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THESIS ABSTRACT 

A STUDY OF CRACK-INCLUSION INTERACTION USING MOIRÉ  

INTERFEROMETRY AND FINITE ELEMENT ANALYSIS 

 
Piyush Chunilal Savalia  

 
Master of Science, December 15, 2006 

(B. E., Sardar Patel University, Vallabh Vidyanagar, India, 2002) 
 
 

131 Typed Pages 
 

Directed by Hareesh V. Tippur 
 

            Failure of composite materials is intrinsically linked to the fundamental problem 

of a matrix crack interacting with a second phase inclusion.  In this work, the critical 

issue of matrix-inclusion debonding in the presence of a nearby crack is addressed 

experimentally and numerically.  Optical measurement of surface deformations in the 

vicinity of a crack-inclusion pair is carried out using moiré interferometry.  The 

measurements are used to validate an approach for simulating evolution of inclusion-

matrix debonding.  The numerical model is subsequently used to parametrically study 

crack-inclusion interactions.           

              In the first phase of this work, a process based on microlithography is developed  

for creating master gratings on silicon wafers.  Two methods are then developed to 

transfer gratings to polymeric specimens. Edge cracked epoxy beams, each with a 
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cylindrical glass inclusion ahead of the crack tip, are fabricated to experimentally model 

crack-inclusion interactions.  A moiré interferometer for mapping displacement fields in 

the crack-inclusion vicinity is developed. Debonding of an inclusion from the 

surrounding matrix is detected successfully by the interferometer. The measured 

displacements are analyzed to estimate surface strains and study the evolution of strain 

fields associated with crack-inclusion debonding phenomenon.  The associated effects on 

fracture parameters namely, crack mouth opening displacements (CMOD), crack mouth 

compliance, mode – I stress intensity factors (SIF) and energy release rates (ERR), are 

extracted.  A sharp rise in crack mouth compliance values and strains in the close vicinity 

of the inclusion due to debonding is observed.   

           Next, a finite element model is developed to simulate the experimentally observed 

behavior.  Interfacial debonding between the matrix and the inclusion is simulated using 

the element stiffness deactivation method.  A failure criterion based on a critical radial 

stress is shown to capture the onset and progression of debonding and finite element 

results are in good agreement with measurements.  A follow up parametric study is 

performed to examine effects of inclusion size and inclusion proximity to the crack tip. 

The results show that debonding is delayed as the inclusion size increases for a constant 

L/d ratio where L and d are crack tip-inclusion distance and inclusion diameter, 

respectively.  For a constant L, debonding occurs at lower loads for larger inclusions 

along with higher crack mouth compliance following inclusion-matrix debonding.    
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CHAPTER 1 
 

INTRODUCTION 
 
 

 
1.1 Composite materials: An overview 
 
            Structures made of composite materials have been used over the millennia by 

mankind.  Adobe bricks are the earliest known composite materials used by Israelites by 

mixing in which straw (a fibrous material) with clay (a binder with strong compressive 

strength). The straw promotes water in the brick to evaporate and distribute cracks in the 

clay evenly resulting in improved strength.  Ancient Egyptians used plywood to enhance 

the strength by exploiting grain structure and resistance to hygro-thermal expansion. 

            In many modern engineering applications such as civil aviation, space exploration 

and microelectronics structural members are exposed to harsh environments during 

service. Engineered materials in general and composite materials in particular offer 

solutions in such demanding situations.  A composite member made of two or more 

different material phases on microscopic/macroscopic scales, utilizes beneficial 

mechanical and thermal characteristics of individual phases to get the desired overall 

behavior. Broadly, composite materials are classified into the following categories [1]: 

(1) Fibrous composites, 

(2) Laminated composites, 

(3) Particulate composites, 
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(4) Combination of some or all of previous three types. 

          In general a structure made of a composite material contains a binder material 

known as the matrix phase and one or more reinforcing phases at the microscopic scale. 

The secondary phase can be in the form of long fibers, whiskers or particles of different 

geometries.     

            Long fibers (very high length-to-diameter ratio) generally being much stiffer and 

stronger than the bulk material have found applications in fiber reinforced composite 

materials.  For example, strength of commercially available micron size glass fibers is 

almost 140 to 240 times that of bulk glass.  Common fiber reinforced plastics (FRP) 

generally contain fibers such as carbon, boron or glass oriented in either unidirectional or 

multidirectional architecture and bonded together by a polymer such as epoxy, polyester, 

etc.  They offer high strength-to-weight and strength-to stiffness ratios along with good 

impact and fatigue resistance crucial to aerospace and military applications.  

Accordingly, investigation of failure of fiber reinforced composites at various length 

scales have received much attention in recent years. 

             Particle reinforced metal matrix composites (MMC) (such as, aluminum matrix 

reinforced with silicon carbide (SiC) or titanium carbide (TiC) particles) have shown 

great potential for many elevated temperature applications. As the name suggests 

particulate composites involve discrete filler/reinforcement phase/s in a binder unlike 

continuous fibers in FRPs.  The use of particulates enables a cost effective production of 

this class of composites while offering flexibility in terms of filler size, volume fraction, 

shape and distribution to alter properties for a  given  application.  Additionally, the 

macroscopic isotropy  of  these composites greatly simplifies the mechanical design.  The 
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Figure 1.1:  Some applications of composite materials and relevance of the crack-
inclusion interaction study. 
 

filler particles could also be either metallic (aluminum, silver, etc.) or non-metallic 

(alumina, silica, etc.). For example, structural syntactic foam (Kirugulige et. al. [8]) is a 

type of particulate composite in which prefabricated micro hollow spheres are dispersed 

in a binder. In these foams porosity is microscopic unlike conventional foams and can be 

varied by controlling the size and the density of hollow spheres in the matrix during 
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fabrication.  Among the typical applications of syntactic foams are the high compression 

applications such as undersea probes and marine platforms. The electronics industry also 

utilizes particulate composites as underfill materials which are generally silica-filled 

epoxy or urethane compounds are used to relieve stresses in electrical interconnects such 

as solder ball grid array (BGA). One of the recent advances in particulate composites is 

the development of the so-called Functionally Graded Materials (FGM) having 

directional variations of their thermo-mechanical properties.  This is achieved by varying 

the volume fraction (and/or other micro-structural features) along a desired direction 

during material processing. Techniques such as slip casting [2], centrifugal casting [3], 

laser alloying and cladding [4], plasma-spray forming [5] and gravity casting [6, 7] have 

been used successfully to fabricate such materials.    

          By combining of one or more types of composites discussed above gives numerous 

variations of materials for structural applications.  In view of these, it is important to 

study failure of these materials in order to predict their thermo-mechanical performance 

and reliability during service. Figure 1.1 shows some of the common applications 

discussed in the previous section along with representative insets where potential crack-

inclusion interactions are possible. These generally include a matrix crack interacting 

with a filler phase such as a reinforcing fiber or a particle.  

   

1.2 The crack-inclusion interaction problem 

           The fundamental problem of a matrix crack interacting with a second phase 

inclusion is of vital interest to researchers due to the increasing use of composite 

materials and their complex failure behavior.  Generally, the mechanical behavior of 
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composite materials depends mainly on properties of the individual phases involved and 

the strength of the bond between them. As shown in Fig. 1.2 the intrinsic failure process 

under the influence of a pre-existing or a service induced flaw (such as a crack) can be 

explained by studying a simplified problem of a matrix crack interacting with the second 

phase which can be a fiber or a particle.  Simplifying the problem in this manner 

facilitates parametric investigation of the problem for possible material design.   Some of 

these variations include (a) the geometry and the size of the inclusion,  (b) the  orientation 

of the inclusion with respect to the crack,  (c) the mismatch  between elastic properties  of  

 

 

 

 

 

 

 

 

 

Figure 1.2: Schematic of a matrix crack interacting with an inclusion. 
 
 

 

the matrix (Em, νm) and the inclusion (Ei, νi), (d) effects of bond strength between the 

inclusion and the matrix  and (e) a crack interacting with multiple inclusions. 
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1.3 Background and literature survey    

             Several investigations of the aforesaid problem have been carried out from both   

analytical and numerical perspectives since the early study of its kind by Tamate [9]. 

Using Mushkelishvili’s complex potentials, he studied the interaction of a radial matrix 

crack with a circular inclusion in a uniaxially loaded plate. He showed that a relatively 

stiff inclusion ahead of a compliant matrix reduces the stress intensity factors whereas a 

compliant inclusion ahead of a stiff matrix crack increases the same. Atkinson [10] 

investigated the problem of a crack outside a perfectly bonded elastic inclusion under 

uniaxial and biaxial tensions for different crack lengths and elastic properties of the 

inclusion and the matrix. He solved singular integrals numerically to obtain the stress 

intensity factor variations as a function of the distance between the inclusion and the 

crack tip.  Erdogan et. al. [11] investigated interaction between a circular inclusion and an 

arbitrarily oriented crack using Green’s functions. They developed expressions for mode-

I and mode-II stress intensity factors in terms of asymptotic values of density functions of 

integral equations which are given in terms of crack face displacements. Gdoutos [12, 13] 

studied interaction between a crack and a hole or a perfectly bonded inclusion in an 

elastic medium under uniform tension.  He investigated critical values of the applied 

stress for crack extension and initial crack extension angle in both the cases and reported 

that rigid inclusion increases the fracture strength of the plate while the opposite occurs in 

case of a hole.   He also later studied stable crack growth when a crack is oriented along a 

diameter of the inclusion using strain energy density theory. The investigation included 

dependence of the stable crack growth on loading rate and showed that critical value of 

failure stress decreases as the number of loading steps decreases (i.e. at higher loading 
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rates) and lower loading rates results in a more stable crack growth. Kunin and 

Gommerstadt [14] used projection integral equation approach for studying a crack-

inclusion system and developed a relationship between J and M (where J is the energy 

release rate and M is the interaction integral) integrals for translation of the inclusion with 

respect to the crack and the effect of the inclusion size.  Hasebe et. al. [15], studied stress 

fields when debonding occurs between a rigid circular inclusion from the matrix and the 

resultant interfacial crack in an infinite plate loaded in uniform tension. They modeled the 

phenomena as a mixed boundary value problem and reported stress intensities at debond 

tip. Patton and Santare [16] investigated interaction of a crack with elliptical inclusions. 

They examined the problem using Mushkhelishvili’s complex potentials and used them 

to formulate singular integral equations for crack opening displacement and solved for 

stress intensity factors numerically. They studied the problem of a straight crack near a 

rigid inclusion in an infinite medium. It was observed that for relatively flat elliptical 

inclusions and radially oriented  crack with respect to the inclusion, as the crack rotates 

towards the flat side of the inclusion  the crack tip stress intensity decreases drastically.  

Li and Chudnovsky [17, 18] performed energy analysis and examined effects of an elastic 

inclusion on the energy release rate for crack extension. They studied variations due to 

inclusion translation, rotation and expansion with respect to the crack tip and showed that 

a crack approaching a soft inclusion accelerated while a crack approaching a stiff 

inclusion slowed down.  

            Boundary element (BE) methods have been used widely to address crack-

inclusion interaction problems.  Bush [19] used BE formulation to model a matrix crack 

interacting with single and multiple inclusions and reported crack paths and energy 
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release rates (ERR) for crack initiation and growth. This study showed that a crack tip 

approaching a particle is shielded from far field stresses whereas after it passes the 

inclusion the crack tip stresses are amplified. It was also observed that no substantial 

crack deflection occurs until the tip is within approximately one radius away although 

ERR effects are noticeable when the distance between the crack and the stiff inclusion is 

about five radii.  He also modeled a weak interface between an inclusion and matrix by 

introducing a flaw between them and showed that the flaw increases ERR substantially 

and attracts the crack. Knight et. al. [20] studied the effect of introducing an interphase 

region between an inclusion and the matrix on ERR and crack trajectories using BE 

technique. They studied effects of Poisson’s ratio of the inclusion and the matrix in the 

absence of interphase and observed that as the Poisson’s ratio of the matrix approaches 

incompressibility limit of 0.5, shielding effect and deflection experienced by the crack 

reduces. They showed that the Poisson’s ratio of the inclusion being higher than that of 

the matrix results in distinct shielding whereas amplification occurs in the opposite 

scenario. Interphase thickness was shown to affect the crack behavior depending on the 

relative elastic property mismatch between the three phases. Recently, Kitey et. al. [21] 

and Kitey [22] investigated interaction between a crack and a single inclusion and a 

cluster-of-inclusions using symmetric Galerkin BE method. They showed that a crack 

propagating through a particle cluster exhibits different trajectories with respect to cluster 

orientation whereas the overall energy dissipation remains unaltered. In this study it was 

also observed that increase in the area ratio of inclusions to matrix increases ERR and 

hence material becomes more fracture resistant.   
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            Although many researchers have contributed analytically and numerically to the 

problem, strikingly few experimental investigations are found in the literature owing to 

the obvious experimental complexities.  O’Toole and Santare [23] have investigated 

crack-inclusion interaction experimentally using photoelasticity. They simulated an 

inclusion by bonding rather than embedding two identical steel inclusions on two 

opposite faces of a polycarbonate plate ahead of a crack.  Influence of elliptical 

inclusions on an edge crack was studied by calculating stress intensity factors from 

experimental data and showed toughening effect to be the greatest for an elliptical 

inclusion when its major axis is normal to the crack plane.  Another interesting 

experimental study of the problem is by Li et. al. [24].  They experimentally modeled 

perfectly bonded ‘second phase’ in a matrix by altering the chemical structure by 

selectively exposing specific regions of a polymer to UV radiation.  Under fatigue 

loading conditions, they experimentally measured crack speed and qualitatively observed 

fractured surface morphology. They reported energy release rates and crack speeds for a 

crack approaching and penetrating softer inclusion and showed that interaction with a soft 

or a stiff inclusion affects the resulting crack path significantly.  Single fiber pull-out test 

is used to characterize interfacial properties of fiber-matrix bond, namely interfacial 

fracture energy (in shear dominated failure) and shear stress. Easley et. al. [25] used 

moiré interferometry to investigate stress field in a fiber pull-out test in the presence of 

nearby matrix cracks when the crack plane is perpendicular to the axis of the fiber. 

Specimens with partially exposed fibers were used to investigate shear stress in the 

vicinity of the fiber and the crack.  They reported a decrease in shear stress near the fiber-

matrix interface at peak pullout load. 
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            A perfect bond between a matrix and an inclusion seldom exists in reality due to 

finite interfacial strength.  This results in interfacial debonding between the two which in 

turn plays a significant role in the overall failure process. The presence of a nearby crack 

would likely aggravate or accelerate the process as well. Apart from the interfacial bond 

strength, debonding may depend on material properties of the matrix and the inclusion, 

geometry of the crack-inclusion pair and the type of loading. The matrix-inclusion 

debonding causes redistribution of strains and hence stresses in the vicinity of both the 

inclusion and the crack. These make it important to study and model mechanical fields in 

the vicinity of a crack-inclusion pair as debonding evolves. Debonding of the inclusion 

matrix can be easily detected if full-field displacements are measured. None of the 

reported investigations address this very important issue of matrix-inclusion debonding in 

presence of a nearby crack. Dearth of experimental investigations regarding this issue 

emphasizes the need for further investigation in this regard. Also, experimental 

investigation of this problem can offer valuable insight for developing numerical models 

and help achieve reliable solutions.  

