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ABSTRACT

Alternative indoor localization methods have long been researched due to the unsuitability of

GPS and cellular technology in indoor environments. Indoor localization systems find their appli-

cations in many areas such as targeted advertising, inventory management and tracking, navigation

in museums, arenas, hospitals and in first responder and disaster situations like fire. Wireless local-

ization systems have become very popular in recent years, especially the ones based on Wi-Fi due

to its existence in almost any indoor environment today. Our indoor localization system is based

on Wi-Fi (IEEE 802.11g) and can be installed on existing wireless devices with a simple software

patch. This is very attractive since there are a hundreds of millions of wireless devices already

in use and a hardware upgrade would be impractical. Our indoor localization system consists of

a target node unaware of its location and several reference peer nodes which are location aware.

Target nodes communicate opportunistically with each reference node to measure the Round-trip

time (RTT) between the transmission of data frames and reception of acknowledgement frames.

This RTT is measured at the driver layer of the OS kernel. These RTT measurements are used

to predict the distance between the reference and target nodes by using a Statistical TOA ranging

method which compares the measured RTT against stored reference databases collected during

an offline stage. The comparison based on a statistical distance measured called Bhattacharyya

coefficient and the results of this new ranging method is fed to a position estimation algorithm

based on Linear Matrix Inequality (LMI) to provide the position coordinates of the target node.

This thesis describes this new indoor localization system followed by a thorough analysis of RTT

measurements made in different indoor environments such as a hallway and multiple rooms. We

compare the measured RTT data with the packet timings involved in the IEEE 802.11g standard

and introduce our novel idea of Statistical TOA ranging.
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We discuss how we can build reference databases effectively by using Bhattacharyya coef-

ficient and finally, we provide some real world experimental results of the ranging method along

with the Wireshark view of the DATA and ACK frames involved. The real world experiments have

shown that the precision of Statistical TOA ranging is 10 metres, i.e. there is a significant differ-

ence between RTT distribution for distances of 10 metres and it is extremely difficult to predict

ranges less than 10 metres accurately. Hence, our Statistical TOA ranging predicts if the range is

either 10 m, 20 m or 30 m. If the actual range is say 14 m, Statistical TOA ranging result is 10 m

since it reduces the overall error. The position estimation stage then constructs LMI equations by

incorporating ranging errors. From our real world, real time experiments, we find the average error

to be about 3.08 metres and percentage of accurate predictions is about 71%.
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“It isn’t the mountains ahead that wear you down. It’s the pebble in your shoe”

–Muhammad Ali
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Chapter 1

INTRODUCTION

1.1 GPS and its History

GPS was initially designed for military applications and purposes after the Soviet’s launch

of the Sputnik spacecraft in 1957. In the early 1960s, several U.S. government organizations,

including the Department of Defense (DOD), the National Aeronautics and Space Administra-

tion (NASA), and the Department of Transportation (DOT), were interested in developing satellite

systems for three-dimensional position determination. The optimum system was viewed as hav-

ing the following attributes: global coverage, continuous (all weather) operation, ability to serve

high-dynamic platforms, and high accuracy [26]. The first satellite navigation system was called

TRANSIT which was built by the US Navy in collaboration with the Applied Physics Laboratory

(APL) at John Hopkins University. At the same time as the Transit enhancements were being

considered, the Air Force conceptualized a satellite positioning system denoted as System 621B

[26].

Finally, in 1969, the Office of the Secretary of Defense (OSD) established the Defense Nav-

igation Satellite System (DNSS) program to consolidate the independent development efforts of

each military service to form a single joint-use system. From this effort, the system concept for

NAVSTAR GPS was formed [26]. It was later termed ‘GPS’. In 1983, after the Soviets shot down

a Korean Air flight after it wandered into Soviet airspace, the then President Reagan’s administra-

tion allowed all civilian aircraft to use the GPS system to improve air safety [44]. This was the

first-time GPS was used beyond military applications, but still did not make its way to the general

public.

The DoD dutifully carried out Reagan’s instructions to make GPS signals available for civilian

uses, but at first, they added random timing errors to the satellite signals accessible to nonmilitary
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GPS units so they could determine locations to no better than 100 meters. Then in 2000, after

President Bill Clinton ordered this purposeful degradation to be stopped, the error circle shrank to

10 meters or so. All of a sudden, GPS became extremely valuable for vehicle and even pedestrian

navigation [40].

GPS is a 24 satellite system arranged in 6 orbital planes, 4 in each plane such that 4 satellites

are visible to a receiver on Earth at any given time. To determine the location of a receiver, the

satellites transmit radio waves along with their time (atomic clocks). The receivers then determine

the Time of Flight (ToF) from each satellite and determine the location by using a technique called

trilateration. The 4th satellite’s data is used to correct the timing errors on the receiver.

1.2 Location Based Services

In recent years, the use of smartphone or more generally smart devices has greatly risen. Each

of these smart devices have equipped with them a GPS receiver which enables them to decode

GPS signals and thereby determine their position (location) on the Earth. This has opened up

to a wide range of location based services (LBS) which is a software service that uses location

data to provide information services to the users in areas such as health, entertainment, marketing,

work, personal life (fitness regime) etc. LBS for example, can be used in roadside assistance, store

or restaurant locators, targeted advertising and fraud prevention among others. Location based

services could also be critical for government organizations in matters of national security, relief

and disaster managements; to commercial businesses- to analyze human behavior and interests and

determine their business strategies based on that data [52].

1.3 Pitfalls of GPS systems and Alternate Localization Methods

The location (position) of the user can be found accurately not only using GPS, but another

service called Wireless Enhanced 911 (E-911). E911 is an ambitious and arguably much-needed

national safety net for locating wireless callers via satellite global positioning or cellular tower

triangulation technologies on a local, state, and national level [16]. However, the single most
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deterring factor of these technologies is that radio signals coming from distant satellites are heavily

attenuated when the view of the sky is obstructed, which makes navigating in narrow canyons,

urban areas, extremely tough and inaccurate. And these high-frequency signals bounce around

so much when they hit metal that getting a good GPS fix indoors usually proves impossible [40].

GPS signals are attenuated in indoor environments and the low power levels affect the receiver

coverage. Also, GPS does not provide height information i.e. we cannot determine on which floor

the user is in a multistoried building. These shortcomings do not make GPS and Wireless E911 a

viable option for indoor environments and researchers have been studying new technologies since

the 1990s.

Indoor Positioning systems or Indoor geolocation systems is a system to locate the position

(including the height information) of a user inside a building such as a mall, hospital, office. In

GPS, the communication between the receivers and the satellites is through radio waves. But in

Indoor positioning systems, there are a host of different technologies proposed. These include

Bluetooth, Wireless Local Area Network (WLAN), Vision based (camera) [34], Ultrasound, In-

frared, RFID. Bluetooth and WLAN still use radio waves but they are transmitted at different

frequencies compared to the GPS signals. Although lot of research have been carried out in this

field in the past two decades, these systems haven’t been standardized yet [36].

1.4 Wireless LAN based Indoor Localization System

Ever since the IEEE 802.11 Wireless LAN (WLAN) standard was first published, wireless

networks are configured almost everywhere right from university campuses, corporate buildings,

malls, homes to streets. Every device today is capable of exchanging information over such wire-

less networks with small latency. The number of WLAN access points are in hundreds of millions

which is significantly larger when compared to the 24-31 GPS satellites and hundreds of thousands

of cellular towers (E911). These Wi-Fi APs can be leveraged opportunistically to determine the

user’s location in indoor environments or where other technologies are either not accurate or have
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large latency periods [37]. These advantages inspired us to build a wireless indoor localization

system with the WLAN technology at its forefront.

Wireless networks are of two types- AP (Access Point) or the Infrastructure mode and Ad Hoc

mode. IEEE 802.11 WLAN standard terms this as the BSS (Basic Service Set) and IBSS (Inde-

pendent Basic Service Set) modes respectively. The infrastructure mode consists of a centralized

Access Point (AP) and all nodes communicate through the access point. The APs are fixed and can

connect to all nodes that are within its range. An adhoc network on the other hand is a peer to peer

network. Each node can directly communicate with other peer nodes. The main advantage of the

adhoc network is the minimal configuration and quick deployment, making it suitable for disaster

and rescue situations since it is too cumbersome to establish centralized access points and there is

a need for “on the fly” network creation [55]. It is due to this flexibility; we chose a wireless adhoc

network as our mobile networking system.

Different applications may need different types of location information. Some types discussed

in [35, 19] are physical location, absolute location, symbolic location and relative location. Phys-

ical location can be identified on a map and is expressed as coordinates. Symbolic location is less

specific and expresses a location in a more abstract way such as in the kitchen, bedside the TV

etc. Absolute location uses a shared reference grid for all located objects while relative location

information is usually based on the proximity to known reference points or base stations [35, 19].

An Indoor wireless positioning systems consists of a target node which is unaware of its

position and several reference peer nodes who are aware of their location coordinates. This is like

a GPS system in which the reference nodes are the satellites and the target is the GPS receiver.

In the indoor system, the reference nodes maybe for example an access point (AP)/ router which

is aware of its location and the target node could be a smartphone or any handheld device. The

communication between the two is through radio waves. Just like in GPS, determining the position

in an indoor environment is twofold- first we need to determine where the target is with respect

to the fixed references (distance or angle) a technique called as ranging, and second- the position

coordinates of the target node through geometry techniques such as trilateration or triangulation.
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Wireless indoor positioning systems use different ranging methods to determine the range between

the target and the reference nodes. Lateration uses distance as the metric to determine the range

between the target and the reference, while Angulation estimates the angles relative to the peer

reference nodes.

In lateration techniques, received signal strength (RSS) or the Time of Arrival(TOA) of the

radio waves is used to estimate the distance and in angulation, the Angle of Arrival(AOA) of radio

waves is measured. RSS based systems estimate the distance based on signal attenuation since

the strength of the radio waves decreases over distance [11]. The distance can also be estimated

by measuring the propagation time of the radio waves from the transmitter to the receiver. This

would require the two nodes to be accurately synchronized with each other and the timestamp has

to be included in the transmitted signal. This requirement is less significant if the Round Trip

Time (RTT) is measured at the transmitter side, but this would include the processing times at

the receiver leading to less accurate estimations. AOA utilizes sophisticated directional antennas

or an array of antennas and the location of the target is estimated by determining the angle of

incidence at the receiving antenna [1]. In addition to the above mentioned localization methods,

another technique called Fingerprinting using the signal strengths has been widely researched [34,

8]. The RSS values are measured continuously at each point and stored in a database to create

what is called a radiomap. These values at each position are called fingerprint of that location. To

determine the location of a target node, the real time RSS measurements are matched to the known

observations (database) [8]. This overcomes the errors induced by multipath (of wireless signals)

conditions that a traditional RSS technique would encounter.

In most of the above cases, the indoor positioning system needs specialized hardware to accu-

rately measure either the signal strength or the propagation time of the wireless signals. This raises

the overall cost of the positioning system. Some systems use cellular base stations to determine the

location, but this would not be suitable in disaster and relief operations as there is a high probability

of them being destroyed and non-operational. The cost can be significantly reduced if the refer-

ence and target nodes can be made available for wireless positioning with a simple software update
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rather than replacing the hardware such as for example- using sophisticated directional antennas as

in the case of AOA technique. In other words, there is a need for opportunistic localization where

the target and reference nodes can be existing devices such as smartphones and they are connected

quickly “on the fly” in an adhoc network. To fulfill these needs we constructed a new opportunistic

wireless localization method.

Our wireless indoor localization method consists of a target node who wishes to determine

its location by communicating with location aware reference peer nodes. This communication

between the nodes takes place in an ad hoc network over Wi-Fi using the IEEE 802.11g [50]

communication protocol over 2.4 GHz frequency band. The localization process is twofold- the

target node first detects the distance between itself and each of the reference nodes through ranging;

secondly the target node then calculates its position using Linear Matrix Quality and Grid Method

[48, 29]. We use Time of Arrival (TOA) ranging over the received signal strength (RSS) since it has

its own limitations on accuracy in the indoor space [14]. Other ranging methods like AOA are an

expensive affair with its high precision antenna requirements. Most of the literature focuses on new

hardware and software to make indoor localization possible, but since there is already a plethora of

wireless devices in use, an easier way to make a device localization ready would be to introduce a

software update. This inspired to us to delve into the device driver layer of OS kernel to collect the

TOA data. We use the FreeBSD operating system which is derived from the BSD version of UNIX

[2] since it is easy to use, understand and modify device driver programs to collect TOA data.

More specifically we use the RTT (Round Trip Time) as the time taken for the target device driver

to send a UDP packet and receive an ACK from the reference node. This is used to determine

the range (distance) between the target and reference peer nodes over TOA because it eliminates

the requirement of synchronized clocks between the transmitter and receiver and enables all the

processing to be done on the target. This would aid debugging. In this way, the TOA (RTT)

data profile (probability density functions) is collected for different distances in different indoor

environments to build a database. The real time RTT measurements are then matched to known

observations (database) to determine the distance between the target and reference nodes. This is

6



similar to the RSS fingerprinting, except that in this case, the database is profiles of time (RTT).

This way, we can incorporate the multipath conditions which directly affects the Time of Arrival

values since the RF signals bounce of several objects to arrive at different times at the receiver.

This thesis document mainly deals with the analysis of RTT measurements made at the driver

layer of the OS kernel and introduces a Statistical TOA ranging method to determine the range

between the target and reference nodes. The remainder of this thesis document is structured as

follows. In Chapter 2, we provide a note about what motivated us to build a Wireless Indoor Lo-

calization System followed by the applications of our system in the real world. In Chapter 3, we

provide a literature survey of several research works and ideas that are related to our technology

for ranging and localization in indoor environments. In Chapter 4, we define the problem state-

ment and introduce the different parts of our indoor localization system. In Chapter 5, we explain

the Round-Trip Time (RTT) Samples collection methodology that is based on [64], followed by

a detailed analysis of the RTT samples measured in different indoor environments. We introduce

in Chapter 6, our Statistical TOA ranging method based on a statistical distance measure called

Bhattacharyya Coefficient and Distance while also providing a model for the RTT data samples

measured. This ranging method is used to determine the distance between the reference and target

nodes and in Chapter 7, we evaluate the performance of our statistical TOA algorithm by per-

forming real-world experiments. Finally, Chapter 8 draws the conclusion and mentions the future

work.

