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Abstract

An electric power system consists of three major components: generation, transmission

and distribution. Electricity is usually generated in remote generation plants and carried

through high voltage transmission lines to distribution substations. The distribution sys-

tem delivers the electricity safely and reliably to the end customers. When the customers’

demand increases, the transmission network has to be expanded to maintain the reliability

of the network. In the first chapter of this dissertation, we propose a new method to com-

pute the operational cost for the transmission network expansion. The proposed method

is based on multivariate interpolation which reduces the computational time of the solving

algorithm significantly. In the second chapter, we enhance the operational performance of

the microgrids as part of the distribution grid. We introduce an efficient way to integrate

a parking facility of electric vehicles (EVs) into the microgrids as a storage resource. By

using the vehicle to grid technologies which enable the microgrid to withdraw energy from

the batteries of the EVs, energy supply from the EVs’ batteries can be a cost-efficient al-

ternative. The ability to store and withdraw energy from the EVs allows the microgrid to

shift energy purchases from high price to low price hours during the day. Finally, in the

third chapter, we analyze the long term economics of EVs integration into the microgrids.

We develop an investment model to determine the optimal capacity of the parking facility

for EVs. Similar to the transmission network expansion, the required capital investment for

the vehicle to grid technologies and the operational cost of the microgrid over the planning

horizon are considered and minimized. We propose a new approach to minimize the total

cost of investment and operation. Experimental results confirm that investing in the vehicle

to grid technologies in the parking facility reduces the microgrid’s cost of electricity supply

in the long run.
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Introduction

In an electric power system, the transmission network transfers electricity at high volt-

ages from the power plants to the distribution substations. The distribution system lowers

the voltage from the transmission network and delivers the electricity safely to the end

customers.

When the customers’ demand grows, the transmission network needs to be expanded

to meet the customers’ new demand and maintain the reliability of the power delivery. The

transmission network expansion can involve reinforcing new transmission lines and adding

new sources of energy to the transmission network. Investment needs for the expansion

of the transmission network can be significant and depend on the length of the planning

horizon, network topology and the future demand. In addition to capital investment costs,

operational costs must also be taken into account. Operational costs include the costs of

generation and maintenance. As the computation of the operation cost for each hour over a

long planning horizon can be very time-consuming, in the first chapter of this dissertation,

we introduce a new method to accelerate the computations.

The energy distribution system is undergoing a major transformation from a simple

low-voltage power delivery system to a grid modernization tool. Integration of distributed

generators (DGs) and renewable energy resources into the distribution system and emer-

gence of microgrid technologies have revolutionized the power delivery system. Microgrids

are considered as small-scale versions of the current bulk power system that can operate in

grid-connected and autonomous modes. The adoption of microgrids as smart distribution

systems is growing and the recent wave of announced projects are enabling further devel-

opments. Microgrids integrate the local renewable resources, interact with power markets,

provide local load control and allow the system to efficiently store energy in small scales.
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Due to the intermittency of the renewable resources and the market price fluctuations, en-

ergy storage can play an important role in the energy scheduling of microgrids. The ability

to store energy allows the microgrid to be more flexible in interacting with the energy mar-

kets. However, investment needs for energy storage technologies are high and the provided

capacities are not significant. One of the energy storage resources that recently has received

a substantial attention from the research community is the batteries of the electric vehicles

(EVs). Since a typical EV is parked an average of 95% of the time, its battery can be used as

an energy storage device for the grid. By using the vehicle to grid (V2G) technologies which

enable the system to withdraw energy from the batteries of the EVs, energy supply from the

EVs’ batteries to the grid can be a cost-efficient alternative. Especially, when the number

of EVs participating in the V2G program becomes considerable, the provided capacity for

the storage and the withdrawn energy from the vehicles can reach significant quantities.

Another contribution of this dissertation is to introduce an efficient way to integrate the

parking facilities of the EVs into the microgrids as a storage resource and analyze the long

term economics of this integration. Similar to the transmission network expansion, to make

economic decisions in a long planning horizon for integrating the EVs parking facilities into

the microgrids, the required capital investment for the V2G equipment and the operational

cost of the microgrid over the planning horizon are considered and minimized. This disser-

tation outlines a plan of research that will consider the operational and investment solutions

for the transmission expansion and distribution system upgrade in the electrical grid.

The remainder of this dissertation is organized as follows. Chapter 1 describes the

transmission expansion planning problem and introduces the multivariate interpolation to

accelerate the operation cost computations. Chapter 2 proposes a new model for integration

of an EV parking facility with uncertain storage capacity into the microgrid. Finally, Chapter

3 discusses the long term economics of integration of an EV parking facility into the microgrid

and determines the optimal investment on the V2G technology in the parking facility by

minimizing the total costs.
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Chapter 1

Transmission Expansion Planning Using Multivariate Interpolation

1.1 Abstract

The total cost of the Transmission Expansion Planning (TEP) problem consists of in-

vestment and operation costs. The former is the required capital investment cost for new

circuits throughout the network, and the latter is the cost of optimal generation dispatch to

meet the demand at each hour. Traditionally, due to computational limits and long-term

planning, the operation cost is not computed for hourly demand in the TEP problem. It is

typically computed for the peak demand occurring during each year. In addition, the price

of fuel used in the operation problem is considered fixed rather than variable over time. In

this chapter, we use a multivariate interpolation method to compute the operation cost for

the TEP problem in which the demand changes from hour to hour and the fuel price from

day to day. A binary particle swarm optimization (BPSO) is proposed to solve the TEP

problem. We apply our method to the Garver’s 6-bus system and the IEEE 24-bus system

for a planning horizon of ten years. By using the multivariate interpolation, the computa-

tional time of the solving algorithm is reduced. We compare our method with traditional

methods based on the total cost of the obtained expansion plans. Experimental results show

that the proposed method is an enhancement to solving the multi-year security-constrained

TEP problem.

Keywords: Transmission Expansion Planning, Multivariate interpolation, Binary particle

swarm optimization
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1.2 Introduction

The TEP problem determines where, how many, and when new circuits should be

installed to reinforce the existing transmission network. In order to solve the TEP problem,

we can break it down into two sub-problems: the investment problem and the operation

problem. The former minimizes the capital investment cost required for new circuits over

the planning horizon. The latter, the OPF problem, determines the optimal output of the

generating units to meet the demand, where a certain set of operational and transmission

constraints are imposed. The solution of the OPF problem depends on the values of several

parameters, particularly time-varying parameters, such as demand and fuel price. Changing

the values of the parameters will change the solution of the OPF problem. As the demand

alters from hour to hour, the OPF problem has to be solved for hourly demand to obtain

the operation cost of the system. However in the TEP, the OPF problem is solved only

for a limited number of demands rather than the hourly demand over a year. That is, the

computed operation cost for those few demands multiplied by the number of hours in the

year is used to approximate the annual operation cost. In the literature, solving the TEP

problem using the annual peak demand is very common[1, 2, 7, 4]. Lately, in addition to the

peak demand, the operation cost for a few other demands is also computed. For instance,

Hinojosa et al. [5] divided the year into three unequal intervals and computed the operation

cost based on three different demands: valley, mean, and peak for any one interval. Similarly,

Aguado et al. [6] divided the year into four intervals and computed the operation cost for

four different demands: low, medium-low, medium-high, and high within different intervals.

However, considering even three or four different demands in year to compute the operation

cost can hardly reflect the reality of the operations in a power system. Uncertainty in the

electricity demand for the TEP problem has also been considered in the recent literature.

Ref. [7] have used scenario planning to model the uncertainty of the system parameters.

However, they only considered the peak demand to generate the scenarios related to the

4



electricity demand in the TEP problem. A comprehensive review of the recent published

articles in the TEP area has been presented by Hemmati et al.[8].

As noted, the price of fuel is another changing parameter in the OPF problem that

should be considered. For the fossil-fuel power plants, fuel cost is the main driver of the

operation cost. The market price of some fuel is highly volatile. For instance, the natural

gas and oil market prices change on a daily basis. Most utility companies, in order to

stabilize the price of the required fuel for power plants, make long term fuel contracts.

Therefore, the cost of fuel in the power plants remains stable. However, the market value

of the fuel they use does change from day to day. Hence, using the daily market value of

the fuel in the OPF problem is essential to obtain a more accurate value for the operation

cost. Despite the fact that the fuel prices change over time, they are usually assumed fixed

over the planning horizon. For instance, Sepasian et al.[9] presented a multiyear hybrid

generation/transmission expansion problem including the fuel supply cost. They considered

a fixed fuel price in the model during the planning years. Sharan et al.[10] considered the

fuel cost, fuel transportation cost, and also the fuel constraints in the model. Similarly, the

fuel price was assumed to be fixed within the planning horizon.

Our primary goal is to show that computing the operation cost based on peak demand

and average fuel price is not accurate and may result in more costly expansion plans for the

TEP problem. Therefore, we improve accuracy by considering the hourly demand instead of

annual peak demand and daily fuel prices instead of annual average fuel price. As the fuel

price does not change during a day, we model it on a daily basis.

In order to compute the hourly operation cost, the OPF problem has to be solved at

each hour. However, solving the OPF problem for each hour over a long planning horizon can

be extremely time-consuming. At the first attempt to overcome this issue, we may employ

the post-optimality analysis of the problem. Post-optimality analysis of an optimization

problem determines the optimal solution after changing the parameters without having to

5



resolve the problem. As the OPF problem is a linear programming (LP) problem, post-

optimality analysis of an LP problem should be considered. For the LP problems, the effect

of single and simultaneous variation in the right hand side and the cost coefficients vectors on

the problem’s optimal solution have been widely studied [11, 12]. Greenberg [13] established

theorems about the simultaneous variation of the parameters when the primal and dual are

in canonical form. However, his analysis was based on the assumption that the variation

occurs in a single direction. Making the same assumption for the OPF problem does not

sound reasonable as the demand and fuel price can change in random directions. Therefore,

rather than using the post-optimality analysis, we directly quantify the operation cost value

by multivariate interpolation.

To solve the TEP problem, different mathematical and Meta-heuristic methods have

been proposed. Several mathematical methods such as linear programming[14, 15, 16], dy-

namic programming [17], nonlinear programming [18], and mixed integer programming [19]

have been used to obtain the optimal solution for the TEP problem. Optimization techniques

such as Benders [20, 21] and hierarchical [22] decompositions have also been utilized. Re-

cently, the Meta-heuristic methods have received considerable attention. The TEP problem

has been solved using genetic algorithms (GAs) [23, 4] , game theory[24], evolutionary algo-

rithms [25], fuzzy approach [26], simulated annealing (SA) [22], particle swarm optimization

(PSO)[25, 7], evolutionary particle swarm optimization (EPSO)[27], discrete evolutionary

particle swarm optimization (DEPSO) [28] and ant colony optimization [25].

We use BPSO, a binary version of the PSO algorithm, to solve the TEP problem. The

BPSO is easy to code and it has been shown to be efficient for solving discrete optimization

problems. Shayeghi et al. [29] used a non-binary discrete PSO, Fuerte-Ledezma et al.

[30] a BPSO and Kimiyaghalam et al.[31] an improved BPSO to solve the TEP problem.

Kimiyaghalam et al. claimed that their proposed version converges faster than a basic BPSO.

As the main contribution of our work is using the multivariate interpolation to compute the

hourly operation cost, we code a standard version of the BPSO algorithm.
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1.3 Mathematical Model and Reliability Consideration

1.3.1 Multiyear TEP Problem Formulation

The objective of the TEP problem is to identify the best set of circuits to be added

over the planning horizon. The total cost of the power system is minimized while a specific

set of constraints are imposed to the system. In the TEP problem, a DC lossless model is

usually used based on the assumption that the line losses are negligible. However, ignoring

the line losses over a long planning horizon may result in a different network expansion plan

[2]. Therefore, we considered line losses in modeling the TEP problem. The transmission

line losses for a DC power flow system can be approximated with the expression (1.1)

Pf
Loss(i,j)
p ≈ 2Gij(1− cos(θi − θj)) = 4Gij(Sin

2(θi − θj)/2) ≈ Gij(θi − θj)2 (1.1)

A quadratic relationship between the line losses and voltage angle differences can be

problematic in terms of convergence properties and finding the exact optimal solution of

the OPF problem. Therefore, a linear model for line losses should be considered. Several

methods have been proposed to represent a linear model for the line losses in the TEP

problem [32, 33, 2]. One approach is to approximate (θi−θj)2 using piecewise linear functions

and the other is to approximate (Pf i,j
p )2. Due to several advantages explained in [2] we use

the approach proposed by Zhang et al. in which the losses are represented as piecewise linear

functions of the line flows instead of the voltage angle differences. The relationship between

Pf
Loss(i,j)
p and (Pf i,j

p )2 can be expressed by equation (1.2):

PfLoss(i,j)
p = (Gi,j/γ

2)(Pf i,j
p )2 (1.2)

The piecewise linear model associated to the (Pf i,j
p )2 has been expressed by (1.6)-(1.11),

where (Pf i,j
p )2 is approximated by L linear sections. (Pf i,j

p )+ and (Pf i,j
p )−are two non-

negative variables to represent the power flow between buses i and j.
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The formulation of the TEP problem is indicated by Equations (1.3)-(1.16). The ob-

jective function of the model, given in (1.3), corresponds to the sum of the operation cost of

the power system and the investment cost of the newly added circuits to the transmission

network. The operation cost at each period is the product of the amount of fuel used in each

generator by the per unit price of the fuel.

