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Abstract 
 
 

Working with a high-resolution LiDAR dataset, this research adapts existing 

techniques from machine learning to the problem of predicting general and specific 

geomorphic features in the complex terrain of the Buffalo River in Arkansas. This 

process is complicated by the fact that such geomorphic features are frequently not well-

bounded and lack a one-to-one relationship between physical form and geomorphic class. 

These issues were addressed by analyzing terrain features within a spatial context using 

both local and regional land surface parameters. After selecting a horizontal resolution 

and degree of smoothing for creating our DEM that would maintain sufficient detail to 

distinguish the terraces and their boundaries while avoiding excessive noise, the study 

area was divided into three reaches based on general lithology and morphology. Using 

SAGA GIS, a free and open-source software, land surface parameters were calculated for 

each reach and five leaners—representing four distinct inductive biases—were tested. 

The results for each classifier were then validated using a dataset which combined field-

mapped terraces and manually-delineated landform elements. It was found that Bayesian, 

Random Forest, and Support Vector Machine classifiers were the most accurate, while 

distance-based methods struggled to achieve acceptable accuracy. Support Vector 

Machines produced the smoothest class boundaries and mapped landforms in a way that 

was subjectively closest to manual methods; however, Bayesian and Random Forest 

approaches were more consistently accurate.
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1 – Introduction 
 
 

Digital Geomorphological Mapping (DGM), defined here as any computer-based 

landform mapping which does not use field surveys as its primary source data, is a fast-

growing area of research in a number of fields, including geography, geomorphology, 

soil science, and ecology. Remotely sensed data, particularly stereo photographs and 

interferometric radar images, have long been heavily employed in landform mapping and 

landscape interpretation. Yet, in contrast to the plethora of sophisticated partly and fully 

automated techniques used in land cover classification, feature recognition in digital 

geomorphological mapping has, until recently, largely been a manual and interpretive 

process (Bishop et al., 2012; Evans, 2012; Evans et al., 2009). This is rapidly changing, 

however, as the increasing availability of high-resolution digital elevation data, cheap 

computing power, and robust software packages—often free and open source—have 

fueled intense research interest in applying greater levels of automation to geomorphic 

mapping and landform identification (Bishop et al., 2012; Dehn et al., 2001; Tarolli, 

2014). Many programs and techniques use if-then logic and specified thresholds to create 

a deterministic partitioning of landscapes into essential forms, typically in a semi-

automated manner (Klingseisen et al., 2008; Stout and Belmont, 2014; van Asselen and 

Seijmonsbergen, 2006). There is also growing interest in adapting the type of machine 

learning techniques used in remote sensing to landform classification (Arrell et al., 2007; 

Burrough et al., 2000; Ehsani and Quiel, 2008; Matías et al., 2009).
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The research presented here is a quantitative and qualitative comparison of the 

performance of five supervised classifiers, chosen to represent several major families of 

machine learners, in mapping general and specific landforms in the heterogeneous terrain 

of the Buffalo River, Arkansas. 

Segmentation and Classification of the Landscape 

  The Earth’s surface is mathematically continuous, yet the division and 

subdivision of this surface into discrete and reliably identifiable units is important in 

many natural sciences. For meteorologists, ecologists, and hydrologists, landforms can 

represent important boundary conditions (Dehn et al., 2001; Deng, 2007; Hutchinson, 

2008). Landform classification is particularly central in geomorphology and 

geomorphometry which both focus on how surfaces shape and are shaped by gravity-

driven flows of energy and mass (Minár and Evans, 2008; Passalacqua et al., 2015). In 

science, a good classification system is one that allows researchers to make useful 

generalizations from the individual instances of different classes. In geomorphology, this 

means that process and ontology should define landforms, not morphometry alone 

(Buffington and Montgomery, 2013; Evans, 2012; Minár and Evans, 2008; Wheaton et 

al., 2015). Incorporating process and ontology into a DGM classification presents three 

major challenges. First is the inverse problem of inferring process from form: landforms 

do not have a one-to-one relationship with the processes by which they were created. 

Similar processes can produce morphologically heterogenous landforms while, in turn, 

distinct processes can produce landforms with similar morphologies (Bishop et al., 2012; 

van Asselen and Seijmonsbergen, 2006). Second, division of the continuous land surface 

into discrete units is dependent upon semantic models of what each landform is and how 
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it can be delineated from other landforms (Brandli, 1996; Dehn et al., 2001; Deng, 2007; 

Drăguţ and Eisank, 2011). Finally, specific landforms are frequently not well-bounded, 

but instead have a fuzzy and uneven transition from one form to another (Bishop et al., 

2012; Evans, 2012; Wheaton et al., 2015). As a consequence of this, landform 

classification, even when based as much as possible on quantitative standards, is 

inherently to some degree subjective and interpretive (Deng, 2007; Evans, 2012; 

MacMillan and Shary, 2009). This problem of inferring process from form is even more 

acute when attempting to move beyond general landforms, such as channels and passes, 

to specific landforms, such as terraces or drumlins, which may be the result of processes 

no longer active on the landscape.  

Significance of Investigation of Supervised Machine Learning Techniques 

There is active development of semi-automated tools and both unsupervised and 

supervised machine learning techniques to deal with this complex classification task. 

Supervised machine learning has a number of qualities that compare favorably with semi-

automated tools and unsupervised methods, making it a suitable alternative for those who 

want to take advantage of advances in remote sensing and GIS, particularly for those 

without specialized knowledge of feature classification. 

Unsupervised learners, such as clustering algorithms, have long been an important 

tool in remote sensing; however, they have several disadvantages, as explained by 

Campbell and Wynne, Lillesand et al, and Tso and Mather (2011; 2015; 2009). All 

feature classification involves connecting patterns in input data, termed data classes, to 

information classes, which in this case are landform classes. Unsupervised learners create 

classes directly from data, which means that they are easy to train, but also means that 
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they have difficulty dealing with complex or ill-defined classes such as specific 

landforms. Since the classes created by these learners are based purely upon groupings in 

data, they require an expert analyst to turn these data classes into information classes. 

This is often a time-consuming process, made especially challenging when one 

information class is split into many data classes or one data class corresponds to more 

than one information class. Attempts to apply these methods for landform classification 

ran into the additional problem of data classes which had no apparent geomorphic 

meaning at all (Arrell et al., 2007; Burrough et al., 2000; Evans et al., 2009). 

A number of purpose-built semi-automated tools are available for landform 

classification, examples including LandSerf (Wood, 2009, 1996), LANDFORM 

(Klingseisen et al., 2008), and Terrain Surface Classification (Iwahashi and Pike, 2007). 

While these tools are usually designed to classify general landforms, some classify 

specific landforms, such as the TerEx toolbar for terrace delineation (Stout and Belmont, 

2014). In comparison to unsupervised methods, these tools can provide results that are 

directly meaningful. On the other hand, they have several limitations. Since the classes 

output are fixed, the semantic model of landforms used in any classification is literally 

hard-coded, limiting the ability of users to adapt the tools to the requirements of different 

studies. Similarly, because the potential number and type of input data are predetermined, 

users cannot experiment with the use of additional land surface parameters or ancillary 

data. Finally, acceptable results may depend upon precise settings for parameter values, 

increasing the complexity for the user and limiting the ability to transfer successful 

methods from one setting to another (Iwahashi and Pike, 2007; Klingseisen et al., 2008; 

Stout and Belmont, 2014). 
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Supervised machine learning techniques have qualities that help them overcome 

these shortcomings. Unlike unsupervised learners, they learn rules not just from data but 

also from training samples, supervised learners are inherently adapted to leverage expert 

knowledge to overcome difficult classification problems (Shalev-Shwartz and Ben-

David, 2014; Tso and Mather, 2009). In comparison to semi-automated tools, their ability 

to learn models from data means that they are not as dependent upon the user’s prior 

knowledge about the statistical characteristics of the input data or upon the fine-tuning of 

numerous parameters to the particular study area, both of which make it easier to transfer 

a methodology from one area to another. Finally, because the results of supervised 

classifications can be compared to reference data created using the same standards as 

training data, their accuracy can be objectively validated, even when the classes used in a 

study were not defined using exact mathematical values. 

Research Questions 

 While supervised machine learning is a promising direction for research in digital 

geomorphological mapping, the use of these methods is still in its infancy. This research 

seeks to expand the body of knowledge concerning the application of supervised machine 

learning to general and specific landform classification by addressing two questions. 

(1) Direct comparison of different machine learners in geomorphic classification 

has been limited, especially for more advanced learning techniques. Given the 

same training and input data, will learners with different inductive biases 

produce quantitatively or qualitatively different results? 
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(2) Can the incorporation of spatial-contextual information, in the form of 

regional Land Surface Parameters, significantly improve landform 

classification accuracy? 

Case Study—Mapping Potential Fluvial Terraces along the Buffalo River, Arkansas, 

and its Major Tributaries 

This project contributes to continuing investigations into the geomorphology of 

the Buffalo National River and its principle tributaries, concentrating on the role of 

lithology in determining valley width and the formation and preservation of fluvial 

terraces. The U.S. Geological Survey (USGS), the Arkansas Geological Survey (AGS), 

and (Keen-Zebert et al., 2017) have field-mapped terraces along the main-stem of the 

Buffalo and its larger tributaries. Taking these field-mapped geomorphologic features and 

a high-resolution LiDAR point-cloud dataset as source information, this research 

explores the utility of machine learning methods in the prediction of general and specific 

geomorphometric features. 

Study Area 

The Buffalo River in Arkansas is a 5th-Order tributary of the White River 

characterized by a gravel-mantled bedrock channel, deeply incised meanders, and 

towering bluffs (Keen-Zebert et al., 2014). Most of the Buffalo’s 238 km course is 

protected by the Buffalo National River, a unit of the US National Park System, while the 

remainder flows through wilderness areas within the Ozark-St. Francis National Forest; 

therefore, the main-stem of the Buffalo flows almost entirely through public lands, a rare 

distinction among American rivers (Benke and Cushing, 2005). Additionally, its status as 

a National Scenic River has protected it against dams or any other hydrologic alterations, 



 7 

making it one of only 42 free-flowing rivers more than 200 km in length in the 

contiguous United States (Benke, 1990). Easy public access and a lack of impoundments 

to submerge any of the geomorphic features in its watershed make the Buffalo a suitable 

candidate for geomorphologic study. The Buffalo flows for its entire length within the 

Ozark Plateaus physiographic province (Figure 1), which encompasses much of southern 

Missouri, northern Arkansas, and a small part of eastern Oklahoma. The Ozark region is 

a broad and irregular structural dome consisting mostly of nearly flat-lying (< 3⁰) 

sedimentary strata that dip gently out and downwards from the St. Francois Mountains of 

east-central Missouri, an area of moderate relief underlain by pre-Cambrian igneous 

rocks. The River’s headwaters are in the Boston Mountains, an area with shale-and-

Figure 1: The Buffalo River and major tributaries shown with the physiographic 
provinces of the Ozark Highlands. 
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sandstone capped ridges that reach upwards of 700 meters to be the tallest in the Ozarks. 

The Buffalo flows for most of its length along the Springfield Plateau, which is 

characterized by a karst hydrology, resulting from the cherty limestone of the Boone 

Formation (DiPietro, 2013; Fenneman, 1928; Keen-Zebert et al., 2017). 

Terraces and the Geomorphology of Bedrock Channels 

With the exception of glaciated regions, the rate and form of landscape evolution 

in mountainous terrain is controlled by bedrock channel streams. By controlling the lower 

boundary condition of hillslope erosion, they set the overall rate of denudation in uplands 

and are the dominant medium by which the effects of tectonic or isostatic uplift and 

changes in base level or climate are transmitted throughout the landscape (Hancock and 

Anderson, 1998; Stark, 2006; Whipple, 2004). Yet—in comparison to the current state of 

knowledge about alluvial streams—bedrock channel processes, such as their hydraulic 

geometry or the exact mechanisms of channel erosion, are still imperfectly understood 

(Tinkler and Wohl, 1998; Wohl, 2014). One way to gain insight into bedrock channel 

incision is to reconstruct their past longitudinal profiles by mapping fluvial terraces 

(Pazzaglia et al., 1998). 

Streams may simultaneously deepen their channel by downcutting and migrate 

laterally across their valley. Typically, the former process occurs slowly enough that the 

latter widens the valley and allows floodplains to develop. When a change in boundary 
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condition disrupts this dynamic equilibrium, however, a stream may begin to incise its 

valley, leaving some portions of its previous floodplain “abandoned” far above maximum 

stage as terraces (Leopold et al., 1995). Terraces along the Buffalo are strath terraces. 

