table 12. Regression of influence of personality subscale on coding performance 
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Project  Coefficients P-value R Square N 
 

 

Performance 

Intercept 0.38 2.42E-04  
 

0.96 

 
 

58 
EI' -0.007 2.47E-07 
SN' 8.4E-04 0.18 
TF' 0.0032 0.0047 
JP' -7.4E-04 0.45 

Regression 

Equation 

-0.007*E+8.4E-04*S+0.032T-7.4E-04*J+0.38 

 

 

 

Figure 5. Extraversion vs. Introversion residual plot for coding performance 

 

Figure 6. Sensing vs. Intuition residual plot for coding performance 
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Figure 7. Thinking vs. Feeling residual plot for coding performance 

 

 

   Figure 8. Judging vs. Perceiving residual plot for coding performance 

       The data in Table 13 present a prediction model between personality and academic 

performance and the R-square is 0.87. In Figs. 9-12, although some points are below or above 

the horizontal axis, overall all points are still randomly dispersed around x-axis. We concluded 

that our prediction model was valid to predict the academic performance based on the 

personality. 

      Table 13. Regression of influence of personality subscale on academic performance 

Project  Coefficients P-value R Square N 
 

 

Grade 

Intercept 0.51 8.37E-41  
 

0.87 

 
 

208 
EI' 0.0048 4.58E-05 
SN' 0.0024 0.068 
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TF' -0.0058 3.47E-04 
JP' 0.0065 1.82E-06 

Regression 

Equation 

0.0048*E+0.0024*S-0.0058*T+0.0065*J 

 

 

Figure 9. Extraversion vs. Introversion residual plot for academic performance 

 

 

Figure 10. Sensing vs. Intuition residual plot for academic performance 
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Figure 11. Thinking vs. Feeling residual plot for academic performance 

 

 

Figure 12. Judging vs. Perceiving residual plot for academic performance 
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         Since there are five subscales of programming attitude, we respectively analyzed the 
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in the tables and figures needs to be clarified: (1) CNC’—Confidence and Non-confidence; (2) 

ATNAT' – Attitude toward success and Attitude toward nonsuccess; (3) MDFD' – Male domain 

and Female domain; (4) UFUL' – Useful and Non-useful; (5) EMIM' – Effective Motion and 

Ineffective Motion. In Table 14 the data show the coding performance based on the running time 

under each subscale with 7 projects.  

 

For “Confidence in learning computer science and programming” category, the participants 

with confidence characteristic can write more efficient code than participants with non-

confidence characteristic because the running time with Confidence character is less than the 

running time with Non-confidence character in all projects (Table 14) and the corresponding p-

value is less than 0.05. Hence statistically we made a conclusion that the Confidence 

programmers outperform the Non-confidence programmers. 

 

For “Attitude toward success in computer science” category, we proposed the programmers 

with success attitude would write more efficient code than programmers who hesitate to finish 

the projects. Table 14 shows that the running time from “Success attitude” students is 

significantly shorter than one from “Non-success attitude” students in 7 projects with a less than 

0.05 p-value. Hence, our hypothesis is supported by the p-value from 7 projects.  

 

For “Computer science as a male domain” category, students who believe the computer 

science is dominated by male domain outperform students who believe the computer science is 

dominated by female domain based on the running time index. The data in project 6 of Table 14 
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failed to be collected because all participants agreed with a “male domain” selection. The rest of 

projects supported our hypotheses by p-value which is less than 0.05. 

 

      For both “Usefulness of computer science and programming” and “Effective motivation in 

computer science and programming” categories, we propose students believing computer science 

is useful and effective in the life can write more efficient code than ones believing computer 

science is non-useful and ineffective in the life. Although in project 6 the code from effective 

students is not significantly more efficient than code from ineffective student, the rest of 6 

projects still has a less-than-0.05 p-value. Hence, the experimental results support our 

hypothesis. 

Table 14. Impact of attitude subscale on coding performance 

Attitude Project Index Running time(second) P-value(one-tail) 
 

 

 

 

 

Confidence 

in learning 

computer 

science and 

programming 

1 Confidence Mean 1.88E-04, Std. 3.39E-04, n=118 1.97E-04 

Unconfident Mean 0.0011, Std. 0.0029, n=122 

2 Confidence Mean 4.17E-04, Std. 9.83E-04, n=122 5.34E-10 

Unconfident Mean 0.0021, Std. 0.0026, n=118 

3 Confidence Mean 8.91E-04, Std. 0.0030, n=112 0.013 

Unconfident Mean 0.011, Std. 0.047, n=112 

4 Confidence Mean 0.0528, Std. 0.073, n=85 9.01E-07 

Unconfident Mean 0.1977, Std. 0.2144, n=64 

5 Confidence Mean 0.0028, Std. 0.0036, n=101 0.031 

Unconfident Mean 0.0073, Std. 0.0209, n=82 

6 Confidence Mean 0.2239, Std. 0.0980, n=81 5.31E-04 

Unconfident Mean 0.2768, Std. 0.0933, n=66 

7 Confidence Mean 0.7378, Std. 0.0847, n=76 0.0183 

Unconfident Mean 1.044, Std. 1.127, n=62 

 

 

 

Attitude 

toward 

success in 

computer 

science 

1 Success Mean 6.72E-04, Std. 0.0021, n=235 0.004 

Unsuccess Mean 0.0010, Std. 5.56E-05, n=5 

2 Success Mean 0.0012, Std. 0.00213, n=235 0.0146 

Unsuccess Mean 0.0035, Std. 0.0015, n=2 

3 Success Mean 0.0060, Std. 0.0341, n=219 0.0204 

Unsuccess Mean 0.055, Std. 0.0363, n=5 

5 Success Mean 0.0048, Std. 0.0145, n=180 0.0379 

Unsuccess Mean 0.1042, Std. 0.0503, n=3 

6 Success Mean 0.4000, Std. 1.4804, n=143 0.0075 
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Unsuccess Mean 1.9610, Std. 0.7234, n=4 

7 Success Mean 0.6801, Std. 0.3800, n=135 0.0423 

Unsuccess Mean 2.1350, Std. 0.7819, n=3 

 

 

 

 

 

 

Computer 

science as a 

male domain 

1 Male domain Mean 6.49E-04, Std. 0.0021, n=237 0.0078 

Female 

domain 

Mean 0.0074, Std. 0.0015, n=3 

2 Male domain Mean 0.0012, Std. 0.0021, n=237 0.0148 

Female 

domain 

Mean 0.0078, Std. 0.002, n=3 

3 Male domain Mean 0.0060, Std. 0.033, n=221 0.0087 

Female 

domain 

Mean 1.273, Std. 0.531, n=4 

4 Male domain Mean 0.118, Std. 0.1700, n=147 0.0246 

Female 

domain 

Mean 0.308, Std. 0.072, n=3 

5 Male domain Mean 0.0049, Std. 0.015, n=180 0.0318 

Female 

domain 

Mean 0.055, Std. 0.023, n=3 

7 Male domain Mean 0.6810, Std. 0.3787, n=136 0.0246 

Female 

domain 

Mean 1.86, Std. 0.121, n=2 

Usefulness of 

computer 

science and 

programming 

1 Useful Mean 2.07E-04, Std. 4.83E-04, n=182 1.9E-04 

Unuseful Mean 0.0021, Std. 0.0039, n=58 

2 Useful Mean 3.99E-04, Std. 0.001, n=181 1.59E-15 

Unuseful Mean 0.0038, Std. 0.0025, n=59 

3 Useful Mean 0.0053, Std. 0.038, n=169 0.044 

Unuseful Mean 0.097, Std. 0.3935, n=56 

4 Useful Mean 0.065, Std. 0.082, n=117 7.85E-06 

Unuseful Mean 0.290, Std. 0.253, n=33 

5 Useful Mean 0.0027, Std. 0.0034, n=145 0.022 

Unuseful Mean 0.0129, Std. 0.030, n=38 

6 Useful Mean 0.426, Std. 1.651, n=115 0.018 

Unuseful Mean 0.93, Std. 1.0084, n=32 

7 Useful Mean 0.642, Std. 0.241, n=116 0.016 

Unuseful Mean 1.03, Std. 0.792, n=22 

 

