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ABSTRACT 

 

 

Several methods are available in the published literature to analyze transient groundwater 

flow processes. These methods include both numerical and analytical approaches which describe 

how groundwater heads would transition from an initial unsteady state to a final steady state. The 

primary objective of this study is to quantify the time scale required for transient groundwater 

systems to approach its steady state conditions. Understanding these response time scales is 

important for managing different types of groundwater resources management problems.  Since, 

in many cases, the governing equation for groundwater flow is identical to the well-known 

diffusion equation, the knowledge gained from this study is applicable for managing other systems 

that can be modeled using the diffusion equation. The diffusion equation is one of the most 

commonly used models for describing a variety of problems involving heat, solute, and water 

transport processes.  When a diffusive system is transient, the dependent variable (e.g., 

temperature, concentration, or hydraulic head) varies with time; whereas at steady state, the 

temporal variations becomes negligible. In this work we generalize our steady state analyze and 

propose an intermediate state, called steady-shape state, which corresponds to situations where 

temporal variations in diffusive fluxes becomes negligible; however, the dependent variable might 

still remain transient. We present a general theoretical framework for quantifying the times scale 

needed for a diffusive system to approach both steady shape and steady state conditions. 
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CHAPTER 1       INTRODUCTION AND OBJECTIVES 

 

 

1.1 Background  

One of the common issues in groundwater studies is to understand when a groundwater 

system would reach its steady state or equilibrium condition. Typically, when an aquifer system is 

perturbed by changing the external forcing (such as pumping or recharge) and/or boundary 

conditions, the aquifer will undergo a transient response until it reaches its steady state. The term 

“steady state” refers to the condition when the net inflows balances the outflows [Currell et al., 

2014]. However, although such definition seems to be definite, still there is an ambiguity in 

estimation of the time scale needed to reach steady state. The obscurity arises from the fact that 

from the mathematical view point a system which is in a transient state requires infinite amount of 

time to respond to the changes in the forcing conditions and to relax into a new steady state [K 

Landman and McGuinness, 2000; McNabb, 1993; McNabb and Wake, 1991; Zhou, 2009] 

(Figure 1-1). Therefore, this information may appear to be irrelevant since it is impossible to wait 

for infinite amount of time.  Also, this information will not allow us to differentiate processes that 

act at different time scales (Figure 1-1).  Therefore, a point of interest is to determine a finite time 

scale required for a the system to evolve “close to steady state” conditions [Hickson et al., 2009a; 

b; Rousseau‐Gueutin et al., 2013]. Herein, this finite time scale for a system to effectively relax to 

its stead state is referred to as “response time scale.”  
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Figure 1-1: Three different groundwater processes. In all three processes hydraulic 

head drops from the initial condition
0

h  to the steady state h
 . As shown in this 

figure, when t the hydraulic head in Process-III approaches to the steady 

state value of h

 faster than Process-I and Process-II. 

   Transient solutions of the groundwater head variation, when they are available, are 

considerably more complicated to implement. Therefore, in many studies, in order to simplify 

computational complexities, it is often assumed that the system is under steady state [Schwartz et 

al., 2010]. Understanding the response time scales of the systems would allow one to decide 

whether such simplified steady state solutions are sufficient to model the systems of interest [Alley 

et al., 2002; Schwartz et al., 2010]. Furthermore, response time scales of the groundwater systems 

are useful parameters that can help us better characterize the interactions occurring between 

surface water and groundwater bodies [Alley et al., 2002; John Bredehoeft and Kendy, 2008; J 

Bredehoeft and Durbin, 2009; Kooi and Groen, 2003; Mario Sophocleous, 2000; Marios 

Sophocleous, 2012]. 
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1.2 Review of traditional approaches used to quantify aquifer response time scales 

The methods available to evaluate response time scales of diffusive problems can be 

categorized into two groups: (1) explicit scaling methods, and (2) implicit computational methods. 

1.2.1 Explicit scaling methods 

Explicit scaling method first identifies a set of system parameters that impact the transient 

solution and uses them to derive an expression for estimating response time scales. Explicit scaling 

method has been used in several studies and some of these studies are reviewed in this section. 

Theis, who pioneered early groundwater investigations, was one of the first who studied the 

response time of an aquifer to forcing boundary conditions [C V Theis, 1935]. In his classic work, 

the Theis-solution article, he analyzed a horizontal two-dimensional transient flow toward a well 

[C V Theis, 1935]. He discussed how storage coefficient, S , aquifer transmissivity, T , and the 

length scale of the system, L , would control the aquifer response time [C V Theis, 1940]. Theis 

analyses showed how pumping from a well would form a cone of depression which will spreads 

toward the boundary condition at a rate directly proportional with T and inversely proportional 

with S.  In this study, he also clarified that points located further from the well, for example at the 

system boundaries, require more time than points closer to the well, to respond to pumping. In a 

later work, he analyzed the response of the boundary conditions (i.e. nearby stream) to pumping 

in terms of recharge rate variation at those locations [C Theis, 1941]. This work was followed by 

several other classic studies that analyzed the groundwater responses to pumping wells [Glover 

and Balmer, 1954; C Jenkins, 1968a; b; C T Jenkins, 1968]. 
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Riley [1969] published an article in which he studied the compression characteristics of a 

vertical confined aquitard bounded by two aquifers in top and bottom. Once the bounded aquitard 

is perturbed by sudden head changes it required certain amount of time to dissipate the excess pore 

pressures. The author suggested that the excess hydraulic head dissipation time can be estimated 

using the expression: KbSS

2)2( , where 
SS  is the specific storage, K  is the hydraulic conductivity 

and b  is the aquitard thickness. This time scale is considered in other porous media compression 

problems as “inelastic time constant” [Hanson, 1988; Leake, 1990].  

Downing et al. [1974] was one of the first who evaluated the response time of the aquifer 

interacting with surface water bodies. They introduced a factor, 2SLT , to analyze the capacity of 

aquifers in transferring the recharging fluxes. Later, this factor brought into use by Rushton and 

Redshaw [1979] as a parameter that controls the amount of time a system would require to achieve 

its steady state. The unit of presented response time is inverse of time. Therefore, Erskine and 

Papaioannou [1997] named it “aquifer response rate”. They used this time scale to solve 

conjunctive surface water- groundwater problems.  

The most widely used groundwater response time scale equation was introduced by Gelhar 

and Wilson [1974b]. They studied a generalized lumped groundwater (reservoir) model with one 

outflow. The primary objective of their work was to develop a framework for assessing the impact 

of forcing conditions on modeling outflow from a system. The authors defined the constant 

response time of the system as n a , where n  was aquifer porosity and a  is a constant associated 
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with the hydraulic property of the system. They evaluated 23 LTa   for a linearly responding aquifer 

(reservoir) and 22 4LTa   for sinusoidal declining water tables.     

Townly [1995] discussed the response of the aquifer to periodic sinusoidal hydraulic drivers 

at the boundary conditions. He analyzed the amplitude of head fluctuations and the phase lags 

between periodic forcing to represent a dimensionless characteristic parameter as TPSL2 , where 

P was the period of the forcing boundary condition. He concluded that in a slow responding aquifer 

  is large and steady-state models are sufficient to model the average condition of the system. On 

the other hand, if   is small steady state models would miss-represent the average condition of the 

system [Townley, 1995].  

Knight et al. [2005] applied a unit response approach to quantify the impacts of hydraulic 

parameters on the aquifer time scales. They specifically studied the effect of sloping on the aquifer 

response time scales and suggested the constant KSL2 ; where   was a constant expressing the 

change in the land surface elevation in the system. Recently, Walker et al. [2015] published a more 

comprehensive study and estimated the response time scale of a sloping aquifer system as KESL *2

, where *E  is a constant associated with the land and surface elevation.  

Marios Sophocleous [2012] reviewed the issues related to the response time scales of 

aquifers and concluded that it is an important groundwater management parameter and yet it is not 

fully understood. He pointed out the simple formula used for estimating the time scale of a one-

dimensional diffusion system as DL2 , where STD  , diffusivity of the aquifer. This formula has 

also been suggested by other researchers in the diffusion literature. 
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Recently, Rousseau‐Gueutin et al. [2013] introduced a term as the “time to near steady state” 

as the time that 95% of the transition has accrued. Their works was focused on mixed aquifers, i.e. 

having confined and unconfined systems. He defined the characteristic time constant as 

)2(3 ucuune LLTLSt  , where S , T  and L  are specific storage, transmissivity and length of the 

systems. Subscripts c  and u  refer to confined and unconfined aquifers.  

One of the major limitations of the above mentioned time scales is that they all provide a 

unique value for the entire aquifer system.  However, one can intuitively expect the response time 

scale cannot be a constant at the entire domain. For example, point adjacent to a pumping well 

would respond faster than the points tens of meters away from the well. Time scale formulae 

derived using explicit scaling methods would show how the time would vary with aquifer some of 

hydraulic parameters, but they cannot explain how the time scale would vary spatially.   

1.2.2 Implicit computational methods  

Transient solutions for groundwater flow problems can be computed using traditional 

analytical solutions [e.g. Theis, 1934] or numerical codes such as MODFLOW [McDonald and 

Harbaugh, 2003]. To determine the response time scale of a groundwater system using implicit 

computational methods, one has to solve the transient groundwater problem first. Later, one 

requires to define a threshold value to estimate the response time. For example, one could assume 

that the system has effectively approached the steady state once 90% to 99% of the maximum 

possible variation is completed. One of the critical limitation of this approach is that such results 

significantly depends on the subjectively defined threshold value [R Hickson et al., 2011; K 

Landman and McGuinness, 2000; Lu and Werner, 2013; Watson et al., 2010]. Different threshold 
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values would result in different response time scale [Ellery et al., 2012b]. Moreover, since the 

system is being analyzed at its close to steady state condition, small variation in the threshold value 

would result in significantly different computed response time. Another limitation of an implicit 

computational method is that it requires complex transient solution of the problem. Furthermore, 

this approach yields to a discrete time quantity, for example 20 hours or 100 days, which cannot 

be easily used to understanding the fundamental relationship between the response time scale and 

system parameters such K, S, L and the position.  

Implicit computational methods have been used in several studies to estimate the response 

time scales under different forcing conditions. However, not all of them report the value of 

threshold parameter used in the computation processes. As an example, J Bredehoeft and Durbin 

[2009] applied an implicit computational method to estimate the response of an aquifer to pumping 

and surface recharges as a part of their study. However, the threshold value is not reported in the 

manuscript. Riley [1969] defined the response time of the aquifer as the moment at which 93% of 

the process was occurred. In another study, Rousseau‐Gueutin et al. [2013] defined the response 

time of the aquifer as the moment at which 95% of the process was completed. Several other 

studies have also used numerical transient solutions to estimate the response times of groundwater 

systems [Currell et al., 2014; Konikow and Leake, 2014; Vasseur et al., 2015; Zhou, 2009].  

1.3 Review of some novel approaches used to quantify time scales of heat and mass 

transport processes  

Researchers studying heat and mass transport problems has also been interested in 

understanding the response time scale of their systems. In most heat and mass transport studies the 

required time to effectively reach the steady state is often referred to as “critical time” [Hickson et 
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al., 2009a; b; R Hickson et al., 2011].  McNabb and Wake  developed a novel theory, known as 

mean action time (MAT) theory, which can be used to evaluate the response time scale of heat 

transport processes as the first moment (mean) of the rate of temperature changes in the heat 

conductor [McNabb and Wake, 1991]. They defined the response time scale as a finite measurable 

time a heat transport process requires to transition from its initial state to a new equilibrium 

condition. The MAT theory does not have the limitation of the explicit mathematical and implicit 

computational methods. This theory can provide insight into the spatial variation of the response 

time scale. In contrary with implicit computational approaches, the MAT theory does not depend 

on any subjectively defined threshold values, and more importantly, it does not require any form 

of transient solutions (i.e. either analytical or numerical solution).  

McNabb and Anderssen [1992] applied the MAT theory to investigate the relationships 

between the duration of cooling and freezing processes of homogeneous isotropic heat conductors. 

McNabb in his later study, used the MAT theory to study the amount of time natural resources, 

like methane gas resources, would require to diffuse out through fractured structures [McNabb, 

1993]. Landman and coworkers used this to quantify the time scale of pressure filtering of 

flocculated suspensions [K A Landman and White, 1997]. During the pressure filtering process, 

void ratio of the material decreases with time, until the system reaches a steady state. The authors 

defined the time scale of the process by applying the MAT theory. McGuiness and coworkers 

pointed out that the MAT theory can provide useful insight for cooking processes. They discussed 

the applicability of the MAT theory to analyze heat and moisture movement equations and estimate 

a finite time scale for cooking grains [K Landman and McGuinness, 2000; McGowan and 

McGuiness, 1996].  
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Hickson and coworkers emphasized the need for a framework which can estimate the 

required time to reach the steady state in heat and mass transport problems [Hickson et al., 2009a; 

b; R Hickson et al., 2011; R I Hickson et al., 2011]. In their studies, they considered a finite one-

dimensional system having one and multiple layers. Their general objective was to define a finite 

time scale for heat transient models. Their definitions relied on the transient solutions and threshold 

values. However, Ellery et al. [2012b] discussed the limitations of each definition and suggested 

to use the MAT theory to avoid these limitations.  

 Recently, Berezhkovskii and coworkers introduced “local accumulation time [Barenblatt]” 

as the time scale of morphogen gradient formation for one-dimensional reaction diffusion 

processes [Berezhkovskii, 2011; Berezhkovskii and Shvartsman, 2011; Berezhkovskii et al., 2010; 

Gordon et al., 2011]. However, Ellery et al. [2012a] debated that their approaches were identical 

with McNabb and Wake [1991] framework simply reformulated for a different set of applications.  

Later, Ellery and coworkers enhanced the MAT theory by defining the second moment of 

rate of variation about its mean as the variance of action time (VAT). The variance of action time 

can provide additional information about the time scale of the process. VAT can be used to 

quantify the spread of the distribution of process about the MAT. Hence, MAT and VAT together 

can provide another time scale of the process which can estimate the instant at which the system 

would effectively approach its steady state [Ellery et al., 2012b]. 

1.4 Applying MAT theory to a classic problem 
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In this section, basic mathematics of the MAT theory is explained using a classic radio-

active problem, known as first order reaction process. This process can be simply described by an 

ordinary differential equation as 

 d ( )
( ),

d

C t
kC t

t
   (1) 

where )(tC [ML3] is the concentration at time t [T], and K [T-1] is the decay constant. We assume 

an initial value of 
0)0( CC  . We know that, in this process, )(tC  approaches to its ultimate steady 

state of  0)( C  exponentially fast as t  [Crank, 1975]. Based on McNabb et al. [1990] the 

time scale of the process, MAT , can be determined as the mean of the rate of )()()( tCCtC   

variation, 

 0

0

d ( )
d

d

= .

d ( )
d

d

C t
t t

t

MAT

C t
t

t








 

(2) 

To evaluate Eq.(2), first we rewrite the governing equation given in Eq.(1) as  

 .
)(1

)(
dt

tdC

K
tC


  (3) 

 Applying integration by parts, we can rewrite Eq.(2) as  

 .

dt
dt

tdC

dttCttC

MAT



























0

0

0

)(

)()(

 (4) 
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Noting the fact that )(tC  approaches to 0)( C  exponentially fast as t  makes the 

first term in the bracket vanish. Combining Eqs. (3) and (4) leads to  

  
0

0

1 d ( )
d

d
1

= .

d
d

d

C t
t

K t

MAT
K

C
t

t









 (5) 

Note that the time scale of the process, 1 K , is estimated using the mean action time theory 

without using the transient solution. Answer is identical to the well-known time scale of first order 

decay processes known as the “mean life time” [Purich and Allison, 1999]. However, now we 

have a formal procedure to derive the time scale from the governing equation, Eq. (1). 

1.5 Objectives of the study 

The objective of this study is to apply the MAT theory to develop an approach which does 

not have the limitation of traditional approaches in characterizing the response time scale of 

aquifers. The goal of this dissertation is to improve our understanding of aquifer response time 

scales to different types of forcing conditions such as surface recharge and discharge, stream level 

variations at aquifer boundaries, and pumping or injection wells. Each of these conditions is 

expanded rigorously in Chapter 2, Chapter 3, Chapter 4, and Chapter 5. These chapters consist 

independent introduction, literature review, methods, results and discussion.  

In Chapter 2, a one–dimensional, unconfined, Dupuit–Forchheimer model of groundwater 

flow through a saturated homogeneous porous medium having uniform areal recharge and 

discharge is considered. The main objectives of this chapter are to present the mathematical 

derivations and assumptions of the MAT theory, to define the aquifer response time scale to aerial 
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recharging and discharging forces, to show the explicit relationship between the aquifer response 

time scale and hydraulic and geometric properties of the system, and estimate the amount of time 

a recharging or discharging aquifer requires to approach its steady state1.  

Chapter 3 discusses that one of the major challenges in studying coupled groundwater and 

surface-water interactions arises from the considerable difference in the response time scales of 

surface-water and groundwater systems to external forcings. Despite of several studies which are 

focused on groundwater quantity or quality issues, this chapter is focused on the response time 

scales of the processes. In Chapter 3, a one–dimensional, unconfined, Dupuit–Forchheimer model 

of groundwater flow through a saturated homogeneous porous medium having varying boundary 

conditions at its both ends, is considered. In this chapter, variation at the boundary conditions 

represent surface water level variations (e.g. stream level variation). The main objectives of this 

chapter is to develop an analytical framework to estimate the response time scale of groundwater 

systems to changes in surface-water conditions2. 

Chapter 4 explores a groundwater system which is perturbed by a pumping or injecting well. 

The main objective of this chapter is to develop the non-dimensional MAT framework in a radial 

ystems. This chapter aims to investigate the pumping, injecting and recovery time scales to 

associated pumping rates3.    