These terraces, illustrated in Figure 2, are associated primarily with bedrock channels and 

form when an increase in a stream’s ability to cut into its bed leads to an episode of 

channel incision. Changes in sediment supply and/or stream power force deposition of 

large amounts of sediments, aggrading the stream channel and burying the original 

floodplain surface in a thick mantle of alluvium. Later changes in the stream’s sediment 

carrying capacity allow it to rapidly erode through these unconsolidated sediments, 

cutting downwards faster than lateral migration (Bierman and Montgomery, 2014). 

The geologic and geomorphic settings of the Buffalo River make it a suitable 

candidate for the study of the role that lithology plays in landscape evolution. Relative 

tectonic stability, mild isostatic uplift, and nearly-flat stratigraphy which provides little 

Figure 2: Strath terraces can form when a period of rapid incision results in stream 
eroding its channel faster than the rate of its lateral migration. Eventually, new 
floodplains form while the prior floodplains are left above the maximum flood level as 
terraces. Unlike this illustration, the vast majority of terraces along the Buffalo are 
unpaired. Figure from Bierman & Montgomery (2008). 
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structural control on landform development all combine to make the role of lithology 

more apparent in this region. Furthermore, due to Paleozoic faulting, the Buffalo cuts 

through repeated sequences of the Everton Formation of sandstones and dolomites and 

the Boone Formation of cherty limestones. This allows the effects of the lithology of a 

given reach to be more easily separated from effects that vary with the discharge found at 

different points along the river (Keen-Zebert et al., 2017). There is a consistent difference 

in valley width and the preservation of terraces between the two lithologies. The less 

resistant limestone reaches generally having wider valleys and larger terraces, whereas 

the more resistant sandstone and dolostone reaches had narrower valleys and smaller 

terraces with more of the higher (older) terraces being preserved (Keen-Zebert et al., 

2017)
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2 – Background 
 
 

Geomorphometry 

Geomorphometry, once considered a subset of geomorphology but increasingly 

perceived as a distinct discipline, is centered on mathematical descriptions of planetary 

surfaces (Pike, 1995; Pike et al., 2009). Its essence is the study of said surfaces under the 

influence of gravity and gravitationally-driven forces, examining how these forces shape 

surfaces and, in turn, those surfaces shape the forces acting on them. In this regard, 

geomorphometry is closely related to process geomorphology, with its similar focus on 

the immediate mechanisms altering landscapes and the practice of classifying landforms 

in an effort to better understand these mechanisms. 

 Modeling Land Surfaces 

The mathematical descriptions of the Earth’s surface used in GIS analysis are 

known by a number of names, including digital surface models, digital terrain models, 

and digital elevation models (DEM), the most common term. The key word in those 

terms is “model”: no matter how detailed, a DEM is a simplified abstraction of the 

Earth’s surface created with particular objectives and uses in mind. Since current models 

can only store a single elevation value for a given point in space, tradeoffs must be made 

depending on the type of analysis in question (Evans, 2012; Köthe and Bock, 2009). For 

instance, a civil engineer may want a bridge deck to be shown in a DEM while a 

hydrologist would need to remove it so that a flow routing algorithm
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could properly route a stream through it. The type and quality of information in any 

terrain model is a function of both the source data and the way a continuous surface was 

created from that data. The vertical and horizontal resolution of a terrain model are 

primarily determined by the resolution and density of the original ground survey points or 

blocks. Gaps and errors in the terrain model are related to challenges of the specific 

terrain being surveyed, the technology used in the survey, the post-processing performed, 

and the method of interpolation (Passalacqua et al., 2015; Schmidt et al., 2003; Wilson, 

2012).  

With high vertical accuracy and horizontal point sample density, LiDAR has 

become very popular for high resolution terrain mapping, especially over large areas 

where economies of scale favor it over stereo photogrammetry, another technology 

capable of high resolution terrain measurement (Fowler et al., 2007; Renslow, 2012). 

This is evidenced by its selection by the US Geological Survey as the preferred source of 

elevation data for the 3D Elevation Program (Sugarbaker et al., 2014). One of the most 

truly revolutionary aspects of LiDAR altimetry, particularly from a user perspective, is its 

ability to penetrate vegetation and obtain direct ground measurements, something which 

is extremely difficult to do using photogrammetry, even in leaf-off conditions (Lillesand 

et al., 2015; McGlone, 2007; Fowler et al., 2007); furthermore, since a single pulse may 

be returned off of several surfaces, the same dataset can be used to produce a variety of 

surface models. Of additional use in geomorphology—where issues about scale are 

actively investigated—is the ability of the same LiDAR data to produce DEMs of varying 

resolutions, depending upon user needs (Evans, 2012). While initial processing of raw 

LiDAR data into classified point clouds requires specialized skills and programs, an 
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average GIS user can create custom DEMs from these point clouds using commercial, 

off-the-shelf software such ESRI’s ArcGIS or free, open-source platforms like QGIS. 

The explosion in the availability of LiDAR elevation data has helped transform 

the world of geomorphometry (Gessler et al., 2009). LiDAR elevation data have quickly 

become important in many areas of geomorphic research and, where available, LiDAR is 

usually the most preferred elevation measurement technology (Bishop et al., 2012; 

Tarolli, 2014; Wohl, 2014). The high resolution of LiDAR DEMs has facilitated precise 

delineation of the hillslope-to-valley transition, extraction of headwater channels in 

difficult, mountainous terrain, and detected the subtle topographic signature of 

paleochannels in floodplains (Challis, 2006; Notebaert et al., 2009; Pirotti and Tarolli, 

2010; Tarolli and Dalla Fontana, 2009). It has been used to quantitatively study hillslope 

mass movement and produce channel slopes comparable to field survey data (Stock and 

Dietrich, 2003; Vianello et al., 2009). Finally, repeat LiDAR surveys have been used to 

monitor a variety of processes, including bank erosion and the post failure evolution of 

landslides (Corsini et al., 2007; Thoma et al., 2005). 

 Land Surface Parameters 

Two general groups of land surface parameters (LSPs) are recognized based on 

their scope: local and regional. Local parameters are those that can be calculated for any 

point using only elevation data for that point and—at most—for its immediate 

neighborhood. Elevation and slope are prime examples. Regional parameters, on the 

other hand, put each unit in a larger context that usually has to do with position relative to 

flows of mass and energy (Deng, 2007; Olaya, 2009; Wilson, 2012). Examples are the 

Topographic Wetness Index (TWI), which takes upslope catchment area into account and 
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is used for locating channel initiation and likely habitat types, and potential incoming 

solar radiation. While regional LSPs have been used for landform classification (e.g. De 

Reu et al., 2013; Irvin et al., 1997) and there is growing interest in their use for this 

purpose (Olaya, 2009; Wilson, 2012), a review of recent literature shows that their use is 

not common practice. One of the premises of this research is that regional LSPs can 

potentially provide spatial context that improves automated terrace recognition.  

Most local parameters are geometric, with elevation and its first two derivatives 

being the most important in much geomorphic analysis. Elevation, typically denoted by z, 

is the basis of all geometric LSPs and is the only LSP that comes close to being scale 

invariant (Deng, 2007; Olaya, 2009). In theory, elevation directly corresponds to the 

elevation of one particular location. This may be a point (vector) value, as with LiDAR, 

or a block value averaging the elevation over an area the size of one grid cell (stereo 

photogrammetry or radar). Under ideal circumstances, error in elevation will be equal to 

the error in the underlying measurement technology, which can be anywhere from more 

than a dozen meters, as with space-based IfSAR, to less than 5 cm, as with post-

processed ground DGPS data.  

Derivatives of elevation become more variable based upon scale, the axis being 

measured, and the formula used, with the propagation of underlying measurement and 

calculation errors increasing dramatically for higher order derivatives. The first partial 

derivative of elevation taken in the direction of maximum change—the gradient vector—

defines the slope of a cell. The direction of this vector also gives the aspect of the cell, 

which is important in flow routing and calculations of potential insolation. The second 

derivative—the rate of change in slope—is called the curvature and it can be taken along 
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a number of different axes, depending upon what is being studied. By convention, 

positive values denote convex curvatures and negative values concave ones, with the 

zero-point corresponding to inflection points in calculus. Profile curvature is taken 

parallel to gradient and indicates acceleration or deceleration of flow. Plan curvature, on 

the other hand, is taken perpendicular to gradient and indicates divergence or 

convergence of flow. In addition to these two, there are at least fifteen more types of 

curvature in currently published literature, examples including unsphericity curvature 

(how much a surface differs from a perfect sphere) and rotor curvature (clockwise or 

anticlockwise turning of flow lines) (Olaya, 2009; Schmidt et al., 2003). Third-order 

derivatives of elevation have more recently received some use. While their meaning for 

landform classification and analysis is not generally clear and they are highly sensitive to 

any noise in the input data, they have been suggested to be useful in identifying features 

such as ridges and thalwegs; however, their usefulness is not widely agreed upon and 

they use is still experimental, as is demonstrated by the fact that no commercial or non-

commercial software packages have their computation as a built-in feature (Minár et al., 

2013; Olaya, 2009). 

 Regional LSPs attempt to describe a unit area in the broader context of hydrology 

and morphology beyond immediately adjacent terrain (Wilson, 2012). While they are 

often created with applications in hydrology, ecology, or soil mapping in mind, they are 

frequently employed as ancillary information to aid in landform classification. This 

research examined three regional LSPs for their potential to increase classification 

accuracy: two hydrological and one topographic. Vertical Distance to Channel Network 

(VDTCN) normalizes each cell according to its distance to a flow network that I defined 
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as any stream large enough to form a floodplain (and thus, potentially, terraces). SAGA 

Wetness Index (SWI), a modified version of the Topographic Wetness Index (TWI), 

combines local slope and upslope contributing area to predict potential soil moisture and 

stream initiation. Finally, Topographic Openness (TO) indicates degree of prominence or 

enclosure and thus may help distinguish planar areas in hollows from others. 

Landforms and Landform Elements 

Broadly defined, landforms are naturally occurring features that can be used to 

partition the Earth's surface and have typical, distinguishing attributes wherever they 

occur (MacMillan and Shary, 2009). Landform classification presents many challenges 

which are distinct from other types of feature recognition and which require innovative 

and synthetic methods to solve. Two fundamental concepts in remote sensing are those of 

information classes—which are features of interest (e.g. cornfields, water, terraces)—and 

spectral classes, which are clusters of spectral signatures that can be recognized and 

defined from the image itself. Generally speaking, unsupervised (data-driven) methods of 

classification involve matching information classes to algorithmically derived spectral 

classes, while supervised methods use examples of information classes to train an 

automated classifier (Lillesand, Kiefer, & Chipman, 2015). For DGM, morphometric 

signatures can be substituted for spectral ones. Elevation and its higher order 

derivatives—slope and curvature—can be analyzed in a comparable way to spectral 

reflectance or radiance values; however, that does not resolve all issues.  

The complication in DGM comes from the fact that not all landforms have 

explicit, quantitative definitions of the type that could easily be adapted to algorithmic 

recognition. This is all the truer for specific geomorphic features such as terraces. For a 
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feature to be recognized in a reliable and reproducible way it must be operationally 

defined; furthermore, if this recognition is to be automated to any degree, this definition 

must be mathematical. At the same time, mathematical definitions need to retain the 

essential relationship to process and ontology, which is the point of DGM in the first 

place. In recent years, many researchers have proposed different means of 

mathematically defining landforms, employing variously combinations of the primary 

morphometric variables with different spatial relationships (Bishop et al., 2012; Evans, 

2012; Minár and Evans, 2008; Wheaton et al., 2015). 

 Classification 

Any system of landform classification must account for the fact that landforms are 

inherently hierarchical and scale-dependent (Bishop et al., 2012; Evans, 2012; MacMillan 

and Shary, 2009). A nose slope may be a component of a spur which is itself a 

component of a mountain. A plateau is a plain to a neighboring mountain; at the right 

scale, a rill is a hollow. At one level of landform classification, an entire floodplain can 

be classified as a single unit. At the level below this, the floodplain can be classified into 

several discrete units. Depending on the size and geomorphic setting of a stream, 

channel-floodplain interaction may produce features such as point bars, natural levees, 

and meander scrolls with varying degrees of development (Buffington and Montgomery, 

2013; Leopold et al., 1995). Similarly, the LSPs used to quantify landforms have no 

single, true value, but are specific to the scale of analysis and method of calculation 

(Evans, 2012, 2003; I. Florinsky, 1998; MacMillan and Shary, 2009; Shary et al., 2005). 