 

 

 

 

   Effective 

motivation in 

computer 

science and 

programming 

1 Effective Mean 2.77E-04, Std. 0.0014, n=130 0.0013 

Ineffective Mean 0.0011, Std. 0.0025, n=110 

2 Effective Mean 4E-04, Std. 9.56E-04, n=134 7.77E-11 

Ineffective Mean 0.0023, Std. 0.0026, n=106 

3 Effective Mean 8.91E-04, Std. 0.0031, n=129 0.013 

Ineffective Mean 0.0126, Std.0.0508, n=96 

4 Effective Mean 0.048, Std. 0.075, n=88 2.97E-08 

Ineffective Mean 0.216, Std.0.2108, n=62 

5 Effective Mean 0.0028, Std. 0.0035, n=113 0.025 

Ineffective Mean 0.0082, Std. 0.0226, n=70 

6 Effective Mean 0.479, Std. 1.875, n=89 0.147 

Ineffective Mean 0.269, Std. 0.0960, n=58 

7 Effective Mean 0.631, Std. 0.2337, n=82 0.01 

Ineffective Mean 0.857, Std. 0.6823, n=56 
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       Similarly, we also explore the relationship between the academic performance and the 

personality. In the following categories: (1) Confidence in learning computer science and 

programming; (2) Attitude toward success in computer science; (3) Usefulness of computer 

science and programming; and (4) Effective motivation in computer science and programming, 

the results with p-value in Table 15 show that students with positive attitude in each category can 

significantly finish projects with higher grade than students with negative attitude. But in the 

“Computer science as a male domain” attitude, all students agreed with the option of male-

dominate-computer science so the experiment failed to be conducted. Especially in project 2, 

since p-value (0.155) is greater than 0.05, we are not able to make a conclusion that male 

programmers can attitude can achieve a better grade than female programmer. 

Table 15. Impact of attitude subscale on academic performance 

Attitude Assignment Index Grade P-value(one-tail) 
 

Confidence 

in learning 

computer 

science and 

programming 

1 Confidence Mean 88.99, Std. 16.13, n=136 0.018 

Unconfident Mean 84.89, Std. 84.89, n=135 

2 Confidence Mean 82.95, Std. 18.93, n=135 0.0043 

Unconfident Mean 76.07, Std. 23.35, n=133 

3 Confidence Mean 88.54, Std. 16.10, n=128 5.1E-05 

Unconfident Mean 77.69, Std. 25.26, n=117 

4 Confidence Mean 87.33, Std. 17.13, n=127 0.0032 

Unconfident Mean 80.23, Std. 22.56, n=117 

 

Attitude 

toward 

success in 

computer 

science 

1 Success Mean 87.90, Std. 15.45, n=265 0.045 

Unsuccess Mean 68.17, Std. 22.99, n=6 

2 Success Mean 80.10, Std. 20.45, n=261 0.0478 

Unsuccess Mean 54.67, Std. 30.21, n=6 

3 Success Mean 83.63, Std. 21.37, n=239 0.0076 

Unsuccess Mean 57.33, Std. 17.43, n=6 

4 Success Mean 84.44, Std. 19.38, n=238 0.0176 

Unsuccess Mean 57, Std. 23.26, n=6 

 

Computer 

science as a 

male domain 

1 Male domain Mean 88.42, Std. 15.26, n=267 0.01 

Female domain Mean 68.25, Std. 15.47, n=4 

2 Male domain Mean 79.77, Std. 21.14, n=262 0.155 

Female domain Mean 82.8, Std. 21.91, n=5 

4 Male domain Mean 84.48, Std. 19.51, n=238 0.023 

Female domain Mean 66.3, Std. 14.02, n=5 
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Usefulness of 

computer 

science and 

programming 

1 Useful Mean 88.62, Std. 14.58, n=206 0.0056 

Unuseful Mean 82.15, Std. 16.76, n=65 

2 Useful Mean 81.84, Std. 19.37, n=200 0.008 

Unuseful Mean 73.85, Std. 22.80, n=67 

3 Useful Mean 85.68, Std. 20.33, n=185 0.0035 

Unuseful Mean 76.19, Std. 24.01, n=60 

4 Useful Mean 86.64, Std. 17.53, n=187 0.0017 

Unuseful Mean 76.38, Std. 23.48, n=56 

 

Effective 

motivation in 

computer 

science and 

programming 

1 Effective Mean 88.05, Std. 17.16, n=153 0.022 

Ineffective Mean 84.25, Std. 13.47, n=118 

2 Effective Mean 82.54, Std. 18.31, n=149 0.011 

Ineffective Mean 76.42, Std. 23.43, n=118 

3 Effective Mean 85.42, Std. 20.15, n=142 0.044 

Ineffective Mean 80.52, Std. 23.31, n=103 

4 Effective Mean 86.43, Std. 18.05, n=139 0.025 

Ineffective Mean 81.39, Std. 21.03, n=104 

 

       In Table 16, the results answered the research problem that whether there exists a strong 

linear dependence between attitude and coding performance. In the “Confidence” category, all p-

value from 7 projects is greater than 0.7, which supports our hypothesis: the confidence attitude 

is positively linearly dependent to the coding performance. Similarly, in “Effective”, “Success” 

and “Usefulness” categories, although some p-value is slightly less than 0.7, we still make a 

conclusion that there exists a strong linear dependence between the positive attitude in each 

category and the coding performance. Unfortunately, in the “computer science as a male 

domain” category we did not find any strong linear dependence between the coding performance 

and participants’ gender. 

Table 16. Correlation of influence of attitude subscale on coding performance 

 Attitude 

Project 

ATNAT' MDFD' UFUL' 

 

EMIM' 

 

CNC' 

 

1 0.8226 0.1371 0.8833 0.8978 0.9656 

2 0.8360 0.0804 0.8632 0.7999 0.8514 

3 0.6252 0.1117 0.6871 0.7047 0.8083 

4 0.8816 0.0753 0.9358 0.7468 0.9460 

5 0.9008 0.0678 0.9052 0.8048 0.9620 

6 0.91290 0.1024 0.9383 0.7804 0.9590 

7 0.7318 0.1459 0.8067 0.6650 0.8151 
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       In Table 17, the hypothesis that there is a strong linear dependence between each subscale of 

attitude and academic performance is also explored. Under five subscales of attitude, we can find 

that in “computer science as a male domain” category, all p-value in the 4 assignments is less 

than 0.7. Hence, we make a conclusion that the academic performance is not linearly dependent 

to participants’ gender. But for the rest of four subscales, all analysis from 4 assignments 

supports our original hypothesis. Hence, we can make a conclusion based on data from Table 17: 

the positive dimension in each category of attitude except the “computer science as a male 

domain” category is strongly linearly dependent to the academic performance. 

Table 17. Correlation of influence of attitude subscale on academic performance 

 Attitude 

Assignment 

ATNAT' MDFD' UFUL' 

 

EMIM' 

 

CNC' 

 

1 0.7770 0.1225 0.8028 0.8006 0.8309 

2 0.8338 0.0218 0.8394 0.8139 0.8589 

3 0.8250 0.0735 0.8221 0.7414 0.8030 

4 0.8219 0.1486 0.8802 0.8549 0.9229 

 

       Since a linear dependence exploration has been conducted, the prediction model is supposed 

to be presented, if possible. Firstly, we tried to describe the prediction model between attitude 

and coding performance. In Table 18 we can see that R-square is 0.67 which is less than 0.7. But 

before any conclusion can be made, we still needed to check the residual plot for each subscale. 

