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Abstract

The single-index varying coefficient model has received much attention due to its flex-

ibility and interpretability in recent years. This dissertation is mainly concerned with the

rank-based estimation and variable selection in single-index varying coefficient models.

In the first part of this dissertation, we consider a rank-based estimation of the index

parameter and the coefficient functions for single-index varying coefficient model. The con-

sistency and asymptotic normality of the proposed estimators are established. An extensive

Monte-Carlo simulation study demonstrates the robustness and the efficiency of the pro-

posed estimators compared to the least squares estimators. The rank-based approach was

motivated by a problem from fisheries ecology where it is used to provide accurate estimates

of interspecies dependence along an environmental gradient. We use a real data example to

show that the classical approach is highly affected by outliers in response space but not the

rank-based method we proposed in this dissertation.

The second part of this dissertation is based on variable selection method for single-index

varying coefficient model. We develop a LASSO-type rank-based variable selection procedure

to select and estimate coefficient functions. A Monte-Carlo simulation study shows that the

proposed method is highly robust and efficient compared to least squares type approaches.

Our method can be easily applied to single-index and varying coefficient models since they

are special cases of single-index varying coefficient model.
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Chapter 1

Introduction

1.1 Background

The single-index varying coefficient model (SIVCM) is studied by many researchers due

to its flexibility and interpretability. The model has been applied for addressing problems in

areas such as finance, ecology, and public health among others. One important feature that

makes the SIVCM attractive is the ability to overcome the “curse of dimensionality” often

encountered in nonparametric modeling of multivariate data. Suppose yi is the response

variable, Xi “ px0i, . . . , xpiqT with x0i “ 1, and Z “ pz1i, . . . , zqiq
T are predictor variables.

The single-index varying coefficient model (SIVCM) has the following form

yi “ tGpθ
T
0Ziqu

TXi ` εi, i “ 1, . . . , n (1.1)

where θ0 is a q´vector of unknown regression parameters representing the single-index di-

rection; Gp¨q “ pg0p¨q, . . . , gpp¨qqT is a p´ vector of unknown coefficient functions; and εi are

random errors with finite Fisher information. For model identifiability, it is assumed that

}θ0} “ 1 and the first component of θ0 is positive. Model (1.1) includes a class of important

semiparametric models known as single-index models (SIM) by setting p “ 0. When q “ 1

and θ0 “ 1, model (1.1) is reduced to varying coefficient models (VCM) (Trevor Hastie

(1993)), which has been widely used in application. The historical estimation approach for

model (1.1) is based on least squares (LS) methods.

For a general regression model: yi “ fpXi,θ0q`εi, i “ 1, . . . , n, LS procedure minimizes

the sum of square errors:
řn
i“1pyi ´ fpXi,θqq

2. Such estimators are computationally simple

1



and possess general optimality properties. However, they are known to be sensitive to out-

liers, model contaminations, and/or heavy-tail error distributions. Some approaches has been

take to mitigate the effect of these abnormalities. In 1960s, Huber (1964) proposed so-called

M-estimators by minimizing ρ
`yi ´ fpxi,θq

pσi

˘

, where ρp¨q is a symmetric function and pσi is an

estimate of the standard deviation of the errors εi. One type of M-estimator that has been

widely used is least absolute deviation (L1) estimator, which minimizes
řn
i“1 |yi ´ fpXi,θq|.

When Huber and others were developing the theory of M estimators, rank-based (R) estima-

tion methods were not considered to be as generalizable as M estimators. They were used

for simple problems such as location comparisons for two-sample problems. Later Jaeckel

(1972), Hettmansperger & McKean (1998) and others showed that R estimators, some times

called Wilcoxon estimators can be obtained by minimizing
řn
i“1 a

´

Rpeipθqq
¯

eipθq, where

Rpeipθqq is the rank of eipθq “ yi ´ fpXi,θq and ap¨q is some score function. The R esti-

mator can be applied in any general linear model, and it is well known that R estimator

outperforms LS estimator when the data deviate from normality and/or contain outliers.

However, the original M estimators and R estimators can be affected by outliers in X space

in regression models. A generalized M-estimators (Krasker & Welsch (1982)) and a weight

Wilcoxon procedure (Sievers (1983)) were later developed by introducing weights to take

care of the leverage points.

1.2 Motivation

Our consideration of the model (1.1) and its robust estimation were primarily motivated

by an ecological problem that involves high-dimensional environmental predictors as well as

interacting groundfish species. This is a part of a large project where we consider a subset of

fisheries data obtained from the NOAA Marine Ecology Stock Assessment (MESA) Program

paired with environmental data from the NOAA National Data Buoy Center (NDBC) to un-

derstand interactions between groundfish predator species in the Gulf of Alaska. Much of

2



the use of the SIVCM in ecology has focused on predator-prey models (Fan et al., 2003; Xia

et al., 2007). Another reasonable application of the SICVM is to better quantify interspecific

competition in a complex food web. The Gulf of Alaska food web is of particular interest

to fisheries management, as several commercially important species of fish are found there.

Accurate management of these fisheries is aided by the understanding of predator-prey in-

teractions and competition of food resources (Gaichas et al., 2010). Since 1979, the MESA

Program has conducted annual longline surveys on seven groundfish species along the coast

of Alaska (AFSC, 2015). For each species, a catch per unit effort (CPUE) is calculated based

on a catch rate standardized for size of the geographic area. These locations (“stations”) are

each sampled once a year and are repeated each year from May to October. We focused on

two groupings of stations: six stations located near Kodiak Island were aggregated to create

a median CPUE for the 20 by 40 latitude-longitude block, and five stations near the Aleu-

tians were treated in the same manner. The NDBC manages stationary and floating buoys

deployed by various public organizations and downloads measurements from these buoys for

public access (NOAA, 2015). The ones we focus on here are maintained by the NOAA and

collect environmental measures including wind, wave, pressure, and temperature variables.

These buoys sample every six or twelve hours, so in order to match the environmental data

with MESA catch data a summer coefficient of variation was calculated for each variable:

cv “ σ{µ, where µ is the variable’s mean taken from values in May to October and σ is its

standard deviation. In this analysis we used data from two anchored NOMAD buoy located

off the coast of Alaska, one near the Kodiak Island MESA stations and the other near the

Aleutian Island stations. The MESA data was paired with environmental data from the

NOMAD buoys, providing a yearly median CPUE for each of seven groundfish and yearly

summer coefficients of variation for each environmental variable. Research on the stomach

contents of Pacific halibut (Best & St-Pierre, 1986; Yang et al., 2006; Gaichas et al., 2010)

reveals that it is a top predator in the Gulf of Alaska and may prey opportunistically on

3



sablefish and Pacific cod while all three species share a common preferred prey - walleye

pollock (Moukhametov et al., 2008; Yang et al., 2006).

As a simple preliminary analysis, we performed principal components analysis on seven

environmental variables from NDBC and retained the first PC as an indicator of environ-

mental condition. We then split the data into two at the median of the first PC indicating

two environmental regimes. This analysis is rather naïve but sufficient for an initial descrip-

tive discussion of the data. We will re-analyze the data more rigorously later. CPUE values

were log-transformed and scaled as is common in practice (Phillips et al., 2014). We identify

two outliers in the CPUE (log-transformed) of Pacific halibut based on Figure 2.8 in Section

2.3.2.

For now, we simply plotted CPUE values of Pacific halibut versus CPUE values of

Pacific cod and sablefish, respectively. We also superimposed these plots with loess fits to

detect any nonlinearities. These are given in the top panels of Figure 1.1. It is evident

that the relationships between Pacific cod and sablefish with Pacific halibut are nonlinear

and dependent on the environmental regimes. This process was repeated after removing

two outliers, corresponding to unusually high Pacific halibut catch values, identified using

residual diagnostics on the basis of our proposed methodology. The plots are displayed in

the bottom panels of Figure 1.1.

It appears that sablefish and Pacific cod tend to prefer different environmental regimes

and their relationship with Pacific halibut depends on the environment. In both cases, the

first PC captures only about 40% of the environmental variability. So, a varying coefficient

model relating Pacific halibut to Pacific cod and sablefish using just the first PC would not

be sufficient. Building a varying coefficient model using all the environmental variables is

also not realistic as it requires a seven dimensional smoother. This suggests that the model

is

yi “ g0pθ
T
0Zq ` g1pθ

T
0Zqx1i ` g2pθ

T
0Zqx2i ` εi (1.2)
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Figure 1.1: Plots of groudfish categorized by environmental regime. Left: Pacific halibut vs
Pacific cod. Right: Pacific halibut vs sablefish. Top: Original Data. Bottom: Two outliers
removed. Filled circle: first PC < median; Open triangle: first PC > median

where yi is the CPUE (log-transformed) of Pacific halibut for i “ 1, 2, . . . , 52; x1i and

x2i are the CPUE of Pacific cod and the CPUE of sablefish, respectively. The matrix

Z “ pz1, z2, z3, z4, z5, z6, z7q
T contains the summer coefficient of variation of seven buoy envi-

ronmental variables supposed to have an impact on fish population numbers: wind direction

(z1), wind speed(z2), significant wave height (z3), dominant wave period (z4), average wave

period(z5), sea level pressure (z6), and sea surface temperature (z7), respectively. Robust

fitting is required to mitigate the effect of the possible outlying points on our fit.

1.3 Contribution

In Chapter 2, we propose a general R estimation procedure that is robust and more

efficient alternative to the least squares method for fitting model (1.1) when dealing with

contaminated and heavy-tailed model error distributions, or when data contain outliers in

5



the response space. The development of R estimation procedure for model (1.1) is motivated

by an ecological problem described in Section 1.2. We show that for these data in Section

1.2 it is indeed the case that the classical approach is highly affected by the outliers but not

the robust method proposed in this dissertation. For computational purposes, we propose a

backfitting type algorithm by iterating between the coefficient functions through local linear

procedure and estimating θ0 by one-step R estimation. We demonstrated that the resulting

estimators are robust and asymptotically efficient compared to LS estimation when the data

contain outliers. The consistency and asymptotic normality of the proposed estimators are

established.

In Chapter 3, we propose a robust two-stage procedure to select coefficient functions

using group LASSO and estimate index parameters using general local rank estimation.

We showed that our procedure are highly efficient in both function selection and index

estimation compare to LS when the error distribution are not normal and performs as well

as LS under normal error distribution. The R estimation and variable selection method for

SIVCM we developed in this dissertation can be easily extended on SIM and VCM since

they are special cases of SIVCM. We also provided a Monte Carlo simulation study to show

our method outperforms LS for VCM when the error distribution are not normal.
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Chapter 2

General Local Rank Estimation for Single-index Varying Coefficient Models

2.1 Introduction

Suppose yi is the response variable, X “ px0i, . . . , xpiqT with x0i “ 1, and Z “

pz1i, . . . , zqiq
T are predictor variables. The single-index varying coefficient model (SIVCM)

is defined as

yi “ tGpθ
T
0Ziqu

TXi ` εi i “ 1, . . . , n (2.1)

where θ0 is a q´vector of unknown regression parameters representing the single-index di-

rection; Gp¨q “ pg0p¨q, . . . , gpp¨qqT is a p´ vector of unknown coefficient functions; and εi are

random errors with finite Fisher information. For model identifiability, it is assumed that

the }θ0} “ 1 and first component of θ0 is positive. Model (2.1) was first considered by

Xia & Li (1999) who proposed estimating θ0 via an L2-cross validation approach following

ideas of Härdle et al. (1993). They also established the
?
n-consistency and asymptotic nor-

mality of their proposed estimator under some mild conditions. Setting Z “ px1i, . . . , xpiqT

in model (2.1), Fan et al. (2003) proposed a computationally efficient estimation approach

based on a profile least squares (LS) local linear regression, from which they also discussed

how to select locally significant variables based on the t-statistic and the Akaike information

criterion. Motivated by the "remove-one-component" approach proposed in Yu & Ruppert

(2002), Xue & Pang (2013) provided the estimation of θ0 and the coefficient functions. In

an effort to construct a robust confidence region for θ0, Xue & Wang (2012) studied model

(2.1) using an empirical likelihood approach.
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However, all the estimation methods above are LS-type methods, which are known

to be sensitive to outliers, model contamination, and/or heavy-tail error distributions. To

mitigate the effect of these abnormalities, it is imperative to develop robust and efficient

estimation procedures. Yao et al. (2012) proposed a local modal estimation procedure for

nonparametric regression models using an EM algorithm. Their estimator was shown to be

more efficient compared to ordinary local polynomial estimators when dealing with outliers

in the response space and for heavy tailed model error distributions. They also showed that

their estimator is as asymptotically efficient as the local polynomial regression estimator

under the condition that there are no outliers or the errors are from the normal distribution.

