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Abstract

Autonomous tractor-trailer systems have become more and more popular in real life.

This dissertation focuses on control and estimation for the path following problem where

space-based path is used as reference. The goal is to make the trailer path follow the

reference path as closely as possible. A kinematic model is derived and is applicable when

the tractor velocity is relatively low.

To reduce tracking error near the intersection between two different kinds of reference

paths, a new approach is first developed based on a proper local coordinate transformation.

Then, an alternative solution based on model predictive control is developed to solve the

challenge mentioned above in an optimal way. Two linearization methods for the nonlinear

model, based on current measurements and steady-state values of time-varying terms, are

given. The result shows that both of these two approaches can greatly reduce the tracking

error near the intersections of different reference paths. For the trailer far from the reference,

a controller focusing on heading control is then proposed.

Two methods are then given to eliminate the steady-state error for curved reference

path. One is to add a feed-forward part in the control law. The other is to use tractor

steering rate as the control input instead of steering angle. The steady-state error may exist

when there is a bias in the measurement and process. An additional integrator is added

in the model and adaptive integral separation is applied to accumulate position error only

when it is close to zero. The proposed approaches are verified by simulations.

To reduce the sensor cost, an estimator based on adaptive unscented Kalman filter is

proposed when the positions of the trailer are measurable. Simulation results verify the

proposed algorithm.
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Chapter 1

Introduction

A tractor-trailer is a common vehicle that can do various tasks depending on the equip-

ment on the trailer. With the development of computer technology, autonomous tractor-

trailer systems can be applied in many fields. For example, the system can be used to spread

seed and fertilizer in the agriculture. In the previous work from Auburn University, a metal

sensor is placed on the trailer to detect unexploded ordnance underground. All these ap-

plications require accurate path following. As a robot, the tractor controls the speed and

direction and drives the trailer to track a given path. This dissertation focuses on control

system design for the trailer path following problem. which is more difficult than single robot

control. One reason is that a tractor-trailer system is a high order system. The position

of the trailer is changed by the heading angles of tractor and trailer, while the direction of

a single robot is decided by itself. The other difficulty is that it’s a non-collocated system.

For most tractor-trailer systems, the steerable wheels are the front wheels of the tractor.

Therefore, the control input is from the tractor while the control objective is the trailer

position. Furthermore, a tractor-trailer system is nonlinear. When classical linear approach

is applied, the system may be unstable in some cases.

1.1 Some classical control approaches

Proportional-integral-derivative (PID) control may be the most popular control algo-

rithm for single-input-single-output (SISO) systems. The control law in continuous time

domain is [1] :

u(t) = KP [e(t) +
1

TI

∫ ∞
0

e(τ)dτ + TD
de(t)

dt
] (1.1)

1



Figure 1.1: An example of a tractor-trailer system

where e(t) is the error signal, u(t) is the control command, and KP , TI , and TD are the PID

controller gains. In discrete time domain, the control law becomes:

u(k) = kP [e(k) + kI

k∑
0

e(k) + kD(e(k)− e(k − 1))] (1.2)

Unfortunately, PID control is unable to give a satisfactory result for tractor-trailer

systems, even when the system is near the reference. The main reason is that PID controller

doesn’t include any information about the tractor heading angle, which is critical to the

direction of the trailer. Some researchers have used state feedback approach and good results

have been achieved. The heading angles and trailer lateral position can be treated as system

state variables by constructing a state-space model:

ẋ = Ax+Bu

y = Cx

(1.3)
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where variable x is the state vector. A control law can be designed using state feedback,

making all the poles in the closed-loop system locate in the left-half plain:

u = −kx

There are several methods to determine the control gain k. Hodo uses pole placement

method [2] where the control input is the tractor yaw rate. Payne uses an optimal lin-

ear quadratic regulator (LQR) algorithm in [3] where the control effort minimizes the cost

function:

J =
∞∑
k=0

(xTkQxk + uTkRuk) (1.4)

One advantage of LQR over pole placement is that the algorithm considers not only the

output errors, but also the magnitude of control effort. The restriction of control effort

for most control systems is useful because any control signal, such as wheel steering angle,

torque in mechanical system, or current in the electrical system, can not be infinitely large.

Model predictive control (MPC) is another optimal control approach. The control law

is also obtained from minimizing a cost function like (1.4), but with a finite prediction hori-

zon. MPC has two main advantages over LQR. One is the reference output signal r(k) can

be flexibly set, and the other is the constraints can be integrated in the controller design.

However, the cost is that the amount of computation is much more than LQR, especially for

nonlinear MPC (NMPC) because calculating the optimal solution using numerical method

is very time-consuming. Falcone et al. apply so-called linear time-varying model predic-

tive control (LTV-MPC) for an autonomous robot where a discrete linear approximation

model was used at every step [4]. In other words, the nonlinear model was linearized by

(A(k), B(k), C(k), D(k)). Backman et al. applies NMPC for an agriculture machine. To

overcome the computation burden, the prediction horizon is reduced to ten samples when

trailer tracks a curve. Besides, the controller effort calculated at the last step is used when

NMPC fails to provide the solution in real-time. Kayacan also uses NMPC to control the

3



position of tractor and trailer with the help of a code generation tool “ACADO” which solves

the nonlinear programming problem relatively fast [5].

Some other control approaches based on linear or nonlinear model can be also applied

for a tractor-trailer system. A linearized dynamic model is developed in [6]. The tracking

error e is defined where a look-ahead point is selected as the reference point. A sliding model

controller is designed to eliminate the lateral error. Sliding surface is:

s = ė+ λe

where λ is a positive number and the control effort is chosen to guarantee the following

equation:

sṡ < 0

A hybrid back stepping controller is applied in [7]. The lateral position of the trailer, heading

angle of the trailer and the hitch angle are stabilized using pseudo feedback respectively.

In [8], the original nonlinear kinematic model is replaced with a set of linear models by

fuzzification.

ẋ(t) = Ai(t)x(t) +Bi(t)u(t)

y(t) = Ci(t)x(t)

Parallel distributed compensation (PDC) is proposed based on the Takagi-Sugeno (TS) fuzzy

model:

u(t) = −
r∑
i=1

hi(z(t))Kixi

where r is the number of IF-THEN rules, and zi(t) is the premise variable. Other controller

design techniques can be seen in [9][10][11]

4
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Figure 1.2: An example of a space-based path

1.2 Type of reference paths

Basically, there are two kinds of reference path: space-based path and time-based path.

Space-based path is defined in the space, and usually doesn’t depend on the time, while

the desired path is defined specifically as a function of time. Fig. 1.2 shows an example

of space-based reference path with U shape, and Fig. 1.3 shows an example of time-based

reference path with the following differential equations:

ẋ(t) = t

ẏ(t) = 2 sin t
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Figure 1.3: An example of a time-based path

The main difference is that in the case of time-based reference path, the desired position

at each moment can be clearly expressed but it’s not true in the case of space-based path.

In this dissertation, the space-based path is selected to be the reference. Fig. 1.4 shows a

straight path in global coordinates and local coordinates. Local coordinates x and y are

defined based on the reference path and the vehicle position. Actually, the vehicle would be

on the reference path as long as the lateral position error along the y axis is equal to zero.

Therefore, the lateral position is much more important than the longitudinal position for

path following.

1.3 The research focus

Even though a large amount of research has been done to stabilize the system, there are

still some challenges remaining to be solved. First, the tracking error near the intersections
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Figure 1.4: Reference path in global coordinate and local coordinates

of two different reference paths are usually very large. Second, the linear controller, which is

easy to implement, may fail to make the trailer follow the reference when the position error

is large. Last, the tracking error is difficult to remove for curved reference path. Besides,

the steady-state error exists when there is a bias in the measurement.

All the variables, including the positions and heading angles of tractor and trailer, should

be measurable to make the controller work well. To implement this, one solution is to use

two sets of Global Navigation Satellite System/Inertial Navigation System (GNSS/INS) with

real-time kinematic (RTK) corrections placed on tractor and trailer. The measurements are

very accurate. The position error can be less than 1 centimeter [12]. However, the implement

cost becomes very high. Instead, an encoder can be used to measure the hitch angle, the

angle difference between the tractor bearing and trailer bearing. Thus, the tractor bearing

can be calculated rather than measured, as well as the positions of the tractor. But the

sensor is often fragile and the signal from the encoder is usually very noisy.
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1.4 Overview of the contributions

In the following chapters, the solutions to the challenges mentioned above are proposed.

In Chapter 2, the kinematic and dynamic model of a general tractor-trailer system is deduced

and compared. In Chapter 3, two methods are introduced to reduce the trailer position error

near the intersections of two different reference paths. One method is based on a coordinate

transformation strategy which is properly selected. The other is based on model predictive

control [13]. Then an alternate controller used when the vehicle is far away from the reference

is designed to stabilize the system [14]. In Chapter 4, methods to remove the tracking error

for curved reference path and with the present of sensor bias are given [15]. In Chapter 5,

a state observer based on an adaptive unscented Kalman filter is proposed to overcome the

changes of road condition and disturbances [16]. Conclusions and future work are given in

Chapter 6.
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Chapter 2

Modeling of a Tractor-trailer System

Many controllers are designed based on a mathematic model. Therefore, the model is

critical to the closed-loop system for both transient and steady-state behaviors. In this chap-

ter, two models for a tractor-trailer system are derived. First, a relatively simple kinematic

model is obtained, and then a more complicated dynamic model is given.

2.1 System kinematic model

Fig. 2.1 shows the construction of a kinematic model and Table 2.1 shows the variable

definitions. In a kinematic model, it’s assumed that there is no lateral tire slip, which means

the direction of vehicle velocity is the same as the heading of vehicle body.

From the kinematic relationships of tractor and trailer, the nonlinear kinematic model

can be obtained as follows [17]:

ϕ̇r = ωr =
vr tan δ

lr
(2.1)

ϕ̇t = ωt =
vr sin θ − lhωr cos θ

lt
(2.2)

ẋt = vt cos(ϕt) (2.3)

ẏt = vt sin(ϕt) (2.4)

vt = vr cos θ + lhωr sin θ (2.5)
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Figure 2.1: Kinematic model of a tractor-trailer system

Here x axis and y axis represent the local geographic Cartesian coordinates and variable

θ is the hitch angle:

θ = ϕr − ϕt

In (2.1), the tractor yaw rate is modeled to be linear with tan δ [18]. In fact, equation (2.2)

and (2.5) can be extended for systems with more trailers. Generally, yaw rate of trailer k is:

ϕ̇k = ωk =
vk−1 sin θk−1 − lh,kωk−1 cos θk

lt,k
(2.6)

where ϕk means the heading angle of the kth trailer, variable θk−1 means the (k − 1) hitch

angle, variables vk−1 and lh,k represent the velocity of the trailer (k − 1) and the distance

between the hitch point (k − 1) and the center of rear wheel axle of the trailer (k − 1). The

velocity of the trailer k is:

vk = vk−1 cos θk−1 + lh,k−1ωk−1 sin θk−1 (2.7)
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Table 2.1: Parameters of tractor-trailer system

Variable Description
lr Length from front tire of tractor

to rear tire of tractor
lh Length from back tire of the tractor to hitch
lt length from hitch to the rear tire of trailer
vr velocity of tractor
vt velocity of trailer
δ tractor steering angle
xt longitudinal position of trailer
yt lateral position of trailer

Treating the robot speed vr as a constant and using the small angle assumption, a

state-space model in Ẋ = AX +BU form can be obtained:


ϕ̇r

ϕ̇t

ẏt

 =


0 0 0

vr
lt
−vr

lt
0

0 vr 0



ϕr

ϕt

yt

+


vr
lr

− lhvr
lrlt

0

 δ (2.8)

The state vector contains tractor heading angle, trailer heading angle, and the trailer

lateral position. The longitudinal position xt disappears because we focus on the lateral

position control, and the other three variables have no relation to variable xt.

2.1.1 On-axle vs. Off-axle hitching models

There are two kinds of connection between a tractor and a trailer: on-axle hitching

(shown in Fig. 2.2) and off-axle hitching (shown in Fig. 2.3). In an on-axle hitching system,

the trailer is directly connected to the center of tractor rear wheel axle, while there exists

a distance lh between the joint point and the tractor rear axle. In the linearized kinematic

model, an off-axle hitching system has an additional right-half plane zero at z = v
lh

, resulting

in an opposite motion of trailer with respect to the tractor yaw rate at the beginning of a

new command.

11
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Figure 2.2: On-axle hitching system

2.1.2 Comparison of on-axle and off-axle transient response

Fig. 2.4 shows a step response of trailer heading. The input is tractor yaw rate with

a magnitude of 0.5. The lateral position first becomes negative, then has a positive value

which corresponds to the direction the tractor guides to after about 1.5 seconds. Therefore,

the tracking error for a tractor-trailer system with off-axle hitching is usually larger than

that for on-axle hitching system. Besides, The right-half plane zero also prohibits the use of

high gain feedback control.

2.2 System dynamic model

A dynamic model considers lateral forces and side slip for both tractor and trailer.