In Figures 13 – 17, we can see that all points are randomly dispersed around x-axis so that the 

regression model in Table 18 fits our data.  

Table 18. Regression of influence of attitude subscale on coding performance 

Project  Coefficients P-value R Square N 
 

 

Intercept 0.076 0.37  
 

 
 CNC' 0.0045 0.041 
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Performance ATNAT' -3.4E-04 0.92 0.67 67 
MDFD' 2.52E-04 0.93 
UFUL' 0.0013 0.04 
EMIM' -0.0025 2.02E-04 

Regression 

Equation 
0.0045*C-3.4E-04*AT+2.52E-04*MD+0.0013*UF-0.0025*EM+0.076 

 

 

Figure 13. Confidence vs. Non-confidence residual plot for coding performance 

 

 

 

Figure 14. Success vs. Nonsuccess residual plot for coding performance 
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Figure 15. Male-domain vs. Female-domain residual plot for coding performance 

 

 

Figure 16. Usefulness vs. Unusefulness residual plot for coding performance 
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Figure 17. Effectiveness vs. Ineffectiveness residual plot for coding performance 

        

     Also, the prediction model was explored between the programming attitude and the academic 

performance. The R-square in Table 19 is 0.98 which is greater than the statistical standard value 

of 0.7. But before a conclusion is made, the residual plot of each category also needs to be 

checked. In Figure 19, few points are located below the horizontal axis but it does not affect our 

conclusion that our regression model perfectly fits our experimental data. 

Table 19. Regression of influence of attitude subscale on academic performance 

Project  Coefficients P-value R Square N 
 

 

      Grade 

Intercept 0.24 9.15E-51  
 

0.98 

 
 

206 
CNC’ 0.0039 1.38E-15 

ATNAT' -0.0015 1.85E-09 
MDFD' -1.2E-05 0.95 
UFUL' -6.1E-04 0.0066 
EMIM' 0.009 1.22E-26 

Regression 

Equation 

0.0039*C-0.0015*AT-1.2E-05*MD-6.1E-04*UF+0.009*EM+0.24 

 

 

Figure 18. Confidence vs. Non-confidence residual plot for academic performance 
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Figure 19. Success vs. Nonsuccess residual plot for academic performance 

 

 

Figure 20. Male-domain vs. Female-domain residual plot for academic performance 
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Figure 21. Usefulness vs. Unusefulness residual plot for academic performance 

 

 

Figure 22. Effectiveness vs. Ineffectiveness residual plot for academic performance 

 

4.5.3 Influence of programming styles on the performance 
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cannot be accepted in a research work. But the rest of 6 styles can be verified since all alpha 

value is greater than 0.7. Hence in the following work we only adopt the 6 verified styles to test 

our hypotheses instead of original 9 styles. 

Table 20. Internal consistency of programming styles  

Subscale Survey Statement Numbers Cronbach’s Alpha Number of Participants 
Alone 7-13 0.73  

 
 
 

324 

Continuous 14-15 0.81 

Open Source 16-17 0.93 

Visual 18-19 0.76 

Units 20-21 0.96 

Office 22a-22b 0.11 

whiteboard 22c-22d 0.1 

Efficient 22e-22f 0.83 

automatic 22g-22h 0.55 

 

To answer the research question whether there is a significant performance difference 

between the positive dimension and the negative dimension of each category or not, we 

employed an independent T-test sample to analyze it. The data are showed in Table 21 and the 

conclusions will be accepted with a less than 0.05 p-value. 

 

In “Programming Alone” category, the running time with the “Group” program style is 

significantly less than the running time with the “Programming Alone” style in all tests. But 

since the 7th project was complicated, there is no significant difference statistically because the 

p-value is greater than 0.05 in Table 21. The rest of 6 projects still support our hypothesis: the 

code written by the group is faster than code written by a single student. 
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In “Continuous Programming” category, since intermittent programming style would distract 

programmers’ attention, the finished code may be less efficient than code written by 

programmers with the “continuous” programming style. Unfortunately, the test data from 7 

project did not support our hypothesis. As Table 21 showed, only the data in project 2 and 4 

support our original hypothesis and the rest of 5 projects did not show there is significant 

difference between two different programming style. Hence, there is no significant difference in 

code efficiency. 

 

In “Open Source maintenance” category, programmers with the “Open Source” styles would 

like to work with others, so the code may be more efficient than code written by those with a 

“Closed Source” programming habit. The p-value in project 5 and 6 of Table 21 is greater than 

0.05, which means that although the running time of code written by programmers with “Closed 

Source” style is shorter than the running time of code with a “Open Source” style, it is not a 

significant difference statistically. Hence a conclusion is made that the “Open Source” 

programmers can write more efficient code than “Closed Source” programmers. 

 

In the analysis of the visual-based programming style, except the project 6 we can see the 

finished code under the “visual” programming context is significantly faster than code finished 

under the “text” programming context. Similarly, in “unit-test” category, although the code with 

“whole-unit-test” style is more efficient than code with “unit-by-unit test” style, it is not a 

significant difference because of p-value which is greater than 0.05. Finally, in “code 

understandability” category, although efficient code is sometimes hard to understand for rest of 
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team members, its efficiency is significant better than code written by students who write 

redundant code but is easy to understand for their teammates. 

Table 21. Impact of programming styles subscale on coding performance 

Programming 
Style 

Project Index Running time(second) P-value(one-tail) 

 

 

 

 

 

 

 

 

 

       Alone 

1 Program alone Mean 7.37E-04, Std. 0.00030, n=31 4.16E-04 

Program with 

a group 

Mean 2.06E-04, Std. 0.0022, n=222 

2 Program alone Mean 1.41E-03, Std. 0.000904, n=32 2.45E-05 

Program with 

a group 

Mean 4.5E-04, Std. 0.0023, n=223 

3 Program alone Mean 0.0239, Std. 0.0148, n=27 0.0125 

Program with 

a group 

Mean 0.0039, Std. 0.122, n=209 

4 Program alone Mean 0.1246, Std. 0.066, n=22 1.56E-04 

Program with 

a group 

Mean 0.047, Std. 0.172, n=134 

5 Program alone Mean 0.0052, Std. 0.0059, n=23 4.02E-04 

Program with 

a group 

Mean 0.0045, Std. 0.179, n=166 

6 Program alone Mean 0.502, Std. 0.101, n=19 0.0382 

Program with 

a group 

Mean 0.260, Std. 1.55, n=135 

7 Program alone Mean 0.683, Std. 0.207, n=16 0.3311 

Program with 

a group 

Mean 0.656, Std. 0.392, n=125 

 

 

 

 

 

 

 

 

 

 

 

Continuous 

1 Program 

continuously 

Mean 7.12E-04, Std. 0.0025, n=144 0.3498 

Program 

intermittently 

Mean 6.18E-04, Std. 0.0014, n=106 

2 Program 

continuously 

Mean 0.0010, Std. 0.0020, n=147 0.0169 

Program 

intermittently 

Mean 0.0016, Std. 0.0025, n=108 

3 Program 

continuously 

Mean 0.00548, Std. 0.0406, n=137 0.4904 

Program 

intermittently 

Mean 0.0054, Std. 0.0166, n=100 

4 Program 

continuously 

Mean 0.0781, Std. 0.1036, n=97 0.0017 

Program 

intermittently 

Mean 0.1712, Std. 0.2205, n=59 

5 Program 

continuously 

Mean 0.0040, Std. 0.0062, n=109 0.1224 

Program 

intermittently 

Mean 0.0068, Std. 0.0211, n=80 
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6 Program 

continuously 

Mean 0.4731, Std. 1.8545, n=91 0.1462 

Program 

intermittently 

Mean 0.2669, Std. 0.0862, n=63 

7 Program 

continuously 

Mean 0.6606, Std. 0.4116, n=86 0.2048 

Program 

intermittently 

Mean 0.7110, Std. 0.3099, n=55 

 