Slope calculated at 90 meter intervals is highly smoothed compared what would be 

calculated from a high resolution LiDAR DEM (Kienzle, 2004; Wu et al., 2008). 
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Curvature values can be calculated at a range of radii (Wilson, 2012). The implication 

from these factors is that landform classification is dependent on the hierarchical level 

and physical scale of a given analysis (Drăguţ and Eisank, 2012; MacMillan and Shary, 

2009).  

Landform classification systems reflects the principle division of geomorphometry 

into general geomorphometry, which analyses the landscape as a continuous surface, and 

specific geomorphometry, which focuses on discrete landforms, such as a terrace or an 

alluvial fan. Of these two, general geomorphometry is more rigidly quantifiable, dealing 

with terrain in as purely mathematical way as possible, specific geomorphometry 

necessarily involves more subjectivity and interpretation of process from form in 

extracting discrete landforms from a continuous surface. General geomorphic forms tend 

to be defined according to how they affect the flow of mass and energy, such as by flow 

divergence or convergence. Specific geomorphic forms are usually defined by the process 

that formed them. Due to the difficulty of inferring process from form, efforts to use 

DGM for specific geomorphic mapping have met with mixed results; therefore, most 

landform classification systems are based more on general than specific geomorphometry 

and more upon how a landform currently interacts with flows of energy and mass instead 

of the processes which formed it. Thus, systems like those of Speight (1990) or Pennock 

(1987) include various forms of slope, but not landforms such as terraces. 

Manually implemented systems of landform classification turn upon semantic models 

of salient terrain elements and incorporate, explicitly or implicitly, expert knowledge 

about regional, physiographic, and geomorphic process context (Argialas and Miliaresis, 

1997; MacMillan and Shary, 2009). As these systems depend, to a greater or lesser 
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extent, upon rules and knowledge that are difficult or impossible to program, automated 

methods of classification are necessarily based upon directly quantifiable values. These 

typically are relative slope position and local curvature, but sometimes extend to different 

modes of mass movement, such as the distinction between alluvial and colluvial toe 

slopes in the system Dikau (1989) The results are classes that are typically defined by 

some combination of Boolean and threshold values. 

Automated tools for such classifications, such as LANDFORM , implement these 

concepts with parameters for threshold values and scales of analysis that users can set 

according to their expert judgement, local knowledge, and/or experimentation 

(Klingseisen et al., 2008). There have also been supervised classification models—such 

as in ILWIS GIS—that accept a mean and standard deviation from training data to learn a 

classifier model. This research seeks to extend some of the work which has been done to 

use machine learning in a more central way, leveraging expert knowledge to derive 

models directly from the training data without the need for user-chosen thresholds or 

normal statistical analysis. Included in this is extending the range of learners used to 

those seldom found in the literature, such as Bayesian classifiers and SVM. 

Supervised Machine Learning 

Machine Learning (ML) is the subset of Artificial Intelligence (AI) that deals with 

the creation of algorithms that themselves create other algorithms (Kelleher et al., 2015; 

Shalev-Shwartz and Ben-David, 2014). Whereas traditional AI programming, such as 

expert systems, would create an algorithm to turn data into a desired result, ML focuses 

on creating an algorithm that can be given the data and the desired results and use these 

to create its own algorithm. To build a program that can perform classification tasks like 
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a human, knowledge must be obtained from experts in the field in question and 

incorporated that into the program. The expert systems approach works by interviewing 

experts and applying a top-down method of programming that knowledge into a 

classifier; however, expert systems are often challenged by the difficulty of obtaining 

sufficient information and the exponentially increasing complexity of their code. Expert 

knowledge is time consuming to elicit and document; furthermore, it is frequently 

difficult to create clear rules from expert knowledge and experts themselves may be 

unable to articulate rules that they implicitly use in their work (Agarwal and Tanniru, 

1990; Barfield, 1986; Forsythe and Buchanan, 1989; Kemp, 1993). By learning rules 

from data on the basis of a training set of classified examples, supervised machine 

learning provides an alternative to the expert systems approach that simultaneously 

incorporates expert knowledge and underlying data patterns in defining class boundaries 

(Campbell and Wynne, 2011; Evans et al., 2009; Kelleher et al., 2015; Shalev-Shwartz 

and Ben-David, 2014). 

 Principles 

 Supervised machine learning algorithms accept a training dataset of instances of 

something labeled with their class. These instances, frequently referred to as vectors, 

each have a list of descriptive features which can be virtually any type of value. Surface 

aspect, elevation above sea level, and spectral reflectance in a Landsat band can all be 

descriptive features used in an ML task (Tso and Mather, 2009). The algorithm then 

learns a prediction model by analyzing the descriptive features of the training dataset and 

employing a set of assumptions—called the inductive bias—that constrain and guide the 

selection of model. The set of potential models for a given learner is referred to as it’s 



 21 

hypothesis space (Kelleher et al., 2015; Shalev-Shwartz and Ben-David, 2014). Once 

learned, these models are then used to predict the class of unlabeled data. In remote 

sensing, it is more common to use the terms classifier and classify than model and 

predict. 

As is explained by both Kelleher et al (2015) and Shalev-Schwartz and Ben-

David (2014), selection of the right learner and learner parameters for a given task is key 

to successful application of ML. A mistake at this stage can lead to under or overfitting 

the training data. A useful model is one that can create rules from the underlying patterns 

in its training data that will generalize well and can properly classify unseen instances. If 

the learner is blind to important patterns in the training data, it is said to have underfit the 

data and its model will be too simplistic to properly classify future instances. On the other 

hand, if a learner creates rules that are too specific to its training data—essentially 

mistaking noise and random variation in the data for real connections between descriptive 

features and information—then it is said to have overfit and it will not be able to 

generalize to unseen data. The latter is an issue that ML users need to be especially 

cautious about: the sheer power of learners to extract patterns from data makes at least 

some degree of overfitting a common occurrence, and this in turn will make a model 

extremely sensitive any flaws in the selection and processing of training data. 

This selection process, however, is complicated by the well-known principle, 

commonly referred to as the No Free Lunch Theorem, that, on average, there is no best 

learner (Wolpert, 1996; Wolpert and Macready, 1997). A simplified version of No Free 

Lunch gives that, for any two ML algorithms A and B, there are as many situations in 

which A outperforms B as there are wherein B outperforms A. Crucially, this holds true 



 22 

even if one of these algorithms is simply random guessing, meaning that there as many 

situations in which an algorithm may be confused by the data and perform worse than 

chance as there are the other way around. This means that there can be no universal 

learner: averaging over all possible situations, then, no algorithm performs better random 

guessing. The Free Lunch, of which there is none, is learning knowledge from data 

without prior knowledge: this prior knowledge comes in the form of an inductive bias. 

The inductive bias of a learner constrains the types of models it can learn and, by 

extension, results in class boundaries with a “shape” characteristic to the learner. A 

complication arises, however, in that there is no way to know a priori which inductive 

bias will perform best for a given situation. While a theoretical understanding of how 

different learners work can suggest which might be best suited for a specific problem, it 

is common practice in ML to test several algorithms before making a final choice. In light 

of this, five learners representing four distinct approaches were chosen, each described 

below. 

Machine Learning Techniques 

 Similarity—Mahalanobis Distance & Winner-Takes-All 

 Similarity-based learners include some of the oldest and simplest algorithms, such 

as Nearest Neighbor, and are still among the most popular supervised classification 

methods currently employed in remote sensing. Similarity learners all depend upon 

creating a mathematical measure of the similarity between given instances which can be 

used to relate input data to training instances.  These measures usually take the form of a 

distance calculation; therefore, these learners are often called distance-based. In order to 

calculate distances, each instance needs to be given spatial coordinates. To do this, a 
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feature space is created wherein every attribute or descriptive feature of an instance is 

represented as its own dimension. An example of this process applied to multispectral 

imagery is shown in Figure 3. While it is difficult to visualize a spatial domain that has 

more than three dimensions, a feature space is n-dimensional, able to use any number of 

dimensions that we wish to define. While image classification seldom uses more than a 

few dimensions (e.g. four of five bands from a Landsat scene), machine learners in other 

fields can and frequently do have thousands of dimensions (Kelleher et al., 2015; Shalev-

Shwartz and Ben-David, 2014). 

It would be straightforward to assume that including more descriptive features in 

a classification is beneficial, so long as those descriptors provide additional information; 

however, past a given point, adding more descriptive features to a classification can have 

the effect of actually decreasing the classifier's accuracy, even if these extra descriptive 

features are meaningfully related to the classes (Bishop, 2006; Van Niel et al., 2005). 

This is a result of the nature of hyperspace and its effects on sample density. In order to 

Figure 3: A generalized process for representing multispectral image data in a 
multidimensional feature space. For each pixel used as an instance, or vector, in the input 
data, the digital numbers from each spectral band (A) are used as coordinate values in a 
feature space (B). With all the training instances mapped in feature space, decision 
regions (C) are defined which then can be used to classify unseen instances. Adapted 
from Beck (2012). 
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meaningfully relate an area of hyperspace to a class, there needs to be a reasonable 

density of features in that area; however, with each descriptive feature that is added to a 

feature space, a whole new dimension is added and thus more "space" within which the 

samples are spread out, decreasing the effective sample density. In a sufficiently high-

dimension space, even a tightly clustered normal distribution becomes spread to its 

farthest tails with all instances looking equally similar—or dissimilar—to each other. 

This counterintuitive trade-off between sample density and number of descriptive 

features, wherein adding more data about each training instance can actually decrease 

classification accuracy, is referred to as the curse of dimensionality and it can be a 

fundamental problem for many ML applications. Typical remote sensing applications for 

ML have both pluses and minuses when it comes to dealing with the curse of 

dimensionality. On the one hand, image classification usually involves only a few 

descriptive features, keeping the number of dimensions far lower than many ML 

applications in other fields. Additionally, classes in remote sensing tend to be fairly well 

clustered, even if they are not normally distributed. On the other hand, the complexity 

and cost of creating training data means that image classifiers have to work with very 

small input datasets (Campbell and Wynne, 2011; Mountrakis et al., 2011). Because 

sample density decreases exponentially with additional dimensions (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑘𝑘( 1𝑚𝑚)), 

even a small number of added dimensions could considerably impact a classifier’s 

accuracy (Kelleher et al., 2015). All of this means that it is paramount to carefully select 

training data to minimize noise and to choose and prepare descriptive feature data to 

achieve maximum information content with a minimum of dimensions. 
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There are several measures of similarity used with distance-based learners. The 

simplest, Nearest Neighbor, is simply the Euclidean Distance between an unclassified 

input point and a training sample point. This analysis used two techniques: Mahalanobis 

Distance (MD), an alternative to Euclidean Distance, and Winner-Takes-All (WTA), an 

ensemble approach. The Mahalanobis Distance is a straight-line distance measurement 

like Euclidean Distance; however, the coordinate space is created based upon the spread 

and co-variance of input data. For each measurement, an orthonormal coordinate system 

is created with its origin at the point of interest and its primary axis parallel to the angle 

of greatest variance. The units of both axes are then scaled to normalize the variance 

between them. The effect of this re-definition of distance is to compensate for datasets 

that exhibit a strong covariance that would otherwise confuse the real relationship 

between the variance of individual instances and the overall dataset variance if Euclidean 

Distance were to be used. In fact, in the absence of such covariance, a Mahalanobis 

Distance measurement is essentially equivalent to the Euclidean Distance (De 

Maesschalck et al., 2000; Kelleher et al., 2015). WTA uses all available methods of 

similarity measurement (in this case, Binary Encoding, Parallelepiped, Minimum 

Distance, Maximum Likelihood, and Spectral Angle Mapper) simultaneously, assigning 

the decision boundary in feature space based upon the maximum activation among all 

measures. 

 Probability—Bayesian Learners 

In the 18th century, the statistician and Protestant minister Thomas Bayes 

proposed a theorem for updating beliefs in the light of new evidence. Formalized and 
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popularized in the 19th century by French scientist Pierre-Simon Laplace, it can be given 

mathematically as: 

Pr(𝐴𝐴|𝐵𝐵) =  
Pr(𝐵𝐵|𝐴𝐴) ∗ Pr (𝐴𝐴)

Pr (𝐵𝐵)
 

Or: The probability of Cause A, given that we observe Effect B, is equal to the 

Probability of Effect B, given Cause A, multiplied by the Prior Probability of Cause A, 

all divided by the Unconditional Probability of Effect B (Kelleher et al., 2015). 