Variables used in a dynamic model are shown in Table 2.2. A difficulty to model the tractor-

trailer system is the force at the hitch. The trailer is regarded as a third axle behind the

tractor and the force at the hitch is modeled as an additional tire [19]. It’s not accurate since

the trailer dynamic is not considered. A force analysis using “Bicycle” approach deduced

from Newton’s law is studied in [20]. However, the position and velocity of tractor rather

than the trailer are addressed. For the trailer dynamic analysis, the model and a linearized

12



lh
lt

lr
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Figure 2.4: Step response of off-axle hitched trailer lateral position using tractor yaw rate
as input, showing initial change in the negative direction
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Table 2.2: Parameters of dynamic model for tractor-trailer system

Variable Description
Cr
f Cornering stiffness of tractor front tire

Cr
r Cornering stiffness of tractor rear tire

Ct
r Cornering stiffness of trailer rear tire

mr Mass of tractor
mt Mass of trailer
αfr side slip angle of tractor front tire
αrr side slip angle of tractor rear tire
αt side slip angle of trailer rear tire
vrc Lateral velocity of tractor
vtc Lateral velocity of trailer
a Length from tractor front tire to CG
b Length from tractor CG to rear tire
c Length from rear tire to hitch
d Length from hitch to CG of trailer
e Length from CG of trailer to rear tire
Irz Tractor yaw moment of inertia
I tz Trailer yaw moment of inertia
σf Relaxation length of tractor front tire
σr Relaxation length of tractor rear tire
σt Relaxation length of trailer rear tire

dynamic model are derived below in which the lateral velocity and position of trailer are

used as state variables.

Using Newton’s Law, the following two equations can be applied for both tractor and

trailer:

Fy = mv̇y (2.9)

Mz = Izω̇ (2.10)

where Fy is the lateral force, Mz is the moment about the center of gravity (CG), and vy is

the lateral velocity. Fig. 2.5 shows the forces on the vehicles. The two equations above can
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Figure 2.5: Dynamic model of the tractor-trailer system

be extended as follows:

mrv̇
r
c = F r

x,f sin δ + F r
y,f cos δ + F r

y,r + F r
y,h (2.11)

Irz ω̇r = a(F r
x,f sin δ + F r

y,f cos δ)− bF r
y,r − cF r

y,h (2.12)

mi(v̇
t
c + vtxωt) = F t

y,h + F t
y (2.13)

I tzω̇t = dF t
y,h − eF t

y (2.14)

Using a linear tire model, which is valid for small side slip angles, the lateral forces on front

tire of tractor, rear tire of tractor, and rear tire of trailer can be obtained by:

F r
y,f = −Cr

fα
f
r = −Cr

f (
vrc + aωr

vrx
− δ) (2.15)

F r
y,r = −Cr

rα
r
r = −Cr

r

vrc − bωr
vrx

(2.16)

F t
r = −Ct

rα
t
r = −Ct

r

vtc − eωt
vtx

(2.17)
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Moreover, the relationship between F r
y,h and F t

y,h is:

F r
y,h = −F t

y,h cos θ + F r
x,h sin θ (2.18)

Thus, the lateral force at the hitch for trailer and tractor F t
y,h and F r

y,h can be calculated

from (2.13) and (2.18). The lateral velocity of trailer’s center of gravity is:

vtc = vrx sin θ + (vrc − cωr) cos θ − dωt (2.19)

Then the system dynamic can be represented by equations (2.11), (2.12) and (2.14) with

the linear tire model (2.15)-(2.17) and the equation on velocity (2.19). With small angle

assumption, a linearized sixth-order state-space model can be derived:

Mẋ = Nx+ Pδ (2.20)

where

M =



mr +mt mt(b+ c) dmt 0 0 0

−mt(b+ c) Irz 0 0 0 0

−mtd 0 I tz 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


P =

[
Cr
f aCr

f 0 0 0 0

]T

x =

[
vtc ωr ωt yt ϕr ϕt

]T
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Define nij as the element in ith row and the jth column of N matrix, then: N=



n11 n12 n13 0 n15 n16

n21 n22 n23 0 n25 n26

n31 0 n33 0 0 0

1 0 0 0 0 vrx

0 1 0 0 0 0

0 0 1 0 0 0


The details of nij are given in the appendix.

2.3 Comparison between kinematic model and dynamic model

A third-order kinematic model and a sixth-order dynamic model are derived. It turns

out that three variables in the dynamic model are the same as the variables in the kinematic

model: tractor heading angle, trailer heading angle and trailer lateral position. The other

three variables are higher-order terms of the variables mentioned above respectively, which

are the yaw rate of tractor, yaw rate of trailer and the trailer lateral velocity.

If the parameters in both models are accurate, the dynamic model has less modeling

error than the kinematic model because it takes the high-order behaviors into account. Next,

the open-loop eigenvalues of linearized models, which determine the main dynamic of the

system, are checked and compared to see when the high-order variables are necessary. The

data shown in Table 2.3 are from a Kubota RTV [21]. In the kinematic model, variable lh is

same as c in the dynamic model, and lr, lt are equal to:

lr = a+ b

lt = d+ e
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Table 2.3: Parameter values for a tractor-trailer system

Variable Value
Cr
f 45000 N/rad

Cr
r 45000 N/rad

Ct
r 4000 N/rad

mr 900 kg
mt 50 kg
a 0.75 m
b 1.21 m
c 0.53 m
d 3 m
e 1 m
vr 1m/s
Irz 810 kg·m2

I tz 150 kg·m2

When the parameters in the table are determined, the only variable that can changes

the open-loop poles is the tractor velocity. Table 2.4 shows the non-zero poles closest and

second closest to the imaginary axis with the change of tractor velocity from 0.5 m/s to 10

m/s:

Table 2.4: Nonzero pole locations of kinematic model and dynamic model

tractor closest nonzero pole closest nonzero pole to second-closest nonzero pole
velocity imaginary axis in to imaginary axis to imaginary axis

kinematic model in dynamic model in dynamic model
0.5m/s -0.125 -0.125 -162.476
1m/s -0.25 -0.251 -81.626
2m/s -0.5 -0.505 -41.629
3m/s -0.75 -0.766 -28.779
4m/s -1 -1.041 -23.017
5m/s -1.25 -1.333 -20
6m/s -1.5 -1.654 -16.124
10m/s -2.5 -4 -6.667

It can be seen that when the tractor velocity is small (less than 5m/s), the closest

nonzero poles in the two models are quite similar. Furthermore, the other poles are much

18



far away. Therefore, the kinematic model can represent the system as well as the dynamic

model. When the tractor velocity gets higher, the difference between the dominant poles in

two models becomes larger, and the other poles are closer to the dominant pole. Especially

when the velocity is 10 m/s or higher, the closest non-zero pole to the imaginary axis in

dynamic model is no longer dominant. In this case, the kinematic model is insufficient.

2.4 Summary

In the kinematic model, the geometrical information of tractor and trailer are measured

and used, namely the length of tractor, the length between the rear wheel axle of tractor

to hitch point, and the length of trailer. These variables are easy to measure and the

measurements of the length can be very accurate. In the dynamic model, the geometrical

variables are needed as well as the moment of inertia and cornering stiffness which are difficult

to measure. Sometimes engineers can only estimate these variables. As a result, even though

the dynamic model is more complicate, the parameters in the model may be not accurate.

When the tractor velocity is small, the higher-order dynamic vanishes very fast, and the

simpler kinematic model is sufficient to describe the system. The following work of controller

and estimator design is based on the kinematic model. When the tractor moves faster, the

higher-order terms should not be ignored and the dynamic model is suggested to be used

instead. In the next chapter, the controllers for trailer near the intersections of different

reference paths and far from the reference path are introduced.
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Chapter 3

Controller Design for Trailer Near the Intersections and Far From the Reference

Reference paths are often compositions of straight lines and arc segments. Both linear

state feedback and nonlinear approaches can make the trailer track a straight line very well

[22] [7]. For time-based curved reference, tracking error can be clearly defined, and control

law is able to drive the trailer match the desired yaw rate [10]. Basically, a controller can

be designed to do the path following for one type of reference path, either straight lines or

arc segments. However, there are few researches on the system performance in the region

where two different segments join. The tracking error following one type of reference path

can be small, but the error near the intersections is usually large because the controller is

often designed for a fixed curvature, which is not suitable for the path near the joining point.

In this chapter, methods to reduce the tracking error near the joint point of two reference

paths are proposed, which are ignored by most of other researchers.

Another challenge for path following is that the system might be unstable when initial

error is large under a linear control law. In other words, the stability is not guaranteed using

linear methods when the vehicle is far from the reference because the system is nonlinear.

This problem also exists in the control of a single robot. Nonlinear control with input satu-

ration may solve the problem [23] [24]. It’s realized that the system transient performance

using linear state feedback is very satisfactory. Nonlinear controller can solve the stabil-

ity problem, but the transient behavior, represented by overshoot and settle time, may get

worse. Some nonlinear controllers are difficult to design, e.g. feedback linearization. In this

chapter, a simple, alternate control strategy is given to drive the tractor-trailer system to

the reference when the vehicle is initially far from the desired path. The original controller is
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only used when the vehicle is close to the reference to have less overshoot and shorter settle

time.

3.1 Modification of the kinematic model

In Chapter 2, a linearized kinematic model of a tractor-trailer system is given by (2.8).

The system input is the tractor steering angle. When a new control command is provided, it’s

assumed that the new control effort can be implemented instantly. However, it’s not realistic

because the steering rate of the tractor can’t be infinite. So the steering dynamic should be

considered. The tractor steering dynamic can be modeled as a first-order process[25]:

δ̇r = −dvδr +Kvu (3.1)

where δr is the actual steering angle, dv is the damping constant, Kv is the input gain, and

u is control input. Using δr as an additional state variable, the augmented linear model of a

tractor-trailer system can be describe as:



ϕ̇r

ϕ̇t

ẏt

δ̇r


=



0 0 0 vr
lr

vr
lt
−vr

lt
0 − lhvr

lrlt

0 vr 0 0

0 0 0 −dv





ϕr

ϕt

yt

δr


+



0

0

0

Kv


u (3.2)

The state-space model becomes a fourth-order model. In the following part of this

chapter, the new model is used.

3.2 Controllers to reduce the error near the intersections

The reference path is usually defined in the global coordinate. In the controller, however,

a local coordinate should be used to define the error state. Fig. 3.1 shows a common way to

define the tracking error for heading angles and lateral position. For curved reference path,
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Figure 3.1: State error definitions: (a) curved reference path, (b) straight reference path

the desired heading angles are decided by the positions of tractor and trailer, and the center

point of the curve. It can be found that the desired heading angles for tractor and trailer

are different. The trailer lateral position error is defined as the nearest distance between the

center of trailer rear axle and the reference path. For the straight reference path, the desired

heading angles for tractor and trailer are same. Next, two methods to reduce the tracking

error near the intersections are given.

3.2.1 Controller using new coordinate transformation strategy

Using the above local coordinate produces large tracking error when the path types

change. Fig. 3.2 shows system performance to track a U-shape path using the local coordinate

above and linear state feedback. Point 1 and point 2 are two intersection points from line

to curve and from curve to line, respectively. The trailer path drawn in blue deviates from

desired path at both two points.

It can be also found in Fig. 3.2 that the trailer begins to turn right too early, resulting in

the path inside the desired circle path. The reason is shown in Fig. 3.3. At this moment, the
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Figure 3.2: System performance tracking U-shape path using present linear state-of-the-art
approach

tractor is just at the intersection point P1 and the trailer is at point A. From the next time

instant, since the the desired path of tractor changes from line to curve, the desired bearing

of tractor would be different from that of trailer, and the tractor would drive the system to

turn in clockwise. As a result, the trailer starts to turn before it reaches the intersection

point. So the key point is that the tractor and trailer have different reference paths and

different type of local coordinates. This phenomenon only happens when the system is near

the joining point.

A local coordinate definition considering both the positions of tractor and trailer seems

to be a solution to reduce the tracking error. If the coordinate of the trailer is designed to

be always the same with the trailer, unfortunately, the error would be still large because the

trailer path in Fig. 3.3 would be outside the desired circle path, and the system performance

23



center 
point

reference path 

region
1

region
2

 A  P

Figure 3.3: The tractor and trailer are located in different regions

under this strategy is shown in Fig. 3.4. The tractor begins to turn too late actually. The

large tracking error can’t be smaller even with nonlinear control algorithms as long as the

local coordinate above is used. Furthermore, tuning the control gains can’t obtain better

results either.

From the analysis, it can be realized that using the existing coordinate transformation

strategy makes the trailer yaw rate mismatch the yaw rate of reference path because the

system changes the heading angle either too early or too late. The tracking error near the

intersection may become smaller if an appropriate moment that tractor begins to apply

coordinate for new reference path can be chosen correctly [14]. In the case of Fig. 3.3, point

A and point P are trailer positions without tracking error using two strategies mentioned

above. Neither of two points are suitable to indicate when the tractor begins to use new

type of local coordinate for region 2. A better selection can be located between these two

points. In other words, the new strategy considers the tractor and trailer together instead

of defining local coordinate based on positions of tractor and trailer individually. Variable

D indicates the distance between the trailer position and the joint point. A threshold of D
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Figure 3.4: The system performance tracking U-shape path when tractor and trailer use
same type of local coordinate

can be defined which is in the range of:

Dth ∈ [0, lh + lt]

As shown in Fig. 3.5(a), if the distance of between trailer position to joint point P is larger

than Dth, the coordinate definition for straight line in region 1 is still use for the tractor,

even though the tractor is already located in region 2. In other words, the tractor should

track the extension line of the previous reference path. When the distance is equal or smaller

than Dth (shown in Fig. 3.5(b)), the new type of local coordinate, which is for the curved

path in region 2, is applied for the tractor.
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Figure 3.5: The new coordinate transformation strategy when reference path changes from
line to curve
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Figure 3.6: The new coordinate transformation strategy when reference changes from a curve

If the reference changes from a curved path, a threshold of angle ϕth rather than distance

is defined. In Fig. 3.6, coordinate for the curved path is still used for the tractor from time t1

to time t2, until the trailer arrives at the setting angle ϕth (the moment shown in Fig. 3.6(b)).
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The value of Dth or ϕth for each intersection can be determined by computer simulation

with the assumption that there is no tracking error when the tractor arrives at the joint

point. In other words, the location of each setting point is decided before the implementation

without initial error and disturbances. The assumption of zero initial error is valid if the

steady-state error for tracking straight and curved reference paths under a proper control

law can be removed. The L2 norm of trailer position error near the intersection, which is

equal to
√∑

error2i , is used to evaluate the system performance. Fig. 3.7 shows how this

value changes with respect to the location of setting point for the case of reference from line

to curve in Fig. 3.5. The vertical axis represents the L2 norm of trailer lateral position error

during the period before and after the intersection point P for three second respectively.

