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Abstract 

 

 

Functional magnetic resonance imaging (fMRI) technique uses the blood-oxygen-level-

dependent (BOLD) contrast to detect associated changes in blood flow. The BOLD signal is 

temporal correlated with cerebral electrophysiological activities. Therefore, the recording and 

decoding of the BOLD signal provides insight into human brain function and benefits enormous 

amount of brain cognitive studies in scientific and medical interest. Although fMRI has become 

the primary application in the field of brain cognitive science, elusive and enigmatic questions 

remain. The scope of this dissertation lies in the construction of novel signal processing methods 

and experimental paradigms with fMRI applications, which devotes to the strategies of decoding 

brain signals and states. 

In the first and second studies, we addressed the issue that the fMRI is an indirect measure of 

neural activity. Since the BOLD signal can be modeled as a convolution of the hemodynamic 

response function (HRF) and latent neural activity and HRF varies across both between individuals 

and different brain regions within an individual. Therefore, the correlation acquired from the 

BOLD-level data could lead to false inferences of functional connectivity. The aberrant 

neurochemical mechanism which control the shape of the HRF have been reported in autism 

spectrum disorders (ASD), schizophrenia (SZ) and bipolar disorder (BP). Therefore, we 

hypothesized that these aberrations would lead to differences in the shape of the HRF between 

these pathological populations and healthy controls, and the alterations would contribute to the 

differences in estimating functional connectivity in the BOLD space as compared to the latent 
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neural space. We reported that raw fMRI data failed to detect group differences in connectivity 

analysis when compared that with deconvolved data. Our results are relevant for the understanding 

of hemodynamic and neurochemical aberrations in pathological groups.  

In the third study, we applied a novel real-time fMRI (rt-fMRI) neurofeedback technology to 

investigate the insight problem solving. Inspired by a transcranial direct current stimulation (tDCS) 

study, we hypothesized that rt-fMRI neurofeedback could enable subjects to up-regulate activity 

in their right Anterior Temporal Lobe (rATL) using neurofeedback, and it could mimic the effects 

of tDCS in facilitating subjects to solve the nine-dot puzzle. Our results show that approximately 

40% of subjects were able to solve the problem using rt-fMRI neurofeedback, which is similar to 

the percentage of subjects who were able to solve the puzzle using tDCS. Our results indicated 

that the group that successfully solved the problem were able to up-regulate the activity over rATL 

through rt-fMRI neurofeedback while the group that didn’t solve the problem were not able to. 

Further, we contrasted the brain activation and network obtained from two groups to investigate 

the neural bias generated by up-regulation of activity in rATL. Our results provideda putative 

neural mechanisms underlying nine-dot problem solving, and a possible explanation for the top-

down inputs into the rATL in enhancing or suppressing creative insight. Furthermore, our study 

demonstrates that neurofeedback could potentially be used to mimic effects similar to brain 

stimulation techniques such as tDCS. 
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Chapter 1 

Introduction  

 

 

1.1 Background Review  

1.1.1 BOLD Signal  

The blood-oxygen-level dependent (BOLD) contrast imaging is based on the principle that 

the oxyhemoglobin shows less magnetic susceptibility than deoxyhemoglobin. More specifically, 

since the brain can’t reserve energy in the form of sugar and oxygen, the neuronal firing calls for 

a rapid energy supplying favored by cerebral blood flow. When a certain brain region functions, 

the regional blood releases a greater rate of oxygen to active neurons than to inactive neurons. And 

then, the unbalanced magnetic changes of oxyhemoglobin and deoxyhemoglobin would be 

captured by the MRI scanner. In 1990, Seiji Ogawa et al [1] first demonstrated that the variations 

of blood oxygenation in vivo could be detected with the MRI and provided the concept of BOLD. 

Figure 1.1 represents the example of BOLD signal. 

The BOLD signal is sensitive to cerebral blood flow (CBF), venous blood volume (CBV) or 

oxygen metabolism (CMRO2), where the CBF change is most consistent with fluctuation of 

BOLD signal and it can be used to estimate changes in CMRO2 [2]. Therefore, CBF is a valuable 

tool in exploring the physiological processes underlying neural stimulus-induced BOLD activation. 
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Figure 1.1 Example of BOLD signal. 

Although changes in CBF correlate with energy supplying during brain functional activation 

[3], it’s not simply regulated by the oxygen or energy usage but a set of complex biochemical and 

electrophysiological processes. Evidence has confirmed that several neurotransmitter-related 

signaling mediations in neurovascular coupling mechanism regulate the CBF and imply the 

generation of BOLD single [4] (Figure 1.2). 

Glutamate which is released by synapse in response to neural activity primarily regulates the 

CBF. In neurons, glutamate acts on N-methyl-D-aspartate receptors (NMDAR), causing neuronal 

nitric oxide synthase (nNOS) to release nitric oxide (NO). This released NO dilates vessels directly 

and indirectly in different brain regions [6][7]. Also, glutamate activates astrocyte by acting on 

metabotropic glutamate receptors (mGluR) and then, astrocyte converted glutamate to glutamine 

to supply the usage of energy [5]. During this procedure, astrocyte releases serval 

neurotransmitters (e.g. Ca(2+), K(+), 20-hydroxyeicosatetraenoic acid and etc.) which are 

important in mediating CBF [6].  
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The γ--aminobutyric acid (GABA) also has effects on regulating the CBF. Interneurons 

release GABA in response to stimulation of the basal forebrain, which inhibits neural activity 

through the GABA receptors [7]. Then, the altered neural activity could lead to altered mediation 

to blood vessels. It is still unclear that the mediation is direct or via agents: neurons or astrocytes.  

The serotonin (5-hydroxytryptamine) is demonstrated as major vasoconstrictor, providing 

blood-brain barrier permeability. It modulates neurovascular coupling mechanism either directly 

or indirectly via the neuronal-astrocytic-vascular tripartite functional unit [8].  

In addition, therapeutic modulation and metabolic aberrance may as well affect the signaling 

pathways and alter the neurovascular coupling mechanism [9]. 

 

 

Figure 1.2 Signaling pathways of neurovascular coupling mechanism. The interneurons, neurons, 

and astrocytes release vasoactive mediators, leading to both dilation and constriction of the vessels 

nearby. 
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1.1.2 Functional Magnetic Resonance Imaging based on BOLD Technology 

Since Charles Roy and Charles Sherrington demonstrated that blood flow and blood 

oxygenation are closely linked brain function in 1980 [10], Kenneth Kwong et al [11] first applied 

the BOLD technique to study activation in the visual cortex in human subjects and termed it as 

functional magnetic resonance imaging (fMRI) in 1992. Through manipulation of stimulus, the 

rise of BOLD signal was found that lags the neuronal events for few seconds. If the stimulus 

continuous, which means neurons keep firing, the peak spreads to a flat plateau. After stimulus 

stops, the BOLD signal falls [12]. The relationship between changes in brain activity and BOLD 

signal is indirect and has been speculated, however, the neural basis of the BOLD signal has been 

gradually demonstrated by experiments which combined other neuroimaging technologies (e.g. 

Electroencephalograph (EEG)) and intracortical recordings. Researchers have checked the BOLD 

signal corresponding to both signals from implanted electrodes (mostly in monkeys) and signals 

of field potentials (measured outside the skull) from EEG and MEG, and demonstrated that the 

local field potential, which includes both post-neuron-synaptic activity and internal neuron 

processing, better predicts the BOLD signal [13]. After that, the fMRI technology based on 

analysis of BOLD signal has gradually became the leading research tool in investigating human 

brain function. 

The fMRI technology is applied diversely and multitudinously both in the research world and 

clinical world. Since it is a noninvasive and it has high spatial resolution (works at a resolution of 
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tens of micrometers) and low temporal resolution (works at hundreds of milliseconds or seconds), the 

fMRI has the advantage in precise functional specialization. The brain mapping is the best 

established application of fMRI, which applied the fMRI to determine the precise neuroanatomical 

locations in responsible for specific brain functions [14]. The functional integration is another 

well-established application of fMRI, which is describing how different brain areas interact. The 

high spatial resolution allows the investigation between highly constrained spatial regions in the 

brain. A wide range of statistical techniques are being used to measure inter-regional connectivity 

(e.g., Independent Component Analysis), and "causal" connectivity (e.g., Dynamic Granger 

Causality). To date, these two applications have been applied in investigating the brain functional 

systems and boosted many achievements, including  visual, auditory, sensorimotor, emotional, 

memory, language, attention or control and etc [15]. 

Typically, the measured BOLD signal contains many noise signals, such as the artefactual 

signals due to hardware of the scanner, signal changes due to head motion, multitude of 

physiological fluctuations of cardiac and respiratory noise, random brain activity, changes in blood 

pressure and cerebral autoregulation mechanisms and etc [16]. The non-neuronal noise can 

introduce spurious common variance across time series and considerably affects the results of task-

based and resting state fMRI experiments. In task-based fMRI, it is generally thought that task-

based fMRI is sufficiently robust to non-neuronal noise because most fMRI studies repeat a 

stimulus presentation multiple times and average the response to eliminate the effect [12]. 

However, the noise components might confound the timing of the response and introduce variance 
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in the signals from different regions of the brain, thus affecting the estimation of functional or 

effective connectivity. In resting state fMRI (rs-fMRI), the analysis cannot benefit from an 

averaging process which removes these non-neuronal noise as it is done in task-based fMRI [17]. 

Different methods have been developed to cope with multiple types of noise components and 

interaction between noise sources, such as developments in acquisition sequences to diminish the 

system-related artefacts, motion-related correction, physiological-related noise, and etc. However, 

cleaning the non-neuronal in BOLD measurement and estimating the true neuronal activity are 

still challenging tasks in fMRI and it could boost the novel applications research world and clinical 

world. 

1.1.3 Hemodynamic System Modelling 

The physiological mechanisms mediating the relationship between neuronal activation and 

BOLD signal have been studied extensively, and the realistic physiological model is extremely 

complex and hard to be constructed [9][18]. However, studies demonstrated that although the 

hemodynamic model is nonlinear in nature [19], it exhibits relatively linear and time-invariant 

relationship with regard to specific manipulation of experiment [20][21]. The relationship between 

neuronal activation and BOLD signal can be approximated by mathematical modeling, which 

assumes the measured BOLD signal as the neuron activities convolved with the hemodynamic 

response function (HRF) (Figure 1.3). In the paradigm, s(t) represents the time series of the stimuli 

specified as supposed neuronal activity. The f(t) represents the measured fMRI signal for a 

particular voxel, which is calculated as f(t)=s(t)⊗h(t)+ε(t), where ε(t) represents the noise. The 
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system function h(t), termed as HRF, is determined from the response to an impulse function or 

Dirac delta function. 

 

Figure 1.3 Hemodynamic model. 

In fMRI experiments, this model is sufficient to characterize up to 90% of the BOLD 

responses in some cortical regions [22]. Based on this model, hidden neural states and parameters 

of the nonlinear/linear dynamic system can be inferred by inversed convolution, and different 

algorithms of inversion are developed with regard to distinct experiments. 

The canonical HRF [23][2] is modeled by two Gamma functions with six unknown parameters 

(four of them to model the shape and the remaining to scale and baseline respectively). Most HRFs 

share the similar shape across different regions and subjects. Normally, the HRF is estimated by 

three parameters (Figure 1.4): response height (RH), time-to-peak (TTP), and full-width at half-

maximum (FWHM), respectively. L. D. Lewis et al used simultaneous EEG–fMRI and compared 

evoked potential measured by EEG with the shape of HRF acquired by fMRI [24]. They reported 

that the waveform of HRF depends on the underlying dynamic activity pattern and faster HRFs 

may provide a better representation of the true hemodynamic response [24][25]. Lindquist and 
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Wager [26] have proposed a scheme to illustrate the relationship between neural activity, observed 

BOLD response, and estimated HRF parameters (Figure 1.5). The induced change in RH, TTP and 

FWHM, could be interpreted regarding the latency of neural firing, onset latency, and duration of 

neural activity.  

The three parameters are unlikely uniquely interpreted regarding the changes in neuronal 

activity. The potential cross-talk exists among all the estimated parameters. Moreover, the clear 

interpretability is constrained by incomplete comprehension in physiology mechanism of BOLD.  

 

 

Figure 1.4 Estimates of response height (RH), time-to-peak (TTP), 

and full-width at half-max (FMHW) from a simulated HRF. 
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Figure 1.5 The relationship between neural activities, BOLD observation, and estimated HRF 

parameters [26]. Solid lines indicate expected relationships; dashed lines indicate potential relationships 

that could obstruct the interpretation of estimated parameters. 

 

1.1.4 Resting State Functional Connectivity 

The rs-fMRI experimental paradigm measures the BOLD signal when a subject is not 

performing an explicit task. Even in the absence of cognitive or sensory stimulation, the rs-fMRI 

BOLD signal displays spontaneous low-frequency fluctuations [27][28] and the significant 

ongoing spontaneous brain activity has been demonstrated in many literatures [29][30]. 

The rs-fMRI connectivity is the analysis based on rs-fMRI BOLD signal and it explores the 

co-activation and co-deactivation between brain regions, even if they are distinct [31]. It is simply 

a statement in terms of statistical dependencies among neurophysiological measurements (e.g. 

fMRI signal), which indicates the “temporal correlations between spatially remote 

neurophysiological events” [31]. Recently, the rs-fMRI functional connectivity analysis has 

become a useful approach to explore the functional network structure of the human brain [32][33]. 
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1.1.5 Real-time fMRI Neurofeedback 

The real-time of fMRI data (rt-fMRI) neurofeedback technology permits simultaneous 

measurement and observation of brain activity during an ongoing task. It allows participants to 

selectively regulate their own brain activity by gaining volitional control over the BOLD signal 

from specific regions of their own brains provided as a feedback [34][35]. The efficacy of rt-fMRI 

neurofeedback could be demonstrated by the observed enhanced levels of raw BOLD signals or 

the enhanced neuronal activation within the regions of interest (ROIs) before and after rt-fMRI 

trials. In previous studies, the self-regulation of brain activity has been achieved in various regions, 

e.g., the anterior cingulate cortex for pain control [36], the amygdala for the emotional regulation 

of fear [37], etc. Moreover, the learned control over the local brain activity via rt-fMRI 

neurofeedback training enables the correspondingly changes in behavior [34][35]. Therefore, the 

rt-fMRI neurofeedback technology could complement traditional neuroimaging techniques by 

providing more causal insights into the functional role of brain regions in behavior, which allows 

it to become a promising new approach for the cognitive neuroscience. 

A rt-fMRI neurofeedback system is usually constructed by a fMRI scanner responsible for 

data acquisition (Figure 1.6 A), a scanner host responsible for data transferring (Figure 1.6 B), a 

computer responsible for data pre-processing in real-time (Figure 1.6 C), and a device to show the 

feedback signal to the participants (Figure 1.6 D). The procedure transfers the acquired raw BOLD 

single to the pre-processed BOLD signal, and presents the feedback signal could be finished within 

seconds. Therefore, the self-regulation of participants based on the feedback signal could be 
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ensured to be conducted in nearly real time. The participants are usually trained by following the 

instructions (e.g. by increasing the signal or decreasing the signal.) according to different 

experimental aims.  

 
Figure 1.6 An architecture of rt-fMRI system is consisted of (A)MRI scanner, (B)Scanner host 

(C) Image processing computer, and (D) Feedback computer.  

1.1.6 Insight Problem 

Schooler, Ohlsson, and Brooks [38] defined the insight problem by saying that “an insight 

problem is well within the competence of the average subject has a high probability of leading to 

an impasse and has a high probability of 'rewarding' sustained effort with an aha-experience.” 

Unlike non-insight problems, the solutions for insight problems cannot be guaranteed by analytical 

thinking and prior knowledge, while conceptual restructuring is an important key [39]. More 

specifically, while solving, one would try to minimize the difference between the current state of 

the problem solving and the goal state. Insight only occurs when one realizes that the following 

analysis steps could not achieve the goal and that a new analysis must be sought. 
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The nine-dot problem is one of the most classic insight problems, which requires both 

analytical thinking and conceptual restructuring. The problem requires that nine dots be arranged 

in a square connected by four straight lines drawn without lifting the pen from the paper and 

without retracing any lines (Figure 1.7). This problem is ridiculously simple in the formal sense 

that there are only a few possible solutions to try, but ridiculously difficult in the psychological 

sense that the probability of success approximates 0% [40]. The explanation for this phenomenon 

is because our brains, especially left hemisphere, are wired to interpret the world though the filter 

of our past experiences, and we are inclined to see the nine-dots as a square, with imposed rigid 

boundaries. This mechanism is mostly unconscious and cannot be easily overridden. 

 

 

Figure 1.7 The nine-dot problem and its solution. 

The nine- dot puzzle Solution
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1.2 Motivation  

The high-resolution fMRI is a powerful tool for the noninvasive imaging of human brain. 

Normally, fMRI is used popularly in mapping brain activity related to specific behaviors [41][42]. 

In recent years, fMRI has been applied to new decoding-based strategies in human cognitive 

research which requires new data processing methods and experimental paradigms.  

Resting-state functional magnetic resonance imaging (rs-fMRI) connectivity is a novel 

method that estimates the temporal correlation of BOLD signals between spatially remote brain 

regions in resting state [29][30][31]. The relationship between brain regions is referred as resting-

state functional connectivity. This allows the characterization of large-scale brain networks both 

in healthy and clinical populations. To date, a number of studies have employed rs-fMRI functional 

connectivity in order to understand both shared and distinct neural alterations in pathological 

populations with healthy controls [43][44][45]. However, criticisms were also raised. One 

important issue in interpreting rs-fMRI functional connectivity lies in that the fMRI BOLD 

contrast is an indirect measure of neural activity [46][13]. The measured BOLD signal could be 

considered as a convolution of the latent neural activity with a transfer function – the HRF [20] 

and the shape of HRF varies not only across subjects but also across different brain regions in the 

same subject [47][48]. Besides the underlying neural activity, different non-neural factors could 

contribute to this variability [4][49][50][51][52]. The usefulness of HRF deconvolution is under 

debate. David et. al [53] first performed a combined EEG-fMRI study that proved the theoretical 

possibility of HRF deconvolution in improving interregional coupling estimation from hidden 
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neural states of fMRI. Previous discussions on evaluating effective connectivity from fMRI data 

also reached the conclusion that it is better to use state-space model for inferring causality on 

hidden neural states [54][55][56]. In the light of these works, we continue the discussions into rs-

fMRI connectivity analysis.  

As mentioned above, the examined synchronicity between observed BOLD data in any two 

given regions would be blurred by the varying HRF due to non-neural factors. And the false 

inferences of functional connectivity could be observed in two situations: (i) the BOLD data are 

highly correlated while the underlying latent neural signals are not (Figure 1.8 A); (ii) the 

underlying latent neural signals are highly correlated while the BOLD data are not (Figure 1.8 B).  

 

Figure 1.8 Illustration of the impact of HRF variability on functional connectivity analysis. The 

measured BOLD signal, retrieved latent neural signal and the voxel-level HRF are shown. (A) Two BOLD 

time series are low correlated while the correlation between underlying neural signals is high. (B) Two 

BOLD time series are highly correlated while the correlation between underlying neural signals is low.  

Since, factors other than neural activity could contribute to this variability was confirmed in 

ASD [57], SZ [58][59][60][61][62] and BP [63][64][65], we hypothesized that this could 

potentially cause systematic differences in the shape of the HRF between pathological populations 
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and healthy controls, and the altered HRF will lead to differences in estimated functional 

connectivity in the fMRI space as compared to the latent neural space. We aimed to demonstrate 

that the possible confounds introduced by the variable HRF in identified functional networks of 

pathological populations. 

The rt-fMRI neurofeedback technology is another novel neuroimaging technology applied in 

human cognitive research. It allows on-line analysis and feedback of BOLD signal from a targeted 

ROI. Compared with other neuroimaging techniques, the rt-fMRI neurofeedback technology 

provides the only non-invasive method that could acquire the feedback signal of the deep 

subcortical brain regions. In previous studies, the self-regulation of brain activity has been 

observed in various regions, e.g., the anterior cingulate cortex for pain control [36], the amygdala 

for the emotional regulation of fear [37], etc. Studies also demonstrated that the learned control 

over the local brain activity via rt-fMRI neurofeedback training was able to cause the specific 

changes in behavior [34][35]. Although much progress has been achieved, the applications of rt-

fMRI technology are still being explored. The capability of tracking brain activations could lead 

to new research modalities and practical applications in both clinical and daily life. Therefore, we 

propose a novel application of rt-fMRI in brain stimulation. Based on the research that applied the 

transcranial direct current stimulation (tDCS) targeted on right anterior temporal lobe (rATL), a 

surprisingly large number of people (40%)  were able to solve the nine-dot puzzle [66]. We aimed 

to mimic this tDCS by applying rt-fMRI technology, which could provide a new paradigm for 
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cognitive neuroscience to study brain plasticity. We also aimed to estimate the functional relevance 

of regulated brain areas by modification of insight problem solving. 

1.3 Organization of the Dissertation   

This dissertation is organized into 6 chapters. Chapter 1 reviews relevant background about 

BOLD signal, fMRI, rt-fMRI, and the basis of experiment design. It also represents the motivation 

for this dissertation and elaborates the structure of the dissertation. Chapter 2 describes the general 

methods that were applied in this dissertation, including BOLD signal preprocessing, 

deconvolution, rs-fMRI connectivity analysis, effective connectivity analysis, visualization of 

connectome and relevant statistical methods. Chapter 3 represents the procedures of examining 

seed-based rs-fMRI functional connectivity studies in ASD and control subjects. It also represents 

the result of aberrant hemodynamic responses in ASD and its implications for seed-based rs-fMRI 

functional connectivity studies. Chapter 4 represents the procedures of examining seed-based rs-

fMRI functional connectivity studies in SZ, BP, and control subjects. It also represents the result 

of aberrant hemodynamic responses in these populations and its implications for seed-based rs-

fMRI functional connectivity studies. Chapter 5 represents the experiment that mimics the effects 

of tDCS in facilitating individuals to solve the nine-dot puzzle by applying rt-fMRI neurofeedback 

technology. The contracted brain activation and networks of the subjects who solved the puzzle 

and those who did not are also represented. Chapter 6 provides the conclusion to summarize this 

dissertation.  
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Chapter 2 

General Methods 

 

 

2.1 Review of Statistical Methods  

2.3.1 Statistical Parametric Mapping 

Statistical Parametric Mapping (SPM) is a statistical approach to infer the topological features 

function continuously. Specific to neuroimaging, it is usually used to identify regional brain 

activations by assuming parametric statistical models at each voxel. Mathematically, it mapps 

values with probabilistic behavior by a known probability density function, usually the Student's t 

or F-distributions.  

For each voxel, the observed response variable Y is formulated based on a General Linear 

Model (GLM), 

𝑌 = 𝑋𝛽 + 𝜀                                                          (2.1) 

X is a design matrix, which is a linear combination of explanatory variables and 𝜀 is a well-

behaved error term [67]. 𝛽 is a matrix of parameters that represents the relative contribution of 

each of these columns in design matrix X. This formulation allows the assessment of the F-statistic 
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about these contributions by testing the null hypothesis according to a given contrast, the linear 

combination of the contrasts, or all of them together. 

2.3.2 False Discovery Rate Controlling  

When a large number of statistical tests are performed simultaneously, the probability of 

making at least one false positive (type I error) among the family of hypothesis tests is defined as 

the family-wise error rate (FWER). The FWER would cause the classic confidence intervals, and 

p-values fail to reject the null hypothesis. False discovery rate (FDR) controlling is a technique 

that quantifies the statistical significance of multiple statistical tests [68][69]. Mathematically, it 

adjusts the false discovery proportion (FDP), which is defined as the proportion of false discoveries 

among total rejections. 