 

1.4 Objectives 

            As discussed in the previous Section, the issue of debonding of a matrix from an 

inclusion in the presence of a crack requires further experimental investigation. Optical 

techniques are extensively used for mapping full-field deformations in various solid 

mechanics problems.  Among these techniques moiré interferometry is a well-known 

whole field experimental tool used to study in-plane displacement and strain fields. This 

technique in its various forms has been employed to study macro and micro mechanics 
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problems by many researchers.  To be able to employ this technique successfully, 

fabrication of physical specimen gratings of desired spatial frequency in the region of 

interest is of key importance. Microlithography processes are extensively adopted in 

recent years by microelectronics and MEMS industries to fabricate micro and nano 

features on different substrates. The most common substrate used is silicon which is 

commercially available in the form of wafers.  Microfabrication of gratings on a silicon 

wafer is a well-known process that uses photolithography and can be used to fabricate 

gratings on specimen substrates.  Considering all the requirements of the stated problem 

and the availability of resources, the main objectives identified for this research are as 

follows: 

• Fabricate square-wave profile gratings on silicon wafer and devise reliable 

method/methods to transfer gratings to specimens. 

• Fabricate a specimen to study the crack-inclusion interaction problem in a two-

dimensional setting. 

• Develop a moiré interferometer to map full-field displacement fields in real-time 

and extract strains at strategic locations in the vicinity of a crack-inclusion pair. 

• Measure fracture parameters such as crack opening displacements and stress 

intensity factors (K), energy release rates (ERR) under quasi-static loading 

conditions and identify matrix-inclusion debonding. 

• Model matrix-inclusion debonding in the crack tip vicinity using finite element 

method and experimentally validate the model. 
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• Parametrically study crack-inclusion interaction using the validated finite element 

model. 

 

1.5 Organization of the thesis 

            Including the current chapter this thesis comprises of five chapters. Chapter 2 

presents details of the microfabrication used to develop silicon wafer gratings. In this 

chapter the methods developed to fabricate the specimen gratings are elaborated.  This 

chapter also describes fabrication of crack-inclusion specimen for experimental study.            

Chapter 3 discusses the basics of interference of light waves and the working principle of 

moiré interferometry. Results of benchmark experiment with homogeneous cracked 

sample (without inclusion) are presented in this chapter. The experimental investigation 

of the crack-inclusion interaction problem using moiré interferometry is described in 

Chapter 4. Chapter 5 describes a finite element methodology to simulate crack-inclusion 

interaction including the method used to model debonding between an inclusion and a 

matrix.  This chapter also covers comparison between experimental and numerical results 

followed by a parametric study for the crack-inclusion problem using the adopted 

methodology. Chapter 6 concludes the work with a summary of observations and 

outcome of the thesis work.    
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CHAPTER 2 

GRATINGS FABRICATION AND TRANSFER TECHNIQUES 

 

            A critical requirement for successfully implementing moiré interferometry is to 

have high quality gratings printed on the specimen. Modern day lithography processes 

have been used in the current work to fabricate amplitude gratings on silicon wafers.  

Two methods are developed to transfer gratings to specimens. Photolithography is the 

underlying methodology used here to achieve the desired patterns [26]. It involves 

transfer of geometric shapes on a mask to a substrate coated with photosensitive polymer 

called photoresist. Accounts of various other methods used to develop and print gratings 

on specimens for moiré interferometry can be found in works by Post [27] and his co-

researchers.  Among these, a method extensively used now-a-days involves fabrication of 

a master (sinusoidal) grating using high spatial frequency interference pattern of 

photoresist.  The photoresist is developed following exposure to create a master grating. 

Replicas made from master gratings are used to create specimen gratings after depositing 

a reflective aluminum layer on them.  In the current work photolithography technique is 

used in conjunction with various microelectronic fabrication tools and methods to create 

‘square-wave’ amplitude gratings on a silicon wafer.  This process is executed in various 

steps and requires a careful control over  the  process  parameters  to  achieve  the  

desired  results.  Next the various necessary steps are described. 
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(a)

(b) (c) 

 

          
 
Figure 2.1: (a) LASI window showing mask design. (b) Enlarged view of the gratings 
design in LASI. (c) Mask (Ronchi gratings) made according to the design.  
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2.1 Master gratings fabrication  

            Considering the availability of in-house microfabrication facilities, a spatial 

frequency of 5000 lines/inch (5.08 µm pitch) was adopted. A mask was first designed 

using LASI (LAyout System for Individuals), a general purpose IC layout freeware and 

design system.  A chrome-on-glass mask (essentially a Ronchi grating) with equally 

spaced opaque chrome bars and transparent glass spaces was procured from a commercial 

source based on the supplied design.  Figure 2.1(a) shows the LASI design window used 

for the mask design.  In Fig. 2.1(b) an enlarged view of the grating pattern to be produced 

on the mask is shown.  Figure 2.1(c) shows the actual mask thus procured.  The active 

area of the mask has dimensions of 4 inch x 4 inch and it can be used to process a 4 inch 

diameter silicon wafer utilizing the full wafer area. 

            A single side polished, P-type <100> silicon wafer (diameter = 100 mm, thickness 

= 1 mm) was used for producing master gratings.  (The  crystallographic  orientation  and 

 

 

 

 

 

 

 

 

Figure 2.2: (a) Wafer cleaning. (b) Dehydration bake. 
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doping are not critical for the present work and were simply based on the availability.) 

The polished surface of the wafer was used for all processes described in the following.  

The wafer surface was rinsed with Acetone (Dimethyl Ketone CH3-CO-CH3) generously 

followed by a quick rinse with Methanol (Methyl alcohol CH3-OH) and then dried using 

pressurized nitrogen (see Fig. 2.2(a)).  Next the wafer was baked at 120 oC for 20 min, to 

remove any moisture (Fig. 2.2(b)).  Then HMDS (Hexamethyl-Disilazane) - a primer that 

enhances adhesion between silicon and photoresist - was vaporized onto the wafer 

surface in a closed container for about 20 minutes (Fig. 2.3(a)).  After centering the wafer 

on a vacuum chuck a positive photosensitive polymer (photoresist-AZ5214) was spin 

coated on the prepared wafer surface at 3500 RPM for 30 seconds as shown in Fig 2.3(b).   

This results in a (~ 1.5 µm thick) layer of photoresist over the wafer surface. To let the 

photoresist cure quickly the wafer was then soft baked on a hot plate at 105 oC for 60 

seconds with the rough side of the wafer in contact with the hot plate surface (Fig. 

2.4(a)).     

        Next the photoresist was exposed using the mask in a mask aligner (Karl Suss 

Model # MA6) with an exposure time of 6-8 seconds.  UV radiation is used in the mask 

aligner (Fig. 2.4(b)) for exposing the photoresist.  A hard contact was used between the 

mask and the wafer during exposure.  

            The exposed wafer was then developed (Fig. 2.5(a)) in a 1:2 solution of developer 

AZ 400K and water for approximately 20 seconds. Then the wafer was quickly rinsed 

deionized water (Fig. 2.5(b)) for 2 minutes,  dried using pressurized nitrogen (Fig. 2.5(c)) 

and inspected under an optical microscope (Fig. 2.5(d)).  The development of the 

photoresist   results in a   regularly  spaced  photoresist  bars  with  bare silicon  spaces in   
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Figure 2.3: (a) HMDS application. (b) Photoresist application. 

 

 

 
  
 
 
 
 
 
 
 
 
 
 
Figure 2.4: (a) Soft baking of the wafer. (b) The mask aligner showing the mask and the 
wafer. (Mask is held in the frame by vacuum.) 
 
 
between them.  The developed wafer was then anisotropically etched in those bare silicon 

spaces using Inductively Coupled Plasma (ICP) (STS Multiplex ICP).  An in-built 

program ‘MORGANSOI’ was used for this purpose for 4 cycles of alternative passivation 

and etching.  Each consecutive etching cycle affects the passivation layer on horizontal 

surfaces but the vertical walls are almost unaffected during etching.  This results in a very 
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high quality anisotropic etching with almost square wave profile gratings on silicon 

wafer.  Approximately 2 µm etching depth was achieved.  The photoresist bars were then 

stripped off from the wafer using oxygen plasma using a photo-stripping machine 

(MATRIX).  An in-built program ‘Photo-Str’ was used and the process time used was 

approximately 4 minutes.   At  the  end of  this  step a  high  quality  square-wave  grating  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: (a) Photoresist development (b) Rinsing (c) Drying (d) Inspection under 
microscope. 
         

was generated on the wafer surface with the desired pitch of 5.08 µm.  Then using the 

same ICP machine a very thin passivation layer (C4F8) was deposited on the gratings 

using a program ‘PASSIVAT’ for 6 minutes.  The silicon wafer gratings were then 

examined   under a  microscope  and  critical dimensions were measured using an in-built  
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Figure 2.6: STS Multiplex ICP used to etch silicon. 

  

 

 

 

 

 

 

 

 

Figure 2.7: Micrographs of silicon wafer gratings (a) Cross section. (b) Front view. 
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Figure 2.8: Schematic of steps involved in fabrication of silicon wafer gratings. 

(f) Stripped photoresist  

(g) Application of passivation layer  

(e) Etching of silicon  

 (a)   Silicon wafer  

(b) Application of photoresist  

(d) Development of photoresist  

(c) UV exposure using grating mask  

Mask  
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digital camera.  The micrographs of silicon wafer gratings are shown in Fig. 2.7. Figure 

2.8 shows a schematic of all the processes discussed so far. 

 

2.2 Grating transfer methods 

            To prepare specimen gratings from master gratings two different techniques were 

developed in this work.  Both the techniques were tested successfully and are described 

in detail next. 

 

2.2.1 Direct grating transfer from a silicon master 

            In this method a thin aluminum layer was vacuum deposited on the silicon wafer 

after the gratings were prepared as described earlier. This was done using a Denton 

Vacuum Deposition machine under high vacuum of (2 X 10-5 torr).   A photograph of a 

silicon wafer grating with aluminum film deposited over it is shown in Fig.  2.9. The rest 

of the steps involved in grating transfer are depicted schematically in Fig. 2.10. 

 

 

 

 

 

 

 

 

Figure 2.9: Aluminum coated silicon wafer gratings. 
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Figure 2.10: Direct transfer of gratings from silicon wafer with aluminum coating. (Note: 
In the schematic the specimen and the wafer are shown in thickness dimensions.)                  

(a)    Specimen  
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          The fluorocarbon passivation layer (C4F8) (see, section 2.1) acts as a parting layer 

between aluminum and silicon by reducing the adhesion strength between the two.  The 

specimen surfaces on which gratings were being transferred were prepared using #220 

and then #320 grit sand papers.  A pool of liquid epoxy was applied to the specimen 

surface in the region of interest as shown in Fig. 2.10(a).  The silicon master with the 

desired orientation of the gratings with respect to the specimen was pressed against the 

epoxy pool.  Excess epoxy was removed and the pair was allowed to cure at room 

temperature for about 72 hours. After the epoxy was cured silicon wafer was carefully 

pried off without much effort. This resulted in gratings along with aluminum coating 

transferred to the specimen surface with a high degree of fidelity (Fig. 2.10(c)) and good 

reflectivity.  (The use of thick (1 mm) wafer was helpful in handling of the wafer when 

being pried off the specimen surface.) The silicon wafer was re-used to print gratings on 

other specimens after redepositing the passivation layer and aluminum over it.  A 

specimen prepared in this manner is shown in Fig. 2.10(d) with high quality grating 

structure in the region of interest.  

 

2.2.2 Grating transfer using silicone rubber submasters 

            In the second method, silicone rubber was used to make submasters or replicas of 

the master grating pattern on silicon wafer.  A cardboard mold with its sides parallel and 

perpendicular to the grating lines was prepared to create a stamp to replicate the gratings 

from silicon wafer to the specimen.    A photograph of the mold on silicon wafer and 

prepared silicone rubber stamp (or submaster) with gratings on them is shown in Fig. 

2.11.   The steps involved in transferring gratings from the silicon wafer to a specimen is 
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shown schematically in Fig. 2.12. After preparing a card-board mold, 2 part silicone 

rubber∗ was mixed thoroughly and liquid rubber was deaerated in a vacuum chamber at ~ 

25 inches of mercury until the rubber pool rises initially and trapped air bubbles collapse 

eventually.  Deaeration was continued for an additional 3-4 minutes.  The liquid rubber 

was then transferred into the mold and cured at room temperature for over 16 hours (Fig. 

2.12(a)).  The cured rubber submaster was then detached from the silicon wafer with 

ease.  A glob of liquid epoxy† was then deposited on a pre-fabricated epoxy specimen 

surface (prepared with #220 and #320 grit sand papers) in the region of interest (Fig.  

 

 

 

 

 

 

 

 

 

 

 

          
Figure 2.11: Silicone rubber casting molds and submasters. 

                                                 
∗Two-part silicone rubber (Plastisil 73-60 RTV) manufactured by Polytek Inc., PA. 
†Two-part epoxy (Epo-ThinTM (Product # 20-1840, 1842, )) 100 parts resin : 39 parts hardener) from  
   Beuhler Inc., PA.  
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Figure 2.12: Steps involved in fabrication of silicone rubber submaster grating and 
transferring grating pattern onto specimen surface. (Note:  specimen and grating are 
shown in the thickness dimension)                                                                                
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2.12(b)). The silicone rubber submaster, with its edges aligned with the machined 

specimen edges, was pressed against the specimen surface and excess epoxy was 

squeezed out (Fig 2.12(c)) and removed using cotton swabs. Finally after epoxy was 

cured the rubber mold was detached from the specimen with little effort (Fig 2.12(d)). 

This resulted in high quality amplitude gratings on the specimen surface.  

 

 
Figure 2.13: Micrographs of (a) Cross-section of a silicone rubber submaster (b) Front 
view of epoxy gratings transferred using a silicone rubber submaster. 
 

            Relatively high diffraction efficiency was obtained from these gratings as evident 

from high quality moiré interferograms to be discussed.  (Depositing a reflective metallic 

film (aluminum, gold, etc.) is optional for studying dynamic events where high 

reflectivity is needed.)  This method allowed fabrication of virtually unlimited numbers 

of submasters and was also tested successfully on both metallic and polymeric substrates.  

A specimen with epoxy gratings transferred using this method is shown in Fig. 2.12(e). 