Horizontal axis is the distance from the point A which is located at the reference path with

a distance of lh + lt from point P . It can be seen that the smallest L2 norm of tracking error

is 0.108, and this is obtained when the setting point is located at 3 meter from point A. As

the comparison, if the tractor begins to apply new local coordinate when the trailer is at

point A or point P , the L2 norm of tracking error will be 1.627 and 1.592 respectively, which

are much larger than the minimum.

The threshold of distance or angle mainly depends on the length of lh + lt and how

much the curvature changes. If the change of curvature between two reference path is larger,

the setting point would be further to the joint point. Fig. 3.8 shows how the setting point

changes with the curvature of region 2 in the case of Fig. 3.5. The setting point location for

curvature change of 1
7

is at 1.5 meter from the intersection point with error in L2 norm of

0.072, while it’s 1.75 meter for curvature change of 1
4

with error in L2 norm of 0.147.

In summary, the location of each setting point is pre-defined, and the calculation process

can be easily computed in advance.
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Figure 3.7: L2 norm of tracking error with respect to different setting point location for Fig.
3.5

3.2.2 Model predictive control

In the last subsection, the method based on a new local coordinate transformation

strategy is introduced to reduce the trailer tracking error near the intersections. Next, a

straight-forward approach based on model predictive control (MPC) will be given.

The difficulty of obtaining a small tracking error near the intersection is that the system

isn’t under steady-state in this case. There is a transient process between two reference paths

with different curvature. In other words, the curvature at the intersection is not continuous.

Traditional methods just use the current state value and don’t know how the reference path

in the following steps will change. As a result, when the trailer just passes the intersection,

the slow yaw rate can’t match the desired one.

If the controller has the information of the following reference path, it is likely to output

the proper control effort to track the path accurately. One can image the situation when a

human driver makes a turn. The driver knows the paths in front of the car and turns the

steering wheel to make the car move along the arc. Model predictive control can implement
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Figure 3.8: L2 norm of tracking error with respect to different setting point location for
different curvatures

this idea. With the development of computer technology, MPC becomes an alternative way

to design a control law, especially for path tracking problem [21] [26]. MPC is an optimal

controller minimizing a cost function, which considers the system error and control effort in

a prediction horizon Np.:

J =

Np∑
k=1

[(y(k)− r(k))TQ(y(k)− r(k)) + u(k)TRu(k)] (3.3)

where y(k) is the system output, variable r(k) is reference signal, variable u(k) is control

effort. Parameters Q and R are positive definite and weight the output error and control

effort, respectively. The algorithm predicts the system output in the next Np steps using a

mathematical model, and then obtains the solution of u by minimizing J so that the tracking

error can be optimized [27]:

u = [u(k), u(k + 1), u(k + 2) · · ·u(k +Nc)]
T (3.4)
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where Nc is control horizon, and Nc ≤ Np. The first element of u is applied only to the

system. At the next time instant, the same procedure is done in a moving horizon manner.

It can be seen that MPC is very suitable for reducing the error where different reference

paths join, which is a difficult problem for some other algorithms, such as linear quadratic

regulator (LQR) or sliding mode control (SMC). Generally speaking, MPC can solve the

following constrained optimal problem [28]:

min
u
J(x, u, r) (3.5)

subject to

xk+n+1 = f(xk+n, uk+n)

yk+n = h(xk+n)

umin ≤ uk+n ≤ umax

ymin ≤ yk+n ≤ ymax

(3.6)

where n = 1, 2 . . . Np. If the function f is nonlinear, it’s a nonlinear model predictive

controller (NMPC). The amount of computation of solving NMPC is very large because there

is no closed-loop form solution and the control input must be calculated iteratively using

numerical optimization. The computation burden is difficult to reduce. A spare control law

may be still needed when NMPC fails to obtain the solution [29]. To avoid these drawbacks,

a linear MPC approach is applied in this dissertation.

Using the approximation: sin(x) = x and the steering dynamic (3.1), the model (2.1)-

(2.5) can be linearized as follows:



ϕ̇r

ϕ̇t

ẏt

δ̇r


=



0 0 0 vr
lr

vr
lt
−vr

lt
0 − lhvr

lrlt
cos θ(t)

0 vt(t) 0 0

0 0 0 −dv





ϕr

ϕt

yt

δr


+



0

0

0

Kv


u (3.7)
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Notice that there are two differences between (3.7) and (3.2). One is that the cosine

term in the original nonlinear model is kept instead of being approximated by 1, because the

approximation error of cosine term is much larger than the approximation of sine term. The

other is that the trailer velocity is also kept instead of being approximated by the tractor

velocity. In fact, the model (3.2) assumes that the hitch angle is always zero. But it’s not

true when the trailer tracks a curve.

The model (3.7) is time-varying and therefore it can’t be used directly as the prediction

model for MPC. In other words, the time-varying terms should be fixed during the prediction

horizon. There are two ways to implement this. One is to use current value of time-varying

terms so that the system matrix becomes linear time-invariant (LTI). In this case, the model

can be expressed as:

xk+1 = A(k)x(k) +Bu(k) (3.8)

Some research on MPC uses this approach and call it “Linear time varying MPC”(LTV-

MPC) [30] [31]. Another method to make the system matrix linear-time-invariant is to use

values under steady state of time-varying terms. Since the control objective is the trailer

position, the steady state values with respect to the trailer reference path is used in the

model. The model can be revised as:

xk+1 = Ass,kx(k) +Bu(k) (3.9)

where Ass,k contains the terms of cos θss and vtss, which represent the steady-state value of

hitch angle and trailer velocity respectively.

When the trailer reference path is a straight line ,then

θss = 0

ωss = 0

vtss = vr

(3.10)
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When the reference path is a curve,θss is no longer zero, but the rate of θss is zero [32] [13],

which means the tractor and tailer have same yaw rate. Furthermore, the trailer velocity is

proportional to the trailer yaw rate. Therefore, two equations can be obtained:

θ̇ss = 0

vtss = ωrR

(3.11)

where R is the reciprocal of reference curvature. Solving the equation set (3.10), and we

have:

ωss = σ|vr|
√
l2t +R2 − l2h
l2t +R2 − l2h

θss = −2σsign(vr) arctan(
R−

√
l2t +R2 − l2h
lt − lh

), lt 6= lh

θss = 2σsign(vr) arctan
lt
R
, lt = lh

(3.12)

Then, the trailer velocity with a curved reference path under steady state is :

vtss = vr cos θss + lhωss sin θss (3.13)

Using the result in (3.12) and (3.13), the system matrix can be linear time-invariant.

It can be found that the former method, using current measurements in the model, requires

more calculation because the system matrix at each sample may be different, and needs to

be calculated each time, while the latter method can restore the values under steady state

only. Later it will be shown that the two modeling approach are both valid for path following

of a tractor-trailer.

To predict the system output in the next step, unified local coordinates should be used

for both tractor and trailer. In other words, the error states of tractor and trailer need to

be defined based on trailer only, and the cost function is calculated based on the trailer

local coordinate. The definition of error state when the reference path changes from line
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Figure 3.9: The local coordinate for MPC when reference path changes from line (a) and
arc (b)

and arc are shown in Fig. 3.9 (blue line). Notice that this is different with traditional local

coordinate in Fig. 3.1 and new coordinate transformation strategy in Fig. 3.5 and Fig. 3.6.

To minimize the cost function (3.3), the system output y should be selected. Obviously,

the trailer lateral position should be taken as output. Additionally, the trailer heading is

found to be important to the system performance, especially for the transient behavior. As

a result, the output vector is:

y(k) =

ϕt(k)

yt(k)


The reference signal r(k + n) includes the trailer lateral position ytd and the trailer heading

ϕtd. The desired trailer heading is defined by the difference of the corresponding heading

angle of reference position at time instant k + n and the current trailer heading shown in

Fig. 3.10 where the red curves represent the reference path and the blue lines with arrow

represent the directions of local coordinate. When the desired position at time instant k+ 1
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Figure 3.10: The definition of desired trailer heading

is located at a curve, the reference heading angle is:

ϕtd(k + 1) = ϕtd(k) + ωdT (3.14)

where T is the sampling time. Variable ωd is the desired yaw rate and can be obtained

by (3.9) and (3.11) for line and curved reference paths respectively.

In Fig. 3.10, the desired lateral position corresponding to the reference point is:

ytd = r − cosϕtdR (3.15)

Taking the derivative on both sides:

ẏtd = ϕ̇tdR sinϕtd = vtd sinϕtd
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It’s consistent with (2.4) that the derivative of lateral position is a function of sinϕt. However,

the equation in the linearized model is:

ẏt = vtϕt

It can be seen that there is a linear relationship between ẏt and ϕt. Since | sinϕt| < |ϕt| for

nonzero ϕt, the predicted lateral velocity in the model is always larger than the actual one

if the desired trailer heading is nonzero. As a result, the tractor steering angle and tractor

yaw rate would be smaller than the desired ones, and the trailer path would be outside the

curved reference path.

Therefore, the reference signal of lateral position should be recalculated. As a solution,

ytd is defined in such a way that it coincides with the linearized model. In other words, there

should be a linear relationship between ϕtd and ẏtd. Therefore, the desired trailer lateral

position at time instant k is:

ytd,k = ytd,k−1 +
1

2
vtd(ϕtd,k + ϕtd,k−1) (3.16)

Thus, at time instant k, the desired reference signal during the prediction horizon is:

r(k + n) =

 ϕtd,k+n

ytd,k+n

 n = 1 . . . Np (3.17)

One advantage of MPC is that the system constraints can be integrated in the algorithm.

The constraints at each sample are as follows:

umin < u(k) < umax

θmin < θ(k) < θmax

(3.18)
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The first constraint is set on the control input, which is always restricted by energy or

mechanics. The second constraint is set on the hitch angle. If the hitch angle is nearly 90

degree, the wheels of trailer would stop rolling and “jack-knife” phenomenon would occur,

resulting in a strange path of trailer.

At each sample, the desired reference signal is calculated and the model is linearized

to be linear time-invariant. The minimization of cost function can be done by quadratic

programming [33]. A dual problem with Lagrange multipliers is solved instead to decrease

the amount of computation and the constraints are treated as equality constraints in the

computation [34].

3.2.3 Simulation results

Two proposed methods are studied to track an S-shape curve including three intersec-

tions: from line to curve, from curve to different curve and from curve to line. The S-shape

path is a more complicated path than U-shape in [35] or eight-shape in [5] because it re-

quires the trailer yaw rate to cross zero while the other two paths mentioned don’t have

such a demand. Each curved path is with a radius of 5 meter. The vehicle parameters are

shown in Table 2.3 of the previous chapter. First, simulations are done without measurement

noise. The sample time is 0.1 second. Fig. 3.11 shows the system performance using new

coordinate transformation strategy (CTS) and previous method [22]. Under the previous

control, the tracking error at each intersection point Pi are much larger than the error using

the proposed approach, especially for the second intersection, where the desired yaw rate

changes from negative (moving clockwise) to positive (moving counter-clockwise), and the

trailer fails to track the second curved path. With the proposed method, the tractor starts

to track new reference path at point Si. The trailer path almost overlaps with the line and

curved reference path. At the intersection of two consecutive curved path, the trailer can

also track very well. Fig. 3.12 shows the comparison of lateral position error using these two

methods. The alternating solid and dashed blue lines are used to distinguish different path
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Figure 3.11: System performance using new coordinate strategy

sections. It can be seen clearly that the error near each intersection is significantly reduced.

Using the proposed strategy, the root mean square error (RMSE) of trailer lateral position

is 1.30 centimeter and the maximum absolute error is 5.27 centimeter.

Next, model predictive controllers based on two modeling methods, namely linear time-

varying MPC (LTV-MPC) and using steady state values (SS-MPC) in the model, are tested.