The concept of using local modal estimation to get robust estimators has been extended to

semiparametric partial linear varying coefficient models, single-index models and SIVCMs by

Zhang et al. (2013), Liu et al. (2013) and Yang et al. (2014), respectively. Feng et al. (2012)

used the Wilcoxon rank-based method of Hettmansperger & McKean (2011) to produce a

robust estimator θ0 for the single-index model. Although their simulation study includes

categorical predictors, this is not justified theoretically, as their approach relies on taking

derivatives with respect to covariates. For varying coefficient models, Wang et al. (2009)

proposed a local rank estimation method which is based on the objective function of Jaeckel

(1972). Their approach was shown to have several advantages compared to the LS-type

approaches.

In this chapter, we propose a general rank-based (R) estimation procedure for model

(2.1). Our approach will include that of Wang et al. (2009) as a particular case. As in

Wang et al. (2009), the motivation behind considering the R estimation relies on the fact

that as for the LS approach, it has a simple geometric interpretability and it results in

robust and more efficient estimators compared to those obtained via many of the method of

moments type estimation approaches that include the LS and the least absolute deviation

(LAD) approaches as particular cases (Hettmansperger & McKean, 2011). For computing
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the regression estimators, we propose a backfitting type algorithm by iterating between

the coefficient functions through local linear procedure and estimating θ0 by a one-step R

estimation. The local linear estimation of gjp¨q, j “ 0, . . . , p, involves bandwidth selection.

This is done via a leave-one-out R cross-validation. We demonstrate that the resulting

estimators are robust and asymptotically efficient compared to LS estimators when the data

contain outliers.

The remainder of Chapter 2 is organized as follows: Section 2.2 presents the estimation

procedures for the parameter θ0 and the function Gp¨q “ pg0p¨q, . . . , gpp¨qqT . The computa-

tional algorithm for obtaining the rank-based estimators of θ0 and Gp¨q is also provided in

Section 2.2. In Section 2.3, an extensive Monte Carlo simulation study and an illustrative

real data example are presented to demonstrate the advantage of the proposed rank-based

estimation method. Section 2.4 discusses the asymptotic properties of the proposed estima-

tors. A brief conclusion is provided in Section 2.5. Proofs of some theoretical results are

given in Section 2.6.

2.2 General Local Rank Estimation

Suppose that tpXi, Zi, yiq, i “ 1, . . . , nu is a random sample from model (2.1). Define the

residuals as ηipθq “ yi ´
řp
k“0 gkpθ

TZiqxji “ yi ´ tGpθ
TZiqu

TXi, and consider the following

general rank objective function introduced by Jaeckel (1972)

Dnpθq “
1

n

n
ÿ

i“1

ϕ
´Rpηipθqq

n` 1

¯

ηipθq, (2.2)

where Rpηipθqq is the rank of ηipθq among η1pθq, . . . , ηnpθq, and ϕ is a general bounded

nondecreasing score function defined on p0, 1q. Since it was proposed, the objective function

given by equation (2.2) has captured a lot of attention, as its minimization results in a robust

and efficient estimator of θ0. Although, our interest is placed in the estimation of θ0, it is

9



worth pointing out that in the residuals defined above, both θ and gkp¨q, k “ 0, . . . , p, are

unknown. Thus Dnpθq is a function of two unknown parameters: the index parameter θ,

and the functional parameters gkp¨q. To this end, we first consider estimating gkp¨q based on

a local linear estimator (Fan & Gijbels, 1996). Under the smoothness assumption on gkp¨q

and applying the mean value theorem to gkptq, for t P A, one can approximate gkpθTZq as

gkpθ
TZiq « gkpθ

T zq ` g1kpθ
T zqθT pZi ´ zq for any z satisfying }Zi ´ z} Ñ 0. Let GpθT z0q “

pg0pθ
T zq, . . . , gppθ

T zqqT and G1pθT zq “ pg10pθ
T zq, . . . , g1ppθ

T z0qq
T . Denote a “ GpθT zq and

b “ G1pθT zq. Define ηipθ, a, bq as ηipθ, a, bq “ yi´X
T
i a´X

T
i bZ

T
i0θ, where Zi0 “ Zi´ z; then

minimizing Dnpθq in equation (2.2) will be equivalent to minimizing Lnpθ, a, bq defined by

Lnpθ, aj, bjq “
1

npn´ 1q

n
ÿ

j“1

n
ÿ

i“1

ϕ

ˆ

Rpηijpθ, aj, bjqq

n2 ` 1

˙

ηijpθ, aj, bjqwij, (2.3)

where the weight function wij is defined by wij “ Khpθ
TZijq{

řn
j“1Khpθ

TZijq, with Khp¨q “

Kp¨{hq, K a kernel function defined on the real line and h the corresponding bandwidth.

Remark 1. Note that for each fixed j, aj “ paj0, . . . , ajpqT and bj “ pbj0, . . . , bjpqT . Thus,

when minimizing Lnpθ, a, bq, one might face an over-parametrization problem. To overcome

this issue, an alternating estimation procedure can be used. That is, starting with a
?
n-

consistent estimator of θ0, say rθ, we can obtain ppaj,pbjq as ppaj,pbjq “ Argmin `npaj, bjq,

where

`npaj, bjq “
1

n

n
ÿ

i“1

ϕ

ˆ

Rpνipaj, bjqq

n` 1

˙

νipaj, bjq,

νipaj, bjq “ yi´paj´ bjrθ
T
Zijqxji. Once paj, bjq have been estimated, we then move to finding

pθn as pθn “ Argmin
θPΘ

Lnpθ,pa,pbq.

We provide a computational algorithm that will achieve this estimation procedure below:

10



2.2.1 Computational Algorithm

The outline of the algorithm pertaining to the estimation of θ0, gjp¨q and g1jp¨q is as

follows:

Step 0: (Initialization): Specify an initial value of θ0 with first component 1 or }θ0} “ 1,

and denote the initial estimate as rθ.

Step 1: Given rθ and for each fixed j, estimate gjp¨q and g1jp¨q by

Argmin
aj ,bj

1

n

n
ÿ

j“1

ϕ

ˆ

Rpνipaj, bjqq

n` 1

˙

νipaj, bjqwij

where νipaj, bjq “ yi ´X
T
i aj ´Xi

T bjZ
T
ij
rθ.

Step 2: Let paj and pbj be the estimates of aj and bj. Once paj and pbj are obtained in Step

1, estimate θ by

Argmin
θ

1

npn´ 1q

n
ÿ

i“1

n
ÿ

j“1

ϕ

ˆ

Rpeijpθqq

n2 ` 1

˙

eijpθqwij

where eijpθq “ pyi ´ paTj Xiq ´X
T
i
pbjZ

T
ijθ

Step 3: Repeat Step 1 and Step 2 until convergence.

Step 4: Once the final estimate of θ0, say pθn, is obtained from Step 3, use it to get the

final estimate of gjp¨q, j “ 0, . . . , p.

Remark 2. We used a sliced inverse regression (SIR) of Li (1991) to obtain the initial

estimate of θ0 as in Xia (2006).
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2.3 Simulation and Real Data Analysis

2.3.1 Simulation

To demonstrate the performance of the rank-based estimation approach, an extensive

simulation study for the estimation of the index θ0 and the coefficients gjp¨q was conducted.

We considered the following SIVCM defined as

yi “ 3 expt´pθT0Ziq
2
u ` 0.8tθT0Ziux1i ` 1.5 sinpπθT0Ziqx3i ` εi,

where, for i “ 1, . . . , n, Zi “ pz1i, z2i, z3i, z4iq
T are independent random vectors uniformly

distributed on r´1, 1sb4, Xi “ px1i, x2i, x3i, x4iqT with xli, l “ 1, . . . , 4, being independent

standard normal random variables, and θ0 “ pθ01, θ02, θ03, θ04qT “ p1{3, 2{3, 0, 2{3qT .

The score function ϕ that appears in the objective function (2.2) is taken to be the Wilcoxon

score function ϕpuq “
?

12pu´1{2q. Also, the kernel function K is chosen to be the Gaussian

kernel Kpuq “ p1{
?

2πq expp´u2{2q. From 200 replications, the bias, the standard deviation

(SD), and mean absolute deviations of the coefficient functions and their overall mean ab-

solute deviation (MAD) are calculated under different sample sizes (n “ 50, 100 and 200).

Six different model error (ε) distributions are considered: the standard normal distribution

(Np0, 1q); the t-distribution with 3 degrees of freedom (t3); the contaminated normal distri-

bution (CN ) with contamination rate 0.05, given as CN p0.95q “ 0.95Np0, 1q`0.05Np0, 100q;

the Laplace distribution; the log-normal distribution; and the Cauchy distribution. These

choices are motivated to show the robustness of the proposed method compared to the least

squares (LS) approach in the presence of gross outliers and/or under heavy tailed model

error distributions. The performance of the rank-based estimator of θ0 is assessed based

on its bias, SD, and mean square error (MSE) and compared to those obtained via the LS

approach. When it comes to assessing the performance of the estimator of gjp¨q, j “ 0, . . . , 3,

12



we consider mean absolute deviation of each coefficient function (MADj), defined as

MADj “ n´1grid

ngrid
ÿ

k“1

|pgjpukq ´ gjpukq|, j “ 0, . . . , 3 (2.4)

where uk, k “ 1, . . . , ngrid are the grid points and the functions pgjp¨q are the estimates. The

overall performance is assessed via the mean absolute deviation of all estimated coefficient

functions defined by

MAD “
1

ngrid ˆ p

p´1
ÿ

j“0

ngrid
ÿ

k“1

|pgjpukq ´ gjpukq| .

This same criteria was used to assess the performance of their proposed estimators in Fan

et al. (2003). It is worth pointing out that in the process of estimating gjp¨q which involves

kernel smoothing, the bandwidth selection is very crucial. The optimal bandwidth, say phopt,

can be obtained as

phopt “ Argmin
h

1

n

n
ÿ

i“1

ϕ

ˆ

Rppη´iphqq

n` 1

˙

pη´iphq,

where pη´iphq is the leave-one-out version of pηiphq “ yi ´
!

pG
´

pθ
T
Zi, h

¯)T

Xi. Following

similar arguments and ideas in Delecroix et al. (2006), it can be demonstrated that phopt is

proportional to n1{p2r`1q, where r is the order of smoothness of gjp¨q. The results of the

entire simulation study are displayed in Tables 2.1´ 2.2. We report estimated functions for

different error distributions in Figures 2.1´ 2.6, respectively.