The cross-section of a silicone rubber stamp as viewed under an optical microscope is 

shown in Fig. 2.13(b). 
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2.3 Crack-inclusion specimen fabrication  

          Next, specimen preparation for crack-inclusion interaction studies is described.  To 

simulate this problem in a two dimensional setting, epoxy was used as the matrix material 

and laboratory grade glass was used as the inclusion. The elastic properties of the matrix 

and the inclusion phases are listed in Table – 2.1.   Pyrex glass rods of diameter 3.8 mm  

 

 

 

Table 2.1:  Elastic properties of matrix and inclusion. 
 

were cut into cylindrical pieces of length 7.1 mm. To enhance bond strength between 

glass and epoxy, glass cylinders were treated with gamma-aminopropyltrimethoxysilane‡ 

according to manufacturer’s instructions. This bonding agent is used widely in the 

fabrication of glass-filled polymeric composites to improve matrix-filler bonding 

strength.  The glass cylinder was then held in a mold of cavity thickness equal to its 

length so that the axis of the cylinder was perpendicular to the major dimensions of the 

mold (see, Fig. 2.14(a)).  Two part epoxy mixture was then poured into the mold around 

the inclusion and cured at room temperature for about 72 hours.  The cured sample was 

then machined to the required dimensions and epoxy gratings were printed using one of 

the methods described previously. (It should be noted that, gratings and specimen 

materials being same, shear lag effects are minimum.)  Figure 2.14(b)   depicts specimen 

geometry, dimensions and loading configuration with an illustration of grating lines and 

orientation on them. Here L is the distance between the crack tip and the center of the 
                                                 
‡ Silquest A-1110 Silane manufactured by GE Silicones, WV. 

 Young’s modulus E 
(GPa) 

Poisson’s ratio ν 

Epoxy  3.5 0.35 
Glass  68 0.19 
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inclusion of diameter d.  Thus L/d ratio is a nondimensional measure of inclusion 

proximity to the crack tip and it was 1.31 in this work.   A notch was then cut into the 

edge of the specimen using a circular diamond impregnated saw blade (thickness 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                        
 
 
 
                       
 
 
 
 
 

 

 

 Figure 2.14: (a) Specimen preparation, (b) Specimen geometry and loading    
 configuration. 
                                                                                                                                  

Specimen

 

a = 8.5 mm 
W = 42.5 mm 
B = 7.1 mm 
d = 3.8 mm 
L = 5 mm 
S = 127 mm 

 

W 

B 

L
a 

d 

S 

P 

Epoxy beam 

Glass inclusion 

Gratings 

Crack

(b) 

(a)

Epoxy 

Glass 
inclusion 

Mold 



 29

~300 µm). To sharpen the notch-tip a set-up was developed and is shown in Fig. 2.15(a).  

The set-up includes a translation stage with micrometers mounted on an angle bracket 

with a sharp razor blade fixed vertically, as shown. The specimen was rested on a fixed 

stage with horizontal and vertical support surfaces.  The thickness of the blade being less 

than the notch width, it was driven freely into the notch.  The sharp edge of the blade was 

then pressed into the notch tip in a controlled manner for approximately 200 µm depth. 

The blade was then retracted while holding the specimen against the supports resulting in 

a sharpened notch tip shown in the micrographs in Figs. 2.15(b) and (c). By careful 

alignment of the blade with respect to the translation stage the length difference of the 

sharp crack on the front and back sides at the notch tip was controlled to within ±30 µm.   

 

2.4 Materials characteristics 

            Epoxy used in this work as the matrix material was initially characterized by 

performing a uniaxial tension test on a ‘dog-bone’ specimen.  The test was performed in a 

INSTRON 4465 testing machine and the results are shown in Fig. 2.16. The strain was 

measured using an extensometer (Epsilon Inc., model # 3542-0050-010-ST).  The initial 

response shows that epoxy used here is essentially a linear elastic material with a modest 

nonlinearity seen before failure.  The elastic modulus determined from the graph by 

drawing a tangent to the initial part of the curve is 3.4 ± 0.1 GPa.  Evidently, the strength 

of epoxy is approximately 63 ± 2 MPa and failure strain is 0.02 ± 0.002.  
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(b) (c)
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   Figure 2.15: (a) Notch-sharpening setup. (b) Sharp-crack:  front-side view of the     
   specimen. (c) Sharp-crack:  back-side view of the specimen. 
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Figure 2.16: Stress-strain response of neat epoxy. 
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CHAPTER 3 

MOIRÉ INTERFEROMETRY 

 

         Moiré fringes are interference patterns generated when two geometric patterns of 

nearly same spatial frequency are superimposed.  Though considered optical noise in 

many instances moiré patterns are used in the field of solid mechanics to measure in-

plane and out-of-plane deformations.  An interferometric version of this method called 

moiré interferometry is used in the current research to map in-plane displacement 

components in real-time.  This method has been used successfully to study macro- and 

micro-mechanics problems in engineering. These encompass fracture mechanics, 

mechanics of microelectronic packages, composite materials, bi-material joints and for 

calibrating strain measuring devices, to name a few.   

            In the current work moiré interferometry is utilized to map evolution of dominant 

displacement fields in the vicinity of a crack-inclusion pair.  Moiré interferometry 

depends on both interference and diffraction of coherent light.  Two coherent light beams 

with plane wave fronts interfere to produce periodic constructive and destructive intensity 

patterns or the so-called virtual gratings. The working principle, implementation issues 

and various applications of moiré interferometry are detailed in a monograph by Post [27, 

28]. This chapter explains the optical setup developed for the current investigation, the 
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associated mathematical analysis of moiré interferometry [29, 30], validation experiments 

and results. 

 

3.1 Experimental Setup 

            Figure 3.1 shows a schematic of the optical setup developed during this research. 

It includes a 8 mW He-Ne laser, Ronchi grating (R), mirrors (M1, M2, M3 and M4), 

collimators (C1 and C2), lens (L1) and a CCD camera.  The Ronchi grating R is of the 

same pitch as the specimen gratings to easily achieve the required angles of incidence on 

the specimen.  The unexpanded laser beam was made to pass through the Ronchi gratings 

(with its principal axis in the horizontal plane, in this case) using mirror M1.  Upon 

transmission laser beam undergoes diffraction and several odd diffraction orders in the 

horizontal plane are generated. The angle α between diffraction orders is given by the 

diffraction equation, 

                                                          sin
p
λα    ,                                                          (3.1) 

where λ is the wave length of light and p is the pitch of the Ronchi gratings.  For He-Ne 

laser (λ = 633 nm) and a grating pitch of 5.08 µm, the value of α is ~7.15o.  All but ±1 

diffraction orders were blocked by an aperture and the first order diffractions were 

directed towards mirrors M2 and M3.  The reflected laser beams were then directed into 

two separate beam expanders coupled to collimators C1 and C2 as shown. The 

collimators were mounted on x-y-z translation stages for fine adjustment.  The expanded 

and collimated laser beams (with plane wave fronts) were directed towards the specimen 

as shown and  made to  interfere  with  each  other  producing  a  standing  wave  of  pitch  
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Figure 3.1: Schematic of moiré interferometer. 
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pv = 2.54 µm (10000 cycles/inch) on the specimen surface. These two incident beams are 

diffracted by the specimen grating and produce ±1 diffractions  propagating  along the 

optical  axis  (dotted line )  towards  mirror M4 and the camera  carrying   information  

about  in-plane deformations shown by warped wave fronts in Fig. 3.1.  They are directed 

into the camera back by the mirror M4 and imaging lens L1. The recording system 

consisting of the lens and the camera back is kept focused on the specimen plane. For 

further clarity a three dimensional sketch of the setup is shown in Fig 3.2 and an actual 

photograph of the setup is shown in Fig. 3.3. 

            

 

 

 

 

 

 

 

 

  

Figure 3.2: 3-D representation of the moiré interferometry setup. 
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analysis are presented in the next section. These fringes represent contours of in-plane 

displacement component in the principal direction of the specimen grating.  In the current 

 

Figure 3.3: Photograph of moiré interferometry setup. 

 

investigation crack opening displacements (displacements in the y-direction) were 

mapped. The opening displacements are governed by the equation,                                             

                                 ( , ) ( , ) ,y vv x y N x y p=    Ny = 0, ±1, ±2, ±3,…                              (3.2)                           

where Ny represents fringe orders and pv (= 2.54 µm) is the pitch of the virtual gratings 
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3.2 Deformation field mapping          

           The specimen was placed in a loading frame and a null light field was achieved 

under no-load conditions. A digital CCD camera interfaced with a computer was set to 

time-lapse photography mode to record interferograms at 2 seconds intervals during the 

loading phase.  A load cell connected to a data logger was also interfaced with the same 

computer and was configured to log the load history at a rate of 5samples/sec during the 

event. Both the camera and the data logger were triggered from the computer at the same 

time as the loading phase was initiated. The specimen was loaded quasi-statically in 

three-point bending configuration in a displacement control mode with a cross-head 

speed of ~0.04 mm/sec. The recording camera was configured in a manner that each 

image was tagged with temporal information of the computer clock as images were 

dumped into the computer memory.  The data logger clock was also synchronized with 

the computer clock such that loading data and the corresponding time for each data point 

was recorded. This facilitated establishing load levels at which each image was recorded. 

 

3.3 Interference of plane waves  

 

         
 
 
 
 
 
 
 
 
Figure 3.4: Interference of plane waves. (a) Plane wave propagation. (b) Geometry and 
(c) Intensity on the image plane. 
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             Let us consider two plane waves with propagation vector represented by n1 and 

n2 shown in Fig 3.4  and  their  respective angles with the z –axis as θ1 and θ2.   Τhese  

plane waves can be represented in vectorial forms as, 

     
1

2

.
1 1

.
2 2

ikn s

ikn s

Ae

A e

ψ

ψ

=

=
                                                                                                             (3.3) 

where ψ1 and ψ2 denote complex amplitude distributions and s is the position vector. 

Considering propagation in the y-z plane, y zs ye ze= +  where ye  and ze  are unit 

vectors in y and z- directions, respectively and 2k π λ=  is the wave number.  Here, A1 

and A2 represent strength of the field and λ is the wave length. Using the angular 

parameters shown in Fig. 3.4(b), complex amplitudes can be expressed as, 

1

2

1 1 1 1 1

2 2 2 2 2

exp[ ( sin cos )]

exp[ ( sin cos )]

i

i

A ik y z Ae

A ik y z A e

φ

φ

ψ θ θ

ψ θ θ

= + =

= + =
                                                                   (3.4) 

where 1 1 1( sin cos )y zφ θ θ= +  and  2 2 2( sin cos )y zφ θ θ= + . If the field strengths of the 

above  two wave fronts are same, then  A1 = A2 = A.  Then, 

1 2totalψ ψ ψ= + 1 2( )i iA e eφ φ= +  and the resulting intensity is given by the scalar product, 

*
total totalI ψ ψ= ⋅   

where *
totalψ denotes complex conjugate of totalψ .  Hence, 

 1 2 1 22 ( )( )i i i iI A e e e eφ φ φ φ− −= + +  

        22 (1 cos )A φ= + ∆ s                                                                                               (3.5) 

where,  
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1 2φ φ φ∆ = −  1 2 1 2[ (sin sin ) (cos cos )]k y θ θ θ θ= − + −                                               (3.6) 

is the phase difference.  

From Fig. 3.4(b), 1θ θ α= − , 1θ θ α= + .  Substituting these in eq. (3.6), 

( ) ( ){ } ( ) ( ){ }sin sin cos cosk y zφ θ α θ α θ α θ α⎡ ⎤∆ = − − + + − − +⎣ ⎦  

       2 sin ( cos sin )k y zα θ θ= − +                                                                                   (3.7) 

By installing the origin on the specimen surface (z = 0 on the specimen),  we get, 

0 2 sin cosz kyφ α θ=∆ = − .                                                                                             (3.8) 

By combining eq. (3.7) with eq. (3.4), it can be said that intensity attains maximum value 

(= 4A2) when 2Nφ π∆ = , where N=0, ±1, ±2... 

Hence, 
2sin cosN

Ny λ
α θ

= and 
1

( 1)
2sin cosN

Ny λ
α θ+
+

=  are locations of two consecutive bright 

fringes and the associated fringe spacing is, 

1 2sin cosN N vy y p λ
α θ+− = = ,                                                                                    (3.9) 

where pv is fringe spacing or the pitch of virtual gratings in case of two beam moiré 

interferometry in this study.  For 0θ = , 

2sinvp λ
α

= .                                                                                                                (3.10) 

           Thus in moiré interferometry setup of the current work the virtual grating 

(reference) pitch is half of the initial pitch of the specimen gratings.  
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 3.4 In-plane moiré interferometry 

Single beam incidence 

 

 

             

   

      

 

 

 

        

                                 Figure 3.5: Diffraction from a grating.  

 

The aperture function of a square wave (amplitude) gratings can be represented as, 

2 2 2( , ) cos cos3 cos5 ...y y yt x y A B C D
p p p
π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

      

As it is evident from the following analysis, truncating the series after the two terms is 

sufficient to develop the necessary expressions for moiré interferometry.  That is, 

2( , ) cos yt x y A B
p
π⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

 

            ( )2 2

2
i y p i y pBA e eπ π−= + +                                                                          (3.11) 

 

y 

θ 

θ 

α 
α 

Ψr, 0 

Ψr, -1 

Ψr, +1 

Ψi 

Ψr, +3 

Ψr, -3 
α 

p 

Object/ 
Specimen 



 41

Undeformed specimen 

As shown in Fig. 3.5, if the gratings are illuminated by a plane wave represented by,  

( sin cos )ik y z
i Re θ θψ +=          where R is constant. 

sin
0

iky
i z Re θψ = =                                                                                                         (3.12) 

After reflection, 

0i r ztψ ψ ==  

      ( )sin 2 2iky i y p i y pRe A Be Beθ π π−= + + . 

Expressing wave number as 2k π
λ

= , 

sin 1 sin 12 2
2 sin /

0

i y i y
p pi y

r z ARe BRe BRe
θ θπ π

λ λπ θ λψ
⎛ ⎞ ⎛ ⎞

+ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= = + +                                    (3.13) 

            ( ,0) ( , 1) ( , 1)r r rψ ψ ψ+ −= + +  

where the second subscript in each term denotes the diffraction order of the wave. But, it 

is known that for a grating with pitch p and wave length λ, diffraction angle α can be 

represented as, sin
p
λα =  .  Therefore, 

2 sin 2 (sin sin ) 2 (sin sin )
0

i y i y i y
r z ARe BRe BReπ θ λ π θ α λ π θ α λψ + −

= ⎡ ⎤= + +⎣ ⎦                        (3.14) 

Each term in eq. (3.14) represents diffracted waves propagating in distinctly different 

directions given by multiples of the diffraction angle α.  If the illumination angle θ, is 

adjusted such thatθ α= , 

2 sin 2 (2sin )
0

i y i y
r z ARe BRe BRπ θ λ π α λψ = ⎡ ⎤= + +⎣ ⎦                                                 (3.15) 
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where 2 sin
( ,0)

i y
r ARe π θ λψ = , 2 (2sin )

( , 1)
i y

r BRe π α λψ + =  and ( , 1)r BRψ − = .  That is, ( , 1)rψ −  is a 

wave propagating in the z-direction towards the imaging device. 