The prediction horizon Np and the control horizon Nc are both 50, i.e. predicting the system

behavior in the next 5 seconds. Notice that if current measurements are used in the model,

the system response is faster than using steady state values, but are easier to be overshoot

as well. Furthermore, the overshoot can be reduced by adjusting weighting matrix Q in
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Figure 3.12: Comparison of lateral position error using new coordinate strategy (b) and
previous approach (a)

Table 3.1: Error comparison for tracking S-curve using three methods without noise

CTS LTV-MPC SS-MPC
Max. error 5.27 cm 4.57 cm 4.43 cm

RMSE 1.30 cm 1.41 cm 1.51 cm

(3.3). Fig. 3.14 shows how the parameter Q affects the system response. The system tracks

a straight line and the initial error is 2 meter. The blue curve using SS-MPC and the green

curve using LTV-MPC are generated by same control parameters Q and R. The tracking

error in LTV-MPC reaches zero faster with a overshoot. The blue curve, however, are gentler

when the trailer is close to reference. It is realized that the trailer heading error is larger

using LTV-MPC when the trailer first arrives at the zero line. So the system response with

more weighting on the trailer heading in Q is studied and drawn in magenta. Basically

the response gets similar with the curve using SS-MPC, and has smaller overshoot than the

previous case using LTV-MPC. In conclusion, the two modeling methods can have similar

responses when the weighting on trailer heading for LTV-MPC is set to be a little larger

than the value in SS-MPC.
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Figure 3.13: System response with different linearization methods
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Figure 3.14: Lateral tracking error using different linearization methods

Then, the system tracks the same S-curve using the two modeling methods. Fig. 3.13

shows the lateral position error. The overall behaviors are quite similar. The tracking
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error near the second intersection is larger than the errors near the other intersections,

which is consistent with the situation using the proposed coordinate transformation strategy.

Table 3.1 shows the maximum of absolute error (MAE) and RMSE using the three methods

respectively. The controller using CTS has the largest MAE but smallest RMSE, because

it works well near the intersection point P1 and P3, but works worse near P2. MPC has

smaller MAE , illustrating that MPC can do better when the curvature of reference path

has a big change, such as crossing zero at P2. Next, the simulation with initial error is

done. Fig. 3.15 shows the trailer paths using coordinate transformation and LTV-MPC. The

initial position error is 0.92 meter. Notice that the tracking error still exists at S2. The trailer

moves to the reference more quickly using LTV-MPC method. Both of the two controllers

can track the second curved path very well. Fig. 3.16 shows the lateral position error with

respect to time using the three methods. LTV-MPC and SS-MPC have faster response and

less overshoot than CTS when the trailer near P2. It’s mainly because the setting point in

CTS is calculated beforehand assuming no error at the setting point, and can’t be adjusted

adaptively according to the actual situation near the intersections, while the control effort

in the two approaches based on MPC is calculated on-line. In conclusion, MPC can obtain

better results when there is tracking error at the setting point.

3.2.4 System performance with the presence of noise

Noise usually exists in the measurement signals. It is assumed that all the states in-

cluding heading angles and positions can be measured. Next, the system still tracks the

S-curve with the same initial condition in Fig. 3.12, but Gaussian white noises are added

with standard covariance of 0.02 radian for angle measurement and 0.02 meter for position

measurement. The simulations are done for thirty times. Table 3.2 shows the MAE and

RMSE using three methods. CTS has the largest RMSE while LTV-MPC and SS-MPC

have the same RMSE. Recall from Table 3.1 that CTS has the smallest RMSE without the
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Table 3.2: Error comparison for tracking S-curve using three methods with noise

CTS LTV-MPC SS-MPC
Max. error 6.38 cm 5.58 cm 5.16 cm

RMSE 1.93 cm 1.78 cm 1.78 cm

presence of noise. This illustrate that MPC can have better results when measurements are

noisy.
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Figure 3.16: Lateral position error using three methods

3.2.5 Summary

In this section, two methods, based on coordinate transformation strategy (CTS) and

MPC, are introduced to reduce the tracking error near the intersections of different reference

paths. Two linearization approaches are given in MPC. All the proposed methods can

provide much better results than traditional linear state feedback. CTS is simpler and easier

to implement, requiring less computation, while MPC is less sensitive to measurement noise,

and the tracking error can be smaller when non-zero steady-state error is considered.

Two methods of linearizing the nonlinear system is given. One is called LTV-MPC,

using current values of time-varying terms in the system matrix. The other is called SS-

MPC, using steady-state values instead. Two approaches can obtain similar responses when

the trailer heading is weighted more in LTV-MPC. It’s also found that the system tends to

overshoot more when the prediction horizon becomes longer. Fig. 3.17 shows the tracking

error versus time with different prediction horizon Np. The control parameter Q and R are

the same for the three situations. The initial position error is 2 meter. There is no overshoot

when Np equals 50. The overshoot exists when Np becomes 65, and gets larger when the
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Figure 3.17: Lateral position error using LTV-MPC with different prediction horizon

prediction horizon is infinity, which is implemented by infinite-horizon LQR approach. In

fact, in the most cases, the system would finally go to the steady state when time goes to

the infinity. As a result, the larger the prediction horizon is, the more steady state values

are included during the horizon. Therefore, LTV-MPC becomes less accurate when the

prediction horizon gets larger. In a conclusion, LTV-MPC is not an appropriate approach

for path following problem if the prediction is large, or even infinite.

3.3 Controller for the trailer far from the reference

In this section, an alternate controller for the trailer far from the reference is introduced.

3.3.1 Problem Statement

For the study of nonlinear systems, one common approach is to linearize the original

nonlinear system at the operating point, and then analyze the linearized system instead

using classical approaches. It’s usually all right when the system works near the reference.
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However, the global stability is not guaranteed. One of the differences between linear system

and nonlinear system is that the system response of nonlinear system may depend on the

initial condition, which doesn’t have effect in linear systems. The tractor-trailer system

suffers this problem as well. Fig. 3.18 shows a trailer path tracking a straight line (dashed

red line), and the initial lateral position error is 12 meter and the heading errors of tractor

and trailer are -60◦ and -75◦ respectively. State feedback is used as the controller:

u(k) = −kx(k) = −k1ϕr(k)− k2ωr(k)− k3ϕt(k)− k4yt(k) (3.19)

The tractor and trailer just keep turning clockwise and fails to follow the reference path.

The reason of this phenomenon is that the trailer position error yt is so large that it

dominates the control law. Heading angles ϕr and ϕt are constrained in the range of [−π, π].

The tractor yaw angle is also limited. However, the lateral position error can be very large.

Thus, the control effort u will totally depend on the sign of yt. In the case of Fig. 3.18,

position error yt is positive, resulting in a negative control effort and a steering angle in

clock-wise direction even if the other three variables contributes to a positive control effort.

Therefore, no matter how the other variables change, the tractor keeps turning right as well

as the trailer.

A nonlinear control algorithm considering control input constraints may solve the prob-

lem, obtaining global stability based on Lyapunov stability theory [7] [36], or state lineariza-

tion [11]. In [36] and [11] different controllers for tracking lines and arcs are designed. In [7],

the proposed control law is only valid for on-axle hitching system, and the transient behavior

needs to be improved. In the next subsection, a method that can be applied for both on-axle

hitching and off-axle hitching systems, and for both lines and arcs reference paths is given.
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Figure 3.18: An example of system failing to follow the reference

3.3.2 Heading control

When the position error is very large and has opposite sign to the heading angle, the

system may become unstable. It is realized that when the system is unstable, the heading

angle errors are not properly controlled. In other words, the problem can be solved by

adding weights to the heading angles. Fig. 3.19 illustrates this idea. For the two vehicles

with different heading angles and large position errors, the desired control law should drive

the vehicles to the reference path as soon as possible. One solution is shown in red arrows,

which requires the heading angles to be −90◦ for both vehicles. In other words, a control
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law based on heading angles can be designed when yt is large. A suitable control law is as

follows:

u(k) = −k1(ϕr +
π

2
sign(yt))− k2ωr − k3(ϕt +

π

2
sign(yt)) (3.20)

where sign is the signum function, and the control gains k1, k2, and k3 are the same as the

gains in (3.19). There are some comments on the control law (3.20). First, the control effort

is actually designed for the subsystem:

ϕ̇r = ωr

ϕ̇t =
vr sin θ − lhωr cos θ

lt

ω̇r = −dvωr +Kvvr
tanu

lr

(3.21)
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where the state variable xs is

xs =


ϕr

ωr

ϕt


which contains variables of tractor heading, tractor yaw rate, and trailer heading. Equations

(3.21) can be obtained by just removing the lateral position yt in the original model. The

desired value of xs is:

xs,d =


−π

2
sign(yt)

0

−π
2
sign(yt)


which makes the tractor and trailer move orthogonally toward to the reference path. The

stability of the closed-loop subsystem is guaranteed if the original fourth-order system is

stable because the eigenvalues of the subsystem is a part of original ones. Second, the

control goal is actually changed by the new controller, to stabilizing the heading angles to

90◦ or -90◦ from stabilizing all the variables to zero. This change will avoid the unstable

behavior in Fig. 3.18 because only the sign of position error is considered instead of the error

value. The position error will not dominate the control law any more when it’s very large.

Last but not the least, this idea is also valid if the tractor moves backwards. In [14], an

alternate controller based on tractor only is proposed. That approach is only valid when the

vehicle moves forward. However, the controller (3.20) doesn’t suffer that restriction because

the trailer dynamic is also considered, and the model (3.21) of the subsystem is valid for

both forward and backward motion.
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3.3.3 The equivalent form of the alternate controller

Extending the control law (3.20), the following equations can be obtained:

u(k) = −k1ϕr − k2ωr − k3ϕt −
πk1
2
sign(yt)−

πk3
2
sign(yt)

= −k1ϕr − k2ωr − k3ϕt − k4
k1 + k3
k4

π

2
sign(yt)

= −k1ϕr − k2ωr − k3ϕt − k4yt,sat

(3.22)

where k4 is the same gain in (3.19). It can be found that the new control law can be still

expressed as the form in (3.19) containing four variables, using yt,sat instead of yt and

yt,sat =
π(k1 + k3)

2k4
sign(yt) (3.23)

In other words, the controller (3.19) can be still applied with saturated trailer position

error. In the case of Fig. 3.18, the value of yt is used directly, resulting in undesired response.

Therefore, variable yt should be constrained and a maximum absolute value of yt should be

used instead when the position error is beyond the range. Fig. 3.20 shows the closed-loop

system flow chart. The heading angle errors of tractor and trailer are saturated as well as

the trailer position error before the signals enter the controller. Besides, the tractor yaw rate

is also saturated by the constraint of control effort in the controller.

This equivalent form also provides the threshold of position error which indicates when

the controller should switch to the other one. In the last subsection, the control law (3.19) is

given, but it’s not clear when to use such a control law. In other words, there is a question:

How large should yt be such that the alternate controller is used? The equivalent form

(3.22) gives the answer. The threshold of trailer position error is yt,sat. In fact, it can be

realized that there is no switching operation because the two controllers can be regarded as

one by (3.22). The control effort at yt,sat is continuous, so no additional smoothing function

is needed.
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The idea of input saturation also exists in fuzzy systems. In a fuzzy system, an input

is expressed by a combination of variables in a fuzzy set with a membership function via

fuzzification [37]. Fig. 3.21 is an example of a typical membership function with a triangle

shape [38]. Horizontal axis represents a regularized system input. One may notice that for

the fuzzy variables NB (Negative big) and PB (Positive big), the membership function for

absolute of inputs more than 1 is flat. It means that there is no difference for a regularized

input with value of 2 and 3 because the system would transform the actual input to fuzzy

variable PB with a membership of 1 for both cases. In other words, the system input is

saturated by the fuzzifier.

Furthermore, the threshold of trailer position error yt,sat can be analyzed in another

way. Fig. 3.22 shows the circular trailer path in clock-wise motion corresponding to the case

of Fig. 3.18. Points L, M , and N correspond to the trailer heading of 90◦, −90◦ and 180◦ or

(-180◦). The reference path is from left to right. The circle path can be divided into three
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parts. The first part is from point N to L. The trailer heading changes from 180◦ to 90◦.

The path is reasonable because at point N the trailer moves in the opposite direction,and

path NL makes the heading error smaller. The second part is from point L to M . Trailer

heading changes from 90◦ to −90◦. The path is also reasonable, because the trailer is on

the right way to the reference. One can image that after point M , the vehicle can go down

and finally follow the reference. The last part is form M to N . The heading changes from

-90◦ to -180◦. This path, however, is not reasonable, because the trailer should go towards

the reference and reduce the heading error. In other words, the steering angle should be

positive, i.e. the vehicle should turn left. But for the path MN , the vehicle turns right

instead. Therefore, for the path from M to N :

u(k) = −k1ϕr − k2ωr − k3ϕt − k4yt > 0
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Figure 3.22: Trailer ends up with a clockwise motion, failing to follow the reference

Then,

yt <
−k1ϕr − k2ωr − k3ϕt

k4
, k4 > 0 (3.24)

Thus, position error yt should be smaller than the minimum of the right side of (3.24). For

the path MN :

−180◦ ≤ ϕr, ϕt ≤ −90◦ (3.25)

Besides, the desired tractor yaw rate is positive (turning left) for path MN , therefore

ωr ≥ 0 (3.26)
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Combining (3.25) and (3.26), it can be derived that the minimum of the right side of (3.24),

which is also the threshold of position error yt,sat is:

yt,sat =
π(k1 + k3)

2k4
, yt > 0 (3.27)

Similarly, for the negative position error:

yt,sat = −π(k1 + k3)

2k4
, yt < 0 (3.28)

Combining (3.27) and (3.28), it can be easily realized that the result is as the same as (3.23).