Suppose 𝑁 (null) hypotheses, 𝐻1, 𝐻2, … , 𝐻𝑁, are tested simultaneously at a level . Their 

corresponding p-values are sorted in an ascending order,𝑃1, 𝑃2, … , 𝑃𝑁 . Find the largest 𝑘 that 

satisfies 𝑃𝑘 ≤
𝑘

𝑁
𝛼, then Reject the null hypothesis 𝐻𝑖, 𝑖 = 1,2, … , 𝑘, where 𝐻𝑖 = 0, when the 𝑖th 

null hypothesis is true, and 𝐻𝑖 = 1 when the 𝑖th alternative is true.  

Let 𝑝𝑖 ≤ 𝑡, for 𝑖 = 1,2, … , 𝑚 and 𝑡 ∈ [0,1]. Therefore the FDP is calculated as: 

𝐹𝐷𝑃(𝑡) =
𝐹𝑎𝑙𝑠𝑒 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑖𝑒𝑠 

𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑖𝑒𝑠
=

∑ {𝑡𝑢𝑟𝑒 𝑛𝑢𝑙𝑙 𝑃𝑖: 𝑃𝑖≤𝑡}𝑖

∑{𝑃𝑖≤𝑡}
         (2.2) 

The FDR controlling for a multiple testing threshold 𝛼 is defined as the expected FDP using 

that procedure: 

𝐹𝐷𝑅 = 𝐸(𝐹𝐷𝑃(𝑡))               (2.3) 
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The FDR controlling has been intrudouced in many applications across different fields and 

was introduced by Genovese et al into the filed of neuroimaging at 2002 [70]. 

2.2 Image processing  

2.2.1 Pre-processing 

Pre-processing is necessary for fMRI analysis, which prepares the acquired raw data before 

being applied to statistical analysis. It applies various image and signal processing techniques to 

reduce noise and artifacts (e.g. head motion, field non-uniformity, acquisition synchrony, etc. [12]) 

in BLOD signal. The pre-processing steps are crucial in making the statistical analysis valid in the 

subsequent analyses.  

The usual method of pre-processing is to apply sequential individual processing steps in a 

particular order. However, the interactions between these steps may cause the loss of statistical 

power and the different post fMRI data analyses require distinct sets of preprocessing [12]. 

Consequently, each preprocessing step needs to be understood and considered carefully. There is 

a move towards developing more integrated approaches to pre-processing. At present, though, it 

is still common to have separate, independent pre-processing steps described in the following. 

(1) Slice timing correction  

At every time point, one functional volume was acquired. The functional volume was 

combined by slices. All the slices can be acquired within one repetition time (TR) and this 

procedure evenly spread over the TR. Since TR was short, the volume should be assumed that all 

the slices were captured at the same time. Otherwise, it would invalidate following statistical 
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analysis. Slice timing correction aims at adjusting slices that were acquired in different times 

during the same TR to a common reference time. In detail, for each slice in one TR, the temporal 

adjustment is usually achieved by resampling the time series of slice by applying sinc interpolation 

backward or forward, and taking the value at the same reference time for all the slices. Then, the 

value of every voxel in the volume can be considered as acquired at the same time. 

(2) Realignment  

The object of realignment is to determine the rigid body transformation and to best map the 

series of functional volumes in the common space. It estimates the six parameters of the rigid body 

transformation (three translations and three rotations respectively) and minimizes the mean 

squared difference between each successive volume and reference volume.  

(3) Coregistration and normalization  

Coregistration is the process of registering functional and structural images from the same 

subject to map functional information into anatomical space by taking the constant overall shape. 

Spatial normalization aims to map the human brain of different sizes into a standard template, 

which makes them comparable to each other and could boost the statistical power in fMRI analysis. 

2.2.2 Deconvolution 

The fMRI BOLD signal is the indirect measurement of neural activity and this may raise many 

issues when it is used as a tool in brain investigations[71] (e.g. effective connectivity [53]). Based 

on the model that considers fMRI signal as a filtered version of neural activity (Figure 1.3), the 

inversion of the modeled hemodynamic system is termed as ‘deconvolution’. This procedure 
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allows the extraction of HRF and estimation of hidden neuronal activation from the observed fMRI 

signal theoretically. The deconvolution method is an ill-posed problem since both the HRF, and 

the latent neural input are unknown and only the output of the convolution (fMRI signal) is 

measured. Therefore, the precision of the observation (such as temporal resolution, signal to noise 

ratio and etc.), as well as the algorithms that optimize the problem could affect the accuracy of 

estimation of neural activation. 

(1) Deconvolution using Kalman filtering 

This deconvolution method estimates the coupled dynamical systems based on nonlinear 

Kalman filtering [72]. The algorithm formulates a model with the continuous process equation and 

a discrete measurement, and applies a forward pass using the cubature Kalman filter (CKF) [73]. 

In detail, the method considers a discrete-time nonlinear dynamic system, where the system’s 

hidden states cannot be observed. The state-space model for joint estimation of state and parameter 

is formulated as: 

𝑥̃𝑡 = [

𝑥𝑡

𝑢𝑡

𝜃𝑡

] = [
𝑭(𝑥𝑡−1, 𝜃𝑡−1, 𝑢𝑡−1)

𝑢𝑡−1

𝜃𝑡−1

] + [

𝑞𝑡−1

𝑣𝑡−1

𝑤𝑡−1

]                                 (2.4) 

𝑦𝑡 = 𝑔(𝑥̃𝑡) + 𝑟𝑡−1                                                      (2.5) 

Where 𝑥𝑡 is the state vector, 𝜃𝑡 is the parameter vector and 𝑢𝑡 is the input vector; 𝑤𝑡 is 

the “artificial” process noise vector, 𝑣𝑡 input noise vector, 𝑞𝑡 is the zero-mean Gaussian state 
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noise vector; 𝑦𝑡  is the simultaneously observed noisy signal, and 𝑟𝑡  is random Gaussian 

measurement noise vector. 

Then the method introduces a forward pass using the of the square-root version of CKF, which 

is finessed by a backward pass and aims to obtain smoothed estimates of states, input and 

parameters. In this continuous dynamic system, the discretization of process equations of both 

forward pass and backward pass are discretized by a local linearization [74] scheme for all 

cubature points. The log-likelihood were evaluated at each iteration and the iteration would 

terminate when increment of the (negative) log-likelihood is less than a tolerance value. This 

procedure furnishes posterior estimates of both the hidden states and the parameters of a system, 

including any unknown exogenous input.  

(2) Blind deconvolution using Wiener filter 

The blind deconvolution proposed by Wu et al models the resting fMRI data as ‘pseudo-events’ 

time series with randomly occurring events [75]. The ‘pseudo-events’ time series is constructed 

by searching the local peak beyond a threshold (Figure 2.1) and is adjusted by considering the time 

delay in hemodynamic response following the neural activity. Then, the time series convolved by 

the canonical HRF is fitted into measured BOLD signal by applying the general linear model, and 

the noise error covariance is calculated. By searching through all integer values in the interval of 

time delay [0 𝑘𝑚𝑎𝑥], the time series achieves the smallest noise error covariance is chosen as the 

input neural activity time series 𝑠(𝑡). The 𝑠(𝑡) is formulated as following: 
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 s(t)= ∑ 𝛿(𝑡 − 𝜏)∞
𝜏=0                                                     

(2.6) 

Following Glover’s classic deconvolution method [20], the measured BOLD signal can be 

described as:  

𝑏(𝑡) = 𝑠(𝑡) ⊗ ℎ(𝑡) + 𝜀(𝑡)                                              (2.7) 

where 𝑏(𝑡)is the measured BOLD signal, ℎ(𝑡) is HRF, and 𝜀(𝑡) is the noise.  

The h̃(t) could be obtained by applying Wiener filter d(𝑡): 

h̃(t)=d(t) ⊗ 𝑏(𝑡)                                                     (2.8) 

Combine the above formulate and the Fourier transform of Wiener filter can be obtained by 

turning to 

D(ω) =
H′(ω)

|H(ω)|2+|N(ω)|2                                                  (2.9) 

For white noise, the spectrum is a constant and is calculated as |𝑁(𝜔)|2 = 𝑁0
2 

The HRF can be estimated as  

ℎ̃(t)=ℱ−1{𝐷(𝜔)𝐵(𝜔)} = ℱ−1 {
𝑆′(𝜔)𝐵(𝜔)

|𝑆 (𝜔)|2+|𝑁(𝜔)|2
}                             (2.10) 

Finally, the deconvolution is performed by applying voxel specified HRF and Wiener filter 

back into the linear model: 

The estimated neural activity could be acquired by: 

𝑠̃(𝑡) = ℱ−1{𝐷(𝜔)𝐻̃(𝜔)} = ℱ−1 {
𝐻̃′(𝜔)𝐵(𝜔)

|𝐻̃(𝜔)|2+|𝑁(𝜔)|2}                            (2.11) 
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This deconvolution method has the advantage of requiring no prior information of the neural 

event. Furthermore, it returns three parameters characterizing the HRF of each voxel for further 

HRF examination. 

 

 

Figure 2.1 Constructing ‘pseudo-events’ time series. 

 

Figure 2.2 Blind-deconvolution pipeline. 
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2.3 Connectivity Analysis based on fMRI 

2.3.1 The rs-fMRI Functional Connectivity Analysis 

The most widely applied estimation of rs-fMRI functional connectivity is Pearson correlation 

coefficient [76]. It assumes these fMRI measurements conform to Gaussian assumptions and then 

characterizes the correlations or covariance (correlations are normalized covariance) of each voxel 

or the averaged time series in voxels or region of interests (ROIs）.  

For two fMRI time series 𝑥, 𝑦 with n observations (e.g., time points of fMRI signal), the 

correlation coefficient 𝜌𝑥,𝑦 is calculated as: 

𝜌𝑥,𝑦 =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑥𝜎𝑦
                                                        (2.12) 

where cov stands for the covariance, which is expressed in terms of mean and expectation: 

𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝜇𝑥)(𝑌 − 𝜇𝑦)]                                       (2.13) 

𝜎𝑥,𝜎𝑦are the standard deviations of 𝑋, 𝑌. 

𝜇𝑥, 𝜇𝑦are the means of 𝑋, 𝑌. 

𝐸 is the expectation. 

2.3.2 Fisher Z-transformation 

Fisher's z-transformation is a statistical transformation that converts Pearson's correlation 

coefficient 𝑟  to the normally distributed variable 𝑧 [77]. Because, when the population 

correlation coefficient is not equal to zero, the distribution of 𝑟 is somewhat skewed.  



 

 
26 

For a given population of correlation, the Fisher’s 𝑧  values for a sample of size 𝑛  are 

virtually normally distributed with a variance of 1/(n − 3). Thus, the standard error of a Fisher's 

z transformed correlation is 1/√𝑛 − 3. 

Fisher’s 𝑧 values are calculated as 

1

2
[ln(1 + 𝑟) − ln (1 − 𝑟)]                                              (2.14) 

2.3.3 Dynamic Granger Causality 

The Granger causality (GC) [78] is a statistical concept which infers whether the information 

in past variable 𝑋 = [𝑥(1), 𝑥(2), … 𝑥(𝑡)] could benefit the prediction of present variable 𝑌 =

[𝑦(1), 𝑦(2), … 𝑦(𝑡)]. 

The identification of causality relationship is based on statistical hypothesis. If “X” happens 

prior to “Y”, “X” could be referred as the cause, while “Y” could be referred as the effect. When 

the present value of Y could be evaluated based on its own past values and the past values of 

another varied variable X, the X could be considered as granger-causes Y [79][80]. Therefore, the 

null hypothesis is stated as the X does not granger-cause Y, while the alternate hypothesis is stated 

as the X granger-causes Y. 

To test the null hypothesis, a univariate autoregression of Y could be formulated as following 

𝑦(𝑡) = 𝑎0 + 𝑎1𝑦(𝑡 − 1) + 𝑎2𝑦(𝑡 − 2) + ⋯ 𝑎𝑚𝑦(𝑡 − 𝑚) + 𝜀1(𝑡)               (2.15) 

where 𝑚 is the number of lags for Y. 
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For the alternate hypothesis, a multivariate autoregression of Y is augmented by including 

lagged values of X: 

 𝑦𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑(𝑡) = 𝑎0 + 𝑎1𝑦(𝑡 − 1) + 𝑎2𝑦(𝑡 − 2) + ⋯ 𝑎𝑚𝑦(𝑡 − 𝑚) 

                 +𝑏0 + 𝑏1𝑥(𝑡 − 𝑛1) +    𝑏2𝑥(𝑡 − 1) + ⋯ 𝑏𝑛𝑥(𝑡 − 𝑛) + 𝜀2(𝑡)    (2.16) 

where 𝑛 is the number of lags for X. 

The F-statistic of 62(𝑦) − 62(𝑦𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑)  is calculated to examine whether all lagged 

values of x add explanatory power to the regression. 

In practice, there could be more than two variables which granger-causes each other. 

Therefore, the multivariate granger causality analysis is usually performed by fitting GC into 

multivariate vector autoregressive model (MVAR) [39]. 

For be a k-dimensional multivariate time series. The variable vector is formulated as: 

𝑆(𝑡) = [𝑠1(𝑡), 𝑠2(𝑡), ⋯ , 𝑠𝑘(𝑡)]                                           （2.17） 

The multivariate GC model [81] is given by: 

𝑆(𝑡) = 𝐴′(0,𝑡)𝑆(𝑡) + 𝐴′(1,𝑡)𝑆(𝑡 − 1) + ⋯ + 𝐴′(𝑝,𝑡)𝑆(𝑡 − 𝑝) + 𝐸(𝑡)              （2.18） 

where the model coefficients 𝐴′ were estimated by using variable parameter regression [82], 

and p is an arbitrary time delay [83] which calculates the optimal set of coefficients that minimizes 

the model error E(t). The coefficient 𝐴′(p,𝑡) indicates the degree to the involvement of the past 
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𝑋(𝑡 − 𝑝) in predicting the present 𝑋(𝑡). The sum of all coefficients corresponding to all delays 

at time 𝑡 is considered as Dynamic Granger Causality (DGC), and calculated as: 

𝐷𝐺𝐶𝑖𝑗(𝑡) = ∑ 𝑎′𝑖𝑗
𝑝
𝑛=1 (𝑛, 𝑡)                                             （2.19） 

In this framework, 𝐷𝐺𝐶𝑖𝑗  is the strength of causal relationship from component i to 

component j at time instant t, where all values of component 𝑖 at past 𝑝 timepoint at component 

𝑖 together were involved in the prediction of the present value in component 𝑗. The 𝑎′𝑖𝑗 are the 

elements of coefficient matrix 𝐴′. 

2.3.4 Visualization of Connectivity 

Since the brain itself functions as a complex network, graph theoretic approaches are a natural 

and attractive choice for fMRI connectivity analysis. In brain functional network analysis, 

functional brain regions are projected as nodes and the connectivity between each pair of regions 

as edge. Therefore, the visualization of brain network should be considered both based on graph 

theory and brain structure.  

(1) Directly diagram 

In directly diagram, the functional units are represented as nodes and the edges are represented 

as straight lines, polylines, or curves on the Euclidean plane. By using arrowheads, weighted node 

or edges, directly connectivity diagram could carry additional information, such as orientation or 

classified subnetwork. The adjustability of position allows flexible network display. However, the 



 

 
29 

designed space for the visualization of weighted graphs is limited due to the use of color, and the 

actual structural position cannot be displayed. In addition, if diagrams represent dense graphs, it is 

not sufficient to encode weight and orientation of the edge.  

(2) Connectivity matrix  

The connectivity matrix is defined as a correlation matrix between brain functional units 

(voxel or ROIs). It is a square matrix, and the value of each element of the matrix indicates the 

weighted edges in pair-wise nodes, identified by its index of row and line. Connectivity matrix 

visualization is advantageous for avoiding any wasted space. Especially for a large sparse graph, 

it requires less storage space and the captivity of storage facilitates the encoding of additional 

information in cells more effectively. However, this visualized method is limited in localizing the 

structural position and identifying the structure of network.  

(3) 3D Graph 

In the 3D node-link diagrams, ROIs are shown as nodes and weighted edges denote the 

straight line of pair-wise nodes. Additional information can be encoded by the size or color of the 

nodes, and the thickness and color of the edges. The biggest advantage of the 3D graph is that all 

the nodes are localized in its structural position. In addition, it could facilitate the comparison by 

overlaying two connectivity datasets. However, images of large datasets are still cluttered and 

suffer from the known side effects of the 3D rendering such as occlusion. All this renders it difficult 

to perform accurate visualization. 
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Chapter 3 

Aberrant Hemodynamic Responses in Autism: Implications for 

Resting State fMRI Functional Connectivity Studies 

 

 

Abstract 

Functional magnetic resonance imaging (fMRI) is modeled as a convolution of the 

hemodynamic response function (HRF) and an unmeasured latent neural signal. However, the 

HRF itself is variable across brain regions and subjects. This variability is induced by both neural 

and non-neural factors. Aberrations in underlying neurochemical mechanisms which control the 

shape of the HRF have been reported in Autism Spectrum Disorders (ASD). Therefore, we 

hypothesized that this will lead to voxel-specific, yet systematic differences in the shape of the 

HRF between individuals with Autism and healthy controls. As a corollary, we also hypothesized 

that such alterations will lead differences in estimated functional connectivity in the fMRI space 

as compared to the latent neural space. In order to test these hypotheses, we performed blind 

deconvolution of resting state fMRI time series acquired from large number of ASD and control 

subjects obtained from the Autism Brain Imaging Data Exchange (ABIDE) database. Many brain 

regions previously implicated in Autism showed systematic differences in HRF shape in the ASD 

population. Specifically, we found that the precuneus had aberrations in all HRF parameters. 
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Consequently, we obtained precuneus-seed-based functional connectivity differences between 

ASD and controls in fMRI as well as latent neural space. We report that raw fMRI data failed to 

detect group differences in connectivity between precuneus and certain brain regions that were 

however observed in deconvolved data. Our results are relevant for the understanding of 

hemodynamic and neurochemical aberrations in ASD, as well as have methodological implications 

for resting state functional connectivity studies in Autism and more generally in disorders that are 

accompanied by neurochemical alterations that may impact HRF shape.  

Keywords: Resting-state fMRI, Deconvolution, Autism, Hemodynamic response function 

(HRF), Seed-based functional connectivity 

3.1 Introduction 

Resting-state functional magnetic resonance imaging (fMRI) is widely used to examine brain 

networks by investigating temporal correlations of the blood oxygen level dependent (BOLD) 

signals in different brain regions [84][85]. Specifically in the case of Autism Spectrum Disorder 

(ASD), resting state fMRI based functional connectivity studies could be used to identify potential 

biomarkers [86][87][88]. For example, the underconnectivity of the superior temporal sulcus that 

predicts emotion recognition deficits ASD have been reported [89]. Also deficits in the 

somatosensory, default mode, and visual regions have been highlighted in characterizing ASD [90]. 

Notwithstanding the strides made in understanding the neurobiology underlying ASD using 

resting state fMRI functional connectivity, one drawback of the method is that the BOLD signal 

only provides an indirect measurement of neural activity [46], i.e. the observed BOLD signal is a 
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convolution of latent neural activity with the hemodynamic response function (HRF). The HRF is 

the transfer function that broadly represents neurovascular coupling. This could raise many issues 

while using the BOLD signal as a tool for examining and inferring neural activity. Specifically 

problematic is the large variability of the HRF across subjects, as well as across brain regions in 

the same subject [47][48][91]. Further, the HRF seems to vary across pathological populations [57] 

[92] and can be influenced by the composition of the Genome [49]. With specific reference to 

ASD, prior studies have shown alterations in neurotransmitters which control neurovascular 

coupling [57], and this could potentially cause changes in the HRF. Therefore, if the HRF varies 

due to any factors other than underlying neural activity, it could lead to false inferences of 

functional connectivity because synchronicity between observed BOLD data in any two given 

brain regions may or may not exist in latent neural data depending on the differences in HRF shape 

between the two given regions (Figure 3.1) [93]. Therefore, our objective in this work is to 

investigate the effects of HRF variability on resting state fMRI functional connectivity estimates 

in the ASD population. In order to do so, we utilize blind deconvolution of resting state fMRI data 

[75] from ASD and control populations and characterize functional connectivity differences before 

and after deconvolution.  
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Figure 3.1 Illustration of the impact of HRF variability on functional connectivity analysis. Both 

measured BOLD signal, retrieved latent neural signal and the voxel-level HRF are shown. (A) Two real 

fMRI data timeseries that have low correlation while the correlation between underlying neural signals is 

high. (B) Two real fMRI data timeseries that are highly correlated while the correlation between underlying 

neural signals is low. This apparent dissociation between BOLD and latent neural space is induced by the 

spatial variability of the HRF shape (especially, its latency), as illustrated.  

In fMRI task paradigms, the neural activity as well as the BOLD response is entrained to the 

external sensory input or the motor output. Hence, it is relatively straightforward to deconvolve 

the HRF and recover latent neural activity, as the timing of neural events is known [17][18][19]. 

However, this is not true in case of resting state wherein the neural events must be estimated from 

the data [16][96] or inferred from independent measurements of electrical activity [53] before 

deconvolution is performed. In this study, we employ the resting state fMRI deconvolution method 

proposed by Wu et al [16], which is based on assuming resting state data to be generated by neural 

events at random times and then performing Weiner deconvolution.  
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In ASD, the abnormalities of the neurotransmitters which control neurovascular coupling are 

well established [57][97]. Thus, we hypothesized that the HRF, which depends on cerebrovascular 

reactivity and neurovascular coupling, may be altered between ASD and the healthy control groups, 

thereby altering inferred group differences in resting state functional connectivity. We examined 

voxel-specified HRFs obtained by deconvolving each voxel time series and characterized group 

differences of HRF shape in terms of three parameters: time-to-peak (TTP), response height (RH), 

and full-width at half-max (FMHW) (see Figure 3.2). We determined brain regions with the 

significantly altered HRF between the ASD and the control groups. Further, we examined possible 

impacts of the altered HRF on the resting state fMRI functional connectivity differences between 

the groups.  

 

Figure 3.2 Estimates of response height (RH), time-to-peak (TTP), and full-width at half-max (FMHW) 

from a simulated HRF.  
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3.2 Materials and methods 

3.2.1 Resting-states fMRI Data  

The Autism Brain Imaging Data Exchange (ABIDE) [98] consists of resting state fMRI data 

from 1102 subjects contributed by 17 different institutions, including 531 individuals with ASD 

and 571 age- and sex-matched typical controls. Of these subjects, 739 were males, and 363 were 

females (Table 3.1). The data from each subject consisted of resting functional MRI acquisitions 

and a volumetric magnetization-prepared rapid acquisition with gradient echo (MPRAGE) image. 

Local Institutional Review Boards (IRBs) approved the study protocol at each institution, the 

subjects provided informed consent and the data was fully anonymized in accordance with Health 

Insurance Portability and Accountability Act (HIPAA) guidelines. Details of acquisition, informed 

consent, and site-specific protocols are available at http://fcon_1000.projects.nitrc.org/indi/abide/. 

Table 3.1. Gender distribution of ASD data in ABIDE acquired at 17 different institutions. 