 

Deformed specimen 

            The specimen grating pitch p changes when the object deforms. Using prime 

notation for quantities after deformation, deformed pitch p’ = p ± ∆p, where change in the 

pitch is ∆p ≡ ∆p(x, y).  

Then,  1 sin '
'p

α
λ

=  where ' '( , )x yα α= . 

The counterpart of eq. (3.15) upon deformation is, 

sin (sin sin ') (sin sin ')
0' ik iky iky

r z ARe BRe BReθ θ α θ αψ + +
= ⎡ ⎤= + +⎣ ⎦                           (3.16) 

where sin
( ,0)' ik
r ARe θψ = , (sin sin ')

( , 1)' iky
r BRe θ αψ +

+ =  and (sin sin ')
( , 1)' iky
r BRe θ αψ +

− =  are the 

amplitudes of the diffracted wave fronts. 

Dual beam incidence 

           As shown in Fig. 3.6, when the deformed object is illuminated by two coherent 

plane waves (or, collimated light beams) at angles +θ and -θ  (that is α = θ), then, 

sin
1 0

sin
2 0

iky
i z

iky
i z

Re

Re

α

α

ψ

ψ
=

−
=

=

=
                                                                                                      (3.17) 

The diffracted wave fronts from the first beam are, 
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' sin (sin sin ') (sin sin ')
1

ik iky iky
r ARe BRe BReθ θ α θ αψ + +⎡ ⎤= + +⎣ ⎦  

( 1,0) ( 1, 1) ( 1, 1)' ' 'r r rψ ψ ψ+ −= + +  

Similarly the diffracted wave fronts due to the second incident beam are, 

 

 

 

 

 

 

 

                              Figure 3.6: Moiré interferometry principle. 

' sin (sin sin ') (sin sin ')
2

ik iky iky
r ARe BRe BReθ θ α θ αψ − − + − +⎡ ⎤= + +⎣ ⎦  

      ( 2,0) ( 2, 1) ( 2, 1)' ' 'r r rψ ψ ψ+ −= + +  

In Fig. 3.6 only ( 1, 1)' rψ −  and ( 2, 1)' rψ −  orders are shown for clarity.  These two waves 

propagate along the optical axis (z-axis), towards the imaging device (a camera). The 

total complex amplitude registered on the camera plane is given by, 

( 1, 1) ( 2, 1)' 'camera r rψ ψ ψ− −= +  

         (sin sin ') (sin sin ')( )iky ikyBR e eθ α θ α+ − += +  

The corresponding intensity distribution on the image plane is given by, 

*
camera camera cameraI ψ ψ= ⋅  

α 

α 

Ψi2 

Ψi1 

Ψ’r1,-1 

Ψ’r2,-1 
z 

y 

p 
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          [ ]22( ) 1 cos 2 (sin sin ')BR ky θ α= + −                                                       (3.18)          

 Here, α and θ being equal to each other eq. (3.18) represents low frequency intensity 

variation  representing moiré fringes as, 

2 1 12( ) 1 cos 2 2
'cameraI BR y

p p
π

⎡ ⎤⎧ ⎫⎛ ⎞
= + −⎢ ⎥⎨ ⎬⎜ ⎟

⎢ ⎥⎝ ⎠⎩ ⎭⎣ ⎦
                                                             (3.19) 

Equation (3.19) is similar to the one obtained for describing interference patterns when  

 

 

 

 

 

 

Figure 3.7: Double exposure moiré interferometry principle. 

 

two linear geometric patterns (gratings) of pitch p and p’ are physically superimposed or 

doubly exposed on a single film or sensor [31].  For example, a square wave grating 

affixed to the object (Fig. 3.7) and exposed on a film can be represented in terms of the 

fundamental harmonic as, 1
21 cos yI A

p
π⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 after truncating the higher order terms 

where p is the grating pitch and grating lines are along the x direction (y-direction is the 

principal direction).  In Fig. 2.7 the waveforms are shown spatially separated in the 

vertical direction for clarity. 

I 

y
p’ 
p
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            If the grating upon loading changes its pitch locally to p’ the changed profile can 

be expressed as 2 ,

21 cos yI A
p
π⎛ ⎞

= +⎜ ⎟
⎝ ⎠

.  If a single film records both unchanged and 

changed profile the resulting intensity is expressed as, 

1 2 ,

2 22 cos costotal
y yI I I A

p p
π π⎛ ⎞

= + = + +⎜ ⎟
⎝ ⎠

             

        , ,

1 1 1 12 1 cos 2 cos 2A y y
p p p p

π π
⎛ ⎞⎛ ⎞ ⎛ ⎞

= + + −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

                                                   (3.20) 

 

In eq. (3.20) ,

1 1cos 2 y
p p

π
⎛ ⎞

+⎜ ⎟
⎝ ⎠

 represents ‘high frequency’ carrier fringes and 

,

1 1cos 2 y
p p

π
⎛ ⎞

−⎜ ⎟
⎝ ⎠

 represents ‘low frequency’ moiré fringes. Since the high frequency 

information is ordinarily invisible the low frequency moiré signal can be isolated.  The 

corresponding displacement represented by the geometric interference is given by, 

v Np= ,  N = 0, ±1, ±2,…                                                                                             (3.21) 

            In the current work, for specimen gratings pitch p = 5.08 µm ( 1
p

 = 5000 

cycles/inch) corresponding virtual gratings pitch pv = 2.54 µm ( 1

vp
 =10000 cycles/inch).  

Therefore, the governing equation of moiré interferometry for the current work is given 

by, 

2
pv N= ,   N = 0, ±1, ±2,…                                                                                          (3.22)    

Carrier fringes Moiré fringes 
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            Thus eqs. (3.22) and (3.2) are the same equations where pitch of the virtual 

gratings is
2v
pp = .  This is also evident if the cosine terms representing moiré fringes in 

eqs. (3.19) and (3.20) are compared. Thus the sensitivity of moiré interferometry is twice 

than the geometric moiré.  

 

3.5 Benchmark experiment 

 

           

 

 

 

 

 

 

Figure 3.8: Neat epoxy three-point bend sample    

            Neat epoxy beam samples were fabricated as described in the previous chapter 

and gratings were printed in the area of interest.  An edge notch was cut and sharpened 

using the method described previously. The resulting specimen geometry is shown in Fig 

3.8 with an interferogram of moiré fringes representing crack opening displacement 

around the crack-tip. Experiments were performed in three-point bending configuration 

and interferograms were recorded at different load levels (P). Several selected 

interferograms from a test are shown in Fig. 3.9 and the fringe sensitivity is 1.25 µm/half-  
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Figure 3.9: Interferograms showing evolution of opening displacement field around the 
crack-tip in neat epoxy sample. (Sensitivity = 1.25 µm/half-fringe) 
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fringe. The pattern shows nearly symmetric crack opening displacement contours 

indicative of mode-I loading of the crack tip. An interactive MATLABTM code was 

developed to digitize fringes and record fringe location relative to the crack tip.  From the 

digitized data crack opening displacements and hence crack mouth opening 

displacements (CMOD) at the specimen edge for various load levels were determined 

using governing equation (eq. (3.22)) of moiré interferometry.      

            Displacements along (r, θ =180o) were also extracted from different 

interferograms to determine mode-I stress intensity factors (KI) as a function of the 

applied load. The displacement regression method was used for evaluating values of KI 

from each interferogram. Using Williams’ asymptotic expansion [32] for mode- I crack 

opening displacements for plane stress assumption is given by, 

1 12
1 22 2sin (1 )sin cos 2 sin

2 2 2
Ev A r A rθ θ θυ υ θ⎡ ⎤= − + −⎢ ⎥⎣ ⎦

  

         3 22
3 4

2 3 32sin (1 ) sin cos sin 2 ...
3 2 2 2

A r A rθ θυ θ ν θ⎡ ⎤+ − + − +⎢ ⎥⎣ ⎦
               (3.23) 

In the above Ai (i=1, 2, 3...) are coefficients of each term and A1 is related to mode- I 

stress intensity factor (SIF) as 1 / 2IK A π= . Also, E is the Young’s modulus, v is 

crack opening displacement, υ is the Poisson’s ratio, r is radial distance measured from 

the crack tip and θ is angular coordinate. By truncating the series in eq. (3.23) after the 

first term,      

1
2

( )
2 2sin (1 )sin cos

2 2 22
I appK

Ev r θ θ θυ
π

⎡ ⎤= − +⎢ ⎥⎣ ⎦
,                                              (3.24) 
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Figure 3.10: Results from benchmark study: (a) Variation for CMOD with load. (b) 
Variation of mode –I SIF with load. 
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where (KI)app denotes the apparent stress intensity factor. Along θ π= ±  , say 

θ π= + apparent stress intensity factor can be written as, 

                                                     2( )
4I app

EvK
r
π

= .                                                   (3.25) 

Using eq. (3.25), by plotting KI as a function of r, one can perform linear regression of 

(KI)app values to find KI as [33, 34],  

                                                            1 10
lim( )appr

K K
→

=  .                                               (3.26)                       

The experimental results of CMOD and KI thus obtained as a function of applied load are 

shown in Figs. 3.9(a) and (b), respectively. Both variations are essentially linear, as 

expected for a nominally elastic material such as epoxy used in the current investigation.      

            A finite element model of the same problem was also developed using structural 

analysis software ANSYSTM (Version 10.0). Isoparametric quadrilateral elements with 

midside nodes were used to model the problem in two dimensions under plane stress 

conditions.  The region around the crack-tip was meshed with fine elements to ensure 

accuracy of the solution.  Smallest element size near the crack-tip was approximately 

0.005a where a is the crack length.  No special elements were used to enforce singularity 

at the crack-tip.  Fracture parameters such as CMOD and mode-I stress intensity factors 

were extracted from the numerical solution. The finite element results for CMOD and 

mode-I SIF are also shown in Figs. 3.10(a) and (b), respectively, as solid lines. Finite 

element results are in very good agreement with experimental data.     

              Strain data were also extracted from interferograms along a line 

( / 0.6,  / )x L y L  (x and y is normalized by L, the distance between the crack tip and the 
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inclusion in a crack-inclusion specimen, to be described in the next chapter) ahead of the 

crack tip.  A central difference scheme without any data smoothing was used to extract 

strain values from interferograms. The strains were calculated as engineering strains 

using the following relationship, 

                                                     y
y v

Nv p
y y

ε
∂⎡ ⎤∂

= = ⎢ ⎥∂ ∂⎣ ⎦
                                               (3.27) 

where pv pitch of the virtual gratings and Ny is fringe order in the y-direction. Thus 

obtained strain data was normalized by the maximum tensile strain in an uncracked 

homogeneous epoxy beam strain,    

                                                     2

3
( )

2y beam

PS
EBW

ε = ,                                             (3.28) 

where P is the applied load, S, W, B are  specimen  dimensions  (See Fig. 3.8) and E is the 

Young’s modulus. The corresponding strain plot is shown in Fig. 3.11(a) as a function of 

normalized y for various load levels.  As expected, the strain data is relatively noisy due 

to numerical differentiation and potential digitization errors, particularly close to (y/L=0) 

where optical data tends to be sparse for a mode-I crack tip. The strain data from four 

different load levels are shown in Fig 3.11 and the data sets overlap on each other as 

expected. Also shown in the same plot is the strain variation obtained from the finite 

element model along the same line showing good agreement in the overall strain 

variation trends as well as magnitudes.  
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Figure 3.11: Comparison of strain distribution in neat epoxy sample along line x ~3 mm 
(L = 5 mm, and indicated by ‘m’) from moiré data and finite element analysis. 
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CHAPTER 4 

CRACK-INCLUSION INTERACTION 

 

            In this chapter experimental results from crack-inclusion interaction studies are 

described.  The specimens previously discussed are studied using moiré interferometry 

and dominant crack opening displacements in the crack-inclusion vicinity are obtained.  

Details of fracture parameters such as crack mouth opening displacements (CMOD) and 

hence stress intensity factors are assessed as a function of applied load.  Using measured 

displacements, strains are estimated at strategic locations near the inclusion. 

Experimentally obtained data will be compared to numerical results in the next chapter. 

 

4.1 Interaction between crack and inclusion  

            Edge notched crack-inclusion specimens were fabricated using the method 

described in Chapter 2. The notch was sharpened by razor blade insertion apparatus 

discussed earlier. A schematic of a crack-inclusion specimen with and illustration of the 

crack-tip coordinate system, gratings direction and loading configuration is shown in Fig. 

4.1.  A typical moiré fringe pattern is also shown in the region of interest. The 

experimental procedure adopted is the same as the one described in Chapter 3. The 

contours of crack opening displacement field (displacements along the y-direction) were 

recorded as moiré interferograms  (sensitivity 1.25 µm/half-fringe).   Figure 4.2  shows  a  
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Figure 4.1: Crack-inclusion specimen geometry loading configuration and crack-tip 
coordinate system. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 4.2: Selected moiré interferograms of crack-inclusion specimen before debonding 
occurs between inclusion and matrix. 
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662 618 

750 840 

few moiré fringe patterns form a crack-inclusion interaction experiment at selected load 

levels in the vicinity of a crack-inclusion pair.  In this case, the inclusion diameter d is 3.8 

mm and the distance between the crack tip and the inclusion center L is 5 mm which 

corresponds to a L/d ratio of 1.31.The fringes show typical mode – I crack-tip opening 

displacement field with reasonably good symmetry relative to the crack plane.  It can be 

readily observed from these fringes that displacement contours around the crack-tip and 

near to the inclusion are continuous during this part of the loading phase.  As the applied 

load is increased,  occurrence of  debonding  between the  inclusion  and  the  matrix  was  

 
Figure 4.3:   Selected moiré interferograms of crack-inclusion specimen after debonding   
between inclusion and matrix. 
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observed and the resulting moiré interferograms from the same experiment are shown in 

Fig. 4.3 for a few selected load levels.  Onset of debonding can easily be detected from 

successive interferograms by visual inspection of fringe pattern near the matrix-inclusion 

interface. Debonding results in discontinuous fringes around the inclusion. The fringes 

observed within the inclusion are parallel to each other and are equally spaced indicating 

rigid rotation of the inclusion after debonding, possibly due to friction and/or incomplete 

debonding between the inclusion and the matrix. A jump in the number of fringes (4-6) 

around the crack was generally observed immediately following the onset of debonding.   

 

4.2 Fracture parameters and strains            

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.4: Comparison between experimentally obtained crack mouth opening 
displacements for the crack-inclusion and neat epoxy specimens with load. 
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            CMOD was calculated by counting the number of fringes around the crack to the 

sample edge   and   by using   characteristic equation of moiré interferometry.  The results 

for the experiment are shown in Fig. 4.4.  CMOD data for   previously discussed neat 

epoxy specimen are also shown on the same plot for comparison between the two. 