Considering the estimated index (Table 2.1), we observe that the LS estimator slightly

outperforms the rank-based approach for normal distribution, as expected, by providing

slightly smaller biases, standard deviations, and mean squared errors. The rank-based ap-

proach, however, was superior for all other considered distributions, especially for larger

sample sizes. The same observation is made for the estimated coefficient functions as can be

seen in Table 2.2 and Figures 2.1 and 2.2.
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Table 2.1: Bias (ˆ102), standard deviation (ˆ102) and MSE (ˆ102) of the true index θ0.
θ1 θ2 θ3 θ4

ε n method Bias SD MSE Bias SD MSE Bias SD MSE Bias SD MSE
100 LS 0.033 7.422 0.548 -1.592 10.617 1.147 0.862 8.802 0.778 -1.341 11.850 1.415

R -0.105 8.444 0.710 -1.796 10.538 1.137 0.765 10.010 1.003 -1.421 12.235 1.510
Np0, 1q 200 LS 0.216 3.421 0.117 -0.180 2.862 0.082 -0.351 4.276 0.183 -0.271 2.729 0.075

R 0.033 3.873 0.149 -0.220 3.360 0.113 -0.181 5.114 0.261 -0.265 3.203 0.103
400 LS 0.448 2.505 0.064 -0.010 1.717 0.029 0.058 2.575 0.066 -0.359 1.811 0.034

R 0.634 2.799 0.082 -0.016 2.086 0.043 0.076 2.998 0.089 -0.497 2.112 0.047

100 LS 1.269 15.021 2.261 -10.753 31.590 11.086 0.857 21.273 4.510 -14.210 35.532 14.581
R 1.402 13.647 1.873 -8.160 27.337 8.101 2.922 18.111 3.349 -8.083 26.038 7.399

t3 200 LS -0.486 8.039 0.645 -3.109 16.453 2.790 -1.483 10.068 1.031 -1.825 15.540 2.436
R 0.021 5.768 0.331 -0.681 4.415 0.199 -0.476 5.810 0.338 -0.122 4.352 0.189

400 LS -0.322 5.212 0.271 -1.197 10.632 1.139 0.816 7.308 0.538 -0.964 10.694 1.147
R -0.102 3.417 0.116 -0.217 2.470 0.061 0.251 3.695 0.136 -0.011 2.429 0.059

100 LS 3.888 22.981 5.406 -49.457 53.171 52.591 -0.994 41.378 17.046 -48.892 54.537 53.499
R 1.654 16.959 2.889 -23.208 43.977 24.629 -1.132 26.126 6.804 -19.320 41.992 21.278

CN p0.95q 200 LS 2.505 19.474 3.836 -29.435 48.036 31.624 -0.360 31.297 9.747 -32.017 49.933 35.059
R -1.302 8.252 0.695 -0.364 5.753 0.331 0.823 10.383 1.079 -0.792 5.485 0.306

400 LS 0.291 13.576 1.835 -8.712 26.796 7.903 -0.104 16.500 2.709 -7.478 29.032 8.945
R 0.296 4.329 0.187 -0.538 3.014 0.093 0.127 4.851 0.234 -0.064 3.026 0.091

100 LS 8.128 23.573 6.190 -69.728 51.203 74.706 1.654 51.541 26.459 -66.490 49.764 68.849
R 3.250 22.506 5.146 -34.000 49.099 35.547 0.052 37.213 13.779 -39.464 50.862 41.314

Cauchy 200 LS 11.492 25.507 7.794 -58.873 48.514 58.079 -1.732 48.292 23.235 -62.738 51.137 65.379
R 0.330 17.258 2.965 -24.006 45.406 26.277 -3.260 26.788 7.246 -22.236 44.837 24.948

400 LS 13.794 24.526 7.888 -61.827 49.726 62.829 -2.944 45.942 21.087 -62.387 50.820 64.619
R -2.599 11.057 1.284 -3.987 23.311 5.566 -0.402 11.998 1.434 -4.493 21.396 4.757

100 LS 1.999 18.607 3.485 -21.110 40.865 21.072 0.994 29.253 8.524 -25.218 45.939 27.358
R 0.253 12.414 1.534 -5.996 22.720 5.496 0.963 16.956 2.870 -9.406 31.035 10.468

Log Normal 200 LS 0.352 12.561 1.571 -6.075 24.945 6.561 -0.883 15.314 2.341 -7.797 26.863 7.788
R -0.274 4.787 0.229 -0.358 4.050 0.164 0.184 6.973 0.484 -0.276 3.878 0.150

400 LS 0.726 6.886 0.477 -0.070 6.944 0.480 0.644 8.471 0.718 -2.438 10.634 1.185
R 0.633 3.034 0.096 -0.016 2.149 0.046 -0.146 3.320 0.110 -0.529 2.242 0.053

100 LS -1.362 13.424 1.812 -7.348 27.316 7.964 -0.859 17.829 3.170 -10.711 33.087 12.040
R -1.348 12.438 1.557 -6.383 27.102 7.716 0.518 15.133 2.281 -8.462 29.094 9.138

Laplace 200 LS -0.325 6.446 0.414 -0.111 4.383 0.191 0.031 6.144 0.376 -0.623 4.602 0.215
R -0.119 5.603 0.312 0.002 4.136 0.170 0.483 5.932 0.352 -0.730 4.591 0.215

400 LS 0.862 3.522 0.131 -0.340 2.799 0.079 -0.150 3.564 0.127 -0.405 2.845 0.082
R 0.687 3.122 0.102 -0.190 2.466 0.061 0.157 3.240 0.105 -0.401 2.493 0.063
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Table 2.2: Mean absolute deviations (ˆ102 ) of the coefficient functions and the overall mean
absolute deviation (MAD).

ε n method g0 g1 g2 g3 MAD
100 LS 23.376 19.798 19.564 36.736 23.712

R 22.744 20.400 20.482 41.151 24.974
Np0, 1q 200 LS 16.093 12.568 12.464 25.618 15.835

R 14.737 12.921 12.949 29.708 16.723
400 LS 11.938 8.986 8.903 19.245 11.568

R 11.473 9.575 9.421 23.205 12.576

100 LS 39.663 32.834 28.929 57.756 37.943
R 31.189 25.954 25.187 55.323 32.672

t3 200 LS 24.096 20.812 20.877 35.793 24.475
R 18.774 15.771 16.189 36.467 20.785

400 LS 17.017 14.030 13.955 26.311 17.188
R 12.407 10.819 10.515 27.371 14.400

100 LS 67.822 64.561 55.824 100.601 69.053
R 41.688 31.022 26.219 71.488 39.474

CN p0.95q 200 LS 49.272 44.877 34.871 74.831 47.876
R 32.105 15.617 14.201 49.065 25.271

400 LS 31.858 25.395 23.887 47.697 30.457
R 21.144 10.249 10.189 37.886 17.886

100 LS 760.087 438.748 794.890 822.496 653.728
R 62.240 52.355 51.598 98.545 62.295

Cauchy 200 LS 1109.948 713.621 696.488 648.632 785.181
R 52.914 32.729 24.622 79.545 42.653

400 LS 909.510 496.278 1049.644 545.006 722.578
R 80.485 15.043 14.616 68.010 38.433

100 LS 62.522 38.510 34.749 69.376 48.094
R 36.505 23.190 22.106 55.330 31.665

Log Normal 200 LS 55.383 24.777 22.323 45.042 34.161
R 25.106 12.642 12.483 37.999 20.220

400 LS 56.239 16.569 17.854 31.355 27.610
R 16.227 9.305 8.952 29.150 14.409

100 LS 31.056 27.790 25.158 51.300 32.022
R 28.034 26.182 23.087 52.367 30.410

Laplace 200 LS 20.525 16.559 17.177 29.745 20.250
R 17.063 14.648 14.723 32.712 18.799

400 LS 14.699 12.607 11.854 23.118 14.910
R 11.590 10.125 9.710 25.345 13.343
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ĝ2

LS

index

C
oe

ffi
ci

en
t F

un
ct

io
n

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

0.
5

0.
0

0.
5

1.
0

1.
5

ĝ3
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Figure 2.1: Estimated coefficient functions under the standard normal error distribution.
Left panel : LS. Right panel : Rank
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ĝ1

R

index

C
oe

ffi
ci

en
t F

un
ct

io
n

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

ĝ2
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Figure 2.2: Estimated coefficient functions under the contaminated normal error distribution
with contaminated rate 5%. Left panel : LS. Right panel : Rank
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ĝ2

LS

index

C
oe

ffi
ci

en
t F

un
ct

io
n

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

0.
5

0.
0

0.
5

1.
0

1.
5

ĝ3
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Figure 2.3: Estimated coefficient functions under the t3 error distribution. Left panel : LS.
Right panel : Rank
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Figure 2.4: Estimated coefficient functions under Cauchy error distribution. Left panel : LS.
Right panel : Rank
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Figure 2.5: Estimated coefficient functions under Laplace error distribution. Left panel : LS.
Right panel : Rank
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Figure 2.6: Estimated coefficient functions under Log Normal error distribution. Left panel :
LS. Right panel : Rank
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2.3.2 Real Data Example

In this section, we consider the fisheries data that motivated the development of our

SIVCM estimation and discussed in the Section 1.2. The data were obtained to study

interactions between groundfish predator species in the Gulf of Alaska. We are interested

in investigating interspecific competition among these three predators while also considering

Pacific halibut’s role as a predator on Pacific cod and sablefish. We chose the response to

be the CPUE of Pacific halibut to model how the CPUE of the other groundfish predators

with similar diet preferences responded to the population numbers of an apex predator.

The model we use is given in Equation (1.2). CPUEs and covariates in the matrix Z were

centered and scaled to have mean zero and variance 1. We fit model (1.2) using both the LS

and R methods for the full data, and this same process was then repeated after removing

two identified outliers.

Considering the full data, one can see that the estimated coefficient functions (Fig-

ure 2.7) and the estimated index parameter (Table 2.3) from the LS and R methods are

quite different. Also, from Figure 2.8, whether we consider the LS or the R fits, there are

two apparent outliers, which makes the LS analysis inefficient. To evaluate the performance

of the LS and R methods, a leave-one-out cross-validation was performed and prediction

errors were computed. For the full data, as can be seen in Table 2.3, the R method provides

more consistent and accurate estimates, and results in a smaller prediction error compared

to the LS method. However, after removing the two outliers, the prediction error for R did

not change (1.4%) while the one for LS changed quite substantially (62.5%). Moreover, the

residuals look approximately normally distributed for both the LS and R methods. The es-

timated index parameters for the two approaches are similar for the two methods; however,

LS now provides better performance in terms of prediction error (Table 2.4, Figure 2.9 and

Figure 2.10). This is not surprising as for model errors with distribution close to normal, we
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expect the LS to have better performance than the R method, as was shown in the simula-

tion study. This real data example demonstrates that while the LS fit is highly affected by

the identified outliers, the R fit on the other hand shows its robustness, as the R estimates

and the corresponding predictor error are very similar for data with and without outliers

(Tables 2.3 and 2.4).

Table 2.3: Estimated value of θ0 and prediction error (LOOCV) for the model using full
data

pθ pθ1 pθ2 pθ3 pθ4 pθ5 pθ6 pθ7 Pred. Err
LS 0.0707 0.1601 -0.1492 -0.4929 0.8233 -0.0033 -0.1621 1.3108
R 0.0432 0.1908 0.1216 -0.7240 0.5983 -0.0447 -0.2505 0.7227

Table 2.4: Estimated value of θ0 and prediction error (LOOCV) for the model using data
without outliers

pθ pθ1 pθ2 pθ3 pθ4 pθ5 pθ6 pθ7 Pred. Err
LS 0.1048 0.1334 0.2249 -0.7716 0.4650 -0.0459 -0.3271 0.4922
R 0.0876 0.1501 0.1656 -0.7848 0.4989 -0.0669 -0.2704 0.7129

It is well known that outliers are a common feature to environmental data, and thus,

robust methods should be required for better prediction with such data. Our simulation

study and illustrative real data example demonstrate that the proposed R method is able to

better handle contaminated and heavy-tailed model error distributions, or data containing

outliers in the response space compared to the LS method. The estimated coefficient func-

tions shown in Figures 2.7 and 2.9 share a change in functional pattern around θTZ “ ´1

for Pacific cod (g1) and sablefish (g2). Overall Pacific halibut CPUE is decreasing along the

estimated environmental matrix according to the direction of g0. The function g1 is sharply

decreasing when θTZ ă ´1 but increases when θTZ ą 0, indicating that Pacific cod CPUE

negatively affects the CPUE of Pacific halibut when below a threshold of environmental fac-

tors but positively affect Pacific halibut CPUE when above a threshold. The function g2 is
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increasing until a leveling-off occurs around θTZ “ 1 followed by a slight decline, suggesting

that the CPUE of sablefish has a positive effect on the CPUE of Pacific halibut.

