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Abstract

In this dissertation, deterministic and stochastic mathematical models are proposed to

study vector-host epidemic models with direct transmission. The total population of the

host and the vector is divided into different compartments as susceptible hosts, infected

hosts, susceptible vectors and infected vectors. In the first chapter, we model and study

the deterministic vector-host epidemics with direct transmission using a nonlinear system of

differential equations. First we obtain the disease-free equilibrium point E0 and the endemic

equilibrium point E1. After that we derive the basic reproductive number R0, and study

the local and global stabilities of E0 and E1 in relation to R0. Using the perturbation of

fixed point estimation, we investigate the sensitivity of the basic reproductive number in

relation to the parameters used in the model. Next by adding environmental fluctuations

to the deterministic model, we obtain a nonlinear system of stochastic differential equation

that describes the dynamics of the stochastic vector-host epidemic model. By defining a

stochastic Lyapunov function, we prove the existence of a unique nonnegative global solution

to the stochastic model. Moreover, we show that the solution of the stochastic model is

stochastically ultimately bounded and stochastically permanent. Similar to the deterministic

case, we obtain the basic reproductive number for the stochastic model Rs
0 and we show that

the infection will die out or persist depending on the value of Rs
0. In particular, we show

that random effects may lead to extinction in the stochastic case while the deterministic

model predicts persistence. We also present necessary conditions for the infection to be

persistent in the stochastic model. Finally we present a stochastic vector-host epidemic

model with direct transmission in random environment, governed by a system of stochastic

differential equations with regime-switching diffusion. We first examine the existence and

uniqueness of a nonnegative global solution. Then we investigate stability properties of
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the solution, including almost sure and pth moment exponential stability and stochastic

asymptotic stability. Moreover, we provide conditions for the existence and uniqueness of a

stationary distribution. In all the chapters, we provide numerical simulations and examples

to illustrate some of the theoretical results.
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Chapter 1

Introduction

According to medical dictionary, a disease is a pathologic process with a characteristic

set of Signs and Symptoms. It may affect the whole body or any of its parts, and its etiology

or cause, Pathology, and Prognosis may be known or unknown. There are different ways

of classifying diseases. One such classification is infectious versus noninfectious. Infectious

diseases are disorders caused by organisms such as bacteria, viruses, fungi or parasites and

can be passed between individuals. On the other hand, noninfectious diseases are medical

conditions that are not caused by infectious agents. Noninfectious diseases such as obesity,

down syndrome, kidney disease can last for long periods of time and progress slowly, while

other noninfectious diseases such as autoimmune diseases, heart diseases, stroke and some

cancers may result in rapid death. The epidemiology of noninfectious diseases is mainly

related to risk factors such as a person’s background, lifestyle and environment which includes

age, gender, genetics and some behaviours such as smoking, unhealthy diet and lack of

physical exercise. Contrary to the noninfectious diseases, the main risk factor for acquiring

an infectious disease is the presence of infectious cases in the population.

Infectious diseases can be classified into two categories based on the way how the infec-

tion is transmitted from an infected organism to a susceptible one. Generally an infectious

disease can be transmitted in two ways; horizontally or vertically. Horizontal transmission

is when the disease is transmitted from one individual to another in the same generation

or peers in the same age group, while vertical transmission is passing the agent causing the

disease from parent to offspring, such as in prenatal or perinatal transmission [6, 25].

Another way of classifying infectious diseases is based on whether the transmission of

infection is direct or indirect. A transmission is called direct if the infection is spread when
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disease-causing microorganisms pass from the infected person to the healthy person via

direct physical contact with blood or body fluids. Examples of direct contact are touching,

kissing, sexual contact, contact with oral secretions, or contact with body lesions. With

some exceptions, most of the microparasitic diseases, such as influenza, measles, and HIV,

are directly transmitted from an infected person to a healthy one. On the other hand,

indirect transmission involves the transfer of an infectious agent through a contaminated

intermediate object or person. Some of the indirect transmission mechanisms include the

following [6, 25].

1. Airborne transmission: Some bacteria or viruses travel on dust particles or on small

respiratory droplets that may become aerosolized when people sneeze, cough, laugh,

or exhale. Many common infections such as TB, measles, chickenpox, smallpox can

spread by airborne transmission.

2. Contaminated objects: Touching an object, such as a doorknob, soon after an infected

person, or through contaminated blood products and medical supplies one might be

exposed to infection. Contaminated food and water can also be included in this group.

3. Animal-to-person contact: Some infectious diseases can be transmitted from an animal

to a person. This can happen when an infected animal bites or scratches or when one

handles animal waste.

4. Insect bites (vector-borne disease): Some zoonotic infectious agents are transmitted by

insects, especially those that suck blood. These include mosquitos, fleas, and ticks.

5. Animal reservoirs: There are many diseases that can be transmitted to humans from

other vertebrate hosts (zoonoses). Some of the Zoonotic diseases include anthrax (from

sheep), rabies (from rodents and other mammals), West Nile virus (from birds) and

plague (from rodents).
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According to the Center for Strategic and International Studies (CSIS), infectious diseases

are the leading cause of death of children, adolescents and adults. For example in 2013,

among older children ages 5 to 9, the most common cause of death was diarrheal disease,

followed by lower respiratory tract infections, road injuries, intestinal infectious diseases

(mainly typhoid and paratyphoid), and malaria. These five causes accounted for 39% of all

deaths among children 5 to 9. In the same year, among adolescents 10 to 19, the leading

cause of death was road injuries, followed by HIV/AIDS, self-harm, drowning, and intestinal

infectious diseases. These five leading causes accounted for 34% of all deaths in this age

group [27].

A large proportion of infectious diseases are spread through vector transmission. Vector-

borne diseases are infections transmitted by the bite of blood-feeding arthropods such as

mosquitoes, ticks, triatomine bugs, sandflies, and blackflies or through contaminated urine,

tissues or bites of infected animals such as rats or dogs. Some vector-borne diseases may

also be transmitted directly through blood transfusions, organ transplantation, exposure in

a laboratory setting, or from mother to baby during pregnancy, delivery and breast feeding.

Direct transmission has an impact on the dynamics of many vector-borne diseases [6].

Vector-borne diseases provide unique challenges to public health because the epidemi-

ology is so closely tied to external environmental factors such as climate, landscape, and

population migration, as well as the complicated biology of vector-transmitted pathogens.

One bigger problem faced by vector-borne diseases is their effect on livestock and crops.

They have the potential to cause a serious economic harm to a country and even can affect

trade relation among different countries. For example, according to FAO, bluetongue, a

viral disease transmitted among sheep and cattle by biting midges, results in annual losses

of approximately $3 billion due to morbidity and mortality of animals, trade embargoes, and

vaccination costs [28].

Despite great advances in public health worldwide, insect vector-borne infectious dis-

eases remain a leading cause of morbidity and mortality. While significant advances are
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currently being made in interventions to prevent and treat most of these diseases such as

zika, malaria, lymphatic filariasis and Chagas disease, other diseases such as dengue continue

to spread and increase their number of cases at an alarming pace. The silent expansion of

mosquito vectors and their ability to develop resistance to insecticides threatens the gains

made through vector control and calls for concerted planning and collaboration across sec-

tors including health, agriculture and the environment. The spread of some vector-borne

diseases in rural areas is also aggravated by environmental changes [49].

One of the main reasons for studying infectious diseases is to improve control and

ultimately to eradicate the infection from the population. The results from the study are

very helpful to predict the developing tendency of the infectious disease, to determine the key

factors of the spread of infectious disease and to seek the optimum strategies of preventing

and controlling the spread of infectious diseases. In this respect, mathematical models can

be very important in providing a unique approach to gain basic insights into the dynamics

of infectious diseases and for understanding the underlying mechanisms that influence the

spread of disease to suggest control strategies.

For an effective prevention and intervention strategies against infectious diseases, un-

derstanding of the fundamental mechanism in the disease transmission is crucial. In order

to achieve this goal, many mathematical models have been used to investigate how to more

effectively control emerging and reemerging infectious diseases such as SARS, zika, malaria,

dengue fever and West Nile virus, via various disease control measures including vaccination,

quarantine, and isolation [46].

According to Matt J. Keeling [25], models have two distinct roles, prediction and un-

derstanding, which are related to the model properties of accuracy and transparency, and

therefore can often be in conflict. We usually require a high degree of accuracy from any

predictive model, whereas transparency is a more important quality of models used to im-

prove our understanding. Prediction is the most obvious use of models. It requires that the

model is as accurate as possible and therefore includes all of the known complexities and
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population-level heterogeneities. Predictive models can have great power in specific situa-

tions, guiding difficult policy decisions where a trade-off between two (or more) alternative

control strategies exists.

One of the early triumphs of mathematical epidemiology was the formulation of a sim-

ple model by Kermack and McKendrick in 1927 whose prediction was very important in

analyzing the spread, and control of infectious diseases qualitatively and quantitatively.

The Kermack–McKendrick model is a compartmental model based on relatively simple as-

sumptions on the rates of flow between different classes of members of the population. In

epidemiology, these models are known as compartmental models, and they serve as a base

mathematical framework for understanding the complex dynamics of these systems, which

hope to model the main characteristics of the system [10].

In order to model some infectious diseases, we divide the population being studied into

different compartments and put some assumptions about the nature and time rate of transfer

from one compartment to another. The independent variable in the compartmental model

is time t, and the rates of transfer between compartments are expressed mathematically as

derivatives with respect to time of the sizes of the compartments. As a result our models

are formulated initially as differential equations.

We denote the number of individuals who are susceptible to the disease but not yet

infected by S(t). At time t = 0, the host encounters an infectious individual and becomes

infected. Initially, the individual may exhibit no obvious signs of infection and the abundance

of pathogen may be too low to allow further transmission. Individuals in this phase are said

to be in the exposed class and are denoted by E(t). Once the level of parasite is sufficiently

large within the host, the potential to transmit the infection to other susceptible individuals

exists and the host becomes infectious and we denote it by I(t). Finally, once the individual's

immune system has cleared the parasite and the host is therefore no longer infectious, they

are referred to as recovered and denoted by R(t).

5



As an example, let us discuss on how to model a communicable disease such as influenza,

measles or ebola using the mass-action principle as suggested by Kermack and McKendrick

in the 1927. Although the epidemiology of each disease is unique, the models presented in

this example provides a framework that captures the common features across many other

diseases. The population of the host is categorized as susceptible (if previously unexposed

to the pathogen), infected (if currently colonized by the pathogen), and recovered (if they

have successfully cleared the infection) and the population of each compartments at time

t is denoted by S(t), I(t), R(t) respectively. For simplicity, we assume a closed population

(no births, deaths or migration) and thus we have only the transitions from susceptible to

infected (S → I) and from infected to recovery (I → R). The flow chart below shows the

different compartments and how the infection is transmitted from one group to another.

S → I → R

The following assumptions are considered in deriving the SIR (susceptible-infectious-recovered)

model:

(1) The disease spread in a closed environment, no emigration and immigration, and

no birth and death in the population, so the total population remains a constant N, i.e.

S(t) + I(t) +R(t) = N.

(2) The infective rate of an infected individual is proportional to the number of sus-

ceptible, the coefficient of the proportion is a constant β, so that the total number of new

infected at time t is βS(t)I(t).

(3) The recovered rate is proportional to the number of infected, and the coefficient of

proportion is a constant γ, so that the recovered rate at time t is γI(t).

From the above assumptions it follows that the susceptible group will decrease at a

rate of βS(t)I(t) and due to infection, and due to recovery, the infected group will decrease

at a rate of γI(t). Thus the transition of individuals from susceptible to infected and from
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infected to recovery group can be expressed as a system of nonlinear differential equation as

follows.
dS(t)
dt

= −βS(t)I(t)

dI(t)
dt

= βS(t)I(t)− γI(t)

dR(t)
dt

= γI(t)

(1.1)

Even though the above system looks simple, it is not possible to find an explicit solution.

That is we cannot obtain an exact analytical expression for the dynamics of S(t), I(t) and

R(t). However, given some initial conditions S(0) > 0, I(0) > 0, R(0) = 0, the system can

be solved numerically.

Many important infections have significant incubation period during which the individ-

ual has been exposed and infected but is not yet infectious themselves. For some disease, it

takes certain time for an infective agent to multiply inside the host up to the critical level so

that the disease actually manifest itself in the body of the host. Thus we include an exposed

compartment E and we will end up with a SEIR model.

SI (susceptible - infectious) model is the most appropriate way of modeling some plant

infection, since the host is infectious soon after it is infected, such that the exposed period

can be safely ignored, and remains infectious until its death. On the other hand, some

sexually transmitted infectious diseases such as gonorrhoea and air-borne infections such as

influenza and common cold, are better modeled by an SIS (susceptible-infectious-susceptible)

technique. This is due to the fact that these infections do not confer any long lasting immu-

nity and thus they do not give immunization upon recovery from infection, and individuals

become susceptible again.

One important question in epidemiology is to determine whether or not an infectious

disease can spread through a population. Thus in order to determine if the infection will

eventually die out or persist in the system, we should know the average number of secondary

infections caused by a single infectious individual during their entire infectious lifetime. This

fundamental concept is called the basic reproduction number or basic reproductive ratio and
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usually denoted by R0. The idea of basic reproductive number was first developed in 1886 by

Alfred Lotka, Ronald Ross, and others to study demographics but its first modern application

in epidemiology was by George MacDonald in 1952, who constructed population models of

the malaria [21, 29].

The basic reproductive number is affected by several factors including the duration of

infectivity, the infectiousness of the organism and the number of susceptible people with

whom the infected patient comes in contact. Even though the basic reproductive number

can be used as a threshold to determine whether a disease will die out or it may become

epidemic, it cannot be used to compare risks associated with different pathogens.

Hefferman et al. (2005) has provided a method for calculating R0 for any structured

population model using the concept of the next generation matrix [22]. The next generation

matrix G is defined by G = FV −1, where

F =

[
∂Fi(x0)

∂xj

]

represents the rate at which secondary infections are produced in compartment i by an index

case in compartment j, and

V =

[
∂Vi(x0)

∂xj

]
is the transfer of infections from compartment i to j and x0 is the disease free equilibrium.

Finally R0 is defined to be the dominant eigenvalue of the matrix G = FV −1. The basic

reproductive number of some of the well-known diseases is given in table 1.1 [17].

All the above epidemic models considered are deterministic, that is, the output of the

model is fully determined by the parameter values and the initial conditions. When dealing

with large populations, as in the case of tuberculosis or HIV, deterministic models often

provide useful ways of gaining sufficient understanding about the dynamics of populations.

Although deterministic models have contributed much to the understanding of the biological

8



Table 1.1: Basic reproductive number of some of the well-known diseases.

Disease Transmission R0

Measles Airborne 12-18

Diphtheria Saliva 6-7

Smallpox Airborne droplets 5-7

Polio Fecal-oral route 5-7

Mumps Airborne droplets 4-7

HIV/AIDS Sexual contact 2-5

SARS Airborne droplets 2-5

Influenza Airborne droplets 2-3

Ebola (2014 outbreak) Bodily fluids 1.5-2.5

processes which underlie the spread of disease, the importance of random effects and fluc-

tuations in determining population dynamic patterns of disease incidence and persistence is

not reflected.

Generally, fluctuations in the epidemic model arises either from demographic stochas-

ticity or environmental stochasticity. Demographic stochasticity describes the randomness

that results from the inherently discrete nature of individuals. As a result of this fluctuation,

small populations will be impacted highly. On the other hand, environmental stochasticity

describes the randomness resulting from any change that impacts an entire population such

as changes in the environment.

The epidemicity of some infection can be critically influenced by environmental varia-

tions and fluctuations. For example, some pathogenic nematodes that cause severe disease

in staple crops exhibit a critical sensitivity to soil moisture content, becoming inactive at low

levels. Also a variety of insect pests and parasites are strongly influenced by environmental

switching, most notably by diapause, a suspension of development often triggered by changes

in temperature, light levels, or humidity. Environmental variables such as temperature and

moisture levels have both a predictable mean trend over time and a short time-scale ran-

dom component. Both aspects of this variation can be transmitted to the disease process
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through the sensitivity of the organisms involved. Hence the variability of the environment

is fed through to the state of the epidemic. Thus in the stochastic model, randomness is

present, and variable states are not described by unique values, but rather by probability

distributions [51].

Thus stochastic models are concerned with approximating this random or probabilistic

element by incorporating of effects of secondary factors for which a detailed knowledge is

missing. Also if the initial population size is small then a stochastic model is more ap-

propriate, since the likelihood that the population becomes extinct due to chance must be

considered. One other important differences between the deterministic and stochastic epi-

demic models is their asymptotic dynamics. Eventually stochastic solutions (sample paths)

may converge to the disease-free state even though the corresponding deterministic solution

converges to an endemic equilibrium.

Most of the time, stochastic epidemic models can be derived from their corresponding

deterministic ones by incorporating randomness into the system. There are several ways to

include these fluctuations in the deterministic model. For example, [13, 19, 48] introduced

parametric perturbations, since the parameters in the model are always altered due to con-

tinuous environmental fluctuations. Another approach, pioneered in the works of May and

Beddington [39], assumes that the environmental noise is generated by an m-dimensional

standard Brownian motion. Some other authors used this idea to study the properties

of stochastic epidemic models in order to find a more efficient way to reduce infections

[9, 13, 45, 54, 61, 62].

The random environments and random factors such as intrinsic growth rates and inter/intra-

specific growth rates in ecological systems can be modeled by a continuous-time Markov

chain, as the switching between different environments is memory-less and the waiting time

is exponentially distributed [11, 20, 32, 60]. Similarly, in vector-host epidemic models the

transmission rates of vector-borne diseases and the reproduction rates of vectors vary with
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respect to changes of environments. The resulting model is a system of stochastic differential

equations with regime switching.