Regime during the loading phase when debonding begins can be perceived by visual 

inspection of interferograms and that region is highlighted in Fig. 4.4.  From the graph it 

can be observed that CMOD values in the crack-inclusion specimen are lower than its 

neat epoxy (without inclusion) counterpart before the onset of debonding.   A  noticeable  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 4.5: Comparison of experimentally obtained variation of crack mouth compliance  
with applied load for crack-inclusion and neat epoxy specimens. 
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jump in CMOD as a consequence of debonding is evident and hence in the post-

debonding regime where CMOD values for the crack-inclusion specimen is generally 

greater than its neat epoxy counterpart. This is better evident from crack mouth 

compliance (d(CMOD)/dP) values calculated from CMOD values by using a simple 

central differencing scheme and are shown in  Fig. 4.5.  Crack mouth compliance 

calculated in the same manner for the neat epoxy case is also shown on the same plot for 

comparison. Evidently, the crack mouth compliance for the neat epoxy case is nearly 

constant as expected for a homogeneous linear elastic material.  The crack-inclusion 

specimen also shows a similar behavior before the onset of debonding but with 

compliance values somewhat lower than the neat epoxy case.   However, the sharp rise in  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 4.6: Variation of mode–I SIF with load for crack-inclusion specimen. 
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compliance for the crack-inclusion case is associated with occurrence of debonding 

which results in a peak as it can be seen from the plot. Further, the crack mouth 

compliance values are consistently higher than the ones for neat epoxy in the post-

debonding regime.      

             Using linear regression method described in Chapter 3, mode – I stress intensity 

factors were also calculated from crack opening displacements along crack faces 

(θ π= ± ) and a plot of mode-I SIF (KI) for crack-inclusion specimen is also shown in 

Fig. 4.6.  Again the response is generally linear as expected with the exception of a 

noticeable jump in  KI  values when debonding occurs. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Strain field evolution along (x/L ~ 0.6, y/L) (shown by line ‘m’) during the 
loading phase. 
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             Evolution of dominant strain εy along a line orthogonal to the crack and at 

( / 0.6, / )x L y L ahead of the crack tip (between the crack tip and the inclusion and 

nearly tangential to the inclusion) is shown in Fig. 4.7.  The strains are normalized with 

respect to an uncracked homogeneous beam sample of same loading configuration and 

geometry as described by eq. (3.20).  Load levels 533 N in the strain plot shown in Fig. 

4.7 corresponds to the loading phase before debonding.  Whereas, load level 604 N and 

662 N corresponds to debonding regime and load level 916 N corresponds to an applied 

load well after debonding.  It can be seen from the plot that there is substantial 

redistribution of strains ahead of the crack tip following the onset of debonding of the 

inclusion from the matrix.  After debonding occurs, strains close to y/L = 0 increase 

drastically and attain a peak value.  This can also be observed qualitatively in the 

decreasing fringe spacing near the inclusion-matrix interface along y/L = 0. The contrast 

between an edge cracked neat epoxy specimen (see Fig. 3.10) and crack-inclusion 

specimen (see Fig. 4.7) in terms of normalized strain can be readily observed.  The strains 

before debonding occurs are lower in case of the crack-inclusion specimen compared to 

the neat epoxy specimen due to shielding of the crack tip by the rigid inclusion. Due to 

occurrence of debonding these shielding effects are compromised and strain values show 

sharp increase near the inclusion-matrix interface. Noticeably, the strain redistribution is 

a highly localized phenomena and strains remain unaffected beyond y/L ~ ±1.  It is also 

evident from Fig. 4.7 that during debonding, the strain distribution in the inclusion 

vicinity is asymmetric with respect to y/L=0.  This is attributed to competing debond 

fronts around the inclusion.     
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4.3 Experimental repeatability               

                   Results from two crack-inclusion interaction experiments are shown in Fig. 

4.8 to address the repeatability of the crack-inclusion interaction behavior.  The plot 

shows variation of CMOD values for two crack-inclusion specimens.  The pre-debonding 

behavior is quite repeatable as can be seen from the graph whereas post-debonding 

variation is within 10 µm of each other.  Both experiments show occurrence of inclusion 

debonding at approximately same load level and show a jump in the CMOD values.  The  

Figure 4.8: CMOD variation with load for two different crack-inclusion specimens. 
 

differences in post-debonding behavior can be attributed to various reasons. The first and 

the most crucial  is  homogeneity  of  bond  strength  that  can  be  produced  between  the 
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cylinders with silane some difference is expected in the bond between matrix and 

inclusion in terms of the bond strength.  This coupled with large stress gradient due to the  

crack tip field may compound any such deviation. Another potential reason is 

unavoidable errors due to experimental limitation in achievable symmetry and relative  

 

Figure 4.9: Crack compliance variation with load for two different crack-inclusion 
specimens. 
 
location of crack tip and the inclusion.   These result in debond front selecting a dominant 

path on either side of the inclusion.  However, in the post-debonding regime (well after 

the completion of debonding) the two graphs are basically parallel to each other. 

            Experimental repeatability is better visualized by the crack mouth compliance 

plots for the two experiments and are shown in Fig. 4.9.  The occurrence of debonding is 

evident by the steep increase in the compliance values and a distinctly different plateau 
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CHAPTER 5 

FINITE ELEMENT MODELING  

             

            An approach based on deactivation of stiffness for elements meeting certain 

specified failure criteria has been used in a few previous works to simulate initiation and 

progression of fracture in materials. Al-Ostaz and Jasiuk [35] simulated crack growth and 

propagation in porous materials under uniaxial tension. They investigated crack 

trajectories in perforated epoxy sheets by considering elastic strain energy and maximum 

in-plane normal principal stress based failure criteria for simulating progressive failure. 

Ko et. al. [36] used this method to simulate fracture in a punch problem dominated by 

shear failure with a ductile-fracture criterion based on effective strain. They compared 

numerical results to the ones from experiments and showed that an improved solution can 

be obtained if fracture strain of the material is determined experimentally and then used 

as an input in the numerical model.               

            This chapter describes modeling and simulation of the crack-inclusion interaction 

including debonding of inclusion-matrix interface.  Element stiffness deactivation method 

is used in the current work to simulate onset and evolution of debonding.  A finite 

element model was developed in ANSYSTM [37] structural analysis environment for 

static analysis of crack-inclusion interaction.  ANSYS APDL (ANSYS Parametric 

Design Language) macros were used for pre- and post-processing of numerical data. A 
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parametric study was performed with respect to some of the geometrical parameters of 

the model. 

 

5.1 FEA model description 

           Under plane stress assumptions the finite element model was defined by 

specifying keypoints, joining them by lines and then creating areas in 2-D space.  The 

three-point-bend geometry (152mm x 42.5mm x 7.1mm), same as the one used in 

experiments, was created in this manner. A symmetrically located sharp crack was 

modeled by creating unmerged areas having common sides forming the two crack faces. 

Isoparametric quadrilateral elements with mid-side nodes were used to create a controlled 

mesh for the whole model. A representative finite element mesh used in the simulation 

performed to complement experiments is shown in Fig. 5.1(a).  Figure 5.2(b) shows an 

enlarged view of the mesh in vicinity of the crack tip and inclusion pair.  A very fine 

mesh was used in the region of interest namely, in the vicinities of the crack-inclusion 

pair and the inclusion-matrix interface to capture steep gradients of mechanical field 

quantities.  A distinct set of elements forming the interface between the inclusion and the 

matrix was generated as shown in Fig. 5.1(b).  This interfacial layer was modeled to have 

a thickness of ~ d/100, d being the inclusion diameter.  The geometrical parameters and 

the coordinate systems involved are shown schematically in Fig. 5.2.  In addition to the 

crack tip coordinate system with origin at O, a cylindrical coordinate system with origin 

O’ was also considered.   In Fig. 5.2, L is the distance between the crack tip and the 

center of the inclusion, d is inclusion diameter and a is crack length.  Next, the 
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methodology to simulate debonding between the inclusion and the matrix during the 

loading phase is discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 5.1: (a) Finite element mesh used for simulating crack-inclusion interaction in a 
three-point bend specimen (b) Enlarged view of the mesh in the vicinity of crack-tip and 
inclusion. 
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Figure 5.2: Crack tip and inclusion coordinate systems. 

 

5.2 Inclusion-matrix debonding  

            A criteria based on the ultimate strength of epoxy was hypothesized to simulate 

debonding of the inclusion from matrix.  The aforementioned interfacial elements that 

constitute the bond layer were useful for this. Failure due to radial stress (relative to the 

origin (O’) defined at the inclusion center) was considered for debonding of inclusion-

matrix interface. It was hypothesized that debonding occurs when radial stress attains a 

fraction of the ultimate stress of the matrix material in these elements. Quasi-static 

symmetric loading (P) was applied to the model with an increment of 20 N per step to 
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achieve mode – I conditions. During the loading phase, elements in this bonding layer 

were monitored for radial stress with respect to the cylindrical coordinate system with 

origin at the inclusion center. Post-processing was carried out at the end of each load step 

and beyond a predefined value of positive radial stress to ‘kill’ (or deactivate) the bond 

layer elements using ‘element death’ (EKILL) option available in ANSYS.  A user 

defined macro using ANSYS APDL was developed for this purpose (see, Appendix A).  

To achieve the desired effect the program does not actually remove the ‘killed’ elements 

in the model. Instead, elements meeting a stipulated criterion are deactivated by 

multiplying their elemental stiffness by a severe reduction factor. In this work a reduction 

factor of 1x10-8 was used.  This prevents those deactivated elements from contributing to 

the overall stiffness of the structure.  That is, the respective rows and columns of the 

stiffness matrix are made negligibly small without replacing them by zeros. Respective 

loads in the load vector are also zeroed out but not removed from the vector. Strain and 

stress values of all ‘killed’ elements are set to zero as soon as the elements are 

deactivated. At the same time, large deformation effects are invoked for these elements to 

achieve meaningful results. As mentioned earlier, the criteria proposed for deactivation of 

an element in the bond layer is, 

                                                              ( )rr cr oσ βσ= ,                                            (5.1) 

where (σrr)cr is the critical radial stress relative to the cylindrical coordinate system with 

its axis centered at O’, σo is the strength of matrix material and β is a scalar (0 ≤ β ≤ 1). 

The value of σo was used as 63 MPa for epoxy based on tensile test data shown in Fig. 

4.16.  A flow chart in Fig. 5.3 shows the analysis methodology described above. 
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Figure 5.3:  Analysis methodology for debond simulation using ANSYS APDL. 

            As expected the radial stress around the inclusion is continuous before the onset 

of debonding. The σr  values are maximum on the interface directly ahead of the crack 

tip.  Once debonding occurs, σr values vanish over the debonded interface which 

terminate where stress discontinuity is seen.  That is the debond tips are at ' 0oθ = and 

~100o  in Fig. 5.2.  
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Figure 5.4: (a) Variation of radial stress variation around the inclusion for b = 0.12 
(applied load P is normalized by Po, the load corresponding to tensile failure of an 
uncracked neat epoxy beam).(b) CMOD variation for various β values (eq. (5.1)) used in 
finite element simulations and comparison with experimental results. (L/d = 1.31, d = 4 
mm) 
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5.3 Effect of β on debonding  

           Figure 5.4(a) shows the variation of radial stress along the bond layer before and 

well after the occurrence of debonding. After an element meets the debond criteria its 

strain and hence stress are set to zero.  Various values of β were considered for 

simulating debonding. A plot of CMOD as a function of applied load for various values 

of β in eq. (5.1) is shown in Fig. 5.4(b).  Each plot shows a linear variation of CMOD 

with load until the onset of debonding. Post-debonding regimes have noticeably different 

slopes when compared to pre-debonding ones.  A transition zone in between the two can 

also be identified. On the same plot, experimentally obtained CMOD values from moiré 

interferometry are also shown.  A value of β = 0.14 in eq. (5.1) resulted in a good 

agreement with experimental observations. A lower or a higher value of β relative to this                  

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Crack mouth compliance comparison between experimental and FEA data.         
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Figure 5.6: Strain field evolution along (x ~ 3 mm, y) (shown by line ‘m’) for (a) pre-
debonding and (b) post-debonding stages.  
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 value results in initiation of debonding at lower or higher loads, respectively, as 

expected.   Evidently, following debonding, all graphs coincide with each other.               

            Next crack mouth compliance (d(CMOD)/dP) was calculated by differentiating 

CMOD data  obtained  from FE  simulation.   A central difference scheme was used to 

compute compliance and the result is shown in Fig. 5.5 indicated by a solid line.  On the 

same plot the experimentally observed crack mouth compliance values are also shown. 

An excellent agreement between the finite element model and experimental data is 

readily evident from this graph.  A sudden increase in compliance occurs following the 

onset of debonding. A relatively higher plateau in compliance values in the post-

debonding regime compared to the ones from pre-debonding regime can be readily 

observed. 

            Next strain evolution along a line (x/L ~ 0.6, y/L) (shown by ‘m’ in Fig. 5.6) near 

the inclusion-matrix interface from the finite element model are discussed. The strains in 

Fig. 5.6 are normalized with respect to maximum beam strains, as described in Chapter 3 

and the plots are shown for pre- and post-debonding regimes in Figs. 5.6(a) and (b) 

respectively. The experimental data (from Chapter 4 (Fig. 4.7)) is also shown on the same 

plot for comparison. The strain values from FEA model are in good agreement with 

experimental data and these strain plots show a behavior similar to the one observed in 

experiments. The difference between experimental and finite element strain values closer 

to the inclusion-matrix interface is not completely unexpected considering the 

asymmetries entering the model (see Fig. 5.4(a)) after the occurrence of inclusion-matrix  
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Figure 5.7: Crack opening displacement field from finite element analysis showing 
perturbed displacement contours in the crack-inclusion vicinity. (a) Before debonding (b) 
After debonding. Contours levels are approximately same as the experimental ones. (a = 
8.5 mm, d = 4mm, L/d = 1.31, β = 0.14). 
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debonding.  Further, strain differences are due to possible digitization and differentiation 

errors as noted earlier.   

            After the onset of debonding a qualitatively similar progression of the debond 

front as in experiments was observed in finite element simulations. Also the fringe 

spacing in the vicinity of crack-inclusion was observed to decrease in post-debonding 

regime which is evident from the strain plot as a steep increase in Fig. 5.6(b). 

Representative plots of opening displacement fields from the finite element analysis in  

 

 

Figure 5.8:  Energy release rate variation with applied load. 

vicinity the of crack-inclusion pair, before and after debonding, are shown in Fig. 5.7. 

Here the contour levels are same as the one in moiré interferometry. Qualitative 

agreement between experimentally recorded opening displacements fields (Figs. 4.2 and  
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Figure 5.9: Normal Strain evolution along line ‘m’ (a) εx  (b) εy. 
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Figure 5.10: Evolution of (a) Shear strain εxy (b) Von-Mises stess  along line ‘m’.  
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4.3) and the ones from finite element analysis is readily evident. Discontinuous fringes 

around the inclusion periphery in the interferograms shown in Figs. 4.2 and 4.3 are also 

evident in Fig. 5.7. Thus the overall crack tip behavior in terms of crack opening 

displacements is preserved in these simulations.  