                                                 

1 Chapter 2 is published in the Journal of Hydrology (2013), 519, 1642–1648. 
2 Chapter 3 is published in the Journal of Hydrology (2014), 519, 1642–1648 
3 Chapter 4 is published in the Journal of Hydrology (2016), 532, 1-8. 
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Unlike previous chapters which are focused on groundwater problems, Chapter 5 focuses on 

general form of diffusive processes. Therefore, results of this chapter are valid for all diffusive 

problems including groundwater, heat, and contaminant transport problems, to name a few. Along 

the common steady state condition, this chapter considers an intermediate state, called steady-

shape state. Steady-shape state corresponds to situations where temporal variations in diffusive 

fluxes becomes negligible; however, the dependent variable might still remain transient. The 

concept of steady shape flow has been invoked heuristically by several researchers without any 

fundamental theoretical understanding of when steady shape conditions are relevant. The main 

objective of this chapter is to develop a general theoretical framework to address this fundamental 

limitation4.  

The main objective of the final chapter, Chapter (6), is to presents a summary of the general 

findings of this work, closing discussion and concluding remarks. This chapter also aims to point 

out the limitations of this work and possibilities for future researches. 

 

                                                 

4 Chapter 5 is published in the Geophysical Research Letters (2017), 44(1), 174–180.  
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CHAPTER 2       HOW LONG DOES IT TAKE FOR AQUIFER RECHARGE AND 

DISCHARGE PROCESSES TO REACH STEADY STATE 

 

 

2.1 Introduction 

Groundwater flow systems, and the corresponding models used to study these systems, are 

typically characterized as being either transient or steady state [Bear, 1972; Haitjema, 1995; 

Remson et al., 1971; Strack, 1989; Wang and Anderson, 1982; Zheng and Bennett, 2002]. This 

characterization is useful since the mathematical and computational techniques required to solve 

steady state groundwater flow models are generally much simpler than those required to solve 

transient groundwater flow models. Given that steady flow conditions correspond to the long time 

asymptotic limit of a transient response  [Wang and Anderson, 1982], it is relevant to develop tools 

that can be used to estimate the amount of time required for a particular transient flow problem to 

effectively reach steady state. In the heat and mass transfer literature such a time is called a critical 

time [Hickson et al., 2009a; 2009b; R Hickson et al., 2011]. 

A schematic diagram of a groundwater recharge problem is outlined in Figure 2-1 for an 

aquifer of length L. The aquifer is bounded by two rivers. River one, at 0x  , at river stage 1h , 

and river two, at x L , at river stage 2h . The hypothetical phreatic surface without recharge is 

indicated by the curve marked 0t  . We consider initiating a transient response in the 

groundwater flow system by applying spatially uniform recharge at rate R . The result of this 

recharge is that the amount of water stored in the subsurface system increases with time and the 

phreatic surface rises to give the curve indicated by t  . This kind of scenario, where 

recharge is applied to an existing unconfined groundwater flow system results in the saturated 

depth increasing with time which means that additional water is stored in the aquifer. The details 
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of how to design and operate such recharge systems has been described at length previously 

[Bouwer, 2002; Daher et al., 2011; Martín-Rosales et al., 2007; Pedretti et al., 2012; 

Vandenbohede and Van Houtte, 2012]. The design of such recharge systems naturally leads us to 

the following questions: 

(1) How long does it take for the water stored in the aquifer to essentially reach a maximum 

volume? (i.e. what is the critical time for this process?) 

(2) How does this critical time depend on the parameters governing the flow processes and 

the geometry of the aquifer? 

 

Figure 2-1:  Schematic of an aquifer recharge process. The groundwater flow takes place on a one-dimensional 

domain, 0 x L  , and is assumed to correspond to a linearized, unconfined, Dupuit–Forchheimer description 

[Bear, 1972]. The saturated depth at 0x   (river 1) is 
1

(0, )h t h . The saturated depth at x L  (river 2) is 

2( , )h L t h . The schematic depicts a transition where the initial phreatic surface, indicated by 0t  , 

asymptotes to a new steady state, indicated by t  . This transition is associated with the application 

of uniform recharge, at rate R , for 0t  .  

Strictly speaking, from a mathematical point of view, it takes an infinite amount of time for 

a transient response of a diffusive process to become steady [McNabb, 1993; McNabb and Wake, 

1991]. Clearly, this strict mathematical definition is impractical and it would be useful to have a 

quantitative framework to estimate a finite time scale that indicates when the time rate of change 

of water stored in the aquifer to effectively reach zero [Marios Sophocleous, 2012; Walton, 2011]. 



 

16 

 

Developing a method of analysis that avoids the need for relying on numerical computation to 

answer these questions would be useful since it is not obvious how, for example, changing the 

properties of the porous medium or the geometry of the groundwater flow system would affect the 

time taken for the rate of change of water stored in the aquifer to effectively reach zero. 

Understanding this time scale may have several practical uses; for example, if we were to design 

an artificial recharge program it would be of interest to monitor the increase in storage in the 

aquifer with time and to have a criterion to indicate when the system would effectively reach steady 

state. 

Previous attempts to characterize critical times for groundwater flow models have relied on 

using numerical experimentation [Buès and Oltean, 2000; Chang et al., 2011], laboratory–scale 

experimentation [Chang and Clement, 2012; Goswami and Clement, 2007; Kim and Ann, 2001; 

M Simpson et al., 2003] or very simple mathematical definitions. One common mathematical 

approach is to define the critical time to be the amount of time taken for the transient solution to 

reach within %  of the corresponding steady state value, where   is some small user–defined 

tolerance [R Hickson et al., 2011; K Landman and McGuinness, 2000; Lu and Werner, 2013; 

Watson et al., 2010]. Although insightful, there are certain difficulties associated with this 

definition, namely: 

(1) this definition depends upon a subjective choice of  ,  

(2) this definition requires the complete solution of the transient groundwater flow problem, 

and  
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(3) this definition leads to a numerical framework that does not provide analytical insight 

into how the critical time varies with the parameters in the model. 

In this work we introduce the concept of mean action time (MAT) which gives us a finite 

estimate of the amount of time required for a transient groundwater flow response to effectively 

reach steady state. The MAT was originally defined by McNabb and Wake as a tool to study linear 

heat transfer [McNabb, 1993; McNabb and Wake, 1991]. Here we demonstrate how to extend this 

theory to analyze groundwater flow processes. We will show, in a general framework, that: 

(1) the MAT gives us an objective finite estimate of the amount of time required for a 

transient response to effectively reach steady state,  

(2) the MAT can be found explicitly without solving the governing transient groundwater 

flow equation, and 

(3) the mathematical expression for the MAT shows us how the time scale for different 

transitions, such as applying or removing different amounts of recharge, would depend on the 

parameters in the groundwater flow model. 

Furthermore, once we have defined the MAT, we can define higher moments such as the 

variance of action time (VAT) which provides a measure of the spread of the distribution about 

the mean [Ellery et al., 2012b; M J Simpson et al., 2013b]. The VAT is insightful since we know 

that if the VAT is small then we are dealing with a low-variance distribution for which the mean 

value provides a useful estimate of the time scale of interest [Ellery et al., 2012b; Grimmett and 

Welsh, 1986]. Alternatively, if the VAT is large then we are dealing with a high-variance 

distribution for which the mean value is less insightful [Ellery et al., 2012b; Grimmett and Welsh, 
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1986]. For such high variance distributions we can improve our estimate of the time required for 

the system to approach steady state by incorporating information about the variance, as we shall 

demonstrate in Section 2.3 [M J Simpson et al., 2013b]. 

In this work we aim to first present the mathematical derivations and assumptions in a 

general framework. Once we have developed the theoretical results we then apply these concepts 

to obtain specific MAT and VAT results for a new laboratory–scale experimental data set 

describing aquifer recharge and discharge processes. 

2.2 Theoretical Methods 

We consider a one–dimensional, unconfined, Dupuit–Forchheimer model of groundwater 

flow through a saturated homogeneous porous medium [Bear, 1972; 1979] 

 
,y

h h
S K h R

t x x

   
     

 
(6) 

where ( , ) 0h x t   [L] is the saturated thickness at position x  and time t , 0yS   [-] is the specific 

yield, 0K   [L/T] is the saturated hydraulic conductivity and 0R   [L/T] is the recharge rate. For 

practical problems where the hydraulic gradient is very small, 1h x  , this model is often 

linearized to give 

 2

2
,y

h h
S Kh R

t x

 
 

 
 

(7) 

where h  is the average saturated thickness [Bear, 1972; 1979; Haitjema, 1995; Strack, 1989]. This 

simplification is sufficiently robust for solving many problems [Haitjema, 1995; Strack, 1989] 
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including laboratory–scale problems where the hydraulic gradient is not necessarily small [Kim 

and Ann, 2001]. For notational convenience we will re–write Eq. (7) in the form of a reaction–

diffusion equation 

 2

2
,

h h
D W

t x

 
 

 
 

(8) 

where yD kh S  [L2/T] is the diffusivity and yW R S  [L/T] is a zero  order source term which 

is used to model recharge [Bear, 1979]. 

To apply our modelling framework to the schematic in Figure 2-1(a), we will consider a 

model of unconfined groundwater flow, Eq. (8), that describes an arbitrary transition from some 

initial condition, 0( ,0) ( )h x h x , to some steady state lim ( , ) ( )
t

h x t h x


 . This transition is 

sufficiently general that it could describe an aquifer recharge process, where 0( ) ( )h x h x   for 

all locations x , such as the case where additional recharge applied by increasing R . Similarly, 

our framework could describe an aquifer discharge process, where 0( ) ( )h x h x   for all 

locations x , such as the case where the recharge applied to the system is reduced, by decreasing

R . We seek to characterize the amount of time required for such transitions to effectively reach 

steady state by considering the following quantities [Ellery et al., 2012a; 2012b]: 

 

0

0
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( ; ) 1 , 0,

( ) ( )

( , ) ( )( ; )
( ; ) , 0.

( ) ( )

h x t h x
F t x t
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f t x t
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 (9) 
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For many transitions ( ; )F t x  monotonically increases from 0F  at 0t   to 1F  , as 

t   at all spatial locations x , as shown in Figure 2-2(b)–(c). This means that we can interpret 

( ; )F t x  as a cumulative distribution function and ( ; )f t x  as the associated probability density 

function [Ellery et al., 2012a; 2012b]. From a physical point of view, our interpretation of these 

definitions is as follows: at 0t  , we have 0F  , meaning that 0% of transient response has taken 

place. In the long time limit as t  , we have 1F  , meaning that effectively 100% of the 

transient response has occurred. For intermediate values of t  we have 0 1F  , meaning that 

(100 )%F  of the transient response has occurred. For example, if ( ; ) 0.5F t x  , then we can 

interpret this as 50%of the transient response has taken place by this time. 

The MAT, ( )T x , is the mean of this distribution which has the probability density function 

( ; )f t x , and can be written as [Ellery et al., 2012b] 

 

0
( ) ( ; )d .T x tf t x t



   
(10) 
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Figure 2-2 (a) Schematic showing an aquifer recharge process. (b) Schematic showing how the saturated 

thickness at a fixed location, 
1x x , in (a) varies with time, t . This schematic corresponds to a recharge 

transition since ( , )h x t  increases with t . (c) For the schematic transition in (b) we show 
1( ; )F t x , which has 

the property that 
1(0; ) 0F x  and 

1( ; ) 1F t x  as t  . (d) For the schematic transition in (b) we plot 

1( ; )f t x  using Eq. (22). The mean of this probability density function is indicated in the red vertical (dotted) 

line, and corresponds to the MAT, ( )T x . The variance of this probability density function is indicated with 

the gray shading, which corresponds to one standard deviation about the mean ( ) ( )T x V x as indicated. 

Profiles in (e) show ( )T x (solid) and ( ) ( )T x V x  (dashed) at all locations 0 x L  .  (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

Physically, we interpret the MAT to be the mean time scale required for the initial condition, 

0( )h x , to asymptote to the steady state, ( )h x . Intuitively, we expect that this time scale would 

depend on spatial location and we will see that the MAT is indeed a function of position, x . To 

evaluate the MAT we apply integration by parts to Eq. (10) to obtain 
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0
( ) ( ) ( ) ( , )d ,T x g x h x h x t t



   
(11) 

where we have defined 0( ) ( ) ( )g x h x h x   for notational convenience. To arrive at Eq. (11) 

we made use of the fact that ( , ) ( )h x t h x  decays to zero exponentially fast as t   which 

is true for all linear reaction diffusion equations [Ellery et al., 2012a; 2012b]. Differentiating Eq. 

(11) twice with respect to x and combining the resulting expression with Eq. (8), gives us 

  2

2

d ( ) ( ) ( )
,

d

T x g x g x

x D
   

(12) 

If we expand using the product rule, we can write this as  

 2 2

2 2

d ( ) d ( ) 2 d ( ) 1 d ( ) 1
( ) ,

d d ( ) d ( ) d

T x T x g x g x
T x

x x g x x g x x D

  
     

   
 

(13) 

which is a boundary value problem for the MAT, ( )T x . We would like to emphasize that Eq. (13) 

is sufficiently general that it applies to any initial condition, 0( )h x , and any steady state, ( )h x , 

such that ( ; )F t x  monotonically increases from 0F   at 0t   to 1F   as t   for all x

. This means that Eq. (13) can be used to characterize the amount of time required for a transition 

to reach steady state for a very general class of aquifer recharge and discharge processes. 

Furthermore the approach is valid for any values of 1, , , ,yS K R L h  and 2h . We note that our 

derivation of Eq. (13) is very similar to previous work presented by Ellery and coworkers [Ellery 

et al., 2012a; 2012b] except that those previous studies considered a first order linear source term 

in the governing equations whereas here we consider a zero order constant source term. 
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The theory of MAT relies on certain properties of the problem that allow us to evaluate the 

integral for ( )T x , given by Eq. (10) is convergent. When we apply the definition of MAT in the 

present context we are guaranteed that the improper integral in Eq. (10) is convergent since 

( , ) ( )h x t h x  decays to zero exponentially fast as t   for all such reaction diffusion 

equations [Ellery et al., 2012a; 2012b; Hickson et al., 2009a; 2009b; R Hickson et al., 2011]. 

Alternative definitions of a critical time, such as considering the median of action time, where 

( ; ) 0.5F t x  , do not allow us to make use of this asymptotic property and consequently we cannot 

solve for the critical time without having previously solved for the underlying partial differential 

equation. 

In a similar way to calculating the mean of ( ; )f t x , we can also evaluate higher moments of  

( ; )f t x , such as the variance, which quantifies the spread about the mean [Ellery et al., 2012b; M 

J Simpson et al., 2013b]. We begin by using the standard definition of the variance 

 2

0
( ) ( ( )) ( ; )d ,V x t T x f t x t



   
(14) 

Expanding the quadratic term in the integrand in Eq. (14) allows us to evaluate two of the 

three integral expressions on the right hand side of Eq. (14) in terms of the MAT, ( )T x . The 

remaining integral can be simplified using integration by parts, making use of the fact that 

( , ) ( )h x t h x  decays to zero exponentially fast as t   to give 

 

0
( ) 2 ( ( ) ( , ))d ,x t h x h x t t



   
(15) 
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where we have made a change of variables, 
2( ) ( ) ( ) ( ) ( )x V x g x T x g x    to simplify the 

expression. To obtain a differential equation for ( )x , we differentiate Eq. (15) twice with respect 

to x . Combining the resulting expression with Eq. (8) gives us 

 2

2

d ( ) 2 ( ) ( )
,

d

x T x g x

x D


   (16) 

which, together with appropriate boundary conditions can be solved for ( )x  and in turn 

rearranged to give ( )V x , recalling that 2( ) ( ) ( ) ( )V x x g x T x  . Once we have solved the relevant 

boundary value problems for the mean, ( )T x , and the variance, ( )V x , we can identify a mean 

time scale, ( )T x  and a time interval about this mean time scale ( ) ( ), ( ) ( )t T x V x T x V x   
 

. 

Here, we take the time interval to be the mean plus or minus one standard deviation of the 

distribution ( ; )f t x  [M J Simpson et al., 2013b]. 

To reiterate the practicality of our results, we would like to emphasize the following point. 

From a strict mathematical point of view, the transient solution of a reaction diffusion equation, 

such as Eq. (8), takes an infinite amount of time to reach steady state [Hickson et al., 2009a; 

McNabb, 1993; McNabb and Wake, 1991]. Using this strict definition, it is completely unclear 

how to make a practical estimate of the duration of time that a transient groundwater process will 

require to reach steady state. Our result characterizes a mean time scale, the MAT, giving us a 

finite estimate of the amount of time required for the transient flow process to effectively reach 

steady state. 
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2.2.1 MAT and VAT for aquifer recharge 

Although we have outlined the MAT theory in Section 2.2 for an arbitrary aquifer recharge 

or discharge process, we will now demonstrate the insight provided by the MAT framework by 

considering a specific application. We will examine the transition described by Eq. (8) on 

0 x L   with boundary conditions 1(0, )h t h  and 2( , )h L t h . We consider a transition 

from the initial condition, 

 2 1
0 1

( )
( ) ,

x h h
h x h

L


   

(17) 

to a new steady state that is driven by applying recharge, 0R  , for 0t  . The long time steady 

state for this transition is 

 2

2 1
1lim ( , ) ( ) ,

2 2t

h hwx WL
h x t h x x h

D L D




 
      

 
 (18) 

where yD Kh S  [L2/T] is the diffusivity and yW R S . This particular initial condition and 

steady state gives us 

 
( )

( ) .
2

Wx L x
g x

D


  (19) 

To find the MAT for this transition we note that d ( ) d ( 2 ) 2g x x W L x D   and

2 2d ( ) dg x x W D  . Substituting these expressions for ( )g x , d ( ) dg x x  and 
2 2d ( ) dg x x

into Eq. (13) gives 
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 2

2

d ( ) d ( ) 2( 2 ) 2 1
( ) ,

d d ( ) ( )

T x T x L x
T x

x x x L x x L x D

   
      

    
 

(20) 

which is a variable coefficient second order boundary value problem that is singular at 0x   and 

x L . We note that Eq. (20) is independent of W , and this can be explained by the fact that the 

coefficients of d ( ) dT x x  and ( )T x  in Eq. (13) are rational functions in which W  cancels for 

our ( )g x , given by Eq. (19). 