 

 

 

 

Open Source 

1 Open Source Mean 5.21E-04, Std. 0.0013, n=152 0.0468 

Close Source Mean 0.0010, Std. 0.0029, n=101 

2 Open Source Mean 0.0012, Std. 0.0022, n=152 0.0363 

Close Source Mean0.0017, Std. 0.0022, n=103 

3 Open Source Mean 0.0030, Std. 0.0123, n=136 0.0487 

Close Source Mean 0.021, Std. 0.1071, n=101 

4 Open Source Mean 0.1065, Std. 0.1739, n=91 0.0059 

Close Source Mean 0.1887, Std. 0.2131, n=65 

5 Open Source Mean 0.0060, Std. 0.0183, n=109 0.1610 

Close Source Mean 0.0041, Std. 0.0066, n=80 

6 Open Source Mean 0.4858, Std. 1.9506, n=82 0.1610 

Close Source Mean 0.2781, Std. 0.1560, n=72 

7 Open Source Mean 0.6943, Std. 0.4689, n=79 0.0172 

Close Source Mean 0.8262, Std. 0.2508, n=62 

 

 

 

 

 

 

Visual 

1 Visual enviro Mean 7.29E-04, Std. 0.0022, n=211 0.0438 

Text enviro Mean 3.86E-04, Std. 8.3E-04, n=42 

2 Visual enviro Mean 0.0014, Std. 0.0023, n=215 0.0580 

Text enviro Mean 9.08E-04, Std. 0.0015, n=40 

3 Visual enviro Mean 0.0058, Std. 0.0352, n=198 0.0150 

Text enviro Mean 3.65E-04, Std. 8.47E-04, n=38 

4 Visual enviro Mean 0.1201, Std. 0.1755, n=129 0.0508 

Text enviro Mean 0.0827, Std. 0.0851, n=27 

5 Visual enviro Mean 0.0053, Std. 0.0160, n=152 0.0136 

Text enviro Mean 0.0023, Std. 0.0022, n=37 

6 Visual enviro Mean 0.2741, Std. 0.1399, n=121 0.1624 

Text enviro Mean 0.8089, Std. 3.0710, n=33 

7 Visual enviro Mean 0.6862, Std. 0.4083, n=115 1.44E-04 

Text enviro Mean 0.4727, Std. 0.2100, n=16 

 

 

 

 

 

 

Units 

1 Unit by unit Mean 6.88E-04, Std. 0.0022, n=165 0.0137 

All units Mean 0.0014, Std. 0.0024, n=88 

2 Unit by unit Mean 0.0013, Std. 0.0023, n=169 0.0335 

All units Mean 0.0018, Std. 0.0022, n=86 

3 Unit by unit Mean 0.0064, Std. 0.0388, n=159 0.1994 

All units Mean 0.0035, Std. 0.0130, n=78 

4 Unit by unit Mean 0.1035, Std. 0.1365, n=102 0.0043 

All units Mean 0.2070, Std. 0.2632, n=54 

5 Unit by unit Mean 0.0053, Std. 0.0173, n=121 0.0063 

All units Mean 0.0640, Std. 0.1885, n=68 

6 Unit by unit Mean 0.4501, Std. 1.7937, n=97 0.1844 

All units Mean 0.2843, Std. 0.1740, n=57 

7 Unit by unit Mean 0.6545, Std. 0.2697, n=94 0.0210 
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All units Mean 0.8161, Std. 0.4979, n=47 

 

 

 

 

 

 

EF 

1 Efficient Mean 1.68E-04, Std. 2.67E-04, n=56 5.02E-04 

Inefficient Mean 6.7E-04, Std. 0.0020, n=197 

2 Efficient Mean 1.65E-04, Std. 1.81E-04, n=58 3.19E-12 

Inefficient Mean 0.0014, Std. 0.0022, n=197 

3 Efficient Mean 3.47E-04, Std. 5.85E-04, n=52 0.0181 

Inefficient Mean 0.0060, Std. 0.036, n=185 

4 Efficient Mean 0.033, Std. 0.0186, n=30 8.43E-09 

Inefficient Mean 0.1177, Std. 0.1540, n=126 

5 Efficient Mean 0.0029, Std. 0.0037, n=41 0.0429 

Inefficient Mean 0.0053, Std. 0.0158, n=148 

6 Efficient Mean 0.1518, Std. 0.0480, n=32 0.0329 

Inefficient Mean 0.4215, Std. 1.6023, n=122 

7 Efficient Mean 0.1518, Std. 0.1908, n=32 0.0329 

Inefficient Mean 0.4215, Std. 0.3958, n=122 

         

The academic performance analysis is difference from the analysis of the coding performance 

because more consideration needs to be added in rubrics such as specific iteration usability. In 

the “programming alone” category, we can see, in Table 22, that the code written by the “alone” 

style is significantly more efficient than code with the “group” styles because p-value in 4 

assignment is less than 0.05. 

 

       Since programmers with the “continuous” style can focus on the code in a consecutive 

period, the consistency of the code style can be perfectly maintained. Hence we propose that the 

grade from the “continuous programming” style is significantly higher than the grade from the 

“intermittent programming” style and the p-value in Table 22 supports our hypothesis. Similarly, 

in the “Open Source maintenance” category, the grade from the “Open Source” type is 

significantly higher than the grade from the “Closed Source” type. The only exception happened 

to the project 1, but it does not affect our hypothesis that grades from students with the “Open 

Source” style is significantly higher than grades from students with the “Closed Source” style.    
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Another category is the “visual programming” context. After the analysis, we can see the grades 

from students who used to writing codes in a text environment is significantly higher than grade 

with the “visual programming context”. Unfortunately, in the “unit-test” category, we did not 

find any valid p-value which can support a significant difference. Finally, in the “code 

efficiency” category, students with the “efficient code” style achieve a higher grade than student 

with the “redundant code” style.  

Table 22. Impact of programming styles subscale on academic performance 

Programming 
Style 

Project Index Grade P-value(one-tail) 

 

 

 

 

Alone 

1 Program alone Mean 94.4, Std. 7.14, n=35 5.79E-05 

Program with 

a group 

Mean 88.12, Std. 15.63, n=252 

2 Program alone Mean 86.04, Std. 86.04, n=32 0.00335 

Program with 

a group 

Mean 78.58, Std. 78.58, n=253 

3 Program alone Mean 83.60, Std. 21.99, n=31 0.0179 

Program with 

a group 

Mean 83.67, Std. 21.48, n=228 

4 Program alone Mean 92.93, Std. 11.78, n=29 3.88E-04 

Program with 

a group 

Mean 83.82, Std. 19.69, n=227 

 

 

 

 

 

 

 

Continuous 

1 Program 

continuously 

Mean 90.03, Std. 13.57, n=162 0.0153 

Program 

intermittently 

Mean 85.99, Std. 17.02, n=125 

2 Program 

continuously 

Mean 82.16, Std. 20.05, n=163 0.0071 

Program 

intermittently 

Mean 75.79, Std. 22.66, n=123 

3 Program 

continuously 

Mean 85.87, Std. 20.07, n=148 0.0309 

Program 

intermittently 

Mean 80.73, Std. 23.02, n=111 

4 Program 

continuously 

Mean 87.85, Std. 17.40, n=145 7.71E-04 

Program 

intermittently 

Mean 79.91, Std. 21.19, n=111 

 

 

 

 

1 Open Source Mean 88.49, Std. 15.29, n=170 0.3882 

Close Source Mean 87.97, Std. 15.32, n=117 

2 Open Source Mean 84.80, Std. 16.07, n=164 0.0037 

Close Source Mean 78.45, Std. 21.81, n=121 
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Open Source 3 Open Source Mean 87.89, Std. 17.85, n=146 0.0138 

Close Source Mean 82.42, Std. 20.93, n=112 

4 Open Source Mean 87.94, Std. 15.56, n=147 0.0215 

Close Source Mean 83.35, Std. 19.62, n=112 

 