Min z =
P∑

p=1


UFf,p(MF f,i

p,k) +
N∑

n=1

Kn
p (ICn

p )

(1 + r)p

 (1.3)

Subject to:

Mp(Pf
i,j
P ) + PGi

p,k + PGV i
p = Di

p + PfLoss(i,j)
p (1.4)

Pf i,j
P − γi,j(n

0
i,j + ni,j)(θi − θj) = 0 (1.5)

Pf i,j
p = (Pf i,j

p )+ − (Pf i,j
p )− (1.6)

|Pf i,j
P | =

L∑
l=1

∆Pf i,j
P (l) = (Pf i,j

p )+ + (Pf i,j
p )− (1.7)

0 ≤ ∆Pf i,j
P (l) ≤ (n0

i,j + ni,j)(Pf
i,j
P )/L (1.8)

PfLoss(i,j)
p = (Gi,j/γ

2)
L∑
l=1

kl(∆Pf
i,j
P (l)) (1.9)

kl = (2l − 1)(Pf i,j
P )/L (1.10)

|Pf i,j
P + PfLoss(i,j)

p | ≤ (n0
i,j + ni,j)(Pf

i,j
P ) (1.11)

MF f,i
p,k ·HHVf = PGi

p,k ·Nhk,f ·HRi
k (1.12)

|Pf i,j
P | ≤ (n0

i,j + ni,j)(Pf
i,j
P ) (1.13)

0 ≤ PGi
p,k ≤ PGi

p,k (1.14)

0 ≤ PGV i
p,k ≤ Di

p (1.15)

0 ≤ ni,j ≤ ni,j (1.16)
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Constraints in (1.4) represent the power balance at bus i. Constraints in (1.5) represent

the power flow on each line. Constraints (1.6) to (1.10) are to ensure that ∆Pf i,j
P (l) with

smaller values will be chosen to fill first. Constraints in (1.11) represent the thermal flow

limits over transmission lines. Constraints in (1.12) represent the relationship between the

consumed fuel in the power station and the generated power [34]. Constraints in (1.13)

guarantee the power flow at each line do not exceed the maximum allowed level. Constraints

in (1.14) represent the generating units operating capacity and constraints in (1.15) and

(1.16) indicate the fictitious generation limit and the maximum allowed number of circuits

from bus i to bus j, respectively.

1.3.2 N-1 Security Criterion

A secure power system must be able to tolerate the outage of any component and

continue to deliver electric power safely and reliably. When a power system withstands

the outage of a single component out of N components, it is said to be N-1 secure. The

N-1 secure system means that failure of any one line in the transmission system does not

cause overloading in the other lines. Likewise, the integrity of the system after the failure

should be maintained. The N-1 security is fundamental to the network’s expansion, and

it must be achieved regardless of the imposed cost [35]. In order to meet the N-1 security

criterion in the TEP problem, the total number of different states at which a contingency

may occur should be computed. Afterwards, the system condition should be analyzed once a

contingency occurs. The number of contingencies to be considered in a transmission system

is NL+1 (single line outage plus no outage), where NL is the number of lines in the system.

Therefore, the total number of states for the N-1 security analysis for a planning horizon

of NY years and ND demand is NY × ND × NL+1. Clearly, evaluating a complete N-1

security analysis for all states in a system is very time consuming and usually unnecessary.

Therefore, in order to decrease the computational time of the analysis, we evaluate the N-1

criterion only for the annual peak demand. As a system can tolerate a line outage for the
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peak demand, it will most likely be able to tolerate lower demands [36]. To evaluate the

N-1 security criterion, we add a virtual generator to each bus of the N-1 system and set a

very high cost for their otuput to penalize the objective function of the OPF problem. After

solving the OPF for N-1 system, if the output of a virtual generator is greater than zero, the

system needs additional generation to meet the demand, that is, the transmission system is

not N-1 secure. We have summarized the required steps to analyze the N-1 security criterion

in the methodology section.

1.4 Multivariate Interpolation

As noted earlier, to compute the annual operation cost, rather than solving the OPF

problem at each hour, we could employ the post-optimality analysis to obtain the optimal

solution after the values of demand and fuel price change. However, when the variations

exceed an allowable level, the post-optimality analysis will no longer be valid and has to be

revised. Moreover, when multiple parameters are changed independently in different direc-

tions, it becomes considerably complicated. Therefore, rather than using the post-optimality

analysis, we directly quantify the objective function value by multivariate interpolation. In

comparison to the post-optimality analysis, the multivariate interpolation requires less so-

phistication, is much faster, and approximates the objective function value with a negligible

error. Moreover, for the post-optimality analysis, when the number of changing parameters

increases, it is almost impossible to exactly determine the transition points of the optimal

basis. While using the interpolation, we do not have to pinpoint the transition points.

After we obtained the operation cost of all hours in a year by multivariate interpolation,

The BPSO algorithm integrates the annual operation cost and investment cost of the newly

added circuits to determine the optimal expansion plan over the planning horizon. The

methodology used to solve the multiyear security constraint TEP problem is described in

the following sections.
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1.4.1 BPSO Algorithm

Originally introduced by Eberhart and Kennedy in 1995, the particle swarm algorithm

adjusts the trajectories of a population of particles through a problem space on the basis

of information about each particle’s previous best performance and the best previous per-

formance of its neighbors [37]. The PSO was originally developed for real-valued spaces.

However, in many problems, discrete valued variables are widely utilized [38]. We describe

the BPSO algorithm used to solve the TEP problem through the following procedure:

a) Representing candidate expansion plans

In the BPSO algorithm, a candidate expansion plan is represented by a particle’s

position vector Pk, which is defined by (1.17):

Pk = (Pk,1, Pk,2, Pk,3, . . . , Pk,N) (1.17)

Where N is the total number of candidate lines for a particular network topology and k

is the iteration number. For instance, if four circuits are allowed between two buses, the

position vector contains 4 ×
(
n
2

)
components for a transmission system with n buses. This

vector for a problem that has been modeled for ten years will be a matrix of 10 by 4×
(
n
2

)
.

Each particle’s velocity vector at iteration k is given by (1.18):

Vk = (Vk,1, Vk,2, Vk,3, . . . , Vk,N) (1.18)

The best visited position (personal best) for a particle is defined by (1.19):

PP.best,k = (PP.best,k1, PP.best,k2, PP.best,k3, . . . , PP.best,kN) (1.19)
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And the best position explored so far (global best) is denoted by (1.20):

Pglobal,k = (Pglobal,k1, Pglobal,k2, Pglobal,k3, . . . , Pglobal,kN) (1.20)

b) Updating the particle’s velocity and position

The particle’s velocity vector is updated according to (1.21):

Vk = ΨVk + c1r1(pP.best,k − pk) + c2r2(pP.global,k − pk) (1.21)

Where acceleration coefficients c1 and c2 are positive constants named cognitive and

social parameters, respectively, r1 and r2 represent independent random numbers which are

uniformly distributed in the range [0,1] , and Ψ is the inertia weight factor that controls the

amount of the previous velocity of the particle to be maintained in the current cycle [39].

In the BPSO, the personal best and global best of the particles are updated as in real-

valued version. However, the major difference between BPSO and real-valued PSO is that

the velocities of the particles are restricted within the range [0,1]. As in [38], we map the

real-valued velocity numbers to the range [0,1], using the sigmoid function given by (1.22):

Vk =
1

1 + e−Vk
(1.22)

The particle’s position vector is updated according to (1.23):

Pk =


1 if rk ≤ 1

1+e−Vk

0 otherwise

(1.23)

Where rk is a uniform random number in the range [0,1].

c) Computing the fitness functions
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The fitness function of a particle’s position Pk is the total costs over the planning

horizon (P periods) that is calculated by (1.24):

FP =
P∑

p=1


O(Pk) +

N∑
n=1

(ICn
p × Pk)

(1 + r)p

+M ×Rel (1.24)

Where M is a huge penalty cost and Rel is a binary variable that equals to one if the

system does not meet the N-1 security criterion. The value of O(Pk) is the operation cost of

the candidate plan Pk. In our comparison study, the value of O(Pk) is computed as indicated

in (1.25):

O(Pk) =


Y (Pk) Multivariate interpolation solved for hourly demand

OPF (Pk) OPF problem solved for the annual peak demand

(1.25)

1.4.2 Multivariate Interpolation

In this section, we describe the multivariate interpolation method to compute the hourly

operation cost which is used to calculate the fitness function as indicated in (1.24). The first

step of the method is to determine the changing parameters of the OPF problem. We assume

that the demand and fuel prices (the right-hand-side and cost coefficients) are the changing

parameters. The second step is to determine the range of the changing parameters, the

minimum and maximum values. The range is then broken at points (breakpoints) uniformly

distributed over the range. The OPF problem is solved for all combinations of breakpoints of

the demand and fuel prices. The operation cost of a combination of demand and fuel prices

not included by the breakpoints is estimated by the following multivariate interpolation

method.
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Interpolation on a function of more than one variable is called multivariate interpola-

tion. Whenever the linear standard algebra method is employed to find the value of the

function at an arbitrary point, the multivariate interpolation is called multi-linear. The

multi-linear interpolation methods can approximate the value of an arbitrary point inside a

right rectangular polytope using the data of the vertex points [40]:

We first explain the multivariate interpolation method using the bilinear case, the chang-

ing of two parameters. Then, we provide general equations for the multivariate case. Assume

we have a function y=f(x1,x2) and four points: ((x11,x21),...,(x12,x22)) that are the vertices

of the rectangle ABCD shown in Figure 1.1. Assume the value of the function y is known at

the four points and they are denoted b y1, y2, y3, and y4, respectively. An arbitrary point E

located at (x1,x2) inside the rectangle divides the rectangle into four different partitions. To

compute the y-value at the point E, we compute using (1.26) - (1.29) the normalized areas

A1, A2, A3, and A4 for each partition.
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Figure 1.1: Multivariate interpolation on a function of two variables
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A1 =

(
(x1 − x11)(x2 − x21)

(x12 − x11)(x22 − x21)

)
(1.26)

A2 =

(
(x12 − x1)(x2 − x21)

(x12 − x11)(x22 − x21)

)
(1.27)

A3 =

(
(x1 − x11)(x22 − x2)

(x12 − x11)(x22 − x21)

)
(1.28)

A4 =

(
(x12 − x1)(x22 − x2)

(x12 − x11)(x22 − x21)

)
(1.29)

The y-value of E, y5, is given by (1.30):

y5 = y1.A4 + y2.A3 + y3.A2 + y4.A1 (1.30)

In Table 1.1, we show the interpolation method for two arbitrary functions. Clearly, the

interpolation error for the linear function is zero and for the nonlinear function is greater

than zero.

Table 1.1: Interpolated value of Y function at point E (1.8,2.7)

Y=1.58X1+0.76X2

Index
number Vertex

Y
value Ai

Interpolated
value

Function
value

Error
percentage

1 (1,2) 3.1 0.56

4.896 4.896 0.00
2 (1,3) 3.86 0.24
3 (2,2) 4.68 0.14
4 (2,3) 5.44 0.06

Y=2.87X2
1+1.42X2

2

Index
number Vertex

Y
value Ai

Interpolated
value

Function
value

Error
percentage

1 (1,2) 8.55 0.56

20.41 19.65 3.85
2 (1,3) 15.65 0.24
3 (2,2) 17.16 0.14
4 (2,3) 24.26 0.06

To present the multivariate interpolation in a generic format, assume we have a function

y = f(x1, x2, x3, ..., xn) and 2n points that are the vertices of a right rectangular polytope. If

an arbitrary point Z (given at z1, z2,..., and zn) in the interior of the polytope is chosen, the
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polytope is divided into 2n partitions. The y-value of Z can be computed by (1.31) - (1.35)

[40]:

A1 =

(
(z1 − x10)(z2 − x20)...(zn − xn0)

(x11 − x10)(x21 − x20)...(xn1 − xn0)

)
(1.31)

A2 =

(
(z1 − x10)(z2 − x20)...(xn1 − zn)

(x11 − x10)(x21 − x20)...(xn1 − xn0)

)
(1.32)

... (1.33)

A2n =

(
(x11 − z1)(x21 − z2)...(xn1 − zn)

(x11 − x10)(x21 − x20)...(xn1 − xn0)

)
(1.34)

Where point (x10, x20, ..., xn0) is the polytope vertex nearest the origin, and point (x11, x21, ..., xn1)

is the vertex farthest from the origin. To compute the y-value of Z, each Ai is multiplied

by the y-value of the corresponding diagonally opposite vertex. The y-value for Z, can be

computed by (1.35):

yZ = y1.A2n + y2.A2n−1 + ...+ y2n−1.A2 + y2.A1 (1.35)

The accuracy of the interpolation method is determined by the number of breakpoints.