To determine the relevant boundary conditions for Eq. (20) we multiply both sides of this 

equation by ( )x L x , which gives 

 2

2

d ( ) d ( ) ( )
( ) 2( 2 ) 2 ( ) .

d d

T x T x x L x
x L x L x T x

x x D


       

(21) 

Evaluating Eq. (21) at 0x   gives us 

 d (0) (0)
0.

d

T T

x L
   

(22) 

which is a Robin condition for the boundary at 0x   [Kreyszig, 2008]. To determine the other 

boundary condition we substitute x L  into Eq. (21) to give 

 d ( ) ( )
0,

d

T L T L

x L
   

(23) 

which is a Robin condition at x L  [Cullen and Zill, 1992; Kreyszig, 2008]. 

The solution of Eq. (20) with Eqs. (22) and (23) is  
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 2 21
( ) ( ).

12
T x L xL x

D
    

(24) 

This solution shows that the MAT is spatially dependent and has a maximum value of 

25 48L D  at 2x L . This expression is very revealing since it shows us exactly how the MAT 

depends on the parameters in the model and the boundary conditions. We see that the MAT is 

proportional to 
2L D , which is a diffusive time scale [Barenblatt, 2003], and we also see that the 

MAT depends explicitly on position x . 

Now that we have solved for the MAT we can use Eq. (16), with the relevant boundary 

conditions (0) ( ) 0L   , to solve for ( )x  which can be rearranged to give 

 
4 3 2 2 3 4

2

1
( ) (7 2 3 2 ).

720
V x L L x L x x L x

D
      (25) 

The maximum VAT occurs at 2x L  and is given by 
4 2119 11520L D . The expression 

for the maximum variance can be used to find the maximum standard deviation, which is given by

2 2119 11520 0.1016L D L D . 

2.2.2 MAT and VAT for aquifer discharge 

We now consider a transition governed by Eq. (8) for the process of aquifer discharge. With 

the same domain and boundary conditions described for the recharge problem in Section 2.2.1, we 

consider the initial condition 
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0 1( ) ,
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h x x h

D L D

 
     

 
 (26) 

which corresponds to the long term steady state profile from the recharge process described in 

Section 2.2.1, where yD K h S  and yW R S . To initiate a discharge process, where the 

saturated thickness of the aquifer will decrease with time, we set 0R   in Eq. (7), which is 

equivalent to setting 0W   in Eq. (8), which gives 

 2 1
1

( )
lim ( , ) ( ) ,
t

x h h
h x t h x h

L





    

(27) 

and 

 ( )
( ) .

2

Wx L x
g x

D


   (28) 

With these conditions, Eq. (13) can be written as 

 2

2
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T x T x L x
T x
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(29) 

which is exactly the same boundary value problem as we obtained previously in Section 2.2.1. The 

fact that the boundary value problem governing the MAT for the discharge process is exactly the 

same as the boundary value problem governing the MAT for the recharge process means that the 

exact same Robin boundary conditions and the exact same solution, namely Eq. (24), are relevant 

for both the recharge and discharge problems. Similarly, we can also solve Eq. (16) to find the 

VAT for this discharge problem. Following the same procedure to find the VAT we find that the 

solution of Eq. (16) for the discharge problem is exactly the same as for the recharge problem, 
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namely Eq. (25). This result shows that the important time scales associated with aquifer recharge 

and discharge processes are identical for the same physical problem. 

2.3 Results 

We now demonstrate the practicality of our theoretical predictions from Sections 2.2.1–2.2.2 

by considering a new laboratory–scale data set describing aquifer recharge and discharge 

processes. We will perform experiments in a laboratory–scale aquifer model, packed with a 

homogeneous porous medium, by applying different amounts of recharge to the system and 

measuring the temporal response of the saturated depth in the system. Our experimental data will 

give us an indication of the amount of time required for the saturated thickness of the laboratory–

scale aquifer to reach steady state and we will test these measurements against predictions made 

according to the MAT and VAT results developed in Section 2.2. We will test the MAT and VAT 

theory for both aquifer recharge and aquifer discharge experiments. 

2.3.1 Case Study: Analysis of a new laboratory–scale data set 

A laboratory–scale aquifer model, similar to the one used in several previous studies [Abarca 

and Clement, 2009; Chang and Clement, 2012; 2013; Goswami and Clement, 2007] was used, and 

an image of the physical model is shown in Figure 2-3(a). The tank consists of Pexiglass. The 

central porous chamber (50cm × 28cm × 2.2cm) was packed under wet conditions with uniformly–

sized glass beads, where each bead has a diameter of 1.1 mm. We consider the glass bead system 

to be a homogeneous and isotropic porous medium [Abarca and Clement, 2009; Chang and 

Clement, 2012; 2013; Goswami and Clement, 2007]. A constant head boundary condition was 

applied at the left–hand vertical boundary, where 0x   cm, to maintain an initial saturated depth 
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of approximately 18.7 cm. A no–flow boundary was imposed at the right–hand vertical boundary, 

where 50x   cm. 

 

Figure 2-3 (a) Laboratory-scale apparatus. The porous media chamber was wet-packed with uniform 

glass beads. A constant head boundary was imposed at 0x  cm and a no flow boundary was imposed 

at 50x  cm. The initial condition corresponds to an approximately horizontal phreatic surface, as 

indicated. The recharge was applied approximately uniformly along the top of the porous media 

chamber and eventually the phreatic surface evolves to the final state, as indicated. Observations 

were made by monitoring the saturated depth of the fluid at 50x  cm. The region contained within 

the (red) dashed square in (a) is shown in (b) where the saturated thickness is indicated by the red 

arrow. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

A recharge gallery along the upper boundary of the aquifer, consisting of approximately 

evenly spaced constant flow drippers, was installed. Water was delivered to the recharge outlets 

from a constant head tank. We considered two different kinds of experiments and repeated each 

experiment for three different pumping rates: 

(1) For the recharge experiments, we considered the initial condition in the system to be a 

spatially uniform saturated depth 0 1( ) 18.7h x h  cm. At 0t   the recharge was applied and 

the increase in saturated thickness at the right hand boundary, where 50x  cm, was recorded 

using the scale shown in Figure 2-4(b). The recharge experiments were repeated three times using 

three different recharge rates: 1 1.23R  cm/min, 2 1.77R  cm/min, and 3 2.57R  cm/min. 
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(2) The discharge experiments were initiated by removing the recharge gallery at the 

conclusion of each recharge experiment. This means that after a sufficient period of time 

(approximately 5 minutes), at the conclusion of each recharge experiment, the phreatic surface was 

approximately parabolic and each discharge experiment involved observing the parabolic phreatic 

surface relaxing back to an essentially horizontal phreatic surface. 

The recharge rates used in the experiments are very large, and the reason that we used such 

large recharge rates was so that we could make our measurements as accurate as possible. For the 

recharge experiments we expect that initial saturated depth, 0( )h x , will increase to ( )h x  after 

a sufficient amount of time. Since we are aiming to make accurate measurements of the increase 

in ( , )h x t , it is convenient for us to use relatively large recharge rates to ensure that the difference 

between ( )h x  and 0( )h x , was approximately 2–3 cm (see Figure 2-4(b)) so that we could 

record these measurements as accurately as possible. 

We first report results for the recharge experiments. Results in Figure 2-5(a)–(c) show the 

transient response at 50x  cm in the laboratory–scale aquifer when applying three different 

recharge rates: 1 1.23R  cm/min, 2 1.77R  cm/min and 3 2.57R  cm/min, respectively. 

Comparing the profiles in Figure 2-5(a)–(c) indicates that each of the recharge experiments were 

initiated with (50,0) 18.7h   cm, and we observe that the increase in saturated thickness at 50x 

cm depends on the recharge rate. For example, with 1 1.23R  cm/min we see that (50, )h t  

eventually increases to approximately 19.9 cm, for 2 1.77R  cm/min we see that (50, )h t  

eventually increases to approximately 20.5 cm and for 3 2.57R  cm/min (50, )h t  eventually 

increases to approximately 22.3 cm. Interestingly, a visual comparison of the three transient data 
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sets in Figure 2-5(a)–(c) indicates that it is very difficult to distinguish the differences in the time 

scales of the transient processes regardless of the differences in the recharge rate and the 

differences in the change in saturated thickness at 50x  cm. This qualitative observation is 

consistent with our theoretical predictions from Section 2.12.2.1 where the MAT framework 

predicted that the recharge time scale is independent of the recharge rate. We will now 

quantitatively test this prediction using the data from Figure 2-5(a)–(c). 

 

Figure 2-4:  Results for the recharge experiments are given in (a)–(c) showing the evolution of ( , )h x t , at 50x 

cm, for 
1 1.23R  cm/min, 

2 1.77R  cm/min and 
3 2.57R  cm/min, respectively. Using the data in (a)–(c), 

collected at 2 s intervals, profiles of ( ; )f t x  at 50x   cm were estimated using Eq. (30), and presented in (d)–

(f). Estimates of the MAT at 50x  cm were obtained by numerically integrating Eq. (10) and the results are 

reported in (d)–(f). 

 

To compute the values of ( ; )f t x  we used the data from Figure 2-5(a)–(c), at 50x   cm, 

and estimated 0( )h x  and ( )h x  directly from these data. To reconstruct ( ; )f t x  for this data 

we rewrite Eq. (9) as 
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where we have used a central difference approximation to estimate h t   [Chapra and Canale, 

2012]. This discrete expression for ( ; )f t x  can be evaluated using the ( , )h x t  time series data 

presented in Figure 2-5(a)–(c). The corresponding ( ; )f t x  profiles, at 50x   cm, shown in 

Figure 2-5(d)–(f), are given for the three different recharge rates: 1 1.23R  cm/min, 2 1.77R 

cm/min and 3 2.57R  cm/min, respectively. To quantitatively test our theoretical predictions 

from Section 2.2.1 we evaluate ( )T x , at 50x  cm, using Eq. (10) and the ( ; )f t x  data in 

Figure 2-5(d)–(f). The integral expression is evaluated numerically using a trapezoid rule with 

panel width of 2 seconds [Chapra and Canale, 2012]. The corresponding values of the MAT, 

estimated directly from the data are, 9.9, 9.6 and 9.5 seconds for each of the three recharge 

experiments, respectively. These results indicate that the MAT for the experiments appear to be 

independent of the recharge rate, as predicted by our theory in Section 2.2.1. 

We now report the results of the discharge experiments. Results in Figure 2-5(a)–(c) show 

the transient response at 50x  cm in the laboratory–scale aquifer after turning off the recharge at 

the conclusion of each of the three recharge experiments where different rates of recharge had been 

applied: 1 1.23R   cm/min, 2 1.77R  cm/min and 3 2.57R  cm/min. Comparing the profiles 

in Figure 2-5(a)–(c) confirms that each of the discharge experiments were initiated with different 

values of the saturated thickness at 50x  cm. However, the data in Figure 2-5(a)–(c) indicates 

that after a sufficiently long period of time the saturated thickness at 50x  cm asymptotes to 
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approximately 18.7 cm. A visual comparison of the three transient discharge data sets in 

Figure 2-5(a)–(c) indicates that the time scale of the transient processes are very similar regardless 

of the initial saturated depth at 50x  cm. This qualitative observation is consistent with our 

theoretical predictions from Section 2.2.1–2.2.2 and we will now quantitatively test this prediction 

using the data from Figure 2-5(a)–(c). 

 

Figure 2-5:  Results for the discharge experiments are given in (a)–(c) showing the evolution of ( , )h x t , at 

50x  cm, for 
1 1.23R  cm/min, 

2 1.77R  cm/min and 
3 2.57R  cm/min, respectively. Using the data in 

(a)–(c), collected at 2 s intervals, profiles of  ( ; )f t x  at 50x  cm were estimated using Eq. (30), and 

presented in (d)–(f). Estimates of the MAT at 50x  cm were obtained by numerically integrating Eq. (10) 

and the results are reported in (d)–(f). 

The profiles in Figure 2-5(d)–(f) show ( ; )f t x  at 50x  cm, for each discharge experiment. 

To compute the values of ( ; )f t x we used Eq. (10) with the data from Figure 2-5(a)–(c). For each 

discharge experiment we estimate T(x), using Eq. (10) and our ( ; )f t x data in Figure 2-5(d)–(f). 

To evaluate the integral in Eq. (10) we use the trapezoid rule with panel width of 2 seconds 

[Chapra and Canale, 2012]. The corresponding values of the MAT, estimated directly from the 
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data, are 9.5, 9.7 and 10.4 seconds for each of the three discharge experiments. These results are 

also consistent with our MAT predictions since our theoretical results in Sections 2.2.1–2.2.2 

predicted that the mean time scale for the discharge process is identical to the mean time scale for 

the recharge process. Our laboratory data, described so far, qualitatively supports the theoretical 

predictions made using the MAT framework in Sections 2.2.1–2.2.2. To quantitatively test our 

theoretical predictions we must estimate the parameters describing the fluid flow in the laboratory 

scale model. We measured the saturated hydraulic conductivity using a standard column test which 

showed that the average saturated hydraulic conductivity is 980 m/day (68 cm/min). We 

independently measured the specific yield, 0.2yS  , and we assumed that the average saturated 

depth was 19.0h   cm so that we can estimate yD K h S  to be 6460 cm2/min. This gives a 

maximum MAT, 
25 48L D , of 9.7 seconds. Here we have used 100L  cm to reflect the 

symmetry of the problem imposed by using a no flow boundary condition at 50x  cm. This 

theoretical prediction agrees with our experimental measurements reported in Figure 2-4 and 

Figure 2-5. 

If we wish to use our MAT and VAT results to quantify a critical time interval for the 

experimental data we take the critical time interval to be the mean plus or minus one standard 

deviation [M J Simpson et al., 2013b]. Using 980K  m/day, 0.2yS   and 19.0h  cm indicates 

that the maximum VAT is approximately 89.0 seconds for all our experimental systems. This 

means that we can take the critical time interval to be 9.7 89 9.7 9.4    seconds, which 

indicates that by 19.1 seconds the transient aquifer response has essentially finished. 
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Comparing this estimate with the data in Figure 2-4(a)–(c) and Figure 2-5(a)–(c) seems 

reasonable since we observe little transient response in the system after approximately 20 seconds 

for each experiment. 

2.4 Discussion and Conclusions 

The theory of MAT provides us with an objective tool to characterize the time scale required 

for a transient groundwater flow response to effectively reach steady state. This is a practical tool 

since it allows us to estimate the time scale required for a transient response to effectively reach 

steady state using an analytic framework that avoids the need for solving a time dependent partial 

differential equation describing the transient process. 

The key advantage of the MAT framework is that it gives us an exact mathematical 

expression describing how the time scale depends on the particular aspects of the problem of 

interest. In this work we have shown that the MAT gives us an exact mathematical expression 

showing how the time scales of the process depend upon the parameters (e.g. 
1 2

, , , , ,yK h S h h L

and R ) for a general aquifer recharge and aquifer discharge process. Our theoretical results yield 

some useful and possibly counterintuitive results. For example, we show that the MAT is not 

explicitly dependent upon the recharge rate, R , and we show that the MAT for a recharge process 

is equivalent to the MAT of the related discharge process. This is a surprising result since the 

steady state phreatic surface depends on the recharge rate R  but the new theory indicates that the 

time taken to reach steady state is independent of R . These results are not obvious without the 

MAT framework. 
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In addition to providing more general insight into aquifer recharge and discharge processes, 

we also evaluated the MAT for a specific laboratory–scale data set describing an unconfined 

aquifer recharge and discharge process. The theory predicted that the MAT for the three recharge 

and the three discharge experiments should be 9.7 seconds. Despite experimental variabilities, all 

six MAT values (9.9, 9.6 and 9.5 seconds for recharge; and 9.5, 9.7, and 10.4 seconds for 

discharge) estimated from transient dataset are remarkably close to the theoretical prediction, 

demonstrating the validity of the theory. 

The MAT analysis and results outlined here can be applied to study other linear models of 

groundwater flow, such as two–dimensional and three–dimensional models [K Landman and 

McGuinness, 2000]. For such models, the techniques outlined here for the one–dimensional case 

are directly applicable except that the boundary value problems governing the MAT will be two–

dimensional and three–dimensional partial differential equations, similar to Poisson’s equation 

[Wang and Anderson, 1982]. These kinds of models can be solved exactly using standard 

techniques, such as separation of variables, provided that the problems are considered on separable 

domains [Kreyszig, 2008]. Other problems, such as studying the MAT of genuinely nonlinear flow 

problems that are not readily linearized are far more challenging [Ellery et al., 2012a; M J Simpson 

et al., 2013b]. The application of the theory of MAT to such problems requires additional analysis 

and our future work will seek to address these problems. 

The MAT analysis and results outlined here can be applied to study other linear models of 

groundwater flow, such as two-dimensional and three-dimensional models [K Landman and 

McGuinness, 2000]. For such models, the techniques outlined here for the one-dimensional case 

are directly applicable except that the boundary value problems governing the MAT will be two-
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dimensional and three-dimensional partial differential equations, similar to Poisson’s equation 

[Wang and Anderson, 1982]. These kinds of equations can be solved exactly using standard 

techniques, such as separation of variables, provided that the problems are considered on separable 

domains [Kreyszig, 2008]. Other problems, such as studying the MAT of genuinely nonlinear flow 

problems that are not readily linearized are far more challenging [Ellery et al., 2012a; M J Simpson 

et al., 2013b]. The application of the theory of MAT to such problems requires additional analysis 

and our future work will seek to address these problems. 