No. Institutions Male Female Total 

1 California Institute of Technology 30 8 38 

2 Kennedy Krieger Institute 42 13 55 

3 University of Leuven 56 8 64 

4 Ludwig Maximilians University Munich 50 7 57 

5 Oregon Health and Science University 28 0 28 

6 University of Pittsburgh School of Medicine 49 8 57 

7 Social Brain Lab UMC Groningen NIN 30 0 30 

8 San Diego State University 14 24 36 

9 Stanford University 20 20 40 

10 Trinity College Dublin 49 0 49 

http://fcon_1000.projects.nitrc.org/indi/abide/
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11 University of California, Los Angeles 55 44 99 

12 University of Michigan 117 28 145 

13 NYU Langone Medical Center 79 105 184 

14 Olin, Institute of Living at Hartford Hospital 20 16 36 

15 University of Utah School of Medicine 58 43 101 

16 Yale Child Study Center 28 28 56 

17 Carnegie Mellon University 14 13 27 

3.2.2 Pre-processing 

The pre-processing of resting state fMRI data was performed by using Data Processing 

Assistant for Resting-State fMRI (DPARSF) [99] based on Statistical Parametric Mapping (SPM8) 

[100] and Resting-State fMRI Data Analysis Toolkit [101]. For each individual participant’s data 

set, the first 4 image volumes were discarded. The remaining volumes underwent the following 

pre-processing steps. Slice time correction was performed by shifting the signal measured in each 

slice relative to the acquisition of the slice at the mid-point of each TR. Realignment of all the 

images by using the six rigid body motion parameters was followed by spatial normalization of 

the data to the Montreal Neurological Institute (MNI) template. Then we regressed out head motion 

effects from the fMRI signal with a 24-parameter (6 head motion parameters, 6 head motion 

parameters one time point before, and the 12 corresponding squared items) model [102]. The 

signals from the white matter and cerebrospinal fluid were regressed out to reduce respiratory and 

cardiac effects. At this point, the processing pipeline was split into two. In the first pipeline, the 

data was deconvolved using the method proposed by Wu et al [16], and the resulting latent neural 
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variables were temporally bandpass filtered in the (0.01 - 0.1 Hz) range. We will refer to this as 

the deconvolved (DC) dataset. In the second pipeline, the data was not deconvolved (hitherto 

referred to as non-deconvolved or NDC dataset), but was subjected to temporal bandpass filtering 

in the (0.01 - 0.1 Hz) range.  

3.2.3 Blind Deconvolution and HRF Estimation 

In order to characterize HRF variability in the data [48], we employed a blind deconvolution 

technique developed for resting state fMRI by Wu et al [75]. It is based on the idea that the resting 

state BOLD signal could be considered as the convolution of a voxel-specific HRF and 

spontaneous neural events occurring at random times [103] Spontaneous neural events were 

detected by picking up BOLD fluctuations of relatively large amplitude as pseudo neural events 

[103]. This was done after potential sources of noise were reduced or eliminated to the extent 

possible so that spikes contributed by noise sources were not mistaken for neural events. These 

pseudo-event onsets were then shifted with different delays in order to determine the delay at 

which the model fit was greatest. Once the pseudo-events and their onsets were determined, voxel-

specific HRFs and the latent neural variables were reconstructed from the raw BOLD signal using 

Weiner deconvolution [20]. The estimated HRFs were characterized by three parameters: response 

height (RH), time-to-peak (TTP), and full-width at half-wax (FWHM).  

The parameters were Z-scored. Also, a one-way ANONVA analysis was performed, and the 

result indicated there are no differences between parameters which acquired by the fMRI data 
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provided by different sites. A two-way ANONVA analysis was performed to check the interaction 

between group and sites, and the result indicated no interaction between group and sites. 

3.2.4 Seed Region Selection  

Our motive was to find brain regions that had alterations in all the three HRF parameters (TTP, 

FWHM and RH) in ASD compared to control subjects and use these regions as seeds to perform 

functional connectivity mapping with DC and NDC data. Two sample two-tailed t-tests were 

conducted using ASD and control samples separately for the three parameters to obtain maps 

indicating voxels with statistically significant difference (FDR corrected p-value<0.05, cluster 

size>50 voxels) between the groups. This resulted in two maps per parameter (ASD>control and 

control>ASD) and six maps overall. These maps were overlapped to obtain brain regions that had 

alterations in all the three HRF parameters. We found that this corresponded to the precuneus 

where in all the three HRF parameters were greater in controls compared to ASD. Therefore, 

precuneus was selected as the seed region of interest (seed ROI) for calculating resting functional 

connectivity maps with the remaining brain regions (Figure 3.4). Table 3.2 lists the details of the 

chosen seed region, including the Montreal Neurological Institute (MNI) coordinates of the cluster 

as well as cluster size. 

3.2.5 Seed-based Functional Connectivity 

For each participant, seed-based connectivity maps were obtained by evaluating Pearson’s 

correlation coefficient between the mean time series from the precuneus seed ROI and the rest of 
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the pre-processed voxel time series in the brain. A Fisher's z-transform was applied to improve the 

normality of these correlation coefficients [104][105]. The converted z-score maps hereafter are 

referred to as “the correlation maps”. This pipeline was implemented separately for the two 

datasets: (i) NDC: data pre-processed without deconvolution, and (ii) DC: data pre-processed with 

deconvolution.  

3.2.6 Group-level Analyses 

The z –score maps from individual subjects were entered into a random effect one-sample t-

test to determine the brain regions showing significant connectivity to the precuneus within each 

group. They were also entered into a random effect two-sample t-test to identify the regions 

showing significant differences in connectivity to the precuneus between control and ASD groups 

[106]. These procedures were also implemented separately for both DC and NDC datasets.  

3.2.7 The Effect of Deconvolution 

To investigate the effect of deconvolution on between-group differences in functional 

connectivity, a two-way repeated-measures ANOVA was performed within each voxel connected 

with the precuneus seed. We considered the groups (Control and ASD) as one factor and 

with/without applying deconvolution as the other factor. The voxels showing a significant 

interaction between the two factors (FDR corrected, p<0.05) were identified. Statistical tests were 

performed using SPSS (version 20, IBM Inc., USA).  
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3.3 Result  

3.3.1 Inter-group HRF Differences 

We found that the bilateral inferior occipital gyrus and precuneus had significantly higher RH 

(Figure 3.3A) in the control group while the middle frontal gyrus and bilateral rectus had 

significantly (p<0.05 FDR corrected) higher RH (Figure 3.3B) in the ASD group. The bilateral 

parietal lobule, bilateral rectus, supramarginal gyrus, superior temporal gyrus, and precuneus 

exhibited significantly higher FWHM (Figure 3.3C) in the control group while the middle temporal 

gyrus exhibited significantly higher FWHM (Figure 3.3D) in the ASD group. The left lingual gyrus 

and precuneus showed significantly higher TTP (Figure 3.3E) in the control group. Detailed 

information such as cluster sizes, cluster centroids etc. are represented in Table 2. We found that 

only one cluster within the precuneus showed alterations in all three HRF parameters (Figure 3.4) 

(note: RH, TTP and FWHM were higher in Control group in this region compared to ASD). 
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Figure 3.3 Spatial maps showing regions with significantly different HRF parameters in ASD as 

compared to the control group. (A) Response height, Control>ASD (B) Response height, ASD>Control, (C) 

FWHM, Control>ASD, (D) FWHM, ASD>Control, (E) Time-to-peak, Control>ASD (F) Time-to-peak, 

Control<ASD 
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Figure 3.4 The cluster within the precuneus which showed alterations in all three HRF parameters 

with RH, TTP and FWHM being higher in Controls compared to ASD   

Table 3.2. Voxel clusters which had significantly (p<0.05 FDR corrected) different HRF parameters 

in control versus ASD subjects. The anatomical labels, MNI co-ordinates of cluster centroid, cluster size 

and corresponding Brodmann areas are listed. 

Comparison 
Coordinates 

Cluster size Cluster anatomical location Hemisphere Brodmann area 
x y z 

Full-width at half max 

Control>ASD 

-27 9 51 109 Superior Parietal Gyrus Left 7 

-3 -51 16 153 Precuneus Bilateral 29 30 3130 

24 -68 51 85 Superior Parietal Gyrus Right 7 

1 51 -15 178 Rectus Bilateral 10 11 

64 -36 53 42 SupraMarginal Gyrus right 40 

57 6 -3 54 Superior Temporal Pole right 22 38 

Full-width at half max 

Control<ASD 
39  9 -39 85 Middle Temporal Pole right 21 

Response height 

Control>ASD 

 

-30 -90 -12 180 Inferior Occipital Gyrus Left 17 18 19 

3 -57 20 1020 Precuneus Bilateral 31 23 30 7 18 19 

27 -90 -12 140 Inferior Occipital Gyrus Right 17 18 19 

Time-to-peak 

Control>ASD 

 

-15 -90 -16 109 Lingual Right 18 

9 -57 18 122 Precuneus Bilateral 31 7 

Response height 

Control<ASD 

 

12 34 -20 236 Rectus Right 11 25 47 

-8 30 -22 182 Rectus Left 11 25 47 

38 32 -18 158 Inferior Frontal Gyrus Right 11 

-20 62 24 308 Superior Frontal Gyrus Left 9 10 

Region of overlap -3 -60 27 50 Precuneus Bilateral 31 

* Coordinates referring to the center of the cluster, in the MNI Space. 

* Anatomical labels based on Automated Anatomical Labeling (AAL). 
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3.3.2 Precuneus-based Functional Connectivity within Groups 

In the NDC dataset, positive functional connectivity between the precuneus seed and bilateral 

angular gyrus were observed in both control and ASD groups (Figures 3.5B and 3.5D). For the 

control group, the positive functional connectivity between precuneus and the medial frontal lobe 

as well as negative functional connectivity between precuneus and right superior temporal gyrus 

(also containing a bit of the Insula) were detected, while these were not detected in the ASD group. 

In the DC dataset, more clusters significantly connected with the precuneus were detected in 

both groups (Figures 3.5A and 3.5C). In the ASD group, in addition to precuneus – bilateral 

angular gyrus connectivity that was observed with NDC data, additional significant positive 

functional connectivity between precuneus and the medial frontal gyrus was detected. Likewise, 

in the control group, functional connectivities identified with NDC data were also identified using 

DC data. Additionally, positive functional connectivity between the precuneus and right middle 

temporal gyrus as well as negative functional connectivity with right supramarginal gyrus and 

bilateral insula were also detected. It is noteworthy that for regions identified to be functionally 

connected to precuneus in both DC and NDC datasets, those obtained from the DC dataset had a 

larger spatial extent (Table 3.3).  
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Figure 3.5 Within group functional connectivity maps with precuneus seed. (A) Deconvovled ASD 

group.  (B) Non-deconvovled ASD group.  (C) Deconvovled Control group.  (D) Non-deconvolved 

Control group. Red indicates area of the significant positive functional connectivity while blue indicates 

significant negative functional connectivity. 
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Table 3.3 Anatomical labels, cluster size and z-score of local maxima in brain areas showing 

significant (p-value < 0.05 FDR corrected) functional connectivity with precuneus in the control and ASD 

groups, for both deconvolved and non-deconvolved datasets.   

Cluster anatomical location  
Peak coordinates 

Cluster size Peak intensity (z) Hemisphere Brodmann area 
x y z 

Deconvolved ASD 

Angular Gyrus 48 -60 30 365 4.59 Right  39 40 

Angular Gyrus -42 -63 30 464 5.16 Left  19 39 40 

Medial Frontal Gyrus 0 57 -9 61 3.28 Bilateral 11 

Non-deconvolved ASD 

Angular Gyrus 48 -60 30 315 4.47 Right  39 40 

Angular Gyrus -42 -63 30 418 4.88 Left  19 39 40 

Deconvolved Control 

Angular Gyrus -42 -66 33 460 5.12 Right 39 40 

Angular Gyrus 51 -60 27 611 5.50 Lleft 7 19 39 40 

Medial Frontal Gyrus 0 57 -12 409 4.05 Left 9 10 11 32 

.Middle Temporal Gyrus  60 -6 -21 56 3.28 Right 21 

Insula 54 12 -3 220 -3.34 Right 13 22 44 

Insula -33 15 3 116 -2.94 Left 13 22 

Supramarginal Gyrus 60 -30 42 54 -2.95 Right 2 40 

Non-deconvolved Control 

Angular Gyrus 51 -63 30 383 4.86 Right  39 40 

Angular Gyrus -42 -66 33 554 5.35 Left  7 19 39 40 

Medial Frontal Gyrus 0 57 -12 243 3.82 Bilateral 10 11 

Superior Temporal Gyrus 54 12 -3 99 -3.06 right 22 

* Coordinates referring to the peak of the cluster in MNI Space. 

* Anatomical labels are based on Automated Anatomical Labeling (AAL) 

* Z-value is the mean across the group. 

3.3.3 Precuneus-based Connectivity Differences between Groups 

We quantified the differences in functional connectivity of the precuneus between ASD and 

control groups, using both DC and NDC datasets. In the NDC dataset, the superior temporal gyrus 
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showed higher negative connectivity with precuneus in the control group, while bilateral angular 

gyrus and medial frontal gyrus showed higher positive connectivity in the control group compared 

to ASD (Figure 3.6, Table 3.4). In the DC dataset, the superior temporal gyrus, insula and right 

supramarginal gyrus showed higher negative connectivity with precuneus in the control group 

while bilateral angular gyrus, medial frontal gyrus and right middle temporal gyrus showed higher 

positive connectivity in the control group compared to ASD (Figure 3.6, Table 3.4).  

 

Figure 3.6 Between-group (ASD vs. control) differences in functional connectivity maps estimated from 

a seed in precuneus. Results are shown from both DC and NDC datasets. (A) Non-deconvovled 

ASD>Control (B) Deconvovled ASD>Control (C) Non-deconvovled Control >ASD (C) Deconvovled 

Control>ASD 
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Table 3.4. Anatomical labels, cluster size and t-score of local maxima in brain areas showing 

significant between group (ASD vs. control) differences (p-value<0.05 FDR corrected) in functional 

connectivity with precuneus, for both deconvolved and non-deconvolved datasets.   

Cluster anatomical 

location 

Peak coordinates Cluster 

size 

Peak 

intensity (t) 
Hemisphere 

Brodmann 

area 

Z-score in 

ASD 

Z-score in 

Control x y z 

Non-deconvolved Control>ASD  

Superior Temporal 

Gyrus 
54 9 -4 

     

99 

    

6.32 
Right 22 

-2.45 -2.59 

Deconvolved ASD>Control   

 Insula  -44 7 -3 214 5.31 Right 13 22 44 -2.77 -3.34 

 Insula -45 6 -3 103 4.90 Left 13 22 -2.61 -2.94 

Supramarginal Gyrus 57 -33 44 54 4.89 Right 40 2 -2.43 -2.95 

Non-deconvolved Control>ASD  

Angular Gyrus 57 -63 27 212 5.39 Right 39 40 4.47 4.86 

Angular Gyrus -42 -75 42 337 4.99 Left 7 19 39 40 4.88 5.35 

Superior Frontal 

Gyrus 
-3 54 3 243 6.77 Bilateral 10 11 

2.93 3.82 

Deconvolved Control>ASD  

Angular Gyrus 54 -66 30 282 5.70 Right 39 40 4.59 5.12 

Angular Gyrus -42 -75 42 348 4.59 Left 7 19 39 40 5.16 5.50 

Superior Frontal 

Gyrus 
3 60 -13 409 6.76 Bilateral 9 10 11 32 

3.28 4.05 

Middle Temporal 

Gyrus 
54 -3 -24 56 6.81 Right 21 

2.51 3.28 

* Coordinates referring to the peak of the cluster in MNI Space. 

* Anatomical labels based on Automated Anatomical Labeling (AAL) 

* Z-value is the mean across the group. 
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3.3.4 The Effect of Deconvolution 

Voxels in left medial frontal gyrus, left cuneus, right angular gyrus and bilateral postcentral 

gyrus showed a significant (p<0.05 FDR corrected) interaction effect between groups and 

deconvolution (Figure 3.7, Table 5). This means that group differences between ASD and Controls 

in these regions would be inferred differently in DC and NDC data.  

 

Figure 3.7 The brain regions showing significant (p-value<0.05, FDR corrected) interaction between 

groups (ASD and control) and with/without applying deconvolution.  
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Table 3.5. Anatomical labels, cluster size and p-value of local maxima in brain areas showing 

significant interaction (p-value<0.05, FDR corrected) between groups (ASD and control) and with/without 

applying deconvolution method.  

Cluster anatomical location 

Peak coordinates 
Clust

er size 

Hemi

sphere 

Bro

dmann 

area 
x y z 

Medial Frontal Gyrus 
-

6 

4

8 

1

8 
68 Left 10 

Cuneus 
-

9 

-

69 

2

4 
31 Left 31 

Angular gyrus 
3

0 

-

63 

4

2 
34 Right  

Postcentral Gyrus 
3

3 

-

39 

5

1 
78 Right  

Postcentral Gyrus 
-

27 

-

44 

6

6 
53 Left 5 

* Coordinates referring to the peak of the cluster in MNI Space. 

* Anatomical labels based on Automated Anatomical Labeling (AAL). 

3.4 Discussion 

In this study, we test the hypothesis that the HRF is altered in individuals with ASD as 

compared to controls and this could lead to differences in resting state functional connectivity 

estimated in the latent neural space as compared with that obtained from raw BOLD data. In order 

to do so, we estimated the HRF at each voxel using a blind deconvolution technique and 

characterized significant differences in HRF characteristics such as RH, FWHM and TTP. Further, 

resting state functional connectivity maps obtained from DC and NDC data had significant 

differences and this impacted inferences about group differences derived from resting state 

connectivity analysis. These results seem to confirm scenarios such as the ones shown in Figure 

3.1 do occur in experimental data. Therefore, we feel that it is desirable to perform resting state 
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functional connectivity analysis in the latent neural space than with BOLD data so that the 

uncertainty introduced by the variability of the HRF is taken care of.   

The shape of the HRF is controlled by both non-neural and neural factors. The non-neural 

factors which impact the shape of the HRF include vasculature differences, baseline cerebral blood 

flow, hematocrit, alcohol/caffeine/lipid ingestion, partial volume imaging of veins, global 

magnetic susceptibilities, slice timing differences and pulse or respiration 

differences[50][51][52][47]. These factors induce HRF differences across both brain regions and 

subjects. Such differences seem to be random and will likely cancel out when we look at systematic 

differences between groups of subjects [47]. Therefore, the systematic differences in the shape of 

the HRF observed between ASD and controls are at least partly due to underlying neural factors 

that control the HRF shape.  

A comprehensive account of neural factors that control the shape of the HRF is beyond the 

scope of this report. However, we will discuss neurochemicals that have been shown to affect the 

shape of the HRF and then link them with independent reports of altered neurochemistry in Autism. 

Figure 3.8 shows various neurochemicals which control the coupling between neural activity and 

blood flow [4]. The demand for energy due to neural activity is coupled to blood flow changes by 

signaling pathways controlled by various neurochemicals that directly or indirectly mediate 

vasodilation or vasoconstriction. HRF is a mathematical transfer function which represents this 

coupling and hence could be altered as a consequence of changes in any of these neurochemicals. 

Specifically, glutamatergic and GABAergic interneurons impact the HRF [107] by releasing 
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neuromodulators which control local cerebral blood flow [108][109]. In brain regions with low 

concentrations of GABA [110], taller, quicker and narrower HRFs have been observed previously. 

Also, local activation of brain regions cause blood vessel dilation, which is mediated by 

glutamatergic actions on N-methyl-D-aspartate (NMDA) receptors [111]. Therefore, we 

concentrate on abnormalities in GABA, serotonin, nitric oxide (NO) and glutamate in ASD (as 

indicated in Figure 3.8).  

 

Figure 3.8 A schematic illustrating how various neurochemicals control the coupling between neural 

activity and blood flow. Abnormalities in GABA (shown as 1), nitric oxide (shown as 2), glutamate (shown 

as 3) or serotonin (shown as 4) in the ASD population may impact the shape of the HRF.  

The resting GABA concentration has been shown to be correlated with the amplitude of the 

hemodynamic response [112][113]. We found that the bilateral inferior occipital gyrus and the 
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precuneus exhibited higher RH in the control group (Fig 3.3A, Table 3.2) while the bilateral rectus, 

right inferior frontal gyrus and left superior frontal gyrus (Figure 3.3B, Table 3.2) exhibited higher 

RH in the ASD group. Reduced GABA concentration in the frontal lobe has been reported in 

individuals with ASD [114]. Also, down regulation of GABA receptors in the 

superior frontal cortex has also been previously found in autistic subjects [115]. This could 

potentially explain why disinhibition from reduced GABA might have led to higher RH in ASD 

in the frontal cortex. Another study showed that when a bumetanide treatment was applied to 

reinforce GABAergic inhibition in ASD patients, it resulted in the enhanced activation of brain 

regions involved in the social and emotional perception, including the inferior occipital cortex and 

the precuneus [116]. This supports the fact that we found increased RH in these regions, which 

might have been due to inadequate amount of GABA in the inferior occipital cortex and the 

precuneus.  

Muthukumaraswamy et al showed that the GABA concentrations were positively related with 

the width of HRFs [117]. In our study, the FWHM of the HRF in the frontal lobe was lower in the 

ASD group (Figure 3.3C), in addition to reduced RH as discussed above, alluding to the possibility 

of lower GABA in the frontal lobe in ASD impacting FWHM of the HRF as well. The 

supramarginal gyrus (BA 40) [118], and parietal lobule [115] was reported to exhibit significant 

down-regulation of GABA receptors. Although the relationship between GABA receptors and 

GABA concentration is complex, they have been shown to be correlated [119]. 
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Serotonin is a vasoconstrictor that provides blood-brain barrier permeability [8] and plays a 

critical role in neurovascular coupling. The role of serotonin in controlling the shape of the HRF 

is complex given our lack of complete understanding of its production [120], uptake [121] and 

reuptake [121][122]. Altered serotonin levels have been confirmed in ASD [123]. The aberrant 

serotonin signaling pathways [124], including aberrations in serotonin transporters [125][126], 

cortical serotonin synthesis [127], and serotonin receptors [128], have been reported in individuals 

with ASD, and could potentially lead to changes in HRF shape. The brain regions where these 

serotonergic aberrations were reported are also consistent with our results. For example, the 

precuneus (BA31) (Figures 3.3A, C, and E) was reported to exhibit reduced serotonin transporters 

in ASD subjects [129]; altered serotonin system was reported in the frontal cortex (Figures 3.3B 

and C) of animal models of ASD [130]; the serotonin transporter binding in children with ASD 

was reduced in the frontal and temporal lobes (Figures 3.3C and D) [131]; and the right lingual 

gyrus (Figure 3.3E) was indicated to be associated with the serotonin abnormalities in the ASD 

patients in an acute tryptophan depletion study [129]. It is noteworthy that the superior temporal 

gyrus [132], and middle temporal gyrus [133][134] are implicated in processing anxiety, which is 

an important symptom in ASD [135]. Concomitantly serotonergic alterations have been implicated 

in anxiety of humans as well as in animal models [64][137]. Our result in fact reinforces this 

relationship.  

Nitric oxide is a vasodilator [138], and its role in neurovascular coupling has been 

demonstrated before [139]. Aamand et al reported that the intake of dietary nitrate, which induced 
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a reduction of cerebral NO, was found to be related to alterations in the shape of the HRF [140]. 

A global increase in the level of NO has been implicated in the pathology of ASD [141][142][143]. 

Studies have confirmed that altered levels of NO are related to sensory-motor dysfunction 

[144][145][146][147], which is also an important symptom observed in ASD [148][149]. We 

found larger FWHM of HRFs in the posterior parietal cortex and supramarginal gyrus of ASD 

patients (Figure 3.3C). First, it is noteworthy that these regions are involved in sensorimotor [150] 

and somatosensory association functions [151][152][153], respectively. Second, the above 

literature indicates that HRF alterations in sensorimotor regions, aberrations of NO and 

sensorimotor deficits in ASD may be related.  