7



Chapter 2

MOTIVATION AND APPLICATION

2.1 Motivation

The commercialization of GPS in 2000s combined with the technological advancements has

brought cheap and accurate GPS receivers into every wireless device. Thus, GPS was extensively

used for not just navigational purposes but also gave rise to Location Based Services, where busi-

nesses could offer unique services to customers based on their location. Users could also search

for nearby restaurants, hospitals, malls and movies. Credit card transactions can be matched with

user’s location to provide an additional level of security. In an indoor setting, however, due to

the signal attenuation caused by the roof, walls of the buildings, GPS is not suitable. Researchers

have been investigating an alternate wireless indoor positioning system since late 1990s, that can

provide a high level of accuracy. The accuracy requirement is high especially in indoor scenarios,

since a small location error of a few meters can end up being in a different room or apartment

altogether. Some indoor positioning systems based on Ultra-Wide-Band technology provide good

accuracy but are very expensive to deploy. Other indoor tracking systems rely on existing infras-

tructure like cellular base stations, but they are not suitable during relief operations where there

is a high probability of damaged infrastructure. This motivated us to develop a new technique to

solve the indoor positioning system which is both accurate, cost effective and completely based on

wireless ad-hoc networks which makes it suitable during relief operations. Our Wireless Indoor

Localization Solution can be split into three stages- RTT data collection, TOA Ranging, and Po-

sition coordinates estimation. First, we measure the Round-Trip Times (RTT) at the driver layer

of the OS kernel (operating system) which forms the basis of TOA ranging. This is the time taken

for the data packets to be sent and the ACK (acknowledgement) to be received. We choose TOA

ranging over RSS (Received Signal Strength) ranging because of the its unreliability. Second, we
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match the RTT data against a stored RTT databases for different distances using a statistical dis-

tance measure called Bhattacharya distance. This measures the similarity between the probability

density functions of the RTT data. It is at the end of this stage, that we can determine the distances

between the target and each of the in-range reference peer nodes. Finally, we determine the loca-

tion coordinates of the target node by using a GPS trilateration type technique like LMI (Linear

Matrix Inequality). The accuracy is further improved using Center of Gravity (CoG) technique.

2.2 Applications

Alternate Positioning and Tracking systems have long been researched because of the inability

of GPS to be used in indoor settings. These indoor positioning systems find their use in complex

environments like university halls and buildings, hospitals, malls. The following sections briefly

describe in what settings our proposed Indoor Localization System can be used.

2.2.1 Hospitals and University Buildings

Hospitals usually have large buildings with several doctors each with a different specialty. It

is always a challenge for patients to locate their offices in time for an appointment in such a large

setting. For parents, to carry their babies all around the hospital in search of nurse and doctors is

always difficult and it gets worse in the middle of the night, when the hospital has fewer personnel

to seek assistance. In a university setting, most students tend to miss classes because they cannot

locate a classroom. Universities prefer an interdisciplinary approach to their education system,

with students taking classes from different departments. So, an electrical engineering student will

have several classes in a computer science and mechanical departments which he/she is unfamiliar

with. They quite often end up spending a lot of time in search of buildings and classrooms. In both

these cases, it would be a boon to be able to locate yourself inside the building and get directions to

the exact room of interest. Our proposed indoor localization system is very flexible and can easily

be deployed on existing wireless devices such as a smartphone or tablet and the patients, students

can easily navigate to the exact room within a building.
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2.2.2 Airport, Railways and Subway Stations

Airports, railway stations are very complicated buildings and the only navigation for the pas-

sengers is displays that indicate the terminal, gate or platform numbers for different planes or

trains. In bad weather conditions, passengers can be caught unaware of schedule changes and

mostly change in terminals or platforms. While there are several apps that notify passengers of

such changes, they do not navigate them to the changed terminal. This can be greatly stressful

in busy and huge airports with very little time left between the changes. Our indoor navigation

system in such a setting can provide very useful as it can notify the passengers of the changes and

guide them through the airport or railway station to the appropriate terminal or platform. This can

be done via an app on their smartphone and the passengers can skip the displays which are always

very messy. Other points of interest like ATMs, shopping and food areas that the users may be

interested in can also be displayed on the indoor map. This indoor navigation system can also be

used by security personnel to keep passengers out of sensitive and construction areas inside the

building.

2.2.3 Office Buildings and Warehouses

Our indoor localization system can not only be used by and on human beings, it can also be

used to track objects of interest. In a warehouse, it can be quite a task to search for misplaced

equipment like barcode readers, forklifts, goods and robots. We could deploy our technology into

such devices to easily locate them. Similarly, in an office setting, it can be used for tracking and

preventing theft of assets like laptops, printers and conference room reservations, canteen finders

and facilities management. Sometimes, office meetings are scheduled in different buildings, in

which case our indoor navigation system can lead people to the exact conference room in time.

2.2.4 Museums and Exhibitions

Museums usually have plenty of exhibits and visitors are handed an audio device which gives

them a tour around the museum. Users must key in the code of each exhibit for a brief explanation
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of the history of the exhibit. Our indoor navigation system can be used in museums in the form

of a museum app to provide the visitors a better user experience. It could guide and navigate the

users through sections of the museum the users are most interested in and they could listen to the

audio playback on their own phones. In trade fairs, the navigation system can lead people to the

exact booth, parking lots, food area, restrooms and trade fair support staff. The location data could

also be used to show other booths with similar products. For exhibitors, the location data can be

used to analyze the visitors’ response.

2.2.5 Parking Lots

Hospitals, Malls, Office buildings usually have attached with them a multistory parking lot

in an adjacent building or underground. On a busy day, it is extremely difficult to find an empty

parking spot and visitors usually spend close to an hour to find parking. Sometimes there is no

way to figure out if the parking is full without human assistance and it in the middle of the night, it

is extremely rare to find support staff. Further, parking lots are divided into different sections-one

for employees, one for pre-reservations, and one for the general public. While sitting in the car, it

is sometimes very difficult to distinguish between these sections. Our indoor localization system

could be used to alleviate this problem. Each parking spot could be fitted with a small sensor

whose position coordinates are known and our system can navigate to that. As soon as you enter

the parking lot, the user device is brought into the parking lot’s network, an empty spot is assigned,

and the app can navigate to it. Since users tend to forget where they have parked their cars, the app

can then navigate the user to and from the parking lot.

2.2.6 Targeted Advertising in Malls, Retail Stores

In the past, advertising was in the form of fliers, huge hoardings on freeways, and in news-

papers. With the rapid development of digital media, retailers are finding new ways to advertise

through text messages, emails and Facebook. They even track what users search for online, to de-

termine the most relevant advertisements for them. But such a system is limited to online shopping.
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Our Indoor tracking system can be utilized for a new form of personalized targeted advertising

when users are shopping in a mall or a retail store. They can track where the users tend to move

around inside the mall, and navigate them to the nearest store with customized offers and deals.

Similarly, when inside a store, the users can be notified of a similar product from another brand

which is cheaper or more nutritious. This could attract more customers while also making for a

great shopping experience.

2.2.7 Indoor Fire Fighting and Warning Alerts

The Worcester Cold Storage disaster in 1999, brought into light the need to be able to locate

emergency responders to better coordinate rescue efforts and for the safety of the rescue personnel

[58]. On that fatal day, a fire broke out accidentally in the cold storage and since, it was not reported

quickly, by the time the firefighters could get to the scene, the fire had grown significantly. The

firefighters were unfamiliar with the layout of the building, making it harder to extinguish the

fire. It led to the sad demise of six firemen and their bodies could not be located for days. Our

technology can be useful for locating firefighters inside the building. They could carry a small

device like a cell phone (without complex cellular functionality) in which our technology can be

deployed, and they can be tracked by the Fire Chief who usually coordinates the rescue operations

from outside. The technology can also be used to send warning and alert messages to people

guiding them to the nearest exit doors in case a fire breaks out.

2.2.8 Sensor Networks

Wireless sensor networks are used to measure physical and environmental conditions such

as temperature, sound, pressure [56]. They consist of autonomous sensors in a network placed in

remote areas, and they transmit sensed information to a central device wirelessly. The sensors can

be anywhere between 100-1000s of them in remote areas and it can quite a challenge locating each
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one of them in case they need to be serviced. Our technology can easily be integrated into a Wire-

less Sensor Network and it can provide accurate locations of each sensors making maintenance a

lot easier.

2.2.9 Stadiums

In large stadiums, the seating is usually divided into different sections and a spectator nav-

igates to his/her seat using the section name and the seat number in that section. With people

arriving into the stadium at different times, they usually walk past people already seated in search

of their seat and on most occasions spectators find the exact number on the seat but in the wrong

section. This can be quite inconvenient to both. Our indoor navigation system can navigate peo-

ple right from the parking lot to their exact seat making it convenient to the users and the people

already seated so that nobody misses any part of the event. It can also navigate them to the nearest

confectionery, restrooms thereby providing a better fan experience.

13



Chapter 3

RELATED WORK

3.1 Alternate Localization Systems

Alternate localization systems have been researched since the late 1990s due to the unavail-

ability of GPS in indoor environments, narrow canyons and underground. In such environments,

obtaining position information of a target node is a challenge due to existence of multipath and

Non Line-of-Sight (NLOS) conditions, large number of obstacles that cause signal attenuation and

diffraction. This demands a localization system with very high accuracy, particularly in indoor

environments since a few metres error might end up in a different room. Enabling technologies

in these alternative localization systems have been detailed in [36]. Localization systems can be

based on infrared, ultrasound, or wireless (RF) based such as WLAN (Wireless Local Area Net-

work), Bluetooth and RFID. They can also be vision based where videos captured by cameras are

processed and evaluated.

Camera based systems are usually employed in robotics to determine the location of a mobile

robot while also simultaneously building a map of the environment and this is termed as SLAM

(Simultaneous Localization and Mapping). In [41] for instance, certain features called scale in-

variant feature transform (SIFT) in images captured by the camera are extracted to serve as visual

landmarks. These landmarks are tracked over a period of time are are used for robot position

estimation and map building.

3.2 Wireless Indoor Localization

In the past decade or so, wireless technologies and networks have entered the realms of per-

sonal computing, data communication, consumer applications including medical, industrial, public
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safety and other applications. Due to the growth and large availability of wireless systems, indoor

positioning systems based on wireless technologies are very attractive. The survey paper [35], lists

several wireless technologies used for indoor localization.

3.2.1 RFID

Paper [31] is a location sensing system based on RFID. The LANDMARC system performs

location sensing based on signal strength using active RFID tags. The methodology consists of

RFID readers, reference tags to help in location calibration, tracking tags as objects being tracked.

RFID readers measure the signal strength from reference and tracking tags and Euclidean distance

between the two readings is computed. Weighted kNN (k-Nearest Neighbors) method is then used

to determine the location of tracking tags with the weighting factor depending on the Euclidean

distance.

3.2.2 Cellular Technology

In literature, there are some indoor localization systems based on cellular technology. GSM

network is well spread and if there are several base stations around a building, they can be leveraged

for indoor positioning. One such system is introduced in [47], where the authors uses the concept

of wide signal-strength fingerprints. Fingerprints are collected from the six strongest GSM cells

and readings from upto 29 additional GSM channels which are strong enough to be detected but too

weak and unsuitable for reliable and efficient communication. These additional channels improve

the accuracy. The overall accuracy is as low as 2.5 metres and the system can distinguish between

multiple floors in a building.

3.2.3 Bluetooth

Bluetooth is a short range communication system (10-15 m) operating at 2.4 GHz ISM band.

In literature, a lot of research has been conducted to utilize bluetooth in indoor positioning [38, 24].

Bluetooth has an adaptive technique to control the transmit power based on RSSI (Received Signal
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Strength Indicator) to improve signal-to-noise ratio. In [38], this feedback was turned off and the

RSSI was used as a distance indicator. They used a line-of-sight radio propagation model which

is the free-space propagation model to determine the distance between two Bluetooth enabled

devices. Results show that the system has an accuracy of about 1.2 metres but it does not work

well in NLOS conditions. Similar work is done in [24] but the estimated position is represented in

the form of probability density functions.

3.2.4 WLAN

IEEE 802.11 WLAN access points (AP) number in hundreds of millions today and are easily

available in almost every indoor building. These Wi-Fi APs have a much larger communication

range when compared to Bluetooth or RFID and hence they can be leveraged opportunistically to

locate mobile nodes on the Wi-Fi network [37]. Xiang et al. [66] propose an indoor positioning

system which is based on signal strengths of WLAN APs. It consists of a training phase, where

the signal distribution of APs is collected to train a position-determination model. It is followed by

a working phase, in which the mobile node measures the WLAN signals and applies the position-

determination model to calculate a position. To simplify the training procedure, model-based

signal-distribution training scheme is proposed where certain characteristics of signal distribution

are exploited to reduce the number of samples to be collected. The working phase involves a

tracking algorithm to assist the position estimation. Since the estimated position of a node cannot

change drastically in a short period of time, position determination relies on both collected signal

strength and knowledge of space topology. Results show that the authors were able to achieve

an accuracy of 2 metres for static cases and 5 metres when devices were mobile. Similarly, Saha

et al. [39], described a WLAN indoor positioning system in which a database of signal strength

information for various locations is built and this information is used to determine which location

a given test data comes from. To classify the test data, they studied a nearest neighbor classifier,

back propagation neural-network and histogram matching.
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3.3 Ranging and other Localization Systems

In an indoor localization system, the target node communicates with other sensors to perform

ranging i.e. to measure metrics like approximate distance or direction of arrival of signal. Ac-

cordingly, Time-of-Arrival (TOA), Received Signal Strength (RSS), Time Difference of Arrival

(TDOA) and Angle-of-Arrival (AOA) are some of the techniques used in literature. In [7], sig-

nal strength (RSS) measured by the wireless NIC is recorded at reference points (base stations)

for different positions and orientations of the target node. The authors then used a linear-search

algorithm to search through recorded data to find the closest match to the real-time data. AOA

estimation and source classification using antenna arrays is discussed in [33, 45]. For measuring

TOA in indoor environments, detection of LOS path is necessary and in [6], authors describe the

use of Direct Sequence Spread Spectrum (DSSS) to track the leading edge of direct path signal.

TDOA based methods having the advantage that the initial synchronization between transmitter

and receiver is eliminated [32]. Several hybrid techniques to achieve indoor localization has been

an active research area. In [23], authors measured signal strength from arrays of directional anten-

nas on each sensor node in a way to combine TOA and AOA, to demonstrate localization in sensor

networks. Radiolocation can be very important in wireless E-911 to locate the callers and in [65],

AOA and TOA methods were combined to distinguish between LOS and NLOS paths to achieve

radiolocation using a single cellular base station. Hybrid localization methods using TDOA and

AOA measurements to determine a mobile user location in wideband CDMA cellular systems are

discussed in [30].

