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Abstract

Dusty plasma systems consist of charged microparticles (usually called dust grains)

embedded in a background plasma. The dust component can significantly modify the back-

ground plasma by collecting electrons and ions, thus modifying the plasma density and the

local electrostatic potential. Similarly, due to their net electric charge, the dust grains also

respond to local perturbations in the background plasma. In this way, the behavior of the

dust grains and the background plasma are closely coupled with each other. The vast ma-

jority of experimental dusty plasma studies have been performed under conditions where

there is no magnetic field. However, in many plasma systems — particularly fusion and

astrophysical plasmas, magnetic fields play a crucial role. Therefore, in recent years there

has been an increased effort to study modifications to dusty plasma systems under the in-

fluence of large external magnetic fields. Modifications of the dust component may manifest

themselves directly as guiding center drifts or indirectly by altering the background plasma

and dust grain charging processes.

In this dissertation, the dust grain g ×B drift magnetization effect was directly observed

using the Magnetized Dusty Plasma Experiment (MDPX) device. The MDPX device was

rotated to a horizontal configuration so that the magnetic and the gravitational fields were

oriented perpendicular to each other. Dust grain g × B drift motion in a radio-frequency

(RF) plasma bulk several centimeters away from any space charge sheaths was then observed

and used to calculate the dust grain charge. It was found that the calculated dust grain charge

was much smaller than the estimates obtained by extrapolating from situations where the

background plasma was unmagnetized. The large reduction in the dust grain charge is

believed to be due to the onset of strong electron magnetization where the electron Larmor

radii become comparable to the dust grain diameter. In this situation, the electron charging
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current to the grain becomes flux-tube limited whereas the ion charging current remains

relatively unaffected. The measurements performed in this dissertation are a large step

forward in understanding the nature of dust grain charging in strongly magnetized plasmas

and lay a substantial experimental framework for future theoretical studies.
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Chapter 1

Introduction

1.1 Motivation and scope

Dusty plasmas are four-component plasmas consisting of not only the usual microscopic

plasma components (i.e., the electrons, ions, and neutral particles), but also a fourth micron-

sized dust component. Because the dust component (usually called “grains”) is subject to

collisions with the ambient plasma, the dust grains can collect a large amount of electric

charge. In most low-temperature laboratory plasmas, the dust grains usually obtain a net

negative charge due to the higher mobility of electrons compared to ions.

The dynamics of dusty plasmas are typically categorized based on the ratio of the elec-

trostatic to the kinetic energy of the system. Based on this ratio, the dynamical behavior

ranges from displaying weakly-coupled collective effects such as waves and fluid-like behavior

to displaying strongly-coupled effects such as phase transitions and crystal structure forma-

tion where the inter-dust Coulombic interactions dominate. Due to this wide variety of

dynamical behavior, dusty plasmas provide a unique testing ground to study multi-particle

systems on timescales that can often be observed with the naked eye (milliseconds to sec-

onds). Furthermore, in both the weakly- and the strongly-coupled limits, the addition of

a magnetic field significantly changes the behavior of the system. The magnetic field not

only acts directly on the dust grains via the magnetic force but also significantly modifies

the dynamics of the electrons and ions. In this way, it is important to study the coupling

between the dust, the microscopic plasma components, and the magnetic field.

Dusty plasmas span a wide range of length scales and scope. The largest scale at

which dusty plasma systems have been observed, is perhaps, the largest length scale possible

— astrophysical scales on the order of many thousands of light years. Dust permeates

1



the interstellar medium and absorbs photons, thus providing a degree of opacity for the

light emitted from distant galaxies and stars [5, 6]. It has also been shown that magnetic

fields play a strong role in star formation within galactic dust clouds [7] and even planet

formation through the growth of agglomerate dust grains [8, 9]. Dusty plasmas are also

a major component of Saturn’s rings [10] and circulating dust has also been observed in

the exosphere of the Earth’s moon [11, 12]. Dust within our solar system is also known

to disrupt spacecraft operation [13, 14]. Even closer to the ground, although not a dusty

plasma in a rigorous sense, [15] measured the charge to mass ratio of individual blowing snow

particles by observing snow deflection in an externally applied electric field. They observed

that individual snow flakes with a size of approximately 200 µm may obtain both negative

and positive charge to mass ratios between -200 µC/kg and 70 µC/kg.

In laboratory experiments, the dust is seen mainly as a contaminant in high temperature

thermonuclear fusion plasma experiments where dust grains can be ablated from plasma-

facing material within the device [16, 17]. In industrial applications, dust grains can nucleate

(i.e., “grow”) from the constituent gas and contaminate the thin-films used in integrated

circuit processing [18] and magnetron etching [19]. In fact, methods have been devised

specifically to remove the nuisance dust grains from plasma processing reactors to improve

production yield [20, 21].

Regardless of the scale and specific application of dusty plasmas, the driving factor

behind most dusty plasma phenomena is the fact that a substantial charge can reside on the

dust grain surface. In the case of laboratory dusty plasmas, the net charge can reach several

thousand electrons for a single 1 µm diameter dust grain. Despite the extreme importance

of the dust grain charge, its measurement is a notoriously difficult task. This dissertation

takes on that task by directly observing the so-called g × B magnetization effect on the dust

grains to obtain a measurement of the dust grain charge. As a segue into the details of dust

grain charging and magnetization effects, a brief review of basic plasma and dusty plasma

physics phenomena is provided in the following discussion.
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1.2 Plasma and dust characteristics

1.2.1 Quasi-neutrality

In most areas of plasma physics, the plasma is typically treated as being macroscopically

quasi-neutral — meaning that there is no large scale separation of electric charge and thus

no electric fields are present. The quasi-neutrality condition can be expressed as

∑
s

nsqs = 0 (1.1)

where s is used to denote a particular plasma species, ns is the number density, and qs is

the charge. Qualitatively, Eq. (1.1) is simply a statement that charged plasma particles are

free to move and rearrange in response to the presence of electric fields. For example, the

introduction of a charged test particle into an otherwise quasi-neutral plasma will causes

a slight displacement of the electrons and ions in the vicinity of the test particle. In the

case of a negatively charged test particle, the electrons are repelled leaving behind a positive

space charge region. On large length scales, the positive space charge region will exactly

cancel the negative charge of the test particle — thus shielding far away plasma particles

from the electric field of the test particle. This shielding effect is called Debye shielding and

is discussed in more detail in Sec. (1.2.2).

In the context of dusty plasmas, the test particle is a charged dust grain, and the

quasi-neutrality condition is given by

∑
s

nsqs = −nee+ nie+ ndqd = 0 (1.2)

where ne is the electron density, e is the electronic charge, ni is the ion number density, qd

is the dust grain charge, and nd is the dust number density where nd = δ(r) for an isolated

grain located at the origin. In most laboratory plasmas, qd < 0 due to the much higher

thermal speed of electrons compared to ions. A common expression that is used to account
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for the negative charge of a dust grain is

qd = −eZd (1.3)

where Zd is a dimensionless positive integer.

1.2.2 Debye shielding

In this section, the derivation of a well known result for the shielding length of an

isolated dust grain [22, 23] is reviewed. The shielding length can be obtained by considering

the following Poisson’s equation for the electrons, ions, and dust:

∇2Φ =
−e
εo

(−ne + ni − Zdnd) (1.4)

where Φ is the electrostatic potential and εo is the permitivity of free space. It is also assumed

that the electrons and ions each obey the Boltzmann relation

ns = ns,o exp

(
− qsΦ

kbTs

)
(1.5)

where kb is Boltzmann’s constant and Ts is the temperature of plasma species s. In the

limiting case where kbTs � |qsΦ|, Eq. (1.5) simplifies to

ns ≈ ns,o

(
1− qsΦ

kbTs

)
, (1.6)

which is the linearized density for the electrons and ions. However, it is important to note

that the assumption kbTs � |qsΦ| does not apply in the region of space close to the grain. In

order to take this into account, it is necessary to apply the Vlasov description of plasmas [24]

where it is shown that the electron density stills obeys the Boltzmann relation of Eq. (1.5);

however, the ion density is significantly modified and the resulting Poisson’s equation is
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highly nonlinear. A more detailed discussion of these situations can be found in [25, 26], and

in the rest of this section we proceed under the assumption that Eq. (1.6) is valid.

By substituting the quasi-neutrality condition far from the dust grain Zdnd = −ne,o+ni,o

and the linearized Boltzmann equation for the electrons and the ions into Eq. (1.4), we get

∇2Φ−
(
e2ne,o

εokbTe

+
e2ni,o

εokbTi

)
Φ = 0, (1.7)

which is more concisely written as

∇2Φ− 1

L2
d

Φ = 0, (1.8)

where

1

L2
d

=
1

L2
e

+
1

L2
i

(1.9)

is the dust grain Debye length and

L2
s =

εokbTs

e2ns,o

(1.10)

is the expression for the Debye length of the electrons and the ions. Eq. (1.8) is the Helmholtz

equation with well known solutions [27, 28] of the form

Φ(r) = − Zde

4πεor
exp

(
− r

Ld

)
. (1.11)

Eq. (1.11) is often called the Debye potential or the shielded Coulomb potential. When

r � Ld, Eq. (1.11) becomes the usual Coulomb potential, whereas for r � Ld, the potential

decays exponentially. Physically, this means that far from the grain, the positive space charge

surrounding the grain will exactly cancel the negative charge of the grain — thus shielding

the far away plasma from the local plasma perturbations near the grain. The characteristic

spatial dimension of the shielding region is the dust grain Debye length given by Eq. (1.9).
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The Debye length is the characteristic length at which plasmas maintain the quasi-neutrality

condition, Eq. (1.1).

1.2.3 Hall parameter

In low temperature weakly-ionized plasmas where plasma-neutral collisions dominate,

the magnetization of the electrons and the ions is usually quantified according to the Hall

parameter. The method for quantifying dust grain magnetization must be handled differently

and the discussion is postponed until Sec. (2.1). The electron and ion (denoted with the

subscript s) Hall parameter is defined as the ratio of the Larmor frequency to the neutral

collision frequency and is given by

Hs =
ωc,s

νn,s

(1.12)

where

ωc,s =
qsB

ms

(1.13)

is the Larmor frequency, B is the magnetic field strength, ms is the mass,

νn,s =
vth,s

λp,s

(1.14)

is the neutral collision frequency,

vth,s =

√
8kbTs

πms

(1.15)

is the thermal speed,

λs =
1

nsσs
(1.16)

is the mean free path, and σs is the scattering cross section between either the electrons or

the ions and the neutral species. When the Larmor frequency exceeds the neutral collision

frequency such that the Hall parameter exceeds unity, the plasma species is considered

magnetized. When a plasma species is magnetized, collisions with neutral particles will,

on average, displace the center of the charged particle circular orbit by approximately one
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Larmor radius

rL,s =
msv⊥,s
qsB

=
v⊥,s
ωc,s

(1.17)

where v⊥,s is the velocity perpendicular to the magnetic field. As a result, the perpendicular

mean free path of the electrons and ions becomes of the order of the Larmor radius whereas

the parallel mean free path remains relatively unchanged.

(a) (b)

Figure 1.1: a) Contours of constant Argon ion Hall parameter plotted according to Eq. (1.18)
where kbTi = 0.025 eV. b) Argon ion Larmor radius versus magnetic field strength for several
values of kbTi.

The Hall parameter is more easily understood when expressed in terms of experimental

quantities by substituting the definitions from Eqs. (1.13 – 1.14). The result is

Hs =
qsB

ms

√
πms

8kbTs

kbTn

pn

1

σn
(1.18)

where σn is the collision cross-section between plasma species s and a neutral particle, Tn is

the temperature of neutrals, and pn is the neutral gas pressure. To magnetize an electron or

ion, Eq. (1.18) shows that the neutral gas pressure should be minimized and the magnetic

field maximized. A nominal value for the electron-neutral scattering cross-section is taken

from [1, 2, 3] as σe,n ≈ 4.0·10−20 m2, and the ion-neutral scattering cross-section is taken from

[1, 2, 4] as σi,n ≈ 1.0 · 10−18 m2. Several illustrative values for the electron and ion Larmor
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(a) (b)

Figure 1.2: a) Contours of constant electron Hall parameter plotted according to Eq. (1.18)
where kbTe = 2.0 eV. The range of neutral pressure pn shown here is smaller than Fig. (1.1a).
b) Electron Larmor radius versus magnetic field strength for several values of kbTe.

radii and Hall parameters under typical experimental conditions are shown in Figs. (1.1 –

1.2).