 

 

 

Visual 

1 Visual enviro Mean 87.43, Std. 15.99, n=240 0.0023 

Text enviro Mean 92.60, Std. 9.93, n=47 

2 Visual enviro Mean 78.34, Std. 21.77, n=239 0.0179 

Text enviro Mean 85.02, Std. 18.89, n=46 

3 Visual enviro Mean 83.59, Std. 21.28, n=216 0.0081 

Text enviro Mean 90.09, Std. 14.56, n=43 

4 Visual enviro Mean 83.95, Std. 19.53, n=213 3.84E-04 

Text enviro Mean 91.33, Std. 10.86, n=43 

 

 

 

Unit 

1 Unit by unit Mean 88.13, Std. 14.99, n=186 0.42 

All units Mean 88.52, Std. 15.86, n=101 

2 Unit by unit Mean 79.11, Std. 21.86, n=187 0.37 

All units Mean 80.00, Std. 20.73, n=98 

3 Unit by unit Mean 84.35, Std. 21.12, n=173 0.23 

All units Mean 82.28, Std. 22.27, n=86 

4 Unit by unit Mean 83.36, Std. 20.34, n=170 0.10 

All units Mean 86.48, Std. 17.65, n=86 

 

 

 

EF 

1 Efficient Mean 92.78, Std. 10.79, n=65 0.005 

Inefficient Mean 88.48, Std. 15.36, n=222 

2 Efficient Mean 90.24, Std. 10.45, n=63 7.99E-08 

Inefficient Mean 79.73, Std. 21.18, n=222 

3 Efficient Mean 89.66, Std. 15.68, n=58 0.012 

Inefficient Mean 83.87, Std. 21.05, n=201 

4 Efficient Mean 84.41, Std. 19.66, n=55 0.500 

Inefficient Mean 84.41, Std. 19.51, n=201 

 

In Tables 23-26, the acronym has been explained: (1) AG’ -- Programming alone or 

programming with a group; (2) CI’ -- Programming continuously or programming intermittently; 

(3) OC’ -- Maintenance in an open source way or closed source way; (4) VT’ -- Programming in 

a visual context or in a text context; (5) US’ -- Test codes unit by unit or test whole codes at one 

time; (6) EF’ -- Write efficient code but hard to understand or write redundant code but easy to 

understand. 
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 We analyzed the linear relationship between programming styles and the coding performance 

in Table 23. In the “programming alone” column, the linear coefficient is slightly less than 0.7 in 

project 1 and 2. But for the rest of project the coding performance is linearly dependent to the 

“programming alone” style because the linear coefficient is greater than 0.7. In the “continuous 

programming” style, since all p-values is negative numbers, we make a conclusion that the 

coding performance is positively linearly dependent to the “intermittent programming” style 

instead of the “continuous programming” style.  

 

In the “Open-Source maintenance” styles, we did not find any p-value is greater than 0.7 or 

less than -0.7. Hence there is no strong linear relationship between this programming style and 

the coding performance. For the “visual programming context” style, the data in Table 23 

showed that the strong linear relationship can be found only in project 1, 2, 3 and 5. The results 

from project 3, 6, and 7 showed that the fourth programming style in our research is not 

statistically linearly dependent to the coding performance. Based on the analysis above, we make 

a conclusion that there is no significant linear dependence between the coding performance and 

the programming context style.  

 

       For the fifth style: Unit-Test, we found that the all linear coefficients are less than -0.7 which 

means the running time rises up with the increment of statistical values in the “testing whole 

units at one time” style. Finally, in the “efficient-code” style, the most of experimental results are 

good to support our hypothesis that the running time increases when statistical values in the 
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“redundant code” style rise. We also notice that in project 6 and 7 the coefficient value is slightly 

greater than -0.7 with the reason of the high complexity of projects themselves. 

Table 23. Correlation of influence of programming styles subscale on coding performance 

                 Styles 

Project 

AG' CI' OC' 

 

VT' 

 

US' 

 

EF' 

 

1 0.6401 -0.7664 -0.0479 -0.7761 0.7847 0.7624 
2 0.6885 -0.7572 -0.0194 -0.7780 0.8272 0.7882 
3 0.8604 -0.8369 -0.0472 -0.7428 0.8983 0.7785 
4 0.9074 -0.8010 -0.0305 -0.6341 0.9155 0.7185 
5 0.9012 -0.8738 0.0169 -0.7661 0.9394 0.7909 

6 0.8284 -0.7161 0.1984 -0.5907 0.8972 0.6291 

7 0.9187 -0.7732 -0.0087 -0.5814 0.9749 0.6802 

 

       In Table 24 the students’ grade of each project was analyzed to explore a linear dependence 

with the programming styles. Except the third programming style (“Open Source”), we found 

that the grade of each project is significantly linearly dependent to the positive aspect of each 

category.   

Table 24. Correlation of influence of programming styles on academic performance 

                 Styles 

Assignment 

AG' CI' OC' 

 

VT' 

 

US' 

 

EF' 

 

1 0.9659 0.9138 -0.0086 0.8929 0.9611 0.8935 
2 0.9789 0.9104 -0.0185 0.8985 0.9707 0.9078 
3 0.9783 0.9362 -0.0579 0.8767 0.9800 0.8845 
4 0.9389 0.9208 -0.1005 0.8531 0.9714 0.8558 

  

        In order to help researchers and educators understand the impact of each factor of the 

programming styles, we also show a prediction model in Table 25. Totally there are 59 students 

who correctly solved 7 projects and R-square is 0.9. Besides, in Figure 23-28 all points are 

randomly dispersed around the horizontal axis. Hence, we make a conclusion the regression 

model fits our data. 

Table 25. Regression of influence of programming styles subscale on coding performance 
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Project  Coefficients P-value R Square N 
Performance Intercept 0.078 0.14  

 
 

0.90 

 
 
 

59 

AG' -0.0023 0.133 
CI' 0.008 0.025 
OC' 4.24E-04 0.76 
VT' 0.007 0.02 
US' 0.0022 0.47 
EF' 0.018 1.39E-06 

Regression 

Equation 

-0.0023*AG’+0.008*CI’4.24E-04*OC’+0.007*VT’+0.0022*US’+0.018*EF’+0.078 

 

 

Figure 23. Alone vs. Group residual plot for coding performance 

 

                       Figure 24. Continuous vs. Intermittent residual plot for coding performance 

 

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 5 10 15 20 25 30

R
e

si
d

u
al

s

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 2 4 6 8 10 12

R
e

si
d

u
al

s



87 
 

 

Figure 25. Open Source vs. Closed Source residual plot for coding performance 

 

Figure 26. Visual vs. Text residual plot for coding performance 

 

 

Figure 27. Single Unit vs. Whole Units residual plot for coding performance 
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Figure 28. Efficient vs. Inefficient residual plot for coding performance 

 

        Also, in Table 26 we present a regression model that predicts the impact of factors in each 

category of programming styles on grades. To verify whether our model fits the data or not, we 

not only check the R-square but also discuss the points distribution in residual plots in Figure 29-

34. Although in Figure 32 some points at the beginning section are located below the x-axis, it 

does not affect the whole distribution in our experimental data. Hence, the regression model 

presented in Table 26 is acceptable to predict participants’ academic performance. 