3.3.4 Simulation results

Infinite-horizon discrete LQR technique is applied to determine the control gains. Fur-

thermore, the constraints of steering angle and hitch angle are considered:

δmin ≤ δ ≤ δmax

θmin ≤ θ ≤ θmax

(3.29)

There are some research on the LQR for constrained problems [39] [40]. Inspired by [33], the

system response can be similar just applying the constraints on the next step compared to

setting constraints during the whole horizon. One-step prediction is proposed and applied

for the constraints. The control effort is first calculated without any constraints. Then,

the control input and the hitch angle are predicted for the next step. If any constraint is

violated, the control effort is recalculated to satisfy the active constraint, by regarding the

active inequality constraint as an equality one. If there is a control delay in the system,

two-steps prediction is needed.

52



Table 3.3: System parameters corresponding to Sec. 3.3.4

Variable Value
a 0.75 m
b 1.21 m
c 0.53 m
d 3 m
e 1 m
vr 1m/s
δmin -45◦

δmax 45◦

θmin −60◦

θmax 60◦

The system parameters used in the simulations are shown in Table 3.3. The weighting

matrix on the state Q and weighting parameter on the system input R are:

Q =



0 0 0 0

0 0 0 0

0 0 4 0

0 0 0 2


, R = 0.6

The trailer heading is more weighted in matrix Q to get a smooth response with less over-

shoot. Gaussian white noises with a standard covariance of 0.02 are added on all states. The

simulation is done first with a line reference path. Fig. 3.23 shows the paths of tractor and

trailer with the same initial condition in Fig. 3.18. Instead of turning only clockwise and

ending up with a circle path, the trailer moves vertically to the reference path, reducing the

position error as soon as possible, then produces a smooth response when the trailer is near

the reference.

Next, the reference path becomes a curve. In Fig. 3.24, the reference path is a circle

with radius of 5 meter. Initially, the position error is 9.86 meter, and the trailer heading

is almost opposite to the desired direction. The system first turns in clockwise and moves
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Figure 3.23: System response with large initial error: line reference path

towards the reference, then follows the curved line smoothly. The hitch angle with respect

to time is shown in Fig. 3.25. The hitch angle keeps the lower bound of −60◦ from 3 second

to 16 second by setting the constraint on that angle, thus avoids the jack-knife phenomenon.

The controller is also able to reverse the system by setting the tractor velocity negative.

Fig. 3.26 shows the paths in backward motion to track a straight line.The initial error is

180◦ for tractor and trailer headings and 10 meter for trailer position. The trailer adjusts

the heading angle from 180◦ to 90◦ and then keeps that heading until the trailer reaches

threshold position at 4.35 meter. After that both the heading angle error and the position
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Figure 3.24: System response with large initial error: curved refrence path

error converge to zero. Notice that the constraint of hitch angle plays an important role in

the path following in backward motion. The open-loop dynamic is unstable, and an improper

large hitch angle may result in an undesired weird trailer path.

3.3.5 Summary

In this section, an alternate controller used when the system is far away from the

reference path is proposed. The global space is segmented based on the trailer position error.

When the position error is large, heading control has higher priority, and the controller drives
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Figure 3.25: Hitch angle vs. time

the vehicle vertically, reducing the position error as fast as possible. Furthermore, the two

controllers, used for trailer far or near the reference path, have the same structure. It is

achieved by saturating the position error at an appropriate threshold. The proposed method

is valid for both lines and arcs reference paths, and is able to drive the system in both

forward and backward motion.

3.4 Chapter summary

Several control system contributions have been presented in this chapter. First, a local

coordinate transformation strategy is proposed to reduce the tracking error near the joining

point of two different reference path. Second, model predictive controller is designed to solve

the same problem. Two linearizing approaches on the system matrix is analyzed. Last, an

alternate controller focusing on heading control is designed so that the system is globally

stable.

In the next chapter, control systems that eliminate steady-state error are presented.
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Figure 3.26: System response in backwards motion with a large initial error
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Chapter 4

Controller to Remove the Steady-state Error for Tractor-trailer Systems

In the previous chapter, two problems are solved. One is reducing the tracking error

near the intersections of different reference paths. The other is to stabilize the system when

it’s far form the reference. In this chapter, the problem of removing the steady-state error

for line and arc segments is solved.

4.1 Problem Statement

One may notice that in Fig. 3.2, when the reference is a curve, the trailer path using

state feedback does not exactly follow the reference path in red dash, because these two

paths don’t overlap. However, when the trailer tracks a straight line, the tracking error

can be zero. In that figure, the measurement noise is not added. The error exists just due

to the control algorithm. Therefore, there is a drawback of traditional state feedback: the

steady-state error for curved reference path is nonzero.

The feedback approach has the robustness naturally. Furthermore, LQR approach is

able to make the closed-loop system have at least 60◦ phase margin [1]. The stability of

the overall system is still guaranteed with the presence of parameter uncertainty. Fig. 4.1

is such an example, showing the trailer and tractor path following a straight line, but with

a velocity mismatch. The tractor velocity is 1 m/s in the model while the actual value is

0.9 m/s instead. Zero-mean Gaussian measurement noises are added. The system is still

stable with a good response and the steady-state error is almost zero.

However, if the noise on the process or measurement is not zero-mean, a steady-state

error often exists, and it can not be solved by state feedback. Fig. 4.2 shows the trailer

position error at the same initial condition and using the same control gains, but adding
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Figure 4.1: Lateral position error vs. time with the tractor velocity mismatch

measurement bias on the tractor heading and trailer heading of 0.57◦ and 1.14◦ respectively.

It is found that the steady-state error occurs, with a value of about 5.5 centimeter.

In the following part, the steady-state error caused by the two reasons above will be

removed respectively.

4.2 Controller to remove steady-state error when tracking a curve

A control law based on the traditional state feedback is the combination of state error. It

implies that the control input, steering angle δ, is zero when the system tracks the reference

path without errors. But such a strategy is not suitable on a curved reference path, because

a non-zero steering angle is necessary to maintain zero tracking error on a curved path.

Therefore, tracking error exists due to the non-zero control input. Next, two methods are

proposed to solve this problem.
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Figure 4.2: Lateral position error vs. time with the presence of measurement bias

4.2.1 Feed-forward control

Feed-forward control can be used to compensate for the nonzero steering angle. The

whole control law consists of two parts: feed-forward part and feedback part:

u = ufeedforward + ufeedback

The feed-forward part takes charge of providing a proper steering angle when the system

follows a curve assuming that there is no disturbance. The feedback control is used to

eliminate the error in a closed loop with the presence of disturbances.

The feedforward part can be regarded as an offset. The idea of using an offset also exists

in machine learning algorithm. Take neural network as an example. For a multiple layer

perception (MLP) with one hidden layer [41], there is a neuron with a value of 1 at hidden

layer and output layer respectively. This is the bias for the corresponding neurons and the

60



value of the bias equals the weights connected to the neurons [42]. The role of those neurons

is quite similar with the role of feed-forward part in the controller.

The bias for each neuron in the hidden layer and output layer can be calculated based

on a large of labeled data sets and supervised learning algorithms such as back propagation

[43], while the feedforward control should be calculated based on the system dynamics and

the desired curvature. Notice that the desired tractor yaw rate for a given desired curvature

has been obtained by (3.12). If the tractor yaw rate and steering angle is modeled as a linear

relationship, then the feedforward control, i.e. the desired steering angle for a reference curve

with radius R is:

ufeedforward = arctan(σsign(vr)
lr
√
l2t +R2 − l2h

l2t +R2 − l2h
) (4.1)

where σ distinguishes the clockwise motion (σ=-1) and counter-clockwise motion (σ=1).

The feedback controller can be designed using linear or nonlinear approaches, as long as the

closed-loop system is stabilized.

This method to remove the steady-state error tracking a curved path is actually applied

in the subsection 3.2.3 and subsection 3.3.4. For the simulations in 3.2.3, when the trailer is

not near the intersection points, the controller above, consisting of feedforward control and

feedback control, is used. For section 3.2.4, the proposed scheme is applied in the simulations

shown in Fig. 3.24. It can be found that the trailer exactly follows the desired curved path

in red dash without steady-state error.

4.2.2 Controller using steering rate as input

The steady-state error when the system tracks a curved path can be removed by the

feed-forward control. However, there is a drawback of this approach. A linear relationship

between the steering rate and tractor yaw rate is assumed. It may be not accurate with

the change of the weight of the trailer. The dc gain from steering angle to tractor yaw

rate transfer function, which can be found by the dynamic model, changes with the corner

stiffness at the hitch, regarding the implement as additional tire at the hitch [44]. It means
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that the feedforward control effort may be inaccurate since the dc gain from δ to ωr varies

with the weight of the trailer. Furthermore, the feed-forward control forms a open-loop

without feedback. It’s more sensitive to the parameter uncertainty than feedback control.

As a result, a steady-state error may also exist, but the error is smaller than the one under

the traditional state feedback approach.

Therefore, a method which avoids using the feed-forward control can solve this problem

better. It’s realized that the zero value doesn’t hold for the steering angle under the steady-

state for a curved reference path, but the rate of steering angle does. No matter the reference

is a straight line or an arc, the rate of steering angle δ̇ should not change. When tracking

and heading errors are zero, then the steering rate is zero, which more closely coincides with

the human driving experience.

Thus, the steering rate is taken as the new system input, and an additional state variable

is added in the system matrix correspondingly. Concretely, the system model becomes [15]:

ϕ̇r = ωr

ω̇r =
vr

lr cos2 δ
u

ϕ̇t =
vr sin θ − lhωr cos θ

lt

ẏt = vt sinϕt

(4.2)

With small angle assumption, the model (4.2) can be linearized as:



ϕ̇r

ω̇r

ϕ̇t

ẏt


=



0 1 0 0

0 0 0 0

vr
lt
− lh

lt
−vr

lt
0

0 0 vr 0





ϕr

ωr

ϕt

yt


+



0

vr
lr

0

0


u (4.3)

The additional state variable is the tractor yaw rate. Note that there are two extra

benefits from the new steering rate input. First, for the steering angle control, the feedback
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sensor should be carefully aligned to the system, so that zero angle is correctly measured.

However, the speed sensor for steering rate control is easier to install, and requires less

alignment work. Second, the new augmented model naturally adds an integrator at the

input channel, thus the noise from the input is filtered since the integrator can be regarded

as a low pass filter.

Furthermore, even if the steering angle is the system input in the actual vehicle, the

proposed new model can be still applied to remove the steady-state error. When the ve-

hicle tracks a curve path, the steering angle would take a proper position according to the

controller output, and finally find the correct steering angle to track the desired curvature

naturally, even if a bias on the steering angle exists. When the sample period T is small,

the steering angle can be calculated by numerical integration:

δ(k) = δ(k − 1) + Tu (4.4)

4.2.3 Simulation

The proposed method using steering rate as new input is next verified by simulations.

LQR technique is used to determine the control gains. The constraints on the system input,

steering angle and hitch angle are considered:

− umax ≤ u ≤ umax

− δmax ≤ δ ≤ δmax

− θmax ≤ θ ≤ θmax

(4.5)
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Table 4.1: Simulation Parameter for Sec. 4.2.3

Variable Value
a 0.75 m
b 1.21 m
c 0.53 m
d 3 m
e 1 m
vr ±1m/s
umax 90◦/s
δmax 45◦

θmax 60◦

The weighting matrix on the state is:

Q =



0 0 0 0

0 0 0 0

0 0 4 0

0 0 0 4


where the trailer heading error and the trailer position error are weighted only. The weighting

parameter on the system input is R = 1. The other parameters are shown in Table 4.1.

Gaussian zero-mean noises are added with a standard covariance of 0.02 for all states. The

situation of moving forward is first simulated. The reference path is a circle with a radius of

6 meter. Fig. 4.3 shows the paths of tractor and trailer with trailer initial position at (3,1)m

and heading angles of 22◦ and 30◦ for tractor and trailer respectively. Fig. 4.4 shows the

trailer lateral position error with respect to time. Under the steady state, the tracking error

is not exactly zero due to the measurement noise, but the mean value of the error under the

steady state is nearly zero (about 10−3).

Next, the case of moving backwards is tested by setting the tractor velocity to be

negative. Fig. 4.5 is the system response tracking the same reference path above, but with

backward motion. The initial position of the trailer is located at (3.1)m, and the initial
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Figure 4.3: System response using steering rate input: forward motion

heading angles of tractor and trailer are zeros. The proposed controller stabilizes the system,

and the tracking error converges to zero after a few seconds.

4.2.4 Summary A

In this section, two methods to remove the tracking error for a curved reference path is

proposed. One is to use a feed-forward control. A suitable steering angle should be calculated

and added in the control law. The other is to use steering rate as system input instead of

steering angle. For the new control input, the model is augmented by an additional state
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Figure 4.4: Lateral position error vs. time using steering rate input: forward motion

ωr. The latter method have some advantages over the former one, such as more robust to

model uncertainty, filtering the noise from the input, and easier to implement for the velocity

control (steering rate) than the position control for the steering angle. The simulation results

verify the method with both forward and backward motion.

4.3 Controller to remove the steady-state error with the presence of bias

Up to the last section, the steady-state error is removed for both curved and straight

reference paths. Using the steering rate as control input in the model, the error can be

still eliminated with the presence of steering angle bias. It’s assumed that the measurement

noise is zero-mean. However, a bias in the measurement can result in a steady-state error.

Furthermore, the road or driving surface condition may produce a bias in the process noise.