            A user-defined macro was used to extract mode – I stress intensity factors (KI) 

from the finite element model.  Linear regression methods using crack opening 

displacement alongθ π= ± , as described in Chapter 3 was used and subsequently 

Energy Release Rates (ERR) were calculated as,  

                                              
2
IKERR G

E
= =        for plane stress                              (5.2) 

 where E is the Young’s modulus of the matrix material.  A good agreement can be seen 

between experiments and simulations from the results plotted in Fig. 5.8. 

            Normal strains (εx) and (εy) shear strains (εxy) were also extracted along (x/L ~ 0.6, 

y/L) (shown by line ‘m’) from the finite element model and are shown in Figs. 5.9 and 

5.10(a).  (For completeness a plot of normal strain (εy) along ‘m’ is reproduced in Fig. 

5.9(b)).  All strain components also shows drastic increase in the vicinity of the inclusion 

after debonding whereas beyond y/L = ±1 the values are almost unaffected suggesting a 

highly localized phenomena. Figure 5.10(b) shows a plot of von-Mises stresses along the 

same line for the pre- and post-debonding regimes. 

 

5.4 Convergence study       

            To ensure the accuracy of the results a convergence study was performed. As 

described earlier the model is comprised of a distinct set of elements along the interface 
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between the matrix and the inclusion and these elements are used for simulating 

debonding. Numbers of elements in the whole model as well as in the circular interfacial 

bond layer were varied and simulations were carried out.  The number of elements in the 

bond layer was doubled in subsequent simulations in steps of 32, 64 and 128.   CMOD 

values  were  extracted  from these  simulations and the results are shown in  Fig. 5.11.  It  

Figure 5.11: Validation of CMOD with load for different bond layer element sizes. 

 

can be seen from the plot that a good convergence is achieved and mesh is sufficiently 

refined.   Thus the numerical model seems to capture the overall behavior of the crack-
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5.5 Parametric study 

5.5.1 Constant L/d ratio: Effect of inclusion size 

          A parametric study was carried out for different L/d ratios using the finite element 

model for the edge cracked geometry loaded in symmetric three-point bend 

configuration.  In all simulations β = 0.14 for which good agreement between 

experiments and simulations were observed is used. The effect of inclusion size was 

studied for a constant L/d ratio with respective L and d values shown in Table 5.1.  Here 

L is the distance between the crack tip and inclusion center and d is the diameter of the 

inclusion. A bonding layer thickness (tb) of d/100 was used in each of these simulations. 

The model parameters used for these are listed in Table 5.1.    

            The plot of variation of CMOD with applied load is shown in Fig. 5.12 for a 

constant L/d ratio of 1.31 with different diameters of inclusions.  The applied load in 

these plots is normalized by Po, the load at which a neat epoxy beam would fail in tension 

based on ultimate strength of epoxy (σo).  Po is calculated by using equation, 

                                                           
22

3
o

o
BWP
S

σ
=                                                   (5.3) 

where B is the thickness,  W  is the height of the beam and S  is span. The value of Po was 

thus calculated as (4241 N) as failure load of an uncracked neat epoxy beam. For these 

simulations parameter L was varied with respect to the inclusion diameter d to achieve a 

constant L/d ratio. A delayed debonding was observed for larger inclusions whereas 

smaller inclusions get debonded from the matrix at much lower loads, as seen from plot 

in Fig 5.12. This can be visualized better from the crack mouth compliance 

(d(CMOD)/dP) calculated by differencing CMOD values with respect to the applied load, 
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Table 5.1: Geometric parameters used for study with a constant L/d ratio. 

 

Figure 5.12: CMOD variation with load for L/d ratio of 1.31. 

# L (mm) d (mm) L/d tb (mm) 
1 0.655 0.5 1.31 0.006 
2 1.31 1 1.31 0.01 
3 2.62 2 1.31 0.02 
4 5 3.8 1.31 0.05 
5 6.55 5 1.31 0.05 
6 7.86 6 1.31 0.06 
7 9.17 7 1.31 0.07 
8 10.48 8 1.31 0.08 
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Figure 5.13:Variation of crack mouth compliance with respect to applied load.(L/d=1.31)   

   

  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        
       Figure 5.14: Crack mouth compliance values for different inclusion diameters 
       (L/d = 1.31). 
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and are shown in  Figure 5.13.   Each compliance plot shows different steady state values 

before and after debonding.  In this context it is worth noting that crack mouth 

compliance for a cracked neat (without any inclusion) epoxy beam is 0.21 µm/N.  At the 

onset of debonding compliance shows a jump and attains distinctly different maximum 

value in each case.   The compliance values before debonding, after debonding as well as 

the maxima during the loading phase are shown in Fig.  5.14.   Maximum values increase  

until a  d/a  value  of  0.6  but  drop  with  further  increase  in  d/a.   Though the physical  

 

 

Figure 5.15: Energy release rates for different diameter inclusions (L/d = 1.31). 

 

significance of these maximum values is unclear at the moment, further investigation 
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            Normalized energy release rates (ERR) were also calculated from the simulations 

as described by eq. 5.2 and corresponding plots of the same is shown in Fig. 5.14.  A 

behavior similar to the one observed from crack mouth compliance values is observed.      

The normalization was done with respect to the energy release rates associated with a 

same geometry (edge cracked three-point bend) neat epoxy specimen at the same load 

level (Gneat epoxy) calculated as, 

                                           
2

epoxy
 

( )I neat
neat epoxy

K
G

E
=                                                   (5.4) 

            Opening strains (εy) were extracted from these simulations involving a constant 

L/d  ratio of 1.31.  Figures 5.16(a) and (b) show the plots of normalized εy  in pre- and 

post-debonding regimes respectively.  A normalized load of   P/Po= 0.023 is considered 

for the pre-debonding regime plots which corresponds to a load level well before 

debonding.  For post-debonding regime the normalized load value is P/Po= 0.30 which 

corresponds to a load level after debonding.  Here Po (= 4241 N) is the load value 

corresponding to failure of a homogeneous uncracked beam based on failure strength of 

matrix (epoxy) material.  The increasing shielding effect is evident here in the pre-

debonding regime (Fig. 5.16(a)) as inclusion size increases from lower values of strains 

near matrix-inclusion interface for larger size inclusions.  In post-debonding regime also 

the same trend is observed for larger size inclusions as seen from Fig. 5.16(b). 
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Figure 5.16: Strain (εy) evolution along line ‘m’ for L/d =1.31 (a) Before debonding 
(P/Po= 0.023) (b) After debonding (P/Po= 0.30). (Note: a = 8.5 mm.) 
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5.5.2 Varying L/d ratio: Crack-inclusion proximity effect 

            Next, the L/d ratio was varied to examine the effect of inclusion proximity with 

the crack tip and its impact on overall behavior of the problem.  In this case inclusion size 

(d) was varied whereas the distance between the crack tip and inclusion center L was kept 

 

 

 

 

 

               

Table 5.2: Geometric parameters used for studying effect of L/d ratio. 

 
 
       
                   
              
                
 

 

Figure 5.17: Variation of crack mouth opening displacement with the applied load. 

# L (mm) d (mm) L/d tb (mm) 
1 5 1 5 0.01 
2 5 2 2.5 0.02 
3 5 3.8 1.25 0.04 
4 5 5 1 0.05 
5 5 6 0.83 0.06 
6 5 7 0.71 0.07 
7 5 8 0.63 0.08 
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constant.  The values of parameters L and d used in this set of simulations are tabulated in 

Table 5.2. 

            The CMOD values for this study are shown in Fig. 5.17.   It can be seen from the 

plots that as the L/d ratio decreases the debonding occurs much earlier.   Also, the CMOD 

values are lower for higher L/d before debonding whereas after debonding the trend is 

reversed.  The inclusions nearer to the crack-tip show variation of CMOD with noticeably 

higher slopes.  The   compliance   plots   obtained   from Fig. 5.17   shown   in Fig. 5.18 

demonstrate this more distinctly. It can be seen that the compliance values before and 

after debonding show opposite trends. The peak compliance values attained along with 

the steady state values before and well after the occurrence of debonding are shown in 

Fig. 5.19 for various L/d ratios. Peak compliance values show increasing trend as the L/d  

 

 

 

    

 

 

 

 

 

 

 

Figure 5.18: Variation of crack mouth compliance with the applied load. 
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ratio decreases (when the distance between the crack tip and the inclusion center (L) is 

constant). The values associated pre-debonding regime shows a decreasing trend with 

decrease in the L/d ratio whereas after debonding the trend is reversed.  For this case (L/d 

varying), normalized energy release rates (or, crack driving force) are shown in Figure 

5.20.  In each case, shielding effect is evident before the occurrence of debonding as the 

L/d ratio increases whereas after debonding the energy release rates shows steep increase 

and settles at a higher value for larger L/d ratios.  From L/d = 5 to L/d = 0.625 the 

normalized value of energy release rate is increased approximately 2.5 times as evident 

form the plot.  That is, an inclusion which is much closer to the crack tip  

 

        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.19: Steady state and maximum values of crack mouth compliance with variation 
of L/d ratio. 
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Figure 5.20: Energy release rates for different L/d  ratios. 
 
 
when debonds increases the crack driving force (by a factor of ~ 2.5 in this study) as well 

as crack mouth compliance when compared to the one farther away. 

            For the case of varying L/d ratio the opening strains (εy) were extracted and the 

corresponding plots of strains along line ‘m’ are shown in Figs. 5.21(a) and 5.21(b).   The 

corresponding load levels for each of these plots are kept same as Figs. 5.16(a) and (b) 

respectively.  As L/d ratio increases εy values shows increasing trend in the vicinity of the 

inclusion-matrix interface in the pre-debonding regime (Fig. 5.21(a)). Figure 5.21(a) 

shows a slight decrease in εy values for L/d ratio larger than 0.71.  Whereas εy values 

show a monotonic increase in the post debonding regime with increase in the L/d ratio as 

seen from Fig. 5.21(b).  
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Figure 5.21: Strain (εy) evolution along line ‘m’ for L = 5 mm. (a) Before debonding 
(P/Po= 0.023) (b) After debonding (P/Po= 0.30).  
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5.6 Estimation of glass-epoxy interface strength 
 
 
              To provide a physical interpretation for the value of β = 0.14 in eq. (5.1) that 

provided good agreement with experimental CMOD variation, nominal interfacial 

strength between epoxy and glass was measured. This was done using T-shaped tension 

specimens shown schematically in Fig. 5.22.  Clean surface of a rectangular glass bar 

(75mm x 25mm x 6.6mm) that has the surface finish same as that of the glass inclusion 

was treated with silane and dried at room temperature for 24 hours.  Silicone rubber 

molds were prepared to cast epoxy (70mm x 21mm x 7.1mm) stems on the glass surface.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
Figure 5.22: Schematic of specimens and loading configuration used for estimating glass-
epoxy bond strength. (Note: All dimensions are in mm.) 
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Figure 5.23: Silicone rubber molds cast on a flat surface. 
 

Silicone molds thus prepared are shown in Fig 5.23.  These molds were separated from 

the casting surface after they were cured and the epoxy bar used to cast the mold was 

pulled out.  After proper alignment of the mold over the treated glass surface liquid epoxy 

was again poured into the mold and allowed to cure for 72 hours at room temperature.  

Casting epoxy in this way allowed preparing bond between epoxy and glass in a manner 

similar to the one that exists between the inclusion surface and the matrix in crack-

inclusion specimens.  The specimens were tested in an INSTRON 4465 testing machine 

and load data were collected until glass-epoxy interface failed.  A photograph of the test 

setup is shown in Fig. 5.24.  Brittle failures of the glass-epoxy interfaces were observed 

and average failure stresses for several samples tested are reported in Table – 5.3. 
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Figure 5.24: Experimental setup for glass-epoxy interfacial strength measurement. 
 

              

 

 

 

 

Table 5.3: Glass-epoxy interfacial failure strength data. 

 

Specimen # Failure stress (MPa) 

1 7.46 

2 10.39 

3 9.90 

Average interfacial failure strength = 9.25 MPa 

Epoxy 

Glass
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            The average value of the interface strength was estimated as 9±1 MPa. 

Interestingly, (σrr)cr value in eq. (7) that produced good agreement (=βσo) with moiré 

data is within 5% of the interfacial strength between epoxy and glass. This further 

validates the proposed model used in the FE simulations. 

            It should also be noted that a few experiments on T-specimens prepared without 

silane treatment were carried out. The resulting weaker interface showed an average 

interfacial strength of 3 ± 1 MPa, nearly a third of the one when glass was treat with 

silane. 
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CHAPTER 6 

CONCLUSIONS 

 

            In this work a stationary crack interacting with a relatively stiff inclusion and the 

resulting debonding of the inclusion from the matrix were studied experimentally and 

numerically.  Three-point bend (TPB) epoxy specimens with edge cracks and solid 

cylindrical glass inclusion were examined. The full-field technique of moiré 

interferometry was used to map deformations in the crack-inclusion vicinity.  The 

experimental novelty here includes development of microelectronics fabrication based 

methods for printing specimen gratings using two approaches namely, (1) Direct transfer 

of aluminum coated gratings from a silicon wafer master and (2) Indirect transfer of 

gratings using silicone rubber submasters. High quality grating profiles were achieved 

using these two methods. A moiré interferometer was developed and used to acquire high 

quality interferograms. An optical resolution of 1.25 µm/half-fringe was successfully 

achieved and results were benchmarked using a cracked TPB specimen made of neat 

epoxy. 

           Next, crack-inclusion specimens were fabricated and deformations were mapped 

near crack-inclusion vicinity during monotonically increasing load.  The occurrence of 

debonding between the matrix and the inclusion was successfully identified during the 

loading phase.  Pre- and post-debond deformation fields show localized differences ahead 
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of the crack tip and near the inclusion.  The fringe contours clearly show discontinuity at 

the matrix-inclusion interface and observable asymmetry in displacements around the 

inclusion due to selective propagation of the debond front.  A change in the crack mouth 

compliance was clearly evident at the onset of debonding. Substantial differences in 

terms of dominant strains obtained by differentiating the optical data were also evident 

when pre- and post-debond stages were compared. Opening strain values showed 

noticeable increase in the vicinity of the crack tip and the inclusion near to inclusion-

matrix interface after debonding whereas far field strains remain relatively unaffected. 

           A finite element model was developed to capture the major experimental 

observations.  This was achieved by implementing a inclusion-matrix debond criteria 

based on an interfacial layer of elements attaining a fraction of the ultimate strength of 

the epoxy matrix.  The debonding process was simulated by deactivating stiffness of 

interfacial layer of elements by a user-defined macro in ANSYS structural analysis 

environment.  Various bond strengths were used as a fraction of the ultimate strength of 

the matrix material and the finite element model was validated against the experimental 

data. The displacement and strain fields were compared successfully with experimental 

results. A follow up experiment to measure apparent interfacial strength of glass-epoxy 

suggested that inclusion debonded when radial stress at a location on the interface 

reached the interfacial strength of the interface.  