It is clear as the number of breakpoints increases the interpolation error decreases. However,

a larger number of breakpoints would require greater computational time. Therefore, we

calculate an acceptable number of breakpoints by using the maximum amount of time we

have available to run the BPSO algorithm. The number of breakpoint, B, for C number of

changing parameters, is given by (1.36):

B = C

√
(

T

Y ×N × P × t
) (1.36)

Where t denotes the computational time of solving one OPF problem for a specific

transmission network, N is the number of iterations of the BPSO with P particles, Y is the

number of years, T is the maximum amount of time we have available to run the BPSO.

16



The flowchart of the proposed methodology which is used to solve the TEP problem

and evaluate the N-1 security criterion is given in Figure 1.2.

1.5 Experimental Results

We ran our experiments on the Garver’s 6-bus and the IEEE 24-bus test systems. In

order to solve the OPF problem for the considered test systems, we used the IBM ILOG

CPLEX interactive optimizer with Concert technology in C++. Concert Technology is a

set of libraries offering an API that includes modeling facilities to allow a programmer to

embed CPLEX optimizers in C++ [20]. The experimental results obtained by the proposed

method are compared to those of a traditional method. In the traditional method, the OPF

problem is solved for the annual peak demand and annual average fuel price.

Table 1.2: The peak demand data for each year of the 10-year horizon period

BUS# Y ear0 Y ear1 Y ear2 Y ear3 Y ear4 Y ear5 Y ear6 Y ear7 Y ear8 Y ear9 Y ear10

1 20 22.97 26.39 30.31 34.82 40.00 45.95 52.78 60.63 69.64 80.00

2 60 68.92 79.17 90.94 104.47 120.00 137.84 158.34 181.89 208.93 240.00

3 10 11.49 13.20 15.16 17.41 20.00 22.97 26.39 30.31 34.82 40.00

4 40 45.95 52.78 60.63 69.64 80.00 91.90 105.56 121.26 139.29 160.00

5 60 68.92 79.17 90.94 104.47 120.00 137.84 158.34 181.89 208.93 240.00

Total 190.00 218.25 250.71 287.99 330.81 380.00 436.51 501.41 575.97 661.62 760.00

Table 1.3: Data for annual average price of the oil and natural gas

Fuel type Y ear0 Y ear1 Y ear2 Y ear3 Y ear4 Y ear5 Y ear6 Y ear7 Y ear8 Y ear9 Y ear10

Oil($/barrel) 20 22.97 26.39 30.31 34.82 40.00 45.95 52.78 60.63 69.64 80.00

Natural gas($/Mcf) 6 6.81 7.91 9.09 10.47 12 13.78 15.83 18.19 20.89 24
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Initialize the first particle randomly for each year

Divide the demand and each fuel type into equal intervals
according to the predetermined number of breakpoints

solve the DC-OPF with CPLEX
using the breakpoint values

Use the multivariate interpolation
to compute the operation cost

Obtain the fintness by
adding the investment

cost to the operation cost

Check the N-
1 criterion?

Solve the OPF for
the intact system

No

Remove a
line randomly

The system is
still integrated?

Penalize the fit-
ness function (M)

No

Add virtual
generation and
solve the OPF
for N-1 system

Yes

Does the system use
virtual generation?

Yes

The outage of any
one line is evaluated?

No

No

Update the velocity,
position and personal
best of each particle Yes

Yes

Compare the updated per-
sonal best with the per-
sonal result so far and
update the best result

Evaluate best result of
the swarms so far and
update the global best

Reach the
max iteration?

Stop and collect the results

Yes

No

Figure 1.2: The flowchart of the solving algorithm
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Figure 1.3: Garver’s 6-bus test system

1.5.1 Garver’s 6-bus system

The Garver’s test system has been explained in [16] and its network is shown in Fig-

ure 1.3. We assume two types of fuel are being used in the power system. The active power

stations, generators one to four, use oil to generate power for the current power demand.

The power station six, which is going to enhance the power supply for the growing demand,

is equipped with six natural gas generators. The peak demand data is given in Table 1.2 and

the data for the annual average price of the oil and natural gas is given in Table 1.3. The

increase rate of the demand is assumed to be 14.87% at each year. The hourly demand data

used in the proposed method is generated based on the method explained in [42]. In [42], a

typical year has been divided into three seasons, winter, summer and spring/fall. The hourly

demand in a day during each season is presented in percent of the peak demand of the day
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inside that season. We generate the hourly data based on the presented percentages and the

annual growth rate. The hourly demand for the first 100 hours of the first year is shown in

Figure 1.4. To generate the daily oil and natural gas prices for the proposed method, we

collected the historical data for different fuel prices from [43]. We extracted the seasonal

factor from the data and determined a typical pattern for the fuel price fluctuations during

one year. Based on the determined pattern, we generated the daily fuel prices randomly for

the first year. Then, we adjusted the generated fuel prices for a day according to the season

it belongs to. For the following years, in addition to the described procedure, the annual

growth rate was considered. The oil and natural gas prices for the first 50 days of the first

year are shown in Figures 1.5 and 1.6, respectively. Since the prices of the two fuel types

and the system demand are the changing parameters in the OPF problem, we use trilinear

interpolation to estimate the hourly operation cost of the system.
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Figure 1.4: The hourly demand for the first 100 hours of the first year
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Figure 1.5: Oil price for the first 50 days of the first year
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Figure 1.6: Natural gas price for the first 50 days of the first year

The trilinear interpolation is a method of linear interpolation on a function of three

variables. It approximates the value of an arbitrary point inside the local axial rectangular

prism using the data stored on the corners. To describe the trilinear interpolation, we create

the interpolation for a candidate expansion plan for the Garver’s 6-bus test system. We

consider an expansion plan in which all of the buses in the network are connected to each
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other and the maximum and minimum values of the demand, oil price and natural gas prices

in one stage are [21,105], [14,70], [6,20], respectively. We divide each data range into five

equal intervals and solve the OPF problem for all combinations of the breakpoints. Figure 1.7

shows the interpolation function for a fixed price of natural gas (10 $/Mcf).
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Figure 1.7: The multivariate interpolation for the described 6-bus test system

As noted earlier, the fitness function of the BPSO algorithm is the sum of the investment

cost of the newly added circuits and the annual operation cost. Table 1.4 displays the data

associated to the investment costs of the parallel circuits in each line. For the Garver’s

network, we assumed the generator at bus 1, the three generators at bus 3 and the six

generators at bus 6 have a maximum capacity of 150 MWs, 120 MWs, and 100 MWs,

respectively. The maximum number of circuits between two buses is also considered to be

four.

1.5.2 The multivariate interpolation error

To obtain the relative error between the interpolated value and the OPF optimal value,

we take a random sample of 1000 points from each data range and compute the operation cost
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Table 1.4: Data associated to the parallel elements in each line

No. of allowed
elements

Line
(from-to)

Length
(miles)

R
(p.u)

X
(p.u)

Capacity
(MW)

IC
(M$)

4 1-2 40 0.1 0.4 100 4

4 1-3 38 0.1 0.38 100 3.8

4 1-4 60 0.08 0.6 80 6

4 1-5 20 0.09 0.2 100 2

4 1-6 68 0.1 0.68 70 6.8

4 2-3 20 0.09 0.2 100 2

4 2-4 40 0.05 0.4 100 4

4 2-5 31 0.09 0.31 100 3.1

4 2-6 30 0.08 0.3 100 3

4 3-4 59 0.09 0.59 82 5.9

4 3-5 20 0.06 0.2 100 2

4 3-6 48 0.1 0.48 100 4.8

4 4-5 63 0.1 0.63 75 6.3

4 4-6 30 0.09 0.3 100 6.3

4 5-6 61 0.07 0.61 80 6.3

with the OPF problem and the trilinear interpolation for the selected points. Figure 1.8 shows

the MAE of the sample for different number of breakpoints. As the number of breakpoints

increases, the relative error between the interpolated value and the OPF optimal value is

reduced.
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Figure 1.8: MAE for different number of breakpoints
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The difference between the computed operation cost by trilinear interpolation and the

OPF problem for the first 100 hours of year one has been shown in Figure 1.9. The number

of breakpoints is assumed to be 5. The error for the annual operation cost is 0.02%.
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Figure 1.9: The computed operation cost difference between the trilinear interpolation and the
OPF problem for the first 100 hours of year one

1.5.3 Comparing the results of the proposed and traditional methods

We ran the BPSO program for 100 iterations. In the BPSO algorithm, c1 was set at

1.5, c2 at 2.5, the inertia weight factor Ψ at 0.999 and the number of particles at 50. To

determine the number of breakpoints for the trilinear interpolation, we set the maximum

allowed computational time of the algorithm to 3 days. As it takes 0.04 seconds on average

to solve the OPF problem for the Garver’s 6-bus system, the number of breakpoints using

(36) was computed to be 5. The algorithm’s run time for the proposed method was 2 day

and 18 hours and for the traditional method was 2 hours and 12 minutes on a 3 GHz Core 2

Due processor. In either method, after 80 iterations, no considerable change in the objective

function value was observed. If we had used the OPF problem instead of multivariate
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interpolation to compute the hourly operation cost in the BPSO, it would take 2 years and

8 days to compute the total operation cost for the BPSO. The number and the location of

the newly added circuits are different in the obtained plans by the proposed and traditional

methods. In the final plan obtained by the proposed and traditional methods, five and

six new circuits, respectively, are added to the transmission network. The newly added

circuits to the Garver’s 6-bus system based on both methods have been shown in Table 1.5.

To compare the total cost of the two methods, we computed the hourly operation cost by

solving the OPF problem at each hour for both plans. Table 1.6 summarizes the present

worth of the annual operation and investment costs for the final plans. The total cost of the

multivariate interpolation is $3.8M less than the traditional plan.

1.5.4 IEEE 24-bus test system

The IEEE 24-bus test system has been explained in [42] and its network is shown in

Figure 1.10. It contains 24 generation/load buses, 38 transmission lines and 33 generation

units. The transmission line data is given in Table 1.7. We assume that three types of thermal

generating plants, coal-fired, oil-fired, and natural gas-fired, are active in the system. The

data for annual average fuel price is given in Table 1.8. Similar to the 6-bus system, we

use the annual peak demand and average fuel price for the traditional method and hourly

demand and daily fuel price for the proposed method to solve the TEP problem. To generate

the demand and fuel price data, we use the same procedure explained in section 4.1. The

increase rate of the demand is assumed to be 14.87% at each year. The peak demand data

for each bus is also given in Table 1.9.
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Figure 1.10: IEEE 24 bus test system

The prices of the three fuel types together with the system demand are four changing

parameters in the OPF problem. Therefore, multi-linear interpolation on a 4-dimentional

lattice is employed to estimate the hourly operation cost of the system. To compute the
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Table 1.7: Data associated to the parallel elements for 24 bus system

Line
(from-to)

X
(p.u)

Capacity
(MW)

IC
(M$)

Line
(from-to)

X
(p.u)

Capacity
(MW)

IC
(M$)

1-2 0.0139 175 1.575 9-12 0.0839 400 3

1-3 0.2112 175 2.8875 10-11 0.0839 400 3

1-5 0.0845 175 1.155 10-12 0.0839 400 3

2-4 0.1267 175 1.7325 11-13 0.0476 500 1.98

2-6 0.192 175 2.8875 11-14 0.0418 500 1.74

3-9 0.119 175 1.6275 12-13 0.0476 500 1.98

3-24 0.0839 400 3 12-23 0.0966 500 4.02

4-9 0.1037 175 1.4175 13-23 0.0865 500 3.6

5-10 0.0883 175 1.2075 14-16 0.0389 500 1.62

6-10 0.0605 175 8.4 15-16 0.0173 500 0.72

7-8 0.0614 175 8.4 15-21 0.049 500 0.72

8-9 0.1651 175 2.2575 15-21 0.049 500 4.08

8-10 0.1651 175 2.2575 15-24 0.0519 500 2.16

9-11 0.0839 400 3 16-17 0.0259 500 2.28

16-19 0.0231 500 0.96 17-18 0.0144 500 0.6

17-22 0.1053 500 0.438

Table 1.8: Annual average fuel price

Fuel type Y ear1 Y ear2 Y ear3 Y ear4 Y ear5 Y ear6 Y ear7 Y ear8 Y ear9 Y ear10

Oil($/barrel) 22.97 26.39 30.31 34.82 40.00 45.95 52.78 60.63 69.64 80.00

Natural gas($/Mcf) 6.89 7.91 9.09 10.47 12 13.78 15.83 18.18 20.89 24

Coal($/ton) 43.00 47.00 51.00 52.00 54.00 56.00 58.00 62.00 66.00 69.00

Table 1.9: The peak demand data for each year of the 10-year horizon period

Bus #

Y ear# 1 2 3 4 5 6 7 8 9 10 13 14 15 16 18 19 20

1 116.33 104.49 193.9 140.52 76.48 146.5 140.15 184.19 188.5 210.04 285.41 282.9 341.43 324.82 358.66 303.86 167.21