Signal strength in indoor environments can exhibit an unpredictable and random behaviour

due to varying nature of the wireless channel. Thus, they are more susceptible to noise, interference

and they are not accurate for indoor localization. The limitations of signal strength based indoor

localization systems is detailed in [14]. Instead, TOA based systems are widely used and a survey

of such systems is presented in [20]. TOA based systems suffer from NLOS conditions whic gives

rise to incorrect distance estimation. This property is modelled in [20], where estimated distance

includes a noise and an NLOS term along with the actual distance. In [4], the authors analyze the
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TOA profiles and indicate that in addition to LOS and NLOS classification, there exists further

classification that depends on the channel profile and the characteristics of the direct LOS (DLOS)

path. When the DLOS path can be detected and has the strongest amplitude, it is called dominant

direct path (DDP). If DLOS path is detected but is not the strongest, it is called non-DDP (NDDP)

and when DLOS path is not detected, it is termed undetected direct path (UDP). This classification

can provide a deeper insight into wireless channel modelling for indoor localization. In [18],

authors present a performance evaluation testbed to test accuracy of TOA based systems in real

time in the presence of multipath and NLOS conditions. In [64], authors introduce a new method

of TOA measurement where the measurement is made in software i.e. driver layer of operating

system. Thus, it can easily be installed on existing wireless devices. The measured TOA includes

the software processing and processing time of PHY layer in wireless NIC. Euclidean distance was

used to distinguish between two TOA profiles.

Wang et al. [61, 62] propose a RSS fingerprinting method for indoor localization. They use

the CSI (channel state information) to obtain more fine grain information on wireless channel than

other RSS based schemes. In the offline training phase, deep learning is utilized to train all the

weights of a deep network as fingerprints. In the online localization phase, a probabilistic method

based on the radial basis function is used to estimate location. Similar work is done in [60]; BiLoc

system is based on CSI fingerprinting and operates at 5 GHz ISM band. The CSI information of

each OFDM subcarrier is measured over three antennas and a bi-modal data is obtained including

average amplitudes over pairs of antennas and estimated AOAs. A deep learning network was used

to train the bi-modal data and in the test phase, a Bayesian approach based probability model was

employed for estimating position with bi-model test data.

Paper [63] is an indoor localization system based on AOA technique. CA2T is a cooperative

antenna array technique which estimates all the arriving angles of multipath components on two

APs using the common MUSIC algorithm. Geometric relationship between the angles is exploited

to obtain the arriving angle of LOS component. The distance between the two APs and the user
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is determined using a free scale path loss model which includes shadowing effect. Finally, with

distance, angle and position coordinates of two APs, the user location is determined.

In paper [59], the authors exploited user’s mobility to improve localization performance. Dis-

tance was estimated based on RSS measurements and LMI (Linear Matrix Inequality) was used to

estimate the user’s location. The data from accelerates and gyroscopes of the smartphone provide

mobility information which can be used to narrow down the constraint area of LMI.
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Chapter 4

PROBLEM STATEMENT

As mentioned in chapter 1, GPS signals undergo severe attenuation by walls, roof, furniture

in an indoor setting and this makes them highly unsuitable for localization of objects and people

in an indoor environment. Researchers began to work on indoor localization systems by tapping

into existing technologies like Infrared, WLAN, Bluetooth, Cellular among many more. WLAN

or Wi-Fi based systems are more attractive over the other technologies because of its range and its

ubiquitous nature in almost every indoor environment. WLAN access points number in hundreds of

millions and every device is Wi-Fi enabled, so the technology can be deployed very easily in these

devices. But in first responder situations like indoor firefighting, there is a need for opportunistic

localization with the reference and target nodes must be able to communicate ‘on the fly’. With

that in mind, our indoor localization system is designed to use IEEE 802.11 WLAN technology

with the target node communicating opportunistically with its location aware reference nodes in

an ad-hoc network. In a broad sense, it has two phases as depicted in the Figure 4.1.

Figure 4.1: Indoor Localization Architecture
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In the first phase, the distance between the target and each of the reference nodes is determined

by ranging. There are several methods of ranging like Received Signal Strength (RSS), Angle of

Arrival (AOA), Time of Arrival (TOA). RSS ranging is less accurate and AOA needs sophisticated

antenna configurations to achieve good accuracy which increases the cost and complexity. TOA

technique needs no extra hardware and is generally more accurate. We measure the TOA or more

specifically the Round Trip Time (RTT) at the driver layer of the OS kernel. This is very attractive

because it can be deployed into any existing wireless device by means of a software patch without

any hardware change.

In this thesis work, we analyze this RTT data in different indoor settings and show how the

RTT data varies with different distances. Also defined is a technique to distinguish the RTT data

at different distances. We employ a statistical distance measure called Bhattacharya Coefficient to

quantify this differentiation. We compare this to the Euclidean distance measure to illustrate the

advantages of the Bhattacharya coefficient.

In the second phase, we use the ranging data to determine the location coordinates of the target

node by using a trilateration type technique like LMI (Linear Matrix Inequality). We also mention

the second phase in this thesis as a sense of completeness since, the original idea was to build an

indoor localization system, a system which was divided into 2 phases. One phase is discussed here

and the other is discussed in detail in [29].

4.1 Conceptual Approach

The indoor localization system consists of a system of mobile nodes with the ability to com-

municate over radio access technologies like Wi-Fi, ZigBee, Bluetooth. Our localization however,

is solely based on WLAN and hence we use devices with a Wireless NIC (Network Interface Card)

interface. These network devices are either a target node or a reference node. A target node is one

which is unaware and incapable of determining its location by GPS or Ultra-Wide-Band (UWB)

techniques and seeks to determine its position opportunistically by communicating with reference

nodes. These reference nodes have self-localizing capability with a certain accuracy which varies
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with time. But, in the real world, every node is a target since its unaware of its location inside the

building. Each node will first try to determine its position by first communicating with certain fixed

nodes which in theory can be fitted with GPS receivers (they are placed outside the building and

can hence receive GPS signals). Once a node determines its position, it will then act as a reference

to other target nodes.

The target and reference nodes are in an ad-hoc network in which each node can communicate

with every other node without having to go through an Access Point (AP) thus removing the need

for a centralized authority. This arrangement is very attractive in disaster and relief operations

since ad-hoc networks can be configured quickly and a node does not need to be in range with

the AP, it can instead be in range with some other node which can further forward the information

using routing protocols such as OLSR (Optimized Link State Routing).

The target node first sends a ‘hello message’ to each of the reference nodes, to which the

reference nodes respond to by sending an acknowledgment (ACK) frame containing its position

coordinates, position error and time. The target measures the Round-Trip Time (RTT) by mea-

suring the time between the transmission of a hello message and the reception of an ACK frame.

This forms one RTT sample and the target collects several thousands of such RTT samples. This

process is repeated with each reference node. To determine the distance, raw RTT samples are

represented as a histogram and matched against a stored reference database for different distances

(say 10, 20 m). The matching is done using a statistical distance measure called Bhattacharya

Coefficient.

BC(p, q) =
∑
x

√
p(x)q(x) (4.1)

where p(x) and q(x) are histograms of RTT data samples.

A high BC(p,q) value indicates that there is a strong match (similarity) between the real time

RTT data and stored reference RTT data and a low value indicates less similarity. The range result

(distance between target and reference nodes) is the reference database with the highest BC(p,q)

value.
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The position coordinates of each reference node along with the predicted range (distance) is

then utilized to determine the position coordinates of target node by solving inequality equations

using a technique called Linear Matrix Inequality (LMI) [13]. The accuracy of the predicted loca-

tion can be further improved by taking Center of Gravity (CoG) of cluster of positions calculated

by Linear Matrix Inequality [29].

4.2 Assumptions and Goals

To provide a proof of concept, we make a few assumptions. First, all the nodes; reference and

target are stationary while communicating with each other. The target measures the Round-Trip

Time when it receives the ACK frame for the data packet it sent to the reference. More detailed

experimental set-up will be explained in the next chapters. Second, we assume there are at least

three reference nodes which are in-range to the target. This requirement is similar to GPS where

the receiver needs to see a minimum of 3 satellites to estimate its position. Third, all the nodes are

equipped with a wireless NIC (Network Interface Card) capable of operating in IEEE 802.11a/g/n

mode. Fourth, if a reference node is say 17 m from the target (actual distance), the most accurate

TOA ranging prediction would be 20 m. This error is a part of the system and the subsequent

stages of position estimation: LMI with Barycenter or Center of Gravity algorithm can reduce this

error.

With that in mind, our aim is to determine the position coordinates of the target node by

communicating opportunistically with in-range reference peer nodes. First, we measure the RTT

samples at the device driver layer of the OS kernel by transmitting a data packet and waiting for an

ACK frame. Second, the Statistical TOA ranging method involves comparing the measured RTT

samples against stored reference databases to predict the distance between the two nodes. We then

input this information along with the (x, y) position coordinates of reference peer nodes to the LMI

algorithm which would then provide a position estimate. Finally, the Center of Gravity technique

improves the accuracy of the estimated position over time.
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4.3 TOA Ranging

As mentioned in chapter 1, researchers have used different ranging methods to determine

the range between the target and the reference nodes. Received Signal Strength (RSS), Time

of Arrival (TOA), Time Difference of Arrival (TDoA) are lateration techniques which measure

distance while Angle of Arrival (AOA) is an angulation technique which measures angles of the

received signals relative to the peer reference nodes. We perform Time of Arrival (TOA) ranging

due to its reliability and low cost. Most research focuses on measuring the TOA at the hardware

layer by using special devices that mimic the conditions of an indoor environment [18]. We on

other hand, implement the TOA ranging and more precisely RTT (Round-Trip Time) data sample

collection at the driver layer of the FreeBSD kernel or MAC layer of the TCP/IP protocol stack.

Each node is configured to operate at 2.4 GHz and IEEE 802.11g mode. More details of how this

done is explained in the later sections. Several hundreds of Round-Trip Time data samples are

measured by repeatedly taking the time difference between the transmission of a data packet and

reception of the ACK frame. RTT profile is constructed with these samples for different distances

in different indoor environments and stored as a reference database for future range prediction.

This is like the RSS fingerprints. Some noteworthy research work in RSS fingerprinting is in [36,

25, 7].

The distance between the reference and target nodes is predicted using a statistical distance

measure called Bhattacharya coefficient. TOA ranging suffers from multipath in indoor environ-

ments and requires precise time synchronization. But this problem can be alleviated using the

RTT sample profiles. The figure below shows our proposed TOA ranging architecture. In this

thesis work, we analyze the RTT data samples collected at the MAC layer and create a reference

database of RTT samples for different distances and different indoor environments. This is then

utilized to determine the range between the target and reference nodes.
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Figure 4.2: Statistical TOA Ranging Architecture

4.4 LMI

The last part of our indoor localization system is the Position Estimation block which takes

as input-position coordinates of each reference node and the TOA ranging result to estimate the

position coordinates of the target node. Finding the target node position estimate can be thought

of as an optimization problem where we look to determine the most feasible solution satisfying

certain constraints. Linear Matrix Inequality (LMI) [48, 13] is a constraint that can be solved using

convex optimization algorithms and MATLAB’s robust control toolbox provides excellent support.

Consider a reference peer node i to be at the center of a circle whose radius is equal to the range

(distance) Ri between the target and reference node. So, we can say that the target position can be

anywhere on the circle in an ideal scenario with no range errors, but in all practical scenarios, the

target node lies anywhere within the circle. Similarly, the target should lie anywhere in the circle
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with some other reference node at the center and radius as the range. Thus, the target node lies in

a region that is bounded by the intersection of all the circles.

Let eri represent the range error between the target and reference node i and PT and Pi rep-

resent the target and reference node positions respectively. Thus, for reference node i, we can

write:

(Ri − eri) ≤ |PT − Pi| ≤ (Ri + eri) (4.2)

Equation 4.2 provides a constraint and can be written for each reference peer node i to form a

Linear Matrix Inequality (LMI). Thus, we are trying to find a feasible solution or more specifically,

target node position estimate that satisfies the LMI system created by the constraint in Equation

4.2.

The accuracy is improved over time with repeated communication with the same reference

nodes and other reference nodes which may have now come in range with the target, to obtain new

position estimates. Finally, we take the center of gravity of the new position estimates as:

C =

∑N
j=1 PTj

N
(4.3)

This is explained in detail in [29].
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Chapter 5

ROUND-TRIP TIME (RTT) SAMPLE COLLECTION AND ANALYSIS

In this chapter, we discuss the RTT sample collection which is the first stage to TOA ranging

between the reference and target nodes as shown in Figure 4.1. RTT samples are collected in a

variety on indoor settings such as hallways where the target and reference are in a Line of Sight;

multiple hallways with no Line of Sight; and target and reference nodes in different rooms.

5.1 RTT Data Sample Collection

RTT can be measured at different levels, like the hardware, firmware driver, OS or applica-

tion [64]. Research shows that existing TOA ranging methods measure the time at the hardware

which is the physical layer of the protocol stack using sophisticated devices which are usually very

expensive [18, 4]. These techniques involve measuring the time taken for a signal to reach the

reference node, but we measure the Round-Trip Time (RTT) at the device driver layer of the OS

kernel using the Data packets and ACK frames. This is easier than to measure at (say) firmware

level since most wireless network interface cards’ firmware in a mobile node is proprietary and is

difficult to access thus making it less flexible. The target sends a Data packet to the reference node

and measures the time taken for the corresponding ACK frame to be received to give one RTT

sample. This process is repeated for several thousand RTT data samples.