Glutamate acts on astrocytes through glutamate receptors that are located on them. It triggers 

astrocytes to release several vasoactive messengers, which can either increase or decrease blood 

flow [9]. Therefore, aberrations in glutamate level and/or glutamate receptors on astrocytes could 

potentially alter neurovascular coupling and the shape of the HRF. Increased glutamate 

concentration [114] and abnormal glutamate receptor levels [154] have been demonstrated in 

subjects with ASD in the frontal cortex, and this could potentially contribute to alterations of HRF 

shape in the frontal cortex as observed by us (Figure 3.3C). Aberrant astrocytic mechanisms [155] 

were also detected in the frontal lobe of autistic subjects. Since the precise relationship between 

glutamate concentration, glutamate receptor level and astrocytic expression remains unclear, it is 

difficult to provide a more mechanistic explanation of the effect of these neurochemicals and 

associated signaling pathways on HRF parameters. 
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Since the precuneus showed alterations in all three HRF parameters, we chose that region as 

the seed for functional connectivity analysis. It is noteworthy that precuneus is a core regions of 

the Default-Mode Network [156][157][158][159]. Therefore, by using precuneus as the seed, in 

effect, we obtained the DMN in ASD and controls using both DC and NDC datasets. The between-

group differences obtained from both datasets were largely consistent with those obtained from 

previous studies [98][160][161][162][163][164][165]. Since these functional network alterations 

in Autism have been well established and discussed in detail in these previous reports, we will not 

elaborate on them further here. However, it is noteworthy that deconvolved data showed additional 

regions in both within group and between-group comparisons (Figures 3.5 and 3.6). For example, 

the connectivity of the frontal lobe with the precuneus in the ASD group was detected in the DC 

but not the NDC dataset (Figure 3.5). Even when regions were identified using both DC and NDC 

datasets, the clusters obtained from the DC dataset tended to be larger in spatial extent (Table 3.3). 

Sometimes, this shifted the peak co-ordinates of the clusters. For example, right superior temporal 

was detected to be significantly and negatively correlated with the precuneus in the Control group 

in the NDC dataset (Figure 3.5C), while in the DC dataset, the peak was found in the right insula 

(Figure 3.5D). 

S. Zhang and C. shan R. Li [158] has examined the resting-state connectivity pattern of 

precuneus. Their result included the negative connectivity with bilateral insula and right 

supramarginal gyrus and positive connectivity with right middle temporal gyrus. Due to the 

confounds brought by HRF, these paths in control group were not detected in UDC dataset, then 
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it causes the confounds in detecting the altered path between groups. The right supramarginal gyrus 

has been found related to emotion processing [166]. In resting-state, it represents a hub in ventral 

attention network and less impaired in ASD in contrast to the default mode network[45][167][168]. 

The insula was emphasized in interoception and its abnormalities would cause affective symptom 

(e.g. somatic complaints) [169]. Together with precuneus, insula actives in self-attributional 

processes[170]. Since the negative correlation could be related to neural inhibition [171][172], we 

assumed the precuneus suppresses these regions during resting-state in control group, while in 

ASD group, we can’t observed these suppressions. A study reported that bilateral insula exhibit 

negative bias in interpreting interpersonal feedback [169], this may be related to the loss of the 

negative bilateral insula-precuneus paths in ASD. Although no further explanation for negative 

right supramarginal gyrus-precuneus were found. These negative correlations are likely related to 

specific resting-state brain functions and reflecting the underlying pathology of ASD. The  

temporal cortex belongs to the subsystem of DMN, and could be related to retrieval of social 

semantic and conceptual knowledge[159], which is also related to the symptoms of ASD. 

Therefore, the positive right middle temporal-precuneus is likely a byproduct of DMN and reflects 

unconscious brain function which impaired in ASD.  

Using repeated-measures ANOVA, we investigated whether brain regions show an interaction 

between group and deconvolution factors, i.e. whether significant differences between ASD and 

control groups are themselves significantly different between DC and NDC datasets. We found 

that the connectivity between the precuneus seed and the following regions – left medial frontal 
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gyrus, left cuneus, right angular gyrus and bilateral postcentral gyrus (Figure 3.7, Table 3.4) – 

showed this interaction effect. This shows that functional connectivity group differences in these 

regions would be inferred differently in DC and NDC datasets. This finding reinforces the point 

that we would be better off performing functional connectivity analysis in the latent neural space 

using NDC data than in BOLD space using raw data so that our inferences are not confounded by 

HRF variability.  

Finally, we present some limitations of this study and point towards future directions which 

could address those limitations. First, we estimated the effect of HRF variability using seed-based 

functional connectivity using a precuneus seed. We did this since the precuneus showed alterations 

in all three HRF parameters. However, one could investigate the effect of voxel-wise HRF 

variability on voxel-wise functional connectivity differences between controls and ASD at the 

whole brain level. Second, we have discussed various neurochemical alterations in ASD and how 

they could have influenced the shape of the HRF. These inferences are indirect at best, since we 

did not directly measure the concentration of those neurochemicals. Such an endeavor, using 

noninvasive in vivo methods such as magnetic resonance spectroscopy in humans as well as 

invasive methods in animal models, could provide evidence that is more direct and further validate 

our observations.  
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Chapter 4 

Characterization of Hemodynamic Alterations in Schizophrenia and 

Bipolar Disorder and their Effect on Resting-state Functional 

Connectivity 

 

 

Abstract 

Schizophrenia (SZ) and bipolar disorder (BP) have both common and distinct clinical 

symptomatology. Their neural bases have been explored using functional connectivity between 

brain regions using resting-state functional magnetic resonance imaging (rs-fMRI). However, 

fMRI is an indirect measure of neural activity and is modeled as a convolution of the hemodynamic 

response function (HRF) and latent neural activity. The HRF varies across both individuals and 

different brain regions within an individual. Consequently, it is plausible for two brain regions to 

appear synchronized in the BOLD space while being desynchronized in latent neural space and 

vice versa. In order to address this issue, we estimated voxel-specific HRFs by deconvolving rs-

fMRI time series obtained from SZ (N=19), BP (N=35) and matched healthy individuals (N=34). 

The shape of the HRF was significantly different between the three groups in many regions 

previously implicated in SZ and BP. Specifically, we found voxels within the mediodorsal, 

habenular and central lateral nuclei of the thalamus to have HRFs with aberrations in all three of 
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its shape parameters: time to peak, response height and full width half max. Therefore, we defined 

this region as the seed, estimated seed-based functional connectivity maps in all three groups and 

characterized pairwise differences between them. Further, we performed a 2-way ANOVA and 

estimated regions exhibiting an interaction between the group and deconvolution factors. Results 

indicated that functional connectivity differences between the groups are inferred significantly 

differently with raw BOLD and deconvolved latent neural time series.  Since the variability of 

the HRF could be driven by both neural and non-neural factors, we feel that it is preferable to 

estimated functional connectivity using deconvolved data. Finally, we discuss the role of 

neurochemicals such as GABA, glutamate, serotonin and nitric oxide in controlling neurosignaling 

pathways underlying neurovascular coupling, and how previously documented alterations of these 

neurochemicals in SZ and BP could, at least in part, explain the significant differences in HRF 

shapes observed between the groups. 

Keywords: Resting-state fMRI, Deconvolution, Schizophrenia, Bipolar disorder, 

Hemodynamic response function (HRF), Seed-based functional connectivity. 

4.1 Introduction 

Schizophrenia (SZ) and bipolar disorder (BP) share significant overlap in clinical symptoms 

and neural characteristics [173][174][175]. SZ is a psychotic disorder characterized by 

altered perception, thought processes, and behaviors [176]; while BP is a mood disorder involving 

prolonged states of depression and mania [177]. A popular noninvasive method for characterizing 

the neural basis of SZ and BP is resting state functional magnetic resonance imaging (rs-fMRI) 



 

 
60 

based on the blood-oxygen-level dependent (BOLD) contrast. A primary reason for the popularity 

of rs-fMRI is that it does not require the subjects to perform an explicit task, which can be difficult 

in clinical populations. Rs-fMRI also allows us to investigate interactions between 

neurophysiological events in spatially remote brain regions by assessing the temporal correlation 

of their respective BOLD signals [178]. This is often referred to as resting state functional 

connectivity. It is used to characterize large-scale brain networks both in healthy and clinical 

populations. Specifically, to date, a number of studies have employed rs-fMRI functional 

connectivity in order to understand both shared and distinct neural alterations in SZ and BP as 

compared with healthy controls. For example, resting state connectivity related to the medial 

prefrontal cortex [44] and the anterior cingulate [179] have been shown to be altered in both SZ 

and BP. On the other hand, Meda et al reported that the connectivity between fronto-premotor and 

meso/paralimbic networks were reduced only in SZ, while connectivity between fronto-temporal 

and paralimbic networks were increased only in BP [180]. Similarly, Chai et al [44] reported that 

the decoupling of functional connectivity between the medial prefrontal cortex  and insula/ventral 

lateral prefrontal cortex distinguished BP from SZ. Despite much progress, the diagnostic value of 

these observations remains to be demonstrated using larger samples so that they can have 

predictive ability at the individual subject level.   

In spite of the understanding of the substrates underlying neurobiological differences between 

SZ, BP and healthy individuals gained from resting state fMRI, we highlight an under-appreciated 

issue in interpreting findings from rs-fMRI functional connectivity given that the fMRI blood 
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oxygenation level dependent (BOLD) contrast is an indirect measure of neural activity [46][13]. 

The measured BOLD signal is considered as a convolution of the latent neural activity with a 

transfer function – the hemodynamic response function (HRF) [20]. The issue however is that the 

shape of the HRF has been shown to vary not only across subjects, but also across different brain 

regions in the same subject [47][48]. Different factors contribute to this variability. First, it could 

be partly driven by differences in various neurochemicals (and associated neurosignalling 

pathways) controlling neurovascular coupling such as γ-aminobutyric acid (GABA), glutamate, 

serotonin and nitric oxide [4]. Second, it could be influenced by genetic factors [49]. Third, it could 

at least in part be driven by variability in non-neural factors such as baseline cerebral blood flow, 

vasculature differences, caffeine/alcohol/lipid ingestion, partial volume imaging of veins, 

hematocrit, pulse or respiration differences, global magnetic susceptibilities and slice timing 

differences [50][51][52]. Therefore, HRF variability could lead to two consequences: (i) It could 

confound functional connectivity estimates obtained from raw BOLD data. Specifically, raw 

BOLD data may appear to be synchronized when the underlying latent neural signals are not and 

vice versa [93]. (Figure 4.1) and this is problematic when HRF differences between voxels/subjects 

are driven by non-neural factors; (ii) HRF differences due to non-neural factors tend to be 

distributed randomly and when assessing systematic differences in HRF shape between clinical 

groups, differences in estimated functional connectivity may be driven by pathological alterations 

of neurochemicals controlling the neurovascular coupling (and hence HRF shape) in such groups. 

Specifically with reference to SZ and BP, prior studies have shown alterations in neurotransmitters 
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which control neurovascular coupling including GABA [58][59], nitric oxide level [63] 

[60][181][182], serotonin [61][183][64] and glutamate[184][185][62][65], and this could 

potentially cause alterations in the shape of the HRF,.  

 

Figure 4.1. The effect of HRF variability on Pearson’s correlation between two timeseries obtained 

from experimental fMRI data. The measured BOLD signal, the estimated HRF and the deconvolved BOLD 

fMRI (or latent neural) timeseries are shown in the top, middle and bottom rows respectively. We 

specifically illustrate two scenarios: (A) The acquired BOLD fMRI time series are highly correlated before 

applying deconvolution while the correlation between underlying latent neural signals is low, and (B) The 

acquired BOLD fMRI time series are uncorrelated before applying deconvolution while the correlation 

between underlying latent neural signals is high. 

 

Many deconvolution methods are capable of recovering latent neural activity and voxel-

specific HRFs from the measured BOLD signal [20][95]. The procedure is relatively 

straightforward for fMRI task paradigms because the timing of external events driving neural 

activity is known [72][186]. For resting state, which lacks external sensory input and explicit time 
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of neural events [75][96], Wu et al. [75] proposed a deconvolution method to address this scenario 

and we have used it in the current work. The voxel-specified HRFs were obtained by deconvolving 

time series at the voxel-level and were characterized in terms of three parameters: time-to-peak 

(TTP), response height (RH), and full-width at half-max (FMHW) (see Figure 4.2). 

 

Figure 4.2. Typical HRF with its three characteristic parameters. 

RH: response height; TTP: time-to-peak; FWHM: full-width at half max. 

In this work, we sought to identify brain regions which had systematic differences in HRF 

shape between SZ, BP and matched healthy control groups in an effort to identify differential 

neurovascular coupling mechanisms in these disorders. Further, we estimated resting state 

functional connectivity in both the latent neural and raw BOLD spaces in an effort to identify 

possible confounds introduced by the variable HRF in identified functional networks. 
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4.2 Materials and Methods 

4.2.1 Participants 

The subject sample consisted of 38 patients satisfying DSM-IV criteria for SZ, 19 patients  

having BP with psychosis, and 35 matched healthy controls. Patients were recruited from the 

community-based mental health teams in Nottinghamshire and Leicestershire, United Kingdom. 

The diagnosis was made in a clinical consensus meeting in accordance with the procedure of  

Leckman et al [187]. Subjects aged under 18 or above 50, with neurological disorders, current 

substance dependence, or under-intelligence (Intelligence Quotient score <70 using Quick Test) 

subjects were excluded. All patients were in a stable phase of illness, defined as a change of no 

more than 10 points in their Global Assessment of Function [DSM-IV] score and no change in 

stability of antipsychotic, antidepressant, or mood medications in 6 weeks prior to the study.  

Thirty-four healthy subjects, who are free of any psychiatric or neurological disorder and 

under-intelligence, were recruited from the local community via advertisements. The study was 

given ethical approval by the National Research Ethics Committee, Derbyshire, United Kingdom. 

All volunteers were given the written informed consent before scans. 

4.2.2 Data Acquisition 

Subject were scanned on a 3-T Philips Achieva MRI scanner (Philips, the Netherlands), using 

an 8-channel SENSE head coil with SENSE factor 2 in anterior-posterior direction. To enhance 

sensitivity, dual-echo gradient-echo echo-planar images (GE-EPI) were acquired [188] with 

sequence parameter setting as: TE1/TE2 25/53 ms, flip angle 85 degrees, 255 mm × 255 mm field 
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of view, with an in-plane resolution of 3 mm × 3 mm and a slice thickness of 4 mm, and TR of 

2500 ms. At each dynamic time point, a volume data set was acquired consisting of 40 contiguous 

axial slices acquired in descending order, a total of 410 dynamic time points during an entire 

session, with 2 sessions per subject. An anatomical image was also acquired for each participant. 

4.2.3 Pre-processing 

The data was preprocessed by using Statistical Parametric Mapping (SPM8) [100]and Data 

Processing Assistant for resting-state fMRI [101]. After an initial correction for slice-timing 

differences, spatial realignment to the first image was carried out. Participants were excluded if 

movement parameters exceeded 3 mm. An interpolation method, Art Repair [189], was used to 

correct movement artifacts. A single weighted summation of the dual-echo dynamic time course 

was obtained for each subject [190], followed by retrospective physiological correction using 

RETROICOR [191]. Unified segmentation based on spatial normalization, and smoothing using a 

Gaussian kernel of 8 mm FWHM were carried out. Following this, linear detrending was 

performed to eliminate low frequency fluctuations and high frequency noise. Finally, variance 

accounted for by six head motion parameters and the global mean signal, were removed by 

regression. In order to reduce respiratory and cardiac effects, the white-matter signal and CSF 

(cerebro-spinal fluid) signal were also regressed. At this point, the pre-processing pipeline was 

split into two different pipelines. In the first pipeline, no further processing was done and the pre-

processed data was designated as the non-deconvolved (NDC) dataset. In the second pipeline, an 
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additional deconvolution step using the method proposed by Wu et al. [75] was performed voxel-

wise and the resulting data with voxel time series representing latent neural signals was designated 

as the deconvolved (DC) dataset. Finally, both DC and NDC dataset were temporally bandpass 

filtered in the (0.01 - 0.1 Hz) range. 

4.2.4 Blind Deconvolution and HRF Estimation 

We applied a blind deconvolution technique developed for resting state fMRI by Wu et. al. 

[75] to retrieve latent neural signals as well as estimate voxel-specific HRFs. This method is based 

on modeling peaks in the resting-state BOLD signal as a response to spontaneous neuronal events 

[103][192]. The HRF which best models the observed BOLD signal as its convolution with the 

underlying pseudo-random neural events is searched over a range of biologically plausible delays. 

Then, the voxel-specific HRFs and the latent neural signals were estimated from the raw BOLD 

signal using Weiner deconvolution [20]. The shape of the voxel-specific HRF was characterized 

using three easily interpretable parameters: response height (RH), time to peak (TTP), and full 

width half max (FWHM) (Figure 4.2). 

4.2.5 Seed Region Selection 

In order to investigate the effect of HRF variability on functional connectivity, we set out to 

estimate seed-based functional connectivity using DC and NDC datasets. In order to do this, we 

wanted to identify seed regions whose HRF shape was different in all the three groups. For each 

of the three HRF parameters, two sample two-tailed t-tests were conducted in three comparisons 

separately: SZ vs control, BP vs control, and SZ vs BP.  In each comparison, maps that indicate 
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voxels showing significant (FDR corrected p-value<0.05, cluster-size>50) differences in three 

HRF parameters were obtained. This resulted in 6 maps (SZ<control, SZ>control, BP<control, 

BP>control, SZ<BP, and SZ>BP) per parameter and 18 maps overall. The regions identified in the 

intersection of all the 18 maps had altered HRF parameters in every comparison. We found only 

the thalamus in this intersection and hence was defined as the seed region of interest (seed ROI). 

4.2.6 Seed-based Functional Connectivity 

For each participant, the mean time series within the thalamus seed ROI was obtained. The 

functional connectivity between the thalamus seed and the remaining voxels in the brain were 

evaluated using Pearson’s correlation coefficient between the mean time series of the seed ROI 

and the time series extracted from the rest of the voxels in the brain. The correlation coefficients 

were transformed by Fisher's z-transform to improve the normality [104][105]. The converted z-

score maps are hereafter referred to as “the correlation maps”. This pipeline was implemented 

separately for the two datasets: (i) NDC: data pre-processed without deconvolution, and (ii) DC: 

data pre-processed with deconvolution. 

4.2.7 Group-level Analyses 

For each group, the z-score maps from individual subjects were entered into a random effects 

one-sample t-test to determine voxels whose connectivity with the thalamus seed were 

significantly greater than zero. Subsequently, the correlation maps from individual subjects were 

also entered into a random effects two-sample t-test to identify brain regions showing significantly 

different connectivity with the thalamus seed ROI in three comparisons separately (SZ vs control, 
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BP vs control, and SZ vs BP). These procedures were also implemented separately for both DC 

and NDC datasets.  

4.2.8 The Effect of Deconvolution 

With the aim of investigating the effect of deconvolution on between-group differences in 

functional connectivity, we performed a two-way repeated-measures ANOVA using SPSS 

(version 20, IBM Inc., USA) software. In this analysis, the groups (SZ, BP, and Control) were 

considered as one factor and data with/without deconvolution as the other factor. We then 

identified the voxels showing a significant interaction between the two factors (FDR corrected p-

value<0.05, cluster size>40 voxels). 

4.3 Result  

4.3.1 Between-group HRF Differences 

In the SZ vs control comparison, we found that the bilateral thalamus, midbrain and precuneus 

had significantly (FDR corrected p-value<0.05) wider FWHM (Figure 4.3A) in the SZ group while 

the bilateral cerebllum posterior lobe, left middle frontal gyrus and bilateral precentral gyrus had 

significantly (FDR corrected p-value<0.05) wider FWHM (Figure 4.3A) in the control group. The 

right anterior cingulate cortex and the right parahippocampal gyrus had significantly (FDR 

corrected p-value<0.05) higher RH (Figure 4.3A) in the SZ group while the bilateral cerebellum 

posterior lobe, posterior cingulate, precuneus and lingual gyrus had significantly (FDR corrected 

p-value<0.05) higher RH (Figure 4.3A) in the control group. The bilateral midbrain had 
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significantly (FDR corrected p-value<0.05) longer TTP (Figure 4.3A) in the SZ group while the 

bilateral cerebellum posterior lobe had significantly (FDR corrected p-value<0.05) longer TTP 

(Figure 4.3A) in the control group. 

In the BP vs control comparison, we found that the bilateral anterior cingulate cortex and 

precuneus had significantly (FDR corrected p-value<0.05) wider FWHM (Figure 4.3B) in the BP 

group while the bilateral cerebellum posterior lobe, left middle temporal gyrus and bilateral 

precentral gyrus had significantly (FDR corrected p-value<0.05) wider FWHM (Figure 4.3B) in 

the control group. The bilateral anterior cingulate cortex, bilateral cingulate gyrus, bilateral medial 

frontal gyrus, and right supramarginal gyrus had significantly (FDR corrected p-value<0.05) 

higher RH (Figure 4.3B) in the BP group while the bilateral cerebellum posterior lobe, bilateral 

cerebellum anterior lobe, bilateral thalamus and bilateral medial frontal gyrus had significantly 

(FDR corrected p-value<0.05) higher RH (Figure 4.3B) in the control group. The bilateral 

cingulate gyrus had significantly (FDR corrected p-value<0.05) longer TTP (Figure 4.3B) in the 

BP group while the bilateral cerebellum posterior lobe, left middle temporal gyrus, and bilateral 

middle frontal gyrus had significantly (FDR corrected p-value<0.05) longer TTP (Figure 4.3A) in 

control group. 

In the BP vs SZ comparison, we found that the bilateral cerebellum posterior lobe had 

significantly (FDR corrected p-value<0.05) wider FWHM (Figure 4.3C) in the BP group while the 

bilateral thalamus, cerebellum anterior lobe and midbrain had significantly (FDR corrected p-

value<0.05) wider FWHM (Figure 4.3C) in the SZ group. The bilateral medial frontal gyrus, left 
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lingual gyrus, bilateral posterior cingulate and bilateral inferior parietal lobule had significantly 

(FDR corrected p-value<0.05) higher RH (Figure 4.3C) in the BP group while the bilateral 

parahippocampal gyrus and bilateral superior frontal gyrus had significantly (FDR corrected p-

value<0.05) higher RH (Figure 4.3C) in the SZ group. The bilateral cerebellum posterior lobe had 

significantly (FDR corrected p-value<0.05) longer TTP (Figure 4.3C) in the BP group while the 

bilateral pons and thalamus had significantly (FDR corrected p-value<0.05) shorter TTP (Figure 

4.3C) in the BP group. Detailed information such as cluster sizes, cluster centroids etc. are shown 

in Table 1.  
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Figure 4.3 Spatial maps showing regions with significantly different HRF parameters in the three 

comparisons: (A) SZ vs Control, (B) BP vs Control, and (C)BP vs SZ.  
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Table 4.1. Voxel clusters which had significantly different (FDR corrected p-value<0.05, cluster 

size>50 voxels) HRF parameters in three comparisons: BP vs Control, SZ vs Control, and BP vs SZ. The 

anatomical labels, MNI co-ordinates of cluster centroids, cluster size in terms of the number of voxels, T 

score, and corresponding Brodmann areas (where appropriate) are listed. 