2 125.63 112.83 209.39 86.08 82.58 158.19 149.71 198.9 203.56 226.81 308.26 306.32 368.72 305.8 387.36 381.69 209.35

3 135.68 121.85 226.15 212.6 89.19 170.87 170.67 214.84 219.87 244.99 332.93 327.21 398.23 380.87 418.38 413.81 192.71

4 146.55 131.6 244.23 231.84 96.34 184.53 183.7 232 237.44 264.59 359.55 356.77 430.08 337.45 451.8 442.16 243.45

5 158.26 142.15 263.79 204.76 104.05 199.3 186.05 250.6 256.42 285.75 388.35 385.26 464.55 447.35 488 456.31 263.49

6 170.92 153.5 284.89 221.28 112.36 215.25 215.02 270.63 276.96 308.62 419.41 404.9 501.71 444.9 527.01 517.45 283.21

7 184.6 165.8 307.64 235.37 121.36 232.46 218.32 292.24 299.08 333.29 452.92 409.22 541.72 505.39 569.13 542.47 262.86

8 199.36 179.05 332.26 280.1 131.03 250.98 230.72 315.63 323.05 359.88 489.15 387.93 585.15 557.78 614.72 600.61 324.21

9 215.31 193.38 358.86 306.71 141.54 271.13 249.2 340.88 348.89 388.76 528.33 527.53 631.89 625.15 663.81 617.06 326.76

10 225.3 203.34 368.85 209.23 151.52 281.1 259.19 350.88 358.89 398.76 538.33 418 642 579.76 673.9 668.75 370.57

estimation error for a random sample of 1000 points from each data range, we computed the

operation cost by the multivariate interpolation and the OPF problem for the chosen points.

The estimation error (MAE) for the described sample, considering 5 breakpoints, is 0.04%.

28



1.5.5 Comparing the results of the proposed and traditional methods

We ran the BPSO algorithm for 100 iterations. In either method, after 82 iterations, no

considerable change in the objective function value was observed. To determine the number

of breakpoints for the multivariate interpolation, we set the maximum allowed computational

time of the algorithm to one week. As it takes 0.15 seconds on average to solve the OPF

problem for the IEEE 24-bus test system, the number of breakpoints using (36) was computed

to be 5. The algorithm’s run time for the proposed method was 6 days and 13 hours and for

the traditional method was 4 hours and 16 minutes on a 3 GHz Core 2 Duo processor. The

number of particles was assumed to be 30. The number and the location of the newly added

circuits are different in the obtained plans by the proposed and traditional methods. In the

final plan obtained by the proposed and traditional methods, seven and eight new circuits,

respectively, are added to the transmission network. The newly added circuits to the 24-bus

system based on both methods have been shown in Table 1.10. To compare the total cost

of the two methods, we computed the hourly operation cost by solving the OPF problem at

each hour for both plans. Table 1.11 summarizes the present worth of the annual operation

and investment costs for the final plans. The total cost of the multivariate interpolation is

$4.42M less than the traditional plan.

1.5.6 Expansion planning for real-world power systems

The proposed method has the potential for use in real-world transmission expansion

problems since the computational effort depends mostly on the number of OPF problems

that need to be solved. The number of OPF problems can be selected by trading off the

number of breakpoints and the accuracy of the total operational cost. When the number of

breakpoints is decreased, the computational time will consequently decrease and the TEP

problem could be solved for a real-world problem in a reasonable time. To further reduce the

computational time, we can decrease the maximum allowed number of circuits at each line

and use more powerful processors or parallel processing. For the real-world problems, when
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the likelihood of having a line between two buses is too low, we can disregard that candidate

line. The reduction in the number of candidate lines will reduce the BPSO algorithm’s run

time.

1.6 Conclusion

In this research, we introduced a new method to solve the multiyear security constrained

TEP problem. In contrast to traditional methods in which the operation cost is typically

computed for the peak demand, we compute it for the hourly demand over the planning

horizon. In addition, we used daily fuel prices. We proposed a multilinear interpolation

method to compute the hourly operation cost. The main advantage of using the multivariate

interpolation is reduction on the computational time. The computational time showed a

reduction factor of 70 for the Garver’s 6-bus system with three changing parameters and a

reduction factor of 15 for the IEEE 24-bus system with four changing parameters. In order

to validate the interpolation method, we compared its results to those of the OPF problem.

The error of the interpolated values was less than 0.02%. The BPSO algorithm was employed

to solve the TEP problem. We applied our method to the Garver’s 6-bus and the IEEE 24-

bus test systems for a planning horizon of ten years. For real-world power systems, we made

a few suggestions on how to reduce the computational time of the proposed method. The

proposed method was compared with a traditional method based on the total cost of the

final expansion plan. In the traditional method, the peak demand instead of hourly demand

and annual average instead of daily fuel price were considered. The comparison results

revealed that the expansion plan obtained by the proposed method is more economical than

traditional methods in terms of investment and operation costs.
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Chapter 2

Microgrid Energy Scheduling Using Storage from Electric Vehicles

2.1 Abstract

Integrating electric vehicles (EVs) into a microgrid can provide additional energy and

storage to the microgrid. The benefits depend on factors such as market prices, EVs’ state of

charge, and their arrival/departure times. In this chapter, it is assumed that the microgrid

operates in a grid-connected mode and consists of thermal units, renewable energy resources

and a parking facility. An optimization model for the energy scheduling that considers the

energy and storage provided by the EVs is proposed. The objective function of the model is to

minimize the expected total operation costs including generation, day-ahead market, battery

wear, and real-time balancing costs for the next 24hrs. The uncertainty of the demand and

the available EVs in addition to the intermittency of the renewable energy resources are

taken into account. The model is solved using the Benders’ decomposition algorithm and

results are obtained using a 14-bus distribution test system. The results show that using the

storage and energy of the EVs reduces the total operation cost of the microgrid.

Keywords: Microgrid, Electric vehicles, Energy storage, Uncertainty, Benders’

decomposition, Day-ahead energy market

2.2 Introduction

The development of microgrids has sparked significant interest in recent years because

of the potential to improve the reliability of the electric power system [1]. When the power
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grid fails to deliver electricity, microgrids can operate independently and fulfill the demand

within their boundaries. In addition to improving reliability, a microgrid can reduce the cost

of energy by increasing local load control, integrating different sources of renewable energy

and trading energy in the electricity market. In [2], several market-based pricing models

were studied to minimize the cost of electricity in microgrids. The experimental results

showed that by using a sustainable microgrid, the energy cost of residential consumers can

be reduced by 20%.

The electric vehicle (EV) is another entity that can exchange energy in the electricity

market and contribute to the economic aspects of power systems. To allow EVs to exchange

energy with electricity markets, aggregators and microgrids can serve as an interface [2].

Several studies have analyzed the interaction between aggregators and EVs. In [10], an

aggregator collected the demand of EV fleets and purchased electricity from the energy

market on their behalf. The study compared the impact of centralized and decentralized

charging schemes on the system-wide generation cost. In another article [11], the authors

developed an optimal bidding strategy for the EV aggregator in the day-ahead energy market.

The goal was to minimize charging cost while meeting the uncertain demand of the EVs in

real time. In [6], a similar framework was proposed for an EV aggregator to purchase energy

for the EV owners based on the forecasted power price and the EVs’ demand. In [7], the EV

aggregator used energy storage devices to mitigate the impact of uncertainty and inaccurate

prediction in real time. In these studies, the primary objective of the aggregator was charging

the EVs at a minimum cost. The EV batteries were not exploited as a storage resource for

improving the economics of the charging system.

A microgrid can also act as an EV aggregator and integrate the EVs into the system. In

[8], the authors developed an electricity and heat generation schedule that was coordinated

with the EVs’ charging schedule in a microgrid. In [9], the plug-in hybrid electric vehicles

(PHEV) were integrated into an office building microgrid and the effect of different charging

ratings was studied. In [10] a model was proposed to simulate a solar parking lot for EVs.

39



The authors used queuing theory to model the vehicles’ arrivals and departures. The excess

energy was exported to the grid and the excess EV demand was imported from the grid. In

all of these studies, the microgrid integrated the EVs but did not use the storage capacity

of the EVs.

Using storage capacity of the EVs in microgrids has also been considered. In [11], the

coordination of the PEV charging/discharging schedule with volatile wind power to optimize

the energy dispatching in a microgrid was studied. The coordination goal was balancing the

power generation and demand in real time. In [8], a new method for optimal integration of

PHEVs in microgrids was introduced. The proposed method determined the optimal parking

capacity for the EVs in the microgrid. The authors used the EVs’ batteries to store energy.

However, they never considered the EV owners’ benefits, the stochastic aspect of the storage

capacity provided by the EVs and the power flow constraints.

The energy management problem for a microgrid has also been studied. A stochastic

energy management model for microgrids in which the storage devices and the EV demand

are integrated to the system has been proposed in [13]. The EVs were considered as a local

load and the real-time energy imbalances were not considered. In [14] the authors solved a

similar model including the real-time imbalances without considering economic dispatch. In

all of the microgrid studies, the variability and uncertainty aspects of the storage capacity

provided by the EVs have been neglected. Also, the integration benefits and the cost of

power imbalances in real time have not been considered.

In this chapter, we propose a mathematical model for managing the energy in a grid-

connected microgrid that includes different sources of energy and a parking facility for EVs.

The parking facility, due to its ability to accommodate a significant number of EVs, can

supply a substantial amount of energy and battery capacity to the microgrid. By using the

EVs’ storage capacity, the microgrid can import energy to be consumed or stored in the EVs’

batteries during hours of low electricity prices; thereby reducing the need to purchase power

at high-price hours. The energy stored in the EVs can be discharged using a vehicle to grid
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(V2G) program at hours of high prices. We also assume that the microgrid does not operate

as a commercial charging station. That is, the energy level of an EV at departure would

be equal to its energy level upon arrival. The EV owners are compensated by obtaining

access to free parking and cash for battery wear. Since there is no contractual obligation,

EV owners can choose to participate in other markets or demand response programs that

may provide higher benefits. Exploiting the energy and storage capacity can be complicated.

For instance, if the battery of an arriving EV is full and the owner decides to depart shortly

at a high price hour, discharging that EV’s battery might not be economically justified. We

propose an optimization model that enables the microgrid to manage the battery capacity

and energy content of the parked EVs. The energy management decisions are made based

upon a two-stage stochastic optimization model. The model makes first stage decisions a day

ahead according to the available data and determines the behavior of the microgrid in the

operation day after the uncertain data are revealed. We assume that the microgrid operator

makes an arrangement with a local power distributor to export and import excess supply or

demand in real time at fixed prices. The contributions of this chapter are:

1. A mathematical model to manage the energy within a grid-connected microgrid.

2. A model that considers the variable and uncertain storage capacity of the EVs’ parking

facility.

3. An extensive analysis to assess the economic effects of integrating the parking facility

into the microgrid.

4. A cost saving mechanism to improve the economic benefits of the integration

The remainder of this chapter is organized as follows: Section 2.3 presents the problem

description. Section 2.4 proposes the mathematical formulation of the problem. Section 2.5

details the solving algorithm and Section 2.6 explains the stochastic modeling of the energy

storage. Section 2.7 discusses a microgrid case study. Section 2.8 shows the simulation

results and Section 2.9 draws the conclusions.
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2.3 Problem Description

Microgrids are usually composed of distributed generation units, local loads and a cen-

tral control unit that operates in accordance with the power grid. Smart Microgrids are able

to efficiently and economically satisfy the consumers’ demands within their boundaries. In

addition, they can provide several opportunities for the consumers to participate in micro-

grids’ energy scheduling, deliver demand response services for the grid and trade energy in

the energy market to improve the environmental and economic benefits. In this chapter,

we assume a microgrid consisting of conventional thermal units, small scale wind turbines,

solar panels and an EV parking facility. The microgrid is connected to the power grid and

can exchange energy in the electricity market. The microgrid operator determines the com-

mitment status of the thermal units and the amount of energy to be purchased or sold in

the day-ahead market. Due to the stochastic nature of the loads, the storage capacity and

the output of the renewable resources, there will be some discrepancies between the fore-

casted demand and supply and their actual quantities. To resolve the imbalance between

demand and supply, we assume that the microgrid operator agrees with a power distributor

to exchange excess supply or demand for fixed predefined prices. A contract with a power

distributor at a fixed price hedges against the highly volatile prices of the real-time market.