An extension of our present study would be to consider the MAT for a heterogeneous 

groundwater flow problem. The heterogeneous analog of Eq. (6) can be written as 

 
( ) ( ),y

h h
S K x h R x

t x x

   
     

 (31) 

where ( )K x  is the spatially varying saturated hydraulic conductivity and ( )R x  is the spatially 

varying recharge rate [Bear, 1979]. For practical problems where the hydraulic gradient is very 

small, 1h x  , the linearized analog of this model can be written as 

 
( ) ( ),

h h
D x W x

t x x

   
     

 
(32) 

where ( ) ( ) yD x hK x S [L2/T] is a spatially-dependent diffusivity and ( ) ( ) yW x R x S  is a 

spatially dependent zero order source term. If we apply the same mathematical procedure, outlined 

previously in Section 2.2, to find the boundary value problem governing the MAT for the 

heterogeneous flow model we arrive at 
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2

d ( ) ( ) d ( ) ( )1 dD( ) ( )
,

d ( ) d d ( )

T x g x T x g xx g x

x D x x x D x
    

(33) 

which is a generalization of Eq. (12) since the two boundary value problems are identical when 

( )D x , or equivalently ( )K x , is a constant. Similar to the homogeneous flow problem, the MAT 

for the heterogeneous flow problem is independent of the recharge, but is now explicitly dependent 

on the form of the heterogeneity since the solution of Eq. (33) depends on the functional form of 

( )D x . Although we have outlined how the theory of MAT extends to deal with the heterogeneous 

flow, we leave a thorough exploration of the solution of Eq. (33) and a comparison of such a 

solution with physical measurements as a topic for future research. 

 
,y

h h
S K h

t x x

   
       

(34) 
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CHAPTER 3       AN ANALYTICAL FRAMEWORK FOR QUANTIFYING AQUIFER 

RESPONSE TIME SCALES ASSOCIATED WITH TRANSIENT 

BOUNDARY CONDITIONS 

 

 

3.1 Introduction 

Understanding the interactions between groundwater and surface-water systems is an 

important aspect of water resources management. Using mathematical models to study these 

interactions can help us better address associated water quality and quantity issues. In the published 

literature, groundwater and surface-water interactions have been studied using both physical and 

mathematical approaches [Chang and Clement, 2012; 2013; Clement et al., 1994; M J Simpson et 

al., 2003a; Winter, 1995] that involve invoking a range modeling simplifications and assumptions, 

such as assuming that groundwater flow takes place in a homogeneous porous medium, assuming 

that streams are fully penetrating, and assuming rainfall conditions are uniform. To provide further 

insight into real-world practical problems, some of these simplifications and assumptions need to 

be relaxed. 

A major challenge in studying groundwater and surface-water interactions arises from the 

fact that there is a considerable difference in the response times of these systems [Hantush, 2005; 

Rodríguez et al., 2006]. For example, after a rainfall event, surface-water levels can respond on 

the order of hours to days, whereas groundwater levels might respond on the order of weeks to 

months. Current approaches for studying these problems can be classified into four categories, 

each of which involve certain limitations: (i) field investigations, which can be expensive and time 

consuming; (ii) laboratory experiments, which can be limited by scaling issues; (iii) numerical 

modeling, which, due to the orders of magnitude differences in the response times, might lead to 

numerical instabilities or other convergence issues [Hantush, 2005]; and analytical modeling, 
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which may be efficient but can have serious limitations in considering practical scenarios involving 

variations in stream stage, recharge, or discharge boundary conditions [Barlow and Moench, 

1998]. Several previous researchers have presented analytical solutions focusing on aquifer 

response times [Lockington, 1997; Ojha, 2000; Pinder et al., 1969; Rowe, 1960; Singh and Sagar, 

1977; Swamee and Singh, 2003]. 

In the groundwater literature, response time (or lag time) is defined as the time scale required 

for a groundwater system to change from some initial condition to a new steady state [Marios 

Sophocleous, 2012]. In the heat and mass transfer literature this time scale is known as the critical 

time [Hickson et al., 2009a; 2009b; R Hickson et al., 2011]. Simpson et al. (2013) summarized 

several previous attempts to estimate the groundwater response time into three categories: (i) 

numerical computation, (ii) laboratory-scale experimentation, and (iii) simple mathematical 

definitions or approximations. All three categories involve making subjective definitions of the 

response time by tracking transient responses and choosing an arbitrary tolerance ∊ and claiming 

that the response time is the time taken for the transient response to decay below this tolerance 

[Chang et al., 2011; R Hickson et al., 2011; K Landman and McGuinness, 2000; Lu and Werner, 

2013; Watson et al., 2010]. There are several limitations with this approach. The most obvious 

limitation is that the response time depends on a subjectively defined tolerance, ∊. Secondly, this 

approach does not lead to a general mathematical expression to describe how the response time 

would vary with problem geometry, changes in boundary conditions or aquifer parameters. Finally, 

this approach requires an analytical or a numerical solution to the governing transient equation. To 

deal with these limitations, M J Simpson et al. [2013a] demonstrated the use of a novel concept, 

mean action time (MAT), for estimating aquifer response times. 
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The concept of MAT was originally proposed by [McNabb and Wake, 1991] to describe the 

response times of heat transfer processes. MAT provides an objective definition for quantifying 

response time scales of different processes [McNabb, 1993]. MAT analysis leads to an expression 

relating the response time to the various model parameters. [M J Simpson et al., 2013a] used MAT 

to characterize the response time for a groundwater flow problem that was driven by areal recharge 

processes, but did not consider any groundwater and surface-water interactions. The objective of 

this study is to extend the work of [M J Simpson et al., 2013a] and present a mathematical model 

which describes transient groundwater flow processes near a groundwater and surface-water 

boundary with time-dependent boundary conditions. We adapt existing MAT theory to deal with 

time-dependent boundary conditions and present expressions for MAT which describe spatial 

variations in response times for both linear and non-linear boundary forcing conditions. These 

theoretical developments are then tested using data sets obtained from laboratory experiments. 

3.2 Mathematical development 

We consider a one-dimensional, unconfined, Dupuit–Forchheimer model of saturated 

groundwater flow through a homogeneous porous medium [Bear, 1979], which can be written as, 

 
,y

h h
S K h

t x x

   
     

 
(35) 

where ( , )h x t [L] is the groundwater head at position x [L], t [T] is time, yS  [–] is the specific 

yield and K [L/T] is the saturated hydraulic conductivity. When variations in the saturated 

thickness are small compared to the average saturated thickness, we can linearize the governing 

equation by introducing an average saturated thickness, h , to yield [Bear, 1979], 



 

43 

 

 2

2
,y

h h
S Kh

t x

 


 
 

(36) 

which can be re-written as the linear diffusion equation, 

 2

2
,

h h
D

t x

 


 
 

(37) 

where yD Kh S  [L 2 /T]  is the aquifer diffusivity. In this work, we will use Eq. (37) to model a 

groundwater system which changes from an initial condition, 
0( ,0) ( )h x h x , to some steady 

state, lim ( , ) ( )
t

h x t h x


 . We will consider two different classes of boundary conditions (38)for 

Eq. (37): Case 1, in which both the left ( 0)x  and right ( )x L  boundary conditions vary as 

functions of time, and Case 2, in which one boundary condition is fixed and the other one is 

allowed to vary with time. 

3.2.1 Case 1: two time varying boundary conditions 

We first consider the case where the surface-water variations at both the left ( 0)x   and 

right ( )x L  boundaries vary with time, 

 ( ) (0, ),LB t h t  (39) 

 ( ) ( , ),RB t h L t  (40) 

We assume that, after a sufficient amount of time, both ( )LB t  and ( )RB t  approach some 

steady condition, 
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 lim ( ) (0),L
t

B t h


  (41) 

 lim ( ) ( ),R
t

B t h L


  (42) 

for which the steady solution of Eq. (37) is, 

 ( ) (0)
( ) (0).

h L h
h x x h

L

 
 

 
  
 

 (43) 

A schematic of these initial, transient and steady-state conditions are shown in Figure 3-1. 

 

Figure 3-1:  Schematic of the physical model showing initial (dotted), transient (dashed) and 

steady (solid) conditions. Changes in water head in the right and left boundaries are defined 

by functions of ( )RB t  and ( )LB t , respectively. At steady-state, the left and right boundary 

conditions reach the levels (0)h  and ( )h L
, respectively. 

The purpose of this study is to present an objective framework to estimate the time scale 

required for the system to effectively relax to steady-state conditions. To begin our analysis we 

first consider the following two mathematical quantities [Ellery et al., 2012a; 2012b; M J Simpson 

et al., 2013a], 

http://www.sciencedirect.com/science/article/pii/S0022169414006994#f0005
http://www.sciencedirect.com/science/article/pii/S0022169414006994#f0005


 

45 

 

 

0

( , ) ( )
( ; ) 1 , 0,

( ) ( )

h x t h x
F t x t

h x h x





 
   

 

 (44) 

 

0

( , ) ( )( ; )
( ; ) , 0.

( ) ( )

h x t h xF t x
f t x t

t t h x h x





  
    

   

 (45) 

where ( , )h x t  is the solution of Eq. (37), 0( )h x  is the initial groundwater level, and ( )h x  is 

the steady-state level reached after a sufficiently long period of time and we require that 

0( ) ( )h x h x , ensuring that a transition takes place. Theoretically, the transient response will 

require infinite amount of time to reach steady-state. This implies that at all spatial locations, 

( ; )F t x  changes from 0F   at 0t   to 1F   as t  . We can interpret ( ; )F t x  as a 

cumulative distribution function (CDF) and ( ; )f t x  as a probability density function (PDF) [Ellery 

et al., 2012a; 2012b; M J Simpson et al., 2013a]. 

The MAT, ( )T x , is the mean or the first moment of ( ; )f t x , which can be written as [M J 

Simpson et al., 2013a], 

 

0
( ) ( ; )d .T x tf t x t



   (46) 

To solve for ( )T x , we apply integration by parts to Eq. (46) and make use of the fact that 

( , ) ( )h x t h x decays to zero exponentially fast as t   [Ellery et al., 2012a; 2012b; 

Haberman, 2004] to give, 

 

0
( ) ( ) ( ) - ( , )d ,T x g x h x h x t t



   
(47) 
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where we define 0( ) ( ) ( )g x h x h x  . Differentiating Eq. (47) twice with respect to x  and 

combining the result with Eq. (37) yields, 

 2

2

d [ ( ) ( )] ( )
,

d

T x g x g x

x D
   

(48) 

Expanding Eq. (48) by applying the product rule gives, 

 2 2

2 2

d ( ) d ( ) 2 d ( ) 1 d ( ) 1
[ ] ( )[ ] ,

d d ( ) d ( ) d

T x T x g x g x
T x

x x g x x g x x D
     

(49) 

which is a differential equation that governs the MAT for any change from 0( )h x  to ( )h x , 

provided that ( ; )F t x  monotonically increases from 0F   at 0t   to 1F   as t  . 

To solve Eq. (49), we must specify boundary conditions at 0x   and x L . The appropriate 

boundary conditions can be found by evaluating Eq. (46) at 0x   and x L , recalling that the 

time variation in head at these locations is given by ( )LB t  and ( )RB t , respectively. We apply 

integration by parts, assuming that ( )LB t  and ( )RB t  approach (0)h  and ( )h L , respectively, 

faster than 
1t  decays to zero as t  , to give, 

 
0

0

1
(0) - ( )d , where (0) (0),LA h B t t h h





     (50) 

 
0

0

1
( ) - ( )d , where ( ) (0).RB h L B t t h L h





     (51) 
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The constants A  and B represent the mean time scales of the boundary conditions. With 

these two constants we may solve Eq. (49) to give an expression for the effective time scale of the 

system, 

 

 
                

( ) ( ) ( )( )
( ) .

6 ( ) 6 ( )
intrinsic time scale of the aquifer intrinsic time scale of the boundary conditions mixed time scale of the system

x L x A L x B x xL L x
T x

D L x x D L x x

   

   

    
  

   
 

(52) 

The first term on the right of Eq.(52) is independent of the details of the boundary conditions, 

and so we interpret it as an intrinsic time scale of the aquifer. The second term on the right of 

Eq. (52) is independent of D , and depends on the details of the boundary conditions. Therefore, 

we interpret this term as an intrinsic time scale of the boundary conditions. We note that the 

intrinsic time scale of the boundary conditions can also be interpreted as the weighted average of 

A  and B , ( ) ( )a a a bAw Bw w w  , with linear weight functions ( )aw L x L   and 

bw x L . This interpretation implies the influence of the boundary conditions on the time 

scale of the process at any point within the system depends on the distances from the boundaries 

and also on the magnitude of the changes imposed at the boundaries. For example, the time scale 

at a point close to the left hand boundary, 0x  , will be dominated by the influence of the time 

scale of ( )LB t  and relatively unaffected by the influence of the time scale of ( )RB t , which is as we 

might expect intuitively. However, intuition alone cannot provide quantitative insight into the 

impact of the boundary conditions time scales at intermediate locations where the impact of both 

boundary conditions plays a role. Finally, the third term on the right of Eq. (52) depends on 

properties of the entire system including both D , the magnitudes of head changes at the 
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boundaries, but is independent of A  and B , which are the mean time scales of the boundary 

conditions. Therefore, we consider this third term as the mixed time scale of the system. 

To provide additional information about the response time we also consider the second 

moment of ( ; )f t x , known as the variance of action time (VAT), ( )V x , and quantifies the spread 

about the MAT [Ellery et al., 2012a; 2012b]. VAT is defined as, 

 2

0
( ) ( ( )) ( ; )d .V x t T x f t x t



   (53) 

Using integration by parts and noting that ( , ) ( )h x t h L  decays to zero exponentially fast 

as t  , Eq. (53) can be written as, 

 

0
( ) 2 ( ( ) ( , ))d ,x t h x h x t t



   
(54) 

where have defined 
2( ) ( )[ ( ) ( ) ]x g x V x T x   . Differentiating Eq. (54) twice with respect to x  

and combining the result with Eq. (37) gives, 

 2

2

d ( ) 2 ( ) ( )
,

d

x T x g x

x D


   (55) 

To solve Eq. (55), we require two boundary conditions, which are given by, 

 2(0) ( ),C A    (56) 

 2( ) ( ),L E B    (57) 
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where C  and E  are the VAT at 0x   and x L , respectively. These constants are defined using 

Eq. (53), and can be written as, 

 2

0

d ( )1
( ) d ,

d

LB t
C t A t

t



   (58) 

 2
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d ( )1
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(59) 

We solve Eq. (55) for ( )x , recalling that 
2( ) ( ) ( ) ( )V x x g x T x  and that

( , ) ( )h x t h x  decays to zero exponentially fast as t  , which gives us, 

 

2

1
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(60) 

where, 

 5 4 2 2

3 2 2 2

2 2 2 2 4

2
3 2 2 2

3 ( ) 15 180 ( ),

10 ( 6 6 2 ) 180 ,

180 ( ) 60 ( 2 ) (7 8 )

( ) 3 ( 6 6 2 ) 6
.

6 ( )

c x x L LD C A

d x L BD DA L x LAD

g x D E C B A L D B A L

x x L x L BD DA L LAD
h

D x x L

   

    

       

       

  

    

     

         

       
  

  

 (61) 

VAT is a measure of the spread of the PDF about the mean [Ellery et al., 2013]. A small 

VAT implies that the spread about the mean is small, and that the MAT is a sufficient estimate of 

the time required for the system to effectively reach steady state [Ellery et al., 2013; M J Simpson 

et al., 2013a]. Alternatively, a large VAT indicates that the PDF has a large spread about the mean 
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and a better estimate of the response time is ( ) ( )T x V x  [Ellery et al., 2013; M J Simpson et 

al., 2013a]. This framework gives an explicit estimate for the response time scale required for a 

groundwater system to respond to a relatively general set of boundary conditions. The method 

objectively describes the dependence of the time scale on various aquifer parameters, (e.g. 

, , , ( ), ( )and
L RyK S h B t B t L ) and does not require any numerical or analytical transient solution 

of the governing equation. 

Our MAT framework involves certain limitations which should be made explicit. The first 

limitation is that the boundary conditions must vary monotonically with time otherwise our 

definition of ( ; )F t x  cannot be interpreted as a CDF. The second limitation is that ( )LB t  

and ( )RB t  must asymptote to the corresponding steady values faster than 1t  decays to zero 

as t  . We also require that ( )LB t  and ( )RB t  both increase or decrease, or that one of the 

boundary conditions must remain fixed with time. If one boundary condition decreases and the 

other increases, there will be some points in the domain at which the head distribution does not 

vary monotonically and ( ; )F t x  cannot be interpreted as a CDF. 

3.2.2 Case 2: one fixed boundary condition and one time varying boundary condition 

Here we consider a fixed boundary condition at 0x   and a time-varying boundary 

condition at x L . We consider the water level variation at x L  to be given by ( ) ( , )RB t h L t  

which eventually asymptotes to some steady value, ( )h L . As in Case 1, the differential 

equation governing the MAT is Eq. (49), which, in this case, simplifies to, 
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 2

2

d ( ) 2 d ( ) 1
,

d d

T x T x

x x x D
    

(62) 

Two boundary conditions are required to solve Eq. (62). The boundary condition at x L  

is the same as in Case 1, and given by Eq. (51). To determine the boundary condition at 0x  , we 

multiply both sides of Eq. (62) by x , which gives, 

 2

2

d ( ) d ( )
2 .

d d

T x T x x
x

x x D
    

(63) 

Evaluating Eq. (63) when 0x   gives a Neumann boundary condition, d d 0T x  at 

0x  . With these boundary conditions the solution of Eq. (62) is, 

 2 2

( ) .
6

L x
T x B

D


   

(64) 

To find the VAT we have (0) 0   and 
2( ) ( )L B E    as boundary conditions for Eq. 

(55). Recalling that 
2( ) ( ) ( ) ( )V x x g x T x  , the VAT is given by, 

 4 4

2
( ) ,

90

L x
V x E

D


   (65) 

where , B  and E  are defined by Eqs. (51) and (59), respectively. 

3.3 Laboratory experiments 

We now examine the validity of the theoretical developments presented in Section 3.2. To 

do this we consider two laboratory experiments performed in a rectangular soil tank, using methods 
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described previously [Abarca and Clement, 2009; Chang and Clement, 2013; M J Simpson et al., 

2013a]. An image of the physical tank is shown in Figure 3-2. The tank has three distinct chambers. 