Comparison 

Cluster 

anatomical 

location 

Coordinat

es 
Cluste

r size 

Hemispher

e 
BA 

T 

score 
x y z 

Full-width at half max 

SZ>Control 

Thalamus -20 -16 0 4678 Bilateral  4.19 

Midbrain 0 -32 -14    3.91 

Precuneus 14 -56 32   31 3.52 

 

Full-width at half max 

SZ<Control 

 

Cerebellum Posterior Lobe -62 -40 -12 4352 Bilateral 21 -4.47 

Middle Frontal Gyrus -36 44 26 208 Left 10 -4.84 

Precentral Gyrus 18 -28 68 320 Right 4  -3.91 

Precentral Gyrus -20 -28 66 715 Left 4  -4.48 

Response height 

SZ>Control 

Anterior Cingulate Cortex 18 36 18 104 Right 32 4.15 

Parahippocampal Gyrus 20 -4 -28 326 Right 28 4.71 

Response height 

SZ<Control 

Cerebellum Posterior Lobe -30 -64 -50 2378 Bilateral  -3.96 

Posterior Cingulate 18 -60 4 527 Bilateral  30 -4.44 

Precuneus -6 -52 30 1236 Bilateral 31 -3.85 

Lingual Gyrus -4 -76 0   18 -3.55 

Time-to-peak  

SZ>Control 

Midbrain 2 -30 -14 540 Bilateral  3.70 

Time-to-peak 

SZ<Control 

Cerebellum Posterior Lobe -26 -74 -50 1850 Bilateral  -5.08 

Full-width at half max 

BP>Control  

Anterior Cingulate Cortex 4 30 -8 1752 Bilateral 32  3.91 

Precuneus -18 -46 30 329 Left 31 4.12 

Precuneus 14 -54 32 999 Right 31 4.57 

Full-width at half max 

BP<Control 

Cerebellum Posterior Lobe -40 -54 -50 1229 Bilateral  -3.28 

Middle Temporal Gyrus -62 -40 -12 86 Left 21 -3.58 

Precentral Gyrus -18 -32 70 4352 Right 4 -4.69 

Precentral Gyrus 14 -38 72  Left 3 -3.93 

Response height 

BP>Control 

Cingulate Gyrus -16 4 30 167 Left  3.66 

Cingulate Gyrus -16 -26 40 228 Left 31 3.92 

Cingulate Gyrus 16 -58 28 96 Right 31 4.27 

Medial Frontal Gyrus 4 -10 66 624 Bilateral 6 4.01 

Supramarginal Gyrus 42 -48 34 438 Right 40 3.92 
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Response height 

BP<Control  

Cerebellum Posterior Lobe 2 -58 -48 524 Bilateral  -4.03 

Cerebellum Anterior Lobe 20 -42 -26    -3.59 

Cerebellum Anterior Lobe -20 -40 -26    -3.39 

Thalamus 4 -20 4 80 Bilateral  -4.65 

Medial Frontal Gyrus -2 -10 66 481 Bilateral 6 -3.22 

Time-to-peak 

BP>Control 

Cingulate Gyrus -10 12 34 262 Left 24 3.72 

Cingulate Gyrus 10 -6 38 150 Right 24 4.29 

Time-to-peak 

BP<Control 

Cerebellum Posterior Lobe -10 -66 -50 909 Bilateral  -3.29 

Middle Temporal Gyrus -36 2 -50 59 Left 20 -3.25 

Middle Frontal Gyrus -26 -6 60 1157 Left 6 -4.12 

Middle Frontal Gyrus 32 -8 60 231 Right 6 -3.88 

Full-width at half max 

BP>SZ 

Cerebellum Posterior Lobe -22 -80 -44 267 Left  4.36 

Cerebellum Posterior Lobe 16 -74 -50 81 Right  4.02 

Full-width at half max 

BP<SZ 

Thalamus -6 -24 0 1126 Bilateral  -4.63 

Cerebellum Anterior Lobe -16 -32 -18    -3.91 

Midbrain -6 -32 -20    -3.52 

Response height 

BP>SZ  

Medial Frontal Gyrus 10 36 -20 196 Bilateral 11 4.26 

Lingual Gyrus -12 -90 -2 477 Left 17  4.21 

Posterior Cingulate -4 -60 18   23 3.84 

Posterior Cingulate  18 -66 8 280 Right 30 3.76 

Inferior Parietal Lobule 40 -40 26 358 Right  4.13 

Inferior Parietal Lobule -42 -40 24 527 Left  4.24 

Response height 

BP<SZ  

Parahippocampal Gyrus 34 -6 -26 231 Right  -3.81 

Parahippocampal Gyrus -16 -14 -26 103 Left 28 -4.06 

Medial Frontal Gyrus -8 -12 68 218 Bilateral 6 -4.26 

Time-to-peak 

BP>SZ 

Cerebellum Posterior Lobe -32 -78 -42 1193 Bilateral  3.56 

Time-to-peak 

BP<SZ 

Pons -16 -26 -30 997   -3.96 

Thalamus -8 -24 0    -3.71 

Intersection Thalamus 2 -22 4 101 Bilateral   

 Coordinates indicate location of maximum Z-scores for clusters or location of local maxima. For clusters with more than 

one peak, local maxima are listed. Cluster size in voxels. Coordinates are in standard MNI space. 

 BA = Brodmann Area 
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Figure 4.4. (A) The voxels within the thalamus that showed alterations in all three HRF parameters in 

the following three comparisons: BP vs Control, SZ vs Control, and BP vs SZ. Sagittal (x = 2), and axial 

(z = 4) views are shown in standard MNI space. In the thalamus seed ROI, alterations in HRF parameters 

exhibited the following pattern: FWHM: SZ> Control; RH: BP< Control, and FWHM: SZ>BP. (B) The 

overlap of our thalamic seed (shown in white) with thalamic zones as described in the Oxford thalamic 

atlas [193]. Accordingly, diffusion tractography from the seed showed highest probability of structural 

connectivity with the temporal and pre-frontal lobes. (C) The overlap of our thalamic seed (shown in white) 

with thalamic nuclei described in the Morel thalamic atlas [194][195]. The seed encompasses the 

mediodorsal nucleus, habenular nucleus and the central lateral nucleus.  

 

We found that a thalamic cluster showed significant alterations in all three HRF parameters 

(Figure 4.4A). Note that in the identified thalamus seed ROI, the alterations in HRF parameters 

exhibited the following pattern: FWHM: SZ> Control, RH: BP< Control, and FWHM: SZ>BP. 

The overlap of our thalamic seed (shown in white, Figure 4.4B) with thalamic zones as described 

in the Oxford thalamic atlas [196] indicated that diffusion tractography from our seed showed 
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highest probability of structural connectivity with the temporal and pre-frontal lobes. By 

registering our seed ROI on the digital 3D Morel atlas [194][197], we found that the thalamic seed 

ROI encompasses the mediodorsal (MD) nucleus, habenular (Hb) nucleus and the central lateral 

(CL) nucleus (Figure 4.4C).  

4.3.2 Thalamus-based Functional Connectivity within Groups 

In the control group, the thalamus exhibited only positive functional connectivity with other 

brain regions. For the DC dataset, clusters significantly connected (p<0.05 FDR corrected, cluster 

size>50) to the thalamus seed included the bilateral cranial portions of the caudate, the bilateral 

caudal portion of the lingual gyrus, bilateral cerebellum posterior lobe, bilateral cerebellum 

anterior lobe, pons, bilateral posterior cingulate, bilateral anterior cingulate cortex, bilateral 

superior frontal gyrus and bilateral parietal lobe in DC dataset (Figure 4.5A, Table 4.2). In the 

NDC dataset, clusters significantly connected (p<0.05 FDR corrected, cluster size>50) to the 

thalamus seed included the bilateral cranial portions of the caudate, the bilateral caudal portion of 

the lingual gyrus, bilateral cerebellum posterior lobe, bilateral cerebellum anterior lobe, bilateral 

posterior cingulate, bilateral anterior cingulate cortex, bilateral cingulate gyrus, pons, bilateral 

superior frontal gyrus, and bilateral parietal lobe (Figure 4.5B, Table 4.2). 
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Figure 4.5. Seed based functional connectivity of the thalamic ROI in Controls. Only positive 

correlations were significant. Axial views (z = -40 to 70) are presented (standard MNI space; cluster 

significance: p < 0.05, FDR corrected). (a) Cerebellum Posterior Lobe, (b) Pons, (c) Cerebellum Anterior 

Lobe, (d) Lingual Gyrus, (e) Caudate, (f)Anterior Cingulate Cortex, (g) Posterior Cingulate Cortex, (h) 

Parietal Lobe, (i) Superior Frontal Gyrus, (j)Cingulate Gyrus 

 

Table 4.2. Thalamic seed-based functional connectivity in Controls. List of brain regions showing a 

significantly positive relationship with the thalamus (p<0.05 FDR corrected, cluster size>50), for both 

deconvolved and non-deconvolved datasets. 

Structure BA 
Coordinates 

Z Score Hemisphere 
x y z 

Deconvolved data 

Cluster 1, Cluster size 23577 

Cerebellum Posterior Lobe  48 -62 -34 5.44 Right 
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Cerebellum Posterior Lobe  -32 -66 -30 6.69 Left  

Cerebellum Anterior Lobe  -2 -42 -6 4.22 Bilateral 

Pons  -1 -32 -32 3.08 Bilateral 

Posterior Cingulate 23 -2 -40 22 2.44 Bilateral 

Lingual Gyrus 18 18 -56 2 2.23 Right 

Lingual Gyrus 18 -10 -62 2 2.70 Left 

Caudate  8 6 0 3.37 Right 

Caudate  -8 4 0 2.95 Left 

Cluster 2, Cluster size 731 

Anterior Cingulate Cortex  2 32 12 2.72 Bilateral 

Cluster 3, Cluster size 324 

Superior Frontal Gyrus  32 -2 -8 70 2.21 Bilateral 

Cluster 4, Cluster size 211 

Parietal Lobe 4 6 -44 68 4.02 Bilateral  

Non-deconvolved data 

Cluster 1, Cluster size 24433 

Cerebellum Posterior Lobe  48 -62 -28 4.92 Right 

Cerebellum Posterior Lobe  -20 -68 -30 5.12 Left  

Cerebellum Anterior Lobe  -2 -42 -6 6.79 Bilateral 

Pons  4 -32 -32 3.95 Bilateral 

Posterior Cingulate 29 4 -50 10 4.10 Bilateral 

Lingual Gyrus 30 14 -56 4 3.39 Right 

Lingual Gyrus 18 -10 -62 2 4.02 Left 

Caudate   10 2 2 4.27 Right 

Caudate  -14 8 10 5.73 Left 

Cluster 2, Cluster size 3411 

Parietal Lobe  4 8 -44 68 4.80 Bilateral 

Superior Frontal Gyrus  6 -4 -6 70 3.38 Bilateral 

Cluster 3, Cluster size 1379 

Anterior Cingulate Cortex  24 2 32 16 3.92 Bilateral 

Cluster 4, Cluster size 412 

Cingulate Gyrus   2 2 38 3.24 Bilateral 

 Z-value is the mean across the group. 

 Coordinates indicate location of maximum Z-scores for clusters or location of local maxima. For clusters with 

more than one peak, local maxima are listed. Cluster size in voxels.  

 Coordinates are in standard MNI space. 

 BA = Brodmann Area. 

In the SZ group, the brain regions significantly (p<0.05 FDR corrected, cluster size>50) 
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correlated with the thalamus seed in the NDC dataset included the caudal portion of the lingual 

gyrus, bilateral cerebellum posterior lobe, bilateral cerebellum anterior lobe, pons, bilateral 

posterior cingulate, bilateral cingulate gyrus, bilateral superior temporal gyrus, bilateral superior 

frontal gyrus and bilateral parietal lobe in DC dataset (Figure 4.6A, Table 4.3). In the NDC dataset, 

brain regions significantly (p<0.05 FDR corrected, cluster size>50) correlated with the thalamus 

seed in included the caudal portion of the lingual gyrus, bilateral cerebellum posterior lobe, 

bilateral cerebellum anterior lobe, pons, bilateral posterior cingulate, bilateral cingulate gyrus, 

right superior temporal gyrus, right middle temporal gyrus; bilateral superior frontal gyrus, 

bilateral parietal lobe and right putamen (Figure 4.6B, Table 4.3).  
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Figure 4.6. Seed based functional connectivity of the thalamic ROI in Schizophrenia. Only positive 

correlations were significant. Axial views (z = -40 to 70) are presented (standard MNI space; cluster 

significance: p < 0.05, FDR corrected). (a) Cerebellum Posterior Lobe, (b) Pons, (c) Cerebellum Anterior 

Lobe, (d) Lingual Gyrus, (e) Superior Temporal Gyrus, (f) Posterior Cingulate, (g) Cingulate Gyrus, (h) 

Parietal Lobe, (i) Superior Frontal Gyrus, (j) Putamen, (k)Middle Temporal Gyrus 

 

Table 4.3. Thalamic seed-based functional connectivity in Schizophrenia. List of brain regions 

showing a significantly positive connectivity with the thalamus (p<0.05 FDR corrected, cluster size>50), 

for both deconvolved and non-deconvolved datasets. 

Structure BA 
Coordinates 

Z Score Hemisphere 
x y z 

Deconvolved data 

Cluster 1, Cluster size 21557 

Cerebellum Posterior Lobe   -4 -72 -18 3.69 Bilateral 

Cerebellum Anterior Lobe  0 -60 -28 3.65 Bilateral 

Lingual Gyrus 18 18 -56 2 2.66 Right 
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Lingual Gyrus 18 -10 -62 2 3.64 Left 

Pons  0 -32 -34 3.02 Bilateral 

Posterior Cingulate 29 3 -52 18 3.44 Bilateral 

Superior Frontal Gyrus  6 10 -8 70 3.06 Right 

Superior Frontal Gyrus  6 -8 -8 70 3.00 Left 

Cluster 2, Cluster size 630 

Parietal Lobe 7 4 -62 56 3.38 Bilateral 

Cluster 3, Cluster size 153 

Cingulate Gyrus  4 -24 44 3.61 Bilateral 

Cluster 4, Cluster size 224 

Superior Temporal Gyrus  22 -62 -54 14 3.16 Left 

Cluster 5, Cluster size 346 

Superior Temporal Gyrus  41 48 -28 12 2.82 Right 

Non-deconvolved data 

Cluster 1, Cluster size 21557 

Cerebellum Posterior Lobe  -2 -60 -6 6.05 Bilateral 

Cerebellum Anterior Lobe  -2 -60 -26 5.56 Bilateral 

Lingual Gyrus  18 -54 0 4.89 Right 

Lingual Gyrus   -8 -92 -8 4.14 Left 

Pons  2 -34 -34 4.22 Bilateral 

Posterior Cingulate 29 2 -48 20 4.13 Bilateral 

Cluster 2, Cluster size 332 

Superior Frontal Gyrus 6 -6 -10 70 5.03 Left 

Superior Frontal Gyrus 6 8 -10 70 5.17 Right 

Cluster 3, Cluster size 298 

Parietal Lobe  7 0 -60 58 4.43 Bilateral 

Cluster 3, Cluster size 159 

Cingulate Gyrus  32 4 16 34 4.77 Bilateral 

Cluster 4, Cluster size 160 

Middle Temporal Gyrus   56 -60 0 3.53 Right 

Cluster 5, Cluster size 104 

Superior Temporal Gyrus  42 66 -52 12 3.55 Right 

Cluster 6, Cluster size 138 

Putamen  22 14 -10 3.71 Right 

 Z-value is the mean across the group. 

 Coordinates indicate location of maximum Z-scores for clusters or location of local maxima. For clusters with 

more than one peak, local maxima are listed. Cluster size in voxels.  

 Coordinates are in standard MNI space. 

 BA = Brodmann Area. 
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In the BP group, the brain regions which were significantly (p<0.05 FDR corrected, cluster 

size>50) correlated with the thalamic seed included the caudal portion of the left lingual gyrus, 

bilateral cerebellum posterior lobe, bilateral cerebellum anterior lobe, pons, bilateral posterior 

cingulate, bilateral cingulate gyrus, and bilateral insula in the DC dataset (Figure 4.7A, Table 4.4). 

In the NDC dataset, the brain regions which were significantly (p<0.05 FDR corrected, cluster 

size>50) correlated with the thalamic seed included the caudal portion of the left lingual gyrus, 

bilateral cerebellum posterior lobe, bilateral cerebellum anterior lobe, bilateral cingulate gyrus, 

pons, bilateral posterior cingulate, bilateral parietal lobe, bilateral anterior cingulate cortex, 

bilateral insula, right superior temporal gyrus and right middle temporal gyrus (Figure 4.7B, Table 

4.4).  
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Figure 4.7 Seed based functional connectivity of the thalamic ROI in Bipolar Disorder. Only positive 

correlations were significant. Axial views (z = -40 to 70) are presented (standard MNI space; cluster 

significance: p < 0.05, FDR corrected). (a) Cerebellum Posterior Lobe, (b) Pons, (c) Cerebellum Anterior 

Lobe, (d) Lingual Gyrus, (e) Insula, (f) Posterior Cingulate, (g) Cingulate Gyrus, (h) Anterior Cingulate 

Cortex, (i) Parietal Lobe 

 

Table 4.4. Thalamic seed-based functional connectivity in Bipolar Disorder. List of brain regions 

showing a significantly positive connectivity with the Thalamus (p<0.05 FDR corrected, cluster size>50), 

for both deconvolved and non-deconvolved datasets. 

Structure  BA 
Coordinates 

Z Score Hemisphere 
x y z 

Deconvolved data 

Cluster 1, Cluster size 14661 

Midbrain   -4 -12 4 6.71 Bilateral 

Cerebellum Posterior Lobe  34 -60 -28 3.41 Right 
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Cerebellum Posterior Lobe  -34 -70 -36 3.44 Left 

Cerebellum Anterior Lobe  2 -52 -2 4.08 Bilateral 

Pons  0 -32 -28 3.32 Bilateral 

Posterior Cingulate 30 2 -46 18 4.25 Bilateral 

Cluster 2, Cluster size 93 

Insula 13 40 -20 8 3.06 Right 

Cluster 3, Cluster size 56 

Insula 13 -34 -24 10 2.58 Left 

Cluster4, Cluster size 73 

Lingual Gyrus  -18 -92 -4 3.28 Left 

Cluster5, Cluster size 154 

Cingulate Gyrus  0 -24 34 2.86 Bilateral 

Non-deconvolved data 

Cluster 1, Cluster size 20195 

Midbrain   -4 -12 4 8.61 Bilateral 

Cerebellum Posterior Lobe  26 -62 -32 5.44 Right 

Cerebellum Posterior Lobe  -20 -52 -24 6.68 Left 

Cerebellum Anterior Lobe  2 -52 -2 5.83 Bilateral 

Posterior Cingulate  30 2 -50 16 4.51 Bilateral 

Pons  0 -32 -32 3.85 Bilateral 

Cluster 2, Cluster size 182 

Insula 13 40 -20 10 4.86 Right 

Cluster 3, Cluster size 115 

Insula 13 -34 -26 8 4.21 Left 

Cluster 4, Cluster size 147 

Lingual Gyrus  24 -78 -8 3.89 Right 

Cluster 5, Cluster size 292 

Lingual Gyrus  -18 -90 -4 3.52 left 

Cluster 6, Cluster size 172 

Parietal Lobe  7 -2 -76 38 4.71 Bilateral 

Cluster 7, Cluster size 331 

Anterior Cingulate cortex  0 28 24 4.34 Bilateral 

Cluster 8, Cluster size 279 

Cingulate Gyrus   2 14 38 4.55 Bilateral 

 Z-value is the mean across the group. 

 Coordinates indicate location of maximum Z-scores for clusters or location of local maxima. For clusters with 

more than one peak, local maxima are listed. Cluster size in voxels.  

 Coordinates are in standard MNI space. 

 BA = Brodmann Area. 
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4.3.3 Thalamus-based Connectivity Differences between Groups 

In the comparison of the SZ group with healthy controls, differences in thalamic functional 

connectivity pattern were ascertained using both DC and NDC datasets. In the DC dataset, 

functional connectivity between the thalamic seed and the following regions were stronger in the 

SZ group: bilateral cerebellum anterior lobe, pons, bilateral posterior cingulate, bilateral superior 

temporal gyrus and bilateral cingulate gyrus. In contrast functional connectivity between the 

thalamic seed and the following regions were weaker in the SZ group: bilateral cerebellum 

posterior lobe, bilateral anterior cingulate cortex and right caudate (Figure 4.8A, Table 4.5). In the 

NDC dataset, functional connectivity between the thalamic seed and the following regions were 

stronger in the SZ group: bilateral cerebellum anterior lobe, pons, bilateral posterior cingulate, 

pons, and right superior temporal gyrus.  In contrast functional connectivity between the thalamic 

seed and the following regions were weaker in the SZ group: bilateral cerebellum posterior lobe 

and bilateral anterior cingulate cortex (Figure 4.8B, Table 4.5). 
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Figure 4.8 Group differences in the functional connectivity of the thalamic seed for SZ vs Control 

comparison. Warm/cool colours indicate regions which had stronger/weaker functional connectivity with 

the thalamic seed in the SZ group, respectively. Axial views are presented (Z = -40, -28,  -4, 2, 12 and 

48), (standard MNI space; cluster significance: p < 0.05, FDR corrected). (a) Cerebellum Posterior 

Lobe, (b) Cerebellum Anterior Lobe, (c) Pons, (d) Caudate, (e)Anterior Cingulate Cortex, (f) Posterior 

Cingulate, (g) Superior Temporal Gyrus, (h) Cingulate Gyrus. 

 

Table 4.5. Regions showing significant differences in functional connectivity of the thalamic seed for 

the SZ vs Control comparison (p<0.05 FDR corrected, cluster size>50), for both deconvolved and non-

deconvolved datasets. 

Structure BA 

Coordinates 

T Score Z Score in SC group Z Score in control group Hemisphere 

x y z 

Deconvolved data 

SC>Control 

Cluster 1, Cluster size 4425 

Cerebellum Anterior Lobe  -22 -32 -24 5.00 3.23 2.04 Bilateral 

Pons  4 -34 -34 4.12 2.96 2.87 Bilateral 

Cluster 2, Cluster size 329 

Posterior Cingulate  10 -52 8 5.24 2.74 0.96 Right  

Posterior Cingulate  -10 -54 10 4.92 3.48 1.61 Left 

Cluster 3, Cluster size 94 
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Cerebellum Anterior Lobe  34 -52 -22 4.06 2.55 1.03 Right 

Cluster 4, Cluster size 233 

Superior Temporal Gyrus 41 48 -26 12 4.39 2.52 1.69 Right 

Cluster 5, Cluster size 88 

Superior Temporal Gyrus 22 -62 -52 16 3.87 2.66 1.18 Left 

Cluster 6, Cluster size 40 

Cingulate Gyrus  4 -24 44 3.92 3.41 1.52 Bilateral 

SZ<Control 

Cluster 1, Cluster size 2433 

Cerebellum Posterior Lobe  12 -46 -50 -4.60 2.25 2.77 Bilateral  

Cluster 2, Cluster size 30 

Caudate  12 20 2 -3.79 2.19 1.54 Right 

Cluster3, Cluster size 56 

Anterior Cingulate Cortex  2 40 0 -3.76 2.34 1.08 Bilateral 

Non-deconvolved data 

SZ>Control 

Cluster 1, Cluster size 3638 

Cerebellum Anterior Lobe  -24 -32 -24 2.89 5.24 2.45 Bilateral 

Posterior Cingulate  -10 -58 6 2.72 3.70 3.19 Bilateral 

Pons  6 -30 -26 2.66 3.43 3.03 Bilateral 

Cluster 2, Cluster size 51 

Cerebellum Anterior Lobe  12 -44 -6 2.71 5.55 3.61 Bilateral 

Cluster 3, Cluster size 59 

Superior Temporal Gyrus 41 48 -28 10 3.09 3.62 0.53 Right 

SZ<Control 

Cluster 1, Cluster size 1747 

Cerebellum Posterior Lobe  -4 -80 -40 -2.88 2.35 3.61 Bilateral  

Cluster 2, Cluster size 150 

Anterior Cingulate Cortex 32 2 42 -2 -2.52 1.61 3.42 Bilateral 

 Z-value is the mean across the group. 

 Coordinates indicate location of maximum Z-scores for clusters or location of local maxima. For clusters with more 

than one peak, local maxima are listed. Cluster size in voxels.  

 Coordinates are in standard MNI space. 

 BA = Brodmann Area. 