 A common way of explaining this by example involves the probability of having 

a rare disease given a positive test with that test having a 99% accuracy. Using typical 

frequentist statistics, the probability of having the disease, given positive test, 

Pr (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) is 99%. However, in Bayesian statistics, the prior probability is 

factored in to the analysis. If this disease has an occurrence of 1:10,000 in the general 

populace, than this value Pr (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷), is multiplied by the likelihood of observing a 

positive test, given the cause of having the disease Pr (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) all divided by 

the unconditional probability of a positive test, absent the disease Pr (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃). This 

resulting value: 

Pr(𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) =  
(0.99) ∗ (0.0001)

0.01
= 0.0099 = 0.99% 

is quite a bit smaller—and less panic inducing—than what was previously believed. That 

is because this new evidence was used to update the prior belief in the possibility of 

having the disease, which was very small. This updated probability is called the posterior 

probability. 
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 There are three important advantages of using Bayesian (here Normal Bayes, NB) 

inference in classification of remote sensing or geomorphological data. First, Bayesian 

statistics do not depend upon an assumption of a normal distribution of data. Second, 

Bayesian methods are particularly suited to solving inverse problems, such as the 

inference of process from form in geomorphology. From their mathematical formulation 

alone, Bayesian statistics can make forward and inverse inference with equal ease 

(Kelleher et al., 2015). Finally, since these methods natively deal in probabilities, they are 

good at dealing with the degrees of uncertainty about class boundaries that make feature 

recognition in general, and landform classification specifically, problematic (Campbell 

and Wynne, 2011). 

 Error-based—Support Vector Machines 

As first formally described by Boser, Guyon, & Vapnik (1992), Support Vector 

Machines (SVMs) are a group of supervised, non-parametric statistical learners. SVMs 

work by attempting to find a linear separating hyperplane defining a decision boundary 

between two or more classes in a high-dimensional space. As with other n-dimensional 

feature space classifiers, individual (labelled) data points are called vectors. The vectors 

closest to the separating hyperplane are called support vectors and they are the only ones 

which actually define the hyperplane. Support vectors are like swing state voters in a 

tight election: they are the only vectors whose vote "counts". Thus, if the support vectors 

are altered, deleted, or replaced, the hyperplane will be altered as well. A separating 

hyperplane is considered optimal when the distance from the support vectors to the plane, 

called the margin, is maximized, as shown in Figure 4a. For cases in which classes cannot 
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be separated by a straight line, SVMs can learn a smooth, curved boundary by remapping 

the raw data into a higher dimensional space, as in Figure 4b (Tso and Mather, 2009).  

Since their introduction, SVMs have grown extremely popular due to their robust 

performance in many applications (Kelleher et al., 2015). While it has taken 

comparatively longer for SVMs to gain traction in the remote sensing community, they 

are rapidly gaining popularity due to their many strengths for dealing with feature 

classification issues (G. M. Foody and Mathur, 2004; Mountrakis et al., 2011). First, as a 

non-parametric method, SVMs make no assumptions about the distribution of their input 

data (Wilson, 2008). RS data are frequently not normally distributed; this does not matter 

with SVMs. Second, SVMs have been proven to generalize well even with a small 

amount of training data, data that is often costly and time consuming to produce in 

remote sensing (Giles M. Foody and Mathur, 2004; Mountrakis et al., 2011; Wilson, 

2008). Finally, SVMs do not suffer from the curse of dimensionality, nearly as much as 

Figure 4: Margin maximization and the use of high dimensional space are 
important principles of SVMs. (A) shows many potential separating hyperplanes. 
While all of these hyperplanes would separate the training instances of the two 
classes in the same way, line b is optimal because it maximizes the distance 
between the decision boundary and the support vectors. As depicted in (B), SVMs 
can learn complex, non-linear class boundaries by mapping the input data to a 
higher dimensional space. Adapted from Tso and Mather (2009). 
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most other classifiers. SVMs are routinely used with thousands of dimensions with little 

issue. 

 Ensemble—Random Forest 

 Ensemble methods in machine learning combine the results of a number of 

different learners to make a single classifier. These might be distinct types of learners or a 

large number of the same type of learner; Random Forest (RF) is an example of the latter. 

Random Forests are based upon Decision Trees, a class of information-based learners 

which work by using a series of queries to progressively split instances according to 

values of a descriptive feature until a final classification is made. Decision Trees have the 

advantages of being well-suited for handling the inclusion of irrelevant descriptive 

features—they simply don’t get used in the model—and relatively little affected by the 

curse of dimensionality; however, due to the nature of their recursive splitting of 

instances, they are vulnerable to noise and random variance in their training data and thus 

prone to overfitting, resulting in relatively low accuracy (Kelleher et al., 2015; Svetnik et 

al., 2003). 

 Random Forest (RF) is one of a few methods developed as a way to deal with 

these issues (Breiman, 2001). Instead of inducing a single classifier, RF uses a large 

number of Decision Tree learners, each trained using a different random subset of the 

training data. The subsets are created by sampling with replacement, ensuring that each 

tree is grown from the same data distribution. The resulting trees vote for the most 

popular class during the classification stage. RF has been shown numerous times to be a 

very accurate classifier, comparing well with advanced methods such as SVMs while, at 

the same time, being considerably easier to use (Cracknell and Reading, 2014; Pal, 2005; 
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Rodriguez-Galiano et al., 2012). Despite the fact that RF grows a large number of trees, it 

is actually computationally more efficient than growing an equivalent number of 

individual Decision Trees and compares favorably with other learners (Rodriguez-

Galiano et al., 2012). In situations with a very large number of descriptive features, RF 

has even been shown to operate more quickly than growing a single Decision Tree 

(Svetnik et al., 2003). Finally, RF has a number of other attractive qualities, including the 

ability to provide estimates of the importance of different input variables and produce an 

internal, unbiased estimate of generalization accuracy, reducing the need to cross-validate 

or test on withheld data (Cracknell and Reading, 2014; Rodriguez-Galiano et al., 2012). 

Prior Work 

Intense research into DGM in recent years has produced a number of different 

toolsets and methods. Some have been developed for primarily small, regional scale 

mapping (Drăguţ and Eisank, 2012; Jasiewicz et al., 2014) while other have concentrated 

on the mapping of general landforms, such as ridges and hollows, at a large scale 

(Jasiewicz and Stepinski, 2013; Sofia et al., 2014). Several researchers have worked on 

semi-automated methods for terrace mapping; however, three major issues have resulted 

in limited success.  

Demoulin, et al. (2007) used a method based upon DEM segmentation and 

calculation of neighborhood statistics to map terraces in the Vesdre River valley of 

eastern Belgium. They elected to use a relatively broad operational definition which 

identified any area of relatively low slope bounded by higher slope segments as possible 

a terrace. The authors used a deterministic segmentation approach analyzing valley 

terrain. The main river was divided into 500m reaches on the basis of the overall length 
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of the river and prior knowledge of the size of terrace remnants. Then, valley segments 

were defined by assigning each pixel to a river segment according to the steepest path. 

For each of these segments, they created a smoothed bi-variate plot of percent slope 

versus altitude relative to the river altitude at the mouth of the reach. They considered any 

local minima with a slope ≤ 13% and a displacement of at least 0.7% relative to its 

neighboring maxima to represent terraces in the valley segment. 

In terms of degree of automation, this method required a great deal of user input 

to optimize its parameters. Some parameters reflected information about the river and its 

history that was endogenous to their elevation dataset, including the mean meander 

length and terrace size, as well as the approximate valley altitude prior to terrace-forming 

incision. Other parameter values were chosen by empirical observation or trial and error. 

The authors of the paper identify this as a possible source of error or weakness in their 

method. Using the best performing combination of slope and displacement thresholds, the 

authors found that their method of DEM analysis correctly identified 78% of the known 

terraces in their validation set, compared to the 90% identified in field surveys.  

Stout & Belmont (2014) developed a set of Python-based geoprocessing tools by 

for use in ESRI’s ArcGIS software, dubbing it the TerEx toolbox. TerEx offers a semi-

automated method for delineating terraces as vector features and calculating their basic 

attributes, such as surface area and elevation above a local stream channel segment. It 

represents a compromise between methods requiring an advanced understanding of 

information science and those more likely to be usable by non-specialists, an issue that is 

still being addressed in DGM research (Bishop et al., 2012). The tools are intended to 

work with a great deal of user input, accepting threshold values for a search area 
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(maximum valley width), user-defined scale of analysis (moving window), maximum 

allowable local relief within the scale of analysis, and minimum surface area for a valid 

feature. The tool also depends upon a user running multiple iterations and editing the 

outputs to deal with issues such as mis-classification of smooth upland surfaces as 

terraces and the erroneous classification of a single terrace as multiple terrace surfaces 

due to slight elevation variations in the DEM. 

Testing their toolset on a 32 km section of the Le Sueur River (Minnesota), the 

authors found a tight correlation between manually mapped and TerEx derived terraces, 

with error normally distributed across spatial scales. They felt that the error from using 

their tool was similar to the variance between two different manual mappers; however, 

additional tests of the toolbox on different rivers were not as promising. Used along 370 

km of the Minnesota River, TerEx was not able to delineate both floodplains and terraces 

in a single run, instead requiring a number of time consuming runs to produce an 

acceptable result. For the small, upland stream Gulden Gulch (Colorado), TerEx was 

unable to identify small terrace remnants and incorrectly linked terraces with upstream 

meanders, producing inaccurate height measurements. Stout & Belmont concluded that—

in this instance—the considerable number of edits and iterations needed to produce a 

final map took more time than would have been used to manually map the terraces from 

the same data. Additional trials identified other factors that could increase the need for 

manual editing, including the presence scroll bars or paleo-channels within the flood 

plain, DEM noise or errors in densely-vegetated areas, and very-low stream gradients. 

The TerEx toolset was also used in previous research into mapping Buffalo River 

terraces. The investigators found that it was necessary to aggregate the terraces delineated 
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in a large number of runs in order to create a usable map. A large amount of manual 

editing was required, both to aggregate together many true terraces that were fragmented 

by the tool and to delete large areas of flat upland mis-classified as terraces. Additionally, 

the parameters had to be carefully modified for geomorphically different river reaches 

(Bush and Shepherd, 2016). 

Hopkins & Snyder (2016) tested the performance TerEx and two other terrace 

delineation methods, validating their results against visually mapped terraces in the 

Sheepscot River watershed (Maine). The authors rated each method according to a five-

category rubric: the total time required for mapping, whether or not prior knowledge of 

the landscape was needed, the degree of manual editing required, the ability to produce 

continuous features across whole terrace surfaces, and the accuracy in total terrace area 

mapped. Besides the TerEx toolbox previously discussed, they employed a method 

introduced by Michael Rahnis (Walter et al., 2007) and the LandSerf feature 

classification tool. The Rahnis method maps the extent of terrace surfaces by 

interpolating a surface based on points manually placed by the user on a known terrace. 

The feature classification method, based on the LandSerf program, begins with a fully 

automated classification of the DEM into Channel, Ridge, Planar, and Pass surfaces. 

They then used elevation thresholds from an interpolated water surface to select 

appropriate Planar surface pixels as terraces. Hopkins & Snyder appreciated the rapid and 

objective results of the feature classification (LandSerf) method; however, they 

concluded that the TerEx toolbox was—despite its heavy dependence on user editing the 

best choice for accuracy across a variety of settings. By contrast, they found the Rahnis 

method was mostly suited for mapping single terraces in steep river valleys. 
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Finally, van Asselen and Seijmonsbergen (2006) used a top-down, GEOBIA 

method to map a sub-Alpine area in western Austria. The authors defined eight landform 

classes, including fluvial terraces, and created a training dataset based on a pre-existing, 

manually-created geomorphic map of the area. In their multistep method, the authors 

delineated training areas for each of the category landforms, then calculated their zonal 

statistics to produce parameters for fuzzy membership functions. They then employed 

these functions, along with a vector flow network, in a multi-level segmentation and 

classification within Trimble’s eCognition software. They created flow paths for this 

network using the standard hydrology toolbox in ArcGIS, with the threshold contributing 

area values for channel-initiation being determined by experimenting with different 

values and comparing the results to existing drainage maps. The authors also derived the 

homogeneity criteria that were used for segmentation at the two different scale levels 

through trial-and-error experimentation. The classification of terraces was reasonably 

accurate: 69% of actual terraces were correctly identified as such, with most of the rest 

being mistaken for alluvial fans. 