1.2.4 Coulomb coupling parameter

In dusty plasmas where many dust grains are present, the collective dynamics of the dust

component is typically categorized based on the ratio of the electrostatic potential energy

Epot between adjacent grains to the thermal kinetic energy of the grains Etherm. This ratio

is called the Coulomb coupling parameter is usually expressed as

RC =
Epot

Ethermal

=
e2Z2

d

4πεoddkbTd

exp

(
− dd

Ld

)
(1.19)

where Td is the dust temperature and dd is the average inter-grain distance. When RC � 1,

the electrostatic potential energy of the dust component is much larger than the kinetic

energy and the dust motion is dominated by the inter-dust electrostatic interactions. In this

state, the system is said to be strongly-coupled. In ground-based laboratory experiments,
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strongly-coupled systems often exhibit crystalline behavior where the dust grains can self-

organize into disc-shaped 2D hexagonal structures that may be vertically stacked as one to a

few layers [29, 30]. These crystalline systems often exhibit structure effects such as pattern

formation, grain boundaries, and crystal defects [31, 32, 33]. On the other hand, when

RC � 1, the inter-dust electrostatic interactions are weak compared to the thermal energy

of the system. In this case, the dust is in a more fluid-like state [34, 35] and often exhibits

collective dynamic behaviors such as waves [36, 37, 38, 39], streams [40], and shear [41].

The thermodynamic behavior of weakly-coupled systems has also been extensively studied

[42, 43, 44, 45, 46, 41].

1.2.5 Forces on dust grains

In this section, the most common forces that act upon dust grains is reviewed according

to other discussions commonly found in textbooks such as [22, 23, 47].

Electromagnetic force

The force on a charged moving dust grain in the presence of electric and magnetic fields

is

FE = qd(E + v ×B) (1.20)

where qd is the total charge of the dust grain, E is the electric field, v is the velocity of

the dust grain, and B is the magnetic field. The first term on the right hand side (RHS) of

Eq. (1.20) is usually referred to as the electrostatic force, and the second term on the RHS

is usually referred to as the magnetic force.

Gravitational force

In laboratory dusty plasmas, the gravitational force acting on a dust grain is

Fg = mdg =
4

3
πa3

dρdg (1.21)
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where md is the mass of the dust grain, ad is the radius of the grain, ρd is the mass density

of the grain, and g is the gravitational acceleration (g = 9.8 m/s2) on the Earth’s surface.

The radius and mass density of dust grains are usually provided by the manufacturer.

Neutral drag force

The neutral gas drag is often treated by the well-known Epstein formulation [48]. The

Epstein neutral drag expression is

Fn = −γv (1.22)

where

γ = δ
4

3
πa2

dmnvth,nnn, (1.23)

nn is the number density of neutrals, vth,n is the thermal speed of neutrals, mn is the mass

of an individual neutral atom, and δ is the Epstein coefficient. δ is a dimensionless constant

based on the nature of the collisions between the neutral gas atoms and the dust grain.

Experiments [49, 50, 42, 51] and theory [48] have shown that typical values for δ are 1 < δ < 2.

The Epstein neutral drag model given by Eqs. (1.22 – 1.23) is subject to two constraints:

First, the dust grain size must be much smaller than the mean free path, λn, of neutral gas

particles. In most low temperature dusty plasma experiments, a typical neutral Argon gas

pressure (on the high end) is pn = 66.7 Pa. This neutral pressure corresponds to a mean free

path of λn ∼ 500 µm, which is much greater the typical dust grain diameters of ad ≤ 15 µm.

Second, the dust grain speed must be much smaller than the thermal speed of the neutral

gas. A typical dust gain speed is vdust ≤ 40 cm/s, which is well below the thermal speed of

room temperature neutral Argon gas where vth,n ∼ 400 m/s.

The neutral drag coefficient, Eq. (1.23), is not particularly useful in its current form

because it is not written in terms of experimentally controllable quantities. To express the

neutral drag coefficient in a more useful form, we make the assumption that the neutral

gas obeys a Maxwell-Boltzmann velocity distribution and is in thermal equilibrium with the
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surrounding vacuum chamber. The neutral gas thermal speed is then given by

vth,n =

√
8kbTn

πmn

, (1.24)

and the number density is given by

nn =
pn

kbTn

. (1.25)

When inserting Eqs. (1.24 – 1.25) into Eq. (1.23), we get

γ = δ
4

3
π

√
8mn

πkbTn

a2
dpn. (1.26)

An alternative expression to Eq. (1.26) is

Γ = δ

√
8mn

πkbTn

pn

ρdad

(1.27)

where Γ = γ/md is the normalized Epstein drag coefficient. Eqs. (1.26 – 1.27) are now much

more useful because they are written in terms of three experimentally controllable quantities:

ρd is the dust mass density (specific to the material composition that is usually specified by

the manufacturer), ad is the dust radius (also specified by the dust manufacturer), and pn is

the neutral gas pressure.

Ion drag

The ion drag on a dust grain consists of two primary components: the direct impact of

ions on the dust grain surface (called the collection drag), and Coulomb scattering collisions

(called Coulomb drag). The total ion drag force is the sum of these two terms and is given

as

Fi = Fcoll
i + Fcoul

i (1.28)
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where Fcoll
i is the ion collection drag and Fcoul

i is the ion Coulomb drag. Both of these

contributions to the total ion drag have been thoroughly discussed in review articles [52, 53]

and measured [54, 55, 56, 57, 58, 59]. Modifications to these models have also been developed

[60, 61, 62, 63] to include effects such as long range ion scattering outside the dust Debye

sphere.

In most laboratory dusty plasmas, the characteristic dust grain speed is much smaller

than the ion thermal and drift speeds. In this case, both types of ion drag can be written

concisely as

Fcoll,coul
i = nimiσ

coll,CoulVivi (1.29)

where ni is the number density of ions, mi is the mass of an ion, σcoll,Coul is the momentum

exchange collision cross section, and Vi =
√

(v2
i + v2

th,i) where vi is the ion drift speed and

vth,i is the ion thermal speed. The collection cross section is given by

σcoll = πa2
d

(
1− 2eΦd

miv2
i

)
(1.30)

where Φd is the electrostatic potential on the dust grain. Eq. (1.30) is derived in the next

section while discussing dust grain charging processes. The Coulomb scattering cross section

[54] is given by

σCoul = 2πb2
0 ln

(
b2

0 + L2
d

b2
0 + b2

C

)
(1.31)

where

b0 = ad
eΦd

miv2
i

(1.32)

is the impact parameter,

bC = ad

√(
1− 2eΦd

miv2
i

)
(1.33)

is the impact distance of a 90 degree scattering event, and Ld is the dust Debye length given

by Eq. (1.9).
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1.3 An overview of dust grain charging

The collection of electrons and ions on the surface of a dust grain is arguably, one of the

most important concepts in dusty plasmas. A dust grain immersed in a plasma is subject to

both electron and ion currents so that the total current to the dust grain is

It = Ie + Ii (1.34)

where It is the total current, Ie is the electron current, and Ii is the ion current. The

electron and the ion currents each have two components: a thermal (random) component,

and a component that is in response to space charge distributions that may form around the

dust grain. Since the electron thermal speed is larger than the ion thermal speed by a factor

of approximately 103, the electrons are able to reach the dust grain surface much more

rapidly than the ions. As a result, the dust grain quickly obtains a net negative charge.

As the dust grain becomes more negatively charged, the electron current to the grain is

decreased due to the electrostatic repulsion between the plasma electrons and the electrons

residing on the dust grain. The ion current to the dust grain is then increased due to the

attractive interaction between the positively charged plasma ions and the negatively charged

grain. Eventually, the two currents to the grain reach equilibrium such that

Ie + Ii = 0. (1.35)

In the rest of this chapter, the physics of the electron and ion currents to the grain is reviewed

for several different models.

1.3.1 Orbit-motion-limited (OML) charging theory

The most widely used theory of dust grain charging is the Orbit-Motion Limited (OML)

charging theory that is derived from the Langmuir probe theory [64, 65] and commonly
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appears in textbooks on dusty plasmas [22, 23, 47, 66]. The OML charging theory is a

continuous model that does not take into account the discrete nature of charging processes.

This section provides an introduction to the OML charging theory, its results, and limitations

of the OML model.

OML equilibrium charge

(a) (b)

Figure 1.3: A microscopic plasma particle undergoes a collision with a macroscopic charged
dust grain. a) qsΦd > 0. b) qsΦd < 0.

Consider the case where an electron or an ion undergoes an electrostatic collision with a

negatively charged dust grain as shown in Fig. (1.3). In the OML theory, the details of this

electrostatic collision are subject to the following constraints: the grain dimension is much

smaller than the electron and the ion mean free paths, there is no ionization in the sheath

surrounding the grain, and secondary electrons are not emitted from the grain due to the

collision. The angular momentum and energy of the incident particle are conserved during

the collision. Conservation of angular momentum can be expressed as

msvo,sbs = msva,sad (1.36)

where ms is the mass of the incident plasma particle, vo,s is the initial speed of the plasma

particle at infinity, bs is the impact parameter, va,s is the velocity of the incident plasma

particle at the point of closest approach, and ad is the radius of the dust grain. Similarly,
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applying conservation of energy yields

1

2
msv

2
o,s =

1

2
msv

2
a,s + qsΦd (1.37)

where Φd is the electrostatic potential of the dust grain. Eqs. (1.36 – 1.37) can be rearranged

to solve for the impact parameter bs so that the collision cross section σd,s is given by

σd,s = πb2
s = πa2

d

(
1− 2qsΦd

msv2
o,s

)
. (1.38)

The charging current collected by the dust grain can be expressed as

Is = qsns < σd,svs > (1.39)

where

< σd,svs >=

(
ms

2πkbTs

) 3
2
∫ ∞
vs,min

σd,svsfs(vs)dvs, (1.40)

vs,min is the minimum velocity for which the charged plasma particle can hit the dust grain,

and

fs(vs) = 4π

(
ms

2πkbTs

) 3
2

v2
s exp

(
−msv

2
s

2kbTs

)
(1.41)

is the isotropic Maxwellian speed distribution. The minimum velocity with which the ions

can hit the grain vi,min = 0 due to the attractive force. Due to the repulsive force between

the electrons and the negatively charged grain, ve,min is non-zero for the electrons and is

obtained by applying energy conservation to get

ve,min =

√
2e|Φd|
me

. (1.42)
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Upon carrying out the integration of Eq. (1.40), the electron current to the grain is

Ie = Io,e exp

(
−e|Φd|
kbTe

)
(1.43)

and the ion current to the grain is

Ii = Io,i

(
1 +

e|Φd|
kbTi

)
(1.44)

where Io,e and Io,i are constant coefficients given by

Io,s = 4πad
2no,sqs

√
kbTs

2πms

. (1.45)

The absolute value around the |φd| has been added to ensure the correct sign is used for the

electron and ion charging current contributions. Physically, Eq. (1.45) corresponds to the

thermal components of the current to the grain when Φd = 0.

By substituting Eqs. (1.43 – 1.45) into Eq. (1.34) and assuming that no,e = no,i = no

far from the dust grain, we obtain the following expression for the total charging current:

It = 4πa2
dnoe

√
kbTe

2πme

[√
meTi

miTe

(
1 +

e|Φd|
kbTi

)
− exp

(
−e|Φd|
kbTe

)]
. (1.46)

At equilibrium, the total current to the grain is zero and Eq. (1.35) applies, which means that

the equilibrium charge can be extracted by numerically solving the transcendental equation

0 =

√
meTi

miTe

(
1 +

e|Φd|
kbTi

)
− exp

(
−e|Φd|
kbTe

)
. (1.47)
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(a) (b)

Figure 1.4: Argon parameters: kbTi = 0.025 eV. a) The normalized total charging current It

versus dust grain potential Φd according to Eq. (1.46). The normalized total charging current
is obtained by dividing It by the constant in front of the square brackets in Eq. (1.46). b)
Solutions to Eq. (1.47) to find the equilibrium dust potential versus dust grain radius ad.
The equilibrium dust potential was converted to the charge using qd = −Zde = 4πεoadΦd.

The charge of the dust grain, qd, can be related to the electrostatic potential of the

grain, Φd, through the following relationship:

qd = CΦd (1.48)

where C is the capacitance of the grain. Following the work of [13], the capacitance is taken

to be that of two concentric spheres separated by a distance L so that

C = 4πεoad

(
1 +

ad

L

)
. (1.49)

In the case presented here, the capacitance is evaluated between the dust grain surface and

the outer sheath edge where L = Ld and Ld is the dust grain Debye length given by Eq. (1.8).

In most cases ad � Ld and Eq. (1.49) becomes

C = 4πεoad. (1.50)
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Eq. (1.50) is the so-called thick sheath limit and applies to dusty plasmas where the dust

dimensions are much smaller than the Debye length.