Table 26.Regression of influence of programming styles subscale on academic performance 

Project  Coefficients P-value R Square N 
 

 

 

Grade 

Intercept 0.55 1.38E-24  
 
 

0.82 

 
 
 

218 

AG' -0.0028 0.04 
CI' 0.006 0.11 
OC' 5.03E-04 0.71 
VT' 0.019 5.83E-07 
US' 0.0086 0.002 
EF' 0.0087 7.32E-04 

Regression 

Equation 

-0.0028*AG’+0.006*CI’+5.03E-04*OC’+0.019*VT’+0.0086*US’+0.0087*EF’+0.55 
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Figure 29. Alone vs. Group residual plot for academic performance 

 

 

Figure 30. Continuous vs. Intermittent residual plot for academic performance 

 

 

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 5 10 15 20 25 30

R
e

si
d

u
al

s

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 2 4 6 8 10 12

R
e

si
d

u
al

s

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 2 4 6 8 10 12

R
e

si
d

u
al

s



90 
 

Figure 31. Open Source vs. Closed Source residual plot for academic performance 

 

 

Figure 32. Visual vs. Text residual plot for academic performance 

 

 

Figure 33. Single Unit vs. Whole Units residual plot for academic performance 
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Figure 34. Efficient vs. Inefficient residual plot for academic performance 

4.5.4 The relationship among human factors 

         In this section, we explore the correlation relationship among three human factors: 

Personality, Programming Styles and Programming Attitude. Because some research papers 

explored the relationship between partial factors of the programming attitudes and the 

personality. In our research we conducted this experiment with 328 participants. The data in 

Table 27 tell us that there is no significant correlation relationship in between because all 

coefficient values are less than 0.7. 

Table 27. Correlation between personality and attitude 

          Personality 

Attitude 

EI’ SN’ TF’ JP’ 

CNC’ -0.1651 0.0512 0.1613 0.2091 

ATNAT’ 0.0332 0.0677 0.1303 0.0971 

MDFD’ -0.0383 0.1416 0.1164 0.1193 

UFUL’ -0.2257 0.0558 0.2130 0.1258 

EMIM’ -0.1822 0.0745 0.2261 0.2447 

 

        Another pair of human factor relationship in Table 28 is the personality and programming 

styles. In the “ EI’ ” column, we only found one exception: there is no significant correlation 

between the “Favorite World” personality and the “Unit-Test” programming styles. Secondly, in 
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“Decision” personality, no results can support the “Open Source” and “Unit-Test” styles have the 

strong correlation relationship with the “Thinking” or “Feeling” characters. Finally, for 

“Structure” personality, we found that the “Visual” and “Unit-Test” styles do not 

correspondingly change with the “Judging” or “Perceiving” characters. 

Table 28. Correlation between personality and programming styles 

          Personality 

Styles 

EI’ SN’ TF’ JP’ 

Alone -0.80 -0.83 0.85 0.80 

Continuous -0.86 -0.86 0.85 0.87 

Open Source 0.79 0.78 0.04 -0.78 

Visual 0.81 0.79 -0.81 -0.07 

Units -0.04 -0.90 0.03 0.15 

Efficient -0.87 -0.83 0.84 0.85 

 

         In the analysis of relationship between programming attitudes and programming styles in 

Table 29, under each category of attitudes, we identified some programming styles, which are 

not related to attitudes. They are listed in the following: 

        (1) In the “Confidence” column, the “Visual” and “Unit-Test” programming styles do not 

have a statistically strong correlation relationship. And there is a negative correlation relationship 

between the “Open Source” style and the “Confidence” attitude. 

        (2) In the “Success” column, the “Open Source” and “Visual” styles are not linearly 

dependent to the “Success” attitude. But the rest of programming styles are strongly linearly 

dependent to it. 

        (3) In the “ MDFD’ ”column, the “Continuous programming” and “Unit-Test” styles are not 

linearly dependent to the “male-domain” attitude. And the negative correlation relationship exists 

between the “computer science as a male domain” attitude and “Open Source”/ “Visual 

programming” styles. 
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        (4) In the “ UFUL’ ” column, the “Open Source” and “Visual programming” styles are not 

linearly dependent on the “Useful” attitude. 

         (5) In the “ EMIM’ ” column, the “programming alone” and “Visual programming” styles 

are not linearly dependent on the “Effective” attitude. 

Table 29. Correlation between attitude and programming styles 

             Attitude 

Styles 

CNC’ ATNAT’ MDFD’ UFUL’ EMIM’ 

Alone 0.87 0.75 0.91 0.97 0.49 

Continuous 0.91 0.80 -0.43 0.81 0.88 

Open Source -0.72 -0.66 -0.75 0.11 0.76 

Visual -0.59 -0.39 -0.88 -0.61 -0.23 

Units -0.65 0.79 0.59 0.80 0.86 

Efficient 0.87 0.89 0.88 0.95 0.91 
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Chapter 5 Conclusion 
 

         In this Chapter, we present the answers of the hypotheses proposed in Charter 4, discuss our 

results and list the future work. 

 

5.1 Conclusions of hypotheses 

       Although the comprehensive analysis has been explained in Chapter 4, it is necessary to 

gather all conclusions at one time to clearly show them to researchers. 

(1) which factors of the personality significantly play a positive/negative role in coding 

performance. 

      The following factors of personality significantly play a positive role in the code 

performance: Introversion, Intuition, Thinking and Perceiving characters, while the following 

factors of the personality significantly play a negative role in the code performance: 

Extraversion, Sensing, Feeling and Judging. 

(2) which factors of the personality significantly play a positive/negative role in the academic     

performance.  

       The following factors of the personality significantly play a positive role in the academic 

performance: Introversion, Sensing, Thinking and Judging characters, while the following 

factors of the personality significantly play a negative role in the academic performance: 

Extraversion, Intuition, Feeling and Perceiving.  

(3) which factors of programming attitudes significantly play a positive/negative role in the 

coding performance. 
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      The following factors of programming attitudes significantly play a positive role in the code 

performance: Confidence, Success, Male domain, Usefulness and Effectiveness characters, while 

the following factors of programming attitudes significantly play a negative role in the code 

performance: Non-Confidence, Non-Success, Female domain, Non-usefulness and 

Ineffectiveness.  

(4) which factors of programming attitudes significantly play a positive/negative role in the 

academic performance.  

       The following factors of programming attitudes significantly play a positive role in the 

academic performance: Confidence, Success, Male domain, Usefulness and Effectiveness 

characters, while the following factors of programming attitudes significantly play a negative 

role in the academic performance: Non-Confidence, Non-Success, Female domain, Non-

usefulness and Ineffectiveness. 

(5) Whether the programming styles can be verified. 

       Nine subscales of programming styles were developed and the results showed that 6 of 9 

subscales were verified with Cronbach’s alpha values which are greater than 0.7: (1) 

Programming Alone; (2) Continuous programming; (3) Open source maintenance; (4) Visual 

programming context; (5) Unit test; and (6) Efficient code. The rest of three styles failed to be 

verified: (1) Discussion in the office; (2) Whiteboard usability; and (3) Automatic 

synchronization of code.  

(6) which factors of programming styles significantly play a positive/negative role in the coding 

performance. 
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       The following factors of programming styles significantly play a positive role in the code 

performance: Group programming, Continuous programming, Open source maintenance, Text 

programming context, Unit Test and Efficient Code styles, while the following factors of 

programming attitudes significantly play a negative role in the code performance: Programming 

alone, Intermittent programming, Closed Source maintenance, Visual programming context, 

Whole-Unit-Test and Redundant Code styles.  

(7) which factors of programming styles significantly play a positive/negative role in the 

academic performance.  

     The following factors of programming styles significantly play a positive role in the academic 

performance: Programming alone, Continuous programming, Open source maintenance, Text 

programming context and Efficient Code styles, while the following factors of programming 

attitudes significantly play a negative role in the academic performance: Group programming, 

Intermittent programming, Closed source maintenance, Visual programming context, whole-

unit-test and redundant code. We also identified the “Unit-Test” style as a special one because it 

does not have significant both negative and positive roles in the academic performance 

(8) whether there exists a strong linear relationship among factors of the personality and the 

coding performance or not. 

        The following factors of the personality are significantly linear dependent on the code 

performance: Introversion, Sensing, Thinking and Judging characters, while the following 

factors of the personality are not significantly linear dependent on the code performance: 

Extraversion, Intuition, Feeling and Perceiving. 
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(9) whether there exists a strong linear relationship among factors of the personality and the 

academic performance or not. 