5.1.1 Experimental Setup

To test our concept in the real world and collect RTT data samples, we use a simple mini-PC

with the configurations given below in the Table 5.1. We install a Wireless NIC and configure it to

operate at 2.4 GHz, and in the IEEE 802.11g mode. Both the target and reference nodes have the

exact same configuration.
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Table 5.1: Test Model Specifications

Processor Intel Atom D510 and N270 i386
CPU Frequency 1.6 GHz

RAM 2048MB ( 2GB)
OS Kernel FreeBSD 10.1-RELEASE i386
32 bit/64bit 32bit

Wireless NIC Ubiquiti Networks SR-71 (mini-PCIe)
WLAN protocol IEEE 802.11 b/g

Operating Frequency Range 2.4 GHz
Data Rate 24 Mbps(OFDM)

Antenna
Characteristics

TRENDnet Dual-Band 11a/g 7/5dBi
Indoor Omni Directional Antenna (TEW-AI75OB)

Figure 5.1: Target Node
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Figure 5.2: Reference Node

Figure 5.3: Experimental Setup
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Figure 5.1 shows the target node connected to a laptop by means of the Ethernet port. We log

into the node using a terminal on the laptop and run commands to collect RTT samples. Figure

5.2 shows the reference node and Figure 5.3 shows the experimental setup to collect RTT data

samples.The target and reference node in Figure 5.3 were placed 5 m apart in Line-of-sight(LOS)

condition. We also move the reference nodes to 10, 20, 30 m LOS and non-LOS conditions to

collect RTT samples. We placed the device on a box on top of a chair to simulate a real world

condition where the users hold their phones at that height.

5.1.1.1 A Note on FreeBSD Kernel

FreeBSD is a UNIX based operating system, an open source form of the BSD platform de-

veloped and distributed by the Computer Systems Research Group (CSRG) at University of Cal-

ifornia, Berkeley. BSD stands for Berkeley Software Distribution and it is available on a variety

of platforms such as the Intel’s i386, ARM and AMD’s amd64. What makes FreeBSD attractive

is that it provides a huge number of libraries and applications and has advanced networking fea-

tures especially for IEEE 802.11 protocol. We can conveniently alter IEEE 802.11 modes, setup

infrastructure and ad-hoc networks and the best of all-it’s completely free [2, 49, 15].

5.1.1.2 iperf

As mentioned in the previous sections, the target node transmits a ‘hello message’ to the ref-

erence node to which it responds with an ACK frame containing its position information, position

and timing errors if any. The target then estimates the range (its distance from the target) using

statistical TOA method and calculates its position using the range estimate, position information

of the reference by LMI technique. In this thesis work, to illustrate the RTT sample collection and

statistical TOA ranging, we allow the target to send a simple DATA packet with a random payload

to the reference node to which it responds with an ACK frame with no payload. So essentially we

transmit a small UDP frame as the DATA packet. This is made possible with a simple application

called ‘iperf’.
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iperf is a network testing tool that can measure its quality and bandwidth to either test, opti-

mize or tune the network. iperf requires the application to be installed on both the server and client

and the throughput can be measured either unidirectionally or bi-directionally. With iperf, one can

perform either a UDP test or a TCP test in which UDP packets or TCP packets are transmitted

across the network. UDP tests can measure jitter and datagram losses, while a TCP test can mea-

sure bandwidth. It is an open source software that is available for Windows, Linux and Unix based

platforms [22, 51].

The current version of iperf is 3.0, however we utilize version 2.0.5 since it requires iperf

to be run only on the client side. We start the iperf on the target to send DATA packets, and the

reference node responds to this DATA packet with an ACK frame. This is more realistic since

it is the target node that is attempting to self-localize and hence he initiates the DATA packet

transfer. The reference node simply responds to it while carrying out its own local tasks. It is

important to know that the newer versions are NOT backward compatible with iperf 2.0.5. We

could alternatively, use other versions but we must be careful to start the iperf on both the target

and reference nodes (client and server).

5.1.1.3 ATH9K driver

Our method of TOA ranging involves measuring the Round-Trip Time (RTT) in the IEEE

802.11 driver layer of the FreeBSD kernel. In our experimentation, we use one of the most popular

open source drivers called ATH9k. It is a kernel driver supporting Atheros 802.11n PCI/PCI-E

chipsets [5], and compatible with Ubiquiti Networks SR-71 wireless card which is installed on the

Mini-PC.

5.1.2 RTT Samples Collection Methodology

This subsection defines how an RTT sample is collected at ‘ath9k’ driver layer of the FreeBSD

kernel using iperf. It is inspired from the work in [64] whose author Dr. Alvin Lim is the head
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of our research group at Auburn University. This thesis work uses this RTT sample collection

methodology to analyze the resulting RTT samples, and introduces statistical TOA ranging.

The target and reference nodes are configured to be in an ad-hoc network and the target node

communicates opportunistically with in-range reference nodes to determine its range (distance)

from each of them. The target transmits a DATA packet and measures the time when the ACK

is received. The difference yields the round-trip time. IEEE 802.11 standard defines several re-

quest/response packet frame pairs such as Probe Request/Response, Request to Send (RTS)/Clear

to Send (CTS) but we choose DATA and ACK frame pair since it is always present in all IEEE

802.11 networks. The other request/response pairs can be turned off either manually or automati-

cally depending on network conditions and requirements.

Since, we measure the RTT at the driver layer, we cannot measure the time when the DATA

packet was transmitted over the air interface. Instead we record a timestamp ts when the DATA

packet is passed on to the hardware layer from the kernel, and a timestamp ta when the ACK is

received. So, the round-trip time is,

RTT = ta − ts (5.1)

These timestamps are introduced in the MAC layer, which is usually implemented in the

driver layer such as ATH9K. The driver in the OS kernel, logs the cycle count whenever an event

occurs. We edit the driver to log the cycle count of three important events- TX, TX INT and

ACK. TX is when ath driver is about to hand off DATA to lower (PHY) layer for transmitting.

TX INT is an interrupt that can happen in several situations, one of which is an acknowledgment

being received. ACK happens when that IEEE 802.11 MAC layer acknowledgement is received

and verified. However, TX INT can occur for other events apart from the ACK and hence only

TX INT followed by ACK should be considered. Thus,the occurrence of the ordered tuple of (TX,

TX INT, ACK) is used to determine the Round-Trip Time (RTT) sample as the difference between

the timestamps of TX and TX INT [42].
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The cycle counts are measured using the TSC (Time Stamp Counter) which is a 64-bit register

present on all x86 processors that counts the number of cycles since reset. The events and their

corresponding cycle counts are then logged using the printk() function. We use the frequency of

the clock (CPU frequency) to convert the cycle counts into time in nanoseconds.

5.2 Analysis of RTT Data Samples

The measurement and monitoring of network round-trip time (RTT) is important as it allows

network operators and end users to understand their network performance and help optimize their

environment. Measuring network RTT is also important for Transmission Control Protocol (TCP)

stacks to help optimize bandwidth usage. TCP stacks on end hosts optimize for high performance

by passively measuring network RTT using widely deployed TCP timestamp options carried in

TCP headers [43]. In our case, we measure the RTT values at the driver layer of the OS kernel as

the time between the transmission of a DATA packet and the reception of the ACK frame. We use

this RTT values to determine the range (distance) between the target and reference nodes.

5.2.1 Sample Size

In [64], the authors introduce a model to explain the RTT values measured at the driver layer.

We use this model in this thesis work, but we substitute the RTT values we have measured through

our experimentation, to explain the required number of RTT samples to perform our proposed

ranging method-Statistical TOA ranging.

The round-trip time measured at the driver layer is greater than the actual round-trip time.

Actual Round-Trip Time is total time of flight of the transmitted pulse over the air from the trans-

mitter to the receiver and back to the transmitter. This can be considered as a non-random signal

and hence ideally should have a constant value. However, since we use the methodology in [64],

the RTT value measured at the driver layer is more than the actual RTT value and hence modelled

as:
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t = τ + n (5.2)

where t is the RTT measured at driver layer, τ is the actual RTT and n is noise.

The noise is due to the fact that wireless signals undergo reflections. In addition, the operating

system processing time, time to process DATA and ACK frames at either end and hardware noises

can also be attributed in this term. The noise term is random, actual RTT value is a constant and

hence measured RTT value is random.

The Figure 5.4 shows a sample histogram of RTT data measured. As it can be seen, it re-

sembles a Gaussian distribution and hence we assume noise n in Equation 5.2 follows a Gaussian

distribution N(0,σ2) and therefore t follows a Gaussian distribution.

Figure 5.4: Sample RTT (ns) (a) Histogram and (b) Probability Density Function

Denoting T as the random variable defining τ and N defining n, the signal to noise ratio is

defined as:

SNR =
E[T 2]

E[N2]
(5.3)

where E[ ] is Expectation.
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The variance of a random variable T can be expressed as:

var(T ) = E[T 2]− {E[T ]}2 (5.4)

Ideally, we expect the actual RTT to be a constant and hence its variance is 0. The Noise on the

other hand is a Gaussian distribution with zero mean, so therefore E[N2] = var(N). Thus, the SNR

is given by:

SNR =
µ2

σ2
(5.5)

which can also be expressed in dB as:

SNR = 20log

(
µ

σ

)
(5.6)

The ratio (µ/σ) is called ‘reciprocal of coefficient of variation’. The mean of the sample RTT

histogram in the figure above is approximately 99.38 µs and the standard deviation is 6.65 µs. The

SNR is given as:

SNR = 20log

(
99.38

6.65

)
= 23.49dB (5.7)

For a better performance, noise must be reduced, which implies that we need to lower variance. To

obtain an accuracy of say 50 ns or 0.05 µs, the SNR should be increased to:

SNR = 20log

(
99.38

0.05

)
= 65.97dB (5.8)

One of the most common ways of increasing the SNR is to increase the sample size (so that variance

is reduced), i.e. more RTT measurements are made. If we collect m samples, then:

ti = τ + ni ;where i = 1, 2, 3...m (5.9)

Each sample is independently collected and hence the samples {ti} are independent of each other.

If X represents a random variable on the set of outcomes {ti}, X follows a Gaussian distribution
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with a non-zero mean, since the noise {ni} is a Gaussian distribution.

X ∼ N(mτ,mσ2) (5.10)

where mτ is the mean and mσ2 is the variance.

Thus, the SNR of X is given as:

SNR{X} =
(

mτ√
mσ

)2

= m

(
τ

σ

)2

(5.11)

Clearly, from the above equation, the SNR has improved by a factor of m and thus the effect of

noise can be reduced since the variance is reduced by a factor of m.

SNR{X}
(τ/σ)2

= m (5.12)

Thus, to achieve an accuracy of 0.05 µs, SNR of the measured RTT samples should increase from

about 23.49 dB to 65.97 dB. Therefore, the minimum sample size required is:

10log(m) = 65.97 ⇒ m = 3.95× 106 ≈ 222 (5.13)

This means we need to collect almost 4 million samples to achieve an accuracy of 0.05 µs. In

our experimentation, we see that it takes almost 2 minutes to collect 216 samples at the driver layer.

So, to collect 4 million samples it would take an approximate 120 minutes or 2 hours. This is not

practical, considering most reference nodes will be out of range by the time the entire RTT sample

collection is completed. Also, for our indoor localization system we need 5-10 reference nodes to

determine the target’s location with a high accuracy. This means it would take almost 20 hours in

the worst case scenario to determine the target’s location. Thus, we need an alternate approach to

reduce the sample size.
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If the RTT data samples are viewed from the distribution perspective, i.e. in terms of prob-

ability density functions, we could reduce the number of samples significantly. To explain this

intuition, let us consider the case of a simple coin toss in which the probability of either a head or

a tail is 0.5. However, if we toss the coin 3 times, the outcome maybe 2 heads and 1 tail. So, by

the definition of probability, the probability of a head is 0.75 and that of a tail is 0.25. However

we know that the probability of seeing a head when a coin is tossed is 0.5 and that of a tail is

also 0.5. But if we perform say 10,000 experiments the probability almost converges to 0.5 and

the probability is exactly 0.5 if we perform 1 million experiments. It is this intuition that led us

to perform TOA ranging by collecting fewer samples than 4 million as indicated above. The RTT

data samples measured will be similarly distributed whether we collect 4 million or 65536 (216)

samples. We chose 65536 samples since it meets the practical considerations. Figure 5.5 shows

the RTT sample distribution for 216 (64k) and 215 (32k) samples. We can clearly see that reducing

the number of samples still retains the underlying distribution. Thus, we can assume that 4 million

samples will also have the same distribution.

Figure 5.5: RTT (ns) Histogram of (a) 64k samples and (b) 32k samples
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When we construct a probability density function (pdf) to the histograms as shown in Figure

5.5 using MATLAB’s built-in function ksdensity, it yields similar density function estimate for 216

(64k) and 215 (32k) samples as shown in Figure 5.6.

Figure 5.6: RTT (ns) pdf of (a) 64k samples and (b) 32k samples

5.2.2 Indoor Environments

Using the above methodology of round-trip time (RTT) measurement at the kernel driver

layer, we collected RTT samples in different indoor environments to analyze and build a reference

database to perform Statistical TOA ranging to determine the distance between the target and

reference nodes. In this section, we provide an overview of the different indoor environments

where we measured the RTT data samples. Figure 5.7 serves as a legend for the maps of those

indoor environments.

5.2.2.1 Hallways

Almost all indoor environments have long hallways connecting one part of the building to

another. In hotels for instance, room numbers are often confusing and without proper sign boards,

people cannot locate on which side of the hallway is their hotel room. Our indoor navigation
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Figure 5.7: Legend for Maps in this section

system can aid users to find their way to a room or any other place of interest. In such hallways,

there are usually no objects along the way and the RF signals travel in a direct path from the target

to the reference node and also bounce off (reflections) the walls on either side. We conducted

several experiments along the hallway on the second floor of Shelby Center (Right Wing) near our

research lab 2323 at Auburn University (Fig. 5.8). The hallway is bound by glass walls on one side

and wooden walls on the other. We also conducted field tests on the second floor of Broun Hall,

Auburn University (Fig. 5.11). This building is comparitevely older and the walls are made of

concrete. The map below shows the target and reference nodes which are at 10, 20, 30 m distances

and are placed in locations where the target is in sight and out of sight (line-of-sight-LOS and

non-LOS) to each reference node.
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Figure 5.8: Shelby Floor Map with target and reference nodes positions

Figure 5.9: RTT (ns) data for node #5 in Fig 5.8 (a) Histogram (b) pdf
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Figure 5.10: RTT (ns) data for node #6 in Fig 5.8 (a) Histogram (b) pdf

Let us consider the RTT samples collected when the target communicates with reference node

5 and 6 (Fig. 5.8) at the end of the Shelby hallway which are 30 m apart. Their histograms and

pdf (probability density function) are as shown in the Figures 5.9 and 5.10. Since the target and

reference node 5 are in a direct line of sight with each other, we can see in figure 5.9 there a

prominent narrow peak, but on the other hand Figure 5.10 comparatively has a slightly broader

peak. This is due to the non-LOS condition between the target and reference node 6 and some RF

signals arrive in paths which are in close vicinity of the Direct path, causing the peak to be slightly

broad.
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Figure 5.11: Broun Hall Floor Map with target and reference nodes positions

Figure 5.12: RTT (ns) data for node #1 in Fig 5.11 (a) Histogram (b) pdf
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Figure 5.12 represents the histogram of the RTT data collected between target and reference

node 1 in Broun Hall which are 10 m apart. This RTT sample distribution has multiple peaks. With

our repeated experimentation, we have observed that the peaks in the RTT sample distributions

occur at quantum/discrete locations. These peaks occur at approximately 86 µs, 90 µs, 97 µs,

111 µs, 113 µs and we account this quantum shifts to the differing processing times during packet

retransmissions due to queuing and thermal noise. This is explained in the next chapter. In Figure

5.9, the strongest peak is at 97 µs and this also occurs in Figure 5.12 except that it is not the most

dominant peak anymore.