The normalized charging current according to Eq. (1.46) and the corresponding dust

grain charge obtained by solving Eq. (1.47) are summarized in Fig. (1.4) for several values

of the electron temperature. As the electron temperature increases and the electrons are on

average more energetic, the contribution to the charging current from the electrons becomes

greater because a greater fraction of the electron population is able to overcome the repulsive

potential of the grain — thus making the dust grain potential more negative. A useful and

approximate empirical formula obtained from performing a linear fit to the equilibrium dust

charge versus grain radius is

Zd ≈ 3400 · ad[µm] (1.51)

where ad is the dust grain radius in units of µm. This formula is applicable only in the case

where kbTe = 2.0 eV such that Te/Ti = 80 and mi/me = 72810 for Argon plasma. Eq. (1.51)

is in agreement with the approximate analytic formula derived in [67].

OML charging timescales

When an initially uncharged dust grain is inserted into a plasma, the timescale required

for the dust grain to reach its equilibrium charge may vary based on not only the size of the

grain but also the plasma conditions. Eq. (1.46) can be converted to a first-order differential

equation for the grain charge by making the substitution

It =
dqd

dt
= −edZd

dt
(1.52)

so that

dZd

dt
= −4πa2

dno

√
kbTe

2πme

[√
meTi

miTe

(
1 +

e2Zd

4πεoadkbTi

)
− exp

(
− e2Zd

4πεoadkbTe

)]
. (1.53)
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(a) (b)

Figure 1.5: Argon Parameters: kbTi = 0.025 eV, ne = ni = 1015 m−3. a) The grain charge
Zd plotted as a function of time by solving Eq. (1.53) for several values of the grain radius
ad and the electron temperature kbTe. b) The time taken for a dust grain to obtain 90% of
its OML equilibrium charge t90 versus the grain radius ad.

where Eqs. (1.48) and (1.50) were substituted for the grain potential Φd. Eq. (1.53) can be

solved using standard numerical techniques [68]. The results are summarized in Fig. (1.5)

where it is shown that large dust grains reach their equilibrium charge fastest. However,

even for relatively small dust grains where ad = 100 nm, the equilibrium charge is obtained

in less than 1 ms. These results are also in approximate agreement with [69, 70] where the

discrete nature of charge collection was taken into account (as opposed to the continuous

OML treatment given here). The charge fluctuations can also be well approximated by a

Gaussian distribution [67] according to the expression

f(Z) =
1

σZ
√

2π
exp

(
−(Z − Zd)2

2σ2
Z

)
(1.54)

where Zd is the mean charge,

σ2
Z =

1

βe

(
1− Te

Ti
βeZd

1 + Te
Ti
− βeZd

Te
Ti

)
, (1.55)
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and βe = e2/(4πεoadkbTe). Eqs. (1.54 – 1.55) provide a good approximation for the charge

distribution when Zd > 50. It is also interesting to note that the product βeZd is independent

of the particle size since Eq. (1.51) shows that Zd is linear in ad. Therefore, the width of the

charge distribution given by Eq. (1.55) decreases as (
√
βe)
−1 or

√
ad and therefore σZ ≈

√
Zd.

For small dust grains (as in one to tens of nanometers) such as those typically found in plasma

processing reactors, discrete charge fluctuations can sometimes lead to positively charged

grains. Positively charged grains typically cannot be confined by plasma sheath electric

fields and could therefore be important for the removal of grain impurities in processing

reactors since. In other situations, it has also been shown that charge fluctuations can lead

to enhanced agglomeration and dust grain growth rates in low pressure plasmas [71].

1.3.2 Limitations of the OML theory and its alternatives

Break down of the OML theory

Strictly speaking, the OML treatment of dust grain charging assumes that all ions within

a mean free path of the dust grain with an impact parameter satisfying in inequality

bi,max ≤ ad

√(
1 + 2

e|Φd|
miv2

o,i

)
(1.56)

will be collected by the dust grain. The equality in Eq. (1.56) is a maximum impact

parameter at which the incident ion will undergo a grazing collision infinitesimally close to

the grain as shown by the red curve in Fig. (1.6). On the other hand, [72, 73] showed that all

ions satisfying Eq. (1.56) may not actually hit the dust grain due to minima in the effective

potential energy around the grain. Their work split the conservation of energy equation

given by Eq. (1.37) into its velocity components to yield

1

2
miv

2
o,i =

1

2
miv

2
r,i +

1

2
miv

2
φ,i + eΦd (1.57)
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Figure 1.6: The green dot located at the origin represents an ad = 0.25 µm dust grain
with an equilibrium charge of Zd = 840. The three solid curves correspond to possible ion
trajectories around a charged dust grain. The blue curve misses the grain, the red curve
undergoes a grazing collision, and the magenta curve hits the grain.

where vr,i and vφ,i = rφ̇ are the radial and angular components of the ion velocity, respectively.

An effective potential was then defined as

Ueff(r) = eΦd +
J2

2mir2
(1.58)

where J = mirvφ,i is the angular momentum of the ion and eΦd < 0 due to the attractive po-

tential between the positive ion and the negatively charged dust grain. The term J2/(2mir
2)

is positive definite and can therefore be treated as a repulsive potential for the ions.

The effective potential energy given by Eq. (1.58) is plotted for several values of the

angular momentum in Fig. (1.7). The large repulsive barriers where Ueff > 0 close to the

grain shown by the the blue J4 curves correspond to ions with large angular momenta that

do not come close to the dust grain. These are the ions that exceed the impact parameter

condition given by Eq. (1.56) and are included in the OML theory. The large attractive

wells where Ueff < 0 shown by the black J0 curves correspond to ions with negligible angular
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(a) (b)

Figure 1.7: Argon Parameters: ne = 1015 m−3, kbTe = 2.0 eV, kbTi = 0.025 eV. Several plots
of the effective potential given by Eq. (1.58) in both the high and the low density limits that
correspond to the small and large Debye length Ld limits, respectively. The Debye length
is obtained from Eq. (1.9). The angular speed for the J0−4 cases is calculated with vφ,i =
Jn/(mir) at the location of r = 10ad. a) ad = 5.0 µm, Zd = 20000, ni = 4 · 1017 m−3 and
Ld = 1.7 µm such that vφ,i = (0, 132, 163, 192, 380) m/s. b) ad = 0.25, µm, Zd = 840,
ni = 1015 m−3 and Ld = 37 µm such that vφ,i = (0, 400, 510, 603, 930) m/s. The blue, red,
and magenta curves in part b) correspond to the trajectories shown in Fig. (1.6).

momenta that approach the dust grain with a velocity that is mostly radial. This situation is

also included in the OML theory and corresponds to a case where the ion impact parameter

satisfies the inequality given by Eq. (1.56).

There are two intermediate cases with specific angular momentum values between J0

and J4 that correspond to the break down of the OML theory. First, in some situations,

Eq. (1.58) has an inner minimum and outer maximum (i.e. where dUeff/dr = 0) such that

ions streaming in toward the grain from infinity may not have enough energy to overcome

the outer maximum. This is shown in the J2 case (green curve) of Fig. (1.7a) where there is a

small potential barrier located at approximately r = 7 ad. Second, when there are collisions

near the grain that lead to low energy ions, the ions may become trapped [74, 75] in the

inner minimum shown in the J2 green and J3 red curves. These ions remain trapped (i.e.,

bound) in this region indefinitely until undergoing another collision. [76] showed that the
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barrier height of the effective potential is given by the inequality

Umax < 10−2Te

Ti

ad

Ld

kbTi. (1.59)

For typical glow discharge plasmas Te/Ti ≈ 100 and ad/Ld ≈ 0.007 so that

Umax < 0.007kbTi, (1.60)

and hence only a small fraction of kbTi Maxwell-Boltzmann distributed ions have low enough

energy that they can become trapped. The distribution and number of these ions is still an

open question, but in most cases they are usually ignored [73].

Alternative charging theories

The OML charging theory presented above is just one of several possible approaches to

deriving the dust grain charge that are based on the orbital motion of ions. Some alternatives

are the Modified Orbit Motion Limited (MOML) [77, 78] theory and the Flowing Orbit

Motion Limited [22, 79] theory. All of these approaches are simplifications of the generalized

Orbit Motion (OM) theory [80, 81]. In the OM theory, the ions are no longer assumed to

undergo a grazing collision such as what is shown in Fig. (1.3b). Instead, an absorption

radius exists inside which all ions are drawn into and collected by the dust grain. The OM

theory is sparsely used because it is by far the most complicated. Moreover, [76, 80] have

shown that for spherical grains, the OM theory ion current is identical to the OML theory

ion current in the limit ad/Ld → 0.

As an alternative to the orbital motion category of dust grain charging theories, there is

the Radial Motion (RM) charging theory [82, 83, 84]. In the RM theory, the ions are assumed

to be cold such that Ti = 0 at distances beyond a mean free path. Starting from rest, the ions

gain kinetic energy by falling radially inward due to the attractive negative potential of the

grain. The Poisson equation is then numerically solved for Boltzmann electrons (just as in
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the OML case) and a radially inward ion flow of ions. Angular motion is neglected. A useful

(and approximate) empirical formula adapted from [83] for the RM predicted equilibrium

dust grain charge is

Zd ≈ 600 · ad[µm] (1.61)

where ad is the dust grain radius in units of µm. This formula is applicable only in the case

where kbTe = 2.0 eV and mi/me = 72810 for Argon plasma. In comparison to Eq. (1.51), the

RM predicted equilibrium dust grain charge is approximately 20% of that predicted by the

OML theory. This result is disputed by [84] where they claim that the boundary conditions

were not handled correctly in [83] and as a result, the dust grain charge was over-estimated

and should be much lower than what the empirical formula Eq. (1.61) predicts. Regardless

of this dispute, Eq. (1.61) is still useful to provide an approximate estimate of the dust grain

charge according to the RM theory.

Dust charge measurements

Up until this point, two possible estimations of the dust grain charge have been provided

based on the OML and the RM charging theories. These theories predict dust grain charges

which differ by a factor of at least 5 – 6. In reality, the true grain charge may lie somewhere

in between these two limits. Since this dissertation is an experimental work, it is important

to verify which theory is most likely correct based on previous experimental measurements.

The following list includes a brief summary of experimental work to extract the dust grain

charge.

• [85] examined binary dust collisions in a parabolic confinement along the sheath edge.

It was found that although the error bars were large due to the limited spatial and

temporal resolution of the grain motion in this early work, the effective dust charge

was in very good agreement with the OML predictions.

24



• [86] studied the thermal mode spectra of finite dust clusters consisting of 3 to 145

dust grains in a plasma sheath and found that the measured dust grain charge was

in good agreement with the OML predictions. This experiment is part of a broader

category of resonance experiments where the resonance can be driven with natural

thermal fluctuations (as in the work above), laser excitation [87, 88, 89], and even an

external modulation applied to a wire that is inserted into the dust region [90]. All of

these results broadly agree with the OML theory to within a factor of two.

• [91] performed charge measurements on a dust crystal suspended in the plasma sheath

by modifying the tilt angle of gravity with respect to the crystal plane. The observed

changes in the characteristic shielding length agreed with the OML theory.

• [92] examined the role of an ion-wake mediated non-reciprocal interaction force between

two dust grains suspended in a vertical chain in a strongly magnetized plasma sheath.

The driven electrode was modulated with a sinusoidal signal to induce small amplitude

oscillations of the grains. The results showed that the dust charge remains constant

for a magnetic field strength of up to B = 2.5 T. Larger magnetic field strengths were

not considered.

With the exception of the first method, these works were based on the assumption of a

linear plasma sheath electric field. A linear plasma sheath electric field is well justified by

simulations [93, 94] and measurements [95, 96]. Based on the measurements above, the OML

theory is considered to predict an accurate dust grain charge for grains suspended in the

plasma sheath region. Therefore, we proceed with a theoretical development of dust grain

g × B drift under the assumption that OML theory provides a reasonable estimate of the

dust grain charge.
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Chapter 2

Theory and Simulations: Using g x B Drift to Measure Grain Charge

In the previous chapter, applications of dusty plasmas were briefly introduced followed

by an introduction to typical forces acting on laboratory dusty plasmas. A final emphasis

was placed on the widely used OML theory of dust grain charging, its limitations, and some

validation measurements. In this chapter, the requirements for dust grain magnetization

are discussed in great detail where we propose an alternative method to quantify dust grain

magnetization. Simulations are then used to outline the reasons why magnetizing dust

grains in a plasma sheath under real experimental conditions is extremely difficult. As an

alternative to dust magnetization in the plasma sheath, we construct a model for dust grain

g × B drift motion in the plasma bulk and then show that observations of this motion can

be used to obtain a unique measurement of the grain charge.