Deterministic vector-host epidemic models have been studied by several authors. As

mentioned above, the development of vector-host epidemic models with indirect transmission

can be traced back to Ross malaria model in 1911. In his malaria model, Ronald Ross has

captured the basic features on the transmission of malaria and argued that malaria can be

eradicated if the population of mosquito can be reduced below a certain threshold. Later

in 1957, Macdonald has modified the Ross malaria model by including an exposed group

and developed a more comprehensive model which led to a better understanding on malaria

transmission. All other models that exist for malaria dynamics are developed from the basic

models explained earlier by incorporating different factors to make them biologically more

realistic in explaining disease prevalence and prediction [35].

Since then, due to an increased knowledge of the disease and the availability of data,

many researchers have extended these models for a better understanding of vector-borne

diseases such as malaria. For example, a number of researchers have studied malaria model

by including a recovered group which incorporates a time dependent immunity developed on

recovery from infection in humans [4, 15, 40]. Moreover, some models have integrated other

factors such as environmental effects [30, 55, 56]; mosquitos resistance to insecticides and

resistance of some parasitic strains to anti-malaria drugs [36, 41, 50]. Cai and Li proposed

and analyzed vector-host epidemic models with direct transmission. They showed that the

stability of the equilibria in the proposed models can be controlled by the basic reproduction

number and, moreover, they provided conditions for the global asymptotical stability of the

equilibria [8]. Also, optimal control problems related to different infections such as malaria

have generated a lot of interest from researchers. For example, Rafikov, Bevilacqua and

Wyse formulated a continuous model for malaria vector control with the aim of studying

how genetically modified mosquitoes should be introduced in the environment using optimal

control problem strategies [43]. Similarly, Kbenesh Blayneh, Yanzhao Cao, and Hee-Dae
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Kwon presented an autonomous ordinary differential equation model with vector control

and treatment model, and a time dependent counter part of the model involving an optimal

control of vector-borne diseases with treatment and prevention as control measures [5].

Similarly, there are several mathematical models that studied HIV/AIDS. Antiviral

therapy - strategy and drug resistance at the population and individual level [3, 18, 12];

comparison of introducing a time delay in the disease infection term [42]; prediction of

reduction of incidence based on strategies of early detection and widely available antiviral

therapy; through both deterministic and stochastic models [18]; a model of vertical HIV

transmission including treatment and drug-resistance [23, 44].

Dengue fever is a major international health problem, especially in the tropical and sub-

tropical regions of the world including Puerto Rico and in many popular tourist destinations

in Latin America, Southeast Asia and the Pacific islands. Due to this fact and the com-

plexity of its transmission, dengue fever has gathered a lot of attention from mathematical

epidemiologists throughout the years. Feng and Velasco-Hernandez presented a vector-host

dynamics in a two-strain epidemiological system and derived the basic reproductive number

R0. They showed that whenever R0 > 1, there is an unstable endemic equilibrium and

concluded that the system’s long-term behaviour under this condition is unpredictable [16].

Recent studies on modeling dengue fever transmission have taken various directions. For ex-

ample, Yang and Ferreira extended the basic SIR model of dengue fever by testing different

vector-control strategies (insecticide or larvicide application, removal of breeding contain-

ers) [57], Derouich et al. proposed a mathematical model to simulate the succession of two

dengue fever epidemics with variable human populations and studied the stability analysis

of the equilibrium points [14], Wei et al. developed a dengue transmission model including

direct transmission (which is strictly only expected through blood transfusion, bone marrow

transplantation or needle sticks) in addition to the vector-mediated transmission. They also

represented the extrinsic incubation period using a time delay and derived the threshold

conditions for the existence of an endemic equilibrium [53].

12



While deterministic epidemic models have made a major contribution to the understand-

ing of dynamics of infectious diseases, they are merely restricted to stationary environments

and lose their validity while the environment is fluctuating. To reflect the multiplicities of in-

teractions among organisms and their fluctuating environments, stochastic epidemic models

have been studied extensively during the past years.

For example, in [1, 2] Allen presented different methods for formulating stochastic epi-

demic models that relate directly to their deterministic counterparts and compared the two

models for the SIS and SIR cases in discrete time. In [19], Gray et al. extended the classical

SIS epidemic model from a deterministic framework to a stochastic one, and formulated it as

a stochastic differential equation for the number of infectious individuals I(t). The authors

proved the existence of a unique global solution for the stochastic model and established

conditions for extinction and persistence of I(t). Yang and Mao considered a class of multi-

group SEIR epidemic models with stochastic perturbations and by the method of stochastic

Lyapunov functions, they studied their asymptotic behavior in terms of the intensity of the

stochastic perturbations and the reproductive number R0 [58]. Similarly, Jovanovic and

Krstic have studied a stochastic vector-host epidemic model with direct transmission by

introducing random perturbations around the endemic equilibrium state. Using Lyapunov

functions and functionals, they obtained stability conditions for the stochastic model and

studied the effect of the delay on the stability of the endemic equilibrium [24].

This dissertation includes the analysis of both deterministic and stochastic vector-host

epidemic model with direct transmission. In chapter 2, we present a deterministic vector-host

epidemic model with direct transmission. The model consists of a system of non-linear differ-

ential equations, that uses the SIS structure for the host and the SI type of structure for the

vector. The basic reproductive number is derived and the local and global stabilities of both

the disease-free equilibrium point E0 and the endemic equilibrium point E1 are discussed.

In chapter 3, we present a stochastic vector-host epidemic model with direct transmission

to study the effect of adding environmental fluctuations on the corresponding deterministic
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model. We analyze the stochastic model including the existence and uniqueness of solution

of the system and conditions for the extinction and persistence of the infection. In chapter

4, we consider a regime switching vector-host epidemic model with direct transmission. We

construct conditions for the extinction of the disease and investigate the different stability

conditions of the solution. In each chapter, numerical simulations are conducted to support

the analytical conclusions.
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Chapter 2

Analysis of the Deterministic Vector-host Epidemic Model with Direct Transmission

2.1 Derivation of vector-host epidemic model

In this section, we formulate and discuss the transmission and spread of disease in vector-

host model. The host population is divided into two compartments: susceptible host (Sh(t))

and infected host (Ih(t)). The vector population is also divided into two classes: susceptible

vector (Sv(t)) and infected vector (Iv(t)). Susceptible hosts can be infected directly through

a contact with an infected host, such as blood transfusion, as well as indirectly by a bite

from an infected arthropod, such as mosquito and tick. On the other hand, if a susceptible

vector bites an infected host, it will acquire the disease. Using the SIS type of structure for

the host and the SI type of structure for the vector results in the following set of nonlinear

ODEs [8, 24]

dSh
dt

= b1 − µ1Sh − β2ShIv − β1ShIh + φIh (2.1)

dIh
dt

= β1ShIh + β2ShIv − (µ1 + φ)Ih, (2.2)

dSv
dt

= b2 − µ2Sv − βSvIh, (2.3)

dIv
dt

= βSvIh − µ2Iv, (2.4)

where µ1 and µ2 are the mortality rates of the host and vector, respectively, φ is the recovery

rate of infected hosts, β1 is the direct transmission rate from an infected host to susceptible

host, β2 is the indirect transmission rate from an infected vector to a susceptible host, β is

the transition rate from infected host to susceptible vector, and b1 and b2 are the recruitment

rates of the host and the vector, respectively.
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Define the region Γ by

Γ :=

{
(Sh, Ih, Sv, Iv) ∈ R4 : Sh + Ih =

b1

µ1

, Sv + Iv =
b2

µ2

}
.

Denote by Nh(t) = Sh(t) + Ih(t) and Nv(t) = Sv(t) + Iv(t) the total population of the host

and the vector, respectively. Then it follows directly from equations (2.1)–(2.4) that

dNh(t)

dt
= b1 − µ1Nh(t) and

dNv(t)

dt
= b2 − µ2Nv(t).

Note that for any initial conditions Nh(0) = b1/µ1 and Nv(0) = b2/µ2,

Nh(t) ≡
b1

µ1

and Nv(t) ≡
b2

µ2

.

In addition, it can be easily shown that for any arbitrary initial condition,

lim
t→∞

Nh(t) =
b1

µ1

and lim
t→∞

Nv(t) =
b2

µ2

.

Hence the set Γ is invariant and attracting. Similar to [6, 8, 24], throughout this chapter

we restrict our model on the set Γ where system (2.1)–(2.4) can be reduced to the following

equivalent two dimensional system:

dIh
dt

=
β1b1

µ1

Ih − β1I
2
h +

β2b1

µ1

Iv − β2IhIv − (µ1 + φ)Ih, (2.5)

dIv
dt

=
βb2

µ2

Ih − βIhIv − µ2Iv. (2.6)

2.2 Equilibrium points and basic reproductive numbers

In this section, we derive an explicit expression for the basic reproduction number of the

epidemiological model and calculate the equilibrium state solutions. One way to see what

will happen to the population eventually is to explore when the system is at equilibrium.
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By setting

dSh
dt

=
dIh
dt

=
dSv
dt

=
dIv
dt

= 0

we get the following two equilibrium points. The disease-free equilibrium E0 = ( b1
µ1
, 0, b2

µ2
, 0)

and the endemic-equilibrium E1 = (S∗h, I
∗
h, S

∗
v , I
∗
v ), where

S∗v =
b2

µ2 + βI∗h
, I∗v =

βb2

µ2

I∗h
µ2 + βI∗h

, S∗h =
µ2(µ1 + φ)(µ2 + βI∗h)

β1µ2(µ2 + βI∗h) + ββ2b2

(2.7)

and I∗h is the positive solution of the equation

k2(I∗h)2 + k1I
∗
h + k0 = 0, (2.8)

with

k0 = −µ1µ
2
2(µ1 + φ)(R0 − 1), k2 = βµ2β1µ1

k1 = φβµ2µ1 + µ2
2β1µ1 + βb2β2µ1 + βµ2µ

2
1 − βb1µ2β1.

The constant R0 is the basic reproductive number of the model and is defined below. The

disease-free equilibrium is the case where the pathogen has suffered extinction and, in the

long run, everyone in the population is susceptible, while endemic equilibrium is the state

where the disease cannot be totally eradicated but remains in the population.

As described in the introduction part, R0 can be calculated using the next generation

matrix. For the system (2.1)–(2.4), we have that

F1

F2

 =

β1ShIh + β2ShIv

βSvIh

 and

V1

V2

 =

(µ1 + φ)Ih

µ2Iv

 .
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Thus

F (E0) =

β1b1µ1

β2b1
µ1

βb2
µ2

0

 and V (E0) =

µ1 + φ 0

0 µ2

 .
Now we have

G = FV −1 =

 β1b1
µ1(µ1+φ)

β2b1
µ2µ1

βb2
µ2(µ1+φ)

0

 .
Hence R0 is the dominant eigenvalue of G and it is given by

R0 =
β1b1

µ1(µ1 + φ)
+

ββ2b1b2

µ2
2µ1(φ+ µ1)

. (2.9)

2.3 Global and local stability of the equilibrium points

In this section, we study the local and global stabilities of both the disease-free and

endemic equilibrium points. An equilibrium point x̃ is globally stable or globally asymptoti-

cally stable for a model if for all positive initial values, the solution of the model approaches

x̃ as t increases. An equilibrium point x̃ is locally stable or locally asymptotically stable if

for some neighbourhood of x̃, the solution of the model approaches x̃ as the time increases

for all initial values in the neighbourhood of x̃.

2.3.1 Stability of disease-free equilibrium

For the proof of local stability, we use the following theorem found in [47].

Theorem 2.3.1. Given the differential equation on Rn

x′ = f(x),

let x0 be an equilibrium point of the above equation and A = Df(x0) be the Jacobian matrix

of f at the point x0. If all the eigenvalues of A have strictly negative real part, then x0 is

locally asymptotically stable.
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Now we prove the local stability of disease-free equilibrium point.

Theorem 2.3.2. The disease-free equilibrium point E0 is locally asymptotically stable if

R0 < 1.

Proof. Let J(E0) be the Jacobian matrix corresponding to system (2.1)–(2.4) evaluated at

E0, then

J(E0) =



−µ1 −β1b1
µ1

+ φ 0 −β2b1
µ1

0 β1b1
µ1
− µ1 − φ 0 β2b1

µ1

0 −βb2
µ2

−µ2 0

0 βb2
µ2

0 −µ2


Now |J(E0)− λI| = 0 if and only if

(λ+ µ1)(λ+ µ2)

[
λ2 + λ(µ2 + µ1 + φ− β1b1

µ1

) + µ2(µ1 + φ− β1b1

µ1

)− ββ2b1b2

µ1µ2

]
= 0

or equivalently

(λ+ µ1)(λ+ µ2)[λ2 + λ(µ2 + µ1 + φ− β1b1

µ1

) + µ2(µ1 + φ)(1−R0)] = 0.

Define h(λ) =: (λ+ µ1)(λ+ µ2)(λ2 + k1λ+ k0), where

k0 = µ2(µ1 + φ)(1−R0), and k1 = µ2 + µ1 + φ− β1b1

µ1

.

If R0 < 1 then k0 > 0 and also β1b1
µ1(µ2+φ)

≤ R0 < 1. This implies φ + µ2 − β1b1
µ1(µ2+φ)

> 0

and therefore k1 > 0.

Hence all the real roots of h(λ) are negative and by theorem 2.3.1 we conclude that E0

is locally asymptotically stable.

The global stability of E0 follows from the following Lasalle’s invariance principle [47].
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Theorem 2.3.3. Let Ω ⊂ D be a compact set that is positively invariant with respect to

x′ = f(x). Let V : D → R be a C1−function such that V ′(t) ≤ 0 on Ω.

Let E = {x ∈ Ω : V ′(t) = 0} and M be the largest invariant set in E. Then every solution

starting in Ω approaches M as t→∞.

Now we show the disease-free equilibrium point E0 is globally asymptotical stable.

Theorem 2.3.4. If R0 < 1 then E0 is globally asymptotical stable in Γ. The disease-free

equilibrium point E0 is unstable if R0 > 1 and the solutions to the system (2.1)–(2.4) starting

sufficiently close to E0 in Γ move away from E0, except that those starting on the invariant

Sh and Sv axis approach E0 along these axes.

Proof. Consider the Lyapunov function

L(Sh, Ih, Sv, Iv) =

(
Sh −

b1

µ1

− b1

µ1

lnSh

)
+ Ih +

µ1 + φ

β

[
(Sv −

b2

µ2

− b2

µ2

lnSv) + Iv

]
.

We can write the derivative as follows

dL

dt
= −c1

(Sh − b1
µ1

)2

Sh
− c2

(Sv − b2
µ2

)2

Sv
− c3(1−R0)Iv,

where c1, c2 and c3 are all positive constants. Thus if R0 < 1 then dL
dt
≤ 0 and also dL

dt
= 0 if

and only if Sh = b1
µ1

, Sv = b2
µ2

and Iv = 0. Therefore the largest compact invariant set in

E = {(Sh, Ih, Sv, Iv) ∈ Γ :
dL

dt
= 0}

is E0. Thus by theorem 2.3.3, we conclude that the disease-free equilibrium is globally asymp-

totically stable in Γ.
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2.3.2 Stability of endemic equilibrium

Consider the endemic equilibrium E1 = (S∗h, I
∗
h, S

∗
v , I
∗
v ) where S∗h, I

∗
h, S

∗
v and I∗v are given

by equations (2.7) and (2.8). In this subsection, we study the local and global stability of

the endemic equilibrium.

Theorem 2.3.5. If R0 > 1 then E1 is locally asymptotically stable.

Proof. The proof is similar to that of theorem 2.3.2. Let J(E1) be the Jacobian matrix of

system (2.5)–(2.6) at E1, then

J(E1) =

β2Iv + β1Ih − β1b1
µ1

+ β1Ih + µ1 + φ β2( b1
µ1
− Ih)

β( b2
µ2
− Iv) βIh + µ2

 .
Then the characteristics polynomial is given by |J(E1)− λI| = λ2 + a1λ+ a0, where

a1 = β2Iv + β1Ih −
β1b1

µ1

+ β1Ih + µ1 + φ+ βIh + µ2 and

a0 = (βIh + µ2)

(
β2Iv + β1Ih −

β1b1

µ1

+ β1Ih + µ1 + φ

)
− ββ2

(
b1

µ1

− Ih
)(

b2

µ2

− Iv
)
.

Now using equation (2.7) and (2.8), we can simplify a0 as follows

a0 = µ1βµ2β1I
∗
h

2 + µ1µ
2
2β1I

∗
h + βb1µ2β2Iv + µ1µ

2
2β2I

∗
v > 0.

Also from dIh
dt

= 0, it follows that µ1 + φ = β1Sh + β2Sh
Iv
Ih
.

Since Sh = b1
µ1
− Ih we have,

a1 = β2Iv + β1Ih −
β1b1

µ1

+ β1Ih + µ1 + φ+ βIh + µ2

= β2Iv + β1Ih − β1Sh + µ1 + φ+ βIh + µ2

= β2Iv + β1Ih + β2Sh
Iv
Ih

+ βIh + µ2 > 0.
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Thus all the real part of the solutions of the characteristics polynomial are negative and by

theorem 2.3.1 we conclude that E1 is locally asymptotically stable.

Next, we discuss the global stability of the endemic equilibrium point E1. One way to

prove this, as suggested by Cai and Li, is by defining a Lyapunov function L(Sh, Ih, Sv, Iv)

on Γ as follows [8].

L(t) = k1(Sh−S∗h−S∗h lnSh)+k2(Ih−I∗h−I∗h ln Ih)+k3(Sv−S∗v−S∗v lnSv)+k4(Iv−I∗v−I∗v ln Iv),

where

k1 = k2 = βS∗vI
∗
h, k3 = k4 = β2S

∗
hI
∗
v + β1S

∗
hI
∗
h.

Then they showed that dL
dt

= 0 if and only if Sh = S∗h, Ih = I∗h, Sv = S∗v and Iv = I∗v . Thus

by theorem 2.3.3, they concluded that E1 is globally asymptotically stable.