Taken together, these methods show several persistent limitations. First, as is 

shown in Demoulin, et al (2007) and research employing the TerEx toolbox (Bush and 

Shepherd, 2016; Hopkins and Snyder, 2016; Stout and Belmont, 2014), acceptable results 

are typically achieved only with considerable amounts of time consuming 

experimentation with parameters and manual editing of outputs, both of which limit the 

ability of these semi-automated methods to reduce the time needed for geomorphic 

mapping. Second, detailed prior knowledge of the specific landforms of the study area 

needs to be employed, such as the average width of known terraces (Demoulin et al., 
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2007), the location and extent of terrace treads (Hopkins and Snyder, 2016), or 

delineation of landforms multiple landforms by manual interpretation (van Asselen and 

Seijmonsbergen, 2006). Finally, there is often considerable difficulty in transferring 

methods from one watershed or geomorphic setting to another, resulting in high variance 

in accuracy (Hopkins and Snyder, 2016) or necessity of many trial-and-error adjustments 

to achieve accuracy even within a single watershed (Bush and Shepherd, 2016; Demoulin 

et al., 2007; Stout and Belmont, 2014).
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3—Methods  
 
 

Source Data 

LiDAR 

The key source data for this is LiDAR elevation data acquired between 2009 and 

2011 which was obtained from the USGS (2010-2011 AR_BuffaloNP - East and West 

Portions, 2014) and the Arkansas GIS Office (2009 AR_BuffaloNP - Central Portion, 

2014) as classified LiDAR Point Clouds (LPC). The nominal point spacing was 1 m, with 

vertical accuracy (Root Mean Squared Error) between 0.041-0.073 m and horizontal 

accuracy between 0.65-1 m; however, these values are not necessarily valid over the 

whole study area. Steep terrain and heavy vegetation, both common in the Buffalo River 

basin, decrease the number of pulse returns, and thus the point spacing (Fowler et al., 

2007; Renslow, 2012). In turn, complex forested areas such as along the Buffalo River 

present many near-ground objects that are difficult to separate from the actual ground. 

Pulses reflected off-of things such as small boulders, fallen trees, and short shrubs can all 

potentially be mis-classified as bare-earth pulse returns and thus introduce noise into the 

elevation data, decreasing its vertical accuracy (Fowler et al., 2007; Renslow, 2012). 

These factors must be considered when creating DEM products from LiDAR data.   

Mapped Terraces 

Vector terrace data based on the field mapping of the USGS (Hudson et al., 2006; 

Hudson and Murray, 2004, 2003, Hudson and Turner, 2014, 2009, 2007; Turner and 
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Hudson, 2010), AGS (Ausbrooks et al., 2012a, 2012b, Braden et al., 2003, 2003; 

Chandler et al., 2011; Hutto et al., 2008), and Keen-Zebert et al (2017) were used to aid 

in creating training samples and was also used to perform an accuracy assessment for the 

Terrace/Floodplain class independent of the error matrices used to assess the overall 

mapping accuracy of each method. 

Other Supplemental Data 

The high-resolution version of the National Hydrography Dataset (USGS, 2016), 

a part of the USGS National Map program, was used to provide reference data on the 

general flow network of the Buffalo River watershed and define major channels for use in 

calculating the VDTCN for the study area. The NHD is based on GIS vectorization of 

blue lines from the original 1:24,000 USGS topographic quadrangle maps, whose 

hydrograph was largely created through manual interpretation of stereo-photographs and 

contour lines (Simley and Carswell Jr., 2009). 

Data Processing Steps 

 The GIS workflow for this research, illustrated in Figure 5, was mostly carried out 

in SAGA GIS, a free and open-source software, with initial data processing being done in 

ArcGIS. Construction of the LiDAR-based DEM which served as the source data for all 

LSPs was accomplished in ArcGIS 10.4 by way of ESRI’s Terrain Dataset format. 

LiDAR points classified as Ground or Water were converted to a Multipoint feature class 

and loaded into a Terrain Dataset. This Terrain Dataset was then used to interpolate a 3 

meter horizontal resolution DEM using Natural Neighbors, otherwise known as the 

Sibson Area-Stealing algorithm. This horizontal resolution was chosen both to allow 

landforms of interest to be shown in the data (e.g. small tributary channels) and provide 
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enough sample points for each cell to reduce random noise. The interpolation used a 

point-thinning method that applied a height tolerance of 0.3 meters. The practical effect 

of this Z-tolerance based point thinning is to smooth out small-scale noise in the elevation 

data by filtering out points whose variance in elevation value are either the result of 

random noise, as given above, or micro-topography which are not relevant to the 

landforms used in this research. 

Figure 5: The GIS workflow was divided between ArcGIS, which was used to create a 
bare-earth DEM from the source LiDAR data, and SAGA GIS, which was used for 
classification and validation processes. 
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Once the source elevation data was processed into a DEM in ArcGIS, all 

subsequent terrain processing and feature classification was carried out in SAGA GIS. 

LSPs were calculated independently for each study reach, with these LSPs being 

subsequently normalized to a scale of -1 – 1 in SAGA GIS before being used in 

classification. Normalizing different descriptive features to a common scale is an 

important step to prevent dimensions with high degrees of variability from 

overshadowing other dimensions (Lillesand et al., 2015). 

Methodology for Creation of Training and Validation Data 

Five landform classes were defined for use in DGM of the Buffalo River area. 

The number of classes chosen reflected a balance between the needs for adequately 

capturing the flow of the topography—particularly as it relates to gravitationally-driven 

flow of mass and energy—and keeping the classes general enough that landform 

elements would occupy relatively contiguous areas. The resulting classification scheme, 

detailed in Table 1 and illustrated in Figure 6, distinguishes planar uplands and lowlands 

(terraces and floodplains) as well as three major slope types based upon convergence or 

divergence of flow, but does not vertically partition hillslopes or identify individual 

peaks. 

The Buffalo has previously been divided into four study reaches based upon the 

lithology of the immediate stream valley (Keen-Zebert et al., 2017); however, because 

this lithology is not necessarily shared by adjacent parts of the basin, this research used 

an alternative subdivision. The whole study area was divided into three reaches (Table 2 

and Figure 7) based upon a combination of lithology, basin contributing area, and total 
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relief, with the objective of making each reach as morphologically homogeneous as 

possible. For each reach, visual interpretation of the terrain, as depicted by overlaying 

Figure 6: Representative training samples from each landform class. Terrace/Floodplain 
(A) samples were based upon field-mapped data, this example showing both a lower and 
a mid-level terrace. Divergent Hillslopes (B) are often below Planar Uplands (E) and 
above Convergent Hillslopes (C) and/or Planar Hillslopes (D). 
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Table 1: The operational definition for each of the landform classes used in this study. 
These descriptions show the semantic model used to infer process from form and were 
created to reflect the way a human might manually map these landforms. 

a partially-transparent tangential curvature raster on a multi-directional hillshade raster, 

was used to create a training and validation dataset.  

 In total, 80 training samples were created for each class in each reach, 50 being 

withheld for validation. The number of training samples needed for any given class is 

mostly a function of how many are needed to fully represent it in feature space; however, 

the general guideline is to have 10-30p samples, where p is the number of descriptive 

Class Name Description 

Terrace/Floodplain This class encompasses all planar/semi-planar fluvial 

landforms. These are mostly planar-to-gently sloping (usually 

< 4º) with minimal curvature, mildly convex for both profile 

and longitudinal curvatures. 

Divergent Hillslope 

(Nose Slope) 

Moderate-to-steep hillslopes, convex profile, and longitudinal 

curvature. Areas of accelerating and divergent flow. 

Convergent Hillslope 

(Hollow) 

Moderate-to-steep hillslopes, concave profile with concave 

longitudinal curvature. Areas of converging flow, often some 

degree of channelization. 

Planar Hillslope 

(Transportational 

Hillslope) 

Moderate-to-steep hillslopes, may have planar-to-slightly 

convex profile and longitudinal curvature or moderate surface 

texture (close alteration between convex and concave areas) 

which balances out to be mostly planar in its influence on 

flow. Common for sides of smaller tributary valleys/hollows. 

Planar Upland 

(Plateau) 

Slopes mild-to-negligible, planar to slightly convex curvature. 

In the upper portions of the basin these include larger plateau 

segments while the middle and lower parts of the basin are 

predominantly narrower interfluves. 
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features (Foody et al., 2006; Foody and Mathur, 2006; Van Niel et al., 2005). Strict 

adherence to this guideline has been questioned, though, with research demonstrating that 

accurate results can be achieved with samples as small as 2-4p (Foody et al., 2006; Foody 

and Mathur, 2006; Van Niel et al., 2005). Reflecting this, this research used 30 samples, 

or 5p, for each class, allowing for differences in the number of samples required by 

different classifiers (Foody and Mathur, 2006; Van Niel et al., 2005). The use of 50 

validation samples for each class was chosen according to standard practice (Campbell 

and Wynne, 2011; Congalton and Green, 2009; Lillesand et al., 2015). There was one 

exception to the use of the 50 sample standard: due to the limited amount of Planar 

Upland areas in the Lower Buffalo reach, only 16 samples were used for validation; 

however, since each sample actually consisted of a cluster of cells, these 16 samples 

added up to 921 cells. 

Reach River km Area 
km2 Dominant Lithology along Buffalo River 

Upper Buffalo 15-71 596 

(17-30) Boone Formation—Limestone/Chert 

(30-112) Everton Formation—

Sandstone/Dolostone 

Middle 

Buffalo 
71-150 196 Boone Formation—Limestone/Chert 

Lower Buffalo 150-237 466 Everton Formation—Sandstone/Dolomite 

Table 2: The three study reaches for this research are shown, along with the 
corresponding sections of the Buffalo River that they encompass. The lithology of the 
immediate Buffalo River valley is also given; however, this is not necessarily the 
dominant lithology of the study reach as a whole. 
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Input Land Surface Parameters 

Three local LSPs were chosen to provide descriptive features relating each cell to 

local processes of mass and energy flow while an additional three regional LSPs were 

chosen to add descriptive features that indicate the location of each cell relative to larger 

scale hydrology and relief.  

The algorithm used to calculate elevation derivatives was chosen to minimize the 

error and noise in the input data discussed previously. All derivatives were calculated 

using a 6 Parameter 2nd Order Polynomial function (Evans et al., 1979), which, unlike 

the 9 Parameter Partial Quartic function (Zevenbergen and Thorne, 1987) used in 

ArcGIS, is not constrained to pass through input elevation points. This results in a 

smoothing effect that makes the Evans method far less sensitive to noise than the 

Figure 7: Three study reaches defined on the basis of general degree of relief and 
morphology. Vertical Distance to Channel Network (VDTCN) emphasizes relative 
differences in relief by normalizing elevation to the local channel level. 
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Zevenbergen method (Schmidt et al., 2003). While the addition of terms in the 

Zevenbergen can produce more complex curved surfaces (Schmidt et al., 2003), the real-

world benefit of this is unclear; furthermore, since DEMs have inherent vertical and 

horizontal errors from measurement error, interpolation, and gridding, methods such as 

Zevenbergen may end up constraining equations to pass through elevation points which 

are themselves inaccurate (Evans, 1998). Several studies have found the Evans and 

similar methods to have greater precision and lower error than those using additional 

orders (Hengl and Evans, 2009; I. Florinsky, 1998; Schmidt et al., 2003; Skidmore, 

1989). In addition to slope, which is the geomorphometric equivalent to velocity, profile 

and tangential curvatures were calculated. Profile curvature is the standard for examining 

flow acceleration; tangential curvature was used instead of the more commonly available 

planform curvature for examining flow convergence/divergence, as the latter is not 

recommended for use in areas with steep terrain (Olaya, 2009; Wilson, 2012). 