2.1 On the meaning of dust grain magnetization.

In contrast to the collisions between electrons or ions with the background neutral gas

that were discussed in Sec. (1.2.3), a micron-sized dust grain is relatively unaffected by

a single collision with a neutral gas particle. This is due to the approximately 10 orders

of magnitude mass difference between the two. Although the mass difference is large, the

average inter-neutral spacing in laboratory dusty plasmas is usually smaller than the grain

diameter — meaning that there are many neutral gas particles in immediate proximity to a

dust grain. For example, at a typical neutral gas pressure of pn = 0.67 Pa where the neutral

particle number density is nn ≈ 1.6·1020 m−3, the approximate inter-neutral particle distance

is 0.2 µm. This means that even for a relatively small dust grain radius of ad = 0.25 µm

where the volume occupied by the grain is Vd = 6.5 · 10−20 m3, the dust grain is occupying
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(a) (b)

Figure 2.1: Argon parameters: kbTn = 0.025 eV. a) The approximate inter-neutral distance

n
−1/3
n (where nn is the number density) versus neutral pressure pn b) An ad = 0.25 µm

diameter dust grain surrounded by neutral gas particles at pn = 0.67 Pa. The gray dots
represent a typical inter-neutral spacing of approximately 0.2 µm. The dust grain radius
(green dashes) and the neutral particle spacing (gray dots spacing) are to scale. The area of
the gray dots is not to scale.

the space where approximately 4 neutral particles would otherwise be. In fact, the average

inter-neutral distance does not exceed approximately 1 µm until a neutral gas pressure of

pn ≈ 0.0033 Pa, which is far below the usual operating pressures of dusty plasma experiments.

A summary of typical characteristic inter-neutral length scales versus neutral gas pressure is

provided in Fig. (2.1).

When quantifying dust grain magnetization, it is important to take into account both the

cumulative effect of many dust-neutral collisions and also the large mass difference between

the neutral particles and the dust grains. We define a modified Hall parameter specifically

for an isolated dust grain as the ratio of the stopping distance due to neutral collisions to

the Larmor circumference of the dust grain. This is expressed as

Hm,d =
xstop

2πrL,d

(2.1)
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where xstop is the dust grain stopping distance and

rL,d =
mdv

qdB
(2.2)

is the dust grain Larmor radius where v is the velocity of the dust grain and md is the dust

grain mass. The stopping distance is the distance that a dust grain, when given an initial

velocity, will travel before coming to rest due to the cumulative effect of many dust-neutral

collisions. A dust grain is considered to be magnetized when Hm,d is of the order unity such

that it will travel a total distance of at least one Larmor circumference before the cumulative

effect of many dust-neutral collisions brings the dust grain to rest.

We derive the stopping distance by considering a 1D model of a dust grain under the

influence of linear drag and no other forces. In this situation, the equation of motion is

dv

dt
= −Γv (2.3)

where Γ = γ/md is the normalized Epstein drag coefficient. Epstein drag was briefly intro-

duced in Sec. (1.2.5) and is further discussed and measured in great detail in Sec. (4.1.3).

For the purposes of this derivation, the factor Γ has a value of the order 1 – 100 s−1 and is

given by Eq. (1.27). In this context, Γ can be thought of as the decay rate of the dust grain

momentum due to frequent neutral collisions. The integration of Eq. (2.3) is straightforward

and yields

v(t) = vo exp (−Γt) (2.4)

where the initial time is assumed to be zero and vo is the initial velocity. Eq. (2.4) can be

integrated again to get the position of the dust grain

x(t) =
vo

Γ
(1− exp (−Γt)) (2.5)
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where the initial position of the dust grain was assumed to be xo = 0. In the limiting case

of t −→∞, the position of the dust grain asymptotically approaches its final resting position

xstop =
vo

Γ
. (2.6)

Eq. (2.6) is the stopping distance. Eq. (2.2) and Eq. (2.6) can be substituted into Eq. (2.1)

to get the following expression for the modified Hall parameter:

Hm,d =
ωd

2πΓ
=

qdB

2πΓmd

(2.7)

where ωd is the dust Larmor frequency. Alternatively, returning to Eq. (2.1), the factor of

2π can be omitted by taking the ratio of the stopping distance to the Larmor radius (rather

than the circumference) of the dust grain orbital path. In this case, we have

Hd = 2πHm,d =
ωd

Γ
(2.8)

where Hd is the dust Hall parameter. For the remainder of this dissertation, we will refer to

Eq. (2.7) as the modified dust Hall parameter and Eq. (2.8) as the dust Hall parameter.

So far, by comparing the ratio of the dust grain stopping distance to the Larmor cir-

cumference (or radius), we derived two possible expressions to quantify the magnetization

of an isolated dust grain which differ by a factor of 2π. At first glance, the factor of 2π

may seem to be of no consequence; however, as we will soon show using simple 2D models,

the factor of 2π is extraordinarily important when designing an experiment to observe dust

magnetization. For example, consider the situation where a charged dust grain is confined

to the 2D x-y plane and is subject to both the magnetic force (where B = Boẑ) and neutral

gas drag. The coupled equations of motion for this model are

d2x

dt2
= ω

dy

dt
− Γ

dx

dt
(2.9)
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and

d2y

dt2
= −ωdx

dt
− Γ

dy

dt
. (2.10)

Eqs. (2.9) and (2.10) can be non-dimensionalized with the substitutions x̃ = x/rL,d, ỹ =

y/rL,d, and t̃ = tωd/(2π) to become

d2x̃

dt̃2
= 2π

dỹ

dt
− 1

Hm,d

dx̃

dt
(2.11)

and

d2ỹ

dt̃2
= −2π

dx̃

dt
− 1

Hm,d

dỹ

dt
. (2.12)

This non-dimensional form is convenient for both deriving the analytic solution (see Ap-

(a) (b)

Figure 2.2: Solutions to Eqs. (2.11 – 2.12) are plotted with the axes in non-dimensional
form. a) Dust grain trajectories for several values of the modified Hall parameter. The
solid blue curve corresponds to a case when Hm,d = 1 and Hd = 2π. The solid red curve
corresponds to a case where Hm = 1/(2π) and Hd = 1. The solid green curve corresponds
to a case where Hm = 1/(2π)2 and Hd = 1/(2π). b) The non-dimensionalized y-velocity
of the dust grain with the same color scheme as part a). The colored dashed lines are the
exponential decay envelopes exp (−t/Hm,d) for the damped Larmor motion.

pendix C for details) as well as plotting solutions to examine the motion of the dust grain for

different values of both the modified and standard Hall parameters. Fig. (2.2) shows example
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dust grain trajectories for different values of both versions of the Hall parameters. When

the modified Hall parameter is Hm,d = 1, the spiral-like Larmor motion, although damped,

is still obvious. On the other hand, when the modified Hall parameter is Hm,d = 1/(2π),

the Larmor motion is so strongly damped that it may become difficult to observe. There-

fore, when constructing a laboratory experiment to magnetize dust grains, the factor of 2π

between the Hall parameter definitions is an extremely important factor that determines

whether or not the direct observation of dust grain Larmor motion is feasible.

(a) (b)

Figure 2.3: Parameters: ad = 0.25 µm, ρd = 2.2 g cm−3. a) The dust grain Larmor radius
versus magnetic field strength for several typical dust grain velocities in a laboratory. b)
Contours of constant values of the modified dust grain Hall parameter Hm,d given by Eq. (2.7)
versus neutral Argon pressure pn and magnetic field strength B. For comparison, these dust
grains at room temperature kbTd = 0.025 eV will have a thermal speed of vth,d ≈ 0.8 cm/s.

As shown in this example model, the visibility of the dust grain Larmor motion strongly

depends on the neutral gas damping factor Γ which was expressed in terms of experimentally

controllable quantities in Eq. (1.27). Eq. (1.27) can then substituted into Eq. (2.7) to obtain

the modified Hall parameter in terms of experimental quantities. Fig. (2.3b) shows contours

of the modified Hall parameter for a dust grain with a radius ad = 0.25 µm and a charge

Zd = 840. The only region of (B, pn) parameter space where the modified Hall parameter is

greater than 1 is the upper left hand corner where B ≥ 1.0 T and pn ≤ 0.04 Pa. Therefore,

duplicating the dust grain motion of Fig. (2.2) in a laboratory will require a large magnetic
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field as well as operating at a neutral gas pressure below the usual dusty plasma experiment

range of pn ≥ 0.13 Pa. A summary of the dust grain Larmor radius is also included in

Fig. (2.3a) because an experiment in this geometry also requires that the Larmor diameter

be smaller than the physical dimensions of the plasma chamber which is usually of the order

7 – 20 cm.

The dust grain magnetization requirements discussed in this section highlight the ex-

traordinary difficulty of constructing and operating an experiment that magnetizes the dust

grains and clearly shows Larmor motion. However, it may be possible to observe dust grain

magnetization effects other than pure Larmor motion. The remainder of this dissertation is

devoted to constructing and performing an experiment to measure the g×B magnetization

effect on dust grains. In the next section, we will develop a theory to address the following

open question: Can an experiment be designed such that the dust grains undergo a measur-

able amount of g×B drift, and if measurable, what other information about the dust grains

can we extract from the measurement?

2.2 Modeling falling dust grains in the bulk of a magnetized plasma

In this section, we develop a theory for dust grain g × B drift (sometimes also called

deflection) in a plasma bulk, and then show that the amount of deflection is measurable using

realistic experimental conditions. It is also shown that the amount of deflection is directly

proportional to the dust grain charge. As such, observations of this motion can therefore be

used perform a unique dust grain charge measurement.

First, to illustrate the concept of g×B drift, we simplify the problem by neglecting the

neutral drag on the dust grain. A dust grain that is subject to the magnetic force and the

gravitational force obeys the equation of motion

Fnet = md
dv

dt
= qdv ×B +mdg. (2.13)
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Due to the cross product, the solution to Eq. (2.13) can be complicated depending on the

geometry of the magnetic field. However, regardless of the magnetic field geometry, the

solution can be split into three components such that

v = v‖ + vL + vg (2.14)

where v‖ is the solution for parallel motion along the magnetic field, vL is the solution for

the usual oscillatory Larmor motion, and vg is a velocity perpendicular to both g and B

that satisfies the equation

qdvg ×B +mdg = 0. (2.15)

The solution to Eq. (2.15) is

vg =
md

qd

g ×B

B2
. (2.16)

Eq. (2.16) is a guiding center drift of the dust grain that arises due to the coupling between

the gravitational and magnetic fields and is called the g ×B drift. In the following section,

a more realistic framework for describing the motion of a dust grain falling through the

plasma bulk is developed by introducing neutral drag to the model. When the neutral drag

is introduced, the guiding center motion is suppressed, and the motion asymptotes to a

constant deflection angle while approaching terminal speed.

2.2.1 The equations of motion

The motion of a dust grain falling vertically downward in the plasma bulk with neutral

gas drag is governed by the following equations of motion:

Fnet = md
dv

dt
= qdv ×B +mdg − γv. (2.17)

By expanding the cross product of Eq. (2.17) and substituting B = −Bẑ, the coupled 2D
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(a) (b)

Figure 2.4: a) A force diagram for the falling dust grain model. The particle is assumed
to be moving down and to the left as illustrated by the arrow pointing toward v. The force
inventory is as follows: FB is the magnetic force, FGravity is the gravitational force, and FDrag

is the neutral gas drag. b) An example cartoon of what the dust motion may look like. The
asymptotic deflection angle is α.

system of equations becomes

d2x

dt2
= −ωd

dy

dt
− Γ

dx

dt
(2.18)

and

d2y

dt
= ωd

dx

dt
− Γ

dy

dt
− g. (2.19)

2.2.2 Analytic solution to the equations of motion

The analytic solution to Eqs. (2.18 – 2.19) is a lengthy mathematical exercise that

does not significantly contribute to the physics of the posed problem. Therefore, a detailed

derivation of the solution is provided in Appendix C, and in this section, only a general

outline of the major components of the solution is provided. The general solution is the sum

of a homogeneous and a particular solution such that

v = vh + vp. (2.20)
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The homogeneous solution is

vh(t) =

(
vo,y +

Γg

ω2
d(1 + Γ2/ω2

d)

)
exp(−Γt)

 sin(ωdt)

cos(ωdt)


+

(
vo,x +

g

ωd(1 + Γ2/ω2
d)

)
exp(−Γt)

 cos(ωdt)

− sin(ωdt)


(2.21)

where vo,y and vo,x are the initial velocities. The particular solution is

vp =
−g

ω2
d(1 + Γ2/ω2

d)

 ωd

Γ

 , (2.22)

which is the g×B drift solution that has been modified due to the presence of neutral drag.

Eqs. (2.20 – 2.22) can be more easily understood by examining some limiting cases. The

simplest limiting case is the situation where g = 0 and Γ = 0 (i.e., when there is no gravity

or neutral gas drag). In this case, the particular solution vanishes and the homogeneous

solution contains the expected undamped oscillatory Larmor motion. A second important

limiting case is when g = 0 and Γ 6= 0. In this case, the Larmor motion is exponentially

damped such that the dust grain will undergo spiral-like motion, which is the same behavior

that was discussed in Sec. (2.1).