Temperature of surrounding waters has been known to affect the ability of Pacific hal-

ibut and sablefish to detect and strike bait in laboratory studies (Stoner et al., 2006; Stoner &

Sturm, 2004), where increased temperature was shown to increase the ability of both species

to locate, attack, and consume baits prepared with squid. The MESA studies also bait

with squid to survey groundfish and obtain CPUE measures for population approximations.

Less is known about the response of groundfish to other environmental factors, particularly

outside of laboratory conditions. The above model and results imply a hidden threshold

variable consisting of multiple environmental factors that impact the CPUE dynamics of

Pacific halibut. Note also that the environmental threshold for Pacific cod CPUE is different

from that of sablefish CPUE, highlighting the variable response of different fish species to

the same environmental factors. This is consistent with our preliminary observation given

in Section 2.1. The models presented here motivate further study on these environmental

variables and their affect on groundfish ability to detect and consume prey. Robust estima-

tion methods such as the rank-based technique we have presented in this paper allow models

such as these to more accurately predict multiple organisms’ responses to environmental

variations in the presence of outliers common to ecological data.
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Figure 2.7: Estimated coefficient functions for the log transformed data with outliers. Top:
LS estimators. Bottom: Rank estimators.

22



−2 −1 0 1 2

−
2

−
1

0
1

2
3

LS

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

−
2

−
1

0
1

2
3

Rank

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2
3

LS

Fitted Value

R
es

id
ua

ls

−4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0

−
2

−
1

0
1

2
3

Rank

Fitted Value

R
es

id
ua

ls

Figure 2.8: QQ plot of the residuals for the log transformed data with outliers. Left : LS
method. Right : Rank method.
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Figure 2.10: QQ plot of the residuals of the log transformed data without outliers. Left : LS
method. Right : Rank method.
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2.4 Asymptotic Properties of the rank-based estimators

Under the assumptions given below, Lemmas A1-A3 given in Xia et al. (2007) hold and

can be used to prove that Dnpθq and Lnpθ, a, bq are asymptotically equivalent in the sense

that

lim
nÑ8

sup
θPΘ,a,b

|Lnpθ, a, bq ´Dnpθq| “ 0 a.s.

These lemmas will not be included here, and readers seeking for more details are referred to

the aforementioned paper. To this end, we establish the asymptotic properties of pθn based

on Dnpθq, while computations are performed using Lnpθ, a, bq. Let pXi, Zi, yiq, i “ 1, . . . , n

be a random sample with Xi and Zi being i.i.d. and Xi independent of Zi. Throughout this

paper, we consider the following assumptions:

pI1q ϕ is a nondecreasing, bounded and twice continuously differentiable score function with

bounded derivatives, defined on p0, 1q, and assume that ϕ can be standardized as

ż 1

0

ϕpuqdu “ 0 and

ż 1

0

ϕ2
puqdu “ 1.

pI2q εi, i “ 1, . . . , n, are continuous errors with common distribution F and finite Fisher

information.

pI3q gjp¨q, j “ 0, . . . , p, is a function defined on A “ tθTZ : θ P Θ, Z P Rpu, where Θ

is a compact subspace of Rp. There exists a function Jjp¨q not necessarily the same,

independent of θ such that }∇r
θκjpθ, Zq} ď JjpZq, for r “ 0, 1, 2, 3, κjpθ, Zq “ gjpZ

τθq

is three times continuously differentiable with respect to θ, and ErJαj pZqs ă 8, for

some α ě 1. Also, the function t ÞÑ Gptq is twice differentiable for any t P A.

Moreover, for identifiability reasons, as assumed in Theorem 1 of Fan et al. (2003), for

θ “ pθ1, . . . , θpq
T with θp ‰ 0, we assume that gpp¨q ” 0.
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pI4q Letting m and mθ be the density functions of θT0Z and θTZ, respectively, we assume

that mθ have bounded continuous derives up to order 2. Also, inf
tPA

mθptq ą α, with

α ą 0, for all θ P Θ.

pI5q Kp¨q is a regular kernel function with bandwidth hn satisfying hn Ñ 0 and nhp`2n { log nÑ

8 as nÑ 8.

pI6q sup
x,z

Er|Y |r|X “ x, Z “ zs ă 8, where r is the order of smoothness of gjp¨q. Also,

Erexptλ}X}us ă 8 and Erexptλ}Z}us ă 8, for some λ ą 0.

pI7q θ0 P IntpΘq and for fixed n, there exists a unique θ0,n P IntpΘq, a minimizer of

ErDnpθqs such that θ0 “ lim
nÑ8

θ0,n.

pI8q Set Ai “ ∇θ0rGpθ
T
0ZiqsXi and assume that n´1AAT “ n´1

řn
i“1AiA

T
i Ñ Σ “ ErAAT s

is positive definite matrix, where A “ pA1, . . . , Anq.

Remark 3. pI1q and pI2q are regular assumptions in the framework of rank-based estimation;

see Hettmansperger & McKean (2011). Assumptions pI3q ´ pI6q on the other hand, are

regular assumption for estimation problems involving single-index models and ensure the

strong consistency of the estimator of Gp¨q; see Hansen (2008) and Gu & Yang (2015). pI6q

is the identifiability assumption from which, together with the previous assumptions, ensure

the strong consistency of the proposed estimator that is established in Theorem 2.1. pI7q and

pI8q together with the previous assumptions are used to establish the asymptotic distribution

of the proposed estimator.

2.4.1 Consistency

From assumption pI2q, when θ ‰ θ0, the ηipθq are still independent but not necessarily

identically distributed. Also, under the local linear approximation, ηipθ, a, bq « ηipθq. Let
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Fi be the probability distribution of ηipθq. The following theorem, whose proof is provide in

the Appendix, relies on the next lemma, and gives the strong consistency pθn with respect to

θ0.

Theorem 2.1. Under pI1q ´ pI3q and pI6q ´ pI7q, pθn Ñ θ0 a.s. as nÑ 8.

Lemma 1. Let tAnpθquně1 be a random objective function defined on a compact space Θ

such that pθn “ Argmin
θPΘ

Anpθq and for fixed n, there is a unique θ0,n P Θ that satisfies

θ0,n “ Argmin
θPΘ

EpAnpθqq, with EpAnpθqq being continuous with respect to θ. Furthermore,

assume that for θ0 P Θ, θ0 “ limnÑ8 θ0,n.

piq If sup
θPΘ

|Anpθq ´ EpAnpθqq| Ñ 0 a.s. as nÑ 8, then, pθn Ñ θ0 a.s. as nÑ 8.

piiq If for every θ P Θ, Anpθq ´ EpAnpθqq Ñ 0 a.s. as n Ñ 8 and Anpθq is stochastically

equicontinuous then, pθn Ñ θ0 a.s. as nÑ 8.

The proof of this lemma can be found in Andrews (1994), Newey & McFadden (1994), and

Rao et al. (2014), so for the sake of brevity it will not be included here.

2.4.2 Asymptotic Normality

Let ∇θ “
`

B{Bθi
˘

i
and ∇2

θ “
`

B2{BθiBθj
˘

ij
, for θ “ pθ1, ¨ ¨ ¨ ,θpqτ , i, j “ 1, . . . , p, denote

the gradient and Hessian operators, respectively. Also, ∇r
ξrGpξ

TZqs “ ∇r
θrGpθ

TZqs|θ“ξ for

some arbitrary ξ and r “ 1, 2, 3. Under the smoothness assumption on ϕ and gj, k “

1, . . . , p, Dnpθq is weakly differentiable. From now, set Snpθq “ ´∇θDnpθq. With pθn

being a minimizer of Dnpθq, we have Snppθnq “ 0. Explicitly, Snpθq is given by Snpθq “

n´1
řn
i“1∇θrGpθ

TZiqsXiϕ pRpηipθqq{pn` 1qq.

At the true parameter θ0, Snpθ0q “ n´1
řn
i“1∇θ0rGpθ

T
0ZiqsXiϕ pRpεiq{pn` 1qq. Also,

define Tnpθ0q as

Tnpθ0q “
1

n

n
ÿ

i“1

∇θ0rGpθ
T
0ZiqsXiϕ pF pεiqq .
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The following theorem gives the equivalence of the two estimating functions.

Theorem 2.2. Under assumptions pI1q´pI8q,
?
n
`

Snpθ0q´Tnpθ0q
˘ P
ÝÑ 0 and

?
nTnpθ0q

D
ÝÑ

Np0,Σq as nÑ 8. Moreover, lim
nÑ8

sup
θPΘ

}Snpθq ´ Tnpθq} “ 0 a.s.

This theorem implies that
?
nSnpθ0q and

?
nTnpθ0q have the same asymptotic distribution.

On the other hand, with probability 1, Snpθq “ Tnpθq ` op1q. A Taylor expansion of Tnpθq

around θ0 gives

Tnpθq “ Tnpθ0q ` pθ ´ θ0q
τ∇θTnpθ0q `

1

2
pθ ´ θ0q

τ∇2
θTnpξqpθ ´ θ0q,

where ξ belongs in the line segment joining θ0 and θ. Thus, with probability 1,

Snpθq “ Tnpθ0q ` pθ ´ θ0q
τ∇θTnpθ0q `

1

2
pθ ´ θ0q

τ∇2
θTnpξqpθ ´ θ0q ` op1q.

pθn being a solution of Snpθq “ 0, we have

0 “ Snppθnq “ Tnpθ0q`∇θTnpθ0q ¨ ppθn´θ0q`
1

2
ppθn´θ0q

τ
¨∇2

θTnpξnq ¨ p
pθn´θ0q`op1q, (2.5)

where ξn “ λθ0 ` p1´ λqpθn.

Theorem 2.3. Under assumptions pI1q ´ pI8q, the following hold:

a. ∇θTnpθ0q Ñ W a.s., where W “ ´EtAAτfpεqϕ1pF pεqqu`Et∇2
θ0
rGpθT0ZqsXϕpF pεqqu

is a positive definite matrix, and

b. ∇2
θTnpξnq is almost surely bounded.

Note, if we assume that ε is independent of pX,Zq, W can be expressed using the rank scale

parameter as W “ γ´1ϕ Σ similar to the linear model case, where

γ´1ϕ “

ż 1

0

ϕpuqϕf puqdu with ϕf puq “
f 1pF´1puqq

fpF´1puqq
.
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To this end, the asymptotic normality distribution of the rank estimator is now obtained

from that of
?
nSnpθ0q and given in the following theorem:

Theorem 2.4. Under assumptions pI1q´pI8q, we have
?
nppθn´θ0q

D
ÝÑ N

`

0,W´1ΣW´1
˘

.

Moreover, if ε is independent of pX,Zq, we have
?
nppθn ´ θ0q

D
ÝÑ N

`

0, γ2ϕΣ
´1
˘

From now, define pGptq “ ppg0ptq, . . . , pgpptqq
T and pG2ptq “ ppg20ptq, . . . , pg

2
pptqq

T , for t P rA “ tt “

pθ
T

nZu. The following theorem gives the asymptotic distribution of pGptq. The proof can be

obtained in a similar way as given in Xia et al. (2007), and is therefore omitted here.