5.2.2.2 Open Space

An open space in a building is usually like a reception area or a front lobby. In such areas, we

expect the RF signals to travel in a direct path from the target to reference and multipath conditions

exist when RF signals undergo diffraction when the signals deflect off objects like furniture, desks

and others. Reflections off the walls are less significant in such environments. We conducted

several experiments in the Front lobby of the Shelby Center (Fig. 5.13), Foy Hall (Fig. 5.14) of

Auburn University, Auburn, AL. The walls in Shelby are made of wood, while that in Foy Hall is

of concrete. The map below shows how the target and reference nodes are placed while performing

the experiments. Once again, the reference and target nodes are placed 10, 20, 30 m apart.

Let us consider the RTT samples collected when the target communicates with reference node

1 both placed in Shelby Center front lobby (Fig. 5.13) and are 10 m apart. Its histogram is shown

in Figure 5.15. It can be seen that the peak is at approximately 82-83 µs instead of the 97 µs we

observed in the hallway. This is because, the Front Lobby is more of an open space and hence the

RF signals undergo less reflections on their way to and from the target node. Similar result is seen

in Foy Hall (Fig. 5.14) reference node position 2 which is also an open space and this is shown in

the Figure 5.16.
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Figure 5.13: Shelby Front Lobby Floor Map with target and reference nodes positions

Figure 5.15: RTT (ns) data for node #1 in Fig 5.13 (a) Histogram (b) pdf
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Figure 5.14: Foy Hall Floor Map with target and reference nodes positions

Figure 5.16: RTT (ns) data for node #2 in Fig 5.14 (a) Histogram (b) pdf
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Figure 5.17: RTT (ns) data for node #4 in Fig 5.13 (a) Histogram (b) pdf

While conducting the experiments in these two buildings, we came across another type of

RTT sample distribution whose peaks are located at approximately 276 µs. This is depicted in

Figure 5.17. We observe that such results are seen when there is a complete NLOS (non-line-of-

sight) condition between the reference and target nodes and they are either 20 or 30 m apart. In

Figure 5.13 this result is seen at reference node positions 4 and 6 and they are in complete NLOS

with the target. This result is also seen in Figure 5.14 at reference node positions 4, 6 which are 20

and 30 m from the target respectively. This peak at 276 µs is another one of the quantum/discrete

shifts we observe in our RTT measurements. We amount this to the increased processing times

due to several packet losses and errors which result in several retransmissions and this can be

expected when the reference nodes are in complete NLOS with each other. The devices usually

queue packets to be transmitted and any event of retransmission can cause the queue to be flushed,

and hence the increased processing times.

5.2.2.3 Multiroom

In indoor environments, there can be a scenario where the target is in one room and the

reference node is in another room and these rooms are separated by either wooden or concrete
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walls. The RF signals have to penetrate through the walls or travel in a longer direct path from

target to the room’s door, along the hallway, and then through the other room’s door to the reference

node. In such scenarios we expect the RTT values to be much higher and several packet losses

resulting in retransmissions which could add to the processing times. We conducted several such

multiroom experiments by placing the target in our Research Lab 2323 and the reference nodes in

adjacent Server room, Graduate Students Desk room and also along the hallway of Shelby Center,

Auburn University.This is shown in Figure 5.18.

Figure 5.18: Shelby Right Wing Building 2nd floor with target and reference nodes positions

Finally, let us consider the RTT samples collected when the target communicates with refer-

ence node 4, with the target placed in our Research Lab 2323 and reference node is in the adjacent

Server Room. They are 10 m apart. The Server room has metal rack that houses the servers and

47



Figure 5.19: RTT (ns) data for node #4 in fig.5.18 (a) Histogram (b) pdf

has a relatively cooler temperature inside. Figure 5.19 shows the histogram of the RTT data sam-

ples measured. Once again, we have the peak located at approximately 276 µs and this is because

the two nodes are in complete NLOS with each other and RF signals penetrate the walls. This

causes several packet losses resulting in increased processing times adding to the overall RTT. In

addition, the server room has a metal rack and since RF signals cannot penetrate through metals,

packet losses and errors are expected.

Figure 5.20 shows the histogram and pdf of the RTT samples collected between the target and

reference node 3 which are 30 m apart. Here we can see the peak is at roughly 343 µs. This is

another one of the quantum/discrete shifts we observe in our RTT measurements due to varying

processing times causing packet losses resulting in retransmissions.

To summarize, we have collected a large number of RTT data sets in different indoor envi-

ronments and in different buildings. We observe that the RTT distribution has several dominant

modes (peaks) occurring at quantum/discrete locations like 82, 87, 89, 97, 111, 276 and 343 µs

irrespective of the distance between the target and reference. Our reference database is built for 10,

20, 30 m by taking all this into consideration. We introduce in the next few chapters, a statistical

48



Figure 5.20: RTT (ns) data for node #3 in fig.5.18 (a) Histogram (b) pdf

distance measure called Bhattacharyya coefficient which we use to distinguish between the RTT

distributions for different distances and build the database based on it.

5.3 Relating RTT Values to IEEE 802.11g standard

In this section, we analyze and relate the round-trip times measured in the previous section

with the IEEE 802.11 standard. The IEEE 802.11 standard defines the MAC and PHY layer of the

TCP/IP protocol stack. Different variants of the standard such as IEEE 802.11b/a/g/n have different

MAC and PHY layer specifications to provide better data rates, improve latency and reduce errors.

Since we operate the Wireless NIC (network ineterface card) in IEEE 802.11g mode, we refer to

the IEEE 802.11g standard [21].

IEEE 802.11g standard specifies a contention free and a contention based MAC protocol

which are termed as Point Coordinate Function (PCF) and Distributed Coordination Function

(DCF) respectively. In PCF, the Access Point (AP) coordinates access for each station (STA),

while DCF includes CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) mechanism
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to provide access to each STA [9]. Since the target and reference nodes in our indoor localiza-

tion system are in an ad-hoc network, there is no centralized authority (AP) and hence each node

contends for medium access through CSMA/CA.

In CSMA/CA with QoS control,if the medium is free,the node waits a certain time called

Arbitrary Interframe Space (AIFS) before transmitting a data frame. Similarly, the node waits a

Short Interframe Space (SIFS) before transmitting an acknowledgement. In the ATH9k driver, the

MAC layer implements the IFS periods along with contention window and backoff periods [17].

As mentioned before, we measure the RTT at the driver layer just before the packet is de-

livered to the hardware layer for transmission over the wireless interface. Thus, our Round-Trip

Times measured does not include the IFS periods but since the hardware layer, which is denoted as

PHY layer in IEEE 802.11 standard, performs additional processing before the actual transmission,

this processing time is part of the Round-Trip Time (RTT).

5.3.1 PHY Layer

MAC layer adds a MAC header to the DATA frame containing the source and destination

address (MAC address), QoS control information and other flags to form a MAC Protocol Data

Unit (MPDU). This MPDU is passed to the PHY layer which then includes its own headers. PHY

layer consists of PLCP and PMD sublayers. Physical Medium Dependent (PMD) sublayer pro-

vides transmission and reception of PHY layer protocol data units between two stations via the

wireless medium. To provide this service, the PMD interfaces directly with the wireless medium

(i.e, RF in the air) and provides modulation and demodulation of the frame transmissions. Physical

Layer Convergence Protocol (PLCP) sublayer prepares the MPDU into a frame format suitable for

transmission. It also delivers incoming frames to the MAC layer. It appends a PLCP preamble and

header fields (to the MPDU) that contain information needed by the Physical layer transmitters and

receivers to form a PPDU (PLCP PDU) [12]. IEEE 802.11 does not specify any explicit synchro-

nization procedure between the transmitters and receivers and PLCP Preamble enables the receiver

to synchronize to the incoming signal properly before the actual content of the frame arrives. PLCP
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header provides information about the frame such as the modulation format, time needed to trans-

mit MPDU etc. Thus, the time difference between sending a DATA frame and receiving an ACK

is computed as:

tACK − tDATA = [Preamble+Header +DATA+ Propagation]

+ [SIFS + Preamble+Header + ACK + Propagation]

(5.14)

where DATA and ACK terms represent the time taken to transmit the data frame and acknowl-

edgement MPDU respectively and length of SIFS in IEEE 802.11g networks is 10 µs.

5.3.1.1 ERP and OFDM

The IEEE 802.11g uses DSSS (Direct Sequence Spread Spectrum) and OFDM (Orthog-

onal Frequency Division Multiplexing) technology to provide data rates upto 54 Mbps (Mega

Bits per second) at the 2.4 GHz ISM band. For basic data rates-1, 2, 5.5, 11 Mbps, it uses

DQPSK/BPSK/CCK modulation with DSSS and QPSK, 16/64 QAM modulation with OFDM

for higher data rates-6, 9, 12, 18, 24, 36, 48, 54 Mbps. These high data rates are termed as ERP

(Extended Rate Physical). Table 5.2 gives the different modulation schemes used with OFDM for

ERP data rates. The coding rate is lesser than 1 because extra redundant bits are added to protect

against errors. The coding scheme used is Forward Error correction (FEC) [50, 21, 28].

The OFDM structure consists of 52 subcarriers, 48 are for data and 4 are pilot subcarriers with

a carrier separation of 0.3125 MHz (20 MHz/64). Each of these subcarriers can be a BPSK, QPSK,

16-QAM or 64-QAM modulated. The total bandwidth is 20 MHz with an occupied bandwidth of

16.6 MHz. Symbol duration is 4 µs, which includes a guard interval of 0.8 µs [50]. Figure 5.21

shows the ERP-OFDM structure [46]. The PLCP preamble has a duration of 16 µs while Signal is

4 µs and every frame is followed by a period of no transmission called Signal extension (not shown

in Fig. 5.21) which is of length 6 µs. This is to ensure that the data bits can be decoded.
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Data
Rate

Modulation
Scheme

Coding
Rate

Coded
bits per
Carrier

Coded
bits per
OFDM
symbol

Data
bits per
OFDM
symbol

6Mbps BPSK 1/2 1 48 24
9Mbps BPSK 3/4 1 48 36
12Mbps QPSK 1/2 2 96 48
18Mbps QPSK 3/4 2 96 72
24Mbps 16 QAM 1/2 4 192 96
36Mbps 16 QAM 3/4 4 192 144
48Mbps 64 QAM 2/3 6 288 192
54Mbps 64 QAM 3/4 6 288 216

Table 5.2: Data Rates Specifications-IEEE 802.11g

Figure 5.21: ERP-OFDM PPDU Structure

The target and reference nodes in our indoor localization system are set to operate at 24 Mbps.

Using Wireshark packet capture tool, we determine the DATA frame MPDU size to be 76 bytes

and ACK MPDU is 12 bytes in length. Referring to Table 5.2, for a data rate of 24 Mbps, there

are 96 useful data bits in one OFDM symbol. Therefore, the number of OFDM symbols for DATA

and ACK frames are:
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Dataframe =

⌈
76× 8

96

⌉
= 7 Ackframe =

⌈
12× 8

96

⌉
= 1 (5.15)

Since each OFDM symbol time is 4 µs, the terms DATA and ACK in Equation 5.14 is 28 µs

and 4 µs respectively. DATA is followed by a Signal extension of 6 µs. The propagation time is of

the order of <1 µs and is negligible. Thus from equation 5.14,

tACK − tDATA = [16 + 4 + (28 + 6) + Propagation]

+ [10 + 16 + 4 + 4 + Propagation] ≈ 88µs

(5.16)

We observed in Section: 5.2 that the distribution of RTT values collected during our experi-

mentation have discrete/quantum shifts in peaks (dominant modes) at approximately 90 µs, 97 µs,

111 µs, 113 µs. This increase in RTT values compared to 88 µs in Equation 5.16 is due to the

processing time in the hardware layer. We also observe RTT values with peaks at 276 µs, 343 µs

which are probably caused by retransmissions which may trigger flushing of queues among other

things resulting in increased processing times.
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Chapter 6

STATISTICAL TOA RANGING

In this chapter, we provide a more accurate model of the RTT data measured in the previous

chapter and introduce our Statistical TOA ranging method to determine the distance between target

and reference nodes. We introduce a statistical distance measure called Bhattacharyya distance and

compare it with well-known Euclidean distance measure.

TOA ranging requires precise timing synchronization between the target and reference nodes.

However, we can eliminate this strict requirement by measuring the round-trip time instead of time

of arrival since time is now measured at either the transmitter or receiver. We measure the round-

Trip Time between the transmission of a unicast data and reception of the corresponding ACK

frame.

Figure 6.1: Round-Trip Time overview

In [18], the authors introduce this measurement of round-trip time (RTT) and corresponding

range estimation. Figure 6.1 is a figurative description of RTT measurement and distance between

the target and the reference node is estimated as:

d̂ = tp × c =
tround − treply

2
× c = (T4 − T1)− (T3 − T2)

2
× c (6.1)
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where d̂ is estimated distance; tp is propagation time; c is speed of electromagnetic waves

(3×108 m/s); T1 is transmitted data pulse timestamp; T2 is received data pulse at receiver; T3 is

transmitted ACK pulse timestamp; T4 is received ACK pulse at transmitter timestamp.

However, this range estimation comes with a caveat that the transmitted pulse (RF signals)

traverses in one path- the LOS (line-of-sight) path, which is the shortest path between the transmit-

ter and receiver. But in an indoor setting, these RF signals undergo multipath conditions due to the

diffraction and reflection off the walls and other objects such as tables, chairs, furniture. This is a

common problem in a wireless system, but is more pronounced in an indoor environment. Thus,

the round trip time is usually more than expected line of sight RTT and hence the above model of

range estimation (Eqn. 6.1) is incorrect.