         The following factors of the personality are significantly linear dependent on the academic 

performance: Introversion, Sensing, Thinking and Judging characters, while the following 

factors of the personality are significantly linear dependent on academic performance: 

Extraversion, Intuition, Feeling and Perceiving. 

(10) whether there exists a strong linear relationship among factors of the programming attitudes 

and the coding performance or not. 

        The following factors of programming attitude are significantly linear dependent on the 

coding performance: Confidence, Success, Usefulness and Effectiveness characters, while the 

following factors of programming attitude are not significantly linear dependent on the coding 

performance: computer science as a male domain. 

(11) whether there exists a strong linear relationship among factors of programming attitude and 

the academic performance or not. 

        The following factors of programming attitude are significantly linear dependent on the 

academic performance: Confidence, Success, Usefulness and Effectiveness characters, while the 

following factors of programming attitude are not significantly linear dependent on the academic 

performance: computer science as a male domain.  

(12) whether there exists a strong linear relationship among factors of programming styles and 

the coding performance or not. 
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         The following factors of programming styles are significantly linear dependent on the code 

performance: Programming alone, Continuous programming, Text programming context, Unit 

Test and Efficient code characters, while the following factors of programming attitudes are not 

significantly linear dependent on the code performance: Programming alone, Intermittent 

programming, Closed source maintenance, Visual programming context, Whole-Unit-Test and 

Redundant code. Finally, we identified the “Open Source maintenance” style as a special one 

because there is neither a positive nor a negative role in the code performance. 

(13) whether there exists a strong linear relationship among factors of programming styles and 

the academic performance or not. 

       The following factors of programming styles are significantly linear dependent on the 

academic performance: Programming alone, Continuous programming, Text programming 

context, Unit Test and Efficient code characters, while the following factors of programming 

styles are not significantly linear dependent on the academic performance: Programming alone, 

Intermittent programming, Closed source maintenance, Visual programming context, Whole-

Unit-Test and Redundant code. Finally, we identified the “Open Source maintenance” style as a 

special one because there is neither a positive nor a negative role in the code performance. 

(14) whether the impact of personality factors on the coding performance can be predicted or not. 

        The regression model has been conducted on the impact of the personality factors on the 

code performance: coding performance = -0.007*E+8.4E-04*S+0.032T-7.4E-04*J+0.38 

(15) whether the impact of the personality factors on the academic performance can be predicted 

or not. 
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        The regression model cannot be conducted on the impact of the personality factors on the 

academic performance since the U-shape model appeared in the residual plots of four categories 

of personality. 

(16) whether the impact of programming attitudes on the code performance can be predicted or 

not. 

        Although the R square is less than 0.7, the points of five categories of programming 

attitudes on residual plots are perfectly dispersed around the horizontal axis. Hence the 

regression model can be trusted: 0.0045*C-3.4E-04*AT+2.52E-04*MD+0.0013*UF-

0.0025*EM+0.076. 

(17) whether the impact of programming attitudes on the academic performance can be predicted 

or not. 

         The R-square is 0.98, the points of five categories of programming attitudes on the residual 

plot are perfectly dispersed around the horizontal axis. Hence the regression model can be 

trusted: 0.0039*C-0.0015*AT-1.2E-05*MD-6.1E-04*UF+0.009*EM+0.24 

(18) whether the impact of factors of programming styles on the code performance can be 

predicted or not. 

         The R-square is 0.90, the points of six categories of programming styles on the residual 

plot are perfectly dispersed around the horizontal axis. Hence the regression model can be 

trusted: -0.0023*A+0.008*C+4.24E-04*O+0.007*V+0.0022*U+0.018*E+0.078 

(19) whether the impact of programming styles on the academic performance can be predicted or 

not. 
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         The R-square is 0.82, the points of six categories of programming styles on all residual 

plots are perfectly dispersed around the horizontal axis. Hence the regression model can be 

trusted: -0.0028*A+0.006*C+5.03E-04*O+0.019*V+0.0086*U+0.0087*E+0.55 

(20) whether there exists a strong linear relationship between the personality and programming 

styles or not. 

     For the “Favorite World” category of the personality, all subscales (except the “Unit Test” 

type) of programming styles are linearly dependent on the “Extraversion” type; for the 

“Information” category of the personality, all subscales of programming styles are linearly 

dependent on the “Sensing” personality; for the “Decision” category of the personality, all 

subscales, except the “Open Source” and “Unit Test” styles, of programming styles are linearly 

dependent on the “Thinking” personality and for the “Structure” category of the personality, all 

subscales, except the “Visual context” and “Unit Test”, of programming styles are linearly 

dependent on the “Judging” personality. 

(21) whether there exists a strong linear relationship between programming attitudes and 

programming styles or not. 

        For the “Confidence” programming attitude, all subscales, except the “Visual programming 

context” and “Unit Test”, of programming styles are linearly dependent on it; all subscales of 

programming styles, except the “Visual programming context” and “Open Source” styles,  are 

linearly dependent on the “Success” attitude; all subscales, except the “Continuous 

programming” and “Unit Test” styles, of programming styles are linearly dependent on the 

“computer science as a male domain” attitude; all subscales, except the “Visual context” and 

“Open Source” styles, of programming styles are linearly dependent on the “Judging” 
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personality; and all subscales, except the “Programming alone” and “Visual context” styles, of 

programming styles are linear dependent on the “Effective” attitude. 

(22) whether there exists a strong linear relationship between the personality and programming 

attitudes or not. 

        Unfortunately, we did not find any significant linear relationship between any subscale of 

the personality and programming attitudes. 

 

5.2 Contribution 

     Our research work explores the influence of human factors on the programming performance. 

Coding and Computer Programming have become an indispensable part of every company (e.g. 

even companies that do not specialize in creating computing technology) and supports the 

technologies that change our way of life. We need methodologies to help identify what will aid 

programmers in being more effective in this profession. The results of this study can provide 

guidelines for new computing programmers and their instructors to provide better assignments 

and classroom instruction based on this work in personality, attitudes and programming styles. 

The contributions can be summarized as follows: 

(1) The contemporary programming styles are successfully updated and verified with 

Cronbach Alpha. The previous research work explored the relationship between personality 

styles and programming styles based on pre object-oriented programming styles (Vessey, 1985). 

Our research work updates the programming styles after 2006, verified them with Cronbach 

Alpha, and extended the experiment to also contain object-oriented programming styles. 
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      (2) Based on the analysis of the relationship between programming styles and performance, 

guidelines are provided for positive and negative impact of each subscale of programming styles. 

      (3) The prediction model represented by regression is also provided between performance 

and three human factors: MBTI personality, programming styles and programming attitude. 

      (4) The linear dependence between performance and three human factors has been 

statistically explored. 

 

5.3 Future Work 

In our research, we systematically conducted and analyzed the empirical study: the influence 

of human factors on the performance: personality, programming attitude and programming styles 

with a variety of background of students. Since most participants are novices or entry-level 

programmers, our experiment still needs to be improved (e.g. inviting programming experts or 

senior software engineers). 

 

Secondly, we did not consider the impact of projects’ complexity on program performance. 

Although the last two projects are harder than the first five projects, overall there is no 

significant difference in projects complexity. For the following work, we will intend to create 

projects based on the complexity gradient. 