The central porous media chamber (50 cm ×  28 cm ×  2.2 cm) was packed under wet conditions 

with a uniform fine sand. The hydraulic conductivity and specific yield of the porous medium are 

estimated to be 330 m/day and 0.2, respectively. Two chambers at either sides were separated 

using fine metal screens; these chambers were used to set up the boundary conditions. Our 

coordinate system is such that 0x   and x L  denotes the left and right boundaries, respectively. 

Siphon-type tubes connected to electronic manometers, shown in Figure 3-2, were used to monitor 

head at two internal points. 

 

Figure 3-2:  Experimental aquifer set up used in this study. 

3.3.1 Experiment 1: Laboratory data for Case I 

In this experiment, we consider a linearly varying boundary condition at 0x   and a 

quadratically varying boundary condition at x L . We model the right boundary condition as, 

http://www.sciencedirect.com/science/article/pii/S0022169414006994#f0010
http://www.sciencedirect.com/science/article/pii/S0022169414006994#f0010
http://www.sciencedirect.com/science/article/pii/S0022169414006994#f0010
http://www.sciencedirect.com/science/article/pii/S0022169414006994#f0010
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 (66) 

which is a linear change from 0( )h L  to ( )h L  in N  units of time. We model the left boundary 

condition as, 

 2 , 0 ,
( )

(0), .
L

at bt c t N
B t

h t M

    
 



 (67) 

which is a nonlinear change from 0(0)h  to (0)h  in M  units of time. 

To represent a linear head variation, ( )RB t , a pump was used to evacuate water from the 

right chamber at a uniform rate. To represent a quadratically varying head condition, ( )LB t , we 

allow water to drain through an orifice in the left chamber. Using the Bernoulli equation, we derive 

a quadratic relationship between falling head and drainage time [Bansal, 2005]. To specify ( )LB t

, experimental data for water elevation changes occurring at the left boundary were recorded. A 

quadratic expression, 2( )LB t at bt c   , was fitted to the data set. The initial state for the system 

was set to 0( ) 22.5h x  cm. The left boundary condition set to vary quadratically from 

0(0) 22.5h  cm to (0) 19.1h  cm in 3 seconds, and the right boundary condition to vary 

linearly from 0( ) 22.5h L  cm to ( ) 19.1h L  cm in 20 seconds.  Table 1 summarizes the 

initial state, steady-state, transition time and transition function of each boundary used in this 

experiment. We measured the transient head data at two intermediate points, 20x  cm and 

30x  cm, using digital manometers with 0.01 cm H2O resolution. 
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Table 1: Experiment 1: Laboratory data for linearly varying right and quadratically varying left boundary conditions. 

 Initial head 

(cm) 

Steady state 

head (cm) 

Transition 

time (s) 

Transition  

function (cm) 

Left boundary 22.5 19.1 3 2( ) 0.37 2.22 22.48LB t t t    

Right boundary 22.5 19.1 20 ( ) 0.17 22.50RB t t    

 

To quantitatively assess our framework, we calculated , , A   and B to give,  

 
0(0) (0),h h    (68) 

 
0( ) ( ),h L h L    (69) 

 
3 21 1 1

( (0)) ,
3 2

A aM bM c h




 
     

 
 

(70) 

 
.

2

N
B   (71) 

Values of , , A   and B  for this experiment were calculated as −3.4 cm, −3.4 cm, 1.1 s and 

10.0 s, respectively. Using Eq. (52), we predict that the MAT at 20x  cm and 30x  cm are 

(20) 11.2T  sec and (30) 14.3T  sec, respectively. Similarly, after using Eqs. (58) and (59) and 

evaluating the constants 0.4C   and 33.3,E   Eq. (60) gives (20) 10.4V  sec and 

(30) 8.6V  sec, respectively. 

Predictions of MAT and VAT  are summarized in Table 2. To test these predictions, we 

analyzed our laboratory data from Experiment 1 at 20x  cm and 30x  cm, as shown in 

http://www.sciencedirect.com/science/article/pii/S0022169414006994#t0010
http://www.sciencedirect.com/science/article/pii/S0022169414006994#t0010
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Figure 3-3. To compute ( ; )f t x , we used the data from Figure 3-3(a) and (b). We apply Eq. (45)

, using a central difference approximation to estimate h t   [Chapra and Canale, 2012]. Our 

estimates of ( ; )t f t x  at 20x  cm and 30x  cm are given in Figure 3-3(c) and (d). We 

applied Eqs. (46) and (53) to estimate ( )T x and ( )V x  using the trapezoidal rule [Chapra and 

Canale, 2012] to estimate the integrals. The results are summarized in Table 2. Our results, 

reported in Figure 3-3(a) and (b), shows that the predicated effective time scale, MAT VAT , 

is a good approximation for the time required for the system to effectively reach steady state. 

Furthermore, the results in Table 2 show that the predicted estimates of MAT  and VAT  compare 

well with the values estimated directly from the experimental data set. 

Table 2: Experimental and theoretical values of MAT , VAT  and MAT VAT  at 20x  cm and 30x   cm for 

Experiment 1. 

 
MAT (s) VAT  (s) MAT VAT  (s) 

 
20x   (cm) 30x   (cm) 20x   (cm) 30x   (cm) 20x   (cm) 30x   (cm) 

Experimental 

values (s) 

12.3 14.3 9.1 8.7 21.4 23.0 

Theoretical 

values (s) 

11.2 14.3 10.4 8.6 21.6 22.9 

 

http://www.sciencedirect.com/science/article/pii/S0022169414006994#f0015
http://www.sciencedirect.com/science/article/pii/S0022169414006994#f0015
http://www.sciencedirect.com/science/article/pii/S0022169414006994#f0015
http://www.sciencedirect.com/science/article/pii/S0022169414006994#f0015
http://www.sciencedirect.com/science/article/pii/S0022169414006994#f0015
http://www.sciencedirect.com/science/article/pii/S0022169414006994#f0015
http://www.sciencedirect.com/science/article/pii/S0022169414006994#t0010
http://www.sciencedirect.com/science/article/pii/S0022169414006994#t0010
http://www.sciencedirect.com/science/article/pii/S0022169414006994#f0015
http://www.sciencedirect.com/science/article/pii/S0022169414006994#f0015
http://www.sciencedirect.com/science/article/pii/S0022169414006994#t0010
http://www.sciencedirect.com/science/article/pii/S0022169414006994#t0010
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Figure 3-3:  Laboratory data for Experiment 1 with initial condition 0( ) 22.5h x  cm, the left boundary condition varying 

quadratically from 0(0) 22.5h   to 0( ) 19.1h L   in 3s, and the right boundary condition varying linearly from 0( ) 22.5h L  cm 

to ( ) 19.1h L  cm in 20s. Results in (a) and (b) show the observed head changes at 20x  cm and 30x  cm, respectively. 

Results in (c) and (d) show ( ;20)t f t  and ( ;30)t f t ; where ( ; )f t x  is the probability density function at location x . Integrating 

( ; )t f t x  provides an estimate of the MAT at position x .  An improved estimate of the effective time scale required for the system 

to reach steady-state is: MAT VAT . 

 

3.3.2 Experiment 2: Laboratory data for Case II 

In this experiment, a fixed boundary condition was maintained in the left chamber, and a 

linearly varying boundary condition at the right chamber. We used Eq. (66) to model the right 

boundary condition. A pump was used to evacuate water from the right chamber at a uniform rate. 

As shown in Table 3, in this experiment, the following conditions were used: 0( ) 25h x  cm,

( ) 23h x  cm and 25N   sec for the right boundary condition. 

 

http://www.sciencedirect.com/science/article/pii/S0022169414006994#t0015
http://www.sciencedirect.com/science/article/pii/S0022169414006994#t0015
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Table 3: Experiment 2: Laboratory data for linearly varying right and fixed left boundary conditions. 

  Initial head 

(cm) 

Steady state 

head (cm) 

Transition time 

(s) 
Transition function (cm) 

Left boundary 25.0 25.0 – ( ) 22.50LB t   

Right boundary 25.0 23.0 25 ( ) 0.08 25.0RB t t   

 

To quantitatively assess our MAT predictions, we first calculated the constant B  defined 

by Eq. (51) as 2 12.5B N  sec. Using Eq. (64) we found (20) 19.4T  sec and 

(30) 17.7T  sec, respectively. Similarly, applying Eq. (59) we found 
2 212 52.1 secE N   and 

(20) 9.9V   sec and (30) 9.7V  sec, respectively, using Eq. (65). Our predictions of MAT 

and VAT  values are summarized in Table 4. The transient data collected from Experiment 2 are 

reported in Figure 3-4. Similar to Experiment 1, MAT, VAT  and MAT+ VAT  at  20x 

cm and 30x  cm were calculated and the results were compared against theoretical predictions. 

As shown in Table 4, the theoretical predictions are in good agreement with experimental results. 

Results in Figure 3-4(a) and (b) illustrate that the predicted time scale required for the system to 

effectively reach steady-state, MAT+ VAT , is consistent with our experimental observations. 

Table 4: Experimental and theoretical values of  MAT, VAT  and MAT+ VAT  at 20x  cm and 30x 

cm for Experiment 2. 

 MAT (s) VAT (s) MAT VAT (s) 
 

20x   (cm) 

(cm) 

30x   (cm) 20x   (cm) 20x   (cm) 30x   (cm) 20x   (cm) 

Experimental 

values (s) 

19.2 18.3 8.2 8.3 27.4 26.6 

Theoretical 

values (s) 

19.4 17.7 9.9 9.7 29.3 27.4 

 

http://www.sciencedirect.com/science/article/pii/S0022169414006994#t0020
http://www.sciencedirect.com/science/article/pii/S0022169414006994#f0020
http://www.sciencedirect.com/science/article/pii/S0022169414006994#f0020
http://www.sciencedirect.com/science/article/pii/S0022169414006994#t0020
http://www.sciencedirect.com/science/article/pii/S0022169414006994#t0020
http://www.sciencedirect.com/science/article/pii/S0022169414006994#f0020
http://www.sciencedirect.com/science/article/pii/S0022169414006994#f0020
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Figure 3-4:  Laboratory data for Experiment 2 with initial condition 0h ( ) 25x  cm, the left boundary 

condition fixed at ( ) 25LB t  cm, and the right boundary condition varying linearly from 0h ( ) 22.5L  cm 

to h ( ) 23L  cm in 25s. Results in (a) and (b) show the observed head changes at 20x  cm and 30x  cm, 

respectively. Results in (c) and (d) show ( ;20)t f t  and ( ;30)t f t ; where ( ; )f t x  is the probability 

density function at location x . Integrating ( ; )t f t x  provides an estimate of the MAT at position x . An 

improved estimate of the effective time scale required for the system to reach steady state is: MAT VAT

. 

3.4 Summary and conclusions 

The focus of this study is to present a mathematical framework which can predict the 

response time scales of groundwater flow near a groundwater surface-water interface. To achieve 

this we applied the theory of MAT [McNabb and Wake, 1991] to estimate the time scale required 

for flow in a one-dimensional aquifer to respond to various types of surface-water boundary 

perturbations. We tested the proposed framework using two data sets collected from a laboratory-

scale experiment. Results show that the experimental data are in good agreement with model 

predictions. A key limitation of previous approaches for estimating the response time scales is that 
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they gave no simple framework for studying the sensitivity of the time scale to various system 

parameters. Alternatively, our MAT framework provides a relatively straightforward 

mathematical relationship between the response time scale and various system parameters. 

The limitations of our framework are that the boundary conditions must vary monotonically 

and that they must approach some steady value faster than 
1t  decays to zero as .t   

Furthermore, we also require that both boundary conditions must either increase or decrease, or 

that one of the boundary conditions remains fixed. In practice, these limitations are not overly 

restrictive and a wide range of transient groundwater problems can be analyzed using the proposed 

framework. We also acknowledge that for all systems considered in this work we always 

considered an initial condition, 0( )h x , that was spatially constant, independent of position. We 

note that the same mathematical procedure used to find MAT and VAT also applies to other 

conditions where the initial condition is genuinely spatially variable and these mathematical details 

can be found in our previous work [Ellery et al., 2012a; 2012b]. 
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CHAPTER 4       SPATIAL ANALYSIS OF AQUIFER RESPONSE TIMES FOR RADIAL 

FLOW PROCESSES: NONDIMENSIONAL ANALYSIS AND 

LABORATORY-SCALE TESTS 

 

 

4.1 Introduction 

 Population growth and associated industrial and agricultural activities can have 

considerable impact on groundwater resources. Since groundwater plays a significant role in our 

social and economic wellbeing, understanding groundwater responses to natural and 

anthropogenic changes is important. Several studies have examined various properties of 

groundwater flow processes using different tools including numerical or analytical models, field 

investigations and laboratory experiments [e.g. Theis, 1935; Freeze and Witherspoon, 1966; 

Bredehoeft et al., 1982; Hantush, 2005]. Many of these studies have included radial flow problems 

to investigate pumping, injection and recovery processes. 

A common concept used in groundwater modeling is defining a steady state (or equilibrium) 

flow condition. When a forcing condition on a system at equilibrium is changed, the system will 

undergo a transient response to approach a new equilibrium state. A point of interest is to 

understand the amount of time taken for the system to reach steady state. Strictly speaking, from 

a mathematical point of view, an infinite amount of time is required for the system to asymptote 

to steady state conditions. However, this strict mathematical definition is impractical because we 

can never wait for an infinite amount of time. Therefore, we wish to estimate a “sufficiently long 

period" of time that is required for the system to “effectively” reach steady state [Schwartz et al., 

2010]. However, the concept of a “sufficiently long period” is subtle. 
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A change in flow conditions at a pumping or injection well will eventually influence regions 

further away from the well, potentially over very large areas, including distant boundary 

conditions. When the flow rate at a pumping or injection well is altered, a transition pattern, often 

called a cone of depression, propagates through the aquifer with time. Understanding the amount 

of time required for a transient system to effectively relax to equilibrium can help us decide 

whether to use a steady state model or a more complicated transient model to describe the 

groundwater flow process [Simpson et al., 2013; Jazaei et al., 2014]. 

The concept of aquifer response time has been analyzed previously for various groundwater 

problems. Theis first considered the response of a groundwater system to pumping by solving a 

mathematical model describing the transient flow near a pumping well in an infinite aquifer [Theis, 

1935]. After this initial study, Theis then considered the factors controlling the response time 

[Theis, 1940]. These factors include the aquifer transmissivity, T ; the storage coefficient, S ; and 

the length scale of the problem. Theis concluded that the rate at which the cone of depression 

spreads is proportional to T and inversely proportional to S . Later, other researchers presented 

simpler scaling formulas to estimate the aquifer response time scale [e.g. Gelhar and Wilson, 1974; 

Townley, 1995; Erskine and Papaionnau, 1997; Manga, 1999; Haitjema, 2006]. For example, 

Gelhar and Wilson (1974) suggest that the hydraulic response time is TnLth /3= 2
, where n  is the 

average porosity and L  is the aquifer length. Such scaling formulas suggest a constant time scale 

for the entire system and do not provide any information about how the time scale depends on 

position. Other studies [e.g. Schwartz et al., 2010, Kooi and Groen, 2000; Rousseau-Gueutin et 

al., 2013] define the response time as the amount of time taken for the difference between the 

transient and steady state solutions to fall below some tolerance. For example Rousseau-Gueutin 



 

62 

 

et al. (2013) define the aquifer response time to be the amount of time required for 95%  of the 

transient head changes to have occurred. This definition does not lead to a simple closed form 

expression. 

Recently, we presented a different framework to quantify the aquifer response time scale 

[Simpson et al., 2013; Jazaei et al., 2014]. Our analysis provides explicit mathematical expressions 

showing how the response time scale depends on position, aquifer properties and boundary 

conditions. This approach does not require any predefined thresholds, and avoids the need for 

solving the transient flow problem. However, our previous analyses were limited to one-

dimensional Cartesian problems in which flows where driven by a surface recharge conditions, or 

changes at the interface between the surface water and groundwater. In contrast, here we analyze 

the time scale of a two–dimensional radial system, in which the transition between different steady 

state conditions is driven by flow changes at the pumping or injecting well. Our analysis is relevant 

for both converging and diverging flows and we employ a nondimensional framework which leads 

to more elegant, generalized results, which can be used to explain the difference between smaller 

scale laboratory flow conditions and larger scale field conditions. 

Our approach involves analyzing the first and second moments of the transition time 

distribution, which is similar to the way in which some previous studies have used temporal 

moment analysis to investigate spatial variations in hydraulic conductivity [Wei, 2005; Zhu and 

Yeh, 2006]. We note, however, these previous studies were focusing on analyzing the hydraulic 

conductivity fields, and did not consider using moment analysis to derive expressions for the 

aquifer response time scales. 
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The objective of the present work is to develop a framework to quantify the spatial variations 

in response time scales under radial flow conditions. We investigate pumping, injection and 

recovery processes to understand how their response time scales depend on hydraulic and 

geometric properties of the aquifer. We employ two mathematical concepts, known as the mean 

action time (MAT) and the variance of action time (VAT) in this analysis. We employ a 

dimensionless framework that can be used to study both large scale field problems as well as small 

scale laboratory problems. Our theoretical predictions are tested using new datasets from 

laboratory scale experiments. 

 

4.2 Mathematical model 

 In this section we first use a dimensional radial flow model to define a simpler and more 

general dimensionless model. Primed variables denote dimensional quantities and unprimed 

variables denote dimensionless quantities.  

4.2.1 Dimensional model 

 Groundwater flow near a fully penetrating well of radius wr  in a homogeneous confined 

aquifer can be analyzed using the following dimensional model [Bear, 1976],  
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where r [L] is the radial distance from the center of the well, t  [T] is time, R[L] is the radial 

distance between the center of the well and the boundary, ),( trh  [L] is the hydraulic head, T  [L
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2 /T] is the aquifer transmissivity and S  [-] is the aquifer storage coefficient. In this study we 

consider a Dirichlet boundary condition, 
0=),( htRh  . 