In this case, the closed-loop system may be still stable, but the bias in the model can

generate a steady-state error. The idea of extended state observer (ESO) [45] [46], which

estimates the disturbances in the system, can’t solve this problem because the measurement
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Figure 4.5: Paths of the tractor and the trailer using steering rate input: backward motion

bias is unobservable. Han proposed a scheme to remove the error for the system with the

disturbances using active disturbances rejection control (ADRC) [47][48]. However, there

are too many control parameters that are difficult to tune.

PID control is usually used in a wide rage of applications. The integral part can reject

system disturbances and eliminate the output error. It’s an attractive method because it’s

model-independent and it’s effective for many situations. On the other hand, there are some

drawbacks of integral control. First, the system is easier to oscillate and it may cause an

excessive response, making the system output beyond the acceptable range. The setting time
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may become longer than expected [1]. Second, since the control action has an effective range

limit, the actuator may saturate since the integral control keeps accumulating the output

error. Thus, the future control effort would be ignored until the saturation is offset [49].

4.3.1 State-space model with an integrator

As mentioned above, the tractor-trailer system may still have a steady-state error if there

are disturbances and measurement bias. The proposed approach based on state feedback

in the previous chapter can’t eliminate this tracking error. The state variable used in the

control law is:

x(k) =



ϕr(k)

ωr(k)

ϕt(k)

yt(k)


The last variable in the state vector, yt(k) is the position error at time instant k. It’s also

the tracking error that should be totally eliminated. The time derivative of yt is a function

of the third variable ϕt(k). The time derivative of ϕt is a function of the first variable ϕr(k).

And the second variable ωr is the time derivative of ϕr(k). In other words, the control effort

related to yt(k) plays a similar role with the proportional control in PID, and the control

efforts related to the other three variables have similar contribution to the system compared

with the derivative control in PID. Therefore, there is no control effort corresponding to

integral control to reject the bias.

To remove the steady-state error with the presence of disturbances and bias, an inte-

grator is needed to be added in the model. Thus, the original model is augmented by an

additional state yI with the following dynamic:

ẏI = kayt (4.6)
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where yI is accumulated position error, and variable ka is a positive gain to determine how

fast the position error is accumulated. The larger ka is, the faster the error is accumulated.

Note that there is a difference from the integrator control in many research where the gain

ka equals one [50] [51].

4.3.2 Integral separation control

Some approaches have been proposed to overcome the “wind-up” phenomenon of inte-

gral control. An observer-based approach can be used to compensate for the input saturation

[52] [53]. A conditioning technique is used to weaken the integral term in order to mitigate

the windup of integration when the actuator saturation occurs [54].

The algorithms mentioned above mainly focus on the problem of actuator saturation.

For the tractor-trailer systems, it’s realized that it’s unnecessary to introduce integral when

the tracking error is large because the traditional controller without integration is able to

reduce the error. The key attraction of integral control is to remove the steady-state error

effectively. In other words, the author believes that the integral control should be used when

the system gets close to the steady-state rather than the transient process. Furthermore, the

bad response of system caused by integral control is basically from the excessive accumulation

of output error. Note that the error would accumulate very fast when the trailer is not near

the reference. Fig. 4.6 shows the step response of a typical second order system with a PI

controller. Basically, the integral control is not needed until the output reaches point A.

Generally speaking, if the initial error is large, the system response with integral control is

usually unsatisfactory such as large overshoot and long settle time, due to the integration

from the staring point. Therefore, integral separation is used for the tractor-trailer system.

Concretely, when the absolute of position error is larger than a threshold εy, normal controller

can be used to make the error converge, When the absolute of position error is smaller than

the threshold, the integral control is added to remove the steady-state error. As a result,

the error is integrated only when it’s small. Thus, the possibility of actuator saturation
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Figure 4.6: Step response of a typical second order system with PI controller

is greatly reduced. Moreover, when the trailer moves towards the reference path from a

far initial point, the integral doesn’t make an action until the system is near the reference.

The excessive error accumulation is avoided. Therefore, the transient response would be

acceptable with small overshoot, less osculation, and short settle time. In summary, with

the integral separation, the disadvantage of integral control is avoided and the benefit is

kept.

In PID controller, the integral separation has the following control law [51]:

u(k) = kp[e(k) + γkiT
k∑
0

e(k) +
kd
T

(e(k)− e(k − 1)] (4.7)

where T is the sample time, variable e(k) is the output error:

e(k) = y(k)− r(k)
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The variables kp, ki and kd are the control gains for the proportional part, integral part and

derivative part. Variable γ is an coefficient of integral control where

γ =


0 |e(k)| > εy

1 |e(k)| ≤ εy

The algorithm of integral separation for a tractor-trailer system in state feedback approach

is implemented as follows. Suppose state vector x is the variable in the normal controller

without integral. The augmented state vector xa which includes the integration of trailer

position error is:

xa(k) =

x(k)

yI(k)


Then the controller is designed as:

u(k) =


knx(k) |yt| > εy

k′nx(k) + kIyI |yt| ≤ εy

(4.8)

and yI is calculated by integration separation:

ẏI =


0 |yt| > εy

kayt |yt| ≤ εy

(4.9)

where the gain ka is from (4.6).

There is one problem remaining: how to decide the threshold position error εy. If the

threshold is too large, the separation will have less effect on the system response and the

drawback of integral control may still exist. If the threshold is too small, the integrator

works only in a small range. the “wind-up” phenomenon may be avoided. However, the

steady-state error maybe exist because yI doesn’t change if the absolute error is large than
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εy. As a result, the steady-state error larger than εy will not be eliminated by the integral

control.

From the analysis above, it can be expected that the transient behavior will be accept-

able if εy is small, but a small threshold probably fails to totally remove the steady-state

error. An adaptive approach is proposed here to adjust the threshold position as needed. A

very important task is to identify the steady state and then check the output error. In the

example of Fig. 4.6, the system can be regarded to be under the steady state after the point

B because the system oscillate slightly. Therefore, if the output doesn’t change heavily, the

system is considered to be under the steady state. From the initial condition to point A,

the system isn’t under the steady state because the output increases rapidly. The response

between A and B is not the steady state because the output oscillates. Therefore, the vari-

ance, or the standard variance of the output signal can be calculated to examine whether

the system is under the steady state. if the variance is large, it illustrates that the system is

going through the transient behavior.

Furthermore, the mean value of the output during the last several seconds, yave is used

to compare with the threshold εy. If the mean value is larger than εy, it implies that the

threshold is not big enough to remove the error, and εy should be a little larger. Thus,

initial value of εy at the starting point can be set to be relatively small. The initial εy is also

considered to be the normal value of the threshold position to get a satisfactory transient

behavior, avoiding accumulating the error too much. Next, the mean value and the variance

of the position error are examined every a few sample period. A receding horizon is used

to obtain the statistical features of the error above. If the following conditions are satisfied

simultaneously:

|yave| > εy(k) (4.10)

var(yt) < σ2
th (4.11)
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where σth is a parameter to indicate how much the variance of position error is considered

to be acceptable under the steady state. Then, εy should increase a bit. The algorithm runs

every a few samples period rather than at each sample instant because the new position

threshold may make the integrator start working and the system needs some time to respond

the change of new yI .

In summary, the adaptive εy is adjusted as the following pseudo code. where M is an

Algorithm 1 Adaptive εy algorithm

function ”setting threshold position error”
if mod(k,M) == 0 then

εy = εbase
yave = mean(

∑k
i=k−N+1 e(i))

ystd = std(e(i)), i = k −N − 1 . . . k
if |yave| > εy && y2std < σ2

th then
if |yave| − εy > εd then

εy = εy + 2ε
else

εy = εy + ε
end if

else if yave < εbase && y2std < σ2
th then

εy = max(εy − ε, εbase)
end if

end if
end function

integer to indicate the frequency of the algorithm execution, and the algorithm is executed

every MT seconds where T is the sample period. Variable N is the time window for calcu-

lating the mean and variance of the error, and σth is the accepted total standard variance

under the steady state, and can be calculated by:

σ2
th = σ2

y + σ2
noise (4.12)

which means that σth can be determined by the sum of accepted output variance and the

variance of measurement noise.

73



Furthermore, if yave during the past NT seconds is much larger than the threshold εy,

εy would increase faster (added by 2ε). On the contrast, εy would increase relatively slower

(added by ε) if the difference between the mean value and the threshold position is not big.

Besides, when the tracking error goes back into a small range (in the range of [−εbase, εbase]),

the threshold position εy will decrease until it’s equal to the minimum, i.e. the initial value

εbase.

4.3.3 Simulation results

The controller with integral separation is verified by simulations. Differently from the

simulations above, the system with two trailers are used instead of one trailer. The control

goal is to make the center of the second trailer axle track a given path.

As mentioned earlier, the kinematic model of the tractor-trailer system can be extended

to multiple trailers. For the system with two trailers, the nonlinear dynamic model is as

follows:

ϕ̇r = ωr (4.13)

ϕ̇tf =
vr sin θf − lhfωr cos θf

ltf
(4.14)

ϕ̇ts =
vtf sin θs − lhsωtf cos θs

lts
(4.15)

ẋts = vts cosϕts (4.16)

ẏts = vts sinϕts (4.17)

where ϕtf and ϕts are the heading angle of the first trailer and the second trailer.Variables

lhf and lhf are the hitch lengths of the first trailer and the second trailer. Variables ltf and

lts are the lengths of the first trailer and the second trailer. Variables θf and θs are two hitch
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angles:

θf = ϕr − ϕtf (4.18)

θs = ϕtf − ϕts (4.19)

Besides, the velocities of the first trailer vtf and the second trailer vts are:

vtf = vr cos θf + lhfωr sin θf

vts = vtf cos θs + lhsωtf sin θs

With the small angle assumption, the linearized state-space model with steering rate as

input, a fifth-order model can be derived:



ϕ̇r

ω̇r

ϕ̇ts

ϕ̇tf

ẏts


=



0 1 0 0 0

0 0 0 0 0

a31 a32 a33 0 0

a41 a42 a43 a44 0

0 0 0 vr 0





ϕr

ωr

ϕtf

ϕts

yts


+



0

vr
lr

0

0

0


u (4.20)

where aij is expanded in the Appendix. The model (4.20) is used when

|yt(k)| > εy(k) (4.21)
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Table 4.2: Parameter values for a tractor-two trailers system

Variable Value
lr 1.2 m

lhf , lhs 0.3 m
ltf , lts 3.0 m
vr 1m/s
umax 90◦/s
δmax 45◦

θf,max 60◦

εbase 0.1m
ε 0.02m
σy 0.03

σnoise 0.02

An augmented sixth-order model with the integral of error as an additional state can be

obtained: 

ϕ̇r

ω̇r

ϕ̇ts

ϕ̇tf

ẏts

ẏI


=



0 1 0 0 0 0

0 0 0 0 0 0

a31 a32 a33 0 0 0

a41 a42 a43 a44 0 0

0 0 0 vr 0 0

0 0 0 0 ka 0





ϕr

ωr

ϕtf

ϕts

yts

yI


+



0

vr
lr

0

0

0

0


u (4.22)

The model (4.22) is used when:

|yt(k)| ≤ εy(k) (4.23)

The system parameter is listed in Table 4.2. The sample time is 0.1 second. According to

the rule (4.12), variable σ2
th in (4.11) is selected to be 0.0362. Variable M in the algorithm is

4, i.e. the adaptive εy is revised every 0.4 second, and the receding window N for calculating

the mean and variance is 12. Gaussian noises with the standard variance of 0.02 are added

for all the state measurements.

LQR technique is used to determine the control gains in (4.8), balancing the system

error and control effort, as well as obtaining large phase margin and magnitude margin.
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Notice that the gains k′n and kI in (4.8) for the controller with integral are calculated as a

whole. In other words, the gains above are obtained together based on the model (4.22).

The weighting matrix on the states in the model (4.20) is

Q1 =



0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 5 0

0 0 0 0 3


The weight on the trailer heading error is a little bigger than the weight on the position since

a smooth transient response is expected. The weighting matrix on the states for the model

(4.22) is

Q2 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 5 0 0

0 0 0 0 3 0

0 0 0 0 0 0.2


The last element of matrix Q2 is on the weight on the error integral yI . This parameter

determines how much the variable of error integral affects the control input. The hitch angle

between the tractor and the first trailer is also constrained by one-step prediction approach

[15].

First, the reference path is a circle with a radius of 5 meter, and the center point is

located at (5,-5)m. The measurement bias is added on the variables of tractor heading,

tractor yaw rate, the first trailer heading, and the second trailer heading with a magnitude

of 0.02 rad, 0.02 rad/s, 0.02 rad, and 0.01 rad respectively. The initial position of the second

trailer is (0.5,0)m and the initial position error is 2.43 meter. Fig. 4.7 shows the paths of
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three vehicles using the proposed control algorithm with integral separation. The second

trailer gets close to the reference quickly and follows the given path with a small overshoot.

Fig. 4.8 shows the comparison of position error with respect to time using the proposed

algorithm, the control based on the model (4.20) without integral, and the control with

integral term but no integral separation. The controller without the integral has a steady

state error for about 8.5 centimeter. For the controller with integral control but without

integral separation, the overshoot becomes very big. The maximum overshoot is about -1.95

meter. That’s because the integral always works no matter how much the error is, resulting

in a unnecessarily big yI when the second trailer approaches the reference at the first time.

Compared to the other two controller, the proposed methods has much smaller overshoot

(the maximum overshoot is only -0.12 meter). Furthermore, the steady-state error is almost

removed. The blue curve in Fig. 4.8 is very close to zero after 25 second.