In the comparison BP group with healthy controls, the thalamus seed ROI had stronger 

connectivity in the BP group with the following ROIs: bilateral cerebellum anterior lobe, bilateral 



 

 
87 

cerebellum posterior lobe, pons, bilateral posterior cingulate, left lingual gyrus and right insula, 

while the following regions has weaker connectivity in the BP group: bilateral anterior cingulate 

cortex, bilateral superior frontal gyrus and right caudate (Figure 4.9A, Table 4.6). In the NDC 

dataset, the following regions had stronger connectivity with the thalamic ROI in the BP group: 

bilateral cerebellum anterior lobe, pons, bilateral posterior cingulate, bilateral cerebellum posterior 

lobe, bilateral lingual gyrus, bilateral cingulate gyrus, and right insula, while the following regions 

had weaker connectivity with the thalamic ROI in the BP group: bilateral anterior cingulate cortex, 

bilateral superior frontal gyrus (Figure 4.9B, Table 4.6). 

 

Figure 4.9 Group differences in the functional connectivity of the thalamic seed for BP vs Control 

comparison. Warm/cool colours indicate regions which had stronger/weaker functional connectivity with 

the thalamic seed in the SZ group, respectively. Axial views are presented (Z = -28, -16, -4, 10, 34 and 70). 

(standard MNI space; cluster significance: p < 0.05, FDR corrected). (a) Cerebellum Posterior Lobe, (b) 

Pons, (c)Cerebellum Anterior Lobe, (d) Caudate, (e) Lingual Gyrus, (f) Anterior Cingulate, (g) Insula, 

(h)Posterior Cingulate, (i)Superior Frontal Gyrus, (j)Cingulate Gyrus  
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Table 4.6. Regions showing significant differences in functional connectivity of the thalamic seed for 

the BP vs Control comparison (p<0.05 FDR corrected, cluster size>50), for both deconvolved and non-

deconvolved datasets. 

Structure BA 

Coordinates 

T Score Z Score in BP group Z Score in control group Hemisphere 

x y z 

Deconvolved data 

BP>Control 

Cluster 1, Cluster size 938 

Cerebellum Anterior Lobe  -16 -54 -12 3.91 2.77 2.20 Left 

Cerebellum Anterior Lobe  10 -60 -12 3.33 3.08 2.62 Right 

Posterior Cingulate 29 4 -52 12 2.61 3.14 2.84 Bilateral 

Cluster 2, Cluster size 122 

Cerebellum Posterior Lobe  -18 -70 -18 3.92 2.76 2.21 Left 

Cluster 3, Cluster size 63 

Cerebellum Posterior Lobe  40 -58 -30 3.23 2.73 1.72 Right 

Cluster 4, Cluster size 33 

Pons  -6 -40 -36 2.64 3.18 2.27 Bilateral 

Cluster 5, Cluster size 66 

Lingual Gyrus  -20 -90 -4 2.52 2.33 0.90 Left 

Cluster 6, Cluster size 82 

Insula 13 40 -20 8 3.56 3.06 0.07 Right 

BP<Control 

Cluster 1, Cluster size 64 

Anterior Cingulate Cortex  2 32 10 -3.47 0.17 2.71 Bilateral 

Cluster 2, Cluster size 58 

Caudate  12 18 4 -3.35 1.40 2.05 Right 

Cluster 3, Cluster size 149 

Superior Frontal Gyrus  -4 -10 70 -3.11 1.08 3.34 Bilateral 

Non-deconvolved data 

BP>Control 

Cluster 1, Cluster size 538 

Lingual Gyrus  -20 -90 -4 4.46 4.01 1.41 Bilateral 

Cerebellum Anterior Lobe  -20 -50 -22 4.21 4.73 3.10 Bilateral 

Posterior Cingulate  -8 -52 8 2.67 4.56 2.48 Bilateral 

Cluster 2, Cluster size 186 

Cerebellum Anterior Lobe  14 -64 -14 3.56 3.57 2.87 Bilateral 

Cluster 3, Cluster size 47 

Cerebellum Posterior Lobe  34 -58 -28 3.16 5.16 3.20 Bilateral 
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Cluster 4, Cluster size 171 

Cingulate Gyrus 23 -2 -24 34 2.86 4.43 2.08 Bilateral 

Cluster 5, Cluster size 76 

Lingual Gyrus  24 -80 -8 3.64 2.25 0.84 Right 

Cluster 6, Cluster size 48 

Insula 13 40 -20 10 4.27 4.07 0.03 Right 

Cluster 7, Cluster size 239 

Pons  2 -32 -30 3.25 4.61 3.58 Bilateral 

BP<Control 

Cluster 1, Cluster size 50 

Anterior Cingulate Cortex 24 2 30 10 -4.41 1.88 3.16 Bilateral 

Cluster 2, Cluster size 184 

Superior Frontal Gyrus  -4 -8 70 -3.36 1.23 3.52 Bilateral 

 Z-value is the mean across the group. 

 Coordinates indicate location of maximum Z-scores for clusters or location of local maxima. For clusters with more 

than one peak, local maxima are listed. Cluster size in voxels.  

 Coordinates are in standard MNI space. 

 BA = Brodmann Area. 

In the comparison of BP with SZ patients using the DC dataset, the thalamic seed ROI had 

stronger connectivity in the BP group with the bilateral cerebellum posterior lobe and right insula, 

while it had weaker connectivity with bilateral cerebellum anterior lobe, bilateral posterior 

cingulate, bilateral superior temporal gyrus, bilateral superior frontal gyrus and bilateral cingulate 

gyrus (Figure 4.10A, Table 4.7). In the NDC dataset, the thalamic seed ROI had stronger 

connectivity in the BP group with bilateral cerebellum posterior lobe, left lingual gyrus, bilateral 

cingulate gyrus, and anterior cingulate cortex, and weaker connections with bilateral cerebellum 

anterior lobe, right superior temporal gyrus and bilateral superior frontal gyrus (Figure 4.10B, 

Table 4.7). All between-group differences found with both DC and NDC datasets are summarized 

in Figure 4.11. 
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Figure 4.10 Group differences in the functional connectivity of the thalamic seed for BP vs SZ 

comparison. Warm/cool colours indicate regions which had stronger/weaker functional connectivity with 

the thalamic seed in the SZ group, respectively. Axial views are presented (Z = -26, -6, 12, 20, 38, 42 and 

70). (standard MNI space; cluster significance: p < 0.05, FDR corrected). (a) Cerebellum Posterior Lobe, 

(b) Cerebellum Anterior Lobe, (c) Pons, (d) Lingual Gyrus, (e) Insula, (f) Posterior Cingulate, (g) Superior 

Temporal Gyrus, (h) Cingulate Gyrus, (i) Superior Frontal Gyrus, (j) Anterior Cingulate Cortex. 

 

Table 4.7. Regions showing significant differences in functional connectivity of the thalamic seed for 

the BP vs SZ comparison (p<0.05 FDR corrected, cluster size>50), for both deconvolved and non-

deconvolved datasets. 

Structure BA 
Coordinates 

T Score 
Z Score in BP 

group 

Z Score in SC 

group 
Hemisphere 

x y z 

Deconvolved data 

BP>SZ 

Cluster 1, Cluster size 284 

Cerebellum Posterior Lobe  -12 -80 -38 3.04 2.89 2.47 Left 

Cluster 2, Cluster size 60 

Cerebellum Posterior Lobe  38 -60 -28 2.92 2.92 0.61 Right 

Cluster 3, Cluster size 70 

Insula  40 -18 0 2.93 2.95 0.94 Right 

BP<SZ 

Cluster 1, Cluster size 1735 

Cerebellum Anterior Lobe  6 -64 -6 -4.03 1.31 3.28 Bilateral 

Posterior Cingulate  -8 -54 10 -3.55 1.93 3.33 Bilateral 

Cluster 2, Cluster size 111 
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Superior Temporal Gyrus  50 -30 14 -3.51 0.57 2.61 Right 

Cluster 3, Cluster size 75 

Superior Temporal Gyrus  -62 -50 16 -3.38 0.53 2.73 Left 

Cluster 4, Cluster size 99 

Superior Frontal Gyrus 6 -6 -10 72 -4.89 0.95 2.34 Left 

Cluster 5, Cluster size 66 

Superior Frontal Gyrus 6 12 -10 74 -3.78 1.34 2.70 Right 

Cluster 6, Cluster size 101 

Cingulate Gyrus  4 -24 44 -3.14 1.05 3.41 Bilateral 

Non-deconvolved data 

BP>SZ 

Cluster 1, Cluster size 2233 

Cerebellum Posterior Lobe  -16 -80 -36 3.11 5.04 3.67 Bilateral 

Cluster 2, Cluster size 54 

Cingulate Gyrus 31 2 -38 38 2.46 4.91 2.52 Bilateral 

Cluster 3, Cluster size 248 

Lingual Gyrus  -20 -92 -2 2.94 3.56 1.29 Left 

Cluster 4, Cluster size 43 

Anterior Cingulate Cortex  4 46 -2 2.85 2.24 0.71 Bilateral 

BP<SZ 

Cluster 1, Cluster size 1702 

Cerebellum Anterior Lobe  -24 -32 -26 -2.68 2.54 4.92 Left 

Cluster 1, Cluster size 71 

Superior Temporal Gyrus  54 -42 18 -3.37 0.14 3.00 Right 

Cluster 1, Cluster size 154 

Superior Frontal Gyrus 6 -4 -10 72 -5.04 1.34 4.34 Left 

Cluster 1, Cluster size 2233 

Superior Frontal Gyrus 6 10 -14 74 -3.32 0.97 3.12 Right 

 Z-value is the mean across the group. 

 Coordinates indicate location of maximum Z-scores for clusters or location of local maxima. For clusters with more than 

one peak, local maxima are listed. Cluster size in voxels. 

  Coordinates are in standard MNI space. 

 BA = Brodmann Area. 



 

 
92 

 

Figure 4.11 Summary of between-group differences in thalamus seed-based functional connectivity 

for deconvolved (A) and non-deconvolved (B) datasets. 

4.3.4 The Effect of Deconvolution 

Voxel clusters in bilateral lingual gyrus, bilateral insula and bilateral superior frontal gyrus 

showed a significant (p<0.05 FDR corrected, cluster size>40) interaction effect between the group 

factor (Control vs BP vs SZ) and the deconvolution factor (data with and without deconvolution) 

(Figure 4.12, Table 4.8). This implies that the seed-based functional differences between the three 

groups (SZ, BP, and controls) in these regions will be deduced differently in DC and NDC datasets. 
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Figure 4.12. Brain regions showing significant (p-value<0.05, FDR corrected, cluster>40) interaction 

between the group factor (Control vs BP vs SZ) and the deconvolution factor (data with and without 

deconvolution) 
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Table 4.8. Anatomical labels, cluster size and p-value of local maxima in brain areas showing 

significant interaction (p-value<0.05, FDR corrected, cluster>40) between the group factor 

(Control vs BP vs SZ) and the deconvolution factor (data with and without deconvolution)  

Cluster anatomical 

location 

Peak coordinates Cluster 

size 
Hemisphere 

x y z 

Lingual Gyrus -8 84 -4 728 Bilateral 

Insula -30 -28 12 42 left 

Insula 30 -18 22 190 Right 

Superior Frontal 

Gyrus 
-24 20 54 45 Left 

Superior Frontal 

Gyrus 
28 44 10 41 Right 

  *Coordinates referring to the peak of the cluster in MNI Space. 

  * Anatomical labels based on Automated Anatomical Labeling (AAL) 

4.4 Discussion  

In this work, we test the hypothesis that neurovascular coupling mechanisms are different 

between SZ, BP and matched healthy control groups by characterizing such aberrations in terms 

of differences in the shape of voxel-specific HRFs across the groups. We employed a blind 

deconvolution procedure to estimate voxel-specific HRFs and demonstrate that brain regions, 

many of which are implicated in the pathology of SZ and BP, are characterized by HRFs whose 

parameters – RH, FWHM and TTP – are significantly different between the groups. One such 

regions, the thalamus, exhibited aberrations in all three HRF parameters between all three groups. 

Consequently, we calculated thalamic seed-based functional connectivity before and after 

deconvolution in order to characterize distortions of functional connectivity introduced by such 

spatial variability of the HRF when connectivity is estimated from raw BOLD data.  
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The variability in the shape of the HRF across brain regions and subjects due to non-neural 

factors tend to be more randomly distributed [47][48][91][198][199] and would tend to cancel out 

when comparing different populations. On the other hand, pathological alterations in 

neurochemicals tend to introduce more systematic differences in the shape of the HRF between 

groups. Specifically, Figure 4.13 shows a schematic of neurovascular coupling mechanisms which 

are controlled by specific neurochemicals such as GABA, serotonin, glutamate and nitric oxide 

(NO) [4]. The signaling pathways involving these neurochemicals couple the energy demand 

caused by neural activation to blood flow changes by mediating vasoconstriction or vasodilation. 

Specifically, GABAergic and glutamatergic interneurons release neuromodulators which could 

control local cerebral blood flow [200], and hence the HRF [201]. Glutamate causes dilation of 

blood vessels when brain regions are locally activated and this mechanism is mediated by its 

actions on N-methyl-D-aspartate (NMDA) receptors [111]. Quicker, taller, and narrower HRFs 

have been observed in regions with lower concentrations of GABA [117]. Below, we discuss 

previous literature showing alterations of these chemicals in SZ and BP groups and speculate on 

how such alterations might have resulted in HRF changes we have observed.  
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Figure 4.13 A schematic illustrating the hemodynamic coupling between neural activity and blood 

flow. The HRF is a mathematical function which represents this neurovascular coupling mechanism. The 

aberrations of neurochemicals in SZ and BP subjects which may impact neurovascular coupling and hence 

the shape of the HRF are shown. Abnormalities in GABA are shown as 1, serotonin is shown as 2, nitric 

oxide is shown as 3, and glutamate is shown as 4.  

The resting GABA concentration is correlated with the amplitude of the hemodynamic 

response [112][113]. As mentioned before, quicker, taller, and narrower HRFs have been observed 

in regions with lower concentrations of GABA [117]. Reduced GABA in anterior cingulate cortex 

has been reported in SZ [202], which could result in higher RH in this region (Figure 4.3A). 

Decreased GABA level was reported in  the medial frontal lobe in older SZ patients [203], which 

could explain lower FWHM we observed in this region. Further, postmortem studies linking 

molecular deficits with in vivo observations in SZ patients [204] have reported reduced glutamic 
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acid decarboxylase, a synthetic enzyme for GABA, in dorsolateral prefrontal cortex [205], primary 

motor cortex (BA 4) [206], and hippocampus [207]. We have detected shorter FWHM in 

dorsolateral prefrontal cortex and primary motor cortex (BA 4, Precentral Gyrus), and higher RH 

in parahippocampus, which reinforce the relationship between GABA and the shape of HRFs. The 

altered expression of GABA receptors also suggests altered GABA concentration; however, their 

precise mechanistic relationship is unclear.  

Unlike SZ, relatively fewer studies have investigated neurochemical alterations in BP. For 

example, a higher GABA concentration was reported in anterior cingulate cortex [208], which 

could produce an HRF with wider FWHM in this region (Figure 4.3B). Also, reduced protein 

expression of the GABA receptor was reported in cerebellum [209], which may be related to the 

lower RH, FWHM and TTP we found in BP (Figure 4.3B). More studies are needed to investigate 

neurochemical alterations in BP and further elucidate possible mechanisms by which they could 

explain HRF alterations in this population. 

 Serotonin is a powerful vasoconstrictor [8] and hence has the potential to affect the shape 

of the HRF. However, unlike GABA, less is known about how serotonin impacts HRF parameters. 

Previous studies have detected aberrations of the serotonergic system both in SZ 

[61][183][210][211] and BP [64][211][212][213] populations. In the SZ group, several aspects of 

serotonin expression were altered in the cerebellum, including mRNA, protein and binding sites 

of serotonin gene [214].  The serotonin binding site densities were reported to be significantly 

increased in dorsolateral prefrontal cortex, anterior cingulate cortex, and parahippocampal gyrus; 
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and the serotonin receptor mRNA abundance was reported to be reduced in dorsolateral prefrontal 

and anterior cingulate [215]. There findings might be related to the altered HRF shape observed 

by us in these regions (Figure 4.3A). In the BP group, the mean serotonin transporter binding 

potential was reported to be aberrant in the thalamus, dorsal cingulate cortex, medial prefrontal 

cortex [216] and anterior cingulate cortex [217]. These aberrations could potentially alter the HRF 

shape in these regions (Figure 4.3B).  

Glutamate tigers astrocytic activation, which can release a number of vasoactive molecules to 

regulate vascular tone, including vasodilation and vasoconstriction [9]. Therefore, the aberrant 

glutamate level and the dysfunction of glutamate receptors on astrocytes could disrupt normal 

neurovascular coupling and give rise to altered shape of the HRF. In SZ, higher expression of 

glutamate transporters [218] and decreased glutamate receptor binding [219] had been 

demonstrated in the thalamus. Increased subunit mRNA expression of NMDA glutamate receptors 

was found in the prefrontal lobe [220]. Postmortem studies have reported increased expression of 

glutamate transporters in the dorsolateral prefrontal [221] and anterior cingulate cortices 

[221][222]. In the BP group, absolute concentrations of glutamate was observed to be significantly 

higher in the anterior cingulate cortex and medial prefrontal lobe [223]. Elevated thalamic N-

acetylaspartate, a reservoir for glutamate, was reported in males diagnosed with BP [224]. 

Decreased mRNA expression of glutamate transporters has been reported in the medial temporal 

lobe of participants with BP [225]. Taken together, previously reported alterations of the 

glutamatergic system in SZ and BP, could in principle, alter HRF shape in the corresponding 
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regions (Figure 4.3).  

Nitric oxide modulates neurovascular coupling as a vasodilator [138][139]. In the SZ group, 

increased nitric oxide synthase have been reported in cerebellum [226], a region which also 

showed altered HRF shape in our study (Figure 4.3). For the BP group, literature on regional 

alterations of NO are sparse. However, the contribution of  NO to the pathology of BP was 

confirmed by Savas et al [227].  

We detected a cluster of voxels within the thalamus (Figure 4.4A) that showed significant 

differences in the HRF parameters across all three groups. According to the Morel thalamic atlas 

[194][195], the thalamus seed we have used encompasses the MD nucleus, the Hb nucleus and the 

CL nucleus (Figure 4.4C). Diffusion tractography studies have suggested a high probability of 

structural connections between caudodorsal MD nucleus and medial frontal/cingulate cortex as 

well as dorsolateral frontal cortex [228]. CL nucleus was shown to be connected with the basal 

ganglia in animals [229][230][231]. Although reports of specific connections from the human CL 

nucleus were not to be found, the intralaminar nucleus, which includs the CL nucleus, was reported 

to be connected to the basal forebrain, cerebral cortex, basal ganglia, sensori-motor cortex, and 

hypothalamus by a diffusion tensor tractography study in humans [232]. Also, by registering our 

thalamic seed on the Oxford thalamic atlas based on diffusion tractography [193] (Figure 4.4B), 

we found that the strucutral connections from our thalamic seed with the temporal and pre-frontal 

lobes showed the highest probability. Kumar et al [233] proposed a thalamic parcellation based on 

both rs-fMRI functional connectivity and structural connectivity of the thalamus. They compared 
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their parcellations with the Morel atlas as well [194][195]. They reported that their parcellated 

thalamic clusters which overlapped with MD and CL thalamic nuclei exhibited notable differences 

in their structural as well as functional connectivity with the rest of the brain. Direct and indirect 

tracts from MD and CL were reported to be confined to the posterior fornix, precuneus, posterior 

cingulum, hippocampus including the parahippocampal gyrus, subthalamic nucleus and brainstem. 

On the other hand, rs-fMRI functional connectivity analyses by Kumar et al reported that MD and 

CL were functionally connected at rest with the occipital and parietal lobes, the temporoparietal 

junction, pre- and postcentral gyrus, cuneus, inferior and medial temporal lobe, the anterior 

cingulate, and parts of the medial and lateral prefrontal cortex. The Hb nucleus has been shown to 

be structurally connected to both the limbic system and key brainstem nuclei [234][235].  

Literature indicates that the Hb nucleus may act as a hub between forebrain and midbrain regions.  

The connectivity of the cerebellum and the thalamus is complex. The thalamus receives major 

projections from the cerebellum [236][237] and different thalamic nuclei mediate the relationship 

between the cerebellum and different parts of the cortex [238][239][240]. The ventral lateral 

thalamic nuclei that receive projections from the deep cerebellar nuclei [241] through three distinct 

routes. The direct route passes in the anterolateral direction under the thalamus and enters from 

the ventral side. The second route following the posterior pathway turns dorsally from the midline 

at the posterior side of the thalamus, entering the thalamus from various positions. The third route 

following the anterior route passes laterally in the subthalamus and enters the external medullary 

lamina. Within the lamina, fibers turn posteriorly and enter the dorsal side of the thalamus [242]. 

https://en.wikipedia.org/wiki/Medullary_laminae_of_thalamus
https://en.wikipedia.org/wiki/Medullary_laminae_of_thalamus
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Divergent pathways originate from the same axon but travel different routes and target different 

terminal fields. Previous studies also reported aberrations in thalamic connectivity in SZ 

[243][244][245][246] [247]  and BP [247][248] similar to those found by us and we will not 

elaborate on them further here. Taken together, these patterns of connectivity between the MD, 

CL and Hb thalamic nuclei and the rest of the brain, as well as those between the cerebellum and 

thalamus found in previous studies are in general agreement with functional connectivity obtained 

from our thalamic seed in controls, as well as observed aberrations of such functional pathways in 

SZ and BP disorders.   

It is noteworthy that the group connectivity patterns were different between DC and NDC data 

(Figures 4.5, 4.6, 4.7). In some instances, although similar overarching regions were identified 

with both DC and NDC data, the size and peak co-ordinates of some clusters were shifted. In other 

instances certain between-group differences of functional connectivity were observed only in the 

DC dataset. For example, aberrant connectivity between the thalamus and right caudate in SZ and 

BP group were detected only in the DC dataset (Figure 4.11A) but not in the NDC dataset (Figure 

4.11B). This makes sense given that the caudate is structurally connected specifically with the MD 

nucleus in the thalamus [249][250] which was part of our thalamic seed.  

Finally, we applied repeated-measures ANOVA to investigate whether brain regions show an 

interaction between deconvolution and group factors. We found that the interaction effect was 

exhibited in the functional connectivity paths between the thalamus seed and the following regions:  

bilateral lingual gyrus, bilateral insula and bilateral superior frontal gyrus (Figure 4.11, Table 4.9). 
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This implies that the connectivity differences across the groups between the thalamic seed and 

these regions would be deduced differently in the NDC and DC datasets. This finding suggests 

that if the estimated functional connectivity should be interpreted purely in terms of the underlying 

neural metabolism rather than in terms of non-neural and neural (such as neurovascular signaling 

mechanisms) components affecting the HRF, then it would be preferable to characterize functional 

connectivity in the latent neural space rather than the raw BOLD space. 

The limitation of this study is that we investigated the effect of HRF variability only on 

thalamus-seed based connectivity pattern in the three groups. However, a similar analysis at the 

whole brain level, though computationally expensive, may provide a more complete picture. Also 

the discussion we provided regarding how the neurochemical factors might affect the shape of the 

HRF is still speculative. In the absence of direct measurement of neurochemicals (using in vivo 

MR spectroscopy, positron emission tomography or single-photon emission computed 

tomography) in regions showing alterations in the shape of the HRF, it is not possible to make 

definitive claims regarding how these neurochemicals might control different aspects of the HRF 

shape. 
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Chapter 5 

Enhancing Creativity and Insight using fMRI Neurofeedback 

 

 

Abstract 

The neural correlates of creativity, specifically insight, is a matter of intense interest. Insight 

problem-solving is not deduced logically and the solution is typically very hard to get (probability 

of success approximates 0% [40]) and requires “out of the box” thinking . By using the transcranial 

direct current stimulation (tDCS), Chi et. al. [66] demonstrated that increasing the excitability of 

the right anterior temporal lobe (rATL) mitigated cognitive biases and enabled surprisingly large 

number of people to solve insight problems such as the nine-dot puzzle. Here we test this 

hypothesis using real-time fMRI (rt-fMRI) based neurofeedback under the premise that if subjects 

are enabled to up-regulate activity in their rATL using neurofeedback, it must mimic the effect of 

tDCS and hence enable them to solve the problem. Our results show that approximately 40% of 

subjects were able to solve the nine-dot problem using rt-fMRI neurofeedback, which is similar to 

the percentage of subjects who were able to solve the puzzle using tDCS as reported by Chi et al. 