Since constructing and computing the derivative of the Lyapunov function to prove the

global stability of the endemic equilibrium E1 is not easy, we provide another way to prove

this assertion. For that purpose we use the Poincare-Bendixon Theorem. Before stating the

main result, we give some definitions and examples that will be used later.

Definition 2.3.6. Let A be an n × n matrix, the second additive compound matrix of A is

an

 n

2

×
 n

2

 matrix, denoted by A[2] and is defined as follows:

A
[2]
(i)(j) =



Ai1i1 + Aj2j2 if (i) = (j),

(−1)r+sAirjs if exactly one entry ir of (i) does not

occur, in (j) and js does not occur in

(i) for some r, s ∈ {1, 2},

0 if (i) differs from (j) in both entries.
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Example 2.3.7. Let A = (aij)i,j be a 3×3 matrix, then its second additive compound matrix

is given by

A[2] =


a11 + a22 a23 −a13

a32 a11 + a3 a12

−a31 a21 a22 + a33

 .
Definition 2.3.8. Let x → f(x) ∈ Rn be a C1 function for x in an open set D ∈ Rn and

consider the following system of differential equations

x′ = f(x).

Then

1. A set K is called absorbing in D if x(t,K1) ∈ K for each compact set K1 ⊂ D and t

sufficiently large.

2. The system is said to have a Poincare-Bendixon property (PBP) if any nonempty

compact omega limit set that contains no equilibria is a closed orbit (periodic orbit).

3. The above system is said to be competitive in D if for some diagonal matrix

H = diag (ε1, ε2, . . . , εn), H
(
df
dx

)
H has non-positive off-diagonals where εi ∈ {1,−1}.

For more detail, please refer to [7, 31].

Definition 2.3.9. Let X be a metric space with metric d. A map f : X → X defines a

discrete semi-dynamical system T : Z+ ×X → X by T (n, x) = fn(x). Let Y be a subspace

of X, we say that f is uniformly persistent with respect to Y if there exists µ2 > 0 such that

for all x ∈ X\Y , lim inf
t→∞

d(fn(x), Y ) > µ2 [7, 31].

Uniform persistent captures the idea of non-extinction of the system. The following

lemma can be used to check if the given system is uniformly persistent.

Lemma 2.3.10. Let M be the maximal compact invariant set in Y then f is uniformly

persistent with respect to Y if and only if
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1. The set M is isolated in X and

2. The set W s(M) ⊂ Y with W s(M) := {x ∈ X : fn(x) → M as n → +∞} is the

stable set of M .

Next, we state the Poincare-Bendixon Theorem [7, 31].

Theorem 2.3.11. Let x → f(x) ∈ Rn be a C1 function for x ∈ D ⊂ Rn and consider the

system of differential equations x′ = f(x). Assume that

1. there exists a compact absorbing set K ⊂ D and the above system has a unique equi-

librium x̄ ∈ D;

2. the system satisfies the poincare-bendixon property;

3. any periodic orbit of the system is asymptotically orbitally stable and

4. the inequality (−1)ndet(∂f
∂x

(x̄)) > 0 holds.

Then the unique equilibrium x̄ is globally asymptotically stable in D.

Note that system (2.1)–(2.4) can be reduced to the following equivalent system by

replacing Sv = b2
µ2
− Iv.

dSh
dt

= b1 − µ1Sh − β2ShIv − β1ShIh + φIh (2.10)

dIh
dt

= β1ShIh + β2ShIv − (µ1 + φ)Ih, (2.11)

dIv
dt

= β
b2

µ2

Ih − βIvIh − µ2Iv. (2.12)

Let

Γ̃ :=

{
(Sh, Ih, Iv) ∈ R3 : Sh + Ih =

b1

µ1

, 0 ≤ Iv ≤
b2

µ2

}
.

Then Γ̃ is invariant and attracting under system (2.10)–(2.12). Also the disease-free equi-

librium and endemic equilibrium points of system (2.10)–(2.12) are Ẽ0 = ( b1
µ1
, 0, 0) and

Ẽ1 = (S∗h, I
∗
h, I

∗
v ), respectively, where S∗h, I

∗
h, I

∗
v are given by equation (2.7) and (2.8).
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Since system (2.1)–(2.4) and (2.10)–(2.12) are equivalent, we prove the global stability

of the endemic equilibrium Ẽ1 for the later system. Before that we state the following remark

which will be used later [7, 31].

Remark 2.3.12. (i) In R2, any autonomous system satisfies the PBP, while in R3 a system

satisfies the PBP if it is competitive and is defined on a convex region.

(ii) If R0 > 1, then k0 = −µ1µ
2
2(µ1 + φ)(R0 − 1) < 0. Hence I∗h =

−k1+
√
k21−4k1k0

2k2
> 0.

Thus from equation (2.7) and (2.8) it follows that S∗h > 0, I∗h > 0 and I∗v > 0. In conclusion,

if R0 > 1, then system (2.10)–(2.12) has a unique equilibrium point Ẽ1.

Lemma 2.3.13. System (2.10)–(2.12) is uniformly persistent if R0 > 1.

Proof. The set Γ̃ is positively invariant and globally attractive in R3
+. Also, {Ẽ0} is the

maximum invariant set on ∂Γ̃ which is isolated. Now we need to show that W s({Ẽ0}) ⊂ ∂Γ̃.

By contradiction suppose there exists a solution Sh(t), Ih(t), Iv(t) of system (2.10)–(2.12)

such that, Sh(0) > 0, Ih(0) > 0, Iv(0) > 0 and

lim
t→∞

Sh(t) =
b1

µ1

, lim
t→∞

Ih(t) = 0, lim
t→∞

Iv(t) = 0.

Since R0 = ββ2b1b2
µ22µ1(µ1+φ)

+ β1b1
µ1(µ1+φ)

> 1 there is ε > 0 such that,

ββ2

(
b1

µ1

− ε
)(

b2

µ2

− ε
)

+ β1µ
2
2

(
b1

µ1

− ε
)
> µ2

2µ1(φ+ µ1).

Also, for ε > 0 there is t0 > 0 such that, for any t ≥ t0

b1

µ1

− ε < Sh(t) <
b1

µ1

+ ε, Ih(t) < ε, and Iv(t) < ε.
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Now for any t ≥ t0, we have that

dIh
dt

= β2ShIv + β1ShIh − (µ1 + φ)Ih

≥ β2

(
b1

µ1

− ε
)
Iv + µ2

(
β1(

b1

µ1

− ε)− µ1 − φ
)
Ih,

and

dIv
dt

=
βb2

µ2

Ih − βIvIh − µ2Iv ≥ β(
b2

µ2

− ε)Ih − µ2Iv.

Consider the following system of equations



dx
dt

= µ2

(
β1( b1

µ1
− ε)− µ1 − φ

)
x+ β2

(
b1
µ1
− ε
)
y

dy
dt

= β( b2
µ2
− ε)x− µ2y

x(t0) = Ih(t0), y(t0) = Iv(t0).

(2.13)

Let

B =

µ2

(
β1( b1

µ1
− ε)− µ1 − φ

)
β2

(
b1
µ1
− ε
)

β( b2
µ2
− ε) −µ2

 ,
then B is a quasi-positive matrix and

det(B) = −
(
ββ2(

b1

µ1

− ε)( b2

µ2

− ε) + µ2
2β1(

b1

µ1

− ε)− µ2
2µ1(µ1 + φ)

)
< 0.

Thus by Perron-Frobenius theorem, the spectral bound S(B) ∈ σ(B) and there is a vector

v > 0 corresponding to the positive eigenvalue λ such that Bv = λv. Since x(t0) > 0

and y(t0) > 0 the solution of system (2.10)–(2.12) is unbounded. That is Ih(t) → ∞ and

Ih(t) → ∞ as t → ∞ which is a contradiction. Therefore W s({Ẽ0}) ⊂ ∂Γ̃, and by lemma

2.3.10, we conclude that system (2.10)–(2.12) is uniformly persistent.

Remark 2.3.14. The fact that Γ̃ is bounded and system (2.10)–(2.12) is uniformly persistent

implies that this system has a compact absorbing set in Γ̃ [52, 31].
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Lemma 2.3.15. Assume R0 > 1 then system (2.10)–(2.12) is competitive in Γ̃.

Proof. The Jacobian matrix of system (2.10)–(2.12) is given by

J =


−µ1 − β2Iv − β1Ih −β1Sh + φ −β2Sh

β2Iv + β1Ih β1Sh − µ1 − φ β2Sh

0 β( b2
µ2
− Iv) −βIh − µ2

 .

Let H = diag (−1, 1,−1). Then,

HJH =


−µ1 − β2Iv − β1Ih −β1Sh − φ −β2Sh

−β2Iv − β1Ih β1Sh − µ1 − φ −β2Sh

0 −β( b2
µ2
− Iv) −βIh − µ2

 .

The off-diagonal elements of HJH are non-positive and thus, system (2.10)–(2.12) is com-

petitive.

In order to prove that any periodic orbit of system (2.10)–(2.12), if it exists, is asymp-

totically stable we use the following theorem [31].

Theorem 2.3.16. A periodic orbit Ω = {p(t) : 0 ≤ t < ω} of the differential equation

x′ = f(x) is orbitally asymptotically stable with asymptotic phase if the linear system

z′(t) =
∂f [2]

∂x
(p(t))z(t)

is asymptotically stable, where ∂f [2]

∂x
is the second additive compound matrix of the Jacobian

matrix ∂f
∂x
.

Lemma 2.3.17. Any periodic solution to system (2.10)–(2.12) if it exists, is asymptotically

orbitally stable.
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Proof. The Jacobian matrix of system (2.10)–(2.12) is given by

J =


−µ1 − β2Iv − β1Ih −β1Sh + φ −β2Sh

β2Iv + β1Ih β1Sh − µ1 − φ β2Sh

0 β
(
b2
µ2
− Iv

)
−βIh − µ2

 .

Then the corresponding second additive compound matrix J [2] will be

J [2] =


−2µ1 − β2Iv − β1Ih + β1Sh − φ β2Sh β2Sh

β
(
b2
µ2
− Iv

)
−µ1 − β2Iv − β1Ih − βIh − µ2 −β1Sh + φ

0 β2Iv + β1Ih β1Sh − µ1 − φ− βIh − µ2

 .

Suppose (Sh(t), Ih(t), Iv(t)) ∈ Γ̃ is a periodic solution of (2.10)–(2.12) of period τ , then its

second compound system along the periodic solution is

dX

dt
= (−2µ1 − β2Iv − β1Ih + β1Sh − φ)X + β2Sh(Y + Z) (2.14)

dY

dt
= β

(
b2
µ2
− Iv

)
X − (µ1 + β2Iv + β1Ih + βIh + µ2)Y − (β1Sh − φ)Z (2.15)

dZ

dt
= (β2Iv + β1Ih)Y − (−β1Sh + µ1 + φ+ βIh + µ2)Z. (2.16)

We need to show that system (2.14)–(2.16) is asymptotically stable.

Define a Lyapunov function as follows

V (X,Y, Z, Sh, Ih, Sv, Iv) := sup{|X|, Ih
Iv

(|Y |+ |Z|)}.

Calculating the right derivatives leads to the following inequalities:

D+|X(t)| ≤ −(2µ1 + β2Iv + β1Ih − β1Sh + φ)|X(t)|+ β2Sh(|Y |+ |Z|) (2.17)

D+|Y (t)| ≤ β

(
b2
µ2
− Iv

)
|X| − (µ1 + β2Iv + β1Ih + βIhµ2) |Y | − (β1Sh − φ)|Z| (2.18)

D+|Z(t)| ≤ (β2Iv + β1Ih)|Y | − (−β1Sh + µ1 + φ+ µ2 + βIh)|Z|. (2.19)
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Also

D+

{
Ih
Iv

(|Y |+ |Z|)
}

=
Ih
Iv

(D+|Y |+D+|Z|) + (|Y |+ |Z|)
(
I ′hIv − IhI ′v

I2
v

)
, (2.20)

and

Ih
Iv

(D+|Y |+D+|Z|) =
Ih
Iv

(β(
b2
µ2
− Iv)|X|) +

Ih
Iv

(−µ1 − βIh − µ2)|Y | − Ih
Iv

(µ1 + µ2 + βIh)|Z|

= Ihβ(
b2
µ2

1

Iv
− 1)|X| − (µ1 + βIh + µ2)

(
Ih
Iv

)
(|Y |+ |Z|). (2.21)

From equations (2.17)–(2.21) it follows that,

D+

{
Ih
Iv

(|Y |+ |Z|)
}

= Ihβ(
b2
µ2

1

Iv
− 1)|X| − (µ1 + βIh + µ2)

(
Ih
Iv

)
(|Y |+ |Z|)

+

(
I ′h
Ih
− I ′v
Iv

)(
Ih
Iv

)
(|Y |+ |Z|). (2.22)

Now let

f1 = −2µ1 − β2Iv − β1Ih + β1Sh − φ+
β2Sh
Ih

Iv

f2 = Ihβ

(
b2
µ2

1

Iv
− 1

)
+

(
−µ1 − βIh − µ2 +

I ′h
Ih
− I ′v
Iv

)
.

Then

D+V (t) ≤ Sup{f1, f2}V (t). (2.23)

From equations (2.11) and (2.12) we obtain that

βb2
µ2

Ih
Iv
− βIh − µ2 −

I ′v
Iv

= 0 and
β2ShIv
Ih

+ β1Sh − µ1 − φ−
I ′h
Ih

= 0. (2.24)

Using equation (2.24), we can simplify f1 and f2 as follows:

f1 =
I ′h
Ih
− µ1 − β2Iv − β1Iv and f2 =

I ′h
Ih
− µ1 − βIh.

In conclusion we have

f1 ≤
I ′h
Ih
− µ1, f2 ≤

I ′h
Ih
− µ1
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and thus sup {f1(t), f2(t)} ≤ I′h
Ih
− µ1. Integrating both sides from 0 to τ we get

∫ τ

0
sup {f1(t), f2(t)}dt ≤

∫ τ

0

(
I ′h
Ih
− µ1

)
dt

= (ln(Ih(τ))− ln(Ih(0)))− µ1τ

= −µ1τ.

Now from inequality (2.23) it follows that V (t) ≤ ce−µ1τ and thus V (t)→ 0 as t→∞. This further

implies that X(t), Y (t), Z(t) → 0 as t → ∞. In conclusion, the second compound system (2.14)–

(2.16) is asymptotically stable and thus by theorem 2.3.16 the periodic orbit of system (2.10)–(2.12)

is asymptotically orbitally stable.

Lemma 2.3.18. If R0 > 1 then (−1)ndet(J(Ẽ1)) > 0 where J(Ẽ1) is the Jacobian of system

(2.10)–(2.12).

Proof. Consider the Jacobian matrix J of system (2.10)–(2.12),

det(J) = −µ1β2βSh(
b2

µ2

− Iv)− µ1(βIh + µ2)(µ1 + β2Iv + β1Ih + β1Sh − φ).

Hence evaluating det(J) at Ẽ1 we get,

det(J(Ẽ1)) = − µ1ββ2µ2b2(µ1 + φ)

β1µ2(µ2 + βI∗h) + ββ2b2

− h(I∗h) < 0,

where h(I∗h) > 0. In conclusion we have (−1)ndet(J(Ẽ1)) > 0.

The above discussions are summarized in the following theorem, which gives the global

stability of the endemic equilibrium.

Theorem 2.3.19. If R0 > 1 then Ẽ1 is globally asymptotically stable.

Proof. The first assumption of theorem 2.3.11 follows from lemma 2.3.13 and remark 2.3.14.

The second assumption is concluded from remark 2.3.12 and lemma 2.3.15. Finally, the
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third and fourth assumptions of the theorem follow from lemma 2.3.17 and lemma 2.3.18,

respectively.

2.3.3 Numerical simulation

To illustrate how the disease dynamics in the deterministic model is influenced by the

value of the basic reproductive number R0, we carried out numerical simulations. In figure

2.1 (a), the value of R0 is 0.71, thus by theorem 2.3.4 the trajectories of the solution will

approach the disease-free equilibrium point E0 = (72.30, 0, 40, 0) as shown in figure 2(a).

In (b), R0 = 34.20 and hence by theorem 2.3.19 we conclude that the endemic equilibrium

point is stable. Using (2.7) and (2.8) we have E1 = (83.48, 36.52, 2.42, 97.58) which agrees

with the numerical result. The parameter values used for the simulation are given in table

2.1.

Table 2.1: Parameter values to determine the basic reproductive number.

Parameter β1 β2 µ2 β φ µ1 b1 b2

Figure 2.1 (a) 0.005 0.003 0.02 0.0011 0.35 0.83 60 0.8

Figure 2.1 (b) 0.005 0.003 0.001 0.0011 0.35 0.83 100 0.1

Figure 2.1: Trajectories of solution of the deterministic model (2.1)–(2.4), when R0 = 0.71
and R0 = 34.20 respectively.

31



2.4 Sensitivity analysis of R0

In this section we provide the sensitivity analysis of the basic reproductive number, that

is, we study the effect of each parameter on the values ofR0. In deterministic epidemic study

the basic reproductive number and the endemic equilibrium are the two most important

values. The first one tells us about the disease transmission or incidence rate, while the

second describes how wide spread the disease is or the prevalence rate. In determining how

best to reduce human mortality and morbidity due to the disease, it is necessary to know the

relative importance of the different factors responsible for its transmission and prevalence.

Estimation of parameters and initial conditions while modeling an epidemic is often subject

to variation. The pre-fixed parameters are selected from a range, and consequently, the

parameters may vary in a range. Varying the parameters varies the output of the model,

but which parameters have the most significant impact on that output? There are different

methods to study the sensitivity of parameters. One of such methods is the perturbation of

fixed point estimation.

2.4.1 Sensitivity analysis of R0

The sensitivity analysis will determine the relative importance of the different param-

eters in relation to R0. For example consider β which is one of the parameters in R0. Let

δ > 0 be a small perturbation corresponding to β. We have

δR0 = R0(β + δ)−R0(β) =
R0(β + δ)−R0(β)

δ
δ ≈ δ

∂R0

∂β
.