Regional LSPs used were VDTCN, TO, and the SWI. VDTCN was used to 

transform the DEMs from Geoid height to height above the nearest downstream member 

of the flow network. This flow network was created by rasterizing the high-resolution 

NHD blue lines for the Buffalo and any tributaries large enough for floodplain 

development. To the extent that preserved terraces reflect past river elevation, this pattern 

may be reflected in VDTCN. Use of this parameter also has the potential to provide more 

accurate measurements of terrace heights above current river level than methods such as 

those of Demoulin et al (2007), which assigned the elevation of all cells to that of the 

lowest elevation in each river segment, or of Stout and Belmont (2014), who noted the 

errors produced by the fact that their TerEx toolbar assigned elevations based upon 
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Euclidean distance instead of flowline distance.  TO gives information about prominence 

of higher locations and valley width for lower locations, potentially helping to distinguish 

hollows from larger stream valleys (Anders et al., 2009; Yokoyama et al., 2002). Finally, 

the SWI, which is a modification of the Topographic Wetness Index intended to better 

represent planar areas (Bohner et al., 2002), adds information about local slope, relative 

slope position, and potential position in regional hydrology (Bohner et al., 2002; Böhner 

and Selige, 2006; Irvin et al., 1997). 

Methodology for Systematic Learner Comparison  

  To assess the effects of adding regional LSPs, each classification was run twice. 

The first run was the local-only condition, using only slope, profile curvature, tangential 

curvature, and VDTCN. The second run was the all-LSP condition, adding TO and SWI. 

It should be noted that, while VDTCN is actually a regional LSP, it was necessary to 

include it in all classifier runs in order to successfully distinguish between the 

Terrace/Floodplain and Planar Upland classes. This resulted in a total of 30 

classifications, 2 for each learner (Table 3) on each reach. Once all the classifications 

Machine Learning Method Software Implementation 

Mahalanobis Distance SAGA 

Winner-Takes-All SAGA 

Random Forest OpenCV module for SAGA 

Normal Bayes OpenCV module for SAGA 

Support Vector Machine LIBSVM for SAGA (Chang and Lin, 
2011) 

Table 3: The modular nature of SAGA allows for the inclusion of other software 
packages in addition to those designed specifically for SAGA. The module employed 
for each learner is specified here to give the exact version of the learning algorithm 
being used. 



 46 

were completed, they were compared both on a per-reach basis and aggregated over the 

whole study area. 

After classification, three statistical measures were used for quantitative analysis. 

Classification accuracy was assessed using confusion matrices and kappa statistics, 

standard methods in remote sensing described in (Campbell and Wynne, 2011; Congalton 

and Green, 2009; Lillesand et al., 2015). A Confusion Matrix gives the overall accuracy 

of the classification, defined as the portion of correctly classified cells out of all classified 

cells compared to validation data, as well as a per class evaluation of User’s and 

Producer’s Accuracy. User’s Accuracy shows the likelihood that a classification for a cell 

is correct by subtracting Type I errors for a given class from the total number of cells of 

that class which were compared to the validation data. In turn, Producer’s Accuracy gives 

the portion of cells whose class is known from the validation data that were correctly 

classified by subtracting Type II errors from the total number of validation cells for a 

given class. The kappa statistic is another measure of classification accuracy that takes 

into account chance agreement between the classified and validation data. Confusion 

matrices and kappa were calculated for each learner and each reach in both the local-only 

condition and all-LSP condition. Overall accuracy for each leaner across the whole study 

area was also computed by joining all three of the classifications and comparing them to 

the whole validation set. Finally, the predicted Terrace/Floodplain areas from each 

learner were compared with the full dataset of field -mapped terrace and floodplain areas 

to calculate user and producer accuracies. In line with convention in the remote sensing 

literature, this research defined acceptable classification accuracy as overall classification 

accuracy of 0.85 or greater and/or a kappa of 0.8 or greater (Campbell and Wynne, 2011; 



 47 

Congalton and Green, 2009; Evans et al., 2009). Finally, to determine if there was a 

significant difference in the performance of learners with different inductive biases, the 

McNemar Test was used for the higher-performing, all Land Surface Parameter 

condition. The McNemar Test is a pairwise comparison, similar to a Chi Square Test, 

which uses a cross-tabulation of correct and incorrect classifications on the same map 

area to evaluate whether the difference between two classifications are statistically 

significant (Campbell and Wynne, 2011). It is commonly used in comparing 

classifications produced by different analysts or using different methods (Campbell and 

Wynne, 2011; Congalton and Green, 2009; Foody, 2009, 2004).  



48 

4—Results and Discussion 
 
 

Quantitative Evaluation 

Comparing the overall accuracy of each learner on each reach in both the local-

only and all-LSP conditions (Table 4) yields two major observations. First, the addition 

of regional LSPs was crucial in achieving an accurate classification, defined previously 

as an overall accuracy of 0.85 or greater or a kappa of 0.80 or greater. Without using 

regional LSPs as descriptive features, only a single classification, NB in the Upper 

Buffalo reach, achieved acceptable accuracy, in comparison to 12 of the 15 classifications 

which were acceptably accurate when using all LSPs. This result indicates both that the 

distribution of the chosen regional LSPs values was consistent with the semantic model 

of major landforms used in selection of training and validation data and was effective in 

increasing the distinctiveness of the target classes. 

Second, the more advanced learners performed better and had greater consistency 

than the distance-based learners. Although MD produced the single highest classification 

accuracy, 92% for the Lower Buffalo, closer examination of the results suggests this may 

be due to change: the exception that proves the rule. All of the advanced learners were 

accurate in the all-LSP condition, while WTA failed to achieve acceptable accuracy in 

the Middle Buffalo reach and MD was only accurate for the Lower Buffalo. The spread 

in accuracy scores between reaches for the advanced learners was between 1 and 3%, 

compared to the 6% spread for WTA and 12% spread for MD. Finally, examining the
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overall accuracy across all reaches (Table 5) shows that the both the difference in 

accuracy among the distance-based techniques and between them and the more advanced 

learners were greater than the difference among the advanced learners themselves. 

Figures 8 and 9 illustrate the increased accuracy of the all LSP condition. Examining the 

differences in classification accuracy between the individual classes (Appendix), the 

greatest confusion is consistently between the different hillslope types, particularly 

between Planar and Convergent Hillslopes. For 19 of the 30 classifications, Planar  

Method 
Upper Buffalo 

Local LSP All LSP 
Kappa Accuracy Kappa Accuracy 

MD 0.68 0.75 0.75 0.80 
WTA 0.76 0.82 0.85 0.89 

RF 0.75 0.81 0.86 0.89 
NB 0.81 0.85 0.85 0.89 

SVM 0.67 0.75 0.88 0.90 

Method 
Middle Buffalo 

Local LSP All LSP 
Kappa Accuracy Kappa Accuracy 

MD 0.65 0.73 0.78 0.84 
WTA 0.69 0.77 0.78 0.83 

RF 0.71 0.78 0.86 0.89 
NB 0.73 0.80 0.85 0.89 

SVM 0.70 0.77 0.84 0.88 

Method 
Lower Buffalo 

Local LSP All LSP 
Kappa Accuracy Kappa Accuracy 

MD 0.58 0.67 0.90 0.92 
WTA 0.56 0.66 0.85 0.89 

RF 0.69 0.76 0.87 0.90 
NB 0.69 0.76 0.89 0.91 

SVM 0.59 0.68 0.88 0.91 

Table 4: Overall accuracy and kappa for each classifier in each reach for both the local 
LSP and all-LSP conditions. Overall accuracy gives the percent of correct classifications 
across all classes, while kappa is an additional method for evaluating overall accuracy 
that accounts for chance correspondence between the classified map and reference data. 
Values in bold meet the conventional thresholds (kappa ≥ 0.80 or overall accuracy ≥ 
0.85) used to define an acceptable map accuracy. 
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Figure 8: Kappa statistic for classifiers using local LSPs only. Red line shows the 0.8 
threshold for an acceptably accurate classification. In the local-only condition, only the 
NB classification of the Upper Buffalo reach was accurate. 

 
Figure 9: Kappa statistic for classifiers using all LSPs. Red line shows the 0.8 threshold 
for an acceptably accurate classification. Using all LSPs, 12 of the 15 classifications were 
accurate.  
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Hillslope had the lowest producer’s accuracy and Convergent Hillslope the lowest 

user’s accuracy or vice versa. Divergent and Planar Hillslopes had a similar relationship 

in 7 classifications, Divergent and Convergent Hillslopes in 2, with Planar Hillslope and 

Planar Upland and Terrace/Floodplain and Planar Upland in 1 each. The addition of 

regional LSPs made the largest difference with the hillslope classes, with the majority 

achieving acceptable accuracy in the all-LSP condition. In 13 of the 15 comparisons, 

Convergent and/or Planar Hillslope had the greatest increase in producer’s accuracy, with 

Divergent Hillslope having the greatest gain in the others. Conversely, classification 

accuracy for the Terrace/Floodplain and Planar Upland classes changed very little with 

the additional LSPs and actually decreased in some instances, which might reflect 

floodplain or upland landforms that were not included in the classification system. 

Examining Table 6, which gives the statistical significance of differences between 

each of the learners under the higher-accuracy, all-LSP condition, shows that the greatest 

difference is between the distance-based and more advanced learners. While all of the 

Method 
Overall Accuracy 

(All Reaches) 

Random Forest 89.3% 

Support Vector Machine 89.1% 

Normal Bayes 89.0% 

Winner-Take-All 86.1% 

Mahalanobis Distance 84.3% 

Table 5: The overall accuracy of each learning technique for the whole study area. This 
was calculated by combining the all-LSP classifications for each of the three study 
reaches into one classified map and comparing this to the whole validation dataset.   
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advanced learners (NB, RF, and SVM) were significantly different from (and superior to) 

the distance-based methods at the level of P < 0.001 (two-tailed), there was no significant 

difference (two-tailed P < 0.05) between the distance-based learners, nor was there any 

significant difference between the more advanced learners. Taken together with the 

previously noted differences in classification accuracy, these results indicate both that the 

more advanced learners are better at dealing with complex classifications and that further 

increases in classification accuracy are more dependent on the quality of input data than 

the choice of learner. 

Comparing the full set of predicted Terrace/Floodplain surfaces to the field 

mapped Terrace/Floodplain units (Table 7), all learners over-predicted total 

Terrace/Floodplain extent, but there were still notable differences in their classifications. 

Learner Producer’s Accuracy User’s Accuracy 

Mahalanobis Distance 0.49 0.77 

Winner-Takes-All 0.70 0.57 

Random Forest 0.80 0.55 

Normal Bayes 0.57 0.70 

Support Vector Machine 0.85 0.56 

Table 7: Producer’s accuracy and user’s accuracy of the Terrace/Floodplain class when 
compared to the full field-mapped validation dataset. The highest producer’s and user’s 
accuracies are in bold. 

Method SVM 
v MD 

SVM 
v RF 

SVM 
v NB 

SVM v 
WTA 

MD 
v RF 

MD v 
NB 

MD 
v 

WTA 

RF v 
NB 

RF v 
WTA 

NB v 
WTA 

Z-Score 2.35 1.03 1.94 2.17 -2.95 -5.34 -0.68 -0.91 2.93 4.56 

Table 6: Z-scores from all McNemar tests with values in bold denoting significant (P < 
0.05) differences between the compared classifications. Positive values indicate that the 
first named classifier was more accurate. 
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Although the learners with the highest producer’s accuracy, SVM and RF, also had the 

lowest user’s accuracy, examining the relative gains and losses in these two accuracies 

between the different learners indicates that their high producer’s accuracy is not 

completely a function of generally overpredicting Terrace/Floodplain surfaces. SVM 

correctly predicted an additional 0.05 of Terrace/Floodplain over RF at the cost of just 

0.01 in user’s accuracy. The difference is even greater for WTA, which had a user’s 

accuracy 0.02 higher than SVM but a producer’s accuracy 0.15 lower. The more 

conservative predictions of MD and NB essentially traded 0.07 between user’s and 

producer’s accuracy, respectively. The differences in how the learners delineate 

Terrace/Floodplain surfaces is illustrated in Figure 10, showing both young and old 

terraces just downstream of the confluence between the Little Buffalo and Buffalo 

Rivers. MD and NB (A and D) mostly or entirely miss the older terrace on the west side, 

while also considerably underpredicting the floodplains closer to river level. RF and 

SVM (C and E) come very close to predicting the whole terrace surface on the west at the 

cost of overpredicting floodplains and spurious terraces in the southwest quadrant. WTA 

partially predicts the western terrace, but fails to predict the full floodplain surface  