Subjects who solved the puzzle were able to significantly up-regulate activity over their rATL as 

compared to those who did not. Further, the rATL was predominantly driven by other (specifically, 

frontal) regions in unsuccessful subjects while it predominantly drove other regions in successful 
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subjects. The frontal regions are likely involved in top-down modulation (which impose cognitive 

biases while solving problems) of temporal regions, forcing individuals to see a Gestalt, i.e. a 

square bounding box for the nine dots, which likely prevents them from “thinking out of the box”. 

Therefore, up-regulation of activity in rATL will likely mitigate this bias. Furthermore, our study 

demonstrates that neurofeedback could potentially be used to mimic effects similar to brain 

stimulation techniques such as tDCS. This provides a likely framework for cross-pollination 

between brain stimulation and neurofeedback paradigms. 

Key works: Insight Problem Solving; Real-time fMRI; Effective Connectivity; Dynamic 

Granger Causality. 

5.1 Introduction 

Insight problem solving is generally characterized by a time interval wherein it does not 

appear to the subject that he/she is progressing towards the solution in a logical step-by-step 

manner, followed by a rapid arrival to the solution. Consequently, the subject is not able to trace 

back on how he/she arrived at the solution, and the solution simply appears to occur to them from 

nowhere. This creates a subjective “aha!” experience for the subject [251]. Human creativity is 

thought to follow the framework outlined above for insight problem solving, although all creative 

expressions are not necessarily borne out of the necessity to solve a problem. Therefore, creativity 

has a broader context and insight problem solving is a specific instantiation of the creative thought 

process. Although insight problem solving shares common underlying cognitive processes (e.g. 

memory retrieval, decision-making, categorization, and perception) with most other types of 
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solving strategies, it differs from common problem solving in that the key to generating the 

solution is conceptual restructuring rather than analytical thinking. Specifically, Ohlsson [252] 

suggested that the insight problem solving is best described as “impasse followed by restructuring”. 

During insight problem solving, the solvers try to minimize the difference between the current 

state of problem solving and the goal state. Insight occurs only when the solver realizes that the 

following analysis steps couldn’t achieve the goal and that a new analysis must be sought.  

With the development of neuroimaging techniques such as functional magnetic resonance 

imaging (fMRI) and electroencephalography (EEG), investigations into the neural basis of insight 

problem solving and creativity have characterized brain activations throughout the solving period. 

Accumulated evidence indicates the dominant involvement of the right hemisphere in insight 

problem solving [253][254][255][256][257]. Many have theorized that insight problem solving 

involves several component processes [258][259][260][261]. Accordingly, many have tried to 

explain insight problem solving in terms of two cognitive processes separately. Breaking the 

mental set [262][263] or cognitive restructuring is considered as one of the key processes. A mental 

set is defined as the tendency to solve problems in a fixed way based on previous solutions to 

similar problems [264]. Therefore, breaking the mental set is defined as the moment when the 

subject realizes that the solution requires different methods and tries to move away from the current 

mental set. Another important process is forming novel associations, which refers to associating 

existing concepts or skills in novel ways based on current task demands [265]. Existing empirical 

evidence does not allow for any systematic conclusion that isolates the neural correlates of these 
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two processes. However, experimental paradigms that emphasize one process over another could 

provide the neural basis of these two processes and reveal different parts of insight problem 

solving.  Ding et al [266] suggest that the cingulate gyrus may be involved in detecting conflict 

and breaking mental set, middle and inferior frontal gyrus may play an important role in cognitive 

restructuring, and inferior parietal lobule, and the superior temporal gyrus may be associated with 

forming novel association. Qiu et al [267] required participants to find the solution on their own 

initiative during solving Chinese logogriphs, and suggested that the precuneus might be involved 

in retrieval of heuristic information, left inferior/middle frontal cortex might be related to breaking 

the mental set and forming novel associations.  

Regions within the temporal cortex have been consistently identified as essential for creativity 

and insight problem solving. Specifically, superior temporal gyrus in the right anterior temporal 

lobe (rATL) has been highlighted because EEG data revealed a sudden burst of high-frequency 

(gamma-band) neural activity in rATL prior to the emergence of insight solutions [255]. Other 

studies have revealed an increased fMRI signal in the right anterior superior temporal gyrus for 

insight but not non-insight solutions [255][262]. Taking cue from these results, Chi et al [66] 

applied transcranial direct current stimulation (tDCS) to inhibit the activation of left anterior 

temporal lobe (lATL) and facilitate the activation rATL, while participants were engaged in 

solving an inherently difficult insight problem called the nine-dot puzzle [268]. They showed that 

tDCS enabled a surprisingly large number of people (40%) to solve the nine-dot puzzle while the 

probability of an individual solving the nine-dot puzzle without tDCS is close to zero [40]. The 
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nine-dot problem requires that nine dots be arranged in a square connected by four straight lines 

drawn without lifting the pen from the paper and without retracing any lines (Figure 5.1). This 

problem is ridiculously simple in the formal sense that there are only a few possible solutions to 

try, but ridiculously difficult in the psychological sense that the probability of success 

approximates 0% [40]. The explanation for this phenomenon is because our brains, especially the 

left hemisphere, are wired to interpret the world though the filter of our past experiences, and we 

are inclined to see the nine-dots as a square, with imposed rigid boundaries. This mechanism is 

mostly unconscious and cannot be easily overridden. In Chi’s study [66], they showed that tDCS 

enabled a surprisingly large number of people (40%) to solve the nine-dot puzzle while the 

probability of an individual solving the nine-dot puzzle without tDCS is close to zero [40]. 

 

Figure 5.1 The nine-dot problem and its solution. 

Inspired by this work, we hypothesized that real-time functional magnetic resonance imaging 

(rt-fMRI) neurofeedback [34] can mimic the effects of tDCS and enable individuals to solve the 

The nine- dot puzzle Solution
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nine-dot puzzle. Specifically, when an individual is solving the nine-dot puzzle inside an MRI 

scanner, we extracted the signal from the participant’s rATL and provided that as a feedback to 

the participant in near real-time. The participant was required to adopt strategies for solving the 

nine-dot puzzle which increased the rATL feedback signal. We hypothesized that this will mimic 

the excitatory effects of tDCS on rATL and enable about 40% of the subjects to arrive at the 

solution. Further, using brain connectivity modeling, we contrast brain networks obtained from 

individuals who solved the puzzle versus those who did not, providing putative neural mechanisms 

underlying creativity and insight problem solving  

Rt-fMRI neurofeedback allows participants to selectively regulate their own brain activity by 

gaining volitional control over the BOLD signal from specific regions of their own brains provided 

as a feedback [34][35]. The self-regulation of brain activity has been achieved in various regions, 

e.g., the anterior cingulate cortex for pain control [36], the amygdala for the emotional regulation 

of fear [37], etc. The learned control over the local brain activity via rt-fMRI neurofeedback 

training were also demonstrated to lead to specific changes in behavior [34][35]. However, our 

proposal to use rt-fMRI as a non-invasive proxy for brain stimulation is novel.  

Finally, using post-hoc analysis of task data, we investigated brain regions differentially 

activated in individuals who were successful in solving the puzzle with the aid of neurofeedback 

versus those who were unsuccessful. Further, we also characterized the underlying directional 

brain networks in these groups of participants in order to understand the role of top-down inputs 

into the rATL in enhancing or suppressing creative insight. 
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5.2 Methods 

5.2.1 Participants 

The sample consisted of 26 healthy participants (13 women, 13 men), aging from 22-28 years 

(averaged age: 24.8 years). Participants had no history of psychiatric or neurological disorders and 

were compatible to be scanned in an MRI scanner. Further, they were interviewed before 

recruitment to make sure that they had not heard of the nine-dot puzzle and did not know the 

solution to the puzzle a priori. The research protocol was approval by the Institutional Review 

Board (IRB) at Auburn University. All subjects provided written informed consent. Three 

participants were excluded due to unacceptable data quality. The analyzed data consisted of 10 

participants who solved the nine-dot puzzle and 13 participants who did not. 

5.2.2 Experimental Design 

Protocol 

Participants were informed that they would receive a neurofeedback signal that represents the 

activation of a specific region of their own brain throughout the scans. The BOLD signal from the 

rATL region was shown to the participants as an increasing/decreasing curve. The participants 

were instructed to attempt to solve the nine-dot problem by pursuing strategies that will enhance 

the neurofeedback BOLD signal. A button box was given to the participants and they were asked 

to press a specific button when they thought that they had arrived at the solution. This was done in 

order to record the moment in time when the participants solved the puzzle and the scanning 

continued irrespective of the button press.   
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The experimental paradigm consisted of 4 runs per subject. Each run had 300 TRs (TR=2s) in 

total. The block design consisted of 10 TRs of rest followed by 20 TRs of task, which repeated 

throughout the whole run, as depicted in Figure 5.2. 

 

Figure 5.2  fMRI block design consisted of rest blocks (10 TR) and task blocks (20TR) alternating 

each other. Each run consisted of a total of 300 TRs (TR=2s). During the task blocks, participants attempted 

to solve the puzzle while receiving neurofeedback, and were asked to adopt strategies that increased the 

neurofeedback signal. 

Behavioral report  

Before the scan, the subjects were instructed as following: (1) Try to solve the problem when 

the color of line turns red and a word of “task” shows up (Figure 5.3). (2) Rest when the color of 

line turns blue and a word of “rest” shows up (Figure 5.3). (3) During solving the problem, try to 

increase the changing curve which represents the increasing activity in rATL (Figure 5.3). (4) Hit 

the button box right after they think they have solved the problem. (5) After hitting the button box, 

keep thinking the problem, check the answer (because their answer could be wrong), and continues 

controlling the curve. The button box could be hit for multiple times if they think the new solution 

is right. (6) We will check the answer and time of right solution appearing with them after each 

run. 
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After each run, the subjects were pulled off the scanner. We checked the following questions 

with subjects: Whether they have the solution; Whether the solution is right; how many times they 

had hit the button and which one is the time they had the right solution? Especially after first and 

second runs, the subject were asked about their performance of mastering the instruction.  We 

asked them that whether they have actual rest during the rest block, and whether they have the 

feeling of they can control the curve.   

After four runs, we talked with the subjects. In successful group, the subjects exhibited 

comprehension of the whole task. Most of them stated that when they focus on insight problem 

solving, the curve goes up very easily. When they try to think about something else, such as music, 

movies, the curve goes down quickly. And most of them stated that they felt they started generating 

control to the curve in second and third run. In unsuccessful group, most subjects stated they didn’t 

feel that they have acquired the ability in managing the curve. Also, they couldn’t build the 

connection of their problem solving with the changing of curve. 
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Figure 5.3 The screenshot of feedback image provided to the subjects. (A) A screenshot during the rest 

block. The blue line and a blue word of “rest” are provided to remind subjects for resting. (B) A screenshot 

during task block. The red line and a red word of “task” are provided to remind subjects of performing 

task. A picture of nine dots is provided at the left button of screen for reminding the problem to subjects. 

The changing image is adjusted to fit the size of screen automatically. 

5.2.3 Real-time Data Acquisition 

The subjects were scanned in a 7T Siemens MAGNETOM scanner. For each subject, a high-

resolution anatomical scan was acquired using a magnetization-prepared rapid gradient echo 

(MPRAGE) sequence with repetition time (TR) = 2200 ms, echo time (TE) = 2.9 ms, inversion 
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time (TI) = 105 ms, flip angle (FA) = 7°, number of slices =256, slice thickness = 0.7mm, and field 

of view (FOV)=224mm. After the anatomical images were collected, functional images were 

acquired by using an echo-planar imaging (EPI) sequence with TR = 1500 ms, TE =25 ms, number 

of slices =32, voxel size=3.0×3.0×3.0 mm3, FOV=192 mm, flip angle =70°, and 300 measurements. 

A 32-channel head coil (Nova Medical) was used. During each scan, after on-line reconstruction 

of the data, the images were sent to a computer (Figure 5. 4 C) where the data was subjected to 

accelerated motion correction as described in Scheinost et al [269] and temporal denoising by 

using the Yale BioImage Suite software [270] (www.bioimagesuite.org). The feedback signal was 

selected from a pre-defined ROI of rATL (central MNI coordinates: x: 45; y: -9 ; z:-47) and 

displayed to the subject as a changing curve via Avotec’s MR-compatible projection system. The 

BioImage Suite software package has the ability to process data in near real-time. The time lag 

between actual brain activity and the display of feedback signal was under 2s. The system 

architecture is illustrated in Figure 5.4. 
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Figure 5.4  The experimental setup for real time fMRI which consisted of (A)The 7T MRI scanner, (B) 

Scanner host computer, (C) Image processing computer, and (D) Display computer with projector. The 

raw k-space MR data were processed by the reconstruction system on the scanner host computer, which 

creates images of each slice/volumes. The image processing computer retrieved slices/volumes from the 

scanner host computer and analyzed slices/volumes in real time by using BioImage Suite software. Its 

output was the fMRI signal from the rATL ROI which was sent to the display computer to be shown to the 

subject as a curve. When the curve goes up (or down), it represented increased (or decreased) brain activity. 

5.2.4 Image Processing before Biofeedback Scans 

The rATL ROI was defined in MNI space. In each scanning session, after the anatomical 

images were collected, the rATL ROI was pre-transformed from the MNI space to the functional 

space of the given subject using three concatenated transformations (Figure 5.5A). Firstly, the 

rATL ROI was transferred from MNI space to the given subject's MPRAGE image by applying 

nonlinear registration (Figure. 5.5B). Secondly, axial adjustment of rATL ROI was performed by 

applying a linear rigid transformation to the space of the given subject’s axial-oblique anatomical 

data [271] (Figure. 5.5C). Lastly, the structural images of rATL ROI were registered to the 
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individual’s functional space by applying a linear rigid transformation (Figure 5.5D). All 

transformations were performed by using appropriate modules of the Yale BioImage Suite 

software package, including “combine transformations”,  “linear registration”, “linear RPM” etc. 

[270]. In this manner, the rATL ROI was translated into the functional space of each participant 

before the neurofeedback scans involving four EPI runs. 



 

 
116 

 

 

Figure 5.5 Illustration of the registration of the normalized rATL mask into the space of subject’s 

functional space. (A) The normalized rATL mask as defined on the MNI space. (B) The transformed (via a 

nonlinear registration) rATL mask in the space of the subject's high-resolution structural data. (C) The 

transformed rATL mask in the space of the subject's axial-oblique anatomical data. (D) The transformed 

rATL mask in the space of the subject's axial-oblique functional reference space.  
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5.2.5 On-line Real-time fMRI Process 

In this system, the on-line rt-fMRI image processing was implemented by modifying the 

image reconstruction pipeline of Siemens' Image Calculation Environment (ICE) [269]. More 

specifically, a new local “functor” was inserted in the online processing chain, immediately after 

each slice of the image was acquired and reconstructed by scanner host (Figure 5.4 B) and before 

the scanner host sent image to real-time system (Figure 5.4). This “functor” wrote the slice image 

as a file in a directory accessible to a separate image processing computer (Figure 5.4 C) connected 

by local area network. Since the strategy of real-time fMRI is minimize the delay of processing 

raw image associated with standard offline methods. The image processing computer applied 

“image analysis program” (a module of BioImage Suite: www.bioimagesuite.org) to accelerated 

the motion correction in real-time. The system takes advantage of the interleaved acquisition of 

fMRI (where the odd-numbered slices are acquired first followed by the even-numbered slices). 

The image processing computer (Figure 5.4C) read and stored the slices in local memory as they 

appeared. When all the odd slices had arrived, the “image analysis program” computed a linear 

rigid transformation between the incoming data and the functional reference volume. Once the 

complete volume had arrived, the computed transferred function was applied to transform the 

given volume into the space of the functional reference volume. Through this manner, the 

accelerated motion correction would be achieved. The average signal in the rATL ROI was then 

computed and sent to the display computer (Figure 5.4D) via serial port. In the display computer, 

the stimulus/neurofeedback presentation was executed. 
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5.2.6 Offline Pre-processing 

Pre-processing was performed offline using the Data Processing Assistant (DPARSF) toolbox 

[99] based on Statistical Parametric Mapping (SPM8) software package [100]. The first five 

images were discarded to ensure the equilibration of magnetization. The images were preprocessed 

separately for each subject with the following steps: slice timing correction by shifting the signal 

measured in each slice relative to the acquisition of the slice at the mid-point of each TR, realigning 

of all the images using six rigid body parameters (registered to the first image and then registered 

to the mean of the images after the first realignment) in order to correct for motion. For every 

individual, the functional images were co-registered to the structural images (T1-weighted 

MPRAGE) by using a linear transformation as well as spatially normalized to the MNI avg152 T1 

template, in MNI stereotaxic coordinates. The functional images were spatially smoothed with a 2 

mm3 full-width at half-maximum (FWHM) Gaussian smoothing kernel [272]. Head motion effects 

and low frequency scanner drifts were regressed out from the fMRI signal by utilizing a 24-

parameter (6 head motion parameters, 6 head motion parameters one time point before, and the 12 

corresponding squared items) model [102]. The signals from white matter and cerebrospinal fluid 

were regressed out to reduce respiratory and cardiac effects. 

5.2.7 Offline Analysis of fMRI Task Data 

As mentioned above, the experimental paradigm required participants to adopt problem 

solving strategies that would up-regulate the BOLD signal extracted from the rATL region of their 

own brains and provided as a neurofeedback signal during the task blocks. We predicted that this 
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would enable the subjects to solve the nine-dot problem. In order to understand the neural basis of 

success or failure in solving the nine-dot problem, we estimated the incremental task-induced 

BOLD signal change in the rATL across runs. For each run and subject, the preprocessed BOLD 

signal was abstracted from the rATL ROI mask used during neurofeedback in the data acquisition 

phase. The signal changes in rATL averaged over individual task blocks relative to the baseline 

was computed individually for each subject on a trial-by-trial basis. More specifically, the 

incremental percentage BOLD signal change was computed by using the following equation: 

∆signal =
mean(task)−mean(rest)

mean(rest)
×100%           (5.1) 

Furthermore, a linear regression analysis that used the trial-specific signal changes as the 

dependent variable and time as the independent variable was conducted to evaluate the learning 

effects over time.  

The increment of corrected T2*-weighted images during regulation with respect to the baseline 

was evaluated by using SPM8. Voxels showing significant positive changes during task blocks 

with respect to the baseline were inferred to be activated. This resulted in statistical contrast maps 

showing activated regions for each participant separately. In order to understand the neural basis 

of success or failure in solving the nine-dot problem, we divided the sample into two groups – 

those who were successful in solving the nine-dot problem and those who were not. In the current 

study, 10 subjects solved the nine-dot problem and were designated as the ‘successful group’, 

while 13 subjects did not solve the nine-dot problem were defined as the ‘unsuccessful group’. 

The statistical contrast maps from individual were input into a random-effects one-sample t-test to 
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assess group-level activation maps separately in both the groups. The statistical contrast maps from 

individual subjects in both the groups were also compared directly using a random-effects two 

sample t-test. The between-group activation differences were examined using the following 

contrasts: successful group> unsuccessful group and unsuccessful group > successful group. The 

location of activated clusters (in MNI coordinates) at a significance level of p <0.05 FDR corrected 

was determined. 

5.2.8 Offline Analysis of Effective Connectivity Networks 

ROI Definition 

We aimed to examine the patterns of connectivity between brain regions involved in solving 

the nine-dot puzzle and investigate differential connectivity patterns in individuals who were 

successful in solving the puzzle as compared to those who were not. We selected 9 ROIs 

activated by the task and identified by the GLM analysis described above. Among these, 5 ROIs 

were activated in the successful group > unsuccessful group contrast and 4 ROIs were activated 

in the unsuccessful group > successful group contrast. All ROIs were cubes of 5 mm per side, 

centered on the peaks of activation.  

Dynamic Granger Causality (DGC) Analyses 

The concept underlying Granger causality (GC) [78][78]to forecast the future of one signal 

“S1” by using the past and present of another signal “S2” [78][273][274][275]. A successful 

prediction is inferred as a causal influence from S2 to S1. The causal influences between multiple 

time series can be inferred by using a multivariate vector autoregressive model (MVAR) 
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[276][277]. In neuroimaging, the time series are obtained from activated brain regions. In this way, 

the MVAR model can be used to infer causal relationships between activated ROIs in brain 

networks [274][278][279][280]. The advantage with this approach is that it is data driven and does 

not require specification of candidate models as in dynamic causal modeling and structural 

equation modeling [275].  

When using this approach in a block or event-related fMRI paradigm, it is necessary to be 

able to distinguish causal influences between activated ROIs during events of interest from those 

obtained from inter-trial intervals or control conditions. In order to achieve this, the MVAR model 

can be made ‘dynamic’ by allowing the model coefficients to vary across the time. Let us assume 

k ROI time series from k activated brain regions as follows: 

𝑋(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), ⋯ , 𝑥𝑘(𝑡)]                                  ( 5 . 2 ) 

The dynamic MVAR model[81][281] is then given by: 

𝑋(𝑡) = 𝐴(0,𝑡)𝑋(𝑡) + 𝐴(1,𝑡)𝑋(𝑡 − 1) + ⋯ + 𝐴(𝑝,𝑡)𝑋(𝑡 − 𝑝) + 𝐸(𝑡)                (5.3) 

Where the dynamic model coefficients A are a function of both time t and model order p. It 

is to be noted that in A(0,t), diagonal elements representing auto-correlation were set to zero and 

only cross-correlation between time series were modeled in order to compensate for zero-lag 

correlation effects (referred to as correlation-purged Granger causality) [282]. The model 

coefficients were then estimated in a Kalman filter framework using variable parameter regression 

[82], which calculates the optimal set of coefficients that minimizes the model error E(t) [283].  

The coefficient A′(p,t)  indicates the degree to which the past X(t − p)  can predict the 
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present X(t), where p is an arbitrary time delay or model order [83]. The sum of all coefficients 

corresponding to all delays at time t would be represented as: 

𝐷𝐺𝐶𝑖𝑗(𝑡) = ∑ 𝑎𝑖𝑗
𝑝
𝑛=1 (𝑛, 𝑡)                     (5.4) 

Where aij are the elements of coefficient matrix A. In this framework, DGCij represents 

dynamic Granger causality and is the strength of causal relationship from ROI i to ROI j at time 

instant t [284]. In this study, in order to examine the causal relationships arising from neural delays 

less than a TR [285][286], we used a first order model by choosing the model order p as 1.  

The time series to be used in the model described above were obtained from ROIs which were 

activated in the successful>unsuccessful as well as unsuccessful>successful contrasts (more on 

this in the results section). Before performing DGC analysis, deconvolution was performed on the 

average time series extracted from each of the ROI identified in the above contrasts separately for 

each run and each participant. Inter-subject and spatial variability of the hemodynamic response 

function (HRF) [47][48][91] could lead to false inferences of directional connectivity. This can be 

addressed by applying hemodynamic deconvolution, wherein the variability of the HRF  and its 

smoothing effect can be minimized so that directional connectivity is more accurately estimated 

[53][287][93]. 

We performed deconvolution to obtain latent neuronal variables by using a blind 

deconvolution algorithm [72], which jointly estimates latent neuronal time series as well as ROI-

specific HRF [288][289] based on the Cubature Kalman filter [290][291][292]. Further, it has been 

demonstrated that this model likely does not overfit the data [186]. The estimated latent neural 
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time series from each ROI were put into the MVAR based DGC model to estimate directional 

connectivity between the ROIs at each time point.  