            A parametric study was undertaken using the finite element model.  Mainly two 

different scenarios were studied: (1) Inclusion size effect (constant L/d ratio) and (2) 

Inclusion proximity effect (varying L/d ratio). Fracture parameters such as crack mouth 

opening displacement (CMOD) and energy release rates were calculated using the finite 
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element model. At a constant L/d ratio the larger size inclusions show delayed debonding.   

Also the peak value of crack mouth compliance attained during debonding was observed 

to increase until a d/a ratio of approximately 0.58 whereas further increase showed a 

decreasing trend. The study of varying L/d ratio (with constant L) showed that a larger 

inclusion shields the crack tip more before debonding.  However, a larger inclusion 

debonds at a lower load and results in higher crack mouth compliance than the smaller 

size inclusion upon debonding. Energy release rate for a larger inclusion (L/d = 0.63) 

showed a higher value (~ 2.5 times) than smaller (L/d = 5) inclusion at a fixed value of L 

(= 5 mm) in post-debonding regime in this study.   
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APPENDIX A 
 

List of ANSYS APDL Macros 
 

(1) Macro to generate the crack-inclusion interaction model. (TPB geometry) 
!---------------------------------------------------------------------- 
!Modeling of 2D circular inclusion specimen with crack 
!Global Cartesian coordinate system orientation: crack along x-axis 
!---------------------------------------------------------------------- 
/com,structural 
/prep7 
csys,0 
!---------------------- 
!    Parameters 
!---------------------- 
a=8.5     ! Crack length in mm 
d=3.8      ! Inclusion diameter in mm 
r=d/2      ! Inclusion radius 
e=5       ! Distance between inclusion center and crack tip 
b=(e-r)/2      ! Tip quarter (square) zone dimension 
bt=.01*d! Bonding layer thickness between inclusion and matrix 
s=127      ! Span in mm 
h=42.5     ! Height in mm 
l=152      ! Specimen full length in mm 
nw=0     ! Notch width in mm 
!-------------------------------------- 
!   MATERIAL LIBRARY 
!--------------------------------------- 
mpdel,all,all 
!-----------Inclusion property-------- 
mp,ex,1,68000  ! Young's modulus (Mpa) 
mp,prxy,1,.19 ! Major Poisson's ratio 
!-----------Matrix property------------ 
mp,ex,2,3500  ! Young's modulus (Mpa) 
mp,prxy,2,0.35  ! Major poisson's ratio 
!---------- Bonding layer property------ 
mp,ex,3,3500 ! Young's modulus (MPa) 
mp,prxy,3,0.35  ! Poisson's ratio 
!--------End Material property definition--- 
!------------------------------------------------ 
!             ELEMENT TYPE  
!------------------------------------------------- 
et,1,PLANE82  !  8 noded iso paramatric element 
keyopt,1,3,3 ! Plane stress with thickness option   
keyopt,itype,knum,value 
keyopt,1,5,2 ! Nodal stress solution for extra element output 
keyopt,1,6,0 ! Extra surface output as basic element solution 
R,1,7.1   ! Real constant set definition 
!---------------------------- 
!     Crack tip Geometry 
!---------------------------- 
k,1,0,0     ! Crack tip zone keypoint definition  
k,2,-b,-nw/2    ! k,npt,x,y,z  (Npt= kp#, x,y,z(cartesian) or r, q, z 
(cylindrical) etc.. 
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k,3,-b,-b 
k,4,0,-b 
k,5,b,-b 
k,6,b,0 
k,7,b,b 
k,8,0,b 
k,9,-b,b 
k,10,-b,nw/2 
lstr,1,2   ! (1) !lstr,P1,P2 
lstr,1,4   ! (2) 
lstr,1,6   ! (3) 
lstr,1,8   ! (4) 
lstr,1,10  ! (5) 
lstr,6,5   ! (6) 
lstr,6,7   ! (7) 
lstr,8,7   ! (8) 
lstr,8,9   ! (9) 
lstr,10,9  ! (10) 
lstr,2,3   ! (11) 
lstr,4,3   ! (12) 
lstr,4,5   ! (13) 
!------------------ 
!Inclusion geometry 
!------------------  
k,11,e,0       ! center of inclusion 
k,12,(e-r),0   ! bottom point  
k,13,e,-r       ! right point 
k,14,(e+r),0   ! top point 
k,15,e,r      ! left point 
k,16,(e-r-bt),0   ! bonding layer bottom point  
k,17,e,-(r+bt)       ! bonding layer right point 
k,18,(e+r+bt),0   ! bonding layer top point 
k,19,e,(r+bt)      ! bonding layer left point 
! inclusion arcs..... 
larc,12,13,11,r  ! (14)!  larc,P1,P2,PC,rad 
larc,13,14,11,r  ! (15) 
larc,14,15,11,r  ! (16) 
larc,15,12,11,r  ! (17) 
!bonding layer arcs.... 
larc,16,17,11,(r+bt) ! (18) !  larc,P1,P2,PC,rad 
larc,17,18,11,(r+bt) ! (19) 
larc,18,19,11,(r+bt) ! (20) 
larc,19,16,11,(r+bt) !(21) 
 
lstr,12,16 ! (22) 
lstr,13,17 !(23) 
lstr,14,18 ! (24) 
lstr,15,19 ! (25) 
!------------------------------ 
!  Specimen overall geometry 
!------------------------------ 
k,20,-a,-nw/2 ! crack mouth right(top) side 
k,21,-a,-s/2  ! bottom right  
k,22,h-a,-s/2 ! top right 
k,23,h-a,s/2  ! top left 
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k,24,-a,s/2   ! bottom left 
k,25,-a,nw/2  ! crack mouth left(bottom) side 
k,26,h-a,0    ! load point for TPB 
 
lstr,2,20 ! (26) 
lstr,10,25 ! (27) 
lstr,20,21 ! (28) 
lstr,25,24 ! (29) 
lstr,21,22 ! (30) 
lstr,24,23 ! (31) 
lstr,26,23 ! (32) 
lstr,26,22 ! (33) 
lstr,18,26 ! (34) line joining bonding layer to load point 
lstr,6,16  ! (35) line joining tip area to bonding layer 
 
 
!--------------------------------- 
! Extended specimen from supports 
!--------------------------------- 
k,27,-a,l/2   ! bottom leftmost  
k,28,h-a,l/2  ! top leftmost 
k,29,-a,-l/2    ! bottom rightmost 
k,30,h-a,-l/2   ! top rightmost 
 
lstr,24,27  ! (L36) 
lstr,27,28  ! (L37) 
lstr,23,28  ! (L38) 
lstr,21,29  ! (L39) 
lstr,29,30  ! (L40) 
lstr,22,30  ! (L41) 
 
! Dividing inclusion into 4 parts 
lstr,12,11  ! (42) 
lstr,13,11  ! (43) 
lstr,14,11  ! (44) 
lstr,15,11  ! (45) 
! 
a,1,2,3,4  ! (A1) 
a,1,4,5,6  ! (A2) 
a,1,6,7,8  ! (A3) 
a,1,8,9,10 ! (A4) 
!al,14,15,16,17  ! (A5)  inclusion area 
al,14,23,18,22  ! (A5)  bottom right bonding layer segment 
al,15,23,19,24  ! (A6)  top right bonding layer segment 
al,16,24,20,25  ! (A7)  top left bonding layer segment 
al,17,22,21,25  ! (A8)  bottom left bonding layer segment 
! Inclusion areas 
al,42,14,43 ! A9(inclusion bottom right) 
al,43,15,44 ! A10(inclusion top right) 
al,44,16,45 ! A11(inclusion top left) 
al,45,17,42 ! A12(inclusion bottom left) 
a,10,9,8,7,6,16,19,18,26,23,24,25 ! (A13) left half  
a,2,20,21,22,26,18,17,16,6,5,4,3  ! (A14) right half 
al,36,37,38,31  ! (A15) left extended specimen 
al,30,39,40,41  ! (A16) right extended specimen 
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!-----------End of Gometry definition-------------- 
 
!------------- Element attributes to selected unmeshed areas------- 
!  AATT,mat,real,type,esys,secn 
asel,all 
asel,s,area,,9,12,1   !inclusion 
aatt,1,1,1,0 
allsel,all 
asel,s,area,,5,8,1  ! Bonding layers 
aatt,3,1,1,0 
allsel,all 
asel,u,area,,5,12,1 ! selection of martix areas 
aatt,2,1,1,0 
allsel,all 
!-----------End of area attributes----------- 
 
!********************************************** 
!*****************  MESHING  ****************** 
!********************************************** 
 
!-------------------------------------------------- 
!      Line seeding 
!-------------------------------------------------- 
!LESIZE,NL1,SIZE,ANGSIZ,NDIV,SPACE,KFORC,LAYER1,LAYER2,KYNDIV 
!NL1=numberof line to be modified, can be ALL or P for graphical 
picking 
!SIZE=if NDIV is is blank, size is division (element edge) length. if 
size is zero(or blank), 
!      use ANGSIZ or NDIV 
!ANGSIZ=the division arc ( in degrees) spanned by the element edge. 
!NDIV=if positive,NDIV is the number of element divisions per line. 
!SPACE=Spacing ratio. If positive, nominal ratio of last division size 
to first division size. 
!          (if > 1.0, sizes increase,if <1.0, sizes decrease) 
!KFORC  
 
!Tip-zone seeding 
nd1=20 
sr1=3 
lesize,1,,,nd1,sr1 
lesize,2,,,nd1,sr1 
lesize,3,,,nd1,sr1 
lesize,4,,,nd1,sr1 
lesize,5,,,nd1,sr1 
 
lesize,8,,,nd1,1 
lesize,7,,,nd1,1 
lesize,6,,,nd1,1 
lesize,13,,,nd1,1 
lesize,12,,,nd1,1 
lesize,11,,,nd1,1 
lesize,10,,,nd1,1 
lesize,9,,,nd1,1 
type,1 
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real,1 
mshape,0,2d 
amesh,1,4,1 
 
!inclusion and bonding layer seeding 
nd2=58 ! number of divisions 
lesize,14,,,nd2,1 
lesize,15,,,nd2,1 
lesize,16,,,nd2,1 
lesize,17,,,nd2,1 
lesize,18,,,nd2,1 
lesize,19,,,nd2,1 
lesize,20,,,nd2,1 
lesize,21,,,nd2,1 
lesize,22,,,1,1 
lesize,23,,,1,1 
lesize,24,,,1,1 
lesize,25,,,1,1 
! seeding of lines inside inclusion 
ndinclu=12 
srinclu=10 
lesize,42,,,ndinclu,srinclu  
lesize,43,,,ndinclu,srinclu 
lesize,44,,,ndinclu,srinclu 
lesize,45,,,ndinclu,srinclu 
type,1 
real,1 
mshape,0,2d ! 0 = quadrilateral, 1= trianglular, and 2d = area mesh, 
3d= volume mesh 
amesh,5,12,1 
 !( 4 bonding layer 5-8 + 4 inclusion 9-12 areas) 
 
!seeding line joining bonding layer and tip zone 
lesize,34,,,50,25 ! inclusion top to top of specimen 
lesize,35,,,30,1  ! crack tip zone to inclusion 
 
!seeding line on top edge left and top right 
lesize,32,,,30,3 
lesize,33,,,30,3 
 
!seeding of bottom left and bottom right lines joined to crack mouth 
lesize,29,,,30,3 
lesize,28,,,30,3 
 
!seeding of crack flanks 
lesize,26,,,30,10 
lesize,27,,,30,10 
 
!seeding right and left vertical edges near to supports 
lesize,31,,,18,1 
lesize,30,,,18,1 
 
! meshing left and right half matrix areas 
type,1 
real,1 
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mshape,0,2d 
amesh,13,14,1 
 
!mesing extended parts  # 12 & 13 
lesize,37,,,18,1 !left most edge 
lesize,40,,,18,1  ! right most edge 
lesize,38,,,5,1 !left top 
lesize,36,,,5,1 ! left bottom 
lesize,41,,,5,1  ! right top 
lesize,39,,,5,1  ! right bottom 
type,1 
real,1 
amesh,15,16,1  
!*************************************** 
!     End of seeding+ meshing 
!*************************************** 
 
!----------------------------------------------- 
!       CONSTRAINTS 
!--------------------------------------------- 
ddel,all,all 
nsel,s,loc,x,-a,-a 
nsel,r,loc,y,-s/2,-s/2 
d,all,ux 
!d,all,uy 
allsel,all 
nsel,s,loc,x,-a,-a 
nsel,r,loc,y,s/2,s/2 
d,all,ux 
d,all,uy 
allsel,all 
!-----------END Constraints-------------------- 
save,inclu2,db,all 
finish 
! 
!****************************************************************** 
!********* SOLUTION PROC ****************************************** 
!****************************************************************** 
/solu 
allsel,all 
! 
!---cylindrical coordinate system for bonding layer elements----------- 
allsel,all 
cskp,21,1,11,14,19 
csys,21 
dsys,21 
nsel,s,loc,x,(d/2+.001),(d/2+bt-.001) ! regard x here as r coordinate 
csys,0 
dsys,0 
nplo 
esln,s,0 ! 0=select ele if any of its node is selected set, 1=only if 
all nodes are in set 
eplo      ! plot selected elements 
! 
! 