For both pumping and injection processes we consider a spatially uniform initial condition, 

00 =)( hrh  , and a constant flow rate denoted 0>Q  for pumping and 0<Q  for injection. For the 

radial problem the steady state solution is  
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The transient solution of Eq. (72) can be written as an infinite series involving Bessel 

functions [Bear, 1976]. We remark that the Theis solution is relevant only for aquifers of infinite 

extent and therefore does not apply to the finite problems considered here. 

For the recovery process, we suppose that the flow rate at the well is stopped, giving = 0.Q

Furthermore, we assume that the initial condition corresponds to the steady state of the associated 

pumping or injection process, given by Eq. (73). The steady state solution of the recovery process 

is 0=)( hrh 
 . 

We explicitly model the effect of storage at the well by applying a boundary condition that 

couples the well storage to the flow at wrr  = ,  
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The boundary condition at Rr  =  is given by  
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 .=),( 0htRh   (75) 

4.2.2 Dimensionless model 

 To simplify our analysis, we nondimensionalize the mathematical model by introducing the 

following characteristic length, time and head scales,  
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We then define the following three dimensionless variables,  
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and two constants that are given by:  
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Physically,   is a positive constant representing the ratio of the well radius, wr , to the length 

of the domain, R . For a small scale laboratory problem we have 0.01  whereas in a field scale 

application wR r  , so we are interested in the limiting condition, 0 . Working in this 

dimensionless framework we can extend our analysis to both laboratory scale and field scale 

applications by simply varying   . 

Substituting dimensionless variables and constants into Eqs. (72), (74) and (75), we obtain 

a simpler dimensionless model,  
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The dimensionless initial condition for pumping and injection processes is 1=)(0 rh . The 

associated steady state solution is 1)(ln=)(  rrh  . We assume that the initial condition for 

the recovery process is equivalent to the steady state condition for the pumping or injection 

process. The dimensionless steady solution of the recovery process is 1=)(rh . 

4.3 Mean action time for a radial system 

 In this section we derive expressions for the MAT of the system using the dimensionless 

model. This approach leads to an expression for the dimensionless mean time scale, )(rM , which 

can be rescaled to give a dimensional time scale by multiplying by *t . We begin by defining two 

mathematical quantities [McNabb and Wake, 1991; McNabb, 1993],  
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To apply these quantities to a particular problem we require )()(0 rhrh   to ensure a transition 

occurs. Hence, for our problem, Eqs. (81) and (82) are indeterminate at 1=r  and we will explain 

how to deal with this later. 



 

67 

 

For all pumping and injection processes, ),( trh  changes monotonically from )(0 rh  to )(rh . 

Therefore, )|( rtF  is a monotonically increasing function with an initial value of 0=)|(0 rF , and 

approaches unity as t  . We interpret )|( rtF  as a cumulative distribution function (CDF). 

)|( rtF  quantifies the amount of action completed at a position r, after time t. Note that here we 

treat t as the independent variable and r as a parameter. At 0=t , the transition is yet to begin, 

hence 0=)|(0 rF . As the process proceeds, the value of )|( rtF  increases. For example, we 

interpret 0.5=)|( rF   as indicating that 50% of the transient process is completed after =t  at 

position r. 

By definition, the first derivative of )|( rtF  with respect to t, given by Eq. (82), is the 

probability density function (PDF) [Ellery et al., 2012a,b]. Mathematically, )|( rtf  is proportional 

to the time derivative of ),( trh  at each position r. Therefore, 0)|( rtf  as t  , and the system 

reaches steady state. 

The MAT is the first moment of )|( rtf  (McNabb and Wake, 1991; McNabb, 1993),  

 

0
( ) = ( | )d .M r tf t r t



  (83) 

Since we know that ),( trh  decays to )(rh  exponentially fast as t   [Crank, 1975], 

applying integration by parts to Eq. (83) leads to  
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   (84) 

where, )()(=)( 0 rhrhrg 
. Differentiating Eq. (84) twice with respect to r gives,  
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Multiplying Eq. (85) by r1/  and combining the resulting expression with Eqs.(79) and (86), 

we obtain a boundary value problem for the MAT:  
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Eq. )87( is valid for an arbitrary initial condition, )(0 rh . However, in this study we consider 

a spatially uniform initial condition, 1=)(0 rh , which allows us to simplify Eq. )87( to  
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To solve Eq. (88) we require boundary conditions at =r  and 1=r . At =r  , we use Eqs. 

(80) and (85) to define a Robin condition given by  
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Since ),( trh  decays to )(rh  exponentially fast as t , )|( rtf  must also decay to zero 

exponentially fast as t  . Therefore, )(rM , defined by Eq. (83), must be finite at all locations. 

The coefficient of drrdM )/(  in Eq. (88) is infinite when 1r , implying that )(rM  is not well 

defined. To ensure that )(rM  is finite, we require  
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Solving Eq. (88) with these boundary conditions gives us  
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where the constant 
1C  is given by  
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Our solution for )(rM  represents the dimensionless mean time scale for the radial flow 

process at each position, r . The expression for )(rM  is the sum of two distinct ‘geometry’ and 

‘hydraulic’ terms. The geometry term describes the spatial variation of the mean time scale. 

Intuitively, we expect that points closer to the well will respond faster than points further away 

from the well and the geometry term reflects this. The constant hydraulic term is independent of 

position and describes the storage effects associated with both the aquifer and the well. 

The mathematical expression for )(rM , given by Eq. (91), is independent of Q , indicating 

that the mean time scale is equivalent for pumping and injection processes. Furthermore, the 

boundary value problem is invariant if we switch the roles of )(rh  and 0( )h r , which is the same 

as replacing )(rg  with )(rg  throughout. Therefore, not only )(rM  is equivalent for pumping 

and injection processes, but it is also equivalent for the associated recovery process [Simpson et 

al. 2013]. 
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It is interesting to remark that we obtained our expression for )(rM  without solving the 

governing flow equation for ),( trh . The expression for )(rM  is relatively straightforward and does 

not depend on any arbitrary thresholds. Since we did not make any subjective choice of thresholds, 

and we only used standard definitions of the mean of a PDF, our expression for )(rM  is a 

fundamental, objectively defined quantity that shows how the mean time scale depends on relevant 

hydraulic and geometric properties of the problem. Plots in Figure 4-1(a) illustrate how )(rM  

varies with position for two different problems chosen to illustrate the differences between a field 

scale application, relevant for 0 , and a laboratory scale application, with 0> . Both plots 

show that the mean time scale increases with r , as expected. 

It is useful to note that Eq. (91) can be simplified when 0 , for field scale applications, 

by evaluating the expression for 
1C  in the limit as 0 , giving 0=1C . Therefore, for a field 

scale problem, the MAT is totally independent of well storage effects because 0=1C . Therefore, 

for a field scale problem, )(rM  depends only on the geometry. Conversely, for smaller laboratory 

scale problems, well storage effects play a role and our general expression for )(rM  allows us to 

quantify the relative importance of these effects for problems at different scales simply by varying 

 . 
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Figure 4-1:  Comparison of: (a) ( )M r , (b) ( )V r  and (c) ( ) = ( ) ( )r M r V r   for a large field scale application (solid) 

and a smaller laboratory scale application (dashed). The field scale application corresponds to 0   and is plotted for 

0 < <1r . The laboratory scale application corresponds to = 0.024 , and is plotted for 0.024 <1r . Experimental 

values of (0.4)M , (0.4)V  and (0.4)V  (circle symbols), and (0.8)M , (0.8)V  and (0.8)  (square symbols) are 

superimposed from Table 5. 

 

4.4 Variance of action time for a radial system 

 The VAT, )(rV , is the second moment of )|( rtf  [Simpson et al., 2013; Jazaei et al., 

2014]. Once we have evaluated )(rV , we can compute )(rV , which is a measure of the spread 

of )|( rtf  about )(rM . An estimate of the time needed to reach steady state, after accounting for 

both the mean and variance of the PDF, can be written as,  

 ,)()(=)( rVmrMr   (93) 

where m  is a positive integer. In this study, we begin by making a simplest possible choice by 

setting 1=m , and we will discuss this choice later when we compare our theoretical predictions 

with our measurements from a physical model. This implies that our definition of time )(r  is 

subjective since it depends on the choice of m . In contrast our definition of time scale )(rM  is 

completely objective. 
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The VAT is defined as [Simpson et al., 2013; Jazaei et al., 2014]  

 2

0
( ) = ( ( )) ( | )d .V r t M r f t r t


  (94) 

Using Eq. (83), together with the fact that ),( trh  decays to )(rh  exponentially fast as 

t  , we rewrite Eq. (94) as,  

 
0

( ) = 2 ( ( ) ( , ))d ,r t h r h r t t


   (95) 

where,  

 ].)()()[(=)( 2rMrVrgr   (96) 

By combining the first and the second derivatives of )(r  with Eqs. (79) and (83), we obtain 

a boundary value problem for )(r ,  
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 (97) 

To obtain the boundary conditions required to solve Eq. (97) we evaluate the first derivative 

of )(r  at r  , and using Eq. (80), we obtain a Neumann boundary condition given by  

 
.

)()(
=

)(

S

gM

dr

d 
  (98) 
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Since ),( trh  decays to )(rh  exponentially fast as t , Eq. (94), guarantees that )(rV  is 

finite at all locations. Since 0=(1)g , and 2)()( rMrV   is finite at all locations, the relevant 

boundary condition at 1=r  is:  

 0.=(1)  (99) 

Solving Eq. (97) with these boundary conditions gives,  
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  (100) 

where 
1C  is the hydraulic factor defined in Eq. (92) and,  
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  (102) 

It is interesting to note that )(rV  is also independent of Q , and this shows that the width of 

)|( rtf  is same for pumping, injection and recovery processes. Now that we have closed form 

solutions for )(rM  and )(rV , we can calculate )()(=)( rVmrMr  . Similar to our expression 

for )(rM , the expression for )(rV  can be simplified considerably for field scale problems by 

considering the limit that 0 , giving 0== 21 CC . However, unlike the expression for )(rM

, the expression for )(rV  is more complicated and it is not obvious how to give these terms a 

meaningful interpretation like we did for )(rM . 
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Plots in Figure 4-1(b)–(c) illustrate how )(rV  and )(r  (with 1=m ) varies with position 

for two different problems chosen to illustrate the differences between a field scale application and 

a laboratory scale application. Comparing the results for )(rM  and )(rV  we see that the spatial 

variations in the mean is more pronounced than the spatial variations in the standard deviation. 

4.5 Laboratory experiments 

 We now apply our method of calculating )(rM , )(rV  and )(r  to a set of laboratory scale 

pumping, injection and recovery experiments. The experiments involve a cylindrical confined flow 

system with a constant head boundary condition. Figure 4-2 shows horizontal and vertical cross 

sections through the flow tank. The tank has two distinct chambers separated by a fine screen. The 

lower layer was wet packed with homogeneously mixed silty sand to form a circular confined 

aquifer of thickness 10=B  cm, and a radius of 25=R  cm. The upper layer contained dry coarse 

sand and gravel material, primarily to support the confining plastic liner against the uplifting 

hydraulic pressure generated within the aquifer. A fully penetrating well of radius of 0.7  cm was 

located at the center of the aquifer. A thin tube with the radius of 0.3  cm connected to a peristaltic 

pump (Masterflex: L/S-7523-80) was inserted into the well to deliver water into or out of the 

aquifer. The effective radius of the well is approximately 0.60.30.7= 22 
wr  cm. The well was 

only screened in the lower layer and the wall was sealed at the upper layer with a plastic liner. A 

layer of clay was used near to the wall to prevent water leaking from the aquifer to the upper layer. 

Two syphon-type tubes were connected to electronic manometers to monitor head changes at 

10=1r  cm and 20=2r  cm. Head changes were monitored using 1 second time intervals, at a 

resolution of 0.1  mm. The ends of the syphon-type tubes were screened to prevent solid particles 
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to enter the tubes. The confined system was monitored for three days and no leakage was detected 

through the confining layer. The hydraulic conductivity of the silty sand material was 

independently measured to be = 0.0008K cm/sec using a falling head permeameter. Using our 

estimates of K   and B , we calculate the transmissivity, BKT  = . The value of the storage 

coefficient was estimated to be 0.014=S  by fitting a transient head dataset collected at 10=1r  

cm under a constant injection rate of 30  ml/min. 

 

Figure 4-2: Vertical and horizontal cross sections of the laboratory model. 
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4.6 Analysis of transient head data 

 We performed one pumping and two injection experiments. We refer to these experiments 

as Experiment-P, Experiment-I1 and Experiment-I2, respectively. We also consider three 

associated recovery experiments, namely Experiment-RP, Experiment-RI1 and Experiment-RI2. 

The flow rates for Experiment-P, Experiment-I1 and Experiment-I2 are: minmlQP /15= , 

minmlQI /30=1  , and minmlQI /40=2  , respectively. The initial and boundary conditions for 

all experiments is 0( ) = ( , ) = 35h r h R t cm     . Using Eq. (76), the characteristic length, time, and head 

scales for our experiments are:  

 .35=,18.23=,25= *** cmhmintcmr  (103) 

These quantities allow us to define dimensionless r, t and h using Eq. (77). Transient head 

changes were measured at cmr 10=1
  and cmr 20=2

 , or 0.4=1r  and 0.8=1r , respectively. 

For our experimental system we have 0.024= . 

We predict the theoretical )(rM  and )(rV  values for six radial flow processes at two 

different positions using Eqs. (91) and (100), respectively. We also measured the observed time 

scales, which we refer to as experimental time scales using our laboratory datasets. To calculate 

MAT and VAT from our laboratory datasets we used the monitored transient head data to construct 

)|( rtf . To achieve this, we use a central difference approximation to estimate th  / . After 

constructing 0.4)|(tf  and 0.8)|(tf , we calculated the experimental )(rM  and )(rV  using Eqs. 

(83) and (94), evaluating the integrals using the trapezoid rule. 
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Theoretical and experimental values of )(rM , )(rV  and )(r  at 0.4=1r  and 0.8=2r  are 

summarized in Table 5, indicating that the experimental values match the theoretical predictions 

reasonably well. Our results also indicate that )(rM  and )(r  are independent of Q  and therefore 

independent of whether we consider a pumping, injection or recovery process. 

Table 5: Nondimensional theoretical and experimental values of ( )M r , ( )V r  and )(r  at 1 = 0.4r  and 2 = 0.8r . 

     
1

= 0.4r (-) 
2

= 0.8r (-) 

  ( )M r  ( )V r  )(r  ( )M r  ( )V r  )(r  

Theoretical values  0.26 0.21 0.47 0.32 0.22 0.54 

Experiment-P  = 15PQ  [ ml/min ]  0.31 0.24 0.55 0.35 0.23 0.58 

Experiment-RP  0.26 0.19 0.45 0.31 0.20 0.51 

Experiment-I1 
1 = 30IQ   ml/min    0.25 0.21 0.46 0.35 0.21 0.56 

Experiment-RI1  0.31 0.24 0.55 0.30 0.17 0.47 

Experiment-I2 
2 = 40IQ   ml/min   0.25 0.21 0.46 0.33 0.20 0.53 

Experiment-RI2  0.34 0.27 0.61 0.29 0.19 0.48 

 

Table 6 shows )|( rtF  after times )(= rMt  and )(= rt   in all experiments at both monitoring 

points. Our data indicate that after )(= rMt , approximately 55–67% of the process has taken place. 

In contrast, after )(= rt  , approximately 84–89% of the process has taken place. These results 

show that setting 1=m  in Eq. (93) adequately estimates the amount of time required for the 

transient flow problem to effectively reach steady state conditions. We note that setting 1>m  

would lead to larger values of )(r . However, the simplest possible choice of 1=m  leads to a 

prediction of the time scale where about 87% of the transient response has taken place. Therefore, 
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for practical purposes, setting 1=m  leads to a useful and informative prediction of the relevant 

time at which the system effectively reaches the steady state. 

Table 6: Cumulative distribution functions at two monitoring points, 
1 = 0.4r  and 

2 = 0.8r , indicating the 

proportion of each transition that has completed by = ( )t M r  and = ( )t r  for all six experiments. 
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1 = 0.4r (-) 

2 = 0.8r  (-) 

90 

1 = 0.4r (-) 
2 = 0.8r  (-) 

Experiment-P  = 15PQ  ml/min    
57 %  67 %  88 %  87 %  

Experiment-RP  61 %  66 %  85 %  89 %  

Experiment-I1 
1 = 30IQ   ml/min    62 %  64 %  86 %  85 %  

Experiment-RI1  61 %  55 %  84 %  84 %  

Experiment-I2 2 = 40IQ   ml/min   61 %  63 %  87 %  88 %  

Experiment-RI2  61 %  63 %  87 %  88 %  

 

Figure 4-3 shows the monitored transient head changes with the predicted theoretical values 

of )(rM  and )(r  superimposed. Comparing the temporal head data and our estimates of )(r  

indicate that )(r  is a useful estimate of the time required for the system to effectively reach steady 

state. 
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 Figure 4-3: Results in (a)–(b) show dimensionless transient data gathered at 
1 = 0.4r  for Summary and conclusions 

4.7 Summary and conclusions 

In this study we develop an analytical framework that can be used to: (1) estimate the time 

scale of the radial flow processes; (2) explicitly show how different hydraulic and geometric 

factors affect the time scales of the process; and (3) show how the time scales vary spatially within 

the flow domain. To achieve this we introduce two time scales: )(rM  and )(r , using the concepts 

of mean action time (MAT) and variance of action time (VAT), respectively. 

The key advantage of the MAT framework is that the mathematical expression for )(rM  

explicitly shows how the geometry and hydraulic parameters affect the time scale of the flow 

process. In contrast, other definitions of the relevant time scale, such as using an arbitrary 

threshold, does not lead to mathematical expressions that are linked to hydraulic and geometric 

factors. Another limitation of using a threshold approach is that the time scale predicted itself 
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would depend upon the choice of the threshold. In contrast, MAT avoids the need for defining an 

arbitrary, subjective threshold. 