Next, the reference paths becomes a straight line. The measurement bias is added on the

variables of tractor heading, tractor yaw rate, the first trailer heading, and the second trailer

heading with a magnitude of 0.01 rad, -0.02 rad/s, -0.02 rad, and -0.02 rad respectively.

Besides, biased process disturbances are also added on the dynamic of the second trailer

positions:

ẋts = vts cosϕts + 0.01

ẏts = vts sinϕts + 0.01

The initial position error is 2.5 meter. Fig. 4.9 shows the vehicles paths in global coordinate.

The vehicles first moves towards the reference, reducing the tracking error quickly, then make

the second trailer approach the reference smoothly, and finally the second trailer tracks the

given path very accurately. Notice that due to the biased process disturbances, the tractor

and the first trailer don’t follow the reference path of the second trailer (drawn in red

dash). Fig. 4.10 shows the comparison of the position error yts versus time using three
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Figure 4.7: System response using integral separation to track a curved reference path

methods. Similar phenomenon with Fig. 4.8 can be observed that the controller without

integral term has a steady-state error for about 16 cm. The blue curve generated by the

proposed algorithm has the same shape with the curve generated by the former controller at

the beginning. From the seventeenth second, however, the error begins to converge to zero,

rather than keeping nearly constant. The approach with integral control, but without using

the integral separation has very large overshoot and longer settle time, which are possibly

unacceptable.
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Figure 4.8: Lateral position errors tracking a curved reference path using three methods
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Figure 4.9: System response using integral separation to track a straight line

4.3.4 Summary B

In this section, a controller based on integral separation algorithm is proposed for

tractor-trailer system to remove the steady-state error with the presence of bias. An ex-

tra state variable is introduced to calculated the integral term of output error. Integral
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Figure 4.10: Lateral position errors tracking a straight line using three methods

separation is applied in a such way that the error is accumulated only when the tracking

error is relatively small to avoid the integral of error becoming unnecessarily large. A system

with two trailers is used to verify the proposed method. Results show that the algorithm

is able to remove the measurement bias on heading angles and yaw rate as well as constant

process disturbance. Moreover, the system response is satisfactory with a good transient

behavior when compared to the method without the integral separation algorithm.

It’s also found that the proposed approach can’t remove the bias from the position

measurement of the controlled trailer. Concretely, for the case of a tractor with two trailers

system, the position bias can be removed if it’s from the measurements of the tractor or the

first trailer. If the position measurement of the second trailer has bias, it can’t be removed

because the system can’t realize that bias from other variables. This problem can be solved

if other sensor, such as computer vision, is introduced to the system.
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4.4 Chapter summary

The problems of steady-state error on both straight and curved path have been com-

pletely solved by the methods presented here. In the next chapter, the problem of reducing

the feedback instrumentation requirement is addressed by state estimation theory.
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Chapter 5

State Estimation of a Tractor-trailer System Based on Unscented Kalman Filter

State estimation is usually used when some variables are not measurable in the system.

In this chapter, an state observer based on unscented Kalman filter is proposed to estimate

the states of a tractor-trailer system.

5.1 Introduction

5.1.1 Problem Statement

In the previous chapters, the tracking error when the system is near the intersections of

different reference paths, or far form the reference path is reduced successfully. The position

error may be also reduced even a measurement bias exists. For the controllers above, it’s

assumed that all the states in the system, including positions, heading angles and yaw rate,

are available. It’s feasible if two sets of global positioning system (GPS)/inertial navigation

system (INS) are equipped on both the tractor and the trailer. However, the implement cost

becomes very high. To decrease the cost, an optical encoder can be installed to measure the

hitch angle so that the tractor heading can be calculated rather than measured, and only

one GPS/INS system is used for the measurement of trailer position and the trailer heading.

The positions of the tractor can be obtained by the trailer positions and the heading angles

of the tractor and trailer:

xr = xt + lt cosϕt + lh cosϕr

yr = yt + lt sinϕt + lh sinϕr

(5.1)

where xr and yr are the tractor positions in global coordinate. However, in the past experi-

ence (Hodo, Payne and Singh), the encoder is very difficult to mount securely and robustly.
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It’s also easily damaged. In this dissertation, the author tries to reduce the hardware cost

further. Differential GPS (DGPS) sensors with real-time kinematic correction (RTK) are

used only to measure the positions of the trailer, which has the accuracy of about 2 cen-

timeter [3][12]. Thus, the heading angles of the tractor and trailer are estimated from the

position measurements. Furthermore, the tractor yaw rate can be obtained by the tractor

heading if needed.

5.1.2 Linear full-order observer

A full-order observer can be designed for linear systems so that the estimation error

converges to zero. The system equations are:

ẋ = Ax+Bu

y = Cx

(5.2)

To design a state observer, the output error, which is the difference between the system

output and the model output, is used as the feedback variable to correct the model estimation

continuously [1]. This structure is shown in Fig. 5.1. The closed-loop dynamic for the state

estimator is:
˙̂x = Ax̂+Bu+ L(y − Cx̂)

ŷ = Cx̂

(5.3)

where L is the estimator gain and y is the system output. Define the error state:

x̃ = x− x̂

Subtract (5.2) by (5.3), the error dynamic can be obtained:

˙̃x = (A− LC)x̃ (5.4)
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Figure 5.1: System structure of a full-order state observer

Therefore, the estimated state will converge to the real value as long as all the eigenvalues

of (A− LC) have negative real component, i.e. the closed system (5.4) is stable.

5.2 Kalman filter

In the last section, a state observer can be designed when an appropriate observer gain

L can be determined. Kalman proposed an optimal way to calculate the estimator gain

considering the model dynamic and the characteristics of process and measurement noise

[55]. This method is called Kalman filter. It is able to provide an unbiased estimation for a

linear system in a statistical sense, and the estimator gain, i.e. Kalman gain is obtained in

such a way that the trace of process covariance matrix is minimized. The discrete Kalman

filter has been successfully used in a large amount of applications [56].
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5.2.1 Kalman filter

The process to be estimated can be modeled as:

xk+1 = Fxk +Guk + wk

yk = Hxk + vk

(5.5)

where wk and vk represent the process noise and measurement noise respectively, and the

noises are assumed to be independent, white and Gaussian:

wk ∼ N(0, Qk), vk ∼ N(0, Rk) (5.6)

where Qk and Rk are covariance of the noises respectively.

The process of computing estimated state at each sample can be divided into two steps.

The first step is time update. In the time update, a priori state estimation is predicted by

the system model based on a posteriori estimation at the last time instant. The following

equations are calculated:

x̂−k+1 = Fx̂k +Guk (5.7)

P−k+1 = FP+
k F +Qk (5.8)

where P+
k is a posterior process uncertainty calculated at the last sample. In the measurement

update, a new output measurement is introduced to improve the a priori estimation. Then

a posteriori estimations of state and process uncertainty are calculated:

Kk = P−k H
T (HP−k H

T +Rk)
−1 (5.9)

x̂+k+1 = x̂−k+1 +Kk(yk+1 −Hx̂−k+1) (5.10)

P+
k+1 = (I −KkH)P−k+1 (5.11)
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After the pair of time update and measurement update, the process is repeated in such a

recursive way that the a posteriori estimation at current sample is used to compute the a

priori estimation for next sample.

5.2.2 Extended Kalman filter

Kalman filter can be used as a powerful approach to estimate state for linear systems.

For nonlinear systems, extended Kalman filter (EKF) can be used instead. EKF has been

applied in many fields such as navigation and electronics [57][58].

In general, the system dynamic in continuous-time domain can be expressed by the

following differential equation:

ẋ = fc(x, u) +Bww (5.12)

A discrete form of (5.12) with the system output can be expressed as follows:

xk = f(xk−1, uk−1) + wk−1

yk−1 = h(xk−1) + vk−1

(5.13)

where f and h are nonlinear generally. In time update, a priori estimation is obtained by:

x̂−k = f(x̂+k−1, uk−1) (5.14)

ŷ−k = h(x̂+k−1) (5.15)

Instead of using the system matrix F in the linear case, Jacobian matrix with respect

to the state is used to calculated a priori process uncertainty:

P−k = Ak−1P
+
k−1Ak−1 +Qk (5.16)

where

Ak−1 =
∂f

∂x

∣∣∣∣
x=x̂+k−1

(5.17)
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In the measurement update, the Kalman gain and the a posteriori estimations of state and

process uncertainty matrix are:

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1 (5.18)

x̂+k = x̂−k +Kk(yk −Hx̂−k ) (5.19)

P+
k = (I −KkHk)P

−
k (5.20)

where

Hk =
∂h

∂x

∣∣∣∣
x=x̂−k

5.3 Adaptive unscented Kalman filter

In EKF, Jacobian matrix is calculated at each sample. In fact, the state distribution

is propagated through the first order approximation of the original nonlinear system using

Taylor series expansion. The linearization is not accurate enough, resulting in an appreciable

estimation error on the state as well as the process uncertainty [59].

Instead of using Jacobian matrix, unscented Kalman filter (UKF), however, uses some

discrete carefully chosen points, called sigma points to capture the mean and the distribution

of the state [59]. The estimation using UKF has been proved to be more accurate than EKF,

and the number of computations in UKF scales with the dimensions at the same rate as the

lineaization method in EKF [60]. The classical UKF algorithm is introduced first, then an

adaptive UKF approach is proposed.

5.3.1 Unscented Kalman filter

The unscented Kalman filter uses unscented transformation to obtain sigma points which

capture the state distribution. Those points then propagate through the state equation, and

are used to calculate a priori estimated state, process uncertainty and system outputs in
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the time update step. In the measurement update step, a posteriori estimation of state and

process uncertainty are calculated. The algorithm of a standard UKF is first reviewed.

The filter works in discrete domain, The nonlinear process in continuous-time domain

and discrete-time domain are expressed by (5.12) and (5.13) respectively. There are (2n+ 1)

sigma points selected where n is the dimension of the system.

χ0,k−1 = x̂k−1

χi,k−1 = x̂k−1 + (γ
√
Px,k−1)i, i = 1, ..., n

χi,k−1 = x̂k−1 − (γ
√
Px,k−1)i, i = n+ 1, ..., 2n

(5.21)

where γ = α
√
n+ κ. κ is a scaling parameter, and α is used to determine the spread of

sigma points [61]. Variable x̂k−1 is the estimated state at sample k − 1, Parameter γ is a

scaling vector and Px,k−1 is state error covariance matrix at last sample. Here the square

root of Px,k−1 matrix is needed. There are some algorithms to deal with it such as Cholesky,

diagonalization, and Schur methods [62].

The UKF still has two steps at each sample. In the time update, a priori estimations

of state, output and state error covariance are calculated:

χik|k−1 = f(χk−1, uk−1) (5.22)

ŷk =
2n∑
i=0

Wm
i h(χk|k−1) (5.23)

x̂−k =
2n∑
i=0

Wm
i χ

i
k|k−1 (5.24)

P−x,k =
2n∑
i=0

W c
i (χik|k−1 − x̂−k )(χik|k−1 − x̂−k )T +Qk (5.25)

Wm
0 =

α2(n+ κ)− n
α2(n+ κ)

(5.26)

W c
0 = Wm

0 + (1− α2 + β) (5.27)
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where ŷk is the estimated system output, x̂−k is a priori state estimate and P−x,k is a priori

state error covariance matrix. Parameter β is used to tune the filter. In the measurement

update following equations are calculated:

Py,k =
2n∑
i=0

W c
i (h(χk|k−1)− ŷk)(h(χk|k−1)− ŷk)T +Rk (5.28)

Pxy,k =
2n∑
i=0

W c
i (χik|k−1 − x̂−)(h(χk|k−1)− ŷk) (5.29)

Kk = Pxy,kP
−1
y,k (5.30)

x̂k = x̂−k +Kk(yk − ŷk) (5.31)

Px,k = P−x,k −KkPy,kK
T
k (5.32)

where Kk is the Kalman gain, yk is actual measurement at sample k, and Px,k is a posteriori

state error covariance.

The UKF is able to estimate the a priori state error covariance P−k more accurately

by using unscented transformation than Jacobian matrix in (5.16). However, the UKF

still suffers some drawbacks from traditional Kalman filter due to the fixed process noise

covariance Qk in (5.16). For the state estimation of a mobile robot, the vehicle may work

in various road conditions. So the characteristic of process noise is difficult to determine

before the implementation. Thus, a mismatch between real process noise characteristic and

the one in the filter usually occurs and the performance of the filter degrades. Besides, fixed

Qk matrix may lead to a slow respond if the disturbance occurs and measurements have a

sudden change.

5.3.2 Adaptive unscented Kalman filter

As mentioned before, an adaptive process noise covariance is helpful to provide a bet-

ter observer performance. Xia, Rao et al. developed an adaptive fading Kalman filter

(AFKF) for linear systems, which ensured the Kalman gain was optimal by making the
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auto-covariance of residual equal zero [63]. Cao and Tian designed an AUKF algorithm to

correct the process uncertainties by an adaptive gain acting on the a priori process uncer-

tainty matrix [64]:

P−k,a = ηP−k (5.33)

Song and Han revised the UKF by using MIT rule to adjust the process uncertainties adap-

tively [65], but the computation burden became much heavier due to many time-derivative

functions.

In this dissertation, an AUKF is designed by adjusting the process noise covariance

matrix Qk at each sample with an adaptive gain. The gain is calculated based on the

optimal feature in [63]. Furthermore, a real-time estimated Q̂k is calculated based on the

approach in [66], and the elements of the estimated noise covariance matrix are properly

constrained rather than being used directly to guarantee the positive definite of the matrix.