Theorem 2.5. Let ωn “
a

log n{nhn, and suppose that the derivative with respect to t of

the function

t ÞÑW0ptq “ ´EtXX
τfpεqϕ1pF pεqq|θT0Z “ tu ` EtXϕpF pεqq|θT0Z “ tu

exists. Then, under assumptions pI1q ´ pI8q, we have

sup
|t|ďc

} pGptq ´Gptq} “ Opppωn ` h
2
nq{cq. (2.6)

Moreover,

pnhnq
1{2
t pGptq ´Gptq ´ ηptqh2nu

D
ÝÑ N

´

0,m´1
ptqW´1

0 ptqqW1ptqW´1
0 ptq

ż

K2
puqdu

¯

, (2.7)

where

ηptq “
1

2
G2ptq

ż

u2Kpuqdu, and W1ptq “ EtXXTϕ2
pF pεqq|θT0Z “ tu
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2.5 Discussion

This paper provides a rank-based procedure that is a robust and more efficient alter-

native to the least squares method for fitting the SIVCM when dealing with contaminated

and heavy-tailed model error distributions, or when data contain outliers in the response

space. It is worth pointing out that for high leverage points (outliers in the design space),

the performance of the proposed method can be affected. When the design space is well

controlled (in the absence of high leverage points) with outliers in the response space, we

recommend the use of the proposed procedure. For cases where there are obvious outliers in

the predictor variables, a weighted version of the considered rank objective function could be

derived following ideas similar to those in Naranjo & Hettmansperger (1994), Chang et al.

(1999), and Bindele & Abebe (2012).

2.6 Proofs of Theorems 2.1-2.4

This section presents proofs of theoretical results established in the paper.

Proofs

Proof of Theorem 2.1. From the fact that ϕ has a bounded first derivative, ϕ P Lipp1q.

Moreover, since gk, k “ 0, . . . , p are bounded on A and ηipθq depend on θ only through gk,

we have V arpηipθqq ă 8 for all i and θ P Θ by pI5q. Then

n
ÿ

i“1

V arpηipθqq

n2
ď
σ2
maxpθq

n
“ Op1{nq,

where σ2
maxpθq “ maxtV arpη1pθqq, . . . , V arpηnpθqqu. Setting αn “ 1{n and β “ 1 in the

theorem of Xiang (1995), we find that for every θ P Θ, Dnpθq ´ EtDnpθqu Ñ 0 a.s. To

complete the proof, we have to show that tDnpθquně1 is stochastically equicontinuous. To
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that end, taking θ1,θ2 P Θ and setting ainpθq “ Rpηipθqq{pn` 1q we have

Dnpθ1q ´Dnpθ2q “
1

n

n
ÿ

i“1

rϕpainpθ1qqηipθ1q ´ ϕpainpθ2qqηipθ2qs

“
1

n

n
ÿ

i“1

ϕpainpθ1qqrηipθ1q ´ ηipθ2qs `
1

n

n
ÿ

i“1

rϕ painpθ1qq ´ ϕtFipηipθ1qqus ηipθ2q

`
1

n

n
ÿ

i“1

rϕtFipηipθ1qqu ´ ϕtFipηipθ2qqus ηipθ2q

`
1

n

n
ÿ

i“1

rϕtFipηipθ2qqu ´ ϕ painpθ2qqs ηipθ2q.

Note that ηipθ1q ´ ηipθ2q “ tGpθT2 Ziq ´Gpθ
T
1 Ziqu

TXi. Since for j “ 0, . . . , p, κjpθ, Zq is differen-

tiable with respect to θ, G is differentiable with respect to θ, by assumption pI3q. Thus, from the

mean value theorem on the vector function G there exists ξ “ λθ1 ` p1 ´ λqθ2 for some λ P p0, 1q

such that Gpθτ1Ziq ´Gpθ
τ
2Ziq “ ∇ξrGpξ

τZiqspθ1 ´ θ2q. Thus by assumption pI3q

}Gpθτ1Ziq ´Gpθ
τ
2Ziq} “ }∇ξrGpξ

τZiqspθ1 ´ θ2q} ď

p
ÿ

j“1

JjpZiq}θ1 ´ θ2}.

Furthermore, set hipθq “ ϕtFipηipθqqu “ ϕtFipYi ´ rGpθ
τZiqs

τXiqu, where Fi is a cumulative

distribution function of ηipθq and therefore almost surely differentiable. So by the mean value the-

orem, there exists ζ “ λθ1 ` p1 ´ λqθ2 for λ P p0, 1q such that hipθ1q ´ hipθ2q “ h1ipζqpθ1 ´

θ2q, with h1ipζq “ ´∇ζrGpζ
τZiqsXifipηipζqqϕ

1tFipηipζqqu and fiptq “ dFiptq{dt. It is worth

pointing out that fi being a density, is almost surely bounded. By assumption pI3q again to-

gether with the boundedness of ϕ1, we have }h1ipζq} ď M
řp
j“1 JjpZiq a.s., where M is such that

|fipηipζqqϕ
1tFipηipζqqu| ď M a.s. On the other hand, for i “ 1, . . . , n, Fipηipθqq being indepen-

dent uniformly distributed in the interval p0, 1q, for all θ P Θ, following Hájek & Šidák (1967)

in chapter 6, it is obtained that anipθq ´ Fipηipθqq Ñ 0 a.s., for all θ P Θ and for each i. By

continuity of ϕ, we have ϕ panipθqq ´ ϕtFipηipθqqu Ñ 0 a.s., for all θ P Θ and for each i. Thus,
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max
1ďiďn

|ϕ panipθqq ´ ϕtFipηipθqqu| Ñ 0 a.s., for all β P Θ. To this end,

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

ϕpainpθ1qqrηipθ1q ´ ηipθ2qs

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

n

n
ÿ

i“1

|ϕpainpθ1qq}Gpθ
τ
1Ziq ´Gpθ

τ
2Ziq}}Xi}

ď }θ1 ´ θ2}
L

n

n
ÿ

i“1

p
ÿ

j“1

}Xi}JjpZiq,

where L is such that |ϕptq| ď L, for all t P p0, 1q. Also, with probability 1, we have

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

rϕtFipηipθ1qqu ´ ϕtFipηipθ2qqus ηipθ2q

ˇ

ˇ

ˇ

ˇ

ˇ

ď }θ1 ´ θ2}
M

n

n
ÿ

i“1

p
ÿ

j“1

}Xi}JjpZiq|ηipθ2q|

ď }θ1 ´ θ2}M

¨

˝

1

n

n
ÿ

i“1

#

p
ÿ

j“1

}Xi}JjpZiq

+2
˛

‚

1{2
˜

1

n

n
ÿ

i“1

|zipβ2q|
2

¸1{2

ď }θ1 ´ θ2}M

¨

˝

1

n

n
ÿ

i“1

#

p
ÿ

j“1

}Xi}JjpZiq

+2
˛

‚

1{2¨

˝

1

n

n
ÿ

i“1

«

|Yi| `

p
ÿ

j“1

}Xi}JjpZiq

ff2
˛

‚

1{2

.

Moreover,

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

rϕ painpθ1qq ´ ϕtFipηipθ1qqus ηipθ2q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

n

n
ÿ

i“1

|ϕ painpθ1qq ´ ϕtFipηipθ1qqu| |ηipθ2q|

ď

ˆ

max
1ďiďn

|ϕ painpθ1qq ´ ϕtFipηipθ1qqu|
2

˙1{2
¨

˝

1

n

n
ÿ

i“1

«

|Yi| `

p
ÿ

j“1

}Xi}JjpZiq

ff2
˛

‚

1{2

Ñ 0 a.s.,

as max
1ďiďn

|ϕ panipβ1qq ´ ϕtFipzipβ1qqu|
2 Ñ 0 a.s. and

ˆ

n´1
řn
i“1

”

|Yi| `
řp
j“1 }Xi}JjpZiq

ı2
˙1{2

which converges almost surely to a finite quantity by the strong law of large numbers under as-

sumptions pI3q and pI4q. Similarly,
ˇ

ˇn´1
řn
i“1 rϕtFipηipθ2qqu ´ ϕ painpθ2qqs ηipθ2q

ˇ

ˇ converges almost
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surely to zero. Hence, with probability 1, we have |Dnpβ1q ´Dnpβ2q| ď Bn}θ1 ´ θ2}, where

Bn “:
L

n

n
ÿ

i“1

p
ÿ

j“1

}Xi}JjpZiq

`M

¨

˝

1

n

n
ÿ

i“1

#

p
ÿ

j“1

}Xi}JjpZiq

+2
˛

‚

1{2¨

˝

1

n

n
ÿ

i“1

«

|Yi| `

p
ÿ

j“1

}Xi}JjpZiq

ff2
˛

‚

1{2

` op1q.

For n large enough, Bn is independent of θ, and from the fact that all terms in the definition of

Bn converge almost surely to a finite quantity, so does Bn. Therefore, tDnpθquně1 is stochastically

equicontinuous (Rao et al., 2014), and so, the proof is complete.

Proof of Theorem 2.2. EtSnpθ0q´Tnpθ0qu “
1

n

n
ÿ

i“1

∇θ0rGpθ
T
0ZiqsXiE

ˆ

ϕ

ˆ

Rpεiq

n` 1

˙

´ ϕ pF pεiqq

˙

.

By Schwartz inequality, we have

EtSnpθ0q´Tnpθ0qu ď

#

1

n

n
ÿ

i“1

t∇θ0rGpθ
T
0 ZiqsXiu

2

+1{2#

1

n

n
ÿ

i“1

ˆ

E

ˆ

ϕ

ˆ

Rpεiq

n` 1

˙

´ ϕ pF pεiqq

˙˙2
+1{2

.

Also, by Jensen’s inequality, we have

ˆ

E

ˆ

ϕ

ˆ

Rpεiq

n` 1

˙

´ ϕ pF pεiqq

˙˙2

ď E

«

ˆ

ϕ

ˆ

Rpεq

n` 1

˙

´ ϕ pF pεqq

˙2
ff

.

Then,

EtSnpθ0q ´ Tnpθ0qu ď

#

1

n

n
ÿ

i“1

t∇θ0rGpθ
T
0 ZiqsXiu

2

+1{2#

1

n

n
ÿ

i“1

E

«

ˆ

ϕ

ˆ

Rpεiq

n` 1

˙

´ ϕ pF pεiqq

˙2
ff+1{2

ď

#

1

n

n
ÿ

i“1

t∇θ0rGpθ
T
0 ZiqsXiu

2

+1{2#

E

«

ˆ

ϕ

ˆ

Rpεq

n` 1

˙

´ ϕ pF pεqq

˙2
ff+1{2

. (2.8)

By the continuity of ϕ and the fact that Rpεq{pn`1q Ñ F pεq a.s. as nÑ8 (Hájek & Šidák, 1967),

applying the Dominated Convergence Theorem gives Etrϕ pRpεq{pn` 1qq ´ ϕ pF pεqqs2u Ñ 0. On
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the other hand, by assumption pI3q, }∇θ0rGpθ
T
0 Ziqs} ď

řp
j“0 JjpZiq. Then,

1

n

n
ÿ

i“1

t∇θ0rGpθ
T
0 ZiqsXiu

2 ď
1

n

n
ÿ

i“1

#

p
ÿ

j“0

}Xi}JjpZiq

+2

Ñ E

»

–}X}2

#

p
ÿ

j“0

JjpZq

+2
fi

fl ă 8 a.s.,

by pI6q and the strong law of large numbers. Thus, EtSnpθ0q ´ Tnpθ0qu Ñ 0 as n Ñ 8. By

Chebychev’s inequality, for any ε ą 0, we have

P
`?
n
`

Snpθ0q ´ Tnpθ0q
˘

ą ε
˘

ď
1

ε2
E
”

n
`

Snpθ0q ´ Tnpθ0q
˘2
ı

.