2.3 Adapting terminal speed solutions to real experimental conditions

The terminal speed limiting case where t→∞ can be used to understand the dust grain

motion under realistic experimental conditions. In this limit, the homogeneous solution given

by Eq. (2.21) vanishes and only the particular solution given by Eq. (2.22) remains. We define

the ratio of the x and y components of the particular solution velocities as

α =
|vx|
|vy|

=
ωd
Γ

(2.23)
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which is the same asymptotic terminal speed deflection angle α as shown in Fig. (2.4b). This

terminal speed deflection angle α is mathematically equivalent to the dust Hall parameter

Eq. (2.8), and it has already been shown in Sec. (2.1) that the neutral gas drag will make

observations of dust grain magnetization difficult. The components of the terminal velocities

are

vx = −ωdg

Γ2

1

1 +
(
ωd

Γ

)2 (2.24)

and

vy = − g
Γ

1

1 +
(
ωd

Γ

)2 . (2.25)

(a) (b)

Figure 2.5: Parameters: Bz = −0.5 T, ad = 0.25 µm, pn = 0.67 Pa. a) Solutions to
Eqs. (2.18 – 2.19) in an Argon plasma for several different values of the dust charge Zd.
b) Vertical position of the dust grain versus the y-velocity vy. The dust grain charge does
not significantly affect the terminal speed because Hd = ωd/Γ � 1 and hence vy = −g/Γ
according to Eq. (2.25).

In contrast to the model presented in Sec. (2.1), the neutral drag is not able to bring

the falling dust grain to rest due to the presence of the gravitational force. Instead, the dust

grain will reach terminal speed and its deflection will asymptotically approach the constant

angle α. The size of the deflection angle determines whether or not it is possible to observe

this effect under laboratory conditions. The deflection angle can be written in terms of
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experimental quantities as

α =
qdB

4
3
π
√

8mn

πkbTn
δpna2

d

∼ qdB

pna2
d

. (2.26)

so that it contains all of the necessary information to define the experimental parameters

under which the dust grain g×B deflection is measurable. Eq. (2.26) shows that the magnetic

field B must be maximized whereas the dust grain radius ad and the neutral gas pressure pn

must be minimized. The dust grain charge Zd is not an experimentally controllable quantity

(i.e., the experimenter cannot ”set” a specific grain charge), so it is important to examine

dust grain trajectories for several values of the dust grain charge as shown in Fig. (2.5).

In the worst case scenario where Zd = 100 and Hm,d = 0.0008, the falling dust grains still

deflect a horizontal distance of approximately 0.3 mm over a vertical distance of 10 cm.

For the dust grain g × B drift experiments performed in this dissertation, the camera

resolution is typically 20 µm per pixel with a viewing region of approximately 4 x 4 cm2. This

means that if the particle deflection is observed over the latter half of the trajectory shown

in Fig. (2.5), the grain will deflect nearly 140 µm = 7 pixels which is a reasonable amount

to measure. It is also important to note that in this analysis, even though the modified Hall

parameter is extremely small (of the order 10−3), the dust grain g×B magnetic effect is still

likely to be observable. Thus, we have shown that the geometry the model presented in this

section permits the detection of magnetic effects at low modified Hall parameters, which in

many other experiment geometries would not be possible. Furthermore, since the deflection

angle α given by Eq. (2.26) is directly proportional to the grain charge, an observation of α

will provide a measurement of the dust grain charge qd.
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Chapter 3

Analysis Software and Experiment Apparatus

In Chapter 2, a theory of g ×B drifting dust grains in the plasma bulk was presented.

The dust grains quickly reach terminal speed while also approaching an asymptotic deflection

angle given by Eq. (2.26) that is linearly proportional to the dust grain charge. Due to this

linear relationship, an observation of the asymptotic deflection angle can be used to directly

measure the dust grain charge. The terminal speed deflection angle also turns out to be

mathematically equivalent to the dust Hall parameter given by Eq. (2.8) which means that a

measurement of the deflection angle is also a measurement of the magnetization of the dust

grains. In this chapter, we outline the creation of an image analysis module for the Complex

Plasma Analysis (CoPlA) software package that was used to observe the dust grain g × B

deflection, and then discuss details of the Magnetized Dusty Plasma eXperiment (MDPX)

device that will be used to generate the necessary high magnetic field environment.

3.1 The Complex Plasma Analysis (CoPlA) software

CoPlA is a dusty plasma experiment control manager written in the C++ programming

language that was originally written by U. Konopka. The low level nature of C++ code

allows users to closely manage system resources to optimize performance. Recent work

on the CoPlA software by B. Lynch was focused on the addition of a fast image analysis

module to the CoPlA software. The module performs a fast analysis on large volumes of

digital imaging data so that information about dust cloud dynamics can be extracted in

near real-time. In the following sections, the fundamentals of dusty plasma imaging and the

relevant portions of the image analysis module that was used to perform the measurements

in this dissertation are discussed.
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3.1.1 An overview of dusty plasma imaging systems

The imaging systems and analysis methods used in dusty plasmas are very similar to

those used in other engineering applications [97, 98, 99, 100, 101] where micron-sized tracer

particles are inserted into hydrodynamic flows to study the properties of the underlying fluid

medium. In the case of dusty plasmas, the tracer particles are the dust grains. The dust

grain motion is influenced by not only the underlying plasma (fluid) medium, but also the

inter-dust electrostatic forces.

The macroscopic size of the dust grains permits the use of relatively inexpensive (∼

$2000 US) digital imaging systems to observe dust grain motion. The dust grains are illumi-

nated using a monochromatic laser that is spread into a laser sheet using a cylindrical lens.

Digital cameras are then used to record the dust grain motion. In single camera viewing sys-

tems such as those illustrated in Figs. (3.1 – 3.2), light scattered from dust grains is typically

observed at 90 degrees from the paraxial axis in order to maximize the depth of field. An

important feature of these digital imaging systems is that they do not perturb the underlying

dust system yet still contain valuable information pertaining to both the inter-dust inter-

actions as well as properties of the non-dusty plasma components. A typical illuminating

laser has a power of approximately 50 – 300 mW, which, when spread into an illuminating

plane, does not contain sufficient energy density to influence dust grain motion. Camera

frame rates may range from 30 – 1000 frames per second (FPS) with 0.2 – 8 Megapixel (MP)

resolutions. The spatial resolution of these systems typically ranges from 20 – 40 µm/pixel.

The two most common image analysis methods applied to dusty plasmas are the Particle

Image Velocimetry (PIV) and the Particle Tracking Velocimetry (PTV) techniques. The PIV

technique analyzes the shift in spatial correlation peaks between sub-domains of an image.

The shift in the correlation peak is then used to calculate a velocity. Since each sub-domain

typically contains many dust grains, the PIV technique is a non-localized technique that

extracts only an average velocity of the grains within the sub-domain. The PIV technique is
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Figure 3.1: A top-down view camera looks through a transparent glass plate coated with
a conductive film that is mounted within the grounded top electrode. The dust grains are
vertically suspended in the plasma sheath electric field and illuminated with a thin horizontal
laser sheet. An RF signal is applied to the bottom electrode. This is a common experiment
geometry for single camera viewing systems. Some configurations may also have an RF
signal applied to both the top and bottom electrodes.

best suited for systems with a large particle number densities that may not be individually

resolvable. As an alternative to PIV, the PTV technique is a localized method that tracks

individual particles through sequential image frames by performing particle-pairing so that

a velocity is calculated for each individual dust grain. However, in cases where there are

many particles in close vicinity to each other, particle-pairing may become ambiguous and

the calculated velocities may be incorrect. As a result, the PTV technique is best suited for

systems with low particle number densities. Both of these techniques are discussed in great

detail in textbooks [102, 103, 104], review articles [105, 46, 106, 107], as well as discussions

of a crossover between the two techniques [108, 109, 110].

A challenge for all imaging systems and analysis techniques is the management of large

volumes of data. For example, a single 8-bit 4 MP grayscale camera operating at 100 frames
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Figure 3.2: The vacuum chamber contains a plasma (the white/purple glow) that is gener-
ated by an RF signal applied to the bottom electrode while the top electrode is grounded.
This is the same electrical configuration shown in Fig. (3.1). In the magnified side view, the
dust cloud is illuminated using a red laser spread into an sheet using a cylindrical lens. The
dust cloud (red dots) is vertically suspended against gravity by the plasma sheath electric
field. The top-down view is an 8-bit grayscale image of the dust cloud containing several
thousand dust grains (white dots). The spatial resolution is approximately 30 µm/pixel.
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per second will generate 4 Gigabytes (GB) of data every 10 seconds. In most cases, the data

is stored on a hard disk for post-experiment analysis, and even then, analyzing all recorded

data is a substantial computational challenge. For this reason, having a highly optimized

and computationally efficient method to analyze large volumes of dusty plasma imaging data

could be highly advantageous. For example, several Terabytes (TB) of data was recorded for

this dissertation and without access to fast analysis software, categorizing and sorting the

data would have been computationally prohibitive. In addition, for some systems, the fast

analysis could be used to construct an autonomous experiment that is operated in a closed

feedback control loop.

The fast image analysis and PTV module that was added to CoPlA was aimed at circum-

venting the logistical and technical issues associated with large volume data management.

The software has been thoroughly benchmarked and tested in [111]. In the following section,

we briefly summarize the components of the image analysis module that are relevant to the

analysis performed in this dissertation.

3.1.2 Dust grain identification technique

(a) (b)

Figure 3.3: a) A pixel intensity histogram of the entire top-down view image from Fig. (3.2).
b) An example image demonstrating the effect of high and low global intensity thresholds.
The white dots in the background image are the calculated centers of intensity for each grain.
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The CoPlA particle identification routine uses a global intensity threshold to identify

all pixels that belong to dust grains. The effect of the global intensity threshold is shown

in Fig. (3.3). There are several alternative methods for selecting the appropriate intensity

threshold such as those discussed in [112, 113]. However, these methods have a substantial

computational overhead. In our fast analysis approach, we select an appropriate threshold in

an ad-hoc manner that minimizes computational overhead while still allowing us to reliably

identify dust grains. If the thresholded image (as shown in Fig. (3.3b)) does not appear

to be collecting all pixel information, a CoPlA user can change the threshold and receive

instant feedback in real-time. Situations like this may arise in, for example, cases where the

RF power applied to the plasma was recently increased. In this situation, the amount of

background noise will increase and as a result, the threshold will need to be increased.

When a global intensity threshold is applied to an 8-bit grayscale image (where pixel

intensity values vary from 0 – 255), the CoPlA software is effectively creating a binary image.

The resulting image is binary in a sense that all pixels with an intensity value above the

threshold are treated as belonging to dust grains (i.e., “True”) and all pixel intensities at

or below the threshold are assumed to be background noise (i.e., “False”). Some possible

sources of background noise in dusty plasma experiments are thermal fluctuations of the

camera sensor, plasma glow, and laser reflections. If the threshold is set too low, background

noise may be collected from pixels in the local neighborhood of the grain. If the threshold

is set too high, not all available information about the grain is collected. This is illustrated

in Fig. (3.3b). Intensity thresholding, whether global or not, introduces some potential

error into the calculated locations of dust grains. One such effect is pixel-locking where the

calculated center of dust grains may bias toward integer values or integer sub-fractions of a

pixel. This effect (and others), as well as mitigation techniques, are discussed in [114, 103].

After setting a global intensity threshold, the image analysis and PTV module of CoPlA

iterates through each pixel of the image until a pixel is found with an intensity value greater

than the threshold. When a pixel with the intensity value greater than the threshold is
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encountered, a grain’s “edge” has been found at the location (i, j). A flood fill [115] is then

performed starting from this edge (also called a seed pixel) to find all other pixels belonging

to the grain image. Appendix D provides a detailed illustration of the flood fill algorithm.

Once all pixel information has been collected, the center of each particle is found using a

moment method, which is known to have a sub-pixel accuracy to within approximately 0.1

– 0.2 pixels or better for particle image diameters of 2 – 3 pixels [114].

3.2 The Magnetized Dusty Plasma Experiment (MDPX)

Figure 3.4: The Magnetized Dusty Plasma eXperiment (MDPX) in a configuration where
the magnetic field is vertical. Each half of the magnet system (i.e. the hollow black cylinders)
is 91 cm tall. The cylindrical halves are called the upper and lower cryostat, respectively.
The spacing between the cryostats is 19 cm. Within the bore and at the axial mid-plane, an
octagonal plasma chamber with an ID of 35.5 cm is mounted. The plasma chamber contains
two 35.5 cm electrodes in a parallel-plate configuration with a 110 mm spacing. The purple
plasma glow is shown in the left figure.