Thus we define the normalized sensitivity index (si) as

siβ =
δR0

R0

/
δ

β
=

β

R0

∂R0

∂β
.
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Now using this formula we compute the following

siβ = ββ2b1b2
ββ2b1b2+β1b1µ22

, siβ1 =
β1b1µ22

β1b1µ22+ββ2b1b2

siβ2 = ββ2b1b2
ββ2b1b2+β1b1µ22

, siµ1 = −2µ1+φ
µ1+φ

siφ = − φ
φ+µ1

, siµ2 = − 2ββ2b1b2
β1b1µ22+ββ2b1b2

sib1 = 1, sib2 = ββ2b1b2
β1b1µ22+ββ2b1b2

Consider the following value of parameters for malaria epidemic. For more details about the

data, please refer to [24].

b1 = 9× 10−5, b2 = 3.3× 10−2, β1 = 4× 10−5, β2 = 0.3,

µ2 = 0.0033, φ = 0.0035 β = 0.48, µ1 = 9× 10−5

Using the above values of parameters, the sensitivity indices of R0 is given in table 2.2.

The table shows the sensitivity indices of each parameter and the corresponding per-

centage change for a 1% change in R0. From the table we conclude that µ2 is the most

important parameters for R0 and in order to decrease R0 by 1% we need to increase µ2

by 0.5%. Similarly the table shows that µ1 is the second sensitive parameter, followed by

b1, β, β2 and b2.
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Table 2.2: Sensitivity analysis of R0

Parameter Sensitivity indices of R0 corresponding % change

β 0.9999 1

β1 0.00001 100000

β2 0.9999 1

µ1 -1.0250 -0.9756

φ -0.9749 -1.0257

µ2 -1.9999 -0.5

b1 1 1

b2 0.9999 1
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Chapter 3

Dynamics of the Stochastic Vector-host Epidemic Model with Direct Transmission

3.1 Derivation of the stochastic vector-host epidemic model

As described in the introduction part, for a better understanding of the spread of in-

fections, we will include stochastic influences that are concerned with approximating the

random or probabilistic element.

In this section we derive the stochastic vector-host epidemic model from the correspond-

ing deterministic one by including a random effect in the deterministic case.

Let ∆t > 0 be fixed and let X(∆t)(t) =
(
S

(∆t)
H (t), I

(∆t)
H (t), S

(∆t)
V (t), I

(∆t)
V (t)

)
be a discrete

time Markov chain (DTMC) for t ∈ {0,∆t, 2∆t, . . . }, such that X(∆t)(0) ∈ R4
+. Also let

{
R

(∆t)
Sh

(k)
}∞
k=0

,
{
R

(∆t)
Ih

(k)
}∞
k=0

,
{
R

(∆t)
Sv

(k)
}∞
k=0

,
{
R

(∆t)
Iv

(k)
}∞
k=0

be sequences of random variables which are jointly independent to each other and each

sequence is identically distributed such that, for any k ∈ {0, 1, 2, . . . }

E[R
(∆t)
Sh

(k)] = E[R
(∆t)
Ih

(k)] = E[R
(∆t)
Sv

(k)] = E[R
(∆t)
Iv

(k)] = 0, (3.1)

and

E
[
R

(∆t)
Sh

(k)
]2

= σ2
Sh

∆t, E
[
R

(∆t)
Ih

(k)
]2

= σ2
Ih

∆t,

E
[
R

(∆t)
Sv

(k)
]2

= σ2
Sv

∆t, E
[
R

(∆t)
Iv

(k)
]2

= σ2
Iv

∆t.
(3.2)

where E is the expectation and σSh , σIh , σSv , σIv are some non-negative constants which show

the intensity of the fluctuations.

Each sequence of random variables measures the effects of random influence on each

compartment during [k∆t, (k + 1)∆t] for k ∈ {0, 1, 2, . . . }. Thus, during [k∆t, (k + 1)∆t],
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each compartment changes according to the deterministic equation (2.1)–(2.4) and by a

random amount. That is, for k ∈ {0, 1, 2, . . . }

S
(∆t)
h ((k + 1)∆t) = S

(∆t)
h (k∆t) + ∆t(b1 − µ1Sh − β2ShIv − β1ShIh + φIh) +R

(∆t)
Sh

(k)S∆t
h (k∆t)

I
(∆t)
h ((k + 1)∆t) = I

(∆t)
h (k∆t) + ∆t(β1ShIh + β2ShIv − (µ1 + φ)Ih) +R

(∆t)
Ih

(k)I∆t
h (k∆t)

S
(∆t)
v ((k + 1)∆t) = S

(∆t)
v (k∆t) + ∆t(b2 − µ2Sv − βSvIh) +R

(∆t)
Sv

(k)S∆t
v (k∆t)

I
(∆t)
v ((k + 1)∆t) = I

(∆t)
v (k∆t) + ∆t(βSvIh − µ2Iv) +R

(∆t)
Iv

(k)I∆t
v (k∆t)

We claim that X∆t(t) converges to a diffusion process X(t) = (Sh, Ih, Sv, Iv) as ∆t→ 0. For

that purpose let Π(∆t)(k∆t, x; (k+ 1)∆t, A) be the transition probability of the homogenous

Markov chain
{
X(∆t)(k∆t)

}∞
k=0

. That is

Π(∆t)(k∆t, x; (k + 1)∆t, A) = P
{
X(∆t)((k + 1)∆t) ∈ A : X(∆t)(k∆t) = x

}
for all x = (x0

1, x
0
2, x

0
3, x

0
4) ∈ R4 and all Borel set A ⊂ R4.

First, we determine the drift coefficient of the diffusion process.

Let y = (y0
1, y

0
2, y

0
3, y

0
4) ∈ R4 then for any ε > 0 we have:

1

∆t

∫
|y−x|≤ε

(y0
1 − x0

1)Π(∆t) =
1

∆t

{
E
[
∆t(b1 − µ1Sh − β2ShIv − β1ShIh + φIh) +R

(∆t)
Sh

(0)x0
1

]}
= b1 − µ1Sh − β2ShIv − β1ShIh + φIh +

1

∆t
E
(
R∆t
Sh
x0

1

)
= b1 − µ1Sh − β2ShIv − β1ShIh + φIh.

Similarly,

1
∆t

∫
|y−x|≤ε (y0

2 − x0
2)Π(∆t) = β1ShIh + β2ShIv − (µ1 + φ)Ih.

1
∆t

∫
|y−x|≤ε (y0

3 − x0
3)Π(∆t) = b2 − µ2Sv − βSvIh.

1
∆t

∫
|y−x|≤ε (y0

4 − x0
4)Π(∆t) = βSvIh − µ2Iv.
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In conclusion the drift coefficient of the diffusion process is given by

f(X(t), t) =



b1 − µ1Sh − β2ShIv − β1ShIh + φIh

β1ShIh + β2ShIv − (µ1 + φ)Ih

b2 − µ2Sv − βSvIh

βSvIh − µ2Iv


(3.3)

Next we determine the diffusion coefficient matrix of the process.

Let g∆t
ij (x) = 1

∆t

∫
|y−x|≤ε (yi − xi)(yj − xj)Π(∆t) be the moment for i, j = 1, 2, 3, 4.

If the compartments are the same, that is if i = j we have,

∣∣∣g(∆t)
ShSh

(x)− σ2
Sh
S2
h

∣∣∣ = E[R
(∆t)
Sh

(0)]2
S2
h

∆t
− σ2

Sh
S2
h = 0.

Thus for any k > 0 if follows that

lim sup
∆t→0 ‖x‖≤k

∣∣∣g(∆t)
ShSh

(x)
∣∣∣ = σ2

Sh
S2
h.

Similarly we have

lim sup
∆t→0 ‖x‖≤k

∣∣∣g(∆t)
IhIh

(x)
∣∣∣ = σ2

Ih
I2
h, lim sup

∆t→0 ‖x‖≤k

∣∣∣g(∆t)
SvSv

(x)
∣∣∣ = σ2

SvS
2
v

and

lim sup
∆t→0 ‖x‖≤k

∣∣∣g(∆t)
IvIv

(x)
∣∣∣ = σ2

IvI
2
v .

If we take any two different compartments, that is if i 6= j we have

lim sup
∆t→0 ‖x‖≤k

∣∣∣g(∆t)
ij (x)

∣∣∣ = 0.
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To give an example, consider two compartments Sh and Iv. Then,

|g(∆t)
ShIv

(x)| = 1

∆t
|E([∆t(b1 − µ1Sh − β2ShIv − β1ShIh + φIh) +R

(∆t)
Sh

(k)Sh(k∆t)]

[∆t(βSvIh(k∆t)− µ2Iv(k∆t)) +R
(∆t)
Iv

(k)Iv(k∆t)])|

= ∆t(b1 − µ1Sh − β2ShIv − β1ShIh + φIh)(βSvIh − µ2Iv)

+ E(R
(∆t)
Iv

(k)Iv)(b1 − µ1Sh − β2ShIv − β1ShIh + φIh)

+ E(R
(∆t)
Sh

(k))Sh)(βSvIh − µ2Iv) + E(R
(∆t)
Sh

(k))E(R
(∆t)
Iv

(k))ShIv

Using equations (3.1) and (3.2), for any x ∈ R4 such that ‖x‖ ≤ k it follows that

lim sup
∆t→0 ‖x‖≤k

∣∣∣g(∆t)
ShIv

(x)
∣∣∣ = 0.

Thus the diffusion coefficient matrix is given by

g(X(t), t) = diag (σShSh, σIhIh, σSvSv, σIvIv). (3.4)

In conclusion as ∆t→ 0, X∆t(t) converges to a diffusion process X(t) = (Sh, Ih, Sv, Iv) which

satisfies the stochastic differential equation

dX(t) = f(X, t)dt+ g(X, t)dB(t)

where B(t) = (BSh , BIh , BSv , BIv) is a 4− dimensional standard Brownian motion such that

BSh , BIh , BSv , BIv are independent to each other. Using equations (3.3) and (3.4) the above
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stochastic differential equation can be written as

dSh = (b1 − µ1Sh − β2ShIv − β1ShIh + φIh)dt+ σShShdBSh(t), (3.5)

dIh = (β1ShIh + β2ShIv − (µ1 + φ)Ih)dt+ σIhIhdBIh(t), (3.6)

dSv = (b2 − µ2Sv − βSvIh)dt+ σSvSvdBSv(t), (3.7)

dIv = (βSvIh − µ2Iv)dt+ σIvIvdBIv(t). (3.8)

Throughout this chapter, let (Ω,F ,P) be a complete probability space with a filtration

{F}t≥0 satisfying the usual conditions, that is, it is right continuous and increasing with F0

containing all P-null sets. Let X(t) = (Sh(t), Ih(t), Sv(t), Iv(t)) be the solution of system

(3.5)–(3.8) and define

‖X(t)‖ = (Sh(t)
2 + Ih(t)

2 + Sv(t)
2 + Iv(t)

2)
1
2 .

In this section we provide some basic preliminaries from [38] and [60] that will be used

throughout the remaining chapters.

Definition 3.1.1. 1. Let L1(0, T ) and L2(0, T ) denotes the space of all real valued, pro-

gressively measurable stochastic processes G(·) such that

E

(∫ T

0

Gdt

)
<∞ and E

(∫ T

0

G2dt

)
<∞.

2. Let X(t) satisfies the stochastic differential equation

dX(t) = f(X, t)dt+ g(X, t)dB(t),

and let U : Rd × R+ → Rd have continuous partial derivatives ∂U
∂t

, ∂U
∂xk

, ∂2U
∂xk ∂xi

for

k, i = 1, 2, . . . , d. Define the process Y (t) = U(X, t), then the stochastic differential is
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given by dY (t) = LU(X, t) +∇UTg(X, t) dB(t) where,

LU(X, t) =

{
∂U

∂t
+ f(X, t)∇U +

1

2
tr (g(X, t)g(X, t)T∇[∇U ])

}
dt.

(3.9)

3.1.1 Existence of a global solution

In this subsection we show that the stochastic system (3.5)–(3.8) has a unique nonnega-

tive global solution. Since f and g satisfies the local Lipschitz and Linear growth conditions,

there exists a unique local solution X(t) on [0, τe) where τe is the explosion time, refer to

theorem 3.15 [38]. Next, we show that τe =∞, that is, this solution is in fact global.

Let k0 > 0 such that X(0) ∈
(

1
k0
, k0

)4

. For any k ∈ N such that k > k0 define

τk = inf
{
t ∈ [0, τe] : (Sh(t), Ih(t), Sv(t), Iv(t)) /∈

(
1
k
, k
)4
}
.

Then {τk}k is an increasing sequence and denote τ := limk→∞ τk. Clearly τ ≤ τe.

Next, we show that τ =∞. This implies that the explosion time is infinity and thus we

conclude that system (3.5)–(3.8) has a unique non-negative solution and will remain in R4
+

with probability 1.

By contradiction suppose τ <∞. Then there exists T > 0 such that

P(τ ≤ T ) > ε for all ε ∈ (0, 1). This implies that there exists k1 > k0 such that P(τk ≤ T ) ≥ ε

for all k ≥ k1. For X(t) ∈ R4
+ define

V (X(t)) = (Sh − 1− lnSh) + (Ih − 1− ln Ih) + (Sv − 1− lnSv) + (Iv − 1− ln Iv).

Using equation (3.9) we have

dV = LV dt+ σSh(Sh − 1)dBSh + σIh(Ih − 1)dBIh + σSv(Sv − 1)dBSv + σIv(Iv − 1)dBIv ,
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where

LV =

(
1− 1

Sh

)
dSh +

(
1− 1

Ih

)
dIh +

(
1− 1

Sv

)
dSv +

(
1− 1

Iv

)
dIv

+
1

2
(σ2

Sh
+ σ2

Ih
+ σ2

Sv + σ2
Iv)

≤ b1 − µ1Sh − µ1Ih + b2 − µ2Iv − µ2Sv +
1

2
(σ2

Sh
+ σ2

Ih
+ σ2

Sv + σ2
Iv)

≤ C1 = b1 + b2 +
1

2
(σ2

Sh
+ σ2

Ih
+ σ2

Sv + σ2
Iv),

where the last inequality follows from (3.5)–(3.8). In conclusion we have,

dV ≤ C1dt+ σSh(Sh − 1)dBSh + σIh(Ih − 1)dBIh + σSv(Sv − 1)dBSv + σIv(Iv − 1)dBIv .

Integrating both sides on (0, τk ∧ T ), taking the expectation and noting that for any G ∈

L2(0, T ), E
(∫ T

0
GdB

)
= 0, we get

EV (X(τk ∧ T )) ≤ V (X(0)) + C1T.

For k ∈ N such that k ≥ k0 let Ak = {τk ≤ T}. Then, P(Ak) ≥ ε. If t ∈ Ak, then at least

one of the following will hold true:

Sh(t) /∈
(

1

k
, k

)
, Ih(t) /∈

(
1

k
, k

)
, Sv(t) /∈

(
1

k
, k

)
, Iv(t) /∈

(
1

k
, k

)
.

Generally, since f(x) = x−1− lnx is increasing on (1,∞) and decreasing on (0, 1) it follows

V (X(τk ∧ t)) ≥ (k − 1− ln k) ∧ (
1

k
− 1− ln(

1

k
)).

Now we have

V (X(0)) + C1T ≥ EV (X(τk ∧ T )) ≥ ε

(
(k − 1− ln k) ∧ (

1

k
− 1− ln

1

k
)

)
.
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Finally, letting k →∞ we conclude that

∞ > V (X(0)) + C1T =∞ a.s.

Hence, we have τ =∞. We summarize the above result in the following theorem.

Theorem 3.1.2. For any initial value X(0) ∈ R4
+ the system (3.5)–(3.8) has a unique global

solution on t ≥ 0 and the solution will remain in R4
+ with probability 1.

3.2 Stochastic boundedness and permanence

Theorem 3.1.2 shows that for any initial condition X(0) ∈ R4
+ the solution of model

(3.5)–(3.8) is always positive and remains in R4
+. Next we exam how X(t) varies in R4

+. First,

we give the definition of a stochastically ultimately bounded solution.

Definition 3.2.1. [37] The solution X(t) of system (3.5)–(3.8) is called stochastically ulti-

mately bounded or ultimately bounded in probability if for any ε ∈ (0, 1) there is a constant

χ = χ(ε) > 0 such that for any initial solution X(0) ∈ Γ, the solution X(t) to system

(3.5)–(3.8) has the property that

lim sup
t→∞

P{‖X(t)‖ > χ} ≤ ε.

Lemma 3.2.2. For any initial value X(0) ∈ Γ and θ > 1, there exists κ = κ(θ) > 0 such

that the solution of system (3.5)–(3.8) satisfies

lim sup
t→∞

E{‖X(t)‖θ} < κ(θ).
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Proof. Define V1(Sh(t), Ih(t)) = Sθh + Iθh. Then, we have

LV1 = θSθ−1
h dSh +

1

2
θ(θ − 1)Sθ−2

h σ2
Sh
S2
h + θIθ−1

h dIh +
1

2
θ(θ − 1)Iθ−2

h σ2
Ih
I2
h

= θSθ−1
h (b1 − µ1Sh − β2ShIv − β1ShIh + φIh) +

1

2
θ(θ − 1)Sθhσ

2
Sh

+ θIθ−1
h (β2ShIv + β1ShIh − µ1Ih − φIh) +

1

2
θ(θ − 1)Iθhσ

2
Ih

≤ θ(
b1

µ1

)θ−1(b1 − µ1Sh − β2ShIv − β1ShIh + φIh + β2ShIv + β1ShIh − µ1Ih − φIh)

+
1

2
θ(θ − 1)(Sθhσ

2
Sh

+ Iθhσ
2
Ih

)

= θ(
b1

µ1

)θ−1(b1 − µ1Sh − µ1Ih) +
1

2
θ(θ − 1)(Sθhσ

2
Sh

+ Iθhσ
2
Ih

)

≤ θ(
b1

µ1

)θ−1b1 +
1

2
θ(θ − 1)(

b1

µ1

)θ(σ2
Sh

+ σ2
Ih

)

=

(
b1

µ1

)θ−1(
θb1 +

b1θ(θ − 1)(σ2
Sh

+ σ2
Ih

)

2µ1

)
:= M1.