In the previous chapter, we introduced a model for the measured Round Trip Time based

on [64]. Our argument to reduce the sample size to 65536 samples from 4 million samples was

that RTT data will have roughly the same distributions, so there is no point collecting so many

samples. In our research, we measure the RTT at the driver layer, which means there is additional

processing before the DATA and ACK frames can be transmitted. This processing time deals with

packet encapsulation at the MAC and PHY layer as defined in IEEE 802.11 standard. So here

we provide a more accurate representation of the RTT data measured. The RTT measured can be

modeled as:

tRTT = τ + tprocDATA
+ tprocACK

+ n (6.2)

where tRTT is the RTT measured at the driver layer; τ is actual RTT; tproc is the processing time

before transmission over air interface; n is noise due to multipath, electronic noise.

The physical (PHY) layer translates the binary 0’s and 1’s of the DATA and ACK frame into

electromagnetic signals which are transmitted over the air. Actual RTT in the above equation is

the sum of the time of flight of Data frame over the air, and the time of flight of the ACK frame

over the air. The processing time on the other hand refers to the processing that the end terminals

do (both reference and target nodes) before transmitting signals over the air. Since we measure

the RTT at the driver layer, the frame is passed from the MAC layer to the PHY layer which
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then adds several headers and trailers specific to synchronization of the transmitter and receiver

and modulation technologies such as BPSK, QPSK and OFDM used. This was discussed in the

previous chapter. As mentioned earlier, multipath effects cause the RTT time to deviate from its

expected LOS (line of sight) value. In addition, there is always the effect of electronic hardware

noise, operating system overhead.

As seen from Equation 6.2, RTT measurements are very noisy and hence cannot be used

to directly compute the range of a target node from the reference node. The Figure 6.2 shows

the histogram of 65536 RTT samples measured at the driver layer. There are about 6-7 peaks;

one more dominant than the other. This clearly verifies our model above in Equation 6.2, with

the measured RTT value drifting away from the actual value due to the multipath and processing

times.

Figure 6.2: An example of RTT samples (measured at driver layer) with multiple peaks (a) His-
togram (b) pdf

Thus, we cannot employ Equation 5.2 to estimate the distance between the target and refer-

ence nodes and there is a need for a new method to estimate the range by taking into consideration

the varying nature of RTT values due to multipath, noise such as the hardware electronic noise,
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OS overhead such as software queue flushing, and in some cases the processing time due to packet

losses.

One method is to distinguish RTT samples for different distances is based on the mean (of

data samples). Longer distances should have higher mean values, but due to the varying nature

of the of the RTT samples about the mean, this would not be a good solution. But this deviation

from the actual value can be useful if it can distinguish two sets of data. Different distances can

have different deviations, or in other words, different distances can have different distributions, i.e.

probability density functions. We exploit this idea in our proposed method to estimate the range

from the measured RTT samples.

Our TOA ranging method has two stages: first, we repeatedly measure the RTT for trans-

mission of DATA packets and the corresponding ACK to be received at the driver layer until 216

samples are collected, and second, we construct probability density functions for this RTT samples

to match against the probability density functions of reference databases for different distances to

determine range of the target node from the reference node. The matching is performed by using a

statistical distance measure called Bhattacharyya Distance and hence we term it, ‘Statistical TOA

Ranging’. It involves an offline stage where we build the reference database by measuring RTT in

different environments and at different distances, and an online stage where the measured real time

RTT samples are compared to the stored reference databases using Statistical Distance measures.

The first stage was explained in the previous chapter. In the following sections, we discuss this

statistical distance measure in detail.

6.1 Statistical Distance

There are several distance measures which find their relevance in different fields such as

statistics, physics, chemistry, information theory, mathematics, geology etc. It is used extensively

for clustering, pattern classification, clustering, and information retrieval problems. Distance is

usually defined as a quantitative degree of how ‘far’ apart two objects are. Those distance measures
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satisfying the metric properties are simply called metric while other non-metric distance measures

are occasionally called divergence [10].

As indicated in [54], the metric properties of a distance function are:

1. Non-negativity: d(x,y) ≥ 0

2. Identity of Indiscernibles: d(x,y) = 0 if and only if x = y

3. Symmetry Property: d(x,y) = d(y,x)

4. Triangle Inequality: d(x,z) ≤ d(x,y) + d(y,z)

For all x, y, z in X such that d:X×X → R+, i.e. d is a function on X with a domain of

non-negative real numbers.

The real time and reference RTT data can be thought of as two Random variables. The statis-

tical distance quantifies the difference between the two or, put in other words, is a measure of the

similarity of their probability distributions. Statistical Distance measures may not form a metric

and some of them might not be symmetric. Hence, they are also termed divergences, measures of

discriminatory information, or measures of separation.

In literature, there are many statistical similarity measures such as Kullback-Liebler diver-

gence, Hellinger Distance, Mahalanobis distance, Bhattacharyya coefficient, Matusita distance,

chi-squared distance. Among this, the Bhattacharyya distance and its coefficient is simple to im-

plement and very robust. It can be applied to discrete functions (on histograms) and is symmetrical.

In fact, some of the distance measures like Hellinger, Matusita, chi-squared are all closely related

to the Bhattacharyya coefficient. On the other hand, the Kullback-Liebler divergence method needs

the two distributions to be absolutely continuous.

6.2 Bhattacharyya Coefficient and Distance- Mathematical Formulation

The Bhattacharyya coefficient measures the relative closeness of the probability density func-

tions of the two random variables. In the continuous case, it measures the similarity of density

58



functions, while in the discrete case, it measures the similarity between the probability mass func-

tions.

Let us consider two random variables, A and B. Their probability density functions are given

as fA(x) and fB(x). Then the Bhattacharyya coefficient is given by:

BC(A,B) =

∫ √
fA(x)fB(x)dx (6.3)

In the discrete case, let p(x) and q(x) be the probability mass functions of A and B.

BC(p, q) =
∑
x

√
p(x)q(x) (6.4)

The Bhattacharyya distance is then given by,

DB(p, q) = − ln(BC(p, q)) (6.5)

In either case, 0≤ BC(p,q)≤ 1 and 0≤ DB(p,q)≤∞. It is important to note that the DB(p,q)

does not satisfy the triangle inequality condition and hence does not form a metric.

6.3 More Details on the Bhattacharyya Coefficient

The Bhattacharyya coefficient is named after a statistician, Anil Kumar Bhattacharyya from

the Indian Statistical Institute, India in the 1930s. He considered two multinomial populations,

i.e. two sets of samples having a multinomial distribution. Each multinomial distribution con-

sists of ‘k’ categories with success probabilities (p1,p2,p3....pk) and (q1,q2,q3....qk) respectively

such that
∑
pi = 1 and

∑
qi = 1. Geometrically, these two distributions can be plotted as

points in a k-dimensional space referred to a system of orthogonal co-ordinate axes by taking

(
√
p1,√p2,√p3....√pk) and (

√
q1,√q2,√q3....√qk) can be considered as the direction cosines to the

two position vectors defined by the points in the k-dimensional space. If θ is the angle between

these two vectors, then:
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cos θ =
k∑

i=1

√
piqi (6.6)

This forms the background on which the Bhattacharyya coefficient was derived on [3].

6.4 Bhattacharyya Coefficient vs Euclidean Distance

Consider two sets of RTT data values each having N samples: X = {x1,x2,x3....xN} which is

the measured real-time RTT and Y = {y1,y2,y3....yN} is the stored reference database for a known

distance. The Euclidean distance suggests that the shortest distance between two points is a line

and accordingly it is defined as:

ED(X, Y ) =

√∑
i

(xi − yi)2 (6.7)

If the mean of X is represented as µX , then the variance is given as:

σ2
X = E[X2]− (E[X])2 =

∑
i x

2
i

N
− µ2

X (6.8)

This can be simplified as: ∑
x2i = Nσ2

X +Nµ2
X (6.9)

Combining equations 6.7, 6.8, 6.9 yields:

ED(X, Y ) =
√
N
√
σ2
X + σ2

Y + µ2
X + µ2

Y − 2NµxµY (6.10)

In [64], the authors have used Euclidean distance to distinguish between two sets of RTT

samples. They use the above equation to argue that it considers both mean and variance of the

RTT samples and hence can be very attractive statistical distance measure to distinguish the RTT

data samples. However, we prove below that the Euclidean distance cannot distinguish between

data with roughly similar distributions, which is usually the case in indoor RTT measurements.
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On the other hand, the Bhattacharyya coefficient and it’s distance can be very good indicators of

dissimilarity.

Let us consider an example to prove this point. Let R be the RTT data set measured in real

time and X, Y be stored reference datasets. Their histograms are shown respectively in Figure

6.3(a), (b), (c).

Figure 6.3: (a) RTT samples measured in real-time (b) X (c) Y

It is important to note that the Euclidean distance utilizes the raw samples to distinguish the

two sets of RTT samples while the Bhattacharyya Coefficient requires the relative frequency of oc-

currence of each unique sample, i.e. probability mass function. Computing the Euclidean Distance

and Bhattacharyya Coefficient we find that ED(R,X) =1.4142 and BC(R,X)=0.9935. Similarly,

ED(R,Y)=1.4142 and BC(R,Y)=0.9834.
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Table 6.1: Mean and Variance of RTT samples

Data Sample µ σ2

R 11.72 1.3117
X 9.5 1.089
Y 11.83 1.021

We can see from the above example that even though X and Y have different distributions, the

Euclidean distance yields the exact same result. It is important to note that all three data sets have

different mean and variance values, Euclidean distance (Eqn. 6.10) cannot distinguish between

them. If X and Y represent the RTT reference data sets for say 10 m and 20 m distances, Euclidean

distance cannot determine if the target is 10 m or 20 m from the reference node. However, with

Bhattacharyya coefficient, we can easily make that distinction and predict the range result. This is

an important property since the RTT data collected at different distances in indoor environments

can be very similar and in such scenarios, this clear distinction can avoid incorrect ranging of

nodes. Thus, the Bhattacharyya coefficient and Bhattacharyya distance prove to be more robust

statistical distance measure than Euclidean distance.

6.5 Statistical TOA Algorithm

Referring to Figure 4.2, the Target node collects RTT data samples by transmitting unicast

data to the Reference node and waiting for the ACK frame to be received. It then transfers the RTT

data samples file to a Statistical TOA program whose algorithm is given below. The Statistical

TOA ranging (matching) stage involves matching the real time RTT data with the stored refer-

ence databases for each distance using the Bhattacharyya coefficient and Bhattacharyya distance

measures.

1. First, we construct a probability density function for the collected RTT data samples using

the ksdensity function in MATLAB.
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2. The reference databases were formed during the offline stage based on the analysis in the

previous chapter. We have stored reference databases for 10, 20, 30 m since the number of

in-range peer nodes are the highest at these distances.

3. The next step is to construct probability density functions for each stored reference database.

4. Compute the Bhattacharyya coefficient and Bhattacharyya distance values for collected RTT

data samples and each stored reference database (Equations 6.4, 6.5).

5. The reference database that is closest to this RTT data distribution is the one with the highest

BC value or the lowest DB value. This is distance of the target node from the reference node.

6.6 Kernel Density Estimation

In the algorithm mentioned above, we indicated the use the probability density function (pdf)

as an input to the Bhattacharyya coefficient computation. In Equation 6.4, p(x) and q(x) can be

either histograms (probability mass functions) or probability density functions. Even though the

histogram of the samples can be used, it yields in unstable results. When we construct a histogram,

we need to consider the width of the bins and the end points of the bins (where each of the bins

start). As a result, the problems with histograms are that they are not smooth, and can have a

different shape depending on the width of the bins and end points of the bins chosen.

To avoid such instability, we use the Kernel Density Estimation. Kernel density estimators

belong to a class of estimators called non-parametric density estimators. In comparison to para-

metric estimators where the estimator has a fixed functional form (structure) and the parameters of

this function are the only information we need to store, non-parametric estimators have no fixed

structure and depend upon all the data points to reach an estimate. To remove the dependence on

the end points of the bins, kernel estimators center a kernel function at each data point. And if we

use a smooth kernel function for our building block, then we will have a smooth density estimate.

This way we can eliminate the two problems associated with histograms [27]. As indicated earlier,

the kernel density estimate in MATLAB is ksdensity.
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Figure 6.4: RTT samples Histogram (a) 200bins (b) 1000bins

Figure 6.4 depicts how the shape of the histogram changes with number of bins and hence

width of bins. We can see how several smaller peaks show up when the number of bins is increased

or in other words, the width of the bins is reduced. If we apply Bhattacharyya coefficient and

distance measures to each of these with its corresponding reference databases (with similar bin

widths), it yields different results. Since we measure Round-Trip time at the driver layer, the value

is dominated by the processing times and the RTT values between different distances (say 10 m

and 20 m) are very similar. In such cases, we need a unique RTT data representation and for this

reason, we employ the Kernel Density Estimators over histogram representations.

6.7 Kernel Probability Distribution vs Gaussian Probability Distribution

In the previous chapter, we assumed the RTT samples measured to be a Gaussian distribution

to discuss the required sample size of the RTT samples. While this was a good assumption for a

modelling, we cannot use this assumption while employing the Bhattacharyya coefficient and dis-

tance. In indoor environments, we have seen that the RTT samples collected at different distances

have similar distributions. In such cases, fitting a Gaussian distribution to the data would lead to

ranging inaccuracies.
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To prove this point, let us consider three RTT sample distributions we collected at three dif-

ferent distances. Figures 6.6, 6.5, 6.7 represent the histograms of the RTT samples measured at

15 m, 18 m and 30 m respectively. Also shown is the probability density functions of each when

the RTT data is fit with Kernel and Gaussian probability distribution.

Figure 6.5: RTT (ns) samples measured in real-time (18 m) (a) Histogram (b) Kernel Density (c)
Gaussian Distribution

Let us assume our reference database consists of the RTT distributions R1 (15 m) and R2

(30 m) and the RTT samples T (18 m) are collected in real time. Table 6.2 below shows the result

of Bhattacharyya coefficient and distance for Gaussian and kernel probability distributions.
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Figure 6.6: Reference RTT (ns) Samples (15 m) (a) Histogram (b) Kernel Density(c) Gaussian
Distribution

Referring to the Kernel distribution fit for the RTT data from the above table, since the BC

value is highest for R1, we can say that T is 15 m away from reference node R1 and this would be

an accurate result considering the range error is 3 m when compared to 12 m with R2. However,

with a Gaussian distribution fit, we cannot make that distinction.
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Figure 6.7: Reference RTT (ns) Samples (30 m) (a) Histogram (b) Kernel Density(c) Gaussian
Distribution

Matching
BC(p,q) DB(p,q)

Gaussian Dis-
tribution

Kernel Distri-
bution

Gaussian Dis-
tribution

Kernel Distri-
bution

(T,R1) 0.9999 0.9951 1×10-4 4.912×10-3

(T,R2) 0.9999 0.9915 1×10-4 8.536×10-3

Table 6.2: BC(p,q) for Kernel and Gaussian distribution fits
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Chapter 7

PERFORMANCE EVALUATION

In this chapter, we discuss some experimental results for the Statistical TOA ranging method

we proposed in the previous two chapters. We first discuss how we build the reference database

followed by some use cases where we applied our statistical TOA ranging methodology in the real

world.