2.3.1 Modeling Uncertainty

The energy management problem is formulated as a two stage stochastic optimization

model. In the first stage, the price of energy in the day-ahead market is forecasted and the

contracted prices with the power distributor are assumed to be known. In this stage, the

optimal commitment schedule of the thermal units and the energy purchases or sales in the

day-ahead market are determined. In the second stage, the net demand and the battery of

the parking facility are modeled as stochastic parameters. To represent these, we generate

scenarios for each parameter. In this stage, charging/discharging schedule of EVs, balancing

activities and generation dispatch are determined for each scenario.
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2.3.2 Parking Facility

In addition to power resources, the microgrid uses an EV parking facility equipped with

a bidirectional flow capability to perform a V2G program. The parking facility is assumed

to be a virtual battery whose capacity depends on the batteries of the available EVs in the

parking. This capacity is variable as the available number of EVs in the parking facility

changes over time, and it is stochastic as the arrivals and departures of the EVs to/from the

parking facility are not known with certainty.

2.4 Problem Formulation

The formulation of the energy management problem includes the objective function and

all of the system constraints.

2.4.1 Objective Function

The objective function is given in (2.1) and minimizes the expected total operation cost

of the microgrid. The total cost includes the costs of first stage decisions and the expected

cost of the second stage decisions over all scenarios. The first stage costs are the cost of

energy purchases and sales in the day-ahead market and startup and shutdown costs of the

thermal units. The second stage costs are the generation cost of the thermal units, cost of

battery wear and the cost of power exchanges (balancing) with the local power distributor

at each scenario s.

Min z =
∑
t

(
P da
t xt

)
+
∑
t

∑
j

(supjt + ssdjt ) +
∑
t

∑
s

πs
∑
j

(cfj fjt,s + γ(y+t,s + y−t,s) + ϕzt,s)

(2.1)
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2.4.2 Constraints

Constraints in (2.2) ensure that the power supply and demand at each hour for each

scenario are balanced. As the wind and solar energy resources are assumed to be non-

dispatchable, they are shown as negative loads [15].

∑
j

ajt,s + xt + zt,s − y+t,s + y−t,s = P loss
t,s +Dt,s −Wt,s − St,s ∀t,∀s (2.2)

As noted, we model the parking facility as a single battery with a capacity equal to the

sum of the capacity of all batteries in the parking facility. The total capacity will change

over time because of the variable number of available EVs in the parking. Equations (2.3)

and (2.4) represent the maximum and minimum capacity of the parking facility at hour t.

Emin
t,s = Emin

t−1,s + Emin(β(Narr
t,s −N

dep
t,s )) ∀t,∀s (2.3)

Emax
t,s = Emax

t−1,s + Emax(β(Narr
t,s −N

dep
t,s )) ∀t, ∀s (2.4)

The added and deducted energy to/from the parking battery at time t is presented in

(2.5) and (2.6). It is assumed that the microgrid returns the borrowed energy from the EVs

at departure. Therefore, the energy content of the departing EVs will be equal to their

energy content at arrival.

Earr
t,s = SOC[(βNarr

t )] ∀t,∀s (2.5)

Edep
t,s = SOC[(βNdep

t )] ∀t, ∀s (2.6)

The total energy content of the parking battery at time t is given by (2.7) and it is

constrained in (2.8) to the minimum and maximum capacity of the parking battery at that
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time.

et,s = et−1,s + (1/ηd)E
arr
t,s − (ηc)E

dep
t,s + ηcy

+
t,s − (1/ηd)y

+
t,s ∀t,∀s (2.7)

Emin
t,s ≤ et,s ≤ Emax

t,s ∀t,∀s (2.8)

The maximum energy that can be stored or withdrawn from the battery at each hour

is also constrained by the rated capacity of the charger and given by (2.9) to (2.11).

h+t,s + h−t,s ≤ 1 ∀t,∀s h+t,s & h−t,s ∈ {0, 1} (2.9)

0 ≤ y+t,s ≤ h+t,s.CH
max

t∑
k=1

(Narr
k,s −N

dep
k,s ) ∀t, ∀s (2.10)

0 ≤ y−t,s ≤ h−t,s.CH
max

t∑
k=1

(Narr
k,s −N

dep
k,s ) ∀t, ∀s (2.11)

The thermal unit commitment constraints are given by (2.12) to (2.21):

sujt ≥ Sup
j (ujt − ujt−1); sujt ≥ 0 ∀t,∀j (2.12)

sdjt ≥ Sdn
j (ujt−1 − ujt); sdjt ≥ 0 ∀t,∀j (2.13)

k+UTj−1∑
t=k

ujt ≥ UTj(ujk − ujk−1) : ∀j, k = 2, ..., T − UTj + 1 (2.14)

T∑
t=k

(ujt − (ujk − ujk−1)) ≥ 0 ∀j, k = T − UTj + 2, ..., T (2.15)

k+DTj−1∑
t=k

(1− ujt) ≥ DTj(ujk−1 − ujk) ∀j, k = 2, ..., T −DTj + 1 (2.16)

T∑
t=k

(1− ujt − (ujk − ujk−1)) ≥ 0 ∀j, k = T −DTj + 2, ..., T (2.17)

ajt,s − ajt−1,s ≤ Ru
j (ujt − 1) ∀t,∀j,∀s (2.18)
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ajt−1,s − ajt,s ≤ Rd
j (ujt) ∀t, ∀j,∀s (2.19)

fjt,s(HVj) = ajt,s(HRj) ∀t, ∀j,∀s (2.20)

ujt.A
min
j ≤ ajt,s ≤ ujt.A

max
j ∀t, ∀j,∀s (2.21)

And the power flow constraints are given by (2.22) to (2.27):

∑
n

(Vit,s.Vnt,s.(Gin.cos(δit,s − δnt,s) +Bin.cos(δit,s − δnt,s)) = P net
it,s + P slack

i,s ∀i, ∀t,∀s

(2.22)∑
n

(Vit,s.Vnt,s.(Gin.sin(δit,s − δnt,s) +Bin.cos(δit,s − δnt,s)) = Qnet
it,s +Qslack

i,s ∀i, ∀t,∀s

(2.23)

|Sint,s| ≤ Smax
in ∀n, i = 1, ..., N, ∀t,∀s (2.24)

V min
n ≤ Vnt,s ≤ V max

n ∀n,∀t,∀s (2.25)

δmin ≤ δnt,s ≤ δmax ∀n,∀t,∀s (2.26)

xt, zt,s ∈ {−∞,+∞}, uj,t ∈ {0, 1} (2.27)

2.5 Solving Algorithm

The proposed energy management model (2.1) to (2.27) is a MINLP problem which is

complicated to solve. There are multiple methods to solve this type of problem. We have

chosen the Benders’ decomposition approach (BDA) because of the successful application

of BDA in [19] and the block angular structure the constraint matrix which makes it a

good candidate for the BDA. In applying the BDA, the original problem is decomposed into

a master problem and a sub-problem. After the master problem is solved, its solution is

examined in the sub-problem. If the sub-problem is infeasible, a Bender’s cut is added to

the master problem. This process will iterate until the solution converges [17]. To solve the
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proposed model with BDA based on [19], we partition the problem into two problems: a

master problem and a sub-problem. The master problem includes the entire model without

the AC-OPF constraints (2.22) to (2.27). The sub-problem includes the AC-OPF constraints.

To solve the master problem, we use the IBM ILOG CPLEX interactive optimizer with

Concert technology in C++ [19]. We use Matpower 5.1 [21] to solve the sub-problem.

Figure 2.1 illustrates the software interaction to solve the proposed Benders’ decomposition.

 

IBM ILOG CPLEX 

Solves the master problem at each iteration 

 

Microsoft Visual Studio (C++) 

Formulates the master problem with added bender’s cuts and losses 

at each iteration 

 

Concert Technology 

Matpower 5.1 

A package of MATLAB M-files that solves the AC-OPF 

  

MATLAB Engine API for C++ 
 

 

Figure 2.1: Software interaction to solve the Benders’ decomposition

As in [19], we add slack active and reactive power variables (virtual generation P slack
i,s ,Qslack

i,s

to the active and reactive power flow constraints to make the power flow equations always

feasible. We then set a positive cost (M) for the output of the virtual generators to penalize

the objective function of the AC-OPF problem. The objective function of the AC-OPF is

presented in (2.28). Note that we have penalized the active power variables in the objective

function.

min wt,s =
∑
i

= M(P slack
i,s ) ∀t,∀s (2.28)
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At each iteration of the BDA, the AC-OPF is solved for each scenario and the shadow

prices associated with the injected active power from each thermal unit (λjt,s), the parking

battery (ψt,s), and the power distributor (ζt,s) are determined. We also obtain the power

losses at every dispatch. The Benders’ cuts (2.29) are added to the master problem at

iteration k. In (2.28), wt,s is the objective function of the AC-OPF problem, Ak
jt,s,Y

k
t,s,Z

k
t,s

are the output of the master problem for the thermal units’ generated energy, the energy

withdrawn from the parking battery and the purchased energy from the power distributor,

respectively. The w∗ is added to the objective function of the master problem at iteration

k. We also add the power losses to (2.2). Without adding the losses, the power losses would

be compensated using the virtual generators and the algorithm will never converge.

w∗ ≥ w(Ak
jt,s, Y

k
t,s, Z

k
t,s) +

∑
j

λjt,s(a
k
jt,s − Ak

jt,s) + ψt,s(y
k
t,s − Y k

t,s) + ζt,s(z
k
t,s − Zk

t,s) ∀j,∀t, ∀s

(2.29)

The AC-OPF is solved at each hour for each scenario. If the output of the virtual

generators is greater than zero, a Benders’ cut is added to the master problem. The solving

algorithm is presented in Figure 2.2. The algorithm will iterate until the solution of the

sub-problem does not change.

2.6 Stochastic Modeling of the Energy Storage

Due to the variability and uncertainty of the arrivals and departures over time, the

storage capacity provided by the EVs in the parking facility is variable and uncertain. To

model the arrivals and departures of the EVs to/from the parking facility, we use an in-

homogeneous continuous-time Markov chain (ICTMC)[20]. The process is inhomogeneous

because the arrival and departure rates change over time. The state of the process repre-

sents the current size of the population and the transitions are limited to birth and death.

Modeling the parking facility as an ICTMC captures the time dependency of the transition
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Collect the results 

YES 

NO 
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NO 

YES 

k=k+1 

k=1 

Figure 2.2: The solving algorithm’s flow chart

rates. However, finding a closed-form solution for the transition probabilities is believed to

be very difficult, if not impossible [20]. Several numerical methods have been proposed in

the literature to solve the Kolmogorov forward equations numerically.

In this chapter, we use the Monte Carlo simulation to generate scenarios for the state

transitions based on the ICTMC [20]. The state of the process is the number of parked EVs.

The birth and death events are the arrivals and departures. We assume that an EV enters

the parking at a rate λ(t) and leaves the parking at a rate iµ(t) where i is the state of the

system. Given the process is in state i at time t′, the holding time t is sampled from the
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cumulative probability distribution function given in (2.30).

Fi(t|t′) = 1− exp
[
−
∫ t

t′
(λ(t′′) + iµ(t′′))dt′′

]
(2.30)

After determining the holding time t, the sampling of the next state j, is obtained by

generating a random number U and selecting the state j that satisfies the constraint in

(2.31). We continue sampling the holding times and jumps to the next states until we reach

the end of the planning horizon (hour 24).

j−1∑
k=0

qik(t) ≤ U ≤
j∑

k=0

qik(t) (2.31)

In (2.31), qik(t) is the conditional probability of transitioning to state k given that the current

state is i. The value of qik(t) is given by (2.32).

qik(t) =


λ(t)/(λ(t) + iµ(t)) if i ≤ k.

0 if i = k.

iµ(t))/(λ(t) + iµ(t)) if i > k.

(2.32)

Notice that when the i equals the capacity of the parking facility, qik(t) = 1 for i ≤ k.

We count the number of arrivals and departures during each hour (Narr
t , Ndep

t ) which are

used to compute according to (2.3) and (2.4) the maximum and minimum storage capacity

(Emax
t and Emin

t ) at each hour. We generate scenarios for the values of (Narr
t , Ndep

t ) by

replicating the Monte Carlo simulation. After generating the scenarios, they are reduced by

using the K-means clustering algorithm [24]. The number of scenarios is decreased to reduce

the computational time of the solving algorithm.

50



2.7 Microgrid Description

2.7.1 Microgrid Topology

We run our experiments on a modified 14-bus microgrid test system introduced in [22].