We also define the VAT, )(rV , and use this information to estimate the actual time needed 

to reach steady state after accounting for both the mean and the width of the PDF that governs the 

transition. Given )(rM  and )(rV  we define )()(=)( rVmrMr  , as an estimate of the instant 

that explicitly accounts for the spread in the PDF. Here, m  is a positive integer, and to use this 

definition we must choose m . In this work we have used the simplest possible approach and have 

set 1=m , meaning that )(r  corresponds to the mean plus one standard deviation. Comparing our 

estimate of )(r  with our laboratory scale data confirms that setting 1=m  leads to a reasonable 

estimate of the time to reach steady state. For our test problem, )(r  corresponds to the time 

required for approximately 84–89% of the transient response to have completed. 

Our expressions for )(rM , )(rV  and )(r  explicitly relate the aquifer response time scale 

to various parameters including aquifer transmissivity, storage coefficient, well diameter and the 

location of the boundary. Our analysis shows that the groundwater response time scales are 

equivalent for pumping, injection and recovery processes, and are independent of the flow rate at 

the well. Moreover, our mathematical expressions quantify the spatial variations in the aquifer 

response time for radial flow processes including pumping, injection and recovery processes. 

These predictions are confirmed by our laboratory–scale measurements. 

One of the limitations of our work is that we consider groundwater flow driven by a single 

pumping or injection well. A possible extension of our present study is to consider flow processes 

driven by multiple pumping and/or injection wells. Under these conditions we have to consider a 
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more complicated two or three dimensional flow model in a Cartesian coordinate system. 

However, the general mathematical framework outlined here would still apply. 
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CHAPTER 5       UNDERSTANDING TIME SCALES OF DIFFUSIVE FLUXES AND 

IMPLICATION FOR STEADY STATE AND STEADY SHAPE 

CONDITIONS   

 

 

5.1 Introduction 

Environmental transport problems involving heat, solute or groundwater flow are typically 

classified as being either transient or steady state.  Transient problems involve temporal variations 

in the dependent variable (temperature, concentration or hydraulic head), whereas steady state 

problems do not involve any temporal variations. In some geoscience fields (e.g., groundwater), 

previous researchers have postulated the existence of another state, often called steady shape, 

which has been used to describe the situation where the shape of the solution is steady, but the 

dependent variable may still vary with time, hence the system remains transient [Bohling et al., 

2002; Heath, 2009].  Heath [1983] refers to this as a steady shape condition, while Kruseman and 

Ridder [1990] refer to this as a transient steady state condition. 

 

An important feature of the steady shape condition is that it is thought to be an intermediate 

state that arises well before the system reaches steady state.  In the literature, it is also broadly 

assumed that the transport process during the steady shape period can be analyzed using simpler 

mathematical models that are normally used for describing steady problems [Bohling et al., 2002; 

Butler, 1988].  The ability to use simpler models can have profound practical consequences since 

it can considerably reduce computational time and effort.  However, despite its use, steady shape 

approximations are invoked heuristically, without any fundamental theoretical understanding of 

when steady shape conditions are relevant. The objective of this work is to address this 

fundamental limitation.  To achieve this, we develop a formal theoretical basis for defining steady 
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shape conditions, and use this definition to examine the relevance of steady shape conditions when 

modeling a range of diffusive transport problems. 

 

The cornerstone of the diffusion equation is the concept of flux, which, as defined by 

Fourier’s law, relates the transport of an extrinsic property (e.g., heat) with the spatial gradient of 

an intrinsic property (e.g., temperature) [Carslaw and Jaeger, 1959; Crank, 1979]. The 

macroscopic quantity flux, which is proportional to the spatial gradient of the dependent variable, 

quantifies the amount of an extrinsic property transported across a unit area per unit time. The flux 

concept has been used for modeling several types of environmental transport systems including 

solute transport (where solute flow is linked with concentration gradient), and groundwater flow 

(where the groundwater flow is linked with hydraulic head gradient).  In the groundwater literature, 

researchers have identified that pumping problems appear to first reach an intermediate steady 

shape condition where hydraulic fluxes are effectively steady, while the hydraulic head continues 

to vary with time [Bohling et al., 2002; Butler, 1988].  Understanding how fluxes might approach 

steady state conditions at a different rate when compared to how the hydraulic head approaches 

steady state conditions is a fundamental issue that could shed some light on how steady shape 

conditions develop.  

 

To quantify the time scales required for a diffusive process to approach steady state, we  

employ a concept called mean action time (MAT), which was originally proposed for analyzing 

heat transport [McNabb and Wake, 1991; McNabb et al., 1991].  Later researchers adapted this 

approach for modeling more general transport problems [Ellery et al., 2012a; Jazaei et al., 2014; 

2016; K Landman and McGuiness, 2000; McGuiness et al., 2000; McNabb and Keady, 1994; M J 
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Simpson et al., 2013a].  However, all of these studies focus on quantifying the time scale associated 

with the dependent variable (e.g. hydraulic head, concentration or temperature).  Here, we adapt 

the diffusion equation to model transient changes in diffusive fluxes. We hypothesize that the time 

scale associated with the dependent variable could be different from the time scale associated with 

the flux variable.  These differences in time scales will be quantified using MAT theory to develop 

a formal mathematical basis for understanding the differences between steady shape and steady 

state conditions. 

 

5.2 Development of a general mathematical framework of modeling steady state fluxes 

We first review the mathematical framework needed for computing the time scale required 

for a diffusive variable to approach steady state.  We then extend the framework to compute the 

time scale required for the flux to approach steady state. In this study we use non-dimensional 

variables to generalize the analysis. All dimensional variables are primed ( ), and dimensionless 

variables are unprimed. 

 

The aim of our analysis is to quantify the time scales required for a diffusive variable, ' , 

and the associated flux, /J K x        (where the constant 0K is a parameter), to effectively 

asymptote to their respective steady states. We begin with the dimensional form of the diffusion 

equation,  

 
2

2

( , ) ( , )
= ', 0 < < ,

x t x t
D W x L

t x

       
  

  
 (104) 

where ( , )x t    is the dependent variable at location x and time t , 0>D is the diffusivity, 'W  is 
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the spatially uniform source/sink term,  and L  is the length of the domain. We define three 

dimensionless variables,  

  2

( , )
= , ( , ) = , = .

x x t t D
x x t t

L L




     

 
 (105) 

Using these variables, the non-dimensional governing equation is  

 
2

2

( , ) ( , )
= , 0 < <1,

x t x t
w x

t x

  


 
 (106) 

where, 2=  /w W L D    , and   is a characteristic value of the dependent variable.  

 

To quantify how the flux varies with time and position, we differentiate both sides of Eq. 

(106) with respect to x.  Writing ( , ) = ( , ) /g x t x t x  , we obtain  

 ,1<<0,
),(

=
),(

2

2

x
x

txg

t

txg







  (107) 

where the dimensionless flux is ( , )J g x t  .  Note that the equations governing the evolution of 

the dependent variable and the flux variable are similar for this Cartesian problem, except there is 

no source/sink term in Eq. (107).  However, the solutions of Eq. (106) and Eq. (107) will differ 

because they involve a different set of initial and boundary conditions. 

 

5.3 Application of the MAT theory to evaluate the time scales of diffusive fluxes 

To derive an expression for the MAT of ),( tx , we begin by considering two fundamental 

quantities [Jazaei et al., 2014; 2016; McNabb and Wake, 1991; M J Simpson et al., 2013a]  
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where 0 ( )x  is the initial value of ( , )x t (initial condition), and ( )x  is the long time steady state 

value of ( , )x t (final steady state condition). MAT theory depends on interpreting ( | )F t x
 as a 

cumulative distribution function (CDF), and therefore this approach is valid for transitions where 

( | )F t x
 increases monotonically from (0 | ) 0F x   and approaches ( | ) 1F t x  , as t .  Under 

these conditions, ( | )f t x can be interpreted as a probability density function (PDF). The mean, or 

first moment of this distribution gives a time scale that is called the MAT [Ellery et al., 2012a; b; 

Jazaei et al., 2014; 2016; M J Simpson et al., 2013a].  This time scale provides an estimate of the 

amount of time required for ( , )x t  to asymptote from 0 ( )x  to ( )x . The dimensionless MAT is 

 
0

( ) = ( | )d .M x tf t x t 



  (110) 

One of the advantages of working with the MAT framework is that it is possible to solve for 

( )M x without solving Eq. (106) for ( , )x t [Jazaei et al., 2016; K Landman and McGuiness, 2000; 

M J Simpson et al., 2013a].  To solve for ( )M x
we require explicit expressions for 

0 ( )x  and ( )x . 

 

We now extend the MAT theory to evaluate the time scale associated with the transition in 

terms of the diffusive flux by defining  
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where 0 ( )g x  is the initial value of ( , )g x t , and ( )g x  is the steady value of ( , )g x t .  Once again, 

we interpret )|( xtFg
 as a CDF provided )|( xtFg  increases monotonically from 0)|(0 xFg  and 

asymptotes to 1)|( xtFg  as t . The MAT of the flux variable is,  

 .d)|(=)(
0

txttfxM gg 


 (113) 

To compute )(xM g
, we first evaluate ( )M x  and then develop a relationship between )(xM  

and )(xM g
. To accomplish this, we combine Eq. (112) and Eq. (113) and interchange the order of 

differentiation. Since ( , ) = ( , ) /g x t x t x  , we obtain  
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    (114) 

Combining Eq. (109) and Eq. (114) gives,  

 0
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The integral in Eq. (115) is )(xM , as in Eq. (110). Therefore, Eq. (115) simplifies to   
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 (116) 

where 0( ) = ( ) ( )C x x x     and 0d ( ) d ( ) ( )C x x g x g x   .  Note that Eq. (116) is an important 

contribution of this work because it describes an explicit relationship between the time scales 

associated with the dependent variable, ( )M x , and the time scale associated with the flux 

variable, ( )gM x .  In Appendix-A chapter, we extend this analysis to solve a diffusion problem in 

radial coordinates and a two-dimensional diffusion problem in Cartesian coordinates (see Text S2 

and Text S3).  
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5.4 Case studies  

We apply the MAT expressions developed here to quantify the time scales associated with 

the dependent variable and the flux variable in two test cases. Case-I involves a diffusive problem 

with no source/sink term and a Dirichlet boundary condition at 1x .  The initial condition, ( ,0)x

or 0 ( )x , is spatially uniform.  Transient conditions are induced by applying a constant flux at

0x .  This test case could represent the hydraulic head in a confined aquifer with uniform initial 

condition, a fixed head at the right boundary, and a constant flux at the left boundary. Furthermore, 

this case could also represent the temperature distribution in thermal conductor with constant initial 

temperature, a fixed temperature at the right boundary, and the left boundary losing heat at a 

constant rate. 

 

Case-II involves a spatially uniform initial condition, a zero flux condition at 0x , and fixed 

head boundary conditions at 1x .  A constant source/sink term is included to induce a transient 

transition. This case could represent hydraulic head mounding in an aquifer with uniform initial 

condition and receiving areal recharge from above, or it could represent a thermal conductor heated 

from above. The initial and boundary conditions in these two test cases are  
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where  and w  are constants. 

 

To solve for the MAT, we apply integration by parts to Eq. (110) and note that ( , )x t
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approaches ( )x  exponentially fast as t  [Crank, 1975; Simpson et al., 2013], then 

differentiating the result twice with respect to x, and combining the resulting expression with Eq. 

(106) leads to a second order boundary value problem for )(xM , 

 

2

2

d ( ) ( )
= ( ).

d

[ ]M x C x
C x

x

 

  (119) 

To solve Eq. (119) we need to evaluate 0( ) = ( ) ( )C x x x    , where ( )x  is found by 

evaluating Eq. (106) at steady state.  The ( )C x functions for the two cases are: 

: = ( 1),Case I C x    (120) 

 

2( 1)
: = .

2

w x
Case II C

 
  (121) 

The boundary conditions required to solve Eq. (119) are [Jazaei et al., 2016; M J Simpson 

et al., 2013a] 

 
d (0) d (1)

:  (0) 0;      0,
d d

M M
Case I M

x x

 

     (122) 

 
d (0) d (1)

:  0;      2 (1) 0.
d d

M M
Case II M

x x

 

     (123) 

Further details of these boundary conditions are given in the Appendix-A chapter (see Text 

S1).  The MAT expressions for the dependent variable, obtained using Eqs. (119) to (123), are 

 
21

: ( ) = (2 2 ),
6

Case I M x x x    (124) 

    
21

: ( ) = (5 ).
12

Case II M x x   (125) 

In contrast, MAT expressions for the flux, obtained using Eqs. (116), (124) and (125), are 
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 ,)(2
2

1
=)(: 2xxxMICase g   (126) 

  .)(3
6

1
=)(: 2xxMIICase g    (127) 

Note that these MAT expressions give non-dimensional time scales. If required, the 

dimensional time is given by 2( ) ( / )( / )x M x L L D       . 

 

5.5 Results  

5.5.1 Case-I 

Figure 5-1 (a) shows the time scales required for the dependent variable and the diffusive 

flux variable, computed using Eq. (124) and Eq. (126), as functions of position. The data show 

considerable differences between the two time scales, with ( ) ( )gM x M x .  This is consistent 

with the conventional assumption that steady shape conditions arise before steady state conditions. 

To validate these findings we also solve the governing partial differential equations, with 

appropriate initial and boundary conditions, using an implicit finite difference method to estimate 

( , )x t and ),( txg for the two test problems. These two functions, evaluated at two fixed spatial 

locations, are given in Figure 5-1(b)-(c). The figures also show the time scales, ( )M x and )(xM g

, computed using the appropriate exact MAT expressions. These solutions confirm that the MAT 

elegantly characterize the time scales required for ( , )x t and ),( txg  to approach to their 

respective steady states. Furthermore, the numerical results confirm that, in this case, the time 

scales associated with the dependent variable and its flux can be different, and that ),( txg
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approaches steady state faster than ( , )x t .   

 

5.5.2 Case-II  

Figure 5-1(d) shows the time scales required for the dependent variable and the flux variable 

to approach their respective steady states at all locations for the second test problem. Unlike Case-

1, the difference in the two time scales is relatively small, meaning that the steady shape condition 

is not so relevant in this case. Numerical data for ( , )x t and ),( txg  are given in Figure 5-1(e)-(f), 

confirming that ),( txg approaches steady state almost similar to ( , )x t .  
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Figure 5-1:  Left figures present Case-I results and right figures present Case-II results;  (a) and (d) show the spatial 

variation in MAT for the dependent variable, ( )M x
(solid blue), and the spatial variation in MAT for the flux, 

( )gM x  (dashed red) for Case-I and Case-II, respectively.  Results in (b) and (c) show numerical solutions of ( , )x t

(solid blue) and ( , )g x t  (dashed red) for Case-I at x=0.1 and, x=0.3, respectively.  Results in (e) and (f) show numerical 

solutions of ( , )x t  (solid blue) and ( , )g x t  (dashed red) for Case-II at x=0.1 and, x=0.3, respectively.  Parameters 

are 0.0005, 0.05, 1x t w     and 0.5  . 
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5.6 Summary and conclusions 

In this work we quantify differences in the time scales associated with the dependent variable 

and the flux variable to reach steady state conditions in a diffusive transport system. These two 

time scales are associated with the development of steady state, and steady shape conditions, 

respectively. We employ the theory of MAT to quantify these differences. These results are quite 

general, and applicable to any problem that can be modeled using the linear diffusion equation for 

which the transient solution asymptotes to a steady state solution. This includes problems such as 

groundwater flow in confined aquifers and heat flow in thermal conductors.  In the groundwater 

literature, researchers have pointed out the possibility of groundwater flow systems reaching an 

intermediate condition, often called steady shape [Bohling et al., 2002; Butler, 1988; Heath, 2009].  

However, there has been no theoretical basis for objectively identifying steady shape conditions, 

nor has there been any theoretical framework developed to quantify the differences in time scales 

associated with steady shape and steady state conditions.  Interestingly, of the two test problems 

we consider, only the first problem exhibits a clear and prolonged steady shape transition period.  

Therefore, the concept of steady shape conditions may not always be relevant.  Understanding the 

relevance of steady shape conditions is difficult without the kinds of analytical tools presented in 

this work. Without a formal mathematical definition of steady shape conditions, and exact 

expressions for ( )M x and )(xM g , we are limited to studying numerical solutions of transient 

partial differential equations on a case-by-case basis.  In contrast, our formal mathematical 

framework provides very general insight, and can be adapted to apply to a range of other problems 

with different boundary conditions, initial conditions, as well as multi-dimensional problems 

(which are discussed in Appendix-A chapter--Text S2 and Text S3).  
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Previous analyses of transient diffusive problems have primarily employed scaling 

arguments to argue that the time scale required to reach steady state or steady shape conditions is 

proportional to '/'2 DL , where 'L is a characteristic length scale [Cussler, 1997; Gelhar and 

Wilson, 1974a; Heath, 2009; Manga, 1999; Turcotte and Schubert, 1982].  However, it is unclear 

how to choose the proportionality constant.  For example, Heath [2009] presents an empirical 

formula to estimate the critical time (in minutes) required for steady shape conditions to develop 

near a pumping well: 


 aDr /7500 2 , where r   is distance (m) from the pumping well and 


aD  

is the aquifer diffusivity (m2/day).  Cussler [1997]  states that diffusive systems are expected to 

approach steady state conditions when the Fourier number, tDL  /
2

, is much less than unity. Our 

analysis shows that these empirical arguments neglect the fact that the proportionality term in the 

time scale relationship is not a constant, but it depends on position. Furthermore, the functional 

relationship itself is different for steady state or steady shape conditions. Our proposed 

mathematical framework provides an objective method for deriving analytical expressions for 

these relationships. Our analysis also quantifies the role of boundary conditions and demonstrates 

their importance in determining steady state and steady shape time scales. 