The Magnetized Dusty Plasma eXperiment (MDPX) device is an open-bore (i.e., a hol-

low cylinder with an OD of 125 cm and ID of 50 cm) and split-bore (meaning there are
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two separate 91 cm x 125 cm hollow cylindrical halves) superconducting magnet system.

MDPX is shown in the vertical orientation in Fig. (3.4). Each hollow black cylinder con-

tains two individually wound coils of niobium titanium superconducting wire. Each coil is

independently controlled and programmable, which provides the ability to generate uniform

magnetic fields up to 4 T or to generate spatially varying magnetic geometries such as a cusp

or a linear gradient of up to 2 T/m [116]. The MDPX device is discussed in great detail in

the literature [117, 118, 116, 119]. In this section, we provide only a brief summary of the

relevant dimensions and performance information.

For the purposes of using the MDPX device to construct an experiment to observe

dust grain g × B drift, we are interested in the uniform magnetic field mode of operation.

Detailed measurements of the magnetic field in the plasma chamber region of the device

[118] have shown that the axial magnetic field variations are of the order 0.2% over a 6 cm

scanning distance, and the radial magnetic field variations are of the order 0.95% over a 20

cm distance. Due to the measured uniformity of the magnetic field generated by the MDPX

device, for all measurements and error analysis performed in this dissertation, the magnetic

field is considered to be uniform with no spatial variation.

The split-bore feature of the MDPX device means that there is a 19 cm spacing between

the upper and the lower cryostat to provide substantial access to the plasma volume. The

large amount of optical access is exploited extensively in the g × B drift experiments. An

octagonal plasma chamber is mounted inside the magnet bore at the axial mid-plane. The

plasma chamber has a circular ID of 35.5 cm and is pictured in Fig. (3.4). The eight outer

ports of the octagon are 12.7 cm x 10.2 cm and may be either transparent windows or

adapted to standard vacuum fittings (i.e. KF-40, ISO-100, etc.). Inside the chamber, a pair

of 30.4 cm diameter electrodes are configured in a parallel plate fashion with a 110 mm

spacing. A 13.56 MHz RF signal is applied to the bottom electrode, and the top electrode

is grounded. The RF signal is capacitively coupled to the system to create a DC self-bias

voltage drop across the sheath. The upper electrode has a circular cutout within which an

45



approximately 100 cm2 transparent Fluorine-doped tin oxide (FTO) conductive glass plate

is mounted. The transparent glass plate is necessary to provide a top-down view of dust

grain motion as shown in Figs. (3.1 – 3.2). The neutral gas pressure is measured by an MKS

722B Baratron pressure gauge that is accurate to 0.5% of the measured pressure value.

3.2.1 Reconfiguring MDPX to measure g × B drift

The g × B experiment requires that the magnetic and gravitational fields are perpen-

dicular (due to the cross product) to maximize the amount of deflection. The MDPX device

was rotated to the horizontal configuration such that the magnetic field was horizontal and

perpendicular to gravity. A Ximea XiQ USB 3.0 camera with 4 Megapixel resolution at 90

FPS (maximum) is mounted to the MDPX device. A 70 to 200 mm Nikon Micro-Nikkor

macro lens was mounted to the camera. The CoPlA software was used to manipulate the

camera settings and render images. Fig. (3.5) is a schematic view of the experiment in this

configuration. Dust grains are dropped vertically downward and into the camera viewing

region so that the g ×B drift can be observed.

3.2.2 Radio-frequency plasma generation system calibration

The presence of a strong magnetic field may cause catastrophic failure in electronics—

particularly electronics which contain iron core inductors and other components which are

sensitive to magnetic fields. As a result, it is difficult to obtain plasma discharge measure-

ments because standard electronics cannot be placed in close proximity to the magnetic field.

The MDPX RF system uses a RF-VII model 3 RF supply with a RFVII model ATN-20/30

auto-tuning network. In order to measure the peak-to-peak voltage of the RF discharge, a

capacitive voltage divider was used. A 2 pF capacitor was placed in parallel to the discharge

at the vacuum chamber connection according to the schematic shown in Fig. (3.6a). The 2

pF parallel capacitance does not significantly change the matching impedance of the load

while still allowing a (reduced) voltage to be measured far away from the magnetic field. At
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Figure 3.5: An illustration of the geometry necessary to perform the g×B drift experiment.
The MDPX device shown in Fig. (3.4) was rotated such that the magnetic field is horizontal
and points away from the camera. In this geometry, the magnetic and gravitational fields
are perpendicular. The dust grains are dropped vertically downward through the plasma
bulk, and they are illuminated by a vertical laser sheet. The falling grains will deflect into
the page as a result of the g ×B drift.

zero magnetic field, the measured voltage was calibrated using a 10x probe and oscilloscope.

A linear fit is performed to provide a conversion equation between the measured voltage after

the 2 pF capacitor and the actual voltage measured by the 10x probe as shown in Fig. (3.6b).
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Figure 3.6: a) The peak-to-peak RF voltage measurement electrical schematic for MDPX.
b) The calibration measurements taken using the circuit outlined in part a). The x-axis was
measured using oscilloscope 2, and the y-axis was measured using a 10X probe connected
to oscilloscope 1. Eq. (3.1) is the linear fit result that was used to convert between the
measured and actual voltage of the RF system.

The conversion factor between the 10x probe measurement and the voltage divider was

VA = (55.46± 0.296)VM + (−1.089± 0.323)Volts (3.1)

where VA is the actual voltage as measured by the 10x probe, and VM is the voltage reading

from the voltage divider.

3.2.3 Spatial calibration of the camera system

In order to extract dimensional information from camera images, a careful absolute

scaling of the camera pixel space to physical dimensions must be performed by placing an

object of known dimension into the camera field of view. A 12.7 mm long 6.350 mm OD

aluminum standoff spacer was placed into the camera field of view. The lens was focused

on the spacer and locked in place. The calibration image of the standoff spacer is shown in

Fig. (3.7a).
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(a) (b)

(c)

Figure 3.7: Both calibration images shown here are 540 x 651 pixels. a) The 12.70 mm long
by 6.350 mm OD aluminum standoff spacer used as the calibration object. b) The Sobel
filtered 12.70 mm long by 6.350 mm OD aluminum standoff spacer with a 366 x 560 pixel
bounding box. c) The histogram generated by applying Eq. (3.2) over the 560 pixel height
of part b). The Gaussian with constant background offset curve fits to the left and right
hand side peaks. The resulting spatial resolution was (20.9± 0.4 µm/pixel).
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In many cases, due to the lighting conditions of the calibration image, identifying the

true edges of the calibration object with an accuracy of better than 2 – 3 pixels can be

difficult. For this reason, we use a Sobel edge detection filter[120] to identify the edges of the

standoff spacer. The Sobel edge detection filter is a commonly used image processing method

for object and feature identification [103, 121]. The Sobel filter calculates the magnitudes

of the spatial gradients in an image. When the spatial gradients change rapidly, an edge

in the image has been found. A comparison between the raw calibration image and its

corresponding Sobel transformed image is shown in Fig. (3.7). In the Sobel transformed

image, one can see that the edges of the calibration spacer (the white streaks) are much

more clearly defined; however, there is still possibly a several pixel ambiguity in which pixels

to select as the definite edge. In order to resolve this ambiguity, we generate a histogram of

the Sobel filtered image according to the equation

h(i) =
N∑

j=0

G(i, j) (3.2)

where (i, j) are the pixel indices and G(i, j) is the 8-bit intensity of the Sobel image at pixel

(i, j). Eq. (3.2) is applied to the bounding box of Fig. (3.7b). The resulting histogram is

shown in Fig. (3.7c) where the edges of the calibration spacer are the sharp peaks located

at approximately x = 40 pixels and x = 335 pixels.

A Gaussian curve fit with a constant background offset was applied to the left and right

hand side peaks of Fig. (3.7c). The left peak was located at xo,L = (32.84 ± 0.03) pixels

and the right peak xo,R = (336.22 ± 0.07) pixels. The distance between these two peaks is

(303.38± 0.08) pixels. The spacer dimension was (6.350± 0.127) mm and thus the absolute

scaling between pixel space and physical dimensions was (20.9± 0.4 µm/pixel).

50



Chapter 4

Experiments: Using g x B Drift to Measure Grain Charge

4.1 An auxiliary experiment to measure neutral gas drag

The previous chapter focused on the characteristics of the MDPX device and the de-

velopment and application of the software needed to analyze dust grain imaging data. The

remaining ingredient to perform the g × B drift experiment is to devise a method through

which we can selectively drop single dust grains so that the drift of individual grains can

be observed. In this section, we provide design specifications for and test the performance

characteristics of a novel single dust grain dropper that is able to reliably drop single dust

grains with high spatial precision (∼ 50 µm) in a controlled manner. In addition, we use

the dropper device to measure the unknown Epstein neutral drag coefficient to remove it as

a free parameter from the model developed in Sec. (2.2.1). The single grain dropper device

was designed and tested as an auxiliary experiment separate from the MDPX device. The

grain dropper performance evaluation discussed in Secs. (4.1.2 – 4.1.3) was not performed

in the MDPX device.

4.1.1 Designing a device to drop single dust grains

The single grain dropper is effectively a small RF secondary plasma device that contains

a reservoir of suspended dust grains. The amplitude of the applied RF voltage is manipulated

to selectively allow the release of single grains in a controlled manner. The design of the

single grain dropper is based on a parallel plate, capacitively coupled RF plasma source.

The parallel plate electrodes are mounted inside a glass cylinder which confines the plasma

radially and aids in maintaining the symmetry of the plasma discharge. A cartoon sketch of

the grain dropper is shown in Fig. (4.1).
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Figure 4.1: An illustration of the dust dropper configuration. A 13.56 MHz RF signal is
applied to electrode E2. The peak-to-peak voltage of the RF signal is gradually reduced
until the vertical component of the confinement force that is provided by the plasma sheath
electric field can no longer support the bottom-most grain.

Figure 4.2: A picture of the dropper and mounting hardware assembly. The modularity
of the dropper assembly and the mounting hardware provides variable electrode spacing by
changing the length of the confining glass cylinder. Detailed dimensional drawings of the
device are provided in Appendix A.
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Figure 4.3: An electrical schematic of the dropper RF network that is used to power E2.
The trimmer capacitor, CT , ranges from 10-150 pF. The single air coil inductor, L, has an
inductance of approximately 1 µH, and the shunt capacitor, CF is approximately 50 pF.

All three dropper electrodes have a diameter of 41.27 mm as well as a 3.175 mm diameter

central hole. Electrode 1 is labeled as E1 in Figs. (4.1 – 4.2) and is grounded. Electrode 2

(E2) has an applied 13.56 MHz RF signal. Electrode 3 (E3) is approximately 10 mm beneath

electrode E2. E3 was included in the design to serve two purposes: confining the plasma

generated between E2 and E1 such that no plasma appears below the dropper, and in some

cases, manipulate the sheath ions above E2 with a DC signal to assist with dropping grains.

In all single grain dropper experiments performed in this dissertation, E3 was grounded

because the auxiliary DC signal was not required to drop grains. The mounting hardware

shown in Fig. (A.2) was used to attach the dropper to an standard ISO-100 vacuum port.

We use a Rigol DG4062 Signal Generator as input to a generic 2 Watt HAM (amateur)

radio amplifier. A standard L-network, as sketched in Fig. (4.3), is used to match the 50

Ω amplifier (source) and the plasma (load) impedance. The plasma ignites at a typical

peak-to-peak voltage of 200 volts and can be sustained for voltages down to 40 volts.

The dust grains are inserted into the dropper plasma using a standard dust shaker

located approximately 10 cm above electrode E1 and the mounting hardware. A standard

dust shaker is analogous to a table-top “salt shaker”. A small amount of dust (∼ 1 cm3) is

stored behind a fine metallic mesh that is placed inside the vacuum chamber. The standard

dust shaker is mechanically agitated from outside the vacuum chamber. The dust grains

fall through the central hole in electrode E1 and into the plasma region. When the dust
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grains enter the plasma, they very quickly become charged within microsecond timescales

as discussed in Sec. (1.2). The dust grains are then suspended by the vertical component of

the sheath electric field above electrode E2.

There is a 60 degree flare angle on the 3.175 mm central hole in electrode E2 to provide

an additional radial confinement force for only the central-most dust grains. When the RF

voltage applied to E2 is reduced, the vertical confinement weakens until it is no longer able

to support the bottom-most grain and it falls out of the device. Depending on the number

of suspended grains, the confinement force begins to drop grains when the peak-to-peak

voltage applied to E2 is reduced to approximately 90 – 100 volts. When fewer grains are

present (i.e. there are fewer grains on top ”pushing” down on the bottom-most grain), the

voltage may need to be reduced as low as 70 volts. The precision with which the dust grains

are dropped is critically dependent on the size of the hole that is opened in the confinement

force. For this reason, we devote the next section to analyzing the grain dropper’s precision

performance.