The microgrid topology is shown in Figure 2.3. In the modified system, we add a 1 MW wind

turbine at bus 1 and 1 MW solar panels at bus 4. We also aggregate all the EVs batteries in

the parking facility as a single battery and replace the stationed load at bus 2 in [22] with

the parking battery. The parking battery is connected to the battery side convertor and a

transformer (13.8KV/2.4KV, 3.0 MVA) on the branch connecting bus 2 to the feeder. Three

small scale thermal units are also added at bus 5, bus 10 and bus 12. The technical data

related to the thermal units are summarized in Table 2.1.
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Figure 2.3: 14-bus microgrid test system
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Table 2.1: Unit commitment technical data

Technical Parameter 1 2 3

Start up cost ($) 200 250 220

Start up cost ($) 150 180 160

Min up-time (hour) 3 3 3

Min down-time (hour) 2 2 2

Ramp up (MW/hr) 0.5 0.5 0.5

Ramp down (MW/hr) 0.5 0.5 0.5

Max capacity (MW) 1 1.5 1.1

Min capacity (MW) 0.1 0.2 0.1

Price of fuel($/Mft3) 10 10 10

2.7.2 EVs Parking Battery

We divide a typical day into four 6-hour intervals. The morning interval starts from

6am to noon with arrival rate λ1 and departure rate of µ1 , the afternoon interval starts

from noon to 6pm with arrival rate λ2 and departure rate of µ2, the evening interval starts

from 6pm to midnight with arrival parameter λ3 and departure rate of µ3, and the night

interval starts from 12am to 6am with arrival parameter λ4 and departure rate of µ4. The

parking capacity is 200 EVs and λ1, λ2, λ3, λ4 and µ1, µ2, µ3, µ4 are 70, 60, 15, 10, and

0.33, 0.3, 0.5, 0.4, respectively. We generate 1000 scenarios for the number of vehicles in

the parking facility according to the process described in Section V and reduce them to 10

scenarios using the K-means clustering algorithm described in [24]. In Figure 2.4, we show

three of these scenarios. The battery capacity of an EV is 0.04 MWh and the average arrival

energy content, SOC, is 50%.

The rated capacity of the chargers CHmax is 0.02 MWh. The maximum and minimum

allowed SOC of an EV’s battery is 0.9 and 0.1, respectively. The cost of battery wear, γ, is

assumed to be 10 ($/MWh).
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Figure 2.4: The scenario sample for the number of parked EVs.

2.7.3 Day-ahead energy prices and power distributor

The energy prices on June 11, 2013 from [23] are assumed to be the forecasted prices.

They are given in Figure 2.5. For the real-time transactions, the microgrid imports energy

at a cost of 850 ($/MWh) and exports it at a price of 150 ($/MWh).
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Figure 2.5: Energy price in the day-ahead.
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2.7.4 Net Demand Uncertainty

The Monte Carlo simulation is used to generate scenarios for representing the uncer-

tainties in demand, wind energy and solar energy. As the solar and wind energy sources

are assumed to be non-dispatchable, the net demand scenarios at each hour are obtained by

subtracting the wind and solar energy output from the demand at that hour. To generate

the scenarios, we use a truncated multivariate normal distribution (TMVN) [24]. The prob-

ability density function of TMVN is given in (22) [25]. The covariance matrix, Σ, represents

the between hour interdependency.

f(x, µ,Σ, a, b) =
exp(−1/2(x− µ)TΣ−1(x− µ))∫ b

a

exp(−1/2(x− µ)TΣ−1(x− µ))dx

(2.33)

To estimate the parameters of the TMVN, we use wind and solar energy output data provided

by the renewables integration study datasets in [26]. We also collected historical hourly

demand data from [23]. We generate 100,000 net demand scenarios for 24 hours and reduced

them to 10 scenarios using the K-means clustering algorithm. In Figure 2.6, we show a

sample of three of these scenarios.
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Figure 2.6: Sample of net load scenarios
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2.8 Simulation Results

We run all of the simulations on a 2.8 GHz Core 2Duo processor with 4GB of memory.

The results are used to assess the effects of the parking facility, parking time, departure

policies and net load and parking uncertainties. As we consider 10 scenarios for the net

load and 10 scenarios for the parked EVs, the problem is solved for 100 scenarios based on

all combinations. It takes 1h 56mins for the Benders’ decomposition to converge after 50

iterations. In Table 2.2, we show the purchases/sales in the day-ahead market. The expected

total operation cost (ETOC) is $28,545 and all thermal units are committed during the

operation day.

Table 2.2: Purchases/sales in the day ahead

xt(MWh)

6am 7am 8am 9am 10am 11am 12pm 1pm

3.6 3.27 1.83 1.8 0.36 1.4 3.15 0.81

2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm

0.42 0.98 1.03 3.96 0.33 3.01 1.29 1.38

10pm 11pm 12am 1am 2am 3am 4am 5am

0.33 0.51 4.23 2.22 1.29 3.15 2.70 1.29

Table 2.3 gives the hourly maximum, minimum and average charged/discharged energy

to/from the parking battery over all scenarios in the operation day. These results show

that the parking battery is either charged or remains unused at 3am, 6am and 9pm, and

is certainly charged at 7am, 5pm, 7pm and 12am due to the low price of energy at those

hours. At 8am, 11am, 12pm, 6pm, 8pm, 10pm, 11pm and 5am, the parking battery is either

discharged or remains unused and at 2am the battery is certainly discharged due to the high

price of energy at those hours. For the remaining hours, the parking battery is either charged

or discharged based on a particular scenario.
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Table 2.3: Charging/discharging of the parking battery

yt(MWh)

6am 7am 8am 9am 10am 11am 12pm 1pm

Max 1.13 1.24 0.00 1.81 0.43 0.00 0.00 0.92

Min 0.00 0.41 3.05 0.93 2.61 2.35 2.24 1.88

Mean 0.78 0.66 1.02 0.82 0.32 0.79 1.97 0.00

2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm

Max 0.55 0.34 0.68 3.26 0.00 2.30 0.00 1.33

Min 1.39 2.05 0.47 1.47 2.22 0.93 1.92 0.00

Mean 0.11 0.19 0.09 2.57 1.01 1.87 2.05 0.81

10pm 11pm 12am 1am 2am 3am 4am 5am

Max 0.00 0.00 0.93 0.23 0.24 0.74 0.45 0.00

Min 1.24 1.12 0.03 0.48 0.86 0.00 0.14 0.76

Mean 0.86 0.62 0.66 0.23 0.62 0.27 0.06 0.41

2.8.1 Effect of using the parking facility

To show the effect of the parking facility on the microgrid, we solve the model without

the parking facility. We set the number of available EVs to zero to simulate that no parking

facility exists. As in the case we have the parking facility, all thermal units are committed

during the operation day. The ETOC with no parking facility is $31,106, which is $2,561

higher than using it. The purchases/sales in the day-ahead market are given in Table 2.4.

Without parking facility, the microgrid does not have any storage capacity, and thereby it

has to purchase energy from the day-ahead market at prevailing price.

Table 2.4: Purchases/sales in the day ahead

xt(MWh)

6am 7am 8am 9am 10am 11am 12pm 1pm

3.12 2.44 0.33 0.11 0.12 0.21 0.49 0.93

2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm

0.81 0.86 0.81 1.03 0.82 0.91 0.59 0.67

10pm 11pm 12am 1am 2am 3am 4am 5am

0.69 1.37 3.36 1.99 1.86 2.33 2.63 1.91
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2.8.2 The value of considering uncertainty

As we have considered the uncertainty of the net load and the number of parked EVs,

we assess the individual and combined effects of these two uncertainty sources. To assess the

individual effects, we solve the problem considering one scenario for one parameter and 10

scenarios for the other. The one scenario is obtained by averaging the 10 scenarios of each

parameter. For instance, to compute the value of considering the net load uncertainty, we

solve the model using one scenario for the net load and 10 scenarios for the parked EVs. The

ETOC of the solved problem is $31,794 which is $3,249 higher than that of the stochastic

problem with 100 scenarios. Similarly, to compute the value of considering the parked EVs’

uncertainty, we solve the model with one scenario for the parked EVs and 10 scenarios for

the net load. The ETOC of the solved problem is $30,746 which is $2,201 higher than that

of the stochastic problem with 100 scenarios. For the combined effect, we use one net load

and parked EVs scenario. The ETOC of the solved problem is $34,179, which is $5,634

higher than the stochastic model with 100 scenarios. The purchases/sales in the day-ahead

market are given in Table 2.5. The ETOC is calculated by determining the first stage

decision variables and then using them to obtain the second stage decisions for each of the

100 scenarios. The ETOC is obtained by averaging the operation costs of each scenario.

Table 2.5: Purchases/sales in the day ahead

xt(MWh)

6am 7am 8am 9am 10am 11am 12pm 1pm

4.37 4.27 1.77 3.98 1.76 0.32 1.06 2.11

2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm

1.81 1.35 1.98 5.20 0.92 3.41 0.08 2.33

10pm 11pm 12am 1am 2am 3am 4am 5am

1.23 1.36 5.95 2.17 1.82 4.52 2.12 1.26
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2.8.3 Effect of battery wear cost

To evaluate the effect of battery wear cost on the EVs’ charging/discharging amounts

and the expected cost savings, we solve the model with different values for γ. The results

have been summarized in Table 2.6. We computed the hourly charging/discharging amounts

at each case by averaging the EV’s charging or discharging values over all scenarios and

dividing the obtained number by 24. As γ decreases, the cost of battery wear decreases

and the microgrid discharges the EVs’ batteries deeper. Clearly, the expected cost savings

is higher for lower γ values. However, lowering the value of γ can reduce the EV owners

motivation for participating in the V2G program.

Table 2.6: Effect of battery wear cost

γ
($/MWh)

Average hourly charging
/discharging (MWh)

Hourly cost of
battery wear ($)

Expected cost
savings ($)

2 1.48 2.96 2,864

4 1.42 5.68 2,804

6 1.36 8.16 2,739

8 1.28 10.24 2,666

10 1.20 12.00 2,561

12 1.02 12.24 2,509

14 0.86 12.04 2,416

16 0.71 11.36 2,329

18 0.52 9.36 2,246

20 0.29 5.80 2,073

2.8.4 Effect of the EVs parking time on expected cost savings

To evaluate the effect of the EVs’ parking time, we solve the model considering different

values of . The expected cost savings are computed in comparison to the case where the

parking facility is not used for energy storage. Fig. 2.7 shows the impact of the expected

parking time (1/µ) on the microgrid’s expected cost savings. Clearly, as the expected parking

time increases, the expected cost savings increase. The contribution of the parking facility
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becomes more significant as the vehicles are available to the microgrid for longer hours. Note

that the capacity of the parking facility restricts the expected cost savings to $3600.
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Figure 2.7: The effect of parking time on the expected cost savings

2.8.5 Effect of arrival and departure rates

The benefits of the EVs’ integration into the microgrid depend on the arrival and de-

parture rates. In Table 2.7, we show the different arrival rates of three different cases during

a day. For Case 1, 2, and 3, we use as departure rate (µ) the values 0.5, 0.33, and 0.2,

respectively. Notice that these three cases represent short-, medium-, and long- time park-

ing behaviors. The expected cost savings for Case 1, 2, and 3 are $243, $409, and $537,

respectively. Notice that the expected cost savings in case 3 are relatively higher than those

in cases 1 and 2 because the average parking time of the EVs is longer.

2.8.6 Effect of market price fluctuations

To assess the effect of market price fluctuations on expected cost savings, we modify

the forecasted market prices (shown in Figure 2.5) to create different fluctuation ratios. The

fluctuation ratio is calculated by dividing the highest energy price by the lowest price during

the operation day. The fluctuation ratio of the forecasted prices is 3.5. The expected cost

savings for different fluctuation ratios are shown in Table 2.8. The table also shows the
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Table 2.7: Arrival Rates (λ) for different cases at each hour

Time 6am 7am 8am 9am 10am 11am 12pm 1pm

Case 1 60 60 40 40 50 50 30 30

Case 2 60 60 60 60 20 20 20 20

Case 3 60 60 60 60 20 20 20 20

Time 2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm

Case 1 40 40 40 30 30 30 20 20

Case 2 40 40 40 40 20 20 20 20

Case 3 40 40 40 40 20 20 20 20

Time 10pm 11pm 12am 1am 2am 3am 4am 5am

Case 1 20 10 10 10 5 5 5 5

Case 2 20 10 10 10 10 5 5 5

Case 3 20 10 10 10 10 5 5 5

percentage of increase or decrease in the savings compared to the savings of the original

forecasted prices. Clearly, higher price fluctuations generate higher expected cost savings.