 

       Finally, the programming style still needs to be polished carefully. Currently, the survey of 

programming styles still needs to be sent back to the same population and collect it again. The 
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planned future activity is to continue experimentation until all questions are verified with 

Cronbach’s alpha.  
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Personality Questionnaire 

 

1. I am seen as "outgoing" or as a "people person." 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

2. I feel comfortable in groups and like working in them. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

3. I have a wide range of friends and know lots of people. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

4. I sometimes jump too quickly into an activity and don't allow enough time to think it over. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

5. Before I start a project, I sometimes forget to stop and get clear on what I want to do and why. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

6. I remember events as snapshots of what actually happened. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

7. I solve problems by working through facts until I understand the problem. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

8. I am pragmatic and look to the "bottom line." 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

9. I start with facts and then form a big picture. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

10. I trust experience first and trust words and symbols less. 
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A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

11. Sometimes I pay so much attention to facts, either present or past, that I miss new 

possibilities. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

12. I enjoy technical and scientific fields where logic is important. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

13. I notice inconsistencies. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

14. I look for logical explanations or solutions to most everything. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

15. I make decisions with my head and want to be fair. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

16. I believe telling the truth is more important than being tactful. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

17. Sometimes I miss or don't value the "people" part of a situation. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

18. I can be seen as too task-oriented, uncaring, or indifferent. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

19. I like to have things decided. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

20. I appear to be task oriented. 
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A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

21. I like to make lists of things to do. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

22. I like to get my work done before playing. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

23. I plan work to avoid rushing just before a deadline. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

24. Sometimes I focus so much on the goal that I miss new information. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

25. I am seen as "reflective" or "reserved." 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

26. I feel comfortable being alone and like things I can do on my own. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

27. I prefer to know just a few people well. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

28. I sometimes spend too much time reflecting and don't move into action quickly enough. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

29.I sometimes forget to check with the outside world to see if my ideas really fit the experience. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

30. I remember events by what I read "between the lines" about their meaning. 
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A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

31. I solve problems by leaping between different ideas and possibilities. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

32. I am interested in doing things that are new and different. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

33. I like to see the big picture, then to find out the facts. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

34. I trust impressions, symbols, and metaphors more than what I actually experienced 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

35. Sometimes I think so much about new possibilities that I never look at how to make them a 

reality. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

36. I have a people or communications orientation. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

37. I am concerned with harmony and nervous when it is missing. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

38. I look for what is important to others and express concern for others. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

39. I make decisions with my heart and want to be compassionate. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 
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40. I believe being tactful is more important than telling the "cold" truth. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

41. Sometimes I miss seeing or communicating the "hard truth" of situations. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

42. I am sometimes experienced by others as too idealistic, mushy, or indirect. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

43. I like to stay open to respond to whatever happens. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

44. I appear to be loose and casual. I like to keep plans to a minimum. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

45. I like to approach work as play or mix work and play. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

46. I work in bursts of energy. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

47. I am stimulated by an approaching deadline. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

48. Sometimes I stay open to new information so long I miss making decisions when they are 

needed. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 
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Programming Attitude Questionnaire 

1. Generally I have felt secure about attempting computer programming problems. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

2. I am sure I could do advanced work in computer science. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

3. I am sure that I can learn programming. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

4. I think I could handle more difficult programming problems. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

5. I can get good grades in computer science. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

6. I have a lot of self-confidence when it comes to programming. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

7. I'm no good at programming. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

8. I don't think I could do advanced computer science. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

9. I'm not the type to do well in computer programming. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

10. For some reason even though I work hard at it, programming seems unusually hard for me. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

11. Most subjects I can handle O.K., but I have a knack for flubbing up programming problems. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 
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12. Computer science has been my worst subject. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

13. It would make me happy to be recognized as an excellent student in computer science. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

14. I'd be proud to be the outstanding student in computer science. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

15. I'd be happy to get top grades in computer science. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

16. It would be really great to win a prize in computer science. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

17. Being first in a programming competition would make me pleased. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

18. Being regarded as smart in computer science would be a great thing. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

19. Winning a prize in computer science would make me feel unpleasantly conspicuous. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

20. People would think I was some kind of a nerd if I got A's in computer science. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

21. If I had good grades in computer science, I would try to hide it. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

22. If I got the highest grade in computer science I'd prefer no one knew. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 
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23. It would make people like me less if I were a really good computer science student. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

24. I don't like people to think I'm smart in computer science. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

25. Females are as good as males at programming. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

26. Studying computer science is just as appropriate for women as for men. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

27. I would trust a woman just as much as I would trust a man to figure out important 

programming problems. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

28. Women certainly are logical enough to do well in computer science. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

29. It's hard to believe a female could be a genius in computer science. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

30. It makes sense that there are more men than women in computer science. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

31. I would have more faith in the answer for a programming problem solved by a man than a 

woman. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

32. Women who enjoy studying computer science are a bit peculiar. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 
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33. I'll need programming for my future work. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

34. I study programming because I know how useful it is. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

35. Knowing programming will help me earn a living. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

36. Computer science is a worthwhile and necessary subject. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

37. I'll need a firm mastery of programming for my future work. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

38. I will use programming in many ways throughout my life. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

39. Programming is of no relevance to my life. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

40. Programming will not be important to me in my life's work. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

41. I see computer science as a subject I will rarely use in my daily life. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

42. Taking computer science courses is a waste of time. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

43. In terms of my adult life it is not important for me to do well in computer science in college. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 
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44. I expect to have little use for programming when I get out of school. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

45. I like writing computer programs. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

46. Programming is enjoyable and stimulating to me. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

47. When a programming problem arises that I can't immediately solve, I stick with it until I 

have the solution. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

48. Once I start trying to work on a program, I find it hard to stop. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

49. When a question is left unanswered in computer science class, I continue to think about it 

afterward. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

50. I am challenged by programming problems I can't understand immediately. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

51. Figuring out programming problems does not appeal to me. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

52. The challenge of programming problems does not appeal to me. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

53. Programming boring. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 
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54. I don't understand how some people can spend so such time on writing programs and seem to 

enjoy it. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

55. I would rather have someone give me the solution to a difficult programming problem than to 

have to work it out for myself. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

56. I do as little work in computer science courses as possible. 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 
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Programming Style Questionnaire 

1. What is your age? ______ 

2. What is your gender? _______ 

3. How many months/years have you been programming? ____year____months 

4. How many programming languages have you ever contributed code larger than 100 lines of 

code?  

     □ C/C++  □ Java □ C# □ Python □ CUDA □ OpenACC □ OpenMP □ MPI □ 

OpenCL □ others 

     If others, please list: ___________________________________________ 

5. What is the largest numbers of lines of code you have made?  

     □ <100 □100-1000 □1000-5000 □>5000  

6. How do you roughly estimate your grade of all exams? General class performance in 

programming  

     □ average  □ above average  

7. I have developed software on my own: 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

8.  I have developed software as part of a team and/or as part of a course: 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

9. I prefer to program with a group:  

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

10. I prefer to program alone: 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

11. Facing bugs, I usually think alone:  

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 
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12. Facing bugs, I usually search them online:  

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

13. Facing bugs, I usually ask friends/instructors: 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

14. I usually program continuously within hours: 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

15. I usually program intermittently 

  A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

   

Imagine you will publish a big project (Q16 – Q17).  

16. You prefer to maintain it in the way of open source i.e. Ubuntu    

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

17. You prefer to maintain it in the way of closed-source i.e. Windows                                        

  A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

    

18. What programming context do you like? Visual i.e. Visual Basic 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

19. What programming context do you like? Text-based i.e. vi/vim in Ubuntu 

 A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

20. For testing code, I prefer to test it unit by unit:  

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 
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21. For testing code, I prefer to test it by all units at a time:  

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

22. Imagine you are working on projects with a group: 

a. I like to program with members together in an office:  

 A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

b. I like to program with members through internet: 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

c. To explore requirements, I like to draw sketches on whiteboards:  

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

d. To explore requirements, I like to have a talk with members 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

e. While programming, I like to write efficient code but hard for members to understand:  

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

f. While programming, I like to write more code so that members easily understand 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

g. I like to synchronize my code with other members with an automatic tool i.e. Github with 

extra coding workload:  

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 

 

h. I like to synchronize my code with USB drives or email (no extra coding workload): 

A. Disagree           B. Little Disagree          C. Neutral            D. Little Agree               E. Agree 