4.1.2 Evaluating grain dropping precision

The precision of the single grain dropper is evaluated over the pressure range (23.9 – 85.3)

Pa. The pressure was measured using a MKS-722B Baratron gauge that has a measurement

uncertainty of 0.5%. At each pressure setting, multiple dust grains with a radius ad = (4

± 0.4) µm radius are individually dropped over a 500 image sequence. The CoPlA software

was used to compute the per pixel standard deviation image from the sequence using the

expressions

σ2
i,j =

N∑
k=1

(Ik
i,j− < Ii,j >)2

N− 1
(4.1)

and

< Ii,j >=
N∑

k=1

Ik
i,j

N
(4.2)
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where (i,j) are the spatial coordinate indices of pixels, Iki,j is the (i,j) pixel intensity at frame

number k, N = 500 frames, and < Ii,j > is the per pixel average intensity over the 500

frame sequence. The standard deviation image created using Eqs. (4.1 – 4.2) is referred to

as the composite image. The falling grains are illuminated using a 632 nm 100 mW laser

spread into an approximately 1 mm thick by 4 cm wide laser sheet. The grains are imaged

during a 10 ms exposure using an Ximea XiQ USB 3.0 4 MP camera equipped with a Nikon

Micro-Nikkor 60 mm f/2.8D lens. The spatial resolution is 25 µm/pixel in this system.

(a) (b)

Figure 4.4: a) A composite image formed by computing the standard deviation of 500
images according to Eqs. (4.1) and (4.2). b): The grain streak x-position histogram formed
by summing over the bottom 575 pixels of the composite image. The dashed black line is
the Gaussian curve fit of the histogram data.

The bottom 575 pixels (1.43 cm) of the composite image are then used to generate

a histogram that represents the distribution of all dust grain trajectories during the 500

image sequence. An example composite image and its dropped grain trajectory histogram
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are shown in Fig. (4.4). The histogram is then curve fit to a Gaussian distribution with an

additive background constant. The composite streak variance, σ2
total, is obtained from the

curve fit. The composite streak variance can be decomposed as

σ2
total = σ2

grain + σ2
streak (4.3)

where σ2
grain ≈ 1.5 pixels2 is the average variance of grain images, and σ2

streak is the variance

of dropped grain trajectories. The variance of the dropped grains trajectories depends on

three factors: the size of the opening in the confinement force, the neutral gas pressure (due

to neutral drag), and the vertical alignment of the camera system. In this analysis, we do

not include the vertical mis-alignment of the camera system because the values obtained for

σstreak were 1 – 2 pixels, which means that the camera was already relatively well aligned.

Figure 4.5: The streak width σstreak =
√
σ2

total − σ2
grain versus neutral pressure pn range (23.9

– 85.3) Pa. The y-axis error bars were obtained from the uncertainty in the σtotal and σgrain

fits. The x-axis error bars were obtained from the gas pressure uncertainty, 0.5%, which is
too small to be seen on this scale.

The results of the grain dropping precision experiment are summarized in Fig. (4.5)

where the streak width σstreak is plotted the neutral gas pressure pn. The x-axis uses this

scaling so that the uncertainty in both the grain size distribution and the neutral gas pressure
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measurement can be included in the analysis. Based on these results, we conclude that even

in the worst case scenario at lower pressures where neutral gas drag is weak, the single grain

dropper is able to consistently drop grains to within a region of, at most, about 2 pixels =

50 µm. In Sec. (2.3), we showed that even in a relatively weak magnetic field of Bz = 0.5 T

with an OML dust grain charge of Zd = 840 electrons at a neutral gas pressure of pn = 0.67

Pa, the dust grain deflection will be of the order 500 µm. Therefore, the single dust grain

dropper precision of 50 µm more than sufficient to perform the g × B drift experiment.

4.1.3 Measurement of the neutral gas drag

The dropper device was also used to remove a free parameter from the grain deflection

model. From Eq. (2.26), the asymptotic deflection angle is inversely proportional to the

neutral gas drag, which contains an unknown Epstein coefficient, δ, that was discussed

in Sec. (1.2.5). δ has been extensively measured and usually has a value of ∼ 1.3 – 1.5.

However, although its value is well established, it is usually left as a free fitting parameter in

experiment model solutions. In the case of the g × B experiment, measuring δ for the silica

grains bears the substantial benefit of reducing the number of free parameters from two to

one, which leaves the dust grain charge as the only unknown in the model. For this reason,

this section is devoted to performing a measurement of δ for silica dust grains in neutral

Argon gas.

Falling grain model

When a dust grain is dropped by lowering the RF voltage applied to electrode E2, it falls

through the central hole in electrode E2 and the mounting hardware and then enters a plasma

free region beneath the grounded E3 electrode as shown in the inset image of Fig. (4.6). In

the absence of plasma, the only two forces acting on the grain are the gravitational force
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Figure 4.6: On the left, an example of a suspended dust cloud and a dropped dust grain
in the bottom region. The grain trajectory is a streak and represents the distance traveled
during the 10 ms camera exposure. On the right, a force diagram for a falling dust grain in
the absence of plasma. In the falling grain region, there is no plasma and the grain is subject
to only the gravitational force FGravity and the neutral gas drag FDrag.

and the neutral gas drag. The equation of motion is

d2y

dt2
= −g − Γ

dy

dt
(4.4)

where md is the mass of the falling dust grain, y is the time-dependent vertical position of

the grain, g is the Earth’s gravitational constant (9.8 m/s2), and Γ is the Epstein expression

for the neutral gas drag that is given by Eq. (1.27). The solution to Eq. (4.4) is not included

in the main text and is derived in Appendix B. The solution is

y − yo = − 1

Γ2
[Γvo + g] exp[−Γ(t− to)]−

g

Γ
(t− to) (4.5)
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where to is the initial time, yo is the initial position, and vo is the initial velocity. In the

limiting case where Γ(t − to) � 1 (i.e., when terminal speed has been reached), Eq. (4.5)

reduces to

y − yo = − g
Γ

(t− to) = −vterm(t− to) (4.6)

where vterm = g/Γ is the terminal speed. The terminal speed approximation is used exten-

sively in the following measurements.

Figure 4.7: The thick dashed curves (from bottom to top) are falling grain speed versus
distance curves for the following Argon gas pressures: (66.7, 46.7, 36.7, 26.7, 16.7, 6.7)
Pa. The curves were generated using the following parameters: δ = 1, kbTn = 0.025 eV,
ad = 4 µm, ρd = 2.2 g/cm3. The initial conditions for Eq. (4.5) were: to = 0, vo = 0, and
yo = [Γvo + g]/Γ2 so that y(0) = 0. The solid curve labeled by 0.90 is the contour below
which grains have reached 90% of their terminal speed (i.e. where Eq. (4.6) is valid).

The electrodes and mounting hardware are not transparent, which means that we do

not know a priori the exact location at which the grains begin their free fall motion nor do

we know any temporal information about the falling grain before it enters the observation

region in Fig. (4.6). There is an approximately 2 cm distance between the dust cloud sheath

confinement region above electrode E2 and the observation region. Due to the terminal speed

approximation, it is important that we restrict the experimental neutral gas pressures such
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that the observed falling dust grains are guaranteed to reach close to terminal speed by the

time they reach the observation region. We estimate the falling grain speed by plotting phase

space curves of Eq. (4.5) at several different neutral gas pressures based on the conservative

estimate of δ = 1 where the neutral drag is weakest and therefore the calculated grain speed

is an upper limit. The results are summarized in Fig. (4.7) where it is shown that the dust

grain’s speed will be at least 90% of the terminal speed at y = 2 cm when pn ≥ 36.7 Pa.

Falling grain measurements

We selectively drop single ad = (4 ± 0.4) µm radius silica grains with a mass density of

ρd = 2.2 g/cm3 and measure the length of the grain streaks in the plasma free region shown

in Fig. (4.6). This is performed at several different neutral gas pressures in the range (37.5

– 85.3) Pa. The falling dust grains are imaged using the same camera and software system

discussed in Sec. (4.1.2). The CoPlA software is used to determine the length of the light

streaks corresponding to individually dropped dust grains. The measured streak lengths are

then converted to a terminal speed according to the expression

vterm =
|y − yo|
t− to

=
g

Γ
=
g

δ

√
ρ2

dπkbTn

8mn

ad

pn

. (4.7)

where y(t)− yo is the measured streak length and t− to is the 10 ms camera exposure time.

The terminal speed data is plotted in Fig. (4.8) along with a corresponding linear fit

using Eq. (4.7). The Epstein coefficient, δ, is obtained from the slope of the linear fit.

The fit results yield δ = (1.443 ± 0.007), which is in agreement with previous experiments

[49, 50, 42, 51]. The error estimate of 0.007 was obtained from the standard error of the

slope estimate given by the Orthogonal Distance Regression (ODR) method [122]. It is

important to note that the linear fit error may not contain all possible sources of error. For

example, there may be an error associated with the mass density specified by the dust grain

manufacturer. The dust grain manufacturer specifies a mass density value of ρd= 2.2 g/cm3,
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Figure 4.8: The length of ten grain streaks during a 10 ms exposure is measured and plotted
on a linear scaling according to Eq. (4.7) at neutral pressures ranging from (37.5 – 85.3) Pa.
The y-axis error bars (most are too small to be seen) are plotted using the standard error
of the mean streak length measurement (i.e., σ/

√
N). The x-axis error bars are obtained

using standard error propagation to combine the gas pressure uncertainty, 0.5 %, with the
grain size distribution uncertainty, 10%. The dashed line between points is the linear fit to
the data that was used to obtain the Epstein coefficient, δ. The solid line is a continuation
of the model at lower pressures where measurements would begin to deviate from the linear
terminal speed approximation.

but does not specify an uncertainty for this value. Therefore, we estimate a mass density

error of 5 %, which is then combined with the curve fit error. The resulting value of the

Epstein coefficient is in this case δ = (1.443 ± 0.072).

4.1.4 Dropper device performance in strong magnetic fields

In this section, the performance of the single grain dropper is evaluated in strong mag-

netic fields using the MDPX device. This evaluation will determine if the dropper can be used

to perform the g ×B drift experiment to measure the deflection of single grains. Fig. (4.9)

illustrates the geometry required to use the dropper to perform the g×B drift experiment.

With the exception of an additional external magnetic field that is parallel to the electrode

61



surface, the geometry is the same as the experiments performed in Sections (4.1.1 and 4.1.3).

Figure 4.9: An illustration of the geometry required to use the single grain dropper in the
g × B drift experiment. The deflection angle, α, is the same as defined in Eq. (2.26) and
shown in Fig. (2.4). The magnetic field is into the page parallel to the electrode surface,
and the vertical component of the dust confinement force is anti-parallel to the downward
gravitational field. In order for the dropper to function as demonstrated in Secs. (4.1.1) and
(4.1.3), a plasma must be generated between electrodes E2 and E1, which requires electrons
to travel perpendicular to the magnetic field.

For the dropper performance testing, the dropper was mounted inside the MDPX plasma

chamber using an ISO-100 port. The dropper electrode surface was parallel to the external

magnetic field of MDPX according to the geometry of Fig. (4.9). At B = 0 T and a neutral

Argon pressure of pn = 6.67 Pa, a plasma is ignited between electrodes E1 and E2 using the

same technique outlined in Sec. (4.1.1). The magnetic field was increased from B = 0 T to B

= 0.1 T while maintaining the dropper plasma. We found that as the magnetic field strength

was increased, the dropper plasma was no longer confined within the glass cylinder between

electrodes E1 and E2 (perpendicular to the magnetic field). The dropper plasma was instead

generated between E2 and other conducting surfaces within the MDPX chamber along the

62



Figure 4.10: In both figures, electrode E1 was grounded and electrode E2 had an applied
RF 13.56 MHz signal. The neutral Argon gas pressure was pn = 6.67 Pa. Inset image I is
the B = 0.0 T case where the plasma is confined within the glass cylinder between electrodes
E1 and E2. Inset image II shows that at B = 0.1 T, the plasma is no longer confined within
the glass cylinder between electrodes E1 and E2 and is preferentially generated a long the
magnetic field.

direction parallel to the magnetic field. This effect is shown in Fig. (4.10). Based on this

observation, we conclude that the dropper cannot be used in the configuration illustrated in

Fig. (4.9) to perform the dust grain g×B measurements. In this geometry, the addition of a

magnetic field clearly breaks the sheath confinement symmetry that is required to precisely

and reliably drop single dust grains as demonstrated in Secs. (4.1.1 – 4.1.3).