Table 2.8: Microgrid’s cost savings under different fluctuation rates

Fluctuation
rate

Expected cost
saving ($)

Increase/decrease (%)
compared to 3.5 rate

1 0 -100%

1.5 706 -72%

2 1,104 -57%

2.5 1,652 -35%

3 2,113 -17%

3.5 2,561 0%

4 3,111 21%

4.5 3,598 40%

5 3,996 56%

2.8.7 Interaction effect of market price fluctuations and EVs’ arrival and de-

parture rates

We define five hypothetical fluctuation profiles “A to E”, given in Table 2.9, for the

day-ahead market prices and use the EV’s arrival and departure rates defined in Table 2.7

to assess the interaction effect. Profiles A and B represent high fluctuation ratios, C no
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price fluctuation, and D and E low fluctuation ratios. The expected cost savings under these

different conditions are summarized in Table Table 2.10. The expected savings under no

price fluctuation (profile C) are zero, regardless of the arrival and departure rates. In case

1, the higher expected cost savings are obtained under price profiles A and D. The reason

is that in case 1 the arrivals exceed the departures during high price hours. The microgrid

operator can discharge the arriving EVs at high price arrival hour and return the borrowed

energy when the price is low. However, under profiles B and E, the arriving EVs should not

be discharged at their arrival hour because the borrowed energy would need to be returned

at a high price hour. Case 1 under profiles B and D illustrates the interaction effect between

price fluctuations and EV’s arrival and departure rates. Although under profile B the price

fluctuation ratio is higher than profile D, the expected savings under profile D are higher

than under profile B. Similarly, cases 2 and 3 illustrate the interaction effect.

Table 2.9: Hypothetical patterns for day ahead market prices ($/MWh)

Price profile 6am 7am 8am 9am 10am 11am 12pm 1pm

A 800 800 200 200 800 800 200 200

B 800 800 800 800 200 200 200 200

C 500 500 500 500 500 500 500 500

D 500 500 200 200 500 500 200 200

E 500 500 500 500 200 200 200 200

Price profile 2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm

A 800 800 800 200 200 200 800 800

B 800 800 800 800 200 200 200 200

C 500 500 500 500 500 500 500 500

D 500 500 500 200 200 200 500 500

E 500 500 500 500 200 200 200 200

Price profile 10pm 11pm 12am 1am 2am 3am 4am 5am

A 800 200 200 200 200 200 200 200

B 200 800 800 800 800 200 200 200

C 500 500 500 500 500 500 500 500

D 500 200 200 200 200 200 200 200

E 200 500 500 500 500 200 200 200
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Table 2.10: Cost savings under different price profiles and arrivals/departures.

A B C D E

Case 1 $352 $102 $0 $156 $73

Case 2 $330 $583 $0 $134 $291

Case 3 $419 $684 $0 $197 $374

2.8.8 Effect of restricting the departures

Enforcing some restrictions on departures can increase the expected cost savings. Any

restriction should be compensated so that there is enough motivation for the EV owners

to participate in the restricted program. In the restricted program, the participating EVs

are not allowed to depart the parking facility in certain hours. In our simulation, we use

the arrival rates given in Section 5 and assume that the EVs can depart at predetermined

time windows (9am to 10am, 5pm to 6pm or 11pm to 12am). The expected cost savings is

$3,084, representing a 20% increase compared to that of the case without restriction. The

expected cost savings for SOC=0.1 is $2,996 (16% increase) and for SOC=0.9 is $3,178 (24%

increase). As the microgrid controls the departures, a higher SOC produces higher expected

savings. The microgrid can discharge the batteries of the EVs during high price hours and

return the borrowed energy during low price hours. The time windows can be determined

by the microgrid operator and can be based on the market price forecasting and mutual

contracts between the microgrid and the customers.

2.9 Conclusions

We proposed to use the batteries of EVs in a parking facility for energy storage within

a microgrid. We developed a two-stage stochastic model for managing the energy in a grid-

connected microgrid that includes different sources of energy generation and a parking facility

for the EVs. We used an inhomogeneous continuous time Markov chain to model the variable

capacity of the parking facility. We simulated the proposed model on a 14-bus distribution

test system and solved it using the Benders’ decomposition method. The simulation results
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showed that using the EVs’ batteries reduces the cost of the electricity generation. We also

assessed the effects on expected cost savings caused by uncertainty, expected parking time,

market price fluctuations, SOC and arrival and departure rates. The results showed that

longer parking times and higher price fluctuation ratios produce higher expected savings.

Also, the interaction effect of price fluctuation ratios and EV’s parking behavior can have a

significant impact on expected savings. That is, having a high price fluctuation ratio does

not necessarily mean high expected savings. By considering the interaction effect of price

fluctuation and EVs’ parking behavior, we designed a restricted mechanism for the parking

facility to improve the benefits. The results from the restricted program confirmed the

positive contribution on the expected cost savings. The results also showed the superiority

of the stochastic model compared to the deterministic one.
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Chapter 3

Optimal Investment to Upgrade a Microgrid Parking Facility with V2G Technology

3.1 Abstract

Microgrids are usually powered by small scale distributed generators, renewable energy

resources and batteries. The batteries of the electric vehicles (EVs) in the parking facility

can be managed to store energy and power the microgrid. We propose a mathematical

investment model to upgrade the parking facility of a microgrid with V2G technology to

increase energy storage capacity. The model aims to determine the optimal number of V2G

stations in the parking facility by minimizing the sum of the investment and operation costs.

The former is the required capital investment for the purchase of the V2G stations, and the

latter is the cost of generation dispatch to meet the demand at each hour. The uncertainty

of the demand and the EVs arrivals and departures and the intermittency of the renewable

resources are all taken into account. We use the Benders’ decomposition to compute the cost

of generation dispatch and the Nelder-Mead algorithm to search for the optimal number of

V2G stations. Numerical experiments are conducted on a 14-bus microgrid test system for

a planning horizon of five years. The results show that investing in the V2G technology

increases the long-term economics of the microgrid.

Keywords: Microgrid, Electric Vehicle, V2G Investment, Nelder-Mead algorithm

3.2 Introduction

Due to major advancements in smart grid and rapid expansion of renewable resources,

investing on energy storage technologies has become very important. Batteries of electric

vehicles (EVs) have been proposed as a cost-effective alternative to large scale grid energy
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storage [1]. In addition to energy storage, the EVs can provide the grid with peak shaving

[1], system stability [2], voltage and frequency regulations [3], emission reduction [4], or other

economic benefits [5] in the charging/discharging [6] or charging-only [7] modes. They can

also be integrated into the distribution grid [8], the microgrids [9] or the aggregator entities

[10] and charged or discharged under centralized or decentralized [11] schemes. The optimal

siting and sizing of EV charging stations has been studied in [12]. The model considered

the road networks and potential locations for the stations but ignored all of the operational

constraints and energy market interactions. A similar problem has been studied in [13] where

the optimal decisions were made within the boundaries of the distribution grid. In [8], the

long-term integration of EVs into a microgrid was discussed. The study did not consider the

interactions with energy markets, the inherent uncertainties, and the dispatch of generation.

In [14], the optimal siting and sizing of distributed generation with a parking facility was

modeled. The power losses were minimized in the distribution grid but the economic aspects

were not taken into account. The size of the parking facility was assumed to be fixed.

To provide additional energy and storage, we have proposed in [15] a framework that

integrates EVs into a microgrid. We formulated an optimization model that minimizes the

expected total operation costs and solved it using the Benders decomposition algorithm. The

grid-connected microgrid included small scale thermal units, renewable energy resources and

a parking facility for EVs. The number of V2G stations in the parking facility was assumed

to be known. In this chapter, we propose an optimization model to obtain the number

of V2G stations by minimizing the total cost of the microgrid. The total cost consists of

the investment and operation costs. The former is the required capital investment for one-

time purchase of the V2G stations at the beginning of the planning horizon. The latter

is the cost of energy dispatch to meet the demand at each hour which includes the cost

of generation, purchases/sales in the day-ahead market and battery wear. As our model

involves uncertainty, a two stage stochastic programming framework is used to model the

problem. The first stage decisions are made according to the available data in the first stage
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and the recourse actions are taken in the second stage after the uncertain data are revealed.

In the model, the first stage costs include investment costs, hourly commitment costs of the

thermal units and the purchases/sales in the day-ahead market. The second stage costs are

the expected costs of generation, battery wear and real-time balancing. The available EVs in

the parking facility and the output of the renewable resources are the uncertain parameters.

Finding the optimal number of V2G stations in the parking facility is challenging because

we need to solve the proposed stochastic problem at each hour for a long planning horizon.

Moreover, considering uncertainty, unit commitment and power flow constraints make the

solving algorithm computationally expensive. We use the Nelder-Mead heuristic algorithm

[16] together with Benders’ decomposition [19] to solve the optimization problem. The

Nelder-Mead algorithm searches for the optimal number of V2G stations in the parking

facility by minimizing the total cost. The total cost is computed by decomposing the problem

into two sub-problems: operation and investment. The investment cost is computed by the

Nelder-Mead and operation cost is computed by the Benders’ decomposition.

The remainder of this chapter is organized as follows: in Section 3.3, the optimization

model is described. Section 3.4 gives the mathematical formulation. Section 3.5 presents the

solving algorithm, and Section 3.6 explains the stochastic modeling of the parking facility. In

section 3.7, the microgrid’s test system is discussed and in section 3.8, the numerical results

are provided. Section 3.9 draws the conclusions.

3.3 Problem Description

Similar to the considered microgrid in chapter 2,in this chapter, we assume a microgrid

consisting of conventional thermal units, small-scale wind turbines, solar panels and an EV

parking facility. It is also assumed that the microgrid operates in a grid-connected mode

and purchase/sells energy in the day-ahead market. To resolve the imbalances between the

predicted and actual demand and supply, the microgrid operator agrees with a local power

distributor to exchange excess supply or demand for fixed predefined prices. An agreement
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with a local distributor at a fixed price can hedge against the highly volatile prices of the

real-time market.

3.3.1 Parking facility for energy storage

To use the parking facility as an energy and storage resource, the parking stalls should

be equipped with V2G stations. The two-way electric flow capability provided by the V2G

stations enables the microgrid operator to store or withdraw energy in/from the batteries of

the available EVs in the parking. The energy storage ability allows the microgrid to shift the

energy purchases from high-price to low-price hours and inversely energy sales from low-price

to high-price hours. The capacity of the supplied energy storage depends on the number of

V2G stations and the number of available EVs in the parking facility.

3.3.2 Modeling Uncertainty

The proposed model is formulated as a two stage stochastic optimization problem. In

the first stage, the price of energy in the day-ahead market is forecasted and the contracted

prices with the power distributor are assumed to be known. The number of V2G stations,

commitment schedule of the thermal units, and the energy purchases/sales in the day-ahead

market are also determined. The net demand and the capacity of the parking facility are

modeled as stochastic parameters. To represent the uncertainty on these parameters, we

generate scenarios. The second stage ensures that the power balance constraint is satisfied

for each scenario.

3.4 Problem Formulation

The formulation of the investment model includes the objective function and system

constraints.
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3.4.1 Objective Function

The objective function is given in (3.1) and minimizes the present worth of the expected

total costs of the microgrid. The total cost includes the costs of first stage decisions and

the expected cost of the second stage decisions over all scenarios. The first stage costs are

the one-time V2G investment cost, hourly cost of energy purchases and sales in the day-

ahead market and hourly startup and shutdown costs of the thermal units over the planning

horizon. The second stage costs are the hourly generation cost of the thermal units, cost of

battery wear and the cost of power exchanges (balancing) with the local power distributor

at each scenario s.

Min z = ϑn+
Y R∑
yr=1

1/r
[∑

t

(
P da
t xt

)
+
∑
t

∑
j

(supjt + ssdjt ) +
∑
t

∑
s

πs
∑
j

(cfj fjt,s + γ(y+t,s + y−t,s) + ϕzt,s)
]

(3.1)

3.4.2 Constraints

We consider all Constraints (2.1) - (2.27) for this problem as well. In addition, we

introduce two new capacity Constraints (3.2) and (3.3) for the parking battery. Constraints

in (3.2) and (3.3) restrict the maximum and minimum capacity of the parking battery to

the number of V2G stations.

Emin
t,s = Emin(nβ) ∀t,∀s (3.2)

Emax
t,s = Emax(nβ) ∀t,∀s (3.3)

3.5 Solving Algorithm

As noted earlier, solving the model (3.1)-(3.3) considering all constraints (2.1) - (2.27)

is extremely difficult. To overcome this difficulty, we split the optimization into two sub
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problems: investment and operation. The investment problem determines the capital cost

of purchasing n V2G stations, and the operation problem determines the cost of operating

the microgrid with n stations. The operation cost is computed by solving the model without

constraints (3.2) and (3.3) and no investment term in the objective function (3.1).

3.5.1 Finding the optimal value of n

To search for the optimal value of n, we use the Nelder-Mead heuristic algorithm [16].