Similarly, letting V2(Sv, Iv) = Sθv + Iθv we have LV2 ≤M2, where

M2 =

(
b2

µ2

)θ−1(
θb2 +

b2θ(θ − 1)(σ2
Sv

+ σ2
Iv

)

2µ2

)
.

Let V = V1 + V2. Then V ≤M3 =
(

( b1
µ1

)θ + ( b2
µ2

)θ
)
<∞ and by 3.9 we have

dV = dV1 + dV2 = (LV1 + LV2)dt+ θ(σShS
θ
hdBSh + σIhI

θ
hdBIh + σSvS

θ
vdBSv + σIvI

θ
vdBIv)

≤ (M1 +M2)dt+ θ(σShS
θ
hdBSh + σIhI

θ
hdBIh + σSvS

θ
vdBSv + σIvI

θ
vdBIv)

and

d(etV ) = et(V + LV )dt+ etθ(σShS
θ
hdBSh + σIhI

θ
hdBIh + σSvS

θ
vdBSv + σIvI

θ
vdBIv)

≤Metdt+ etθ(σShS
θ
hdBSh + σIhI

θ
hdBIh + σSvS

θ
vdBSv + σIvI

θ
vdBIv),

where M = M1 +M2 +M3.
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Let k0 > 0, such that X(0) ∈ ( 1
k0
, k0)4 and for k > k0 let

τk = inf

{
t > 0 : (Sh(t), Ih(t), Sv(t), Iv(t)) /∈

(
1

k
, k

)4
}
.

Integrating and taking the expectation on both sides, we get

E(et∧τkV (X(t ∧ τk))) ≤ME(

∫ t∧τk

0

esds) + V (X(0))

= ME(et∧τk − 1) + V (X(0)),

Letting k →∞ we obtain

EV (X(t)) ≤ e−tV (X(0)) +M(1− e−t).

Note that ‖X(t)‖θ ≤ 2θV (X(t)). Thus

E‖X(t)‖θ ≤ 2θEV (X(t)) ≤ 2θ
(
e−tV (X(0)) +M(1− e−t)

)
.

and it follows that

lim sup
t→∞

E{‖X(t)‖θ} ≤ κ(θ),

where κ(θ) = 2θM.

Using the above lemma we show that the solution of system (3.5)–(3.8) is stochastically

ultimately bounded.

Theorem 3.2.3. For any initial value X(0) ∈ Γ, the solution of system (3.5)–(3.8) is

stochastically ultimately bounded.

Proof. By the previous lemma, there exist a positive constant ζ > 0 such that

lim sup
t→∞

E{‖X(t)‖
1
2} < ζ.
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For any ε > 0 put χ(ε) = ζ2

ε2
. Then, by Chebyshev’s inequality we get

P{‖X(t)‖ > χ} ≤ E(‖X‖ 1
2 )

χ
1
2

.

This concludes lim supt→∞ P{‖X(t)‖ > χ} ≤ ζ

χ
1
2

= ε.

Lemma 3.2.4. Let k := min{µ1, µ2}, σ2 := max{σ2
Sh
, σ2

Ih
, σ2

Sv
, σ2

Iv
} and assume that b1 +

b2 − k > 0. Then, for any initial value X(0) ∈ Γ the solution X(t) of system (3.5)–(3.8)

satisfies

lim sup
t→∞

E

(
1

‖X(t)‖ν

)
≤M,

where

M =
4ν

θ

a2
2 + 4a1θ

4a1

max

1,

(
1 +

a2 +
√
a2

2 + 4a1θ

2a1

)ν−2
 ,

a1 = −θ + ν(b1 + b2 − k −
ν + 1

2
σ2),

a2 = 2θ + νk + νσ2.

Here ν > 0 and θ > 0 are any constants satisfying the following conditions:

k +
ν + 1

2
σ2 − b1 − b2 < 0, and θ < ν(b1 + b2 − k −

ν + 1

2
σ2)

Proof. Let U(Sh, Ih, Sv, Iv) = 1
Sh+Ih+Sv+Iv

. Then, using (3.9)

dU = LUdt− U2(σShShdBSh + σIhIhdBIh + σSvSvdBSv + σIvIvdBIv),

where

LU = −U2(b1 + b2 − µ1(Sh + Ih)− µ2(Sv + Iv)) + U3(σ2
Sh
S2
h + σ2

Ih
I2
h + σ2

SvS
2
v + σ2

IvI
2
v ).
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Let ν be as in the assumption, then

L((1 + U)ν) = ν(1 + U)ν−1LU +
ν(ν − 1)

2
(1 + U)ν−2U4(σ2

Sh
S2
h + σ2

Ih
I2
h + σ2

SvS
2
v + σ2

IvI
2
v ))

= ν(1 + U)ν−2ψ,

where

ψ = (1 + U)LU +
ν − 1

2
U4(σ2

Sh
S2
h + σ2

Ih
I2
h + σ2

SvS
2
v + σ2

IvI
2
v )

≤ −U3(b1 + b2 −
k

U
)− U2(b1 + b2 −

k

U
) + (U3 +

ν + 1

2
U4)(σ2

Sh
S2
h + σ2

Ih
I2
h + σ2

SvS
2
v + σ2

IvI
2
v )

≤ −U2(b1 + b2 − k) + kU + (U3 +
ν + 1

2
U4)(σ2

Sh
S2
h + σ2

Ih
I2
h + σ2

SvS
2
v + σ2

IvI
2
v )

≤ −U2(b1 + b2 − k −
ν + 1

2
σ2) + U(k + σ2).

The last inequality follows from the fact that

U3(σ2
Sh
S2
h + σ2

Ih
I2
h + σ2

SvS
2
v + σ2

IvI
2
v ) ≤ Uσ2

and

U4(σ2
Sh
S2
h + σ2

Ih
I2
h + σ2

SvS
2
v + σ2

IvI
2
v ) ≤ U2σ2.

Also, let θ satisfy the assumption of the lemma. Then,

L(eθt(1 + U)ν) = θeθt(1 + U)ν + eθtL(1 + U)ν

= eθt(1 + U)ν−2(θ(1 + U)2 + νψ).
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Now,

θ(1 + U)2 + νψ ≤ θU2 + 2θU + θ + ν

(
−U2(b1 + b2 − k −

ν + 1

2
σ2) + U(k + σ2)

)
= U2

(
θ − ν(b1 + b2 − k −

ν + 1

2
)

)
+ U(2θ + νk + νσ2) + θ.

Thus,

L(eθt(1 + U)ν) ≤ eθt(1 + U)ν−2(−a1U
2 + a2U + θ),

where a1 = ν(b1 + b2 − k − ν+1
2

)− θ and a2 = 2θ + νk + νσ2.

Note that f(U) = −a1U
2 + a2U + θ has a maximum value of f

(
a2
2a1

)
=

a22+4a1θ

4a1
and also

(1 + U)ν−2 ≤ max

1,

(
1 +

a2 +
√
a2

2 + 4a1θ

2a1

)ν−2
 .

In conclusion, we have

L(eθt(1 + U)ν) ≤M1e
θt,

where

M1 =
a2

2 + 4a1θ

4a1

max

1,

(
1 +

a2 +
√
a2

2 + 4a1θ

2a1

)ν−2
 .

Finally, using (3.9)

d(eθt(1 + U)ν) = L(eθt(1 + U)ν) + ν(1 + U)ν−1eθt(σShShdBSh(t) + σIhIhdBIh(t)

+ σSvSvdBSv(t) + σIvIvdBIv(t)).

Integrating both sides and taking the expectation will result

E(eθt(1 + U)ν − (1 + U(0))ν) ≤M1E(
eθt

θ
− 1).
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Simplifying it further, we get

E((1 + U)ν) ≤ e−θt(1 + U(0))ν +M1(
1

θ
− e−θt).

Letting t→∞, we conclude

lim sup
t→∞

E(U)ν ≤ lim sup
t→∞

E(1 + U)ν ≤ M1

θ
.

Now, for any (Sh, Ih, Sv, Iv) ∈ R4
+, we have

(Sh + Ih + Sv + Iv)
ν ≤ 4ν(S2

h + I2
h + S2

v + I2
v )

ν
2 ≤ 4ν‖X(t)‖ν .

Thus, it follows that

lim sup
t→∞

E

(
1

‖X(t)‖ν

)
≤ 4ν lim sup

t→∞
E(U)ν ≤M,

where M = 4νM1

θ
.

One other important property of stochastic epidemic models is the stochastic perma-

nence, which indicates how the total population in the model changes in the long run. First,

we give its definition and under some conditions we show that system (3.5)–(3.8) is stochas-

tically permanent [62].

Definition 3.2.5. System (3.5)–(3.8) is said to be stochastically permanent, if for any ε ∈

(0, 1), there exist positive constants λ1 = λ1(ε) and λ2 = λ2(ε) such that for any initial value

X(0) ∈ Γ, the solution X(t) satisfies the following conditions:

lim inf
t→∞

P{‖X(t)‖ ≤ λ1} ≥ 1− ε, lim inf
t→∞

P{‖X(t)‖ ≥ λ2} ≥ 1− ε.
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Theorem 3.2.6. Under the assumptions of lemma 3.2.4, system (3.5)–(3.8) is stochastically

permanent for any initial value X(0) ∈ Γ.

Proof. Now by theorem 3.2.3 for any ε ∈ (0, 1), there exists λ1 > 0 such that

P{‖X(t)‖ > λ1} ≤ ε, which is equivalent to P{‖X(t)‖ < λ1} > 1− ε. Thus, it follows that

lim inf
t→∞

P{‖X(t)‖ ≤ λ1} ≥ 1− ε.

Also, assume that all the hypotheses in lemma 3.2.4 hold. Then, we have

lim sup
t→∞

E

(
1

‖X(t)‖ν

)
≤M.

For any ε ∈ (0, 1), let λ2 = εν

Mν . Then,

P{‖X(t)‖ < λ2} = P{ 1

‖X(t)‖
>

1

λ2

} ≤
E
(

1
‖X(t)‖ν

)
λ−ν2

= λ
1
ν
2 E

(
1

‖X(t)‖ν

)
.

Taking the limit, we get

lim sup
t→∞

P{‖X(t)‖ < λ2} ≤ λ
1
ν
2 M = ε.

Therefore, we conclude that

lim inf
t→∞

P{‖X(t)‖ ≥ λ2} ≥ 1− ε.

3.3 Extinction of infection and stochastic stability

In section 2.2 we defined the basic reproductive number R0 for the deterministic epi-

demic model. From theorem 2.3.2 and 2.3.4 it follows that the number of infected hosts Ih
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and vectors Iv will tend to zero in the long run provided that R0 < 1. In this section we

provide a similar condition for the extinction of infection for the stochastic model.

Theorem 3.3.1. Let Rs
0 := R0 −

σ2
Ih

2(µ1+φ)
. If Rs

0 < 1 then for any initial value X(0) ∈ Γ,

Ih(t) will tend to zero exponentially almost surely. That is, lim supt→∞
ln Ih(t)

t
< 0 a.s.

Proof. From system (3.5)–(3.8), and using Sh = b1
µ1
− Ih we get

dIh = (β1(
b1

µ1

− Ih)Ih + β2(
b1

µ1

− Ih)Iv − (µ1 + φ)Ih)dt+ σIhIhdBIh(t).

Now, using (3.9) we have

d(ln(Ih(t))) =

{
1

Ih

(
β1(

b1

µ1

− Ih)Ih + β2(
b1

µ1

− Ih)Iv − (µ1 + φ)Ih

)
+

1

2

−1

I2
h

σ2
Ih
I2
h

}
dt

+
1

Ih
σIhIhdBIh(t)

=

(
β1(

b1

µ1

− Ih) + β2(
b1

µ1

− Ih)
Iv
Ih
− µ1 − φ−

1

2
σ2
Ih

)
dt+ σIhdBIh(t)

≤
(
β1b1

µ2

+
β2b1b2

µ2µ1

− µ1 − φ−
1

2
σ2
Ih

)
dt+ σIhdBIh(t).

Integrating both sides on [0, t], we get

ln(Ih(t))− ln(Ih(0))

t
≤
[
β1b1

µ1

+
β2b1b2

µ1µ2

− µ1 − φ−
1

2
σ2
Ih

]
+

1

t

∫ t

0

σIhdBIh(s).

Let M(t) =
∫ t

0
σIhdBIh(s). Then, M is a martingale [37], with a quadratic variation given by

〈M,M〉t =

∫ t

0

σ2
Ih
ds = σ2

Ih
t.

Since lim supt→∞
〈M,M〉t

t
= σ2

Ih
< ∞, by the strong law of large numbers, it follows that

lim supt→∞
M(t)
t

= 0.

Thus,

lim sup
t→∞

lnIh(t)

t
≤ β1b1

µ1

+
β2b1b2

µ1µ2

− µ1 − φ−
1

2
σ2
Ih
.
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Now if R0
s < 1 we have

β1b1

µ1

+
β2b1b2

µ1µ2

− µ1 − φ−
1

2
σ2
Ih
< 0.

Thus,

lim sup
t→∞

lnIh(t)

t
≤ β1b1

µ1

+
β2b1b2

µ1µ2

− µ1 − φ−
1

2
σ2
Ih
< 0 a.s.

Using the above theorem and the following lemma, we conclude that the number of

infected vectors Iv will also tend to zero exponentially almost surely.

Lemma 3.3.2. Given a stochastic differential equation

dX(t) = f(X(t), t)dt+ g(X(t), t)dB(t).

Assume that there exists a function V ∈ C2,1(Rd × [t0,∞);R+), and constants p > 0, c1 >

0, c2 ∈ R, c3 ≥ 0, such that for all X 6= 0 and t ≥ t0,

1. c1‖X‖p ≤ V (X, t),

2. LV (X, t) ≤ c2V (X, t),

3. ‖VX(X, t)g(X, t)‖2 ≥ c3V
2(X, t).

Then,

lim sup
t→∞

ln ‖X(t; t0, X0)‖
t

≤ −c3 − 2c2

2p
a.s.

Please refer to [37] for more detail.

Corollary 3.3.3. If Rs
0 < 1, then for any initial values X(0) ∈ Γ, Iv(t) will tend to zero

exponentially almost surely. That is lim supt→∞
ln Iv(t)

t
< 0 a.s.
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Proof. From theorem 3.3.1, if Rs
0 < 1, then Ih(t) will tend to zero exponentially almost

surely and since exponential stability implies asymptotic stability, we have that

lim
t→∞

Ih(t) = 0 a.s.

Thus, for any ε > 0, there exists k1 > 0 and a set Γ̄ ⊂ Γ such that

P(Γ̄) > 1− ε, 0 ≤ Ih(t) <
µ2

βb2

ε for all t > k1.

Now (−ε − µ2Iv) dt + σIvIvdBIv ≤ dIv ≤ (ε − µ2Iv) dt + σIvIvdBIv , and since ε is arbitrary,

we have

dIv(t) = −µ2Iv dt+ σIvIvdBIv .

Let V (Iv, t) = I2
v , then LV = (−2µ2 + σ2

Iv
)V.

Also, we have ‖VIvg‖2 = 4σ2
Iv
‖I4

v‖, thus by lemma 3.3.2 it follows

lim sup
t→∞

ln Iv(t)

t
≤ −µ2 −

σ2
Iv

2
< 0 a.s.

Remark 3.3.4. Note that in the deterministic case, if R0 < 1 then the system has a disease-

free equilibrium point. Since Rs
0 = R0 −

σ2
Ih

2(µ1+φ)
, if R0 < 1 then Rs

0 < 1, and by theorem

3.3.1 and corollary 3.3.3, it follows that the number of infected hosts and vectors will go to

zero exponentially almost surely. On the contrary, we might have cases where Rs
0 < 1, but

R0 > 1. That is, a large environmental fluctuation can suppress the number of infected hosts

(see figure 3.2 in section 3.5).

Definition 3.3.5. Given the stochastic differential equation

dX(t) = f(X(t), t) dt+ g(X(t), t)dB(t) on t ≥ t0.
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Assume that f(0, t) = 0, g(0, t) = 0 for all t > 0 such that X(t) = 0 is a trivial solution.

Then, the trivial solution is called

1. Stochastically stable if for all ε ∈ (0, 1) and r > 0 there exist δ = δ(ε, r, t0) > 0 such

that

P{‖X(t; t0, x0)‖ < r for all t ≥ t0} ≥ 1− ε,

for X0 ∈ Rd such that ‖X0‖ < δ.

2. Stochastically asymptotically stable if it is stochastically stable and for every ε ∈ (0, 1),

there exists a δ0 = δ0(ε, t0) > 0 such that,

P{ lim
t→∞

X(t; t0, x0) = 0} ≥ 1− ε

whenever ‖X0‖ < δ0.

Please refer to [37] for more information.

The standard method of studying stability is through a Lyapunov function. However,

generally it is not easy to construct such a function for nonlinear system of stochastic dif-

ferential equations. Therefore we use a different approach to study the stability of system

(3.5)–(3.8). First, under some conditions we show that the corresponding linear system of

(3.5)–(3.8) is asymptotically stable. Then we use theorem 7.1 [26], to claim the nonlinear

system is also asymptotically stable.

Theorem 3.3.6. If the linear system

dX(t) = MX(t) dt+ σX(t)dB(t)
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with constant coefficients is stochastically asymptotically stable, and the coefficients of the

nonlinear system

dX(t) = b(X, t) dt+ σ(X, t)dB(t)

satisfy an inequality

‖b(x, t)−M x‖+ ‖σ(x, t)− σ x‖ < γ‖x‖,

in a sufficiently small neighborhood of the point x = 0, and with a sufficiently small constant

γ , then the solution X = 0 of the nonlinear system is stochastically asymptotically stable.