To complete the proof, it sufficies to show that E
“

n
`

Snpθ0q ´ Tnpθ0q
˘2‰

Ñ 0 as nÑ8. Indeed,

E
”

n
`

Snpθ0q ´ Tnpθ0q
˘2
ı

“
1

n
E

»

–

#

n
ÿ

i“1

∇θ0rGpθ
T
0 ZiqsXi

ˆ

ϕ

ˆ

Rpεiq

n` 1

˙

´ ϕ pF pεiqq

˙

+2
fi

fl

ď
n

n´ 1

#

1

n

n
ÿ

i“1

t∇θ0rGpθ
T
0 ZiqsXiu

2

+

E

«

ˆ

ϕ

ˆ

Rpεq

n` 1

˙

´ ϕ pF pεqq

˙2
ff

Note that from the discussion following equation (2.8), the right hand side of the above inequality

converges to zero as nÑ8. Thus, E
”

n
`

Snpθ0q ´ Tnpθ0q
˘2
ı

Ñ 0 as nÑ8 and therefore,

lim
nÑ8

P
`?
n
`

Snpθ0q ´ Tnpθ0q
˘

ą ε
˘

“ 0.

Now, by assumption pI2q, we have EtTnpθ0qu “ 0. To obtain the asymptotic distribution of Tnpθ0q,

we employ the Cramér-Wold device (Serfling, 1980). To this end, set

U “ n´1{2
n
ÿ

i“1

aτ∇θ0rGpθ
T
0 ZiqsXiϕrF pεiqs,
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where a P Rq. Since F is the distribution of ε and
ż 1

0
ϕptqdt “ 0, we have EpUq “ 0. Also, since

ż 1

0
ϕ2ptqdt “ 1,

V arpUq “
1

n

n
ÿ

i“1

`

aτ∇θ0rGpθ
T
0 ZiqsXi

˘2
E
 

ϕ2pF pεqq
(

“
1

n

n
ÿ

i“1

`

aτ∇θ0rGpθ
T
0 ZiqsXi

˘2
Ñ aτΣa a.s.

Note that U is the sum of independent functions of random variables which may not be necessarily

identically distributed. Hence, the limiting distribution is established by verifying the Lindeberg-

Feller condition for the applicability of the Central Limit Theorem. To this end, set σ2n “ V arpUq.

We need to show that

lim
nÑ8

1

σ2n

n
ÿ

i“1

E

„

1

n

`

aτ∇θ0rGpθ
T
0 ZiqsXi

˘2
ϕ2rF pεiqs

ı



ˆ

I

ˆ

ˇ

ˇ

ˇ

1
?
n

`

aτ∇θ0rGpθ
T
0 ZiqsXi

˘

ϕrF pεiqs
ˇ

ˇ

ˇ
ą εσn

˙

“ 0.

To this end, we have n´1{2|aτ∇θ0rGpθ
T
0 ZiqsXi| ď n´1{2}a}}Xi}

řp
j“0 JjpZiq. By assumptions pI3q

and pI6q, }a}}Xi}
řp
j“0 JjpZiq is bounded in probability, for all i. Thus, with probability 1, we have

1
?
n
|aτ∇θ0rGpθ

T
0 ZiqsXi| Ñ 0 as nÑ8.

Set λn “
“

max1ďiďn n
´1}Xi}

řp
j“0 JjpZiq

‰1{2
}a}. Then λn Ñ 0 as n Ñ 8, and, is independent of

i. Since σ2n converges to a positive quantity, the ratio σn{λn Ñ8 as nÑ8. Now conditioning on

Zi and Xi, it is easy to see that

n
ÿ

i“1

E
” 1

n
paτ∇θ0rGpθ

T
0 ZiqsXiq

2ϕ2rF pεiqsI
´
ˇ

ˇ

ˇ

1
?
n
paτ∇θ0rGpθ

T
0 ZiqsXiqϕrF pεiqs

ˇ

ˇ

ˇ
ą εσn

¯ı
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is less than or equal to

E
”

ϕ2rF pεqsI
´

ˇ

ˇϕrF pεqs
ˇ

ˇ ą εσn{λn

¯ı

ˆ
1

n

n
ÿ

i“1

Epaτ∇θ0rGpθ
T
0 ZiqsXiq

2.

In this expression, the second term

lim
nÑ8

1

n

n
ÿ

i“1

Epaτ∇θ0rGpθ
T
0 ZiqsXiq

2 ă 8 by pI3q and pI6q.

From the boundedness of ϕ and applying the Dominated Convergence Theorem to the first term,

we have

E
”

ϕ2rF pεqsI
´

ˇ

ˇϕrF pεqs
ˇ

ˇ ą εσn{λn

¯ı

Ñ 0 as nÑ8.

This shows that the limit in (2.9) goes to zero as nÑ8 and thus, the Central Limit Theorem gives
?
nTnpθ0q

D
ÝÑ Np0,Σq as nÑ8.

Next,

Snpθq ´ Tnpθq “
1

n

n
ÿ

i“1

∇θ0rGpθ
T
0 ZiqsXi

„

ϕ

ˆ

Rpηipθqq

n` 1

˙

´ ϕpFipηipθqqq



.

By Cauchy-Schwartz inequality, we have

}Snpθq ´ Tnpθq} ď

«

1

n

n
ÿ

i“1

}∇θ0rGpθ
T
0 ZiqsXi}

2

ff1{2 «

1

n

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ϕ

ˆ

Rpηipθqq

n` 1

˙

´ ϕpFipηipθqqq

ˇ

ˇ

ˇ

ˇ

2
ff1{2

ď

»

–

1

n

n
ÿ

i“1

}Xi}
2

#

p
ÿ

j“0

JjpZiq

+2
fi

fl

1{2
«

max
1ďiďn

sup
θPΘ

ˇ

ˇ

ˇ

ˇ

ϕ

ˆ

Rpηipθqq

n` 1

˙

´ ϕpFipηipθqqq

ˇ

ˇ

ˇ

ˇ

2
ff1{2

Once again, by continuity of ϕ and the fact that Rpηipθqq{pn ` 1q ´ Fipηipθqq Ñ 0 a.s., for all i

and all θ P Θ, we have max
1ďiďn

sup
θPΘ

ˇ

ˇ

ˇ

ˇ

ϕ

ˆ

Rpηipθqq

n` 1

˙

´ ϕpFipηipθqqq

ˇ

ˇ

ˇ

ˇ

2

Ñ 0 a.s. On the other hand, the
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strong law of large numbers gives

1

n

n
ÿ

i“1

}Xi}
2

#

p
ÿ

j“0

JjpZiq

+2

Ñ E

»

–}X}2

#

p
ÿ

j“0

JjpZq

+2
fi

fl ă 8 a.s.,

by assumption pI3q and pI5q. Thus, lim
nÑ8

sup
θPΘ

}Snpθq ´ Tnpθq} “ 0 a.s.

Proof of Theorem 2.3. a. Considering the definition of Tnpθq, we have

∇θTnpθ0q “ ´
1

n

n
ÿ

i“1

AiA
τ
i fpεiqϕ

1
pF pεiqq `

1

n

n
ÿ

i“1

∇2
θ0
rGpθT0ZiqsXiϕpF pεiqq.

The strong law of large numbers gives n´1
řn
i“1AiA

τ
i fpεiqϕ

1pF pεiqq Ñ EtAAτfpεqϕ1pF pεqqu a.s.,

and n´1
řn
i“1∇2

θ0
rGpθT0ZiqsXiϕpF pεiqq Ñ Et∇2

θ0
rGpθT0ZqsXϕpF pεqqu a.s. Thus,

∇θTnpθ0q Ñ W “ ´EtAAτfpεqϕ1pF pεqqu ` Et∇2
θ0
rGpθT0ZqsXϕpF pεqqu a.s.

If we were to assume that ε is independent of pZ,Xq, we have

EtAAτfpεqϕ1pF pεqqu “ Σˆ Etfpεqϕ1pF pεqqu.

But

Erfpεqϕ1pF pεqqs “

ż 8

´8

fpεqϕ1pF pεqqdF pεq “ ´

ż 8

´8

f 1pεqϕpF pεqqdε,

from the integration by parts, since fpεqϕpF pεqq Ñ 0 as ε Ñ ˘8. Now, putting u “ F pεq,

we have
ż 8

´8

f 1pεqϕpF pεqqdε “ ´

ż 1

0

ϕpuqϕf puqdu “ ´γ
´1
ϕ .
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Also, Et∇2
θ0
rGpθT0ZqsXϕpF pεqqu “ Et∇2

θ0
rGpθT0ZqsXuEtϕpF pεqqu, and by assumption pI1q,

E
“

ϕ
`

F pεqq
˘‰

“
ş1

0
ϕptqdt “ 0. Thus, W “ γ´1ϕ Σ.

b. Taking the second derivative of Tnpθq with respect to θ, we have

∇2
θTnpξnq “ ´

3

n

n
ÿ

i“1

∇3
ξn
rGpξTnZiqsXifipηipξnqqϕ

1
pFipηipξnqqq

`
1

n

n
ÿ

i“1

`

∇ξnrGpξ
T
nZiqsXi

˘3
f 1ipηipξqnqϕ

1
pFipηipξnqqq

`
1

n

n
ÿ

i“1

`

∇ξnrGpξ
T
nZiqsXi

˘3
f 2
i pηipξnqqϕ

2
pFipηipξnqqq

`
1

n

n
ÿ

i“1

t∇3
ξn
rGpξTnZiqsXiϕpFipηipξnqqq.

From this, taking into account assumptions pI3q and pI5q, it can be shown that each term to

the right hand side of this equation converges almost surely to a finite quantity and therefore

is almost surely bounded. Thus, ∇2
θTnpξnq is almost surely bounded.

Proof of Theorem 2.4. From equation (2.5) and the results of Theorem 2.3, we have

?
nppθn ´ θ0q “ ´W´1

?
nSnpθ0q ` opp1q.

Considering the fact that
?
nTnpθ0q

D
ÝÑ Np0,Σq together with Slutsky Lemma, the result

follows.
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Chapter 3

Rank Based Variable Selection for Single-index Varying Coefficient Models

3.1 Introduction

Suppose yi is the response variable, X “ px0i, . . . , xpiqT with x0i “ 1, and Z “

pz1i, . . . , zqiq
T are predictor variables. The single-index varying coefficient model (SIVCM)

has the following form

yi “ tGpθ
T
0Ziqu

TXi ` εi i “ 1, . . . , n (3.1)

where θ0 is a q´vector of unknown regression parameters representing the single-index di-

rection; Gp¨q “ pg0p¨q, . . . , gpp¨qqT are unknown coefficient functions; and ε are random errors

with finite Fisher information. For model identifiability, it is assumed that the }θ0} “ 1 and

first component of θ0 is positive.

Variable selection is an important topic in statistical modeling. It is common in practice

that some variables we included in our model are redundant and they increase the model

complexity without improving the accuracy of prediction. In linear regression setting, tra-

ditional variable selection criteria, such as Akaike information criterion (AIC) and Bayesian

information criterion (BIC) for best subset variable selection have been extensively used in

practice. However, these methods are unstable and they suffer expensive computationally

cost (Breiman (1995); Tibshirani (1996); Fan & Li (2001)). Shrinkage methods such as the

least absolute shrinkage and selection operator (LASSO) (Tibshirani (1996); Zou (2006))

and smoothly clipped absolute deviation (SCAD) (Fan & Li (2001)) have received much

attention in last two decade.
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Comparing to parametric models, applying shrinkage method to semiparametric model

is much more challenging since it includes selection of significant variables in the nonparamet-

ric component, which involves other type of regularization parameters (i.e., the smoothing

parameters).