 107

!********* ARRAY and variables NAMES EXPLANATION************* 
! NAME            ATTRIBUTE 
! e_count   -     total number of elements in bonding layer 
! e_list    -     array containing all bonding layer element numbers 
! k_list    -     array to store killed element numbers 
!**********END ARRAY EXPLANATION******************************** 
!----WRITE ALL BONDING LAYER ELEMENT NUMBERS IN ARRAY e_list------- 
      cm,e_fail,elem    ! Making a componenet of selected bl element 
      *get,e_count,elem,0,count ! counting number of selected elements 
      *dim,e_list,,1,e_count       
      *do,i,1,e_count,1 
              *get,e_list(1,i),elem,0,num,min 
              e_min=e_list(1,i)!dummy variable to unselect last element 
              esel,u,,,e_min   !unselect last element from the set 
      *enddo 
      allsel,all 
!-------------------writing complete---------------------------- 
*dim,k_list,,100,80 ! Define array to store killed element numbers 
*dim,ek_aray,,100,80! Write all to be killed element in an array 
list=1 !dummy variable initiation for later storing of killed element 
list 
!********************************************************************** 
!********** Application of load and solving *************************** 
!********************************************************************** 
!-------selecting node to apply load at-------------------------------- 
allsel,all 
ksel,s,loc,x,h-a,h-a 
ksel,r,loc,y,0,0 
nslk,r 
*get,l_pn,node,0,num,max   ! Variable ‘load_pointnode’ stores load 
application node num. 
allsel,all 
eplo 
!---------------------------------------------------------------------- 
!             Solution Parameters and solving methods 
!---------------------------------------------------------------------- 
/solu 
nlgeom,on    ! Nonlinear geometry on 
nropt,full   ! Newton-Raphson full 
solcontrol,off  ! no auto time stepping 
outres,all,all 
autots,0 
!******************************************** 
 
(2) Solution macro. 
!---------------------------------------------------------------------- 
!         ANSYS MACRO FOR CRACK PARTICLE INTERACTION SIMULATION 
!---------------------------------------------------------------------- 
/prep7 
allsel,all 
fdel,all        ! Delete all previously defined force 
!---cylindrical coordinate system for bonding layer elements----------- 
allsel,all 
cskp,21,1,11,14,19 
csys,21 
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dsys,21 
nsel,s,loc,x,(d/2+.001),(d/2+bt-.001) ! regard x here as r coordinate 
csys,0 
dsys,0 
nplo 
esln,s,0 ! 0=select ele if any of its node is selected set, 1=only if 
all nodes are in set 
eplo      ! plot selected elements 
nodeset 
cm,e_fail,elem  ! Writing the selected element set into a component 
*get,e_cou,elem,0,count ! Counting number of secected elements 
*dim,e_aray,,8,e_cou     !Writing selected bonding layer element 
numbers in an array 
*do,i,1,e_cou,1 
      *get,e_aray(1,i),elem,0,num,min 
      e_min=e_aray(1,i) 
      esel,u,,,e_min 
*enddo 
allsel,all 
/solu 
ddel,all,uy 
!----------------------------------------------- 
!       CONSTRAINTS 
!--------------------------------------------- 
ddel,all,all 
nsel,s,loc,x,-a,-a 
nsel,r,loc,y,-s/2,-s/2 
d,all,ux 
!d,all,uy 
allsel,all 
nsel,s,loc,x,-a,-a 
nsel,r,loc,y,s/2,s/2 
d,all,ux 
d,all,uy 
allsel,all 
!-----------END Constraints--------------------   
!---------------------- 
!   DEFINING FORCE HISTORY TABLE 
!--------------------------------- 
*dim,force1,table,18,1  ! Defining load history table step 1-18 
*dim,force2,table,18,1  ! Defining load history table step 19-36 
*dim,force3,table,18,1  ! Defining load history table step 37-54 
*dim,force4,table,18,1  ! Defining load history table step 55-62 
force1(1,1)=-1,-20,-40,-60,-80,-100,-120,-140,-160,-180,-200,-220,-
240,-260,-280,-300,-320,-340 
force1(1,0)=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18 
force2(1,1)=-360,-380,-400,-420,-440,-460,-480,-500,-520,-540,-560,-
580,-600,-620,-640,-660,-680,-700 
force2(1,0)=19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36 
force3(1,1)=-720,-740,-760,-780,-800,-820,-840,-860,-880,-900,-920,-
940,-960,-980,-1000,-1020,-1040,-1060 
force3(1,0)=37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 
force4(1,1)=-1080,-1100,-1120,-1140,-1160,-1180,-1200,-1220,-1240,-
1260,-1280,-1300 
force4(1,0)=55,56,57,58,59,60,61,62,63,64,65,66 
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!--------End force history definition------------ 
! 
nlgeom,on    ! Nonlinear geometry on 
nropt,full   ! Newton-Raphson full 
outres,all,all 
*dim,killed_list,,200,200 ! Define array to store killed element 
numbers 
list=1!Initiating the array dimension variable defined in previous line 
*dim,e_killarray,,70,150! Write all to be killed element in an array 
 
tm_start=1      ! Start time ( must be >0) 
tm_end=66       ! End time  of the ficsious static time scale of load 
application 
tm_incr=1          ! Time increment 
*do,tm,tm_start,tm_end,tm_incr  !Do for tm from tm_start t tm_end in  
 *if,tm,eq,1,then          ! steps of tm_incr 
      *cfopen,time_ch,txt,,append 
      *cfwrite,time1=tm 
      *cfclos 
     antype,0,new              ! Start new analysis if first time step 
 *else 
      *cfopen,time_ch,txt,,append 
      *cfwrite,time_b=tm 
      *cfclos 
     antype,0,rest! Restart if subsequent timesteps 
      *cfopen,time_ch,txt,,append 
      *cfwrite,time_a=tm 
      *cfclos 
 *endif 
  /solu 
  time,tm                        ! Time value 
 Force application during subsequent loadsteps... 
*if,tm,le,18,then 
  f,l_pn,fx,force1(tm)            ! Time-varying force   
*elseif,tm,le,36,then 
  f,l_pn,fx,force2(tm) 
*elseif,tm,le,54,then 
  f,l_pn,fx,force3(tm) 
*else 
  f,l_pn,fx,force4(tm) 
*endif 
  allsel,all 
  solve 
 /post1 
!------------------------------------------------------- 
!killing secected element on inclusion-matrix interface 
!------------------------------------------------------- 
  allsel,all 
  rsys,21 
  cmsel,s,e_fail,elem ! Select the bonding layer element set component           
  etable,s_rr,s,x   ! Read the radial stress for those elements 
  esel,r,etab,s_rr,9 ! Reselect element with SEQV >9 
   *get,ekill_count,elem,0,count ! Count reselected elements 
    *do,k,1,ekill_count,1 
        *if,k,eq,1,then 
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             *get,e_n,elem,0,num,max 
              e_killarray(1,k)=e_n 
              e_high=e_n 
        *else 
             *get,e_n,elem,e_high,nxth 
             e_killarray(1,k)=e_n 
             e_high=e_n 
       *endif 
    *enddo 
  /solu 
  *cfopen,deactive_elem,txt,,append 
  *cfwrite,t_step=tm 
  *cfwrite,tot_tokil=ekill_count 
  *cfclos 
  *do,kil,1,ekill_count,1 !Do for killing the elements in e_killarray 
     ekill,e_killarray(1,kil) 
     *cfopen,deactive_elem,txt,,append 
     *cfwrite,kiled_elem=e_killarray(1,kil) 
     *cfclos 
 
     killed_list(list,kil)=e_killarray(1,kil)!Populating killed list 
  *enddo 
  estif,1e-8 
  allsel,all 
!------------------------------------------ 
!End of interface element killing 
!----------------------------------- 
  allsel,all 
  list=list+1 
  esel,all 
   
  /post1 
  rsys,0 
  allsel,all             ! Post time-step analysis to kill elements  
  set,last               ! bonding layer 
  /device,vector,1         
  /contour,,128,-.375276,.002964,.004154 
  plnsol,u,y 
  /solu 
*enddo 
 
(3) Macro to calculate and store crack mouth opening displacements. 
/post1 
!--SELECTIONG CRACK MOUTH TOP AND BOTTOM NODES TO CALCULATE CMOD---- 
 
!-----selection of node from line number---- 
allsel,all 
lsel,s,line,,27 
allsel,below,line 
nsll,s,1 
nsel,r,loc,x,-a,-a 
*get,kf_top,node,0,num,max    !crack flank top node. 
allsel,all 
lsel,s,line,,26 
allsel,below,line 
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allsel,below,line 
nsll,s,1 
nsel,r,loc,x,-a,-a 
*get,kf_bot,node,0,num,max    !crack flank bottom node. 
!--------end selection from line----- 
!-----------END SECECTION OF NODE FOR CMOD------------- 
 
n=66 ! Number of load steps 
*do,setno,1,n,1 
set,setno 
 
!---------WRITING CMOD VALUES -------------------------- 
*get,u21,node,kf_top,u,y 
*get,u22,node,kf_bot,u,y 
*cfopen,COD_VAL,txt,,append 
COD=(u21-u22)*1000 ! COD in Micrometer 
*cfwrite,cmod=cod 
*cfclos 
!---------END COD VALUES WRITING------------- 
 
 
(4) Macro to calculate mode – I stress intensity factors. 
 
!Macro to calculate Mode 1 Stress intensity factor K1 from crack 
!opening displacements using linear regression. 
!Parameters: 
E_epo=3500 ! Young's modulus in MPa 
pi=3.142857 
n_set=66 ! number of load steps 
B=7.1   ! Specimen thickness 
rb=0.5 ! r/B ratio limits 
!End Parameters 
/post1 
allsel,all 
 
!Writing node numbers of top crack flank 
lsel,s,line,,5 
lsel,a,line,,27 
allsel,below,line 
nsll,s,1 
cm,top_nod,node 
*get,nt_cou,node,0,count 
*dim,top_nodes,,8,nt_cou 
!top_nodes(1,i)=x location of all nodes from tip to mouth 
!top_nodes(2,i)=node numbers from tip to mouth 
!top_nodes(3,1)=node opening displacement 
*do,i,1,nt_cou,1 
        *get,top_nodes(1,i),node,0,mxloc,x 
        nod=node(top_nodes(1,i),0,0) 
        top_nodes(2,i)=nod 
        !*get,top_nodes(3,i),node,n,u,y 
        nsel,u,node,,top_nodes(2,i) 
*enddo 
 
!Writing node numbers of bottom crack flank 
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lsel,s,line,,1 
lsel,a,line,,26 
allsel,below,line 
nsll,s,1 
cm,bot_nod,node 
*get,nb_cou,node,0,count 
*dim,bot_nodes,,8,nt_cou 
!bot_nodes(1,i)=x location of all nodes from tip to mouth 
!bot_nodes(2,i)=node numbers from tip to mouth 
!bot_nodes(3,1)=node opening displacement 
*do,i,1,nb_cou,1 
        *get,bot_nodes(1,i),node,0,mxloc,x 
        nod=node(bot_nodes(1,i),0,0) 
        bot_nodes(2,i)=nod 
        !*get,bot_nodes(3,i),node,n,u,y 
        nsel,u,node,,bot_nodes(2,i) 
*enddo 
 
! Limits of data to be considered for linear fit 
*dim,k1sif,,nt_cou 
*dim,rsif,,nt_cou 
*dim,aaa,,66 
*dim,bbb,,66 
!*dim,k1sif,,8,count  ! K1 apperant for cropped range 
!*dim,rsif,,8,count   ! radius data of cropped range 
 
*do,setno,1,n_set,1 
set,setno 
 
x_max=a 
x_min=rb*B 
lim_cou=0 
*do,jj,1,nt_cou,1 
    cmsel,s,top_nod,node 
    nsel,r,node,,top_nodes(2,jj) 
    *get,top_nodes(3,jj),node,top_nodes(2,jj),u,y 
    allsel,all 
    cmsel,s,bot_nod,node 
    nsel,r,node,,bot_nodes(2,jj) 
    *get,bot_nodes(3,jj),node,bot_nodes(2,jj),u,y 
     allsel,all 
*enddo 
     
*do,l,1,nt_cou,1     
*if,abs(top_nodes(1,l)),gt,x_min,and,abs(top_nodes(1,l)),lt,x_max,then 
        lim_cou=lim_cou+1 
        *cfopen,delta,txt,,append 
        *cfwrite,del=top_nodes(3,l)-bot_nodes(3,l) 
        *cfclos 
        *cfopen,r_value,txt,,append 
        *cfwrite,r_val=abs(top_nodes(1,l)) 
        *cfclos        
        k1sif(lim_cou)=(E_epo*(top_nodes(3,l)-
bot_nodes(3,l))*sqrt(2*pi*0.001))/(8*sqrt(abs(top_nodes(1,l)))) 
        rsif(lim_cou)=abs(top_nodes(1,l)) 
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     *else 
        *cycle 
     *endif 
*enddo 
 
sigx=0.0 ! Initiation of values 
sigy=0.0 
sigxy=0.0 
sigxx=0.0 
 
*do,i,1,lim_cou,1 
sigx=sigx+rsif(i) 
sigy=sigy+k1sif(i) 
sigxy=sigxy+(rsif(i)*k1sif(i)) 
sigxx=sigxx+(rsif(i)*rsif(i)) 
*enddo 
aaa(setno)=((sigx*sigy)-(lim_cou*sigxy))/((sigx*sigx)-(lim_cou*sigxx)) 
bbb(setno)=(sigy-(aaa(setno)*sigx))/lim_cou 
*cfopen,k1_fromuy,txt,,append 
*cfwrite,SIF=bbb(setno) 
*cfclos 
 
*enddo 
        
(5) Macro to write displacements, stresses and strains data in text files. 
/post1 
!n= number of sets for which results are to be written 
! Path definition 
! P3= on y=(e-r)   between points (e-r,10), (e-r,-10) 
padel,all 
path,P3,2,30,100 
ppath,1,,e-r,10,,0 
ppath,2,,e-r,-10,,0 
n=66 
*cfopen,P3_data,txt,,append 
*do,setno,1,n,1 
*cfwrite,set=setno 
set,setno 
path,P3 
pdef,exx_p3,epto,x,avg 
pdef,eyy_p3,epto,y,avg 
pdef,exy_p3,epto,xy,avg 
pdef,sxx_p3,s,x,avg 
pdef,syy_p3,s,y,avg 
pdef,sxy_p3,s,xy,avg 
paget,datap3_,table 
! order in table array XG, YG, ZG,  S, data1,data2,data3,....... 
*do,m,1,1,1 
*vwrite,datap3_(m,2),datap3_(m,5),datap3_(m,6),datap3_(m,7),datap3_(m,8
),datap3_(m,9),datap3_(m,10) 
(F9.5,' ',F15.8,' ',F15.8,' ',F15.8,' ',F9.3,' ',F9.3,' ',F9.3) 
*enddo 
*del,,prm_ 
*enddo 
*cfclos 
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APPENDIX B 

Analysis of uncracked beam with inclusion 

 

        To examine the effect of presence of crack on debonding of an inclusion in a beam 

specimen with same geometry as the experimental model was modeled and simulated.  

For completeness some of these results are presented here. Figure B.1 shows radial stress 

rσ  around the inclusion.  The distribution is continuous before debonding and rσ  vanish 

upon debonding in the range of 80o±  to 120o± . Further, initiation of debonding in 

uncracked  beam  was  at a  comparably  higher  load as it can be seen from the plots of  

 

 

 

 

 

 

 

 

 

  

 

Figure B.1: Radial stress in the bond layer elements at different load levels. 
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Figure B.2: Opening displacement field in uncracked beam with inclusion.  (a) Before 
debonding (P/Po = 0.12) (b) After onset of debonding (P/Po = 0.30). 
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radial stresses in the bond layer elements in Fig. B.1. Stress intensification is evident 

where debonding occurs in the bonding layer and it can be seen in the radial stress plot. 

The opening displacement contours are shown in Fig. B.2(a) and (b) which corresponds 

to load levels of (P/Po = 0.12) and (P/Po = 0.3) respectively. Here, Po is the load at which 

an uncracked neat epoxy beam would fail under tension based on ultimate strength of 

epoxy (σo = 63 MPa).  Thus in the absence of crack debonding takes place much later in 

the loading phase and it is evident that a crack in the vicinity of the inclusion accelerates 

the process of debonding between an inclusion and matrix.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 