Using Sh = b1
µ1
− Ih and Sv = b2

µ2
− Iv, system (3.5)–(3.8) reduces to

dIh = (
β1b1

µ1

Ih − β1I
2
h +

β2b1

µ1

Iv − β2IhIv − (µ1 + φ)Ih)dt+ σIhIhdBIh(t), (3.10)

dIv = (
βb2

µ2

Ih − βIhIv − µ2Iv)dt+ σIvIvdBIv(t). (3.11)

The corresponding linearized system is given by

dIh =

((
β1b1

µ1

− µ1 − φ
)
Ih +

β2b1

µ1

Iv

)
dt+ σIhIhdBIh(t), (3.12)

dIv =

(
βb2

µ2

Ih − µ2Iv

)
dt+ σIvIvdBIv(t). (3.13)

Finally, we state the condition for the asymptotic stability of the system (3.10)–(3.11) as

follows.

Theorem 3.3.7. Let X(t) = (Ih(t), Iv(t)) be the solution of (3.10)–(3.11). Suppose that

Θ = min{µ1 + φ− β1b1

µ1

− cβb2

µ2

− 1

2
σ2
Ih
, µ2 −

1

2
σ2
Iv −

cβ2b1

µ1

} > 0

and

µ1 + φ+ µ2 >
β1b1

µ1

+ σIhσIv ,
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where

c =

β2b1
µ1

+ βb2
µ2

µ2 + φ+ µ1 − β1b1
µ1
− σIhσIv

> 0.

Then for any initial value X(0), the trivial solution X(t) = 0 of system (3.10)–(3.11) is

stochastically asymptotically stable.

Proof. Define V = 1
2
I2
h + 1

2
I2
v + cIhIv. Then, using (3.9), we get

LV =

(
β1b1

µ1

− µ1 − φ+
1

2
σ2
Ih

+
cβb2

µ2

)
I2
h +

(
1

2
σ2
Iv − µ2 +

cβ2b1

µ2

)
I2
v

≤ −Θ‖X‖.

Thus, the trivial solution X(t) = 0 of system (3.12)–(3.13) is stochastically asymptotically

stable. Also let ‖X‖ < ξ, where ξ > 0 is sufficiently small,

‖b(X, t)−MX‖+ ‖σ(X, t)− σX‖ = ‖(−β1I
2
h − β2IhIv, −βIhIv)‖

≤ β1I
2
h + β2IhIv + βIhIv

≤ β1I
2
h +

(β + β2)

2
(I2
h + I2

v )

≤ (β1 +
β + β1

2
)‖X‖2 ≤ γ‖X‖,

where γ = ξ(β1 + ββ2
2

) and by theorem 3.3.6 the trivial solution of the nonlinear system

(3.10)–(3.11) is stochastically asymptotically stable.

3.4 Persistence in mean

One of the most fundamental questions in epidemiology and population biology is to

know the necessary conditions to ensure the long-term persistence of a population or a col-

lection of interacting populations. In the analysis of stochastic epidemic models, persistence

in mean, which captures the idea of non-extinction of the system is frequently used.
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Definition 3.4.1. [19] The system given by (3.10)–(3.11) is called persistence in mean if

lim inf
t→∞

1

t

∫ t

0

Ih(s) ds > 0 and lim inf
t→∞

1

t

∫ t

0

Iv(s) ds > 0.

Note that if Rs
0 > 1, then R0 > 1 and by theorem 2.3.19, the deterministic model

(2.1)–(2.4) has endemic equilibrium E1 = (S∗h, I
∗
h, S

∗
v , I
∗
v ). The following theorem will provide

conditions for system (3.10)–(3.11) to be persistence in mean.

Theorem 3.4.2. Let Rs
0 > 1 and assume that

σ2
Ih

2
< l1 and

σ2
Iv

2
< l2,

where l1 = β1b1
µ1

+ β2b1I∗v
µ1I∗h

and l2 =
βb2I∗h
µ2I∗v

. Then for any initial value X(0), the solution of

system (3.10)–(3.11) satisfies

lim sup
t→∞

1

t

∫ t

0

[(Ih(s)− (1 +
σ2
Ih

2l1
)I∗h)2 + (Iv(s)− (1 +

σ2
Iv

2l2
)I∗v )2]ds ≤ k2

k1

,

where k1 = min{l1, l2} and k2 = 1
2

(
1 +

σ2
Ih

2l1

)
σ2
Ih
Ih
∗2 + 1

2

(
1 +

σ2
Iv

2l2

)
σ2
Iv
Iv
∗2.

Proof. Let V1 = 1
2
(Ih − I∗h)2 and V2 = 1

2
(Iv − I∗v )2. Then,

LV1 = (Ih − I∗h)

(
β1b1

µ1

Ih − β1I
2
h +

β2b1

µ1

Iv − β2IhIv − (µ1 + φ)Ih

)
+

1

2
σ2
Ih
I2
H .

Using (2.7) and (2.8) we get

LV1 ≤ (Ih − I∗h)

(
β1b1

µ1

(I∗h − Ih) +
β2b1I

∗
v

µ1

Ih
∗(I∗h − Ih)

)
+

1

2
σ2
Ih
I2
h

≤ −
(
β1b1

µ1

+
β2b1I

∗
v

µ1I∗h

)
(Ih − I∗h)2 +

1

2
σ2
Ih
I2
h

= −l1
(
Ih − (1 +

σ2
Ih

2l1
)I∗h

)2

+
1

2
(1 +

σ2
Ih

2l1
)σ2

Ih
I2
H
∗
.
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Similarly, we have LV2 ≤ −l2
(
Iv − (1 +

σ2
Iv

2l2
)I∗v

)2

+ 1
2
(1 +

σ2
Iv

2l2
)σ2

Iv
I2
V
∗
.

Now letting V = V1 + V2, we have

LV = LV1 + LV2 ≤ −l1
(
Ih − (1 +

σ2
Ih

2l1
)I∗h

)2

− l2
(
Iv − (1 +

σ2
Iv

2l2
)I∗v

)2

+ k2

≤ −k1

[(
Ih − (1 +

σ2
Ih

2l1
)I∗h

)2

+

(
Iv − (1 +

σ2
Iv

2l2
)I∗v

)2
]

+ k2.

Using equation (3.9),

dV = LV dt+ σIhIhdBIh + σIvIvdBIv .

Integrating both sides, we get

k1

∫ t

0

((
Ih(s)− (1 +

σ2
Ih

2l1
)I∗h

)2

+

(
Iv(s)− (1 +

σ2
Iv

2l2
)I∗v

)2
)
ds

≤ k2t− V (Ih(t), Iv(t)) + V (Ih(0), Iv(0)).

Thus, taking the limit we get

lim sup
t→∞

1

t

∫ t

0

[(Ih(s)− (1 +
σ2
Ih

2l1
)I∗h)2 + (Iv(s)− (1 +

σ2
Iv

2l2
)I∗v )2]ds ≤ k2

k1

.

Corollary 3.4.3. Assume that the conditions on Theorem 3.4.2 hold, and suppose that

(1 +
σ2
Ih

2l1
)I∗h >

√
k2

k1

and (1 +
σ2
Iv

2l2
)I∗v >

√
k2

k1

.

Then, system (3.5)–(3.8) is persistent in the mean and

lim inf
t→∞

1

t

∫ t

0

Ih(s) ds ≥
1

2
(1 +

σ2
Ih

2l1
)I∗h −

l1
I∗h(2l1 + σ2

Ih
)

k2

k1

> 0, (3.14)
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and

lim inf
t→∞

1

t

∫ t

0

Iv(s) ds ≥
1

2
(1 +

σ2
Iv

2l2
)I∗v −

l2
I∗v (2l2 + σ2

Iv
)

k2

k1

> 0. (3.15)

Proof. We will prove inequality (3.14) and the other inequality can be proved using a similar

procedure. From theorem 3.4.2, we have

lim sup
t→∞

1

t

∫ t

0

(
Ih(s)− (1 +

σ2
Ih

2l1
)I∗h

)2

ds ≤ k2

k1

and

lim sup
t→∞

1

t

∫ t

0

(
Iv(s)− (1 +

σ2
Iv

2l2
)I∗v

)2

ds ≤ k2

k1

.

For any constant ξ > 0, we have

Ih ≥
1

2
I∗hξ −

1

2I∗hξ
(Ih − I∗hξ)2.

Thus,

lim inf
t→∞

1

t

∫ t

0

Ih(s) ds ≥
1

2
I∗hξ −

1

2I∗hξ
lim sup
t→∞

1

t

∫ t

0

(Ih − I∗hξ)2 ds.

Let ξ = 1 +
σ2
Ih

2l1
. Then

lim inf
t→∞

1

t

∫ t

0

Ih(s) ds ≥
1

2
I∗h(1 +

σ2
Ih

2l1
)− l1

I∗h(2l1 + σ2
Ih

)

k2

k1

> 0.

3.5 Numerical simulations

In this section we conduct numerical simulations to demonstrate some of the theoretical

results discussed in this chapter. The discretization scheme for the stochastic system and

MATLAB code used for the simulation purpose can be found in the appendix 1.
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First consider the following values of parameters

β1 = 0.005, β2 = 0.003, µ2 = 0.02, β = 0.0011, φ = 0.35, µ1 = 0.83,

b1 = 60, b2 = 0.8, σSh = 0.1, σIh = 0.1, σSv = 0.1, σIv = 0.1

Then Rs
0 = 0.6428 , R0 = 0.7106. Thus by theorem 2.3.2 and 2.3.4 the solution of the

deterministic model will converge to a disease-free equilibrium point. Similarly by theorem

3.3.1 and 3.3.3 it follows that the number of infected hosts and vectors will approach to zero

exponentially. Thus extinction of infection in the deterministic model implies extinction in

the stochastic case as can be see in figure 3.1.

Figure 3.1: Extinction of infection in the deterministic model implies extinction in the

stochastic case,R0 = 0.71 and Rs
0 = 0.64 respectivelly.

Now consider the following set of parameters;

β1 = 0.09, β2 = 0.3, µ2 = 0.3, β = 0.14, φ = 0.35, µ1 = 0.83,

b1 = 2, b2 = 1, σSh = 0.1, σIh = 0.88, σSv = 0.1, σIv = 0.1

The we get R0 = 1.1368 > 1 while Rs
0 = 0.8086 < 1. Thus according to theorem 2.3.2 and

2.3.4 the deterministic model has an endemic equilibrium and the infection will persist. On
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the contrary, by theorem 3.3.1 and 3.3.3 we conclude that the infection will be extinct from

the stochastic model as shown in figure 3.2.

Figure 3.2: Existence of Endemic equilibrium in the deterministic model (R0 = 1.1368),

while extinction in the stochastic case (Rs
0 = 0.8086).

Next consider the following parameter values.

β1 = 0.01, β2 = 0.3, µ2 = 0.3, β = 0.06, φ = 0.35, µ1 = 0.83,

b1 = 5, b2 = 4, σSh = 0.1, σIh = 0.1, σSv = 0.1, σIv = 0.1

The values of R0 and Rs
0 are 4.1352 and 4.1309 respectively. Thus the infection will persist

on both the deterministic as well as stochastic cases. The endemic equilibrium is given

by E1 = (2.47, 3.55, 7.79, 5.54). Thus, by theorem 3.4.2, the solution of system (3.5)–(3.8)

oscillates about E1. Now, if we fix all the values of the parameters but increase the noise

intensities to σSh = 0.5, σIh = 0.5, σSv = 0.5, σIv = 0.5 then, the new solution will still

oscillate about the same endemic equilibrium E1 with a larger amplitude as can be seen in

figure 3.3.
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Figure 3.3: The effect of noise intensity on the trajectories of Ih(t) and Iv(t). In both cases

the solution oscillates about the endemic equilibrium E1 with different amplitudes. In (a)

the noise intensity is σSh = σIh = σSv = σIv = 0.1, and in (b) σSh = σIh = σSv = σIv = 0.5.

In order to simulate the long-term persistence of the disease, we consider the same set

of parameters as above. Then (1 +
σ2
Ih

2l1
)I∗h = 3.56, (1 +

σ2
Iv

2l2
)I∗v = 5.59 and

√
k2
k1

= 0.65. With

this values of parameters, we can easily verify that all the assumptions on theorem 3.4.2

and corollary 3.4.3 are satisfied. Thus we conclude that system (3.5)–(3.8) is persistence in

mean with lim inft→∞
1
t

∫ t
0
Ih(s) ds = 1.72 > 0 and lim inft→∞

1
t

∫ t
0
Iv(s) ds = 2.76 > 0. This

is verified in figure 3.4.

Figure 3.4: Persistence in mean of the stochastic epidemic model and histogram of Ih and

Iv.
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Chapter 4

Regime Switching Vector-host Epidemic Model with Direct Transmission

4.1 Description of the model

As mentioned in the introduction, in this section we will include another type of envi-

ronmental noise. The noise considered in system (3.5)–(3.8) is the multiplicative white noise,

which has been widely used in applications from engineering and physics. In this chapter we

introduce a different type of noise, the Markovian noise, into the vector-host model, based

on the assumption that the switching between different environments is memory-less and

the waiting time for switching is exponentially distributed. The underlying model relies on

a continuous time Markov chain r(t), t ≥ 0 with a finite state space M = {1, 2, . . . ,m},

generated by the transition matrix Q = (qij)m×m, i.e.,

P{r(t+ ∆t) = j|r(t) = i} =


qij∆t+ o(∆t) if i 6= j

1 + qii∆t+ o(∆t) if i = j.

where qij ≥ 0 is the transition rate from i to j if i 6= j and qii = −
∑

i 6=j qij. Thus we model

the stochastic vector-host epidemic in random environment using the following system of

stochastic differential equation under regime switching.

dIh =

(
β
r(t)
1 b1

µ1

Ih − βr(t)1 I2
h +

β
r(t)
2 b1

µ1

Iv − βr(t)2 IhIv − (µ1 + φ)Ih

)
dt

+ σ
r(t)
Ih
IhdBIh(t), (4.1)

dIv =

(
βr(t)b2

µ2

Ih − βr(t)IhIv − µ2Iv

)
dt+ σ

r(t)
Iv
IvdBIv(t). (4.2)

62



The above system (4.1)-(4.2) can be explained as follows. Suppose that the epidemic is

initially in environment i ∈ M, that is r(0) = i. Then the Markov chain r(t) rests in the

state i for an exponentially distributed random time and the system will have the following

form:

dIh = (
βi1b1
µ1
Ih − βi1I2

h +
βi2b1
µ1
Iv − βi2IhIv − (µ1 + φ)Ih)dt+ σiIhIhdBIh(t),

dIv = (β
ib2
µ2
Ih − βiIhIv − µ2Iv)dt+ σiIvIvdBIv(t),

where βi, βi1 and βi2 are the transmission rates, while σiIh , σ
i
Iv

are the noise intensities in state

i. Then the environment will switch and the Markov chain r(t) will jump to another state j.

Here the new system will have the form:

dIh = (
βj1b1
µ1
Ih − βj1I2

h +
βj2b1
µ1
Iv − βj2IhIv − (µ1 + φ)Ih)dt+ σjIhIhdBIh(t),

dIv = (β
jb2
µ2
Ih − βjIhIv − µ2Iv)dt+ σjIvIvdBIv(t),

where βj, βj1 and βj2 are the transmission rates, while σjIh , σ
j
Iv

are the noise intensities in state

j.

4.1.1 Notations and remark.

Let (x(t), r(t)) be the diffusion process described by the stochastic differential equation

with Markovian switching of the form

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dB(t), (4.3)

where f : Rn×R+×M→ Rn, g : Rn×R+×M→ Rn×m andB(t) = (B1(t), B2(t), . . . , Bm(t))

is an m-dimensional Brownian motion such that Bi(t) for i = 1, 2, . . . ,m are independent.

Denote by E := C2,1(Rn × R+ ×M; R+) the family of all nonnegative functions V (x, t, i)

which are continuously twice differentiable in x and differentiable in t.
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For any V ∈ E, define the operator LV : Rn × R+ ×M→ R by

LV (x, t, i) = Vt(x, t, i) + Vx(x, t, i)f(x, t, i) +
1

2
trace[gT (x, t, i)Vxx(x, t, i)g(x, t, i)]

+
m∑
j=1

qijV (x, t, i). (4.4)

Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual

conditions, that is, it is right continuous and increasing with F0 containing all P-null sets.

Throughout the rest of this chapter we assume that both the Brownian motion B(t) and the

Markov chain r(t) for t ≥ 0 are independent and are defined on the complete probability

space.

Also let K denote the family of all continuous increasing functions k : R+ → R+ such

that k(0) = 0 while k(u) > 0 for u > 0, and K∞ contains the family of all functions k ∈ K

such that k(∞) =∞ [38].

Remark 4.1.1. Since we assumed that the system can switch from one state to any other,

the Markov chain r(t), t ≥ 0 is irreducible, thus it has a unique stationary distribution

π = (πi)
m
i=1 ∈ R1×m obtained by solving

πQ = 0,
m∑
k=1

πk = 1.

4.2 Existence and uniqueness of the solution

In this section, we show that system (4.1)–(4.2) has a unique nonnegative global solution

and also discuss some properties of the solution. For simplicity of notations, denote the

solution to (4.1)–(4.2) by X(t) = (Ih(t), Iv(t)), and let R2
+ := {(x, y) : x > 0, y > 0}.

Theorem 4.1. For any initial value X(0) ∈ R2
+ and r(0) ∈ M, system (4.1)–(4.2) has a

unique global solution on t ≥ 0 and the solution will remain in R2
+ with probability 1.
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Proof. The idea of the proof is similar to what is used in [34, 60]. For each i ∈ M, the

vector field associated with system (4.1)–(4.2) is local Lipschitz. Thus a unique local positive

solution exists on [0, τe), where τe < ∞ is the explosion time. Now we show that τe = ∞

a.s., thus the existence of a unique positive global solution is guaranteed.