7.1 Building the Reference Database

Our reference database consists of RTT samples collected at 10 m, 20 m, 30 m distances

in different indoor environments. We chose these distances because there is a high probability

of finding large number of reference peer nodes in-range with the target at these distances. If a

target is at say 13 m from a reference node, the most accurate ranging result would be 10 m since

it reduces the overall range error. We then use the LMI method to determine the position of the

target while also reducing the error. This was explained in the previous chapters and in [16]. In

this section, we detail how we select the reference database by using the Bhattacharyya coefficient

and distance measures.

We collected RTT data samples at various indoor locations and at different distances as de-

tailed in Chapter: 5. We then grouped the measured RTT samples based on distance i.e. 10, 20 and

30 m. As explained in the Section: 5.2.2, we identified different types of probability distributions

in different environments. Some have dominant modes (peaks) located at 82-83 µs or 96-98 µs,

some with peaks at 276-277 µs or 343-344 µs and some with multiple peaks at approximately

86 µs, 90 µs, 98 µs, 111 µs, 130 µs. So we grouped the RTT samples for each distance based on

these types. In order to determine the location of the most dominant peak and distinguish between

different probability distributions, we used a 10 µs window which contained the maximum number
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Figure 7.1: RTT (ns) data with 10 µs window (a) Histogram (b) pdf

of samples in the histogram. We chose a 10 µs window because it usually encloses the dominant

mode in the distribution. Alternatively, we could also determine the dominant mode by finding two

valleys on either side of the peak. Figure 7.1 shows the 10 µs window.

Another key observation is that RTT data samples with dominant modes at 276-277 µs have

different distributions depending on the indoor environment. When there is a complete NLOS con-

dition between the target and reference nodes in the hallway, RTT samples tend to have window

(10 µs) mean lesser than 276 µs and those RTT samples collected in open space or multiroom envi-

ronment tend to have a larger mean. The RTT samples in open space and multiroom environments

are then differentiated based on the heights of the less dominant peaks.
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Figure 7.2: RTT (ns) data collected in an Open Space Environment(a) Histogram (b) pdf

Figure 7.3: RTT (ns) data collected in a Multiroom Environment (a) Histogram (b) pdf

Figures 7.2, 7.3 show the RTT sample distribution collected at 20 m in an open space and

multiroom environment. We can see the third mode (peak) is taller in Figure 7.2 than in Figure

7.3. We believe this is because of increased processing time due to packet losses. In an open space

environment, when the target and reference nodes are in a complete NLOS condition, data packets
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can be corrupted when RF signals are diffracted and reflected off the objects. This triggers the

retransmission procedure which then increases the processing time.

This classification of RTT samples into different groups for the reference database can be

summarized as shown in Figure 7.4. Once these classifications are made, each group has several

RTT sample files for each distance. To choose the best RTT samples representation for each group

in each distance, we use the Bhattacharyya coefficient measure.

We first divide all the RTT sample files into 10 m, 20 m, 30 m groups and then determine the

mean of all the samples that lie in 10 µs window that contains the maximum number of samples.

The files are then separated into several subgroups as shown in the Figure 7.4. We then take each

sample file in say subgroup1 of 10 m group and match it with every other sample file in the same

sub-group using the Bhattacharyya coefficient. We also match this file with other files in subgroup1

of 20 m and 30 m groups. If this file yields high BC(p,q) values with files in 10 m (subgroup1) and

low BC(p,q) values with other files in subgroup1 of 20 m, 30 m groups, this can be an accurate

10 m RTT sample representation for subgroup1 of 10 m. We repeat this procedure for every other

file of each subgroup in each distance group.

7.2 Use Cases

The experiments were conducted using the Mini PCs running FreeBSD operating system.

The configuration is as mentioned in Table 5.1. All the computations and simulations have been

performed in MATLAB. Here we discuss a few test cases. As discussed in the Statistical TOA al-

gorithm, the probability density function for each RTT data set is constructed and matched against

the reference databases using the Bhattacharyya coefficient and distance measures.

7.2.1 Experiment 1 : Shelby Hallway

The map in Figure 7.5 shows the target node placed in one hallway and six reference nodes

distributed in the other hallway on the second floor of Shelby building such that all the reference

and target nodes are in NLOS condition with each other. Reference node 1, 2 are about 10 m from
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the target, nodes 3, 4 are about 20 m and nodes 5, 6 are about 30 m from the target. Refer Figure

5.7 for a legend to read this map (Fig. 7.5).

Figure 7.5: Experiment 1-target and reference nodes positions

The target node communicates with each reference node at a time and collects 65536 RTT

samples. Once the samples are collected, the probability density function (pdf) of the data is

constructed and finally matched with the reference databases (Refer Section: 6.5). The reference

database with the highest BC(p,q) value or the lowest DB(p,q) value is the estimated range between

the target and that reference node.

Assuming the target position coordinate is (0,0) the Table 7.1 gives the exact position coor-

dinates (X-axis-towards left of Fig. 7.5, Y-axis-downward) of the 6 reference nodes, their cor-

responding BC(p,q) values when matched against the reference databases, and the predicted dis-

tances using the Statistical TOA algorithm detailed in Section: 6.5.
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Reference
Nodes

Reference
Coordinates

Bhattacharyya Coefficient BC(p,q) Predicted
Distance10m 20m 30m

#1 (10.57m) (6,8.7) 0.9856 0.9739 0.9744 10m
#2 (14m) (8.5,11.1) 0.9586 0.9363 0.9314 10m
#3 (20.3m) (6,19.4) xxxx 0.9689 0.9265 20m
#4 (23.4m) (8.5,21.8) xxxx 0.9857 0.9422 20m
#5 (30.2m) (6,29.6) xxxx 0.9451 0.9784 30m
#6 (33.1m) (8.5,32) xxxx 0.9596 0.9116 20m

Table 7.1: Experiment 1 Summary

We first determine the 10 µs window which contains the maximum number of samples and

then based on the decision tree we match with the appropriate databases. Reference nodes 3, 4,

5, 6 have empty 10 m reference database entries since the RTT samples collected at the target

by communicating with these reference nodes have a window mean of approximately 276 µs and

are of the open space type (see Fig. 7.4) and such distributions are found to not occur at 10 m

distances.

7.2.2 Experiment 2 : Shelby Front Lobby

Figure 7.6 shows the target node placed resting on a wall and the six reference nodes dis-

tributed in the front lobby of Shelby building such. Reference node 1, 2, 3 are about 10 m from the

target and in LOS, while nodes 4, 5 are 20 m and in complete NLOS with each other.

The target node communicates with each reference node at a time and collects 65536 RTT

samples. Once the samples are collected, the probability density function (pdf) of the data is

constructed and finally matched with the reference databases (Refer Section: 6.5). The reference

database with the highest BC(p,q) value or the lowest DB(p,q) value is the estimated range between

the target and that reference node.

Assuming the target position coordinate is (0,0) the Table 7.2 gives the exact position coor-

dinates of the 6 reference nodes, their corresponding BC(p,q) values when matched against the

reference databases, and the predicted distances using the Statistical TOA algorithm detailed in

Section: 6.5.
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Figure 7.6: Experiment 2-target and reference nodes positions

Reference
Nodes

Reference
Coordinates

Bhattacharyya Coefficient BC(p,q) Predicted
Distance10m 20m 30m

#1 (10.3m) (3.3,9.75) xxxx xxxx xxxx 10m
#2 (10.1m) (4.35,-9.1) 0.9882 0.9649 0.3228 10m
#3 (10m) (7.3,-6.83) 0.9876 0.9622 0.9618 10m
#4 (19.9m) (13.2,-15) xxxx 0.9834 0.9429 20m
#5 (19.9m) (3.4,-19.68) xxxx 0.9366 0.9091 20m

Table 7.2: Experiment 2 Summary

We first determine the 10 µs window which contains the maximum number of samples and

then based on the decision tree we match with the appropriate databases. In the Table 7.2, reference

nodes 1 is predicted at 10 m distance without computing the BC(p,q) value because the window

mean is approximately 82 µs and we have found that all RTT samples distributed with such window
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mean values are at 10 m distances only. Reference nodes 4, 5 have empty 10 m reference database

entries since the RTT samples collected at the target by communicating with these reference nodes

have a window mean of approximately 276 µs and are of the open space type (see Fig. 7.4) and

such distributions are found to not occur at 10 m distances.

7.2.3 Experiment 3 : Shelby Research Labs and Hallways

Figure 7.7 shows the target node placed in our research lab 2323 in the Shelby building and

reference nodes distributed in the adjacent rooms and in the hallway. Reference node 1-5 are at

about 10 m from the target, while nodes 6 and 7 are about 20 m and 30 m respectively.

Figure 7.7: Experiment 3-target and reference nodes positions
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The target node communicates with each reference node at a time and collects 65536 RTT

samples. Once the samples are collected, the probability density function (pdf) of the data is

constructed and finally matched with the reference databases (Refer Section: 6.5). The reference

database with the highest BC(p,q) value or the lowest DB(p,q) value is the estimated range between

the target and that reference node.

Assuming the target position coordinate is (0,0) the Table 7.3 gives the exact position coordi-

nates (X-axis-towards right of Fig. 7.7, Y-axis-upward) of the 6 reference nodes, their correspond-

ing BC(p,q) values when matched against the reference databases, and the predicted distances

using the Statistical TOA algorithm detailed in Section: 6.5.

Reference
Nodes

Reference
Coordinates

Bhattacharyya Coefficient BC(p,q) Predicted
Distance10m 20m 30m

#1 (13m) (9.53,-8.99) 0.9904 0.9704 0.4863 10m
#2 (8.3m) (-3.96,7.24) xxxx xxxx xxxx 10m
#3 (8.6m) (-2.74,-8.1) 0.9668 0.9846 0.3389 20m
#4 (9.8m) (3.89,-8.99) xxxx xxxx xxxx 10m
#5 (11.7m) (9.53,6.78) 0.9843 0.9685 0.3265 10m
#6 (22.7m) (9.53,-20.57) 0.9489 0.9755 0.3619 20m
#7 (32.4m) (9.53,-30.93) 0.1439 0.1500 0.9450 30m

Table 7.3: Experiment 3 Summary

We first determine the 10 µs window which contains the maximum number of samples and

then based on the decision tree we match with the appropriate databases. In the table above, ref-

erence nodes 2 and 4 are predicted at 10 m distance without computing the BC(p,q) value because

the window mean is approximately 82 µs and we have found that all RTT samples distributed with

such window mean values are at 10 m distances only.

7.2.4 Average Error

As mentioned in Section: 7.1, our reference databases consists of RTT samples files for 10,

20 and 30 m distances for different indoor environments as shown in Figure 7.4 which means our

Statistical TOA method predicts from one of these three possibilities. So if the actual distance

between the reference and target node is say 12 m from the target, the most accurate prediction
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made by our Statistical TOA ranging method would be 10 m since it reduces the overall range

error. This was one of our assumptions we made in Section: 4.2. Average error is given as:

Avg.Error =

∑
r(ActualDist(r)− PredictedDist(r))

numberofref.nodes
(7.1)

The table 7.4 shows the average range error for each of the use cases we discussed in Section: 7.2.

This error is a part of the system and the subsequent stages of our indoor localization system-LMI

Experiment Avg. Error
#1 3.6 m
#2 3.12 m
#3 3.3 m

Table 7.4: Average Error

with Barycenter or Center of Gravity algorithm can significantly reduce this error and provide

accurate position coordinates of target node.

7.2.5 Experiment 4 - A Special Use Case

In Section 7.2,we showed several online (real-time) experiments that we conducted in dif-

ferent indoor locations. The target node sends a DATA packet to the reference node to which it

responds with an ACK frame and the target node measures the difference between these two times-

tamps as one RTT sample. In this way, it collects a total of 65536 (216) samples. The target node

repeats this process in a round-robin fashion communicating with each reference node one after

the other. Referring Figure 7.7, when target communicates with reference node 1, the time taken

to collect 65536 (216) is roughly 90-120 seconds. So this experiment would take approximately

10-14 minutes to communicate with each reference node. This is not entirely practical because

reference nodes could go out-of-range during that period.

In this section, we propose an alternate solution. Firstly, going back to the discussion in

Section: 5.2.1, instead of 65536 (216) samples, we can collect 16384 (214) samples since the overall

distribution and shape would be quite similar to the 65536 (216) case. This would reduce the time
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taken by a factor of 4 to approximately 22-30 seconds. Also, instead of round-robin scheduling, the

target node can communicate simultaneously with several reference nodes using different threads

for reference nodes. However, this can lead to several packet losses and errors due to interference.

Since the distribution of RTT samples is slightly different and simultaneous communication

can cause packet losses, we need a rethink of reference databases. But we can follow the method

described in Figure 7.4 and Section: 7.1 to create a new reference database.

We conducted this experiment with a new device which has a better processor and a smaller

form factor compared to the previous we used in Table 5.1. The specifications are shown in Table

7.5.

Table 7.5: Device Specifications

Processor Intel Celeron N3160

CPU Frequency 1.6 GHz(upto 2.24 GHz)

RAM 4096MB ( 4GB)

OS Kernel FreeBSD 10.1-RELEASE i386

32 bit/64bit 64bit

Wireless NIC Ubiquiti Networks SR-71 (mini-PCIe)

WLAN protocol IEEE 802.11 b/g

Operating Frequency Range 2.4 GHz

Data Rate 24 Mbps(OFDM)

Antenna

Characteristics

TRENDnet Dual-Band 11a/g 7/5dBi

Indoor Omni Directional Antenna (TEW-AI75OB)

With repeated experimentation with this new device, we have found that there are 5 different

types of RTT data distributions for each distance(10, 20, 30 m). These are shown in Figure 7.8. So

our new reference databases consist of 5 folders each consisting of RTT reference data samples for

10, 20 and 30 m distances.
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Figure 7.8: Reference RTT Samples (pdf) (a) Type-1 (b) Type-2 (c) Type-3 (d) Type-4 (e) Type-5
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Figure 7.9: Experiment 4-simultaneous reference node communication

Figure 7.9 shows target and reference nodes locations on the map. Each reference node com-

municates with the target node simultaneously and we collect 16384 (214) samples. We then em-

ploy the algorithm in Section: 6.5 to predict the range of each reference from the target.