Instead of (5.27), the estimated a priori state error covariance matrix is modified by

P−x,k =
2n∑
i=0

W c
i (χik|k−1 − x̂−k )(χik|k−1 − x̂−k )T + η(k)Qa,k−1 (5.34)

where η(k) is a positive gain, and Qa,k−1 is the adjusted process noise covariance at the last

time instant in discrete-time domain. The advantage of using η(k)Qa,k−1 instead of original

fixed noise covariance matrix Qk is that the process uncertainty as well as the characteristic

of each noise can be estimated adaptively.

An estimation algorithm for process noise covariance matrix is designed [16]. In [66],

process noise covariance matrix is estimated on-line by:

Q̂k =
1

N

k∑
j=k−N+1

(∆xj∆x
T
j ) + Px,k − AkPx,k−1ATk (5.35)

91



where AK is Jacobian matrix in (5.17) and ∆xj is the difference between a posterior and a

priori estimated state:

∆xj = x̂j − x̂−j = Kk(yj − ŷj)

Use (5.35) in UKF scheme and use fading factor ρ1 instead of the average operation to

overweight the recent values, the real-time Q̂k is:

Q̂k = Cx,k +Qk−1 −KkPy,kK
T
k (5.36)

where

C0,k =
ρ1Cx,k−1 + ∆xj∆x

T
j

ρ1 + 1
(5.37)

where 0 < ρ1 ≤ 1. However, as mentioned earlier, (5.36) may yield a Q̂k which is not positive-

definite. To deal with this problem, some constraints have to be made. If the noises are

uncorrelated, Q̂k should be diagonal. Thus, the constraints can be made so that each element

on the diagonal becomes positive. If the process noises are correlated, the assumption of

diagonal Qk is not valid. However, the noise covariance in continuous-time domain Q̂c is

usually diagonal. Without generality, when the sample time is small, the estimated Q̂c can

be obtained if B′wBw is non-singular:

Q̂c =
1

T
(B′wBw)−1B′wQ̂kBw(B′wBw)−1 (5.38)

To guarantee the positive definiteness, the constraints for the diagonal terms in Q̂c are

as follows:

Q̂c(i, i) ≥ Qc(i, i), i = 1 . . . d (5.39)

where d is the number of disturbances in (5.12), Q̂c(i, i) is the ith diagonal element of Q̂c,

and Qc is a pre-defined process noise covariance in continuous time domain. Normalize the
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constrained Q̂c so that:

min(
Q̂c(i, i)

Qc(i, i)
) = 1, i = 1 . . . d

Notate this adjusted matrix as Q̂′c, then the process noise covariance matrix Qa,k in

(22) can be derived:

Qa,k = BwQ̂′cB
′
wT (5.40)

Since a posteriori state estimation is needed in the calculation of Qa,k, Qa,k−1 obtained

at the last time instant is used in (5.34).

In [63], Xia et al. proposed an adaptive fading linear Kalman filter which ensured that

the sequence of residuals was uncorrelated by the following equation:

HkP
−
x,kH

T
k = C0,k −Rk (5.41)

where Hk is output matrix, and C0,k is the covariance of the residual. This idea is extended

in UKF scheme in this dissertation. Define the residual:

zk = yk − h(x̂k)

Then C0,k is expressed as:

C0,k = E[zkz
T
k ].

A fading factor ρ2 is applied on the estimation of C0,k:

C0,k =
ρ2C0,k−1 + zkz

T
k

ρ2 + 1
(5.42)

To utilize this result in UKF, substitute (5.34) into (5.41):

2n∑
i=0

W c
i (h(χk|k−1)− ŷk)(h(χk|k−1)− ŷk)T + η(k)Qa,k = C0,k −Rk (5.43)
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Taking trace in both sides of (5.43):

η(k) =
trace(C0,k −Rk)− trace(

∑2n
i=0W

c
i (h(χk|k−1)− ŷk)(h(χk|k−1)− ŷk)T )

trace(HQa,kHT )
(5.44)

Since relatively large process noise covariance can contribute to a quick response after a

disturbance acts on the system, η(k) is set to be larger than 1:

η(k) = max(1, η(k)) (5.45)

Up to (5.45), the gain η(k) and the process noise covariance Qa,k−1 in (5.34) are obtained.

Thus, compared to EKF, the estimation of process uncertainty is improved in two aspects.

One is to apply UKF instead of EKF, using sigma points rather than first-order linearization

to propagate the state. The other is to estimate the covariance of process noise at each

sample.

5.3.3 Initial value of estimated state

Suppose that the observer starts working at time tk. The measurement of position

estimation at tk can be selected to be the initial position estimation. Furthermore, the

trailer heading can be roughly calculated from the position measurement difference between

tk and tk−1:

ϕes = arctan
Yk − Yk−1
Xk −Xk−1

±mπ

where Y and X are the position measurements in global coordinate. Parameter m is used

to extend the domain of ϕes from (−π/2, π/2) to (−π, π), and its value can be 0 or 1. This

estimation is not accurate especially when the path of the trailer is a curve. But it’s still

reasonable to be used as an initial value of heading angle estimation. Therefore, the initial
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Table 5.1: Parameters for tractor-trailer system
Variable Description Value

lr Length from front tire of tractor 0.96 m
to rear tire of tractor

lh Length from back tire of the tractor to hitch 0 m
lt length from hitch to the rear tire of trailer 2.5 m
vr Longitudinal velocity of tractor 1m/s

estimation x0 can be:

x0 =



ϕr,0

ϕt,0

et,0

nt,0


=



ϕes

ϕes

Xk

Yk


(5.46)

5.4 Simulation results

System parameters used in the simulation are shown in Table 5.1. It’s an on-axle

hitching system, and the system input is the tractor yaw rate. The sample rate is 10 Hz,

and Bw is an identity matrix. Tuning parameter κ in (5.26) α and β in (5.27) are 0, 0.01

and 2 respectively. Fading factor ρ1 in (5.37) and ρ2 in (5.42) are 0.4. The parameter in the

filter is:

Qk =


10−6 0 0

0 10−6 0

0 0 10−6


The measurement noise covariance matrix is:

Rk =

0.0004 0

0 0.0004


Notice that the initial value of estimated state is not obtained from (5.46). Instead, estimated

state at the beginning is chosen so that the initial estimation error is relatively large in order

to observe the error convergence.
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Table 5.2: Estimation RMSE using three methods when process noise mismatches

EKF SUKF The proposed
method

Tractor heading 3.07◦ 2.60◦ 2.07◦

Trailer heading 1.76◦ 1.32◦ 1.11◦

Trailer position in North 2.25 cm 1.46 cm 1.10 cm
Trailer position in East 2.44 cm 1.21 cm 1.01 cm

Two different scenarios are tested. In the first case, the process noise covariance in

the filter mismatches the real one. It is implemented by multiplying actual noise covariance

with a constant number of 20. EKF, Standard UKF (SUKF), and the proposed AUKF are

used to estimate the states of tractor heading ϕr, trailer heading ϕt, trailer positions nt and

et. Initial estimation error is 0.8 rad, 1 rad, -1 m and 1 m respectively. Fig. 5.2 shows the

estimation errors of tractor heading and trailer heading using EKF and the proposed method.

The estimation errors by EKF converges slowly,and it’s also larger than using the proposed

AUKF approach at the most of samples after six second. Table 5.2 shows the root-mean-

square errors of the estimated four states using three approaches during the period from 4

second for thirty times simulations. Standard UKF and the proposed AUKF have better

result than EKF, which coincides with the theoretical analysis. Moreover, the estimation

errors by the propsed AUKF are the smallest for all the states, reducing 20.38%, 15.91%,

24.66% and 16.53% respectively compared with SUKF. Next, the process noise covariance

matches the real value, but a disturbance is added on the tractor at time T = 4.5s. It

is implemented by adding 18◦ to the tractor heading ϕr. Fig. 5.3 shows the estimation

errors of tractor heading and trailer heading using standard UKF and the proposed AUKF

algorithm. AUKF algorithms respond faster than SUKF when a sudden change occurs for

the two heading angles. Fig. 5.4 shows the estimation errors of positions in two directions.

After the disturbance occurs, the estimated states using the proposed method are very close

to the real values, while the estimation errors using SUKF first increase to about 7.8 cm, then

converge slowly for both state variables. Table 5.3 presents the root-mean-square estimation
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Figure 5.2: Estimations of heading angles when process noise covariance mismatches

errors using three methods from 4.5 second for thirty times simulations. The simpler AUKF

algorithm still applies adaptive UKF with the gain η(k) in (5.34), but uses original Qk to

calculate the a priori process uncertainty rather than Qa,k−1 .The proposed algorithm stands

out which has the smallest estimation error. Compared with the simpler AUKF algorithm,

the RMSE values for tractor heading angle, trailer heading angle and trailer positions in two

directions reduce 1.90◦, 1.34◦, 2.16 cm and 1.82 cm respectively.

5.5 Summary

In this chapter, a state observer is designed using an adaptive unscented Kalman fil-

ter with the measurements of trailer positions. The proposed observer works without the
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Figure 5.3: Heading angle estimations when a sudden disturbance is added

Table 5.3: Estimation RMSE using three methods when a disturbance acts on the tractor

SUKF A simpler The proposed
AUKF method

Tractor heading 10.43◦ 9.69◦ 7.79◦

Trailer heading 3.95◦ 3.43◦ 2.09◦

Trailer position in North 6.03 cm 3.41 cm 1.25 cm
Trailer position in East 4.87 cm 3 cm 1.18 cm

coordinate transformation, which is needed in a linear observer [67]. It adjusts the process

uncertainty adaptively by estimating process noise covariance at each sample, which is ap-

plied to calculate the a priori process uncertainty at the next sample. Compared to EKF

and standard UKF, the proposed filter is able to provide more accurate estimation with

the presence of different operation conditions and disturbances. Notice that the proposed
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Figure 5.4: Position estimations when a sudden disturbance is added

algorithm requires that the output has a linear relationship with the state, i.e. the function

h(xk) in (5.13) is linear.
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Chapter 6

Contributions and Future Work

6.1 Main contributions

In this dissertation, path following problem of a tractor-trailer system is studied. For

the space-based reference path, the existing approaches can make the trailer track a straight

line with very small error. This work mainly solves the following four problems.

First, the tracking error near the intersections between two different reference paths are

reduced. Two methods are proposed. One is to select a proper coordinate transformation for

the tractor. A distance or an angle is chosen and compared for each intersection beforehand

to indicate when the tractor begins to track new reference path. The other method is model

predictive control (MPC). The model can be linearized based on current measurement (LTV-

MPC) or the steady-state values of the time-varying terms (SS-MPC). The error under

MPC can be smaller than using the former approach considering measurement noise, but

the computation burden becomes heavier.

An alternate controller which focuses on the heading errors is proposed to be applied

when the system is far away from the reference path. It can be implemented by saturating

the position error before the controller receives the signal.

To remove the steady-state error when the trailer tracks a curved path, two methods are

given. One is feedforward control, which can be regarded as an offset of the desired curvature.

The other is to use steering rate as control input. The latter method is considered as a better

solution mainly because it’s more robust to modeling error. Integral control is introduced

to reduce the tracking error if measurement bias exists. Integral separation is applied to get

a good transient response. In addition, the threshold in integral separation can be adjusted

adaptively.
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Finally, the state estimation of a tractor-tailer system is investigated. A state observer

based on an unscented Kalman filter is proposed. The trailer positions are used as measure-

ments. The process uncertainty can be adaptively adjusted to give a better estimation when

the process noise characters are unknown.

6.2 Future work

In this work, the obstacles are not considered. It would be worthwhile to further study

the obstacle avoidance algorithm for a tractor-trailer system.

Another interesting area is nonlinear control. Considering both the system transient

response and the global stability is very challenging. Recently artificial intelligence becomes

very popular. It’s interesting to introduce machine learning technique in the controller

design. For example, the nonlinear model predictive control is very time-consuming during

the optimization process. Machine leaning technique, such as neural network may be able

to map the nonlinear relationship between the system state, the desired path in the future

and the suitable control effort.
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Appendix A

Matrix N in the dynamic model of a tractor-trailer system

n11 = −
Cr
f + Cr

r + Ct
r

vrx

n12 = −
(a+ b+ c)Cr

f + cCr
r

vrx

n13 = −
d(Cr

f + Cr
r )− eCt

r

vrx
− (mr +mt)v

r
x

n15 = Cr
f + Cr

r

n16 = −Cr
f − Cr

r

n21 = −
aCr

f − bCr
r − (b+ c)Ct

r

vrx

n22 =
a(a+ b+ c)Cr

f − bcCr
r

vrx

n23 = −
adCr

f − bdCr
r + (b+ c)eCt

r − (b+ c)mt(v
r
x)

2

vrx

n25 = aCr
f − bCr

r

n26 = −aCr
f + bCr

r

n31 =
(d+ e)Ct

r

vrx

n33 = −(d+ e)eCt
r

vrx
+ dmtv

r
x
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Appendix B

Matrix parameters in the model (4.20) and (4.22)

a31 =
vr
ltf

a32 = − lh
ltf

a33 −
vr
ltf

a41 = −vrlhs
ltsltf

a42 =
lhf lhs
ltf lts

a43 =
vr
lts

+
vrlhs
ltsltf

a44 = −vr
lts
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