Let k0 > 0 be large enough such that X(0) ∈
(

1
k0
, k0

)2

.

τk = inf

{
t ∈ [0, τe] : X(t) /∈

(
1

k
, k

)2
}
, k > k0.

Thus {τk}k is an increasing sequence. Let τ = limk→∞ τk, then τ ≤ τe a.s. By contradiction,

we show τ =∞ a.s. and we conclude system (4.1)–(4.2) has a unique positive global solution.

Suppose τ <∞, then there exists K > 0 such that P(τ ≤ K) > ε for all ε ∈ (0, 1). This

implies that there exists k1 > k0 such that P(τk ≤ K) ≥ ε for all k ≥ k1.

For c > 0 and (X(t), i) ∈ R2
+ ×M, define

V (X(t), i) = (Ih − 1− ln Ih) + c(Iv − 1− ln Iv).

Then

LV = −β1I
2
h +

(
β1b1

µ1

+
aβb2

µ2

− (µ1 + γ) + β1 + aβ1

)
Ih − (β2 + aβ)IhIv

+

(
β2b1

µ1

− aµ2 + β2

)
Iv −

(
β2b1

µ1

Iv
Ih

+
aβb2

µ2

Ih
Iv

)
+ A,

≤ −β1I
2
h +

(
β1b1

µ1

+
aβb2

µ2

− (µ1 + γ) + β1 + aβ1

)
Ih +

(
β2b1

µ1

− aµ2 + β2

)
Iv + A

where

A = µ1 + γ + aµ2 +
1

2
σ2

1 +
a

2
σ2

2.

Pick a such that a > β2
µ2

+ β2b1
µ1µ2

, then there exists a constant M such that

LV ≤ −β1I
2
h +

(
β1b1

µ1

+
aβb2

µ2

− (µ1 + γ) + β1 + aβ1

)
Ih + A ≤M.
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Using equation (3.9) it follows that

dV = LV dt+ σIh(Ih − 1)dBIh + σIv(Iv − 1)dBIv .

Integrating both sides of the above inequality on (0, τk ∧K) and taking the expectation, we

have

EV (X(τk ∧K)) ≤ V (X(0)) +MK.

For k ≥ k0 let Ak = {τk ≤ K}, then P (Ak) ≥ ε. If t ∈ Ak, then either

Ih(t) /∈
(

1

k
, k

)
or Iv(t) /∈

(
1

k
, k

)
.

Thus for t ∈ Ak

V (X(τk ∧ t)) ≥ (k − 1− 1

k
) ∧ (

1

k
− 1− ln(

1

k
)).

Now we have

V (X(0)) +MK ≥ EV (X(τk ∧K)) ≥ ε

(
(k − 1− ln k) ∧ (

1

k
− 1− ln

1

k
)

)
.

Finally, letting k →∞ we have

∞ > V (X(0)) +MK =∞

which is a contradiction. Thus we conclude τ =∞ a.s.

4.3 Exponential stability and pth moment stability

4.3.1 Almost sure exponential and pth moment exponential stability

The following theorem gives conditions for the extinction of infection in the regime

switching model.
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Theorem 4.2. For any initial value X(0) ∈ R2
+ and r(0) ∈ M, the solution of system (4.1)–

(4.2), satisfies

lim sup
t→∞

1

t
(ln Ih(t) + ln Iv(t)) ≤

m∑
i=1

πi F (i)

where

F (i) =
βi1b1

µ1

+ (βi2 + βi)
b1b2

µ1µ2

− µ1 − φ−
1

2
(σiIh)2 − 1

2
(σiIv)

2. (4.5)

Proof. For any i ∈M, define V (X(t), i) = ln Ih(t) + ln Iv(t). Then,

LV =
1

Ih

(
βr1b1

µ1

Ih − βr1I2
h +

βr2b1

µ1

Iv − βr2IhIv − (µ1 + φ)Ih

)
− 1

2
(σrIh)2

+
1

Iv
(
βrb2

µ2

Ih − βrIhIv − µ2Iv)−
1

2
(σrIv)

2

≤ βr1b1

µ1

+ (βr2 + βr)
b1b2

µ1µ2

− µ1 − φ−
1

2
(σrIh)2 − 1

2
(σrIv)

2.

Using equation (3.9), we have

dV ≤ βr1b1

µ1

+ (βr2 + βr)
b1b2

µ1µ2

− µ1 − φ−
1

2
(σrIh)2 − 1

2
(σrIv)

2 + σrIhdBIh(t) + σrIvdBIv(t)

Integrating both sides on [0, t], we get

V (t) ≤ V (0) +

∫ t

0

F (r(s)) +

∫ t

0

σ
r(s)
Ih

dBIh(s) + σ
r(s)
Iv

dBIv(s), (4.6)

where F (r(t)) =
βr1b1
µ1

+ (βr2 + βr) b1b2
µ1µ2
− µ1 − φ− 1

2
(σrIh)2 − 1

2
(σrIv)

2.

Let M(t) =
∫ t

0
σ
r(s)
Ih

dBIh(s) + σ
r(s)
Iv

dBIv(s), then M(t) is a martingale with M(0) = 0

and a quadratic variation given by

〈M,M〉t =

∫ t

0

(σ
r(s)
Ih

)2 + (σ
r(s)
Iv

)2ds ≤ 2σ2t,

where

σ2 = max{(σiIh)2, (σiIh)2}, 1 ≤ i ≤ m.
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Since

lim sup
t→∞

〈M,M〉t
t

≤ 2σ2 <∞,

by the strong law of large numbers, it follows that lim supt→∞
M(t)
t

= 0. Thus we have,

lim sup
t→∞

V (t)

t
≤ lim sup

t→∞

1

t

∫ t

0

F (r(s))ds.

Finally by the ergodic property of Markov chain [38],

lim sup
t→∞

1

t

∫ t

0

F (r(s))ds =
m∑
i=1

πi F (i).

Thus it follows that

lim sup
1

t
(ln Ih(t) + ln Iv(t)) = lim sup

t→∞

V (t)

t
≤

m∑
i=1

πi F (i).

Corollary 4.3.1. If
m∑
i=1

πi F (i) < 0,

then the disease-free equilibrium point E0 = ( b1
µ1
, 0, b2

µ2
, 0) is exponentially stable almost surely.

Proof. From theorem 4.2 we have the following results.

lim sup
t→∞

ln Ih(t)

t
≤ lim sup

1

t
(ln Ih(t) + ln Iv(t)) < 0

and

lim sup
t→∞

ln Iv(t)

t
≤ lim sup

1

t
(ln Ih(t) + ln Iv(t)) < 0.

Thus the disease-free equilibrium point E0 = ( b1
µ1
, 0, b2

µ2
, 0) is exponentially stable almost

surely.
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Theorem 4.3. For any p > 0 and any initial value X(0) ∈ R2
+ and r(0) ∈M, the solution of

system (4.1)–(4.2), satisfies

lim sup
t→∞

1

t
E(ln Ih(t)

p + ln Iv(t)
p) ≤

m∑
i=1

πi(pF (i) + p2σ2
i ),

where F (i) is given by (4.5) and σ2
i = max{(σiIh)2, (σiIv)

2}.

Proof. From (4.6) for any p > 0, we have

pV (t) ≤ pV (0) + p

∫ t

0

F (r(s)) + p

∫ t

0

σ
r(s)
Ih

dBIh(s) + σ
r(s)
Iv

dBIv(s).

By the ergodic property of Markov chain it follows that for any ε > 0

∫ t

0

F (r(s))ds ≤ (
m∑
i=1

πi F (i) +
ε

p
)t.

Thus

E(Ih(t)
pIv(t)

p) ≤ Ih(0)pIv(0)p ep(
∑m
i=1 πi F (i)+ ε

p
)t E(epMt),

where M(t) =
∫ t

0
σ
r(s)
Ih

dBIh(s) + σ
r(s)
Iv

dBIv(s) is a real - valued martingale with M(0) = 0.

The quadratic variation of pM(t) is given by

〈pM, pM〉t = p2

∫ t

0

(σ
r(s)
Ih

)2ds+ (σ
r(s)
Iv

)2ds ≤ 2p2

∫ t

0

σ2
r(s)ds.

Again by the ergodic property of Markov chain for any ε̃ > 0,

∫ t

0

σ2
r(s)ds ≤ (

m∑
i=1

πiσ
2
i +

ε̃

p2
)t,

thus

〈pM, pM〉t ≤ (2p2

m∑
i=1

πiσ
2
i + 2ε̃)t <∞.
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Hence by Girsanov’s theorem it follows,

E(epMt) = E(e
1
2
〈pMt,pMt〉) ≤ e(p2

∑m
i=1 πiσ

2
i+ε̃)t.

Now

E(Ih(t)
p Iv(t)

p) ≤ Ih(0)pIv(0)p e(p
∑m
i=1 πi F (i)+ε)t+(p2

∑m
i=1 πiσ

2
i+ε̃)t,

and thus,

ln Ih(t)
p + ln Iv(t)

p ≤ ln Ih(0) + ln Iv(0) + p(
m∑
i=1

πi F (i) + ε)t+ (p2

m∑
i=1

πiσ
2
i + ε̃)t.

This implies

lim sup
t→∞

1

t
(ln Ih(t)

p + ln Iv(t)
p) ≤ p(

m∑
i=1

πi F (i) + ε) + (p2

m∑
i=1

πiσ
2
i + ε̃)

Letting ε and ε̃ go to zero, we have

lim sup
t→∞

1

t
E(ln Ih(t)

p + ln Iv(t)
p) ≤

m∑
i=1

πi(pF (i) + p2σ2
i )

4.4 Stochastic asymptotic stability

In this section we continue to study the long term asymptotic behaviour of the solution

of system (4.1)–(4.2). Among the different stability concepts for a stochastic differential

equation, we consider stochastic asymptotic stability.

Definition 4.4.1. Consider a nonlinear stochastic differential equation with Markovian

switching

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dB(t), t ≥ t0 (4.7)
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The trivial solution x(t) = 0 of equation (4.7) is said to be:

1. stochastically stable or stable in probability if for any ε ∈ (0, 1), ρ > 0 and t0 ≥ 0

there exists δ = δ(ε, ρ, t0) > 0 such that

P{|x(t; t0, x0, i)| < ρ for all t ≥ t0} ≥ 1− ε

for any |x0| < δ.

2. stochastically asymptotically stable or asymptotically stable in probability if it is

stochastically stable and, moreover, for any ε ∈ (0, 1), t0 ≥ 0 there exists δ = δ(ε, ρ, t0) >

0 such that

P{ lim
t→∞

(x(t; t0, x0))} ≥ 1− ε

for any |x0| < δ.

3. stochastically asymptotically stable in large if it is stochastically stable and, moreover,

P{ lim
t→∞

(x(t; t0, x0, i))} = 1, ∀(t0, x0, i) ∈ R+ × Rn ×M.

Please refer to [38] for the detail. To prove the stochastic asymptotical stability of

system (4.1)–(4.2), we use the following theorem [38].

Theorem 4.4. Assume that there are functions V ∈ C2,1(Rn × R+ ×M;R+), µ1, µ2 ∈ K∞

and µ3 ∈ K such that

µ1(|x|) ≤ V (x, t, i) ≤ µ2(|x|), and LV (x, t, i) ≤ −µ3(|x|)

for all (x, t, i) ∈ Rn × R+ ×M. Then the trivial solution of equation (4.7) is stochastically

asymptotically stable in large.
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Theorem 4.5. For each i ∈M, assume that

(µ1 + φ)− βi1b1

µ1

− βi2b1

2µ1

− βib2

µ2

−
σiIh

2

2
> 0 and µ2 −

βi2b1

µ1

− βib2

2µ2

−
σiIv

2

2
> 0.

Then the trivial solution x(t) = 0 of system (4.1)–(4.2) is stochastically asymptotically stable

in the large.

Proof. For any i ∈M, let V (Ih, Iv, i) = I2
h + I2

v . Then we have

LV = 2Ih

(
βr1b1

µ1

Ih − βr1I2
h +

βr2b1

µ1

Iv − βr2IhIv − (µ1 + φ)Ih

)
+ (σrIh)2I2

h

+ 2Iv

(
βrb2

µ2

Ih − βrIhIv − µ2Iv

)
+ (σrIv)

2I2
v

= I2
h

(
2
βr1b1

µ1

− 2(µ1 + φ) + (σrIh)2

)
+ I2

v

(
−2µ2 + (σrIv)

2
)
− 2βr1I

3
h

+ IhIv

(
2βr2b1

µ1

− 2βrb2

µ2

− 2βr2I
2
hIv − 2βrIhI

2
v

)
≤ −I2

h

(
2(µ1 + φ)− 2βr1b1

µ1

− σrIh
2 − βr2b1

µ1

− βrb2

µ2

)
− I2

v

(
2µ2 − σrIv

2 − βr2b1

µ1

− βrb2

µ2

)
≤ −λ(I2

h + I2
v ) = −λ|x|2

where λ = min{2(µ1 + φ)− 2βr1b1
µ1
− σrIh

2 − βr2b1
µ1
− βrb2

µ2
, 2µ2 − σrIv

2 − βr2b1
µ1
− βrb2

µ2
} > 0.

Let µ1(|x|) = 1
2
|x|2, µ2(|x|) = |x|2 and µ3(|x|) = λ|x|2. Then clearly, µ1(|x|) ≤

V (x, t, i) ≤ µ2(|x|) and LV ≤ −µ3(|x|). Also µ1, µ2 ∈ K∞ and µ3 ∈ K. The conclusion

follows from theorem 4.4.

4.5 Stationary distribution

In this section, we prove that system (4.1)–(4.2) has a unique stationary distribution.

For that purpose, we use stochastic Lyapunov function to show the ergodicity and positive

recurrence of the system. Then, the conclusion of existence and uniqueness of the stationary

distribution follows from the following lemma [62].
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Lemma 4.5.1. Assume the following conditions are satisfied;

1. for any i 6= j, qij > 0,

2. for any i ∈M, the diffusion matrix D(x, i) = g(x, r)g(x, r)T is symmetric and

λ|ξ|2 ≤ 〈D(x, i) ξ, ξ〉 ≤ λ−1|ξ|2 for all x, ξ ∈ Rn and λ ∈ (0, 1],

3. there exists a nonempty open set D with compact closure, such that for each i ∈ M,

there exists a nonnegative function V (· , i) : Dc → R such that V (· , i) is twice contin-

uously differentiable and for some α > 0, LV (x, i) ≤ −α, (x, i) ∈ Dc ×M,

then (x(t), r(t)) of system (4.7) is ergodic and positive recurrent. That is, there exists a

unique stationary distribution ζ(· , ·) such that for any Borel measurable function h : Rn ×

M→ R satisfying ∑
i∈M

∫
Rn
|h(x, i)|ζ(dx, i) <∞,

we have

P

(
lim
t→∞

∫ t

0

h(x(s), r(s)) ds =
m∑
i=1

∫
Rn
h(x, i)ζ(x, i)dx

)
= 1.

Before proving the existence and uniqueness of the stationary distribution, let us sub-

stitute x(t) = ln(Ih(t)) and y(t) = ln(Iv(t)), and rewrite system (4.1)–(4.2) as follows:

dx(t) =

(
βr1b1

µ1

− βr1ex +
βr2b1

µ1

ey

ex
− βr2ey − µ1 − φ−

1

2
σ2
x

)
dt+ σrxdBx(t), (4.8)

dy(t) =

(
βrb2

µ2

ex

ey
− βrex − µ2 −

1

2
σ2
y

)
dt+ σrydBy(t). (4.9)

Remark 4.5.2. (i) Since the ergodic property and positive recurrence of system (4.1)–(4.2)

is equivalent to that of (4.8)–(4.9), we only need to prove for the later system [33, 59].

(ii) To prove the existence of a unique stationary distribution, we impose the following

assumptions.
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For each i ∈M,

1.
βi1b1
µ1

+ βib2
µ2
− µ1 − φ > 0 and

βi2b1
µ1
− µ2 > 0.

2.
m∑
i=1

πiRi > 0, where Ri :=
βi1b1
µ1
− (µ1 + φ+ µ2 + 1

2
σ2
x + 1

2
σ2
y).

Lemma 4.5.3. Under assumption 1, for i = 1, 2, . . . ,m the system

c1(i)

(
βi1b1
µ1

+
∑
l

qil − µ1 − φ
)

+ c2(i)β
ib2
µ2

= −2βi1

c1(i)
βi2b1
µ1

+ c2(i)(
∑
l

qil − µ2) = −βi2
(4.10)

has a unique solution (c1(1), c1(2), . . . , c1(m), c2(1), c2(2), . . . , c2(m)) ∈ R2m.

Proof. Let

A =



β1
1b1
µ1

+ q11 − µ1 − φ q12 . . . q1m
β1b2
µ2

0 . . . 0

q21
β2
1b1
µ1

+ q22 − µ1 − φ . . . q1m 0 β2b2
µ2

. . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

qm1 qm2 . . .
β2
1b1
µ1

+ qmm − µ1 − φ 0 0 . . . βmb2
µ2

β1
2b1
µ1

0 0 . . . q11 − µ2 q12 . . . q1m

β2
2b1
µ1

0 0 . . . q21 − µ2 q22 . . . q2m

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . .
βm
2 b1
µ1

qm1 qm2 . . . qmm − µ2



C = (c1(1), c1(2), . . . , c1(m), c2(1), c2(2), . . . , c2(m))T ,

and

B = (−2β1
1 ,−2β2

1 , . . . ,−2βm1 ,−β1
2 ,−β2

2 , . . . ,−βm2 )T .