Qualitative Evaluation 

 A qualitative evaluation of each learner, made by visual examination of their final 

classifications, provides information about how these techniques capture the semantic 

model of landform classes that may not be fully represented by normal statistical 

measures. Illustrated in Figure 11 are some of the typical differences between the maps 

each learner produces. Here MD (A) vastly overpredicts Convergent Hillslope and 

classifies Divergent Hillslope as Planar Hillslope. WTA (B) is more accurate in the 
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higher elevation portions of the meander bend to the southeast, yet still misclassifies the 

lowest hillslope tier as almost entirely Convergent Hillslope. RF (C), NB (D), and SVM 

(E) all perform relatively similarly; however, RF best captures the Divergent Hillslope 

class. The general pattern scene here of MD vastly overpredicting some classes, WTA 

and NB representing most classes in a fragmented manner, and RF and SVM each 

coming the closest to showing both accurate and consistent classifications is common 

across the study area.   
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Figure 10: A comparison of the Terrace/Floodplain areas predicted by each machine 
learning method. Field-mapped terraces are outlined in red. The location shown is 
downstream of the confluence of the Little Buffalo and Buffalo Rivers. Classifications 
shown are: (A) Mahalanobis Distance (B) Winner-Takes-All, (C) Random Forest (D) 
Normal Bayes (E) Support Vector Machine 
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Figure 11: A qualitative comparison of how different machine learning techniques 
defined landform classes. Shown are: (A) Mahalanobis Distance (B) Winner-Takes-All 
(C) Random Forest (D) Normal Bayes (E) Support Vector Machine 
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Sources of Error 

 There are several potential sources of error in this research. First, since the study 

area was divided into three reaches to account for broad differences in terrain 

morphology, errors in the choice of these boundaries could increase the variance and 

overlap of landform classes. The terrace and floodplain polygons used for validation were 

interpolated from a limited number of GPS points using outdated Digital Raster Graphic 

(DRG) elevation data that has far lower vertical and horizontal resolution and far higher 

vertical error than the LiDAR dataset used to predict terraces. The USGS and AGS maps 

were based upon ~6m (20 ft) and ~12 m (40 ft), respectively, with vertical errors of up to 

12 m, compared to vertical resolution of 0.01 m and error of 0.041-0.073 m (2009 

AR_BuffaloNP - Central Portion, 2014, 2010-2011 AR_BuffaloNP - East and West 

Portions, 2014; Keen-Zebert et al., 2017). Finally, the quality of the training sites 

selected is potentially one of the greatest sources of error, as is generally true of any 

supervised classification (Campbell and Wynne, 2011; Lillesand et al., 2015). Any 

inconsistencies or mistakes in the selection of training sites will introduce error in the 

model produced by the machine learning algorithm and decrease subsequent classifier 

accuracy (Bishop, 2006; Kelleher et al., 2015).  

Conclusions and Recommendations 

 This research has explored how advanced supervised machine learning methods 

and land surface parameters derived from high-resolution elevation data can be used to 

classify general and specific landforms in a complex setting. Specific questions were (1) 

whether regional land surface parameters could improve classification accuracy by 

providing more information about the relative topographic and hydrologic position and 
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(2) whether machine learning algorithms with different inductive biases would produce 

results that are significantly different. 

 The results presented here show that the addition of regional land surface 

parameters resulted in a large and significant increase in classification accuracy over 

using local LSPs only; furthermore, not only did the accuracy improve for all classifiers 

across all reaches, the addition of regional LSPs was crucial in achieving acceptable 

classification accuracy, particularly for the three types of hillslopes, which otherwise 

were difficult to distinguish. Using a kappa statistic of 0.8 or higher as the definition of 

acceptable accuracy, only a single local LSP-only classification—NB used on the Upper 

Buffalo reach—exceeded the threshold for acceptability. In contrast, the addition of 

regional LSPs resulted in 12 of the 15 classifications achieving acceptable accuracy. 

Regional LSPs increased Kappa statistic scores by at least 0.064 and up to 0.317, with a 

mean increase of 0.162.  

Three observations can be made about this increase in classification accuracy. 

First, it can be interpreted that the regional LSPs allowed the learners to induce better 

models of these landforms by adding more information about geomorphic processes. For 

example, while the training samples for the principle hillslope types (convergent, 

divergent, planar) were created by manual interpretation of their form, the semantic 

models for these hillslope types were based upon how they fit into the flows of mass and 

energy in the basin. Using only local (form-based) LSPs as descriptive features, the 

learners had limited success producing models which corresponded to the semantic 

models used to define the original classes. With the addition of regional LSPs, the models 

now had information about position relative to the principle channel network (VDTCN), 
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the accumulation of soil moisture (SWI), and the flow of terrain (TO). The subsequent 

increase in classification accuracy, then, may reflect the models better capturing the 

relationship between form and process that is at the center of geomorphology and 

geomorphometry. Second, this study shows that spatial context can be successfully used 

in supervised classification even when that classification is done on a per-pixel basis. 

Despite the fact that each pixel was classified independently of its neighbors and without 

reference to its actual spatial position, information about relative position still produced 

large gains in accuracy. Finally, the use of regional LSPs did not depend upon 

assumptions of normality, knowledge of the underlying distribution of the data, or trial-

and-error experimentation with parameter or threshold values. The creation of the 

training samples themselves, which can be done by a user with little or no knowledge of 

how machine learning works, inherently sets the parameters for each class: With 

sufficient training data, the learner itself will build a model from the source data without 

the need for further human intervention (Kelleher et al., 2015; Shalev-Shwartz and Ben-

David, 2014). 

Looking to the validation of the Terrace/Floodplain class alone against the full 

dataset of field-mapped terraces and floodplains, these methods showed more limited 

success, as is reasonable to expect given the general difficulty of classifying specific 

landforms. The accuracies achieved by the learners tested in this research compare 

favorably to other methods employed. For instance, three of the five learners exceeded 

the 69% producer accuracy for Terrace/Floodplain achieved by (van Asselen and 

Seijmonsbergen, 2006). While the mean user accuracy was lower than that of the TerEx 

toolbox as used by Hopkins & Snyder (2016), this result disguises the large differences in 
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site-to-site accuracy seen in the TerEx results. Overall, the methods used in this study are 

not capable of producing an adequate finished terrace map by themselves, yet there is still 

potential to increase their accuracy. In particular, many of the areas misclassified as 

terraces were at the transition between the Everton and Boone Formations along the 

northern tributaries to the Buffalo which, unlike the southern tributaries, are mostly not 

large enough to have floodplain/terrace development. This suggests that 

Terrace/Floodplain classification accuracy may be increased either by the inclusion of 

more data about lithology or by expanding the number of classes to encompass landforms 

along these streams.   

 Comparing learners with distinct inductive biases, the results of this research 

show that there can be a significant difference in performance, indicating the value of 

considering multiple types of learners when approaching any given project. The more 

advanced, non-distance based learners outperformed the distance based methods by a 

considerable amount, ranging from Kappa statistic of 0.056 to 0.129 in the all-LSP 

condition, with the difference being significant at the level of P < 0.001. The sole 

exception to this was the result for MD in the Lower Buffalo reach, which had a kappa 

value that not only exceeded the other classifiers for that reach, but was, in fact, the 

highest for all classifiers across all reaches; however, given the uneven and generally 

mediocre performance of the MD technique, it is possible that this was mostly the result 

of chance.  

On the other hand, the results of this research show that, in this instance, the 

addition of more data in the form of regional LSPs was more important than differences 

caused by the choice of inductive bias. First, absent the additional LSP data, the greater 
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performance of the more advanced methods was not enough to produce an accurate 

classification, with one exception noted above. Second, the mean increase in accuracy 

from adding regional LSPs, 0.162, was greater than the 0.128 difference between the best 

and worst performing classifiers. Finally, there were no statistically significant 

differences in performance between the more advanced classifiers, which had almost 

identical accuracies when summed for the whole study area. Taken together, these results 

indicate that, at least in this situation, classification accuracy is more limited by the types 

and amount of data available than by the choice of inductive bias. The nearly equal 

performance between the top learners is not necessarily unusual in machine learning: as 

shown conceptually in Figure 12, learners may produce characteristically different 

decision boundaries, yet result in the same class separations. This also reinforces the 

general principle that “more data beats a cleverer algorithm” (Domingos, 2012). So, 

while the results of this research do support the idea that more advanced machine 

learning methods can produce superior classifications relative to some of the more 

Figure 12: A schematic illustration of different decision boundaries created by different 
learners in a hypothetical separation of positive and negative examples of a given class. 
While each boundary has a shape characteristic to the inductive bias of the learner (e.g. 
the Decision Tree boundary is a stepped line with right-angles while the SVM boundary 
is a curved line), they all separate the positive and negative examples in the same way. 
From Domingos (2012). 
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commonly used distance-based methods, it also reinforces the crucial role of input data, 

its quantity and quality, in a successful classification. 

 There are four major conclusions from this research that can potentially applied to 

future work. First, given the success of using regional LSPs in landform classification for 

this project, it is plausible that additional regional LSPs could further improve 

classification accuracy, especially for the challenging specific landform classes like 

terraces. Examples of LSPs that could improve classification of terraces in particular 

include Overland Flow Distance to Channel Network, which could be manipulated to 

calculate flow distance to a stream large enough to produce a floodplain, and position 

relative to the cut-bank and point-bar sides of a meander bend, which is useful in 

situations wherein most terraces are unpaired as is the case for the Buffalo River. Second, 

the use of image segmentation techniques, often called GeOBIA, can provide additional 

information about spatial context. Third, while no significant difference was found here 

between the higher performing classifiers, there are nonetheless ways to use these 

learners in a more sophisticated way. For instance, replacing NB with a Bayesian learner 

that accounts for conditional dependencies in the predictor variables has been shown to 

increase classification accuracy for geologic mapping (Porwal et al., 2006). On the other 

hand, the smoothness of the class boundaries created by SVMs is particularly attractive in 

how it honors the high degree of spatial-autocorrelation of landforms by producing 

contiguous landform areas without the need for further filtering or smoothing; therefore, 

optimization of SVMs for geomorphic mapping may be worth dealing with the admitted 

complexity of their use (Mountrakis et al., 2011). Finally, there is considerable room for 

the development of new software or software modules to capitalize upon the inherent 
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strengths of machine learning (Gessler et al., 2009). Utilities could help guide users 

through the process of creating training data, streamlining the collaboration of experts in 

geomorphology and machine learning. On the other side of the workflow, tools could be 

created to allow users to quickly refine the raw outputs of machine learners using such 

things as region growing algorithms and the ability to accept, reject, or modify landform 

boundaries. By continuing to explore more ways to describe the landscape through LSPs 

and capitalizing on the pattern recognition abilities of machine learners to harness expert 

knowledge, DGM may eventually make geomorphic mapping both faster and more 

accurate than manual methods.
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Appendix 
 

Upper Buffalo 

MD Local LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 927 0 0 7 0 99.3 
Divergent 
Hillslope 

36 1775 6 216 39 85.7 

Convergent 
Hillslope 

42 534 1496 1324 42 43.5 

Planar Hillslope 88 683 25 1450 77 62.4 

Planar Upland 2 7 0 0 3854 99.8 
Producer's 
Accuracy 

84.7 59.2 98.0 48.4 96.1   

Overall Accuracy 75.2% 
Upper Buffalo  

MD All LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 980 0 0 7 0 99.3 

Divergent 
Hillslope 

6 2141 0 91 2 95.6 

Convergent 
Hillslope 

78 457 1517 1277 96 44.3 

Planar Hillslope 31 385 10 1622 44 77.5 

Planar Upland 0 16 0 0 3870 99.6 
Producer's 
Accuracy 

89.5 71.4 99.3 54.1 96.5   

Overall Accuracy 80.2% 
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Upper Buffalo 

WTA Local LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 1071 161 8 29 0 84.4 
Divergent Hillslope 0 2112 3 452 57 80.5 
Convergent 
Hillslope 

12 62 1452 630 0 67.3 

Planar Hillslope 12 591 64 1776 27 71.9 
Planar Upland 0 73 0 110 3928 95.5 
Producer's Accuracy 97.8 70.4 95.1 59.3 97.9   
Overall Accuracy 81.7% 
Upper Buffalo 

WTA All LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 1063 24 25 35 19 91.2 
Divergent Hillslope 13 2572 1 322 43 87.2 
Convergent 
Hillslope 

12 44 1466 432 0 75.0 

Planar Hillslope 7 324 35 2188 27 84.8 
Planar Upland 0 35 0 20 3923 98.6 
Producer's Accuracy 97.1 85.8 96.0 73.0 97.8   
Overall Accuracy 88.8% 
Upper Buffalo  