Various works have been done to extend the shrinkage method to semiparametric mod-

els. Wang & Yin (2008) proposed sparse MAVE method, which combine the dimension

reduction method MAVE (Xia et al. (2002)) with LASSO. Zeng et al. (2012) further ex-

plore the idea of combining MAVE and LASSO in SIM, and proposed to penalize the index

vector θ and the norm of the derivative of unknown function gp¨q simultaneously. Wang &

Xia (2009) extended LASSO to VCM with local constant kernel estimation. By combining

local constant kernel estimation and SCAD penalty, Cai et al. (2015) proposed a two-stage

approach to select coefficient functions and index parameters for time series SIVCM. Feng &

Xue (2015) proposed to penalize not only the coefficient functions but also their derivatives

by using SCAD penalty to detect zero and constant functions, they also penalized index

vector using SCAD to select index parameters. All the above methods are based on least

squares method, which is sensitive to outliers. Feng et al. (2015) developed a robust vari-

able selection method for VCM by combining a rank-based spline loss function and SCAD

penalty. Song et al. (2016) used the exponential squared loss with SCAD penalty to per-

form robust variable selection for SIVCM. However, in addition to three tuning parameters

for controlling smoothness, coefficient functions and index parameter selection, exponential

square loss comes with an extra tuning parameter that controls the degree of robustness and

efficiency of their proposed estimators. The cross validation approach proposed by them

could be computational demanding in practice.

To the best of our knowledge, all existing variable selection methods for SIVCM use

SCAD penalty. LASSO has been used widely in practice, especially after an efficient al-

gorithm was developed for computing its entire solution path (Osborne et al. (2000) and
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Efron et al. (2004)). It is worthwhile to develop a LASSO based variable selection procedure

for SIVCM. We propose to combine rank-based spline estimation and group LASSO (RS-

GLASSO) to select coefficient functions and use R estimation procedure to estimate index

parameters. We refer the LS version of our method as LSSGLASSO.

3.2 Rank Based Variable Selection

Model (3.1) is a semiparametric model. The parametric estimators pθ has faster conver-

gence rate than nonparametric estimators pGp¨q. It is common to use a backfitting approach

Fan et al. (2003) to estimate θ0 and Gp¨q. We propose a rank-based (R) procedure to se-

lect Gp¨q and estimate θ0 in two stages. In stage one, for given θ, we replace gp¨q by its

basis function approximation and reformulate (3.1) as linear model. Since each function is

a linear combination of basis functions, applying group LASSO (Yuan & Lin (2006)) with

general rank loss function to the reformulated model achieves robust function selection in

(3.1). Although kernel smoothing can also be used for functions approximation, using basis

function expansion is more straightforward in selecting coefficient functions. In stage two,

we exclude the coefficient functions that are not selected in step one and use R estimation

procedure to estimate θ0 and Gp¨q. It is worth pointing out that we use local rank estima-

tion in step two and re-estimate the selected coefficient functions we obtain from step one.

Since B-spline smoothing suffers from boundary effects (Hastie et al. (2001)), re-estimating

coefficient functions can help us improve the estimation near boundaries.

3.2.1 Variable Selection for Coefficient Functions

Suppose that tpXi, Zi, yiq, i “ 1, . . . , nu is a random sample from model (3.1). Let

Bp¨q “ pB1p¨q, . . . , BLp¨qq
T be the B-spline basis functions with a fixed degree and knot
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sequence, gp¨qk can be approximated by

gkpθ
TZiq «

L
ÿ

j“1

Bjpθ
TZiqγkj “ tBpθ

TZiqu
Tγk, k “ 0, . . . , p.

Model (3.1) can be written as

yi « tVipθqu
Tγ ` εi (3.2)

where γ “ pγ0, . . . , γpqT , Vipθq “ Ip`1 bBpθ
TZiq ¨Xi.

Define the residuals as eipθ, γq “ yi ´ tGpθ
TZiqu

TXi “ yi ´ tVipθqu
Tγ, and we define

the local rank objective function to be

Lnpθ,γq “
1

n

n
ÿ

i“1

ϕ
´Rpeipθ,γqq

n` 1

¯

eipθ,γq (3.3)

where Rpeipθ,γqq is the rank of eipθ,γq among e1pθ,γq, . . . , enpθ,γq, and ϕ is a general

bounded nondecreasing score function defined on p0, 1q. To select the coefficient functions

robustly, we combine (3.3) with group LASSO penalty and achieve variable selection for

coefficient functions by solving the following minimization problem,

min
θ,γ

1

n

n
ÿ

i“1

ϕ
´Rpeipθ,γqq

n` 1

¯

eipθ,γq ` λ
p
ÿ

j“1

}γj} (3.4)

Note that we do not penalize g0p¨q since it is the intercept coefficient function and it always

stays in the model.

3.2.2 Estimation for Index Parameter

Suppose that tpXi, Zi, yiq, i “ 1, . . . , nu is a random sample from model (3.1). For Zi

in a neighborhood of any given z, we can locally approximate the coefficient function using

Taylor expansion gkpθTZiq « gkpθ
TZiq ` g1kpθ

TZiqθ
TZi0, k “ 0, . . . , p, where Zi0 “ Zi ´ z.
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Let GpθT z0q “ pg0pθ
T zq, . . . , gppθ

T zqqT and G1pθT zq “ pg10pθ
T zq, . . . , g1ppθ

T z0qq
T . Denote

a “ GpθT zq and b “ G1pθT zq.

For Zi close to z, we define the residual as eipθ, a, bq “ yi ´X
T
i a´X

T
i bZ

T
i0θ. The local

rank objective function is

Lnpθ, aj, bjq “
1

npn´ 1q

n
ÿ

j“1

n
ÿ

i“1

ϕ
´Rpeijpθ, aj, bjqq

n2 ` 1

¯

eijpθ, aj, bjqwij (3.5)

where Rpeipθ, a, bqq is the rank of eipθ, a, bq among e1pθ, a, bq, . . . , enpθ, a, bq, ϕ is a general

bounded nondecreasing score function defined on p0, 1q, wij “ Khpθ
TZijq{

řn
j“1Khpθ

TZijq

and Zij “ Zi ´ Zj. We can get the R estimator for θ0, a and b by minimizing Equation 3.5.

3.2.3 Computational Algorithm

Here, we provide a detailed computational algorithm to implement the estimation pro-

cedure in subsections 3.2.1 and 3.2.2. The algorithm contains two stages. In Stage 1 (Step

0 - Step 2), we select gjp¨q, j “ 1, . . . , p. In Stage 2 (Step 3 - Step 6), we use R estimation

procedure to estimate θ0. Re-estimate g0p¨q and the non-zero gjp¨q, j P t1, . . . , pu selected in

Stage 1 using local rank estimation method.

Step 0: (Initialization): Input data tpXi, Zi, yiq, i “ 1, . . . , nu. Use sliced inverse regression

(SIR) to get initial value of θ0 with }θ0} “ 1, and denote the initial estimate as rθ
p0q
.

Step 1: Given rθ
p0q
, estimate γ by

Argmin
γ

1

n

n
ÿ

i“1

ϕ
´Rpeipγqq

n` 1

¯

eipγq ` λ
p
ÿ

j“1

}γj}

where eipγq “ yi ´ tViprθ
p0q
uTγ

Step 2: If gjp¨q, j “ 1, . . . , p is not selected, delete jth column of Xi and denote it as Xglasso
i .
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Step 3: Input data tpXglasso
i , Zi, yiq, i “ 1, . . . , nu. Use SIR to get initial value of θ with

}θ} “ 1, and denote the initial estimate as rθ
p1q
.

Step 4: Given rθ
p1q

and for each fixed j, estimate gjp¨q “ aj and g1jp¨q “ bj by

Argmin
aj ,bj

1

n

n
ÿ

j“1

ϕ

ˆ

Rpeipaj, bjqq

n` 1

˙

eipaj, bjqwij

where eipaj, bjq “ yi ´ XT
i aj ´ Xi

T bjZ
T
ij
rθ
p1q
. Denote the estimates of aj and bj as paj

and pbj.

Step 5: Given paj and pbj, estimate θ0 by

Argmin
θ

1

npn´ 1q

n
ÿ

i“1

n
ÿ

j“1

ϕ

ˆ

Rpeijpθqq

n2 ` 1

˙

eijpθqwij

where eijpθq “ pyi ´ paTj Xiq ´ XT
i
pbjZ

T
ijθ. Denote the estimate of θ as pθ. Update rθ

p0q

to pθ.

Step 6: Repeat Step 1-Step 6 until two successive values of pθ differ insignificantly.

3.2.4 Tuning Parameter Selection for Group LASSO

Tuning parameter, or regularization parameter, plays a critical role in shrinkage and

variable selection methods. Generalized cross validation (GCV) has been extensively used

to choose tuning parameters. However, Wang et al. (2007) showed that optimal tuning

parameter chosen by GCV tends to produce overfitted models. And they proposed a BIC-

type selection criterion. We choose the tuning parameter for group LASSO using a BIC-type

selection criterion defined as

BICλ “ log
´ 1

n

n
ÿ

i“1

ϕ
´Rppeipγλqq

n` 1

¯

peipγλq
¯

` dfλ
logpnq

n
, (3.6)
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where peipγλq “ yi ´ tVippθqu
Tγλ and dfλ is the number of nonzero coefficient functions. The

optimal tuning parameter can be obtained as

pλ “ Argmin
λ

BICλ.

3.2.5 Smoothing Parameter Selection for Function Estimation

Smoothing parameters such as number of knots in basis expansion and bandwidth in

local linear kernel estimation play an important role in nonparametric smoothing. In stage

1 of our proposed procedure, we use B-spline to approximate the coefficient functions. In

general, the number of knots can be chosen by GCV, BIC or some type of cross-validation

methods. In our simulation, we set the number of knots to be a fixed number for two reasons.

First, choosing number of knots are computationally expensive and it is not easy to decide

the range of number for the knots to be chosen. Secondly, the estimation of our coefficient

functions does not rely on the number of knots since we use local linear kernel estimation to

re-estimate the selected coefficient functions in stage 2. We only use basis expansion for the

purpose of selecting the coefficient functions and we find using different number of knots do

not affect the results of selection significantly.

Following the same procedure in subsection 2.3.1, we use cross-validation method to

choose the optimal bandwidth for local linear kernel smoothing.

3.3 Simulation

To assess the performance of rank-based variable selection method, we conduct a finite

sample Monte Carlo simulations. We use the Gaussian kernel in our calculation. The

algorithm that was described in subsection 3.2.3 is used to perform simultaneous variable

selection and estimation for coefficient functions and estimation for index parameters. We

stop the iteration when either the two successive values of θ differ less than 0.001 or the
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number of iteration exceeds 30. All computations in this section were performed using

the R software environment. Our method in subsection 3.2.1 were implemented using the

“grpLasso” R package of Meier et al. (2008).

Example 1. Consider the model

yi “ p1` 3u2i q ` 3 expp´u2i qx1i ` 1.5 sinpπuiqx2i ` 0.8puiqx3i ` εi. (3.7)

where, for i “ 1, . . . n, g0puiq “ 1 ` 3puiq
2, g1puiq “ 3 expt´puiq

2u, g2puiq “ 1.5 sinpπuiq,

g3puiq “ 0.8puiq and g4puiq “ ¨ ¨ ¨ “ g7puiq “ 0. ui is generated from Uniformp´1, 1q.