The DGC values associated with task blocks and rest blocks (Figure.5.1) were extracted for 

each path and each individual subject separately [293]. Then, the task-related DGC values were 

collated into two different samples corresponding to subjects from the ‘successful group’ and the 

‘unsuccessful group’. Connectivity paths significantly (p-value<0.01, FDR corrected) different 

between the groups were evaluated by comparing the task-specific connectivity samples obtained 

from the two groups using two sample t-tests. The connectivity paths which were significantly 

stronger in the successful group and vice versa were examined.  

In successful group, the DGC values were also extracted in male subjects and female subjects. 

The altered path between genders were examined (p-value<0.01, FDR corrected) by performing 

two sample t-tests between the task-specific connectivity samples obtained from the male subjects 

and female subjects in successful group. In these contrasts, the DGC matrixes acquired from the 

timeseries after the occurrence of solution in successful group were not put into the analysis. 

In successful group, we also extract the DGC values form the 10 task timepoints (22 seconds) 

before the generation of the solution and the 10 task timepoints (22 seconds) after the generation 

of solution. Connectivity paths significantly (p-value<0.01, FDR corrected) were evaluated. 

The complete workflow of DGC analysis is depicted in Figure 5.6. 
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Figure 5.6 An illustration of the workflow of DGC analysis. After deconvolution, the estimated latent 

neural activity of each ROI were input into the dynamic MVAR model. The significantly different (p-

value<0.01, FDR corrected) paths in the contrasts of successful group>unsuccessful group, unsuccessful 

group>successful group were calculated by comparing the task-related DGC values between two group. 

In successful group, the contrast of 10 task timepoints before solving the problem between after solving the 

problem and the contrast between genders were calculated by comparing the task-related DGC values. 

5.3 Result 

5.3.1 The rt-fMRI Neurofeedback Signal Regulation  

As mentioned before, 10 subjects were successful in solving the nine-dot puzzle while 13 

subjects were not. The percentage of participants who solved the puzzle (43.5%) is surprisingly 

similar to the percentage of participants who solved with puzzle with tDCS applied to rATL [66]. 

The amount of percentage signal increase in rATL that the subjects were able to achieve in each 

of the four runs is shown in Figure 5.7 for both the successful and unsuccessful groups. The 

average BOLD activity in the rATL increased progressively across the neurofeedback runs for the 

successful group and reached a maximum during the final neurofeedback run (run 4) (Figure 5.7, 



 

 
125 

blue line). For the unsuccessful group, the average BOLD activity in the rATL failed increase 

significantly beyond the first run and decreased precipitously from run-3 to run-4 (Figure 5.7, red 

line). The percent BOLD signal change was significantly larger in the successful group as 

compared to the unsuccessful group only in run-4 (Figure 5.7, asterisk). These results demonstrate 

the ability of the participants in the successful group to upregulate BOLD activity over their rATL 

region via rt-fMRI neurofeedback while the unsuccessful group clearly failed to do so. Given that 

all subjects reached the solution in run-4, our results indicate that more that 60% signal change in 

rATL may be required to gain creative insight. Since we examine the general performance of 

regulating rATL, and the subjects didn’t stop regulation after the get the solution (cause its 

accuracy was not check), this analysis includes all the time series of run 4 in successful group. 

A repeated measures ANOVA was performed to examine the interaction between group and 

BOLD signal change. We considered the 4 runs as different measurements and group as a factor. 

The significant interaction between runs and group was found in Sphericity assumption (Table 

5.1). 
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Figure 5.7 Percentage BOLD signal change within each run and associated changes across runs (run-

1 to run-4) for both the successful group that solved (blue) and the unsuccessful group that did not solve 

(red) the puzzle. Each error bar represents the standard derivation of percent BOLD signal change within 

the group. The percent BOLD signal change was significantly larger in the successful group as compared 

to the unsuccessful group only in run-4.  

 

Table 5.1 Tests of Within-Subjects Effects 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Percentage 

BOLD signal 

change 

Sphericity Assumed 2.876 3 .959 .488 .692 

Greenhouse-Geisser 2.876 1.951 1.474 .488 .613 

Huynh-Feldt 2.876 2.251 1.278 .488 .639 

Lower-bound 2.876 1.000 2.876 .488 .492 

Percentage 

BOLD signal 

change * 

group 

Sphericity Assumed 16.132 3 5.377 2.739 .050 

Greenhouse-Geisser 16.132 1.951 8.269 2.739 .078 

Huynh-Feldt 16.132 2.251 7.168 2.739 .069 

Lower-bound 16.132 1.000 16.132 2.739 .113 



 

 
127 

Error(Percen

tage BOLD 

signal 

change) 

Sphericity Assumed 123.691 63 1.963   

Greenhouse-Geisser 123.691 40.970 3.019   

Huynh-Feldt 123.691 47.262 2.617   

Lower-bound 123.691 21.000 5.890   

*The significant is labeled as bold and italics. 

 

5.3.2 Between-group Activation Differences 

Brain regions activated significantly (p<0.05, FDR corrected, minimum cluster size set to 20 

voxels) more in the successful group as compared to the unsuccessful group during the 

neurofeedback regulation task are shown in Figure 5.8. It revealed activations in the left Anterior 

Temporal Lobe (lATL), right Anterior Temporal Lobe (rATL), left Angular Gyrus (lAG), right 

Inferior Frontal Gyrus (rIFG) and right Superior Frontal Gyrus (rSFG). In contrast, brain regions 

activated significantly (p<0.05, FDR corrected, minimum cluster size set to 20 voxels) more in the 

unsuccessful group as compared to the successful group during the neurofeedback regulation task 

are shown in Figure 5.9. It revealed activations in the left Superior Frontal Gyrus (lSFG), Caudate 

Head (CauH), right Superior Occipital Gyrus (rSOG) and right Superior Parietal Gyrus (rSPG). 

Table 5.2 provides corresponding details regarding the size of the activation clusters, peak 

coordinates and peak intensity.    
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Figure 5.8 Brain regions activated significantly (p<0.05, FDR corrected, minimum cluster size set to 

20 voxels) more in the successful group as compared to the unsuccessful group during the neurofeedback 

regulation task. The activation maps are overlaid on a representative single-subject T1 template in the MNI 

space. 
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Figure 5.9 Brain regions activated significantly (p<0.05, FDR corrected, minimum cluster size set to 

20 voxels) more in the unsuccessful group as compared to the successful group during the neurofeedback 

regulation task. The activation maps are overlaid on a representative single-subject T1 template in the MNI 

space. 

 

Table 5.2 Comparison of activations between the successful and unsuccessful groups 

* Coordinates referring to the peak of the cluster in MNI Space. 

* Anatomical labels are based on Automated Anatomical Labeling (AAL). 

* BA – Brodmann area. 

Cluster anatomical location Abbreviation 

Peak coordinates 

Cluster size 

Peak 

intensity(t) 

BA Hemisphere 

x y z 

Successful > Unsuccessful: p<0.05 (FDR corrected), cluster size, minimum 20 voxels 

Right Anterior Temporal Gyrus rATL  64 -34 -8 570 4.48 21 20 37 Right 

Left Anterior Temporal Gyrus lATL -54 -30 -6 235 3.64 21 Left 

Left Angular Gyrus lAG -54 -60 40 356 3.39 39 40 Left 

Right Superior Frontal Gyrus rSFG 24 60 28 114 3.58 10 Right 

Right Inferior Frontal Gyrus rIFG 54 22 18 137 4.17 45 9 Right 

Unsuccessful > Successful: p<0.05 (FDR corrected), cluster size, minimum 20 voxels 

Left Superior Frontal Gyrus lSFG -20 60 4 105 3.07 10 Left 
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Caudate Head   CauH 6 8 2 75 4.22  Bilateral 

Right Superior Occipital Gyrus rSOG 18 -78 30 98 3.60 7 Right 

Right Superior Parietal Gyrus rSPG 36 -52 66 135 3.59 5 Right 

 

 

5.3.3 Between-group Effectivity Connectivity Differences 

The successful group exhibited significantly (p<0.01, FDR corrected) stronger connectivity 

paths originating from the rATL and lAG to CauH, rSPG and rSFG. The lAG also exhibited 

significantly stronger connectivity in targeting rATL, lSFG, rIFG and lATL. The rSOG did not 

exhibit higher effective connectivity related to any regions in the successful group (Figure 5.10). 

The unsuccessful group exhibited significantly (p<0.01, FDR corrected) stronger connectivity 

in bidirectional paths among CauH, rIFG, and rSFG. The rSFG exhibited higher connectivity in 

targeting lATL, rATL, rIFG, lSFG, rSPG, and rSOG. The rIFG exhibited higher connectivity in 

targeting lATL, rATL, lAG, lSFG, rSPG, and rSOG. The CauH exhibited higher connectivity in 

targeting lATL, lAG, lSFG, and rSOG. The lATL exhibited higher connectivity in targeting lAG, 

rATL and lAG (Figure 5.11).  
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Figure 5.10 Paths which showed significantly stronger connectivity in the successful group as 

compared to the unsuccessful group (p<0.01, FDR corrected) during neurofeedback regulation. 

Predominantly source regions are shown in green while predominantly sink regions are shown in pink. The 

green line represents the connectivity paths between source regions while blue lines represent connectivity 

from source to sink/target regions. 
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Figure 5.11 Paths which showed significantly stronger connectivity in the unsuccessful group as 

compared to the successful group (p<0.01, FDR corrected) during neurofeedback regulation. The 

predominantly source regions are shown in green while predominantly sink regions are shown in pink. The 

green line represents the connectivity paths between source regions while blue lines represent connectivity 

from source to sink/target regions. 

5.3.4 Effectivity Connectivity Differences between Genders in Successful Group 

In successful group, female subjects exhibited significantly (p<0.01, FDR corrected) stronger 

connectivity paths originating from the lAG to lATL, rIFG, rSPG than the male subjects (Figure 

5.12). While the male subjects exhibited significantly (p<0.01, FDR corrected) stronger 

connectivity paths originating from the rSPG to lAG, lATL, rIFG, rSFG and CauH (Figure 5.13). 
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Figure 5.12 Paths which showed significantly stronger connectivity in female subjects in successful group 

as compared with male subjects in successful group (p<0.01, FDR corrected) during neurofeedback 

regulatio. 
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Figure 5.13 Paths which showed significantly stronger connectivity in male subjects in successful group 

as compared with female subjects in successful group successful (p<0.01, FDR corrected) during 

neurofeedback regulation. 

5.3.5 Effectivity Connectivity Differences Before and After Generating the Solution 

In successful group, the connectivity of 10 task timepoints before the generation of solution 

exhibited significantly (p<0.01, FDR corrected) stronger connectivity paths originating from the 

rATL to lATL, lAG, rSFG when compared with the connectivity of 10 task timepoints after the 

generation of solution (Figure 5.14). No stronger connectivity paths were found in the connectivity 

of 10 task timepoints after the generation of solution. 
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Figure 5.14 Paths which showed significantly stronger connectivity in the 10 task timepoints before 

generation of solution as compared with the 10 task timepoints after generation of solution in successful 

group (p<0.01, FDR corrected). 

 

5.4 Discussion 

The primary goal of this study was to demonstrate that rt-fMRI neurofeedback-based self-

regulation of brain activity could mimic the effects of tDCS by facilitating a significant number of 

individuals in solving the nine-dot puzzle [66]. Specifically, we applied rt-fMRI neurofeedback by 

extracting the signal from rATL. This choice was inspired by previous EEG experiments that 

demonstrated a sudden burst of high-frequency (gamma-band) neural activity in rATL prior to the 

emergence of insight solutions [255] and the tDCS study that demonstrated that excitatory 
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stimulation over rATL could facilitate insight problem-solving [2]. In our work, 10 subjects solved 

the problem and 13 subjects did not (i.e. approximately 40% were successful). This result is in 

agreement with Chi’s study [2], where 40% individuals solved the problem with the facilitation of 

tDCS. Thus, we concluded that self-regulation of brain activity via rt-fMRI neurofeedback could 

mimic the effects of tDCS .  

In order to understand the neural mechanisms underlying enhanced insight problem-solving 

and creativity with rt-fMRI neuroffedback from rATL, we performed post-hoc analysis of the data 

in both the groups. For the successful group, we selected the data only from individuals who solved 

the problem. All such subjects did so only in the fourth run. The unsuccessful group consisted of 

data from subjects that completed 4 runs (to ensure that the individuals undergo rt-fMRI 

neurofeedback for approximately the same duration), but did not solve the puzzle. The successful 

group showed progressively enhanced up-regulation of the rATL signal from first to fourth runs 

while the unsuccessful group did not. Moreover the difference in percent signal change over rATL 

was significant between the groups in the fourth run when the subjects in the successful group 

arrived at the solution (Figure 5.7).  

Post-hoc activation analysis revealed that the successful group exhibited higher activations in 

rATL, lATL, lAG, rIFG and rSFG (Figure 5.8). On the other hand, the unsuccessful group 

exhibited higher activations in lSFG, CauH, rSPG and rSOG (Figure 5.9). Since both groups 

performed the same task of solving nine-dot problem, these detected regions could be involved in 

various mental processes underlying creativity and insight problem solving. These detected brain 
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regions are generally consistent with previous studies. A number of neuroimaging studies have 

demonstrated the increased activations of the bilateral temporal cortex (rATL [255][262][294] and 

lATL [295][296]) during insight problem solving. The rATL was shown to be recruited before the 

moment at which the solution to insight problems arose [255]. The exact role of lATL in creativity 

and insight problem solving remains to be determined. However,  recent findings suggest that 

lATL could be involved in retrieving and maintaining heuristic information obtained during the 

learning stage [297], which is necessary for all types of problem solving. The bilateral frontal 

cortices have also been implicated in insight problem solving [298][261][260][299]. The prefrontal 

cortex has been shown related to the successful execution of mental processes which are required 

for creativity and insight problem solving (e.g. suppressing extraneous thoughts, selecting 

prepotent solution strategies and shifting attention from a non-prepotent strategy) besides others 

[53][54][300][301][302]. The prefrontal cortex is not thought to be directly involved in generating 

creativity and insight. Rather, it is considered to contributes to the instigation of the creative 

thoughts by enabling the recognition of appropriately novel combinations of information [260], 

thereby aiding the breaking of conceptual constraints. There are appears to be lateral specificity in 

the frontal cortex. For example, the right hemisphere of the frontal cortex was found to be involved 

in formulating distant semantic relations [303]. This supports theories that the right hemisphere is 

involved in the processing of distant associations that may be useful in creative thought and 

problem solving [253][254][255][256][257]. This is in line with higher activation in rSFG and 

rIFG in the successful group (Figure 5.8) in our results. 
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We also detected other active regions in both groups. Higher activation of lAG was found in 

the successful group (Figure 5.8). The activation of lAG has been shown to be related to problem 

solving [304][305][306] and mental arithmetic [307]. Dandan et al concluded that the lAG might 

be involved in forming novel associations between insight problems and related prototypes [308]. 

On the other hand, higher activation was found in CauH in the unsuccessful group (Figure 5.9). 

The CauH is a core region of the non-declarative memory system [309][310], and its activation 

could be related to potential mnemonic strategies that might have been used by unsuccessful 

participants [311][312]. Higher activation was also found in rSOG in the unsuccessful group 

(Figure 5.8). rSOG is implicated in visual processing [267]. Given that Salvi et al demonstrated 

that sudden insight is associated with shutting out of visual inputs [313], it makes sense that we 

found higher activation of rSOG in the unsuccessful group. Higher activation was also found in 

rSPG in the unsuccessful group (Figure 5.9). Recently, increasing number of studies have reported 

the activation of parietal lobe [255][299] could serve broadly in associative processing [314][315], 

which facilitated creativity thinking. However, a study instructed participants to generate either 

creative or uncreative stories and found that creative (as compared to uncreative) story generation 

was associated with lower activity in right parietal lobe [316]. Combined with the lower activation 

of rSPG detected in the unsuccessful group in our result, we proposed the idea that the rSPG could 

be recruited in creative task, but less devotion is required in generating the creative solution.  

Our results demonstrated that rt-fMRI neurofeedback not only facilitated the subjects to up-

regulate the activation of targeted brain region (rATL in our case), but also to alter brain 
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connectivity associated with the targeted region [34][35]. Enhancement of activity in a single 

targeted region could propagate to other regions connected to the targeted region, either increasing 

or decreasing activity in those regions. Therefore, we hypothesized that connectivity associated 

with rATL would be significantly different between the groups. Specifically, we hypothesized 

rATL to predominantly receive inputs from other regions in unsuccessful subjects. This is based 

on previous literature speculating that top-down modulation of temporal regions by frontal regions 

imposes cognitive biases [317][318][319] which inhibits creativity and insight problem solving. 

On the other hand, in successful participants, we hypothesized that rATL would predominantly 

drive other regions and escape the top-down cognitive biases.  

 Our results indeed support the above hypothesis. We found that rATL and lAG drove rSFG, 

rSPG and the CanH in the successful group (Figure 5.10) while it was driven by rSFG, rIFG and 

lATL (Figure 5.11) in the unsuccessful group. We also found that before the generation of the 

solution, the rATL particularly drives the lATL, lAG, rSFG (Figure 5.14). This result is highly 

consistent to the EEG data that revealed a sudden burst of high-frequency (gamma-band) neural 

activity in rATL prior to the emergence of insight solutions [8].  

In summary, the frontal regions are likely involved in top-down modulation (which impose 

cognitive biases while solving problems) of temporal regions, forcing individuals to see a Gestalt, 

i.e. a square bounding box for the nine dots, which likely prevents them from “thinking out of the 

box”. Therefore, up-regulation of activity in rATL will likely mitigate this bias. Also, the activity 

in rATL is especially important in generating the solution. 
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 Our result also indicates that the cognitive pattern under problem solving is likely different 

between genders. In female, the lAG drives other regions (Figure 5.12) while in male, the rSPG 

drives other regions (Figure 5.13). As mentioned above, lAG has been shown to be related to 

mental arithmetic [307] and parietal lobe [255][299] could serve broadly in associative processing 

[314][315]. This result may reflect the cognitive bias between genders.  

In conclusion, our study demonstrates that neurofeedback could potentially be used to mimic 

effects seen in brain stimulation techniques such as tDCS in facilitating insight problem solving 

and enhancing human creativity. This provides a potential framework for cross-pollination 

between brain stimulation and neurofeedback paradigms. 
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Chapter 6 

Conclusion and Future Work 

 

 

6.1 Conclusion 

This dissertation aims to propose novel signal processing methods and experimental 

paradigms with fMRI applications, which devotes to the strategies of decoding brain signals and 

states. 

The conclusions are summarized as follows: 

Study 1 and study 2: Most rs-fMRI connectivity analyses were conventionally applied to the 

raw BOLD signal, which ignored the confounding effect raised from the varied HRF. Previous 

discussions proposed HRF deconvolution methods to acquire neural-space signal and concluded 

that it is better to use neural-space signal for inferring causality on hidden neural 

activity[53][54][55][56]. In the light of these works, we continued the discussion into rs-fMRI 

connectivity analysis. We hypothesized that the systematic differences in the shape of the HRF 

could be examined between these pathological populations and healthy controls, and the varied 

HRF would contribute to the differences in estimating functional connectivity in the BOLD space 

as compared to the latent neural space. Since the aberrant non-neural factors that would control 

the HRF shape was well-stablished in ASD [47], SZ [48][49][50][51][52] and BP [53][54][55], 
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we verified the proposed hypotheses on the three pathological populations. By applying a novel 

deconvolution method which copes with varied HRF, we acquired the voxel specific HRF and 

latent neural event in these pathological populations and healthy control group. In study 1, we 

identified the brain regions which had systematic differences in HRF shape between these ASD 

and control groups. Specifically, we detected a cluster in precuneus exhibited aberrations in all 

HRF parameters. Further, we examined and compared the precuneus-seed-based functional 

connectivity differences between ASD and controls in BOLD space as well as latent neural space 

and the fMRI data processed without deconvolution failed to detect group differences in 

connectivity. In study 2, we observed brain regions showed differences in HRF shape between SZ, 

BP and control subjects, and detected a cluster within the mediodorsal, habenular and central 

lateral nuclei of the thalamus that exhibited pairwise altered HRF shape between the three 

populations. We evaluated the thalamic seed-based functional connectivity maps in BOLD space 

as well as latent neural space. In both studies, our results indicated that the pairwise functional 

connectivity differences between the groups were inferred significantly different in BOLD space 

and latent neural space. Moreover, we performed two-way ANOVA analyses in study 1 and 2, and 

the interaction between group and deconvolution factors was demonstrated in estimated regions. 

This shows that functional connectivity group differences in these regions would be inferred 

differently in DC and NDC datasets. 

Together, our results demonstrated that the possible confounds introduced by the variable 

HRF in identified functional networks in pathological populations, especially in the populations 
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that share overlapped pathology in the neurotransmitters which also control HRF shape. We 

reported that raw fMRI data might have failed to detect group differences in rs-fMRI connectivity 

analysis and emphasized the importance of performing HRF deconvolution method in rs-fMRI 

connectivity analysis. Moreover, our results are relevant for the understanding of hemodynamic 

and neurochemical aberrations in ASD, SZ, and BP.  

Study 3: Present researchers have demonstrated that the activity in right-sided rATL is crucial 

in generating “Aha!” experience in insight problem solving [255]. However, the elaborated 

mechanism remains unclear. Our work aimed to find a way to approach insight with novel 

neuroimaging techniques and experimental paradigms. By introducing rt-fMRI neurofeedback 

technology, we mimicked the facilitated effect of tDSC [66] on solving nine-dot puzzle. 

Consequently, the increased number of subjects who solved the problem is in line with the stimulus 

effect of tDSC. Also, the successful solved group exhibited better capability in self-regulation the 

brain activity in rATL. Since the enhancement of activity in a single targeted region could mediate 

its connection with other regions, we further investigated the underlying neuronal connectivity. 

Our results demonstrated that rt-fMRI neurofeedback not only facilitated the subjects to up-

regulate the activation of targeted brain region (rATL in our case), but also to altered brain 

connectivity associated with the targeted region [34][35]. Our results indicated that the up-

regulation of activity in rATL are likely to mitigate the top-down modulation of temporal regions 

by frontal regions imposing cognitive biases [317][318][319], which inhibits creativity and insight 

problem solving.  
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 To sum it up, we characterized the underlying directional brain networks in these groups of 

participants in order to understand the role of top-down inputs into the rATL in enhancing or 

suppressing creative insight. We have demonstrated that insight solutions are indeed associated 

with a discrete, distinct pattern of neural activity, supporting unique cognitive processes. Moreover, 

our study demonstrated that neurofeedback could potentially be used to mimic effects seen in brain 

stimulation techniques such as tDCS in facilitating insight problem solving and enhancing human 

creativity. This study provided a potential framework for cross-pollination between brain 

stimulation and neurofeedback paradigms. 

6.2 Limitations and Future work 

We here present some limitations of this dissertation and point towards future directions which 

could address those limitations.  

In study 1 and study 2, we only estimated the effect of HRF variability in functional 

connectivity by using the estimated seeds. However, one could investigate the effect of voxel-wise 

HRF variability on voxel-wise functional connectivity differences between controls and pathologic 

populations at the whole brain level. Second, we have discussed various neurochemical alterations 

in pathologic populations and how they could have influenced the shape of the HRF. These 

inferences are indirect at best, since we did not directly measure the concentration of those 

neurochemicals. Such an endeavor, using noninvasive in vivo methods, such as magnetic 

resonance spectroscopy in humans as well as invasive methods in animal models could provide 

evidence that is more direct and further validate our observations. 
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In study 3, we mimicked the facilitated effect of tDSC over rATL on solving nine-dot puzzle 

[66]. However, in Chi’s research [66], they investigated the stimulation targeted on rATL, the 

inhibition targeted on lATL and the integrated effect of both. The further study should also 

investigate the self-generated inhibition over lATL and integrated effect based on rt-fMRI 

technology. 
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