 

A key aspect of our work is that we make use of the fact that if ),( tx evolves according to 

a linear diffusion equation then the diffusive flux also evolves according to a linear diffusion 

equation; however, with a different set of boundary conditions and a modified source term.  These 

subtle differences in boundary conditions lead to the differences in the time scales. For example, 

if a diffusion equation describing the evolution of ( , )x t  involves a constant flux boundary 
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condition, then the corresponding equation describing the evolution of / x   will involve a 

Dirichlet boundary condition. However, there are many cases for which transforming the boundary 

conditions for the equation governing the evolution of the dependent variable into the boundary 

conditions associated with the evolution of the flux is challenging.  For example, consider a one-

dimensional diffusion problem with two Dirichlet boundary conditions. Without solving the 

transient equation for ( , )x t , only the value of the dependent variable at the boundaries is known, 

whereas the value of the flux at the boundaries is unknown.  This situation leads to complications 

while solving Eq. (10).  An important contribution in this work is the development of Eq. (13), 

which circumvents this issue. In summary, the use of Eq. (13) avoids the need for solving Eq. (4).  

For example, Simpson [2016] recently analyzed the critical time scales for a problem involving 

morphogen gradients, which requires explicit analysis of the partial differential equation governing 

the evolution of the gradient variable. This approach cannot be used to solve the problems 

considered in the present study involving Dirichlet boundary conditions for the dependent variable.  

In contrast, our approach circumvents these issues. 

 

Although all analyses presented here focus on one-dimensional Cartesian problems, the 

method can be extended to radial problems and multi-dimensional Cartesian problems. Two 

specific examples are presented in the Appendix-A chapter (see Text-S2 and Text S3).  

Furthermore, the applications described here involve homogeneous transport processes where D  

and W are constants. However, our framework also applies to more general heterogeneous 

problems provided )(xD  and )(xW   are sufficiently differentiable. Since the linear diffusion 

equation is routinely used to model several practical science and engineering problems including 
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consolidation (geotechnical literature) and corrosion (material science literature) processes, the 

proposed theoretical framework has practical relevance to a variety of practical problems across 

many applied fields.  
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CHAPTER 6       SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR 

FUTURE WORK 

 

 

When a well-balanced diffusive system, such as a groundwater system, is perturbed by an 

external force, it undergoes a transient state and eventually relaxes into a new balanced steady 

state. Steady state has certain unique characteristics which are helpful for water resources scientists 

and hydraulic engineers who are interested in developing long term management plans. The term 

“steady state” refers to the condition when the overall external forcing effectively balance the 

discharges. In other words, once a system is in its steady state, the amount of water entering the 

system from boundaries are equal to the amount of water leaving the system via discharge 

boundaries. This fundamental characteristic of steady state is used to solve several mass transfer 

and mass balance problems. In addition, mathematical solutions of a steady state system is simpler 

than a transient solution. Therefore, steady state solutions have been extensively used to analyze 

complex and coupled flow and transport models.  

The primary objective of this study is to explore a fundamental question – how long would 

it take an aquifer to transition from its initial condition to a new steady state? In the literature, the 

amount of time a system requires to transition from an initial state to a steady state is known as 

“response time.” Determination of an aquifer response time is challenging.  This is because from 

a mathematical viewpoint, a perturbed groundwater system requires an infinite amount of time to 

reach its ultimate steady state. This answer is, however, impractical, because it is impossible to 

wait for an infinite amount of time. In fact, to deal with practical problems, we need a finite 

quantity to express the time length of these process. Hence, researchers tried to define 

characteristic time scales of the diffusion process. The focus of this dissertation is to improve our 
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understanding of aquifer response time scales to different types of forcing conditions such as 

surface recharge and discharge, stream level variations at aquifer boundaries, and pumping or 

injection wells.  

Traditional approaches available in the literature to determine response times scales can be 

categorized into two groups: (1) explicit scaling methods, and (2) implicit computational methods. 

Unfortunately, both methods have significant limitations. The first approach provides a unique 

time scale for the entire domain and cannot describe the spatially varying characteristics of the 

response time. The second approach requires transient solutions to the governing equation, and 

also it only provides subjective time scales that cannot explicitly show the relationship of the time 

scale with aquifer properties and geometric parameters. The framework developed in this 

dissertation does not have any limitations which are associated with traditional methods.  

This study uses a novel theory known as mean action time (MAT) which defines the time 

scale of the processes as the first moment (or mean) of the rate of variation of action.  The key 

advantage of the MAT framework is that it provides an exact mathematical expression describing 

how the response time scale depends on various aspects of the problem of interest.  In Chapter 2, 

we use this method to analyze the response time scales of aquifer to surface recharge and discharge. 

The developed framework provides an analytical expression showing how the time scales of the 

process would depend upon various system variables (e.g. 
1 2

, , , , ,yK h S h h L  and R ). The results 

yield several useful and possibly counterintuitive results. It shows that the response time scales of 

the recharge and discharge processes are not explicitly dependent upon the recharge rate, R . It 

also shows that the time scale for a recharge process is equivalent to the time scale of the related 
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discharge process. This is a surprising result since the steady state phreatic surface would depend 

on the recharge rate, R, however the time taken to approach the steady state is independent of R. 

In Chapter 3 we use the framework to predict the response time scales of groundwater flow 

near a groundwater surface-water interface. This chapter analyzes response time scales of a one-

dimensional aquifer to various types of perturbations at a surface-water boundary. The developed 

MAT framework provides a direct mathematical relationship relating the response time scale to 

various system parameters. Results show that aquifer systems have three fundamental time scales 

that depend on: (i) the intrinsic properties of the aquifer, (ii) the intrinsic properties of the boundary 

condition, and (iii) the global properties of the entire system.  

The developed MAT framework in Chapter 4 is used to estimate the response time scales of 

a radial groundwater flow system. The derived response time scales explicitly show how different 

hydraulic and geometric factors affect the time scales of aquifers perturbed by a pumping or an 

injection well. Results show how response time scales vary spatially within the flow domain.  Our 

analyses show that the groundwater response time scales are equivalent for pumping, injection and 

recovery processes, and are independent of the flow rate at the well. The MAT expressions 

presented in this chapter are developed in dimensionless forms and therefore, the results are 

applicable for small-scale laboratory problems as well as large-scale field problems.  

Chapter 5 discusses a key general contribution, which is applicable for different types of 

diffusion problems including groundwater flow, heat flow and contaminant transport. The new 

framework is used to quantify the time scales of the dependent variable and its spatial derivative 

(flux) variation, which are associated with the development of steady state and steady shape 
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conditions, respectively. The MAT framework developed in Chapter 5 identifies steady shape 

conditions and quantifies the differences in time scales associated with both steady shape and 

steady state conditions. This chapter presents a formal mathematical tool to analyze steady shape 

conditions associated with any linear diffusive system.   

This dissertation primarily focusses on cases in which the porous medium is assumed to be 

homogenous. A possible extension of present study is to consider the effects of heterogeneity 

within the system.  Furthermore, this study has not investigated problems which have complex 

forcing conditions which would vary spatially or temporally (e.g. varying surface 

recharge/discharge or pumping/injection flows). MAT framework can be developed for such 

problems, provided differentiable expression for recharge function, ( )R x  and heterogeneity 

function ( )K x  are available. Future work can also address flows driven by multiple 

pumping/injection wells. Under these conditions, a more complicated two- or three-dimensional 

flow model in a Cartesian coordinate system must be considered. However, the general 

mathematical framework outlined in this dissertation would still apply. The developed techniques 

outlined in this dissertation for the one–dimensional case are applicable for multidimensional 

systems as well. However, in that case, the boundary value problems governing the response time 

scales will be a two–dimensional or a three–dimensional partial differential equation. In Appendix-

A we briefly show the use of MAT theory for a two-dimensional Cartesian problem. This 

dissertation, however, does not include comprehensive analyses of multidimensional problems, 

which can be addressed in future efforts. Application of MAT to nonlinear problems that are not 

readily linearized are challenging and can be explored in future studies. There are also possibilities 

to extend the application of MAT theory for analyzing problems involving fluctuating boundary 
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conditions.  Finally, this effort is mainly focused on groundwater problems. However, there are 

some obvious opportunities to extend the developed frameworks to other types of problems such 

as contaminant diffusion, heat flow and consolidation, to name a few.  
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APPENDIX-A 

 

Contents of this Appendix 

Introduction 

Text S1:  Details of the boundary conditions for Case-I and Case-II 

Text S2: MAT theory for analyzing fluxes near a pumping well 

Text S3: MAT theory for analyzing fluxes in a two-dimensional Cartesian problem 

 

Introduction 

This supporting information document provides additional details regarding how MAT 

theory can be used to determine the time scales associated with the dependent variable and the flux 

variable for multi-dimensional diffusion problems.  In Text S1 we provide the detailed information 

on MAT boundary value problem development for Case-I and Case-II.  In Text S2 we discuss a 

two-dimensional problem involving groundwater flow near a pumping well with radial symmetry.  

Text S3 discusses a rectangular two-dimensional Cartesian problem.  Text S1, Text S2 and Text 

S3 are cited in the main text.  

Text S1:  Details of the boundary conditions for Case-I and Case-II 

In the main text, Eqs. (117) and (118) introduce the initial and boundary conditions for Case-

I and Case-II, respectively. To derive Eq. (119), we first employ the definition of )(xM  as 



 

114 

 

described in Eq. (110); we then apply integration by parts noting that ),( tx  approaches ),( tx

exponentially fast as t  , which gives  
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ttrrxCxM  
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where, ).()()( 0 xCxCxC    Differentiating Eq. (128) twice with respect to x  gives 
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Combining Eq.(130) and Eq. (106) gives the boundary value problem for )(xM , which is 

given by Eq. (119).  To solve the boundary value problem, two boundary conditions at 0x and 

1x are required for each case.  For Case-I, the boundary condition at 0x  can be determined 

by combining Eqs.(129), (117) and (120), noting that xtx  /),(0d/(0)d  . Combining Eqs. 

(119) and (120) and evaluating the result at 1x  leads to the second boundary condition of Case-

I.  Both boundary conditions for Case-I are presented in Eq. (117).  Similarly, for Case-II the 

boundary condition at 0x  can be determined by combining Eqs. (129), (118) and (121), noting 

that xtx  /),(0d/(0)d  .  Also, combining Eqs. (119) and (121), and evaluating the result at 

1x leads to the second boundary condition for Case-II.  These two boundary conditions for Case-

II are presented in Eq. (123). 

Text S2: MAT theory for analyzing fluxes near a pumping well  

In the main text, the theory of MAT is applied to estimate the time scales required for the 

dependent variable and the associated flux to approach their respective steady states for several 
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one-dimensional Cartesian problems. Here, the framework is expanded to solve multi-dimensional 

problems.  In this test case we exploit radial symetry to transform and solve a groundwater problem 

involving a pumping well into a one-dimenional radial flow problem.  We have employ the 

notations used by Jazaei et al., (2016) and we extended their work to derive the MAT for diffusive 

fluxes.  Consider groundwater flow near a fully penetrating well of radius, wr , at the center of a 

confined homogenous aquifer of radius R . The aquifer has transmissivity and storativity values 

of T  , and S , respectively.  The dimensional groundwater flow head, ),( tr  , at time t , and at 

distance r from the well, can be modeled by   
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To simplify the analysis, the non-dimensional form of Eq. (130) is  
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where,   
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In Eq. (130)   is a characteristic value of the dependent variable. We consider a constant 

flow rate, Q , at the well located at, r , a Dirichlet boundary condition at 1r , and a uniform 

initial condition. The initial and boundary conditions for Eq. (132) can be summarized as (Jazaei 

et al., 2016): 
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where (2 )Q T      . The steady solution of Eq. (132) is 
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 .1<<),ln(1=)( rrr  
 (135) 

 

We define )|( rtF  and )|( rtf for the radial process in the usual way, 

 0,,
)()(

)(),(
1=)|(

0

















 t
rr

rtr
rtF






 (136) 

 .0,
)()(

)(),(
=

d

)|(d
=)|(

0





















 t
rr

rtr

tt

rtF
rtf






 (137) 

The MAT for ),( tr  is 

  .d )|(=)(
0

trttfrM  


 (138) 

Since ),( tr  decays to )(r  exponentially fast as t  [Crank, 1979], applying 

integration by parts to Eq. (138) leads to 

 ,d),()(=)()(
0
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where, ).()()( 0 rCrCrC  
 

Differentiating Eq. (139) twice with respect to r  gives 
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and combining the results with Eq. (132), gives a boundary value problem for )(rM , 
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Appropriate boundary conditions required to solve Eq. (142) are [Jazaei et al., 2016]: 
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The solution of  Eq. (142), using Eqs. (143) and (144) can be written as 
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As explained in the main text, Eq. (116) can be used to express the relationship between the 

time scales of dependent variable, )(xM , and the associated gradient variation, )(xM g , in a one-

dimensional Cartesian system. Here we extend this analysis to develop a similar relationship for 

radial flow. To accomplish this, we first define appropriate CDF, PDF and MAT variables, 
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where )(0 rg , )(rg  and ),( trg  are the initial condition, steady state solution and transient solution 

of the equation governing the evolution of r / .  Combining Eqs. (147) and (148), and 

interchanging the order of the differentiation gives 
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Combining Eq. (149) and Eq. (138) gives the relationship between )(rM  and )(rM g , 
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We use Eq. (145) and Eq. (150) to compute the time scales of the dependent variable and 

the flux variable, and the results are summarized in Figure 4-1a.  The results show a clear 

difference between the two time scales, with )()( rMrM g  , which is consistent with the 

conventional assumption that, in radial groundwater flow systems, steady shape conditions are 

attained before steady state conditions.  To further validate these findings, we solve Eq. (132), with 

appropriate boundary and initial conditions, numerically. The ( , )r t  and g(r,t) functions, evaluated 

at two specific locations are given in Figure A-1 (b) and (c), respectively.  These figures also show 

MAT values, )(rM and )(rM g , computed using Eq. (145) and Eq. (150). 
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Figure A-1 Time scales of diffusive process in a radial problem; (a) shows the spatial 

variation in ( )M r
 (solid blue) and ( )gM r  (dashed red). Results in (b) and (c) show the 

numerical solution of ( , )r t (solid blue) and ( , )g r t (dashed red) at 0.1r   and 0.3r  , 

respectively. Parameters are: 0.001r  , 0.003t  , 0.001  , 0.8   and 0.05S  . 
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Text S3: MAT theory for analyzing fluxes in a two-dimensional Cartesian problem  

We now demonstrate the use of MAT theory for solving a two-dimensional Cartesian 

problem.  The problem considered is shown in Figure A-2, and involves three Dirichlet and one 

Neumann boundary conditions. The non-dimensional diffusion equation and the associated 

boundary conditions are  
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where,   is a constant flux at 1y  (Figure A-2).  The initial condition is given by
0( , ) 1x y  . 

To find the MAT for the dependent variable, ),( yxM , we define  
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where ),( yx  is the steady solution of Eqs. (151) and (152), which could be found numerically 

or by using separation of variables.  The MAT is given by  

 .d),|(=),(
0

tyxttfyxM  


 (155) 

Combining Eqs. (154) and (155), applying integration by parts, and noting that 

),(),( yxyx  decays to zero exponentially fast as t  [Crank, 1979], we obtain  
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where .),(),(=),( 0 yxyxyxC    Differentiating Eq. (156) twice with respect to x  and y  

gives 
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Summing Eqs. (157) and (158), combinng the result with Eq. (151), and recalling that  
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we obtain a boundary value problem for ),( yxM , 
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Four boundary conditions are required to solve Eq. (160). Boundary conditions for three 

Dirichlet boundaries at ,1,0  xx  and 0y  can be defined by noting the fact that ),( yxM  

is finite at all locations, leading to 
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Differentiating Eq. (156) with respect to y , at 1y  (the Neumann boundary), and noting 

that yyxytyx   ),(),,(   along this boundary, leads to the fourth boundary condition, 

 .0
1),(1),( ][






y

xMxC   (164) 

Therefore, by solving Eq. (160) subject to the four boundary conditions given by Eqs. (161)

-(164), we obtain ),( yxM which is the time scale associated with the dependent variable.  Unlike 

the previous one-dimensional problems, here the equation governing the distribution of ),( yxM

is a two-dimensional boundary value problem (partial differential equation), and it is probably 

more convenient to solve this problem numerically rather than working with an infinite series 

solution that could be obtained using separation of variables. In the next section we will explain 

how to use this information to evaluate the time scales of associated flux variations.  

Unlike the one-dimensional systems that we previously considered, two-dimensional 

problems can involve gradient variations in two directions since the flux variable is a vector.  For 

brevity we will refer to these directions as the thi directions, and we note that setting xi   allows 

us to work with the gradient in the x -direction, whereas setting yi   allows us to work with the 

gradient in the y -direction.  Due to the boundary conditions imposed on the original problem, 

different thi -direction fluxes, ),,( tyxg thi
, may be associated with different time scales. The 

framework we present can be used to estimate different time scales for each of the thi -direction 

gradients, ),( yxM
thi

g
. To accomplish this, we define:  
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where ),(
0

yxg thi
, ),( yxg thi 

 and ),,( tyxg thi
 represent the initial condition, steady state and 

solutions of the flux variable in the thi -direction, respectively. We then combine Eq. (154) and Eq. 

(167), and interchange the order of differentiation to obtain   
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where i  refers to the derivative in the thi -direction. The integral in Eq. (168) is ),( yxM , as 

in Eq. (155). Therefore, ),( yxM
thi

g
, for the two-dimensional problem is given by  
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In summary, once we have solved Eq. (160) for ),( yxM , we can then use Eq. (169) to 

calculate the time scales associated with the flux variable in any direction. 
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Figure A-2: Schematic of the two-dimensional diffusive problem.  Three Dirichlet 

boundary conditions are defined at 0x  , 1x  , and 0y  ; and a Neumann 

boundary condition is defined at 1y  . 

 

 

 

 

 

 

 