Ref.
Nodes

Coordinate
(x,y)

Dist.
Type

Bhattacharyya Coefficient BC(p,q) Predicted
Distance10m 20m 30m

1 (18m) (15,20) 2 0.9880 0.9929 0.9892 20m
2 (16m) (31,39) 4 0.9655 0.9701 xxxx 20m
3 (13.5m) (6,48) 5 0.9871 0.9821 0.9705 10m
4 (10m) (5,37) 2 0.9848 0.9806 0.9809 10m

Table 7.6: Experiment 4 Summary
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The average error as per Table 7.6 is approximately 2.3 m.

7.2.6 Percentage of Accurate Prediction

In the previous sections we provided the best results of our Statistical TOA ranging method.

However, since the RTT data measured over different distances are all very similar to each other,

our algorithm can predict incorrect results. In each position on the maps shown in previous sec-

tions, we collect several RTT sample files and the table below summarizes the percentage of accu-

rate predictions in each experiment.

Experiment # Accurate Prediction%
1 72%
2 76%
3 71%
4 63%

Table 7.7: Percentage of Accurate Prediction

7.3 Wireshark View

In this section, we provide a Wireshark view of the DATA and ACK frames that are transmitted

between the reference and target nodes. There are several packet sniffing tools like Riverbed’s

AirPCAP but these would sniff the packets that it receives, but we have no way to tell if the target

node received those frames. As a solution to this, we run Wireshark packet capture on the target

node itself by configuring a new virtual interface different from the one that is used for transmitting

the packets.

Wireshark is an open source packet capture and analysis tool used essentially for network

troubleshooting, analysis, software and communications protocol development, and in education

for academic and teaching purposes [57]. Wireshark and its command line tool Tshark can be

installed and used on Linux, BSD and Windows systems. It’s functionality is like ‘tcpdump’ but

it has a graphical front-end and a lot of sorting and filtering mechanisms for better viewing. As a

packet capture tool, Wireshark can be used to capture packets that are addressed to the computer
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on which it is running. The wired or wireless network interface card (NIC) passes the captured

packets to the CPU where it is decoded based on different protocols and displayed by Wireshark.

The IEEE 802.11 wireless NIC can be put into seven modes: Access Point, Client, Ad-hoc,

Mesh, Repeater, Promiscuous, and Monitor mode. The promiscuous and monitor modes are es-

sentially used for packet sniffing. In the promiscuous mode, the NIC passes all traffic to the CPU,

even the ones not intended to it. On the other hand, the monitor mode also passes the traffic to

the CPU but in this case, the Wireless NIC does not have to associate with an access point or

ad-hoc network. Monitor mode is used for geographical packet analysis, observing of widespread

traffic; especially for unsecure channels (such as through WEP). This mode is useful during the

design phase of Wi-Fi network construction to discover how many Wi-Fi devices are already us-

ing spectrum in a given area and how busy are the Wi-Fi channels in that area. This can help in

planning better Wi-Fi networks and reduce interference with other Wi-Fi devices [53]. But the

monitor mode does not allow transmission of packets and is limited to one channel. So, in our

experimentation, we create a new virtual interface using ‘ifconfig’, set it to monitor mode on the

channel on which the target node is transmitting the DATA frames. This interface is different from

the one that is used to transmit frames over the air.

The target and reference nodes are placed at 10, 20 and 30 m distances apart and the Wireshark

packet capture program (tshark on FreeBSD) is run to sniff packets transmitted and received by

the target during the period it communicates with the reference nodes to collect 65536 (216) RTT

samples. This is repeated for LOS and NLOS conditions along the hallway (Fig. 5.8 and 7.5) and

the multiroom (Fig. 7.7) scenario where the nodes are placed in different rooms. Figures 7.10,

7.11, 7.12 show a sample wireshark packet trace of DATA and ACK frames.

Since the wireless nodes are operating in IEEE 802.11g mode, the transmission of every

DATA frame is preceded by the reception of ACK frame for the previous DATA frame. Filtering

the packets on wireshark based on time of capture, we can see this pattern in Figure 7.12 (see

packets 1 through 20). If the ACK frame is not received within a time out period, the DATA frame

is retransmitted (usually at PHY layer not captured by Wireshark) and if those retransmissions

83



Figure 7.10: Wireshark DATA packet trace

Figure 7.11: Wireshark ACK packet trace

exceed a certain threshold, it is discarded and a new DATA frame is transmitted (see packet 21

through 24 in Fig.7.12). Analyzing the time of packet capture, we see that the approximate time

between a DATA and ACK frame capture is roughly 160-180 µs and that between two DATA

frames is about 700-800 µs.

From the packet trace collected during the time period in which the target node communicates

with the reference nodes to collect 65536 (216) RTT samples, we count the number of occurrences

of DATA+ACK frame sequences (like packets 1 to 20) which have a time difference of less than

200 µs, while neglecting all the multiple DATA followed by multiple ACK sequences (Fig. 7.13).

The multiple DATA and multiple ACK sequences usually occur because the ACK was not received

within a timeout period which triggers a low level (PHY layer) retransmission.
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Figure 7.12: DATA and ACK frame sequence

Figure 7.13: Multiple DATA and ACK frame sequence

The number of occurrences of DATA+ACK frame sequence indicates the number of DATA

packets that are ‘ACK’nowledged immediately without any retransmission or some retransmissions

lesser than the threshold. We define the ratio of this to the total number of DATA packets in the

Wireshark capture as the ‘DATA frames Goodput Ratio’.
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DATA Frame Goodput Ratio =
no. of (DATA+ ACK) frame sequences

total no. of DATA frames
(7.2)

Figures 7.14 shows the goodput ratio for different distances in a LOS, NLOS and multiroom

scenarios (Fig. 5.8, 7.5, 7.7).

Figure 7.14: DATA frames Goodput Ratio (a) LOS (b) NLOS (c) Multiroom
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In Section: 5.2.2, we discussed different types of RTT data probability distributions in dif-

ferent environments. Some have dominant modes (peaks) located at 96-98 µs or 276-277 µs or

343-344 µs. This behavior is due to the packet retransmissions which may increase the processing

times and since we measure the RTT at the driver layer, these get added to the measured RTT

value.

As mentioned in Section: 7.1, we use the mean of a 10 µs window which encloses this dom-

inant mode to distinguish between different types of RTT distributions. Figure 7.1 below shows

the 10 µs window. Figure 7.15 shows the data packets goodput ratio for different 10 µs window

mean. The graph shows that as the mean increases, the goodput ratio decreases and this presents

an intuitive explanation for the quantum shifts seen in the distribution of the measured RTT data.

If the goodput ratio is small, it indicates that DATA frames are not followed by ACK frames which

means there is retransmissions causing high average of RTT data.

Figure 7.15: Goodput ratio v/s 10 µs mean
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Chapter 8

CONCLUSION

8.1 Conclusion

In this thesis work, we describe our indoor localization system which involves a location

unaware target node communicating with in-range reference peer nodes opportunistically over Wi-

Fi to determine its position coordinates. The target and reference nodes operate in IEEE 802.11g

mode at 2.4 GHz. It involves 3 stages: the first is the measurement of the Round-Trip Time (RTT)

between transmission of a DATA frame and the reception of an ACK frame. This time is measured

at the driver layer of the OS kernel. The second stage is ranging where the distance between target

and reference nodes is predicted. Literature defines several ranging methods like RSS, AOA,

TOA, but we used the TOA/RTT ranging due to its better accuracy compared to RSS and it does

not need special hardware as AOA. We propose a new algorithm called Statistical Time-of-Arrival

ranging to perform ranging between target and reference nodes. RTT values are severely affected

by multipath making it difficult to determine the range. Our Statistical TOA algorithm has two

parts: an offline stage where RTT measurements are made in different indoor environments to

build a reference database for each distance. In the online stage, RTT samples measured in real-

time is matched against these stored reference databases to predict the range. This way we can

deal with multipath effectively as they will be included in the databases. The third and final stage

is called position estimation which takes as input the position coordinates of reference peer nodes

and their predicted range to estimate position coordinates of the target. Position estimation utilizes

Linear Matrix Inequality (LMI) technique to estimate the position and takes Center-of-Gravity

(CoG) of a cluster of estimated target positions to improve the accuracy.

The main contributions of this thesis work includes:
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• Field Testing - RTT measurements were made in different indoor environments and at dif-

ferent distances.

• Analysis - RTT measurements were analyzed and compared with frame timings in IEEE

802.11g standard. Reference Database was built each distance.

• Statistical TOA algorithm - developed an algorithm to predict the range between target and

reference nodes

RTT samples measured was found to have discrete/quantum shifts in the dominant modes

(peaks) in the distribution. Some had dominant peaks at 96-98 µs, 276-277 µs or 343-344 µs.

We think that this is due to the packet retransmission causing increased processing times. Using

Wireshark packet capture, we defined Goodput ratio as the percentage of data packets that are

acknowledged immediately without retransmissions or some retransmissions. Goodput ratio was

found to decrease as the peaks shifted towards 276 µs proving our intuition.

Reference databases were built by creating a decision tree as in Figure 7.4 and choosing a

subset of RTT samples collected using Bhattacharyya coefficient.

We used Bhattacharyya coefficient as the statistical distance measure to match the real-time

RTT samples against stored reference databases. We showed how this performs better than the Eu-

clidean distance. We performed several experiments in the real world to test the ranging accuracy.

The overall average error was found to be 3.08 metres in the best case. The prediction strategy is

such that if the actual range is say 14 metres, the predicted range is 10 metres instead of 20 metres

since it reduces the error. Thus, a more relevant accuracy indicator would be the percentage of

accurate range prediction which was found to be approximately 71%.
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8.2 Future Work

RTT measurements were made during the field testing stage in different indoor environments

and a reference database was built using Bhattacharyya coefficient to select a subset of these mea-

surements. The distribution functions of RTT samples were analyzed to choose appropriate param-

eters to choose reference databases. This was detailed in Section: 7.1. In the future this process

can be left to a machine learning algorithm that creates a decision tree on its own with a few train-

ing parameters. The parameters might change if the databases have to be refreshed and machine

learning algorithms could learn over time and take data driven decisions, thus making it more

autonomous.

Also, RTT samples include frame processing times which can vary if more applications are

running on the nodes. To eliminate this processing time from affecting the measured RTT, times-

tamps need to be collected when the frame is just transmitted (over the air) and just received. This

would eliminate the processing time anomalies. But, this would require access and understanding

of the firmware code (PHY layer) in the wireless NIC which is usually proprietary. There is a need

to build or choose a device where the PHY layer is accessible to the developer.

The result of the position estimation stage using LMI can be fed back to the Statistical TOA

ranging stage to correct range results or eliminate old unused reference databases.
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Appendix A

WIRESHARK PACKET CAPTURE DATA

LOS/NLOS
samples

DATA
frames #

ACK
frames #

Total #
of frames

DATA+ACK
Sequence #

Goodput
Ratio

LOS-10m 1 85939 85948 172226 81741 0.9512
LOS-10m 2 86618 86623 173579 82691 0.9547
LOS-10m 3 96691 96705 193802 90876 0.9399
NLOS-10m 1 35871 35873 173292 32557 0.9076
NLOS-10m 2 91822 91834 184043 82782 0.9015
NLOS-10m 3 95686 95696 191788 85048 0.8888

Table A.1: Hallway-10m

LOS/NLOS
samples

DATA
frames #

ACK
frames #

Total #
of frames

DATA+ACK
Sequence #

Goodput
Ratio

LOS-20m 1 88443 88450 177253 82714 0.9352
LOS-20m 2 93119 93126 186682 87579 0.9405
LOS-20m 3 89477 89485 179314 82870 0.9262
NLOS-20m 1 97622 97630 195645 2934 0.0301
NLOS-20m 2 99063 99074 198515 2772 0.0280
NLOS-20m 3 94922 94933 190241 2322 0.0245

Table A.2: Hallway-20m

LOS/NLOS
samples

DATA
frames #

ACK
frames #

Total #
of frames

DATA+ACK
Sequence #

Goodput
Ratio

LOS-30m 1 93927 93934 188260 87297 0.9294
LOS-30m 2 88274 88284 176888 84602 0.9584
LOS-30m 3 87082 87091 174530 81656 0.9377
NLOS-30m 1 439896 439949 881639 30658 0.0697
NLOS-30m 2 210141 210166 421120 24995 0.1189
NLOS-30m 3 295821 295860 592847 43438 0.1468

Table A.3: Hallway-30m
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Multiroom
samples

DATA
frames #

ACK
frames #

Total #
of frames

DATA+ACK
Sequence #

Goodput
Ratio

10m 1 90826 90835 182353 81016 0.8920
10m 1 94147 94160 189049 83072 0.8824
10m 1 104046 104058 208907 88173 0.8474

Table A.4: Maintenance Room-10m

Multiroom
samples

DATA
frames #

ACK
frames #

Total #
of frames

DATA+ACK
Sequence #

Goodput
Ratio

10m 1 96782 96791 193965 88536 0.9148
10m 1 92683 92694 185755 85234 0.9196
10m 1 99884 99895 200186 92211 0.9232

Table A.5: Server Room-10m

Multiroom
samples

DATA
frames #

ACK
frames #

Total #
of frames

DATA+ACK
Sequence #

Goodput
Ratio

20m 1 92949 92958 186292 78318 0.8426
20m 1 96414 96422 193241 82310 0.8537
20m 1 96414 96422 193241 82310 0.8537

Table A.6: Measurements Lab 2326-20m

Multiroom
samples

DATA
frames #

ACK
frames #

Total #
of frames

DATA+ACK
Sequence #

Goodput
Ratio

10m 1 90573 90583 181939 82452 0.9103
10m 2 85519 85529 171817 78142 0.9137
10m 3 97543 97551 195999 85830 0.8799
10m 4 100534 100544 201900 84135 0.8369
20m 1 112662 112655 225809 84271 0.7480
20m 2 124106 124105 249203 89833 0.7238
20m 3 118273 118284 237337 80849 0.6836

Table A.7: Lab 2319-10m, 20m
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