Then system (4.10) can be written as AC = B. It is enough to show that all the leading

principal minors of A are positive, and the conclusion of the lemma will follow from the fact

that A is a nonsingular M−matrix [38].
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For 1 ≤ k ≤ m, the leading principal sub-matrix Ak is given by

Ak =



β1
1b1
µ1

+ q11 − µ1 − φ q12 . . . q1k

q21
β2
1b1
µ1

+ q22 − µ1 − φ . . . q1k

. . . . . . . . . . . .

qk1 qk2 . . .
βk1 b1
µ1

+ qkk − µ1 − φ



Ak+m =



β1
1b1
µ1

+ q11 − µ1 − φ q12 . . . q1m
β1b2
µ2

0 . . . 0

q21
β2
1b1
µ1

+ q22 − µ1 − φ . . . q1m 0 β2b2
µ2

. . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

qm1 qm2 . . .
βm
1 b1
µ1

+ qmm − µ1 − φ 0 0 . . . βkb2
µ2

β1
2b1
µ1

0 0 . . . q11 − µ2 q12 . . . q1k

0
β2
2b1
µ1

0 . . . q21 q22 − µ2 . . . q2k

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . .
βk
2 b1
µ1

qk1 qk2 . . . µ2qkk


For Ak the sum of the ith row for 1 ≤ i ≤ k is given by

k∑
j=1

aij =
βi1b1

µ1

+
k∑
j=1

qij − µ1 − φ, since
m∑
j=1

qij = 0

=
βi1b1

µ1

+
m∑

j=k+1

qij − µ1 − φ > 0.

This follows from the first assumption and qij > 0 for i 6= j.

Similarly, the sum of the ith row of the matrix Ak+m is given as follows.

If 1 ≤ i ≤ m, then

k+m∑
j=1

aij =
βi1b1

µ1

+
m∑
j=1

qij +
βib2

µ2

− µ1 − φ, since
m∑
j=1

qij = 0

=
βi1b1

µ1

+
βib2

µ2

− µ1 − φ > 0.
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and if m ≤ i ≤ m+ k, then

k+m∑
j=1

aij =
βi2b1

µ1

+
k∑
j=1

qij − µ2, since
m∑
j=1

qij = 0

=
βi2b1

µ1

+
m∑

j=k+1

qij − µ2 > 0.

Again this follows from the first assumption and qij > 0 for i 6= j.

Theorem 4.6. If assumptions 1 and 2 hold, then for any initial value (x(0), y(0), r(0)) system

(4.8)–(4.9) has a unique stationary distribution.

Proof. The first condition of lemma 4.5.1 follows from the fact that the transition rate is

positive. That is for i 6= j, qij > 0.

Also the diffusion matrix of system (4.8)–(4.9) is given by

D(x, y, i) = diag((σix)
2, (σiy)

2).

Thus, the second condition of lemma 4.5.1 follows since D(x, y, i) is positive semi-definite.

Finally, to show the third condition of lemma 4.5.1, let θ ∈ (0, 1) and define

V1(x, y) = 1
θ+1

(ex + ey)θ+1 and V2(x, y, i) = c1(i)ex + c2(i)ey − x− y − ζi. Then we have

LV1 = (ex + ey)θ
(
βr1b1

µ1

ex − βr1e2x +
βr2b1

µ1

ey − βr2ex+y − (µ1 + φ)ex +
βrb2

µ2

ex − βr1ex+y − µ2e
y

)
+

1

2
θ(ex + ey)θ−1(e2xσ2

x + e2yσ2
y)

≤ −
(
µ1 + φ− βr1b1

µ1

− βrb2

µ2

− θ

2
σ2
x

)
e(θ+1)x −

(
µ2 −

βr2b1

µ1

− θ

2
σ2
y

)
e(θ+1)y

≤ −

(
µ1 + φ− β̃1b1

µ1

− β̃b2

µ2

− θ

2
σ̃2
x

)
e(θ+1)x − (µ2 −

β̃2b1

µ1

− θ

2
σ̃2
y)e

(θ+1)y,

where λ̃ = maxi∈M λi.
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Also

LV2 = c1(i)

(
βi1b1

µ1

ex − βi1e2x +
βi2b1

µ1

ey − βi2ex+y − (µ1 + φ)ex
)

+
∑
l

c1(i)qile
x

+ c2(i)

(
βib2

µ2

ex − βi1ex+y − µ2e
y

)
+
∑
l

c2(i)qile
y − βi1b1

µ1

+ βi1e
x − βi2b1

µ1

ey

ex

+ βi2e
y + µ1 + φ+

1

2
σ2
x −

βib2

µ2

ex

ey
+ βi1e

x + µ2 +
1

2
σ2
y −

∑
l

qilζl

≤ ex

(
c1(i)(

βi1b1

µ1

− µ1 − φ+
∑
l

qil) + c2(i)
βib2

µ2

+ 2βi1

)

+ ey

(
c1(i)

βi2b1

µ1

+ c2(i)(
∑
l

qil − µ2) + βi2

)
+ (−β

i
1b1

µ1

+ µ1 + φ+ µ2 +
1

2
σ2
x +

1

2
σ2
y)−

∑
l

qilζl

= −β
i
1b1

µ1

+ µ1 + φ+ µ2 +
1

2
σ2
x +

1

2
σ2
y −

∑
l

qilζl

≤ −Ri −
∑
l

qilζl

Note that the last expression follows from lemma 4.5.3. Since we assume that the system

can switch from one regime to any other, the generator matrix Q is irreducible. Thus for

R = (R1, R2, . . . , Rm)T , there exist ζ = (ζ1, ζ2, . . . , ζm)T such that

Qζ = (
m∑
i=1

πiRi)~1−R.

This is equivalent to

−Ri −
m∑
j=1

qijζj = −
m∑
i=1

πiRi

and therefore we conclude that

LV2 ≤ −
m∑
i=1

πiRi.

Finally, define V = V1 + V2. Then,

LV ≤ −(µ1 + φ− β̃1b1

µ1

− β̃b2

µ2

− θ

2
σ̃2
x)e

(θ+1)x − (µ2 −
β̃2b1

µ1

− θ

2
σ̃2
y)e

(θ+1)y −
m∑
i=1

πiRi.
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Now, as x, y →∞, LV ≤ −∞ and as x, y → −∞, LV ≤ −
m∑
k=1

πkRk

Thus by taking κ > 0, sufficiently large and letting D = (−κ, κ) × (−κ, κ) we have for

any (x, y, i) ∈ Dc ×M, it follows that there exists α > 0 such that LV ≤ −α.

4.6 Numerical simulations and examples.

In this section, we conduct numerical simulations to illustrate some of the theoretical

results. For this purpose, we adopt the following parameter values. Let r(t), t ≥ 0 be a

right-continuous Markov chain taking values in M = {1, 2, 3}, and it is generated by

Q =


−3 2 1

1 −2 1

1 1 −2

 .

Thus the stationary distribution is given by π = (1/4, 5/12, 1/3). To demonstrate corollary

(4.3.1) we chose the following values,

b1 = 10, b2 = 0.1, µ1 = 0.83, φ = 0.35, µ2 = 0.1, β1 = 0.002, β2 = 0.001, β3 = 0.003

β1
1 = 0.005, β2

1 = 0.004, β3
1 = 0.006, β1

2 = 0.00003, β2
2 = 0.000025, β3

2 = 0.00004.

For each i ∈M we take the following noise intensities

σiSh = σiIh = σiSv = σiIv = 0.2.

Thus using equation (4.5) we get

3∑
i=1

πi F (i) = −1.1373 < 0.
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By corollary (4.3.1) the disease-free equilibrium E0 = (12.0482, 0, 1, 0) is almost surely expo-

nentially stable, as shown in figure (4.1) below. Now we keep the noise intensities the same

Figure 4.1: Almost surely exponential stability of the disease-free equilibrium.

as in the above example and consider the following values of parameters

b1 = 5, b2 = 4, µ1 = 0.83, φ = 0.35, µ2 = 0.3, β1 = 0.06, β2 = 0.05, β3 = 0.055

β1
1 = 0.5, β2

1 = 0.6, β3
1 = 0.65, β1

2 = 0.3, β2
2 = 0.25, β3

2 = 0.4.

Both assumptions 1 and 2 are satisfied with
3∑

k=1

πkRk = 1.9137. Thus by theorem 4.6 system

(4.1)–(4.2) has a unique stationary distribution and this is verified in the figure 4.3.

Figure 4.2: Trajectories of solution of system (4.1)–(4.2) and the corresponding path of a

single Markov chain r(t) for the parameter values given above.
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Figure 4.3: Frequency histograms of the solution of system (4.1)–(4.2)

.

Remark 4.6.1. It is important to see that we might have cases in which the infection is

persistence in the deterministic case (R0 > 1), while there is an extinction in the regime-

switching stochastic case as shown in figure 4.4 . This is due to a large environmental

fluctuation in the infectious group Ih. In order to demonstrate this we consider the following

values of parameters.

b1 = 2, b2 = 1, µ1 = 0.83, φ = 0.35, µ2 = 0.3, β1 = 0.14, β2 = 0.13, β3 = 0.15, β1
1 = 0.09,

β2
1 = 0.08, β3

1 = 0.085, β1
2 = 0.3, β2

2 = 0.25, β3
2 = 0.4, σiIh = 0.88, σiSh = σiSv = σiIv = 0.1.
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Figure 4.4: Extinction of infection in the regime-switching stochastic case, while existence

of endemic equilibrium in the deterministic model.
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Chapter 5

Summary

In this dissertation we presented a deterministic and stochastic epidemic model with

direct transmission. The deterministic model is a compartmental model, which divides the

total host population into susceptible and infected. Similarly, the vector population is divided

into susceptible and infected groups. By studying the different ways of transmitting the

infection form one compartment to another, we developed a system of nonlinear differential

equations that describes the epidemiology of vector-borne disease. We considered the SIS

type of structure for the host and the SI type of structure for the vector.

In chapter 2, we presented and analyzed a deterministic vector-host epidemic mode

with direct transmission. We first obtained the disease-free equilibrium point E0 and en-

demic equilibrium point E1. Then we calculated the basic reproductive number R0 using

the second generation matrix approach. We proved that if R0 < 1, the disease-free equilib-

rium point is both locally and globally asymptotically stable and thus, the infection will be

extinct. Similarly if R0 > 1, the endemic equilibrium point E1 is both locally and globally

asymptotically stable and as a result, the infections will be persistent. Next we provided

numerical simulations for different values of parameters to illustrate the analytical results.

For this purpose, we took R0 = 0.71 and R0 = 34.20. The simulation shows that the in-

fection will die out in the first case, while it persisted in the second case. Finally, using

the perturbation of fixed point estimation, we conducted sensitivity analysis of the basic

reproductive number to investigate the relative importance of each parameters in relation to

it. From this analysis we concluded that, if the values of the parameters are known, we can

determine which parameter will have a significant impact on the incidence rate.

82



In chapter 3 we presented a stochastic vector-host epidemic model with direct trans-

mission, using a nonlinear system of stochastic differential equations. First we derived the

stochastic model from the corresponding deterministic model by including environmental

fluctuations and studied how these fluctuations affect the epidemiological model presented

in chapter 2. For this purpose, we assumed that during the given interval of time, each

compartments change according to the deterministic equation described in chapter 2 and

by a random amount due to the environmental fluctuations. Under this assumption, we

determined the drift and diffusion coefficients of the diffusion process. Then we proved the

existence of a unique nonnegative global solution to the system. Next we proved that the

solution to the stochastic system is ultimately bounded in probability and stochastically

permanent. These properties of the solution indicates how the total population in the model

changes in the long run. We also derived the basic reproductive number Rs
0 for the stochas-

tic model, and proved that if Rs
0 < 1, then the number of infected hosts and vectors will

tend to zero exponentially almost surely. Moreover, we concluded that a very large environ-

mental fluctuation can subdue the number of infected hosts and vectors. By studying the

asymptotic stability of the linearized system, we provided conditions for the stability of the

nonlinear system. We also studied the necessary conditions to ensure the non-extinction of

infection in the model using the idea of persistence in mean. The result indicates that under

some assumptions, the solution to the stochastic system will stay away from the disease-

free equilibrium point E0 and oscillate around the endemic equilibrium point E1. Moreover,

we showed that the amplitudes of vibration depends on the values of the noise intensities.

Finally, using the Milstein scheme we conducted numerical simulations for the stochastic sys-

tem. We provided example to show that extinction of infection in the deterministic model

implies extinction of infection in the stochastic case, while large environmental fluctuation

may suppress infection. We also provided examples and simulations to show how the noise

or fluctuation intensities affect the behaviour of the solution.
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Finally, in chapter 4 we presented and analyzed a regime switching vector-host epidemic

model with direct transmission by including another type of environmental noise. This noise

is described as a switching between one or more environments which is memoryless and the

waiting time for the next switching follows the exponential distribution. We first proved

that for any initial value in R2
+, the stochastic system has a unique positive global solution

and the solution will remain in R2
+ with probability 1. We then provided conditions for the

extinction of infection in the stochastic regime switching model. Particularly, we proved that

the disease-free equilibrium point is exponentially stable almost surely. Next we studied the

long term asymptotic behaviour of the solution of the stochastic system. By defining an

appropriate Lyapunov function, we proved that under some conditions, the trivial solution

of the system is stochastically asymptotically stable. We also discussed the existence of

a unique stationary distribution. In order to prove this, we used a stochastic Lyapunov

function to show that the stochastic system is ergodic and positive recurrent. Finally, we

performed numerical simulations to confirm some of the analytical results.
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Appendices

.0.1 Numerical scheme

Given the following n−dimensional stochastic differential equation

dX i
t = ai(t,Xt) dt+

m∑
j=1

bi,j(t,Xt) dW
j
t , i = 1, 2, . . . n, (1)

where Xt = (X1
t , X

2
t , . . . , X

n
t ) and Wt = (W 1

t ,W
2
t , . . . ,W

m
t ), is an m−dimensional Brownian

motion such that W i
t for i = 1, 2, . . . ,m are independent.

The Milstein scheme for (1) is given by

X i
n+1 = X i

n + ai(tn, Xn)∆n +
m∑
j=1

bi,j(tn, Xn)∆W j
n

+
m∑

j1,j2=1

Lj1bi,j2(tn, Xn)

∫ tn+1

tn

∫ t

tn

dW j1
s dW j2

t , (2)

for 1 ≤ i ≤ n. The partial derivative operators Lj for j = 1, 2, . . .m are given by

Lj =
n∑
k=1

bk,j
∂

∂xk
. (3)
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Since the diffusion coefficient of the stochastic model (3.5)–(3.8) is a square diagonal noise,

the Milstein scheme (2) can be written as follows.

X i
n+1 = X i

n + ai(tn, Xn)∆n +
m∑
j=1

bi j(tn, Xn)∆W j
n

+
1

2

m∑
j1=1

Lj1bi j1(tn, Xn){(∆W j1
n )2 −∆n}

+
1

2

m∑
j1 ,j2=1
j1 6=j2

Lj1bi j2(tn, Xn)∆W j1
n ∆W j2

n ,

Applying the above scheme for the stochastic model we get the following discretization. For

simplicity denote X1 = Sh, X
2 = Ih, X

3 = Sv, X
4 = Iv.

X1
n+1 = X1

n + a1∆n + b11∆W 1
n +

1

2
(σX1)2X1

n{(∆W 1
n)2 −∆n}

X2
n+1 = X2

n + a2∆n + b22∆W 2
n +

1

2
(σX2)2X2

n{(∆W 2
n)2 −∆n}

X3
n+1 = X3

n + a3∆n + b33∆W 3
n +

1

2
(σX3)2X3

n{(∆W 3
n)2 −∆n}

X3
n+1 = X4

n + a4∆n + b44∆W 4
n +

1

2
(σX4)2X4

n{(∆W 4
n)2 −∆n},

where (a1 a2 a3 a4)T = F (X, t) and (bij)
4
i,j=1 = G(X, t). The noise increments ∆W i

n are

Gaussian random variables N(0,∆n).
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.0.2 MATLAB code

%MIL Milstein method on 3D finance SDE

% SDE is    
% Diseretized Brownian path over [0,1] has delta = 2^(-18).
% Milstein timestep is Delta· sqrt(delta).
% Substeps for double integral are of size delta.
clf
rng default 
randn( 'state' ,1)
T = 200; Delta = 2^(-5); delta = Delta^2;
L = T/Delta; K = Delta/delta;
a=0.002; b=0.001; c=0.7; d=0.006; e=0.35; f=0.83; h=50; g=60;
%a=beta_1, b= beta_2, c= mu_2, d=beta, e= phi f= mu_1, g= b_1, h= b_2 

sh1=0; sh2=0;
sv1=0; sv2=0;

X1 = zeros(1,L+1); X2 = zeros(1,L+1); 
X3 = zeros(1,L+1); X4 = zeros(1,L+1); 
% X3 = zeros(1,L+1);
% Y2 = 0;
X1(1) = 20;
X2(1) = 40;
X3(1) = 40;
X4(1) = 15;
% X3(1) = 0.1;

for j = 1:L
% Y1 = 0;
Winc1 = 0; Winc2 = 0;
Winc3 = 0; Winc4 = 0;

a1=g-f*X1(j)-b*X1(j)*X4(j)-a*X1(j)*X2(j)+e*X2(j);
a2=a*X1(j)*X2(j)+b*X1(j)*X4(j)-(f+e)*X2(j);
a3=h-c*X3(j)-d*X2(j)*X3(j);
a4=d*X2(j)*X3(j)-c*X4(j);
b11=sh1*X1(j);  b22=sh2*X2(j);
b33=sv1*X3(j);  b44=sv2*X4(j);

for k = 1:K
    dW1 = sqrt(delta)*randn;
    dW2 = sqrt(delta)*randn;
    dW3 = sqrt(delta)*randn;
    dW4 = sqrt(delta)*randn;
%     Y1 = Y1 + Y2*dW1;
%     Y2 = Y2 + dW2;

    Winc1 = Winc1 + dW1;
    Winc2 = Winc2 + dW2;
    Winc3 = Winc3 + dW3;
    Winc4 = Winc4 + dW4;

Figure 1: MATLAB code used for the numerical simulation of the stochastic model.
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