The algorithm is a derivative-free search method for multidimensional unconstrained op-

timization problems [18]. It has been proved that for a function with one dimension the

Nelder-Mead algorithm always converges to an optimal solution [16]. In our case, the func-

tion to be minimized f(n) is the required investment on purchasing n V2G stations plus the

operation cost considering there are n stations in the parking facility. The five steps of the

algorithm (reorder, reflect, expand, contract and shrink) are shown in Figure 3.1.

3.5.2 Computing the operation cost

Solving the operation problem for the entire planning horizon is computationally in-

tractable. Therefore, we divide the planning horizon into shorter intervals using the ap-

proach given in [17]. This approach associates the variability of demand, wind and solar

power to meteorological fluctuation of seasons, days and hours. A similar approach is used

to represent the variability of the EVs arrivals and departures to/from the parking facility.

As there are four different seasons within a year, we use four representative weeks. The

operation problem is then solved separately for each week (168 consecutive hours). The four

values of the objective function are multiplied by the number of weeks within each season to

obtain the operation cost for the entire year. The procedure is repeated for the other years

of the planning horizon.
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Figure 3.1: Nelder-Mead algorithm

To solve the model for weekly intervals, we use the Benders’ decomposition method [19].

We partition the problem into two problems: a master problem and a sub-problem. The

master problem includes the entire operation problem without the AC-OPF constraints (14)

to (18). The sub-problem includes the AC-OPF constraints. To solve the master problem,

we use the IBM ILOG CPLEX interactive optimizer with Concert technology in C++ [20].

We use Matpower 5.1 [21] to solve the sub-problem. The Benders’ decomposition with details

has been discussed in [15].
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3.6 Stochastic modeling of the parking facility

Similar to Section (2.4.4), we model the arrivals and departures of the EVs to/from the

parking facility using an Inhomogeneous Continuous Time Markov Chain (ICTMC) [22, 23]

and use the Monte Carlo simulation to generate scenarios for the state transitions based

on the ICTMC. The holding time is sampled from the cumulative probability distribution

function given in (2.30). After determining the holding time , the sampling of the next state,

is obtained by generating a random number and selecting the new state that satisfies the

constraint in (2.31). We continue sampling the holding times and jumps to the next states

until we reach the end of the planning horizon (hour 168).

Note that when the current state equals n in (2.32), the capacity of the parking facility,

qik(t) = 1 for i ≤ k. We count the number of arrivals and departures during each hour

(Narr
t and Ndep

t ) which are used to compute the maximum and minimum storage capacity

(Emax
t and Emin

t ) at each hour. We generate scenarios for the values of Narr
t and Ndep

t by

replicating the Monte Carlo simulation. The generated scenarios are reduced by using the

K-means clustering algorithm to decrease the computational time [24].

3.7 Microgrid Description

3.7.1 Microgrid Topology

We run our experiments on the 14-bus modified shown in Figure 2.3. We add a 1 MW

wind turbine at bus 1, 1 MW solar panels at bus 4 and EVs’ batteries at bus 2. Three small

scale thermal units are also added at bus 5, bus 10 and bus 12. The technical data related

to the thermal units are the same as the ones given in Table 2.1.

3.7.2 EVs Parking Battery

We divide a typical day into four 6-hour intervals. The morning interval starts from

6am to noon with arrival rate λ1 and departure rate of µ1 , the afternoon interval starts from
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noon to 6pm with arrival rate λ2 and departure rate of µ2, the evening interval starts from

6pm to midnight with arrival parameter λ3 and departure rate of µ3, and the night interval

starts from 12am to 6am with arrival parameter λ4 and departure rate of µ4. The remaining

EVs during the last hour of the night interval are the available EVs for the starting hour of

the morning interval of the next day. The arrival and departure rates for a week in spring

have been summarized in Table 3.1. One scenario for the available number of EVs in a

parking facility with 200 EVs during one week in spring is given in Figure 3.2.

Table 3.1: Arrival and departure rates for a week in spring

Arrival rates Departure rates

Day λ1 λ2 λ3 λ4 µ1 µ2 µ3 µ4

Monday 70 60 15 10 0.33 0.30 0.50 0.40

Tuesday 80 75 20 15 0.30 0.30 0.55 0.42

Wednesday 75 70 15 10 0.33 0.30 0.50 .45

Thursday 70 65 20 12 0.32 0.33 0.60 0.40

Friday 75 70 20 15 0.30 0.33 0.50 0.45

Saturday 45 40 10 5 0.40 0.35 0.55 0.45

Sunday 45 35 10 5 0.40 0.33 0.60 0.55

The battery capacity of an EV is 0.04 MWh and the average arrival energy content,

SOC, is 50%. The rated charging/discharging capacity of the V2G stations, CHmax, is

0.02 MWh. The maximum and minimum allowed SOC of an EV’s battery is 0.9 and 0.1,

respectively. The cost of battery wear, γ, is assumed to be 10 ($/MWh).

3.7.3 Day-ahead energy prices and power distributor

The energy prices of year 2010 to year 2015 collected from [25] are assumed to be the

forecasted prices for the study intervals in the planning horizon. The weekly energy prices in
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Figure 3.2: One scenario for the available EVs in the parking during a week in spring

spring are given in Figure 3.3. For the real-time transactions, the microgrid imports energy

at a cost of 150 ($/MWh) and exports it at a price of 5 ($/MWh).
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Figure 3.3: Energy price in the day-ahead during a week in spring
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3.7.4 Net Demand Uncertainty

The Monte Carlo simulation is used to generate scenarios for representing the uncer-

tainties in demand, wind energy and solar energy. As the solar and wind energy sources

are assumed to be non-dispatchable, the net demand scenarios at each hour are obtained by

subtracting the wind and solar energy output from the demand at that hour. To generate

the scenarios, we use a truncated multivariate normal distribution (TMVN) [24]. The prob-

ability density function of TMVN is given in (22) [25]. The covariance matrix, Σ, represents

the between hour interdependency.

f(x, µ,Σ, a, b) =
exp(−1/2(x− µ)TΣ−1(x− µ))∫ b

a

exp(−1/2(x− µ)TΣ−1(x− µ))dx

(3.4)

To estimate the parameters of the TMVN, we use wind and solar energy output data provided

by the renewables integration study datasets in [26]. We also collected historical hourly

demand data from [25]. We generate 1000 net demand scenarios for one week and reduced

them to 10 scenarios using the K-means clustering algorithm. In Figure 3.4, we show three

of the net demand scenario for one week from the spring season of year one. We assumed

an increases rate of 8% for the demand from one year to the next.

3.8 Simulation Results

We run all simulations on a 2.8 GHz Core 2Duo processor with 4GB of memory for a

planning horizon of five years. To compute the total operation cost for a given number of

V2G stations, we solve the operation problem 20 times (4 seasons by 5 years) for weekly

intervals (168 hours). As we consider 10 scenarios for the net load and 10 scenarios for the

parked EVs, the problem is solved for 100 scenario combinations. The purchasing cost of a

V2G station and the annual interest rate are assumed to be $5k and 5%, respectively.
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Figure 3.4: Three of the net demand scenario for one week from the spring season of year one

We start the Nelder-Mead algorithm with n1=100 and n2=500 V2G stations. Figure 3.5

shows the convergence of the Nelder-Mead algorithm. The algorithm converges after 15 it-

erations. The converged solution is 320 V2G stations with a total cost of $10,755k. In

Table 3.2, we provide the expected OC for one week of a season within a year. The table

also shows the expected OC for a season within a year and the entire year. Results for 100

and 500 V2G stations are shown in Tables 3.3 and 3.4.

Table 3.2: Investment and operation costs for 320 V2G

Expected OC (Weekly) ($) Expected OC(Seasonally) ($)=13 Weekly OC Total
OC($)

IC ($)
320 V2G

Total cost
PW ($)

Year Spring Summer Fall Winter Spring Summer Fall Winter

1 36,819 38,290 36,484 36,709 478,642 497,770 474,295 477,221 1,927,929

1.6M 10,755,336

2 38,002 39,086 36,899 37,572 494,024 508,112 479,692 488,437 1,876,443

3 38,852 39,930 37,895 38,837 505,081 519,096 492,635 504,877 1,833,731

4 39,168 40,944 38,953 39,882 509,185 532,271 506,392 518,468 1,784,962

5 39,272 41,876 39,983 40,838 510,530 544,393 519,773 530,890 1,732,271

Total 192,112 200,126 190,214 193,838 2,497,461 2,601,643 2,472,788 2,519,893 9,155,336
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Table 3.3: Investment and operation costs for 100 V2G

Expected OC (Weekly) ($) Expected OC(Seasonally) ($)=13 Weekly OC Total
OC($)

IC ($)
320 V2G

Total cost
PW ($)

Year Spring Summer Fall Winter Spring Summer Fall Winter

1 44,619 45,951 43,264 44,731 580,043 597,361 562,437 581,499 2,321,340

0.5M 11,596,409

2 45,962 47,205 44,608 45,825 597,505 613,671 579,899 595,728 2,273,146

3 47,151 48,069 45,809 47,250 612,966 624,891 595,520 614,247 2,220,067

4 48,427 49,387 46,926 48,168 629,548 642,033 610,037 626,187 2,166,337

5 49,401 50,463 48,295 49,643 642,209 656,022 627,836 645,362 2,115,520

Total 235,559 241,075 228,902 235,617 3,062,271 3,133,977 2,975,729 3,063,024 11,096,410

Table 3.4: Investment and operation costs for 500 V2G

Expected OC (Weekly) ($) Expected OC(Seasonally) ($)=13 Weekly OC Total
OC($)

IC ($)
320 V2G

Total cost
PW ($)

Year Spring Summer Fall Winter Spring Summer Fall Winter

1 34,040 35,305 33,640 34,031 442,520 458,965 437,320 442,403 1,781,208

2.5M 11,023,187

2 35,131 36,222 34,298 35,010 456,703 470,886 445,874 455,130 1,741,517

3 36,007 37,001 35,216 36,176 468,091 481,013 457,808 470,288 1,702,676

4 37,032 38,119 36,100 37,140 481,416 495,547 469,300 482,820 1,666,414

5 38,210 38,887 37,416 38,021 470,730 505,531 486,408 494,273 1,631,371

Total 178,420 185,534 176,670 180,378 2,345,460 2,411,942 2,296,710 2,344,914 8,523,187
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Figure 3.5: The convergence of the Nelder-Mead algorithm
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3.8.1 Effect of the V2G technology

To show the effect of investing on the V2G technology, we set the number of V2G stations

to zero to simulate that the V2G technology is not present and compare the results with the

case where 320 V2G stations are installed in the parking facility. The total operation cost

of the microgrid over the 5-year planning horizon is $12,843k which is $2,092k more than

having 320 stations in the parking facility.

3.8.2 Payback Period

The difference between the annual cost savings and the initial investment is referred

as the discounted project balance. The discounted payback period is the number of years

required to recover the initial investment in a project. Figure 3.6 shows the discounted

payback period, which is 3 years, for 320 V2G stations. The project balance from the start

until year 3 is negative which indicates the amount of loss if the project is terminated at any

point before year 3. After year 3, the project balance becomes positive which indicates the

amount of cash that directly contributes to the final profitability of the investment.

3.8.3 Effect of uncertainty

As we have considered the uncertainty of the net load and the number of parked EVs,

we assess the effect of these two uncertainty sources. We solve the problem with 320 V2G

station considering only one scenario for each stochastic parameter. The scenario is obtained

by averaging the 10 scenarios of each parameter. The total cost of the solved problem is

$11,195k which is $445k higher than that of the stochastic problem with 100 scenarios. The

discounted payback period of the one scenario case is four years. The total cost is calculated

by determining the first stage decision variables and then using them to obtain the second

stage decisions for each of the 100 scenarios. The total cost is obtained by averaging the

operation costs of each scenario.
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Figure 3.6: Discounted payback period considering investment on 320 V2G stations

3.9 Conclusions

In this chapter, we proposed an optimal investment model to upgrade a microgrid park-

ing facility with V2G technology. The microgrid included different sources of energy gen-

eration and was set to use the parking facility as an energy storage resource. To model

the variable storage capacity of the parking facility, we used an inhomogeneous continuous

time Markov chain, and to model the uncertainties, we used the Monte Carlo simulation.

A two stage stochastic programming framework was proposed to formulate the optimiza-

tion problem that aimed to determine the optimal investment on the V2G technology. To

solve the problem, we divided it into operation and investment sub problems. The Benders

decomposition was used to solve the operation problem for weekly intervals and the Nelder-

Mead algorithm to find the optimal solution for the V2G stations in the parking facility.

We tested the proposed model on a 14-bus distribution system for a planning horizon of five

years. The simulation results showed that investing on the V2G technology in the parking

facility reduces the microgrid’s cost of electricity supply in the long run. We also showed the
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superiority of the stochastic model to the deterministic model, and assessed the economic

payback period for investing on the V2G technology.
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