Xi “ px1, . . . , x7qT follow the multivariate normal distribution Np0,Σq with mean 0 and

CovpZk, Zlq “ 0.5|k´l|. Three different model error (ε) distributions are considered: the

standard normal distribution (Np0, 1q); the t-distribution with 3 degrees of freedom (t3);

the contaminate normal distribution (CN p0.95q) with contamination rate 0.05, given as

CN p0.95q “ 0.95Np0, 1q ` 0.05Np0, 102q. We simulate 500 samples for sample size of 200

and 400, respectively. We report the true positive rates (TPR), the false positive rates (FPR),

the percentage of correct models identified, model size and oracle values for all criteria to

assess the proposed performance of variable selection procedure for coefficient functions.

When it comes to assessing the individual and overall performance of the estimator of gjp¨q,

j “ 0, . . . , 7, we use mean absolute deviation of each coefficient function MADj and mean

absolute deviation of all estimated coefficient functions MAD defined in Section 2.3.1. Model

(3.7) is a VCM, which is a special case of SIVCM. We use (3.7) to evaluate the methods

proposed in section 3.2.1, which correspond to Stage 1 in section subsection 3.2.3.

From Table 3.1 and Table 3.2, we can observe that the performance of the RSGLASSO

is similar to LSSGLASSO for normal error, but much better than the LSSGLASSO for both
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t3 and CN p0.95q. RSGLASSO always gives higher percentage of correct fit and even outper-

forms LSSGLASSO under normal error for large sample. Figure 3.1- Figure 3.6 plot the esti-

mated coefficient functions (g0-g7) for 500 simulations when n “ 400. We can clearly observe

that RSGLASSO estimator has smaller variance and outperforms LSSGLASSO in terms of

selection when error distribution are not normal and the performance for RSGLASSO and

LSSGLASSO are almost the same when we have normal error distribution.

Table 3.1: The simulation results are based on 500 runs. TPR is the average true positive
rate; FPR is the average false positive rate; correct fit % is the proportion of times the
correct model is selected; and model size is the average number of nonzero functions in the
model.

ε n Method TPR FPR Correct Fit (%) Model Size
Np0, 1q 200 LS 0.979 0.058 0.766 4.170

R 0.977 0.053 0.772 4.144
400 LS 1.000 0.026 0.906 4.104

R 0.999 0.002 0.986 4.006
Oracle 1.000 0.000 1.000 4.000

t3 200 LS 0.841 0.037 0.476 3.670
R 0.857 0.015 0.562 3.630

400 LS 0.968 0.037 0.790 4.054
R 0.969 0.001 0.904 3.912

Oracle 1.000 0.000 1.000 4.000
CN p0.95q 200 LS 0.643 0.025 0.218 3.030

R 0.692 0.000 0.340 3.078
400 LS 0.859 0.032 0.496 3.706

R 0.981 0.000 0.942 3.942
Oracle 1.000 0.000 1.000 4.000
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Table 3.2: Mean absolute deviations of the coefficient functions and the overall mean absolute
deviation (MAD).

ε n Method g0 g1 g2 g3 g4 g5 g6 g7 MAD
Np0, 1q 200 LS 0.973 0.672 1.131 0.541 0.027 0.007 0.003 0.002 0.419

R 0.995 0.663 1.126 0.542 0.024 0.007 0.002 0.001 0.420
400 LS 0.977 0.667 1.127 0.538 0.012 0.001 0.001 0.000 0.415

R 0.986 0.660 1.114 0.539 0.001 0.000 0.000 0.000 0.413
t3 200 LS 0.978 0.701 1.162 0.515 0.027 0.008 0.002 0.002 0.424

R 1.002 0.683 1.144 0.510 0.011 0.000 0.000 0.000 0.419
400 LS 0.983 0.685 1.141 0.544 0.025 0.004 0.002 0.001 0.423

R 0.987 0.666 1.123 0.533 0.001 0.000 0.000 0.000 0.414
CN p0.95q 200 LS 0.986 0.811 1.154 0.475 0.015 0.002 0.000 0.000 0.430

R 1.031 0.741 1.132 0.461 0.000 0.000 0.000 0.000 0.421
400 LS 0.985 0.692 1.175 0.520 0.027 0.003 0.000 0.000 0.425

R 0.995 0.661 1.121 0.540 0.000 0.000 0.000 0.000 0.415
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Figure 3.1: Coefficient functions estimated by LSSGLASSO under standard normal error
distribution
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Figure 3.2: Coefficient functions estimated by RSGLASSO under standard normal error
distribution
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Figure 3.3: Coefficient functions estimated by LSSGLASSO under t3 error distribution
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ĝ0

R

u

C
oe

ffi
ci

en
t F

un
ct

io
n

−1.0 0.0 0.5 1.0

1.
5

2.
0

2.
5

3.
0

ĝ1
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ĝ3

R

u

C
oe

ffi
ci

en
t F

un
ct

io
n

−1.0 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

ĝ4
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Figure 3.4: Coefficient functions estimated by RSGLASSO under t3 error distribution
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Figure 3.5: Coefficient functions estimated by LSSGLASSO under CN p0.95q error distribu-
tion
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Figure 3.6: Coefficient functions estimated by RSGLASSO under CN p0.95q error distribution
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Example 2. Consider the model

yi “ t1` 3pθT0Ziq
2
qu ` 3 expt´pθT0Ziq

2
ux1i ` 1.5 sinpπθT0Ziqx2i ` 0.8pθT0Ziqx3i ` εi. (3.8)

where, for i “ 1, . . . n, g0pθT0Ziq “ 1`3pθT0Ziq
2q, g1pθT0Ziq “ 3 expt´pθT0Ziq

2u, g2pθT0Ziq “

1.5 sinpπθT0Ziq, g3pθ
T
0Ziq “ 0.8pθT0Ziq and g4pθ

T
0Ziq “ ¨ ¨ ¨ “ g7pθ

T
0Ziq “ 0. Zi “ pz1, . . . , z7qT

are independent random vectors with each component uniformly distributed on p´1, 1q.

Xi “ px1, . . . , x7qT follow the multivariate normal distribution Np0,Σq with mean 0 and

CovpZk, Zlq “ 0.5|k´l|, and θ “ p1{3, 2{3, 0, 2{3qT . Three different model error (ε) distri-

butions are considered: the standard normal distribution (Np0, 1q); the t-distribution with

3 degrees of freedom (t3); the contaminate normal distribution (CN) with contamination

rate 0.05, given as CNp0.95q “ 0.95Np0, 1q ` 0.05Np0, 102q. We simulate 200 samples for

sample size to 200 and 400, respectively. We use the same criteria used in example 1 to

assess the proposed performance of variable selection procedure for coefficient functions.

Following Zeng et al. (2012), the performance of estimation for θ0 is assessed by the angle

(in degree) between pθ and θ0. The angle is defined as Appθ,θ0q “ p180{πq arccos |pθ
T
θ0|.

Appθ,θ0q P r0, 90s, with small values indicating good performance. We use MADj defined in

example 1 to assess performance of function estimation. Table 3.3 report the performance

of variable selection of the coefficient functions. Table 3.4 and Table 3.5 summarized the

performance of estimation for θ and Gp¨q and we can see RSGLASSO performs almost as

well as LSSGLASSO when the error distribution are normal. For other error distributions

RSGLASSO outperforms LSSGLASSO. Figure 3.7 - Figure 3.12 plot the estimated coeffi-

cient functions (g0-g7) for 200 simulations when n “ 400 and the results are consistent with

those in Table 3.4 and Table 3.5.
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Table 3.3: The simulation results are based on 200 runs. TPR is the average true positive
rate; FPR is the average false positive rate; correct fit % is the proportion of times the
correct model is selected; and model size is the average number of nonzero functions in the
model.

ε n Method TPR FPR Correct Fit (%) Model Size
Np0, 1q 200 LS 0.967 0.062 0.680 4.150

R 0.963 0.061 0.680 4.135
400 LS 1.000 0.044 0.840 4.175

R 1.000 0.044 0.835 4.175
Oracle 1.000 0.000 1.000 4.000

t3 200 LS 0.827 0.029 0.470 3.595
R 0.857 0.012 0.580 3.620

400 LS 0.953 0.045 0.750 4.040
R 0.968 0.016 0.860 3.970

Oracle 1.000 0.000 1.000 4.000
CN p0.95q 200 LS 0.613 0.044 0.150 3.015

R 0.695 0.009 0.315 3.120
400 LS 0.827 0.019 0.460 3.555

R 0.905 0.000 0.725 3.715
Oracle 1.000 0.000 1.000 4.000

3.4 Discussion

We propose RSGLASSO procedure that is robust and efficient comparing to LSS-

GLASSO in both selecting and estimating the coefficient functions. Our method includes

Feng et al. (2015)’s rank-based spline SCAD (RSSCAD) as a special case. Comparing to

RSSCAD, our one-step variable selection method do not need iteration and we can estimate

θ0 for SIVCM at the same time. Therefore, our method is more general. It is worth pointing

out that the performance of the proposed method can be affected by high leverage points

(outliers in the design space). The proposed method do not perform variable selection for

index parameters and that needs to be further studied.
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Table 3.4: The mean and standard deviation of the Appθ,θ0q. The simulation results are
based on 200 runs.

ε n Method Mean Std. dev
Np0, 1q 200 LS 2.646 1.189

R 3.022 1.363
400 LS 1.707 0.721

R 1.989 0.816
t3 200 LS 5.176 6.174

R 3.827 1.855
400 LS 3.028 2.488

R 2.343 1.012
CN p0.95q 200 LS 12.237 17.725

R 4.612 8.147
400 LS 4.733 4.476

R 2.257 0.975

Table 3.5: Mean absolute deviations of the coefficient functions and the overall mean absolute
deviation (MAD).

ε n Method g0 g1 g2 g3 g4 g5 g6 g7 MAD
Np0, 1q 200 LS 1.193 0.733 1.126 0.530 0.041 0.002 0.002 0.001 0.453

R 1.210 0.730 1.114 0.531 0.042 0.004 0.000 0.000 0.454
400 LS 1.211 0.740 1.134 0.538 0.021 0.002 0.000 0.000 0.456

R 1.221 0.737 1.119 0.539 0.024 0.001 0.000 0.000 0.455
t3 200 LS 1.189 0.762 1.149 0.509 0.021 0.002 0.000 0.000 0.454

R 1.206 0.743 1.125 0.496 0.008 0.000 0.000 0.000 0.447
400 LS 1.212 0.748 1.150 0.535 0.028 0.009 0.006 0.004 0.462

R 1.219 0.734 1.119 0.526 0.009 0.002 0.000 0.000 0.451
CN p0.95q 200 LS 1.223 0.862 1.132 0.441 0.022 0.007 0.010 0.008 0.463

R 1.249 0.786 1.109 0.444 0.004 0.001 0.001 0.001 0.449
400 LS 1.229 0.764 1.160 0.495 0.018 0.001 0.000 0.000 0.459

R 1.226 0.733 1.118 0.498 0.000 0.000 0.000 0.000 0.447
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ĝ0

LS

index

C
oe

ffi
ci

en
t F

un
ct

io
n

−1.0 0.0 0.5 1.0

1.
5

2.
0

2.
5

3.
0

ĝ1
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Figure 3.7: Coefficient functions estimated by LSSGLASSO under standard normal error
distribution
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Figure 3.8: Coefficient functions estimated by RSGLASSO under standard normal error
distribution
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ĝ6

LS

index

C
oe

ffi
ci

en
t F

un
ct

io
n

−1.0 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

ĝ7
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Figure 3.9: Coefficient functions estimated by LSSGLASSO under t3 error distribution
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Figure 3.10: Coefficient functions estimated by RSGLASSO estimation under t3 error dis-
tribution
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Figure 3.11: Coefficient functions estimated by LSSGLASSO estimation under CN p0.95q
error distribution
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Figure 3.12: Coefficient functions estimated by RSGLASSO under CN p0.95q error distribu-
tion
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