RF Local LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 1082 30 32 34 0 91.9 
Divergent Hillslope 0 2140 45 772 44 71.3 
Convergent 
Hillslope 

0 3 1214 298 0 80.1 

Planar Hillslope 13 719 234 1886 111 63.7 
Planar Upland 0 107 2 7 3857 97.1 
Producer's Accuracy 98.8 71.4 79.5 62.9 96.1   
Overall Accuracy 80.6% 
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Upper Buffalo 

RF All LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 1055 82 28 41 0 87.5 

Divergent Hillslope 5 2440 13 297 87 85.9 

Convergent 
Hillslope 

2 2 1443 210 0 87.1 

Planar Hillslope 12 324 43 2440 30 85.6 

Planar Upland 21 151 0 9 3895 95.6 

Producer's Accuracy 96.3 81.4 94.5 81.4 97.1   
Overall Accuracy 89.3% 

Upper Buffalo 

Bayes Local LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 1026 2 0 13 0 98.6 

Divergent Hillslope 23 2584 14 723 65 75.8 

Convergent 
Hillslope 

11 13 1323 305 0 80.1 

Planar Hillslope 33 317 190 1948 30 77.4 

Planar Upland 2 83 0 8 3917 97.7 

Producer's Accuracy 93.7 86.2 86.6 65.0 97.6   
Overall Accuracy 85.5% 
Upper Buffalo  

Bayes All LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 1039 0 2 16 0 98.3 

Divergent Hillslope 7 2406 1 177 6 92.6 

Convergent 
Hillslope 

28 20 1459 419 10 75.4 

Planar Hillslope 21 481 65 2384 63 79.1 

Planar Upland 0 92 0 1 3933 97.7 

Producer's Accuracy 94.9 80.2 95.5 79.5 98.0   
Overall Accuracy 88.8% 
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Upper Buffalo 

SVM Local LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 1084 46 38 34 0 90.2 

Divergent Hillslope 1 2347 80 803 59 71.3 

Convergent 
Hillslope 

0 0 50 0 0 100.0 

Planar Hillslope 10 517 1359 2094 0 52.6 

Planar Upland 0 89 0 66 3953 96.2 

Producer's Accuracy 99.0 78.3 3.3 69.9 98.5   
Overall Accuracy 75.4% 

Upper Buffalo 

SVM All LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 1083 52 54 34 0 88.6 

Divergent Hillslope 0 2495 4 161 6 93.6 

Convergent 
Hillslope 

0 0 1280 110 0 92.1 

Planar Hillslope 12 315 189 2594 32 82.6 

Planar Upland 0 137 0 98 3974 94.4 

Producer's Accuracy 98.9 83.2 83.8 86.6 99.1   
Overall Accuracy 90.5% 

 Middle Buffalo  

MD Local LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 1865 0 0 0 0 100.0 

Divergent Hillslope 603 3478 11 159 65 80.6 

Convergent 
Hillslope 

1 42 1668 709 0 68.9 

Planar Hillslope 258 2871 727 6372 106 61.7 

Planar Upland 290 113 0 95 3394 87.2 

Producer's Accuracy 61.8 53.5 69.3 86.9 95.2 
 

Overall Accuracy 73.5% 
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Middle Buffalo 

MD All LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 2265 5 0 0 0 99.8 

Divergent Hillslope 81 4419 0 3 0 98.1 

Convergent 
Hillslope 

1 15 1997 395 0 82.9 

Planar Hillslope 537 1931 409 6937 72 70.2 

Planar Upland 133 134 0 0 3493 92.9 

Producer's Accuracy 75.1 67.9 83.0 94.6 98.0 
 

Overall Accuracy 83.7% 

Middle Buffalo 

WTA Local LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 2594 198 8 0 354 82.2 

Divergent Hillslope 325 4866 41 670 813 72.5 

Convergent 
Hillslope 

0 34 1530 521 0 73.4 

Planar Hillslope 92 1242 827 6144 1 74.0 

Planar Upland 6 164 0 0 2397 93.4 

Producer's Accuracy 86.0 74.8 63.6 83.8 67.2 
 

Overall Accuracy 76.8% 

 Middle Buffalo  

WTA All LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 2379 12 88 0 574 77.9 

Divergent Hillslope 248 5360 7 236 243 88.0 

Convergent 
Hillslope 

0 5 1636 195 0 89.1 

Planar Hillslope 390 976 674 6904 12 77.1 

Planar Upland 0 151 1 0 2736 94.7 

Producer's Accuracy 78.9 82.4 68.0 94.1 76.7 
 

Overall Accuracy 83.3% 
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Middle Buffalo 

RF Local LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 2744 152 35 4 280 85.3 

Divergent Hillslope 245 5329 135 1420 40 74.3 

Convergent 
Hillslope 

9 1 913 149 0 85.2 

Planar Hillslope 19 721 1294 5638 5 73.4 

Planar Upland 0 301 29 124 3240 87.7 

Producer's Accuracy 91.0 81.9 37.9 76.9 90.9 
 

Overall Accuracy 78.3% 
Middle Buffalo 

RF All LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 2931 188 8 14 188 88.0 

Divergent Hillslope 49 5925 22 236 53 94.3 

Convergent 
Hillslope 

0 2 1346 82 0 94.1 

Planar Hillslope 37 274 1001 6876 0 84.0 

Planar Upland 0 115 29 127 3324 92.5 

Producer's Accuracy 97.1 91.1 55.9 93.7 93.2 
 

Overall Accuracy 89.4% 
 Middle Buffalo  

Bayes Local LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 2496 95 0 0 0 96.3 

Divergent Hillslope 414 5242 79 1378 119 72.5 

Convergent 
Hillslope 

1 7 1339 220 0 85.4 

Planar Hillslope 34 974 988 5632 4 73.8 

Planar Upland 72 186 0 105 3442 90.5 

Producer's Accuracy 82.7 80.6 55.7 76.8 96.5 
 

Overall Accuracy 79.5% 
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Middle Buffalo 

Bayes All LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 2556 69 0 0 1 97.3 

Divergent Hillslope 222 5429 0 206 31 92.2 

Convergent 
Hillslope 

1 6 1819 115 0 93.7 

Planar Hillslope 164 804 587 6927 17 81.5 

Planar Upland 74 196 0 87 3516 90.8 

Producer's Accuracy 84.7 83.5 75.6 94.4 98.6 
 

Overall Accuracy 88.7% 

Middle Buffalo 

SVM Local LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 2552 160 89 0 0 91.1 

Divergent Hillslope 450 4683 453 682 37 74.3 

Convergent 
Hillslope 

0 0 435 63 0 87.3 

Planar Hillslope 0 1082 1386 6461 0 72.4 

Planar Upland 15 579 43 129 3528 82.2 

Producer's Accuracy 84.6 72.0 18.1 88.1 99.0 
 

Overall Accuracy 77.4% 

 Middle Buffalo  

SVM All LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 2786 64 23 0 15 96.5 

Divergent Hillslope 222 5516 14 140 0 93.6 

Convergent 
Hillslope 

0 0 1199 38 0 96.9 

Planar Hillslope 9 646 1153 7028 2 79.5 

Planar Upland 0 278 17 129 3548 89.3 

Producer's Accuracy 92.3 84.8 49.8 95.8 99.5 
 

Overall Accuracy 88.0% 
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Lower Buffalo 

MD Local LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 896 0 0 0 0 100.0 

Divergent Hillslope 237 898 2 388 2 58.8 

Convergent 
Hillslope 

62 157 1732 1427 0 51.3 

Planar Hillslope 0 325 58 1221 0 76.1 

Planar Upland 92 12 0 16 919 88.5 

Producer's Accuracy 69.6 64.5 96.7 40.0 99.8 
 

Overall Accuracy 67.1% 
Lower Buffalo 

MD All LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 984 0 0 0 0 100.0 

Divergent Hillslope 56 1284 0 106 0 88.8 

Convergent 
Hillslope 

117 6 1778 89 0 89.3 

Planar Hillslope 43 98 14 2826 0 94.8 

Planar Upland 87 4 0 31 921 88.3 

Producer's Accuracy 76.5 92.2 99.2 92.6 100.0 
 

Overall Accuracy 92.3% 
 Lower Buffalo  

WTA Local LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 1106 0 0 9 0 99.2 

Divergent Hillslope 149 880 12 300 104 60.9 

Convergent 
Hillslope 

32 92 1496 1238 0 52.3 

Planar Hillslope 0 198 252 1238 0 73.3 

Planar Upland 0 222 32 267 817 61.1 

Producer's Accuracy 85.9 63.2 83.5 40.6 88.7 
 

Overall Accuracy 65.8% 
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Lower Buffalo 

WTA All LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 1117 0 0 0 0 100.0 

Divergent Hillslope 92 1294 8 229 15 79.0 

Convergent 
Hillslope 

41 23 1658 125 0 89.8 

Planar Hillslope 6 70 126 2640 0 92.9 

Planar Upland 31 5 0 58 906 90.6 

Producer's Accuracy 86.8 93.0 92.5 86.5 98.4 
 

Overall Accuracy 90.2% 
Lower Buffalo 

RF Local LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 1135 0 3 0 9 99.0 

Divergent Hillslope 87 1217 29 764 0 58.0 

Convergent 
Hillslope 

38 20 1378 464 0 72.5 

Planar Hillslope 0 147 382 1797 0 77.3 

Planar Upland 27 8 0 27 912 93.6 

Producer's Accuracy 88.2 87.4 76.9 58.9 99.0 
 

Overall Accuracy 76.3% 
 Lower Buffalo  

RF All LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 1198 0 3 12 5 98.4 

Divergent Hillslope 45 1345 0 553 0 69.2 

Convergent 
Hillslope 

5 2 1736 76 0 95.4 

Planar Hillslope 9 45 53 2405 0 95.7 

Planar Upland 30 0 0 6 916 96.2 

Producer's Accuracy 93.1 96.6 96.9 78.8 99.5 
 

Overall Accuracy 90.0% 
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Lower Buffalo 

Bayes Local LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 998 0 0 0 0 100.0 

Divergent Hillslope 170 1118 4 794 1 53.6 

Convergent 
Hillslope 

26 6 1244 88 0 91.2 

Planar Hillslope 0 232 544 2124 0 73.2 

Planar Upland 93 36 0 46 920 84.0 

Producer's Accuracy 77.5 80.3 69.4 69.6 99.9 
 

Overall Accuracy 75.8% 
Lower Buffalo 

Bayes All LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 1038 0 0 0 0 100.0 

Divergent Hillslope 54 1346 0 344 0 77.2 

Convergent 
Hillslope 

51 1 1755 10 0 96.6 

Planar Hillslope 49 39 37 2638 0 95.5 

Planar Upland 95 6 0 60 921 85.1 

Producer's Accuracy 80.7 96.7 97.9 86.4 100.0 
 

Overall Accuracy 91.2% 
 Lower Buffalo  

SVM Local LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 1125 0 11 0 0 99.0 

Divergent Hillslope 111 1134 205 819 8 49.8 

Convergent 
Hillslope 

0 12 430 541 0 43.7 

Planar Hillslope 0 230 1142 1692 0 55.2 

Planar Upland 51 16 4 0 913 92.8 

Producer's Accuracy 87.4 81.5 24.0 55.4 99.1 
 

Overall Accuracy 62.7% 
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Lower Buffalo 

SVM All LSP 

Actual Class 
 

Predicted Class Terrace/Floodplain Divergent 
Hillslope 

Convergent 
Hillslope 

Planar 
Hillslope 

Planar 
Upland 

User's 
Accuracy 

Terrace/Floodplain 1162 0 15 19 1 97.1 

Divergent Hillslope 61 1342 0 451 0 72.4 

Convergent 
Hillslope 

0 0 1690 1 0 99.9 

Planar Hillslope 0 50 80 2558 0 95.2 

Planar Upland 64 0 7 23 920 90.7 

Producer's Accuracy 90.3 96.4 94.3 83.8 99.9 
 

Overall Accuracy 90.9% 

 


	(1) Direct comparison of different machine learners in geomorphic classification has been limited, especially for more advanced learning techniques. Given the same training and input data, will learners with different inductive biases produce quantita...
	(2) Can the incorporation of spatial-contextual information, in the form of regional Land Surface Parameters, significantly improve landform classification accuracy?
	Similarity-based learners include some of the oldest and simplest algorithms, such as Nearest Neighbor, and are still among the most popular supervised classification methods currently employed in remote sensing. Similarity learners all depend upon c...