In rest of this section, we develop a model to explain why the single grain dropper

is unable to maintain plasma confinement between electrodes E1 and E2 (i.e., within the

glass cylinder) when a strong magnetic field is applied parallel to the electrode surface.

The following model is based on common plasma physics arguments found in textbooks

[123, 124, 25]— although the case of weakly-ionized low temperature plasmas is usually

paid little attention. We start from the standard Magneto-hydrodynamic (MHD) electron

63



momentum equation:

mene
due

dt
= −nee(E + ue ×B)−∇Pe +

δcpe

δt
(4.8)

where me is the electron mass, ne is the electron number density, ue is the average velocity,

e is the electron charge, E is the electric field, B is the magnetic field, Pe is the electron

pressure, and δcpe

δt
is a generic expression used to represent a collisional drag force on the

electrons. Qualitatively, from left to right in Eq. (4.8), we have the rate of change of the

electron momentum density, the electromagnetic force density acting on the electrons, the

force density on electrons resulting from pressure (or density) gradients, and a collisional

drag force per unit volume.

In low temperature weakly-ionized plasmas (such as those used in most dusty plasma

experiments) where the ionization fraction is of the order 10−6 – 10−7, the electrons more

frequently collide with neutral atoms than ions or with other electrons. The collisional drag

term of Eq. (4.8) can be greatly simplified by applying the Lorentz gas model [125, 126, 127]

to electron-neutral collisions. In the Lorentz gas model, a point particle (i.e., the electron)

travels through the gas and undergoes periodic elastic collisions with stationary scatterers

(i.e., the neutral atoms). The approximation of stationary neutrals is appropriate because

the electron thermal speed of kbTe = 2 eV electrons is vth,e ∼ 106 m/s, which is much larger

than the room temperature kbTn = 0.025 eV neutral Argon thermal speed of vth,n ∼ 103 m/s.

The large difference in characteristic speeds means that the neutrals are effectively at rest

with respect to the electrons. The Lorentz gas model for elastic electron-neutral collisions is

δcpe

δt
= −νe,nmeneue (4.9)

where νe,n is the electron-neutral collision frequency. For kbTe = 2.0 eV electrons colliding

with room temperature neutral Argon at pn = 6.67 Pa, νe,n ∼ 106 Hz. When substituting
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Eq. (4.9) into Eq. (4.8), the electron momentum equation becomes:

mene
due

dt
= −nee(E + ue ×B)−∇Pe − νenmeneue. (4.10)

We further assume that the plasma is in equilibrium where d
dt
→ 0 — meaning that the

RF field is neglected. However, at the end, we briefly outline how the motion of the electrons

due to the RF field can be included. We also assume that there are no pressure (or density)

gradients in the electron population such that ∇P = 0 and Eq. (4.10) becomes

0 = −e(E + ue ×B)− νenmeue (4.11)

When the cross-product is expanded of Eq. (4.11) and making the substitutions B = Bzẑ,

µe,n = e/meνe,n (the electron mobility), ωc,e = eBz/me (the Larmor frequency), and de-

coupling the system by solving for either ux or uy and using back-substitution, the system

of equations becomes

(1 +H2
e )ue,x = −µenEx +H2

e

Ey

Bz

(4.12)

(1 +H2
e )ue,y = −µe,nEy −H2

e

Ex

Bz

(4.13)

ue,z = −µe,nEz (4.14)

where He = ωc,e/νe,n is the electron Hall parameter from Eq. (1.12).

The average electron velocity, ue, can be related to the current density using Je =

−eneue as well as the electric field by applying Ohm’s Law, Je = σ · E (where σ is the

conductivity tensor). These two expressions are summarized as

Je = −eneue = σ · E. (4.15)
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By inspection, Eqs. (4.12 – 4.14) can now be rearranged and expressed in terms of the

conductivity tensor (also note that H2
e /Bz = µe,nωc,e/νe,n)


Je,x

Je,y

Je,z

 = −ene


ux

uy

uz

 =
−e2ne

meνe,n(1 +H2
e )


1 He 0

−He 1 0

0 0 (1 +H2
e )




Ex

Ey

Ez.

 . (4.16)

The conductivity tensor, in component form, is given as

σ =


σ⊥ σH 0

−σH σ⊥ 0

0 0 σ‖

 (4.17)

where

σ⊥ =
σo

1 +H2
e

, (4.18)

σH = He
σo

1 +H2
e

, (4.19)

and

σ‖ = σo =
e2ne

meνen

. (4.20)

The perpendicular conductivity, σ⊥, corresponds to current flow along the component of

the electric field that is normal to the magnetic field, the off-diagonal conductivity, σH,

corresponds to current flow that is flowing both normal to the electric and magnetic field,

and parallel electron conductivity, σ‖, is the current flow along the direction of the magnetic

field. σ‖ is the steady-state DC conductivity that is independent of the magnetic field. A

graphical comparison of the normalized components of the conductivity tensor is shown in

Fig. (4.11a).

In the context of the dropper plasma no longer being confined to the glass cylinder as

illustrated in Fig. (4.10), the perpendicular conductivity given by Eq. (4.18) decreases as ∼
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1/H2
e . In other words, the electrons become so strongly magnetized that they are unable

to travel perpendicular to the magnetic field and therefore cannot cross the gap between

electrodes E1 and E2. To a certain extent, this effect can be mitigated by increasing the

neutral gas pressure, but if one desires to perform the experiment at low neutral gas pres-

sures, then increasing the neutral pressure is not feasible. Fig. (4.11a) is a plot of the electron

conductivity tensor components versus the electron Hall parameter and it is clearly shown

that even for moderately magnetized electrons where He ∼ 10, the perpendicular conduc-

tivity has fallen to only a few % of its nominal unmagnetized value. In addition, contours

(a) (b)

Figure 4.11: a) The components of the electron conductivity tensor given by Eq. (4.17)
normalized by σo versus the electron Hall parameter He. b) Contours of the normalized
perpendicular electron conductivity versus the neutral Argon pressure pn and magnetic field
strength B. The black cross marks the location of the neutral pressure pn = 6.67 Pa and
magnetic field Bz = -0.1 T used while recording the picture shown in Fig. (4.10). At this
location in parameter space, the perpendicular conductivity has fallen by more than a factor
of 103.

of constant (normalized) perpendicular conductivity are shown in Fig. (4.11b) versus the

neutral Argon pressure and the magnetic field strength. The black cross on Fig. (4.11b) is

the point in (pn,Bz) space at which the test experiment shown in Fig. (4.10) was performed.

At this point, the electron magnetization was so strong that the perpendicular conductivity

fell by a factor of more than 103, and as a result, a plasma could no longer be generated

between electrodes E2 and E1. When extrapolating this result to much higher magnetic
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fields (greater than 1 T) and lower neutral pressures (less than 6.67 Pa) as required by the

g×B experiment, the perpendicular electron conductivity will drop by several more orders

of magnitude.

These results were derived under the steady state (DC) assumption where d
dt
→ 0. The

same calculation can be done including the influence of the RF field on electrons. Here,

we cite the results of this calculation from [128] where the conductivity tensor was replaced

with the dielectric tensor by applying the relation K = I− σ/(iεoω) where I is the identity

matrix, ω is the RF driving frequency, and i is the imaginary unit. The dielectric tensor

components are then given by

k⊥ = 1− ω − iνe,n

ω

ω2
p,e

(ω − iνe,n)2 − ω2
c,e

, (4.21)

kH =
ωc,e

ω

ω2
p,e

(ω − iνe,n)2 − ω2
c,e

, (4.22)

and

k‖ = 1−
ω2

p,e

ω(ω − iνe,n)
. (4.23)

It may be possible to exploit Eqs. (4.21 – 4.23) in such a way that the single grain dropper is

able to generate a plasma perpendicular to the magnetic field when ω ∼ ωc,e. Such methods

might include, for example, Electron Cyclotron Resonance (ECR) [129, 130]. In the case

of the single grain dropper immersed in a B = 1 T magnetic field generated by the MDPX

device, the resonance excitation frequency of the source would need to be on the order of

tens of GHz.

In addition to using the appropriate driving frequency, a potential drop must exist across

the sheath between the plasma and the electrode to provide the electric field that suspends

dust grains against the gravitational force. This potential drop can be of the order 10 –

100 volts in most dusty plasmas. [131] performed a self consistent analytic calculation for a

capacitive sheath under the assumptions of inertialess electrons that respond instantaneously
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to the RF field and time independent, collisionless ion motion. Under these assumptions, it

was shown that the self-bias voltage of the electrode was

Vf,RF =
kbTe

e

(
3

4
πψ +

9

32
π2ψ2

)
(4.24)

where ψ ∼ ω−2 is a frequency dependent voltage scaling parameter. Based on Eq. (4.24), it

is unclear whether or not a high frequency plasma source will have a sufficiently large sheath

voltage drop to suspend dust clouds. Some evidence for greatly reduced dust suspension and

confinement was observed in [132, 133] where the frequency dependence of dust grain growth

in Silane plasma processing experiments was analyzed. They observed that the grain growth

rates were substantially reduced at higher frequencies. A possible explanation for this is the

reduction of the sheath voltage drop at high frequencies, which may lead to reduced grain

trapping and subsequent growth through coagulation.

Based on the results and scalings shown in this section, we conclude that the grain

dropper cannot be used according to the geometry of Fig. (4.9) with a 13.56 MHz RF source

to perform the g×B drift experiment. No further engineering was performed on the single

grain dropping device. In the next section, we will discuss an alternative method to collimate

falling dust grains rather than drop single grains one-by-one.

4.2 Measuring the g x B drift using CoPlA and MDPX

In Sec. (4.1.4), we performed a test experiment to examine the performance of the single

grain dropper in a strong magnetic field and found that the device is no longer able to produce

a plasma perpendicular to the magnetic field. This was due to strong electron magnetization

leading to a drastically decreased perpendicular electron conductivity which substantially

modified the single drain dropper sheath electric field geometry. Because the plasma was no

longer generated perpendicular to the magnetic field, the plasma sheath confinement force
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was no longer able to suspend dust grains. As a result, we were unable to use the single

grain dropping device to perform the g ×B drift experiment in MDPX.

4.2.1 An alternative dust grain collimation method

(a) (b)

Figure 4.12: a) A top-down schematic view of the glass funnel mounted inside the MDPX
plasma chamber. Dust grains were inserted into the plasma using a standard dust shaker
located above the funnel. The falling dust grains were collimated by the funnel and exit the
funnel approximately 50 mm above the camera field of view. b) The glass funnel used to
collimate falling dust grains. A detailed dimensional drawing of the funnel is provided in the
Appendix in Fig. (A.3).

As an alternative to using the single grain dropper, a glass funnel was placed below a

standard dust shaker to collimate the falling dust grains into the central region of the vacuum

chamber before entering the camera field of view. The geometry of this configuration is shown

in Fig. (4.12). The funnel stem is 73 mm long with an ID of 1.6 mm. The flared upper surface

ID is 31.8 mm. The dust grains are inserted into the MDPX chamber using a dust shaker

placed several centimeters above the flared surface of the glass funnel. The electrode spacing

between the RF electrode and the transparent grounded electrode was 110 mm. A side view
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of the geometry is shown in Fig. (3.5). The funnel outlet was placed in the axial mid-plane

of the chamber such that it was approximately 54 mm away from both electrodes so that

the falling dust grains travel through the plasma bulk. The bottom outlet of the glass funnel

was placed approximately 70 mm above the radial geometric center of the MDPX plasma

chamber. The collimated dust grains travel a vertical distance of approximately 50 mm

before entering the camera field of view. An investigation into the effect of using a glass

funnel to collimate the falling dust grains is performed in Sec. (4.3).

4.2.2 Measurement procedure and data processing technique

Figure 4.13: Parameters: ad = 0.25 µm and pn = 0.67 Pa. Example data of collimated
falling grains. Each falling grain is seen as a sequence of four white streaks in this single
frame because the laser was modulated at 3 ms with a 50% duty cycle and the camera
exposure time was 10 ms. The camera was not synchronized with the laser modulation. In
this example, the laser is already “on” when the camera exposure begins so that there are
two complete light streaks in the middle and two partial light streaks at the ends. The 8.56
mm streak length shown is approximately consistent with the terminal speed approximation
that will be used in Sec. (4.2.3). Some streaks may be slightly longer than predicted by
the terminal speed approximation which can be attributed to a reduction in neutral drag as
discussed at the end of Sec. (4.3.2).
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The collimated dust grains were illuminated using a 180 mW 532 nm laser that was

spread into an approximately 4 mm thick by 30 mm wide laser sheet using a cylindrical lens

as shown in Fig. (4.12). The laser was modulated at 3 ms with a 50% duty cycle during

a 10 ms camera exposure time. The laser and camera were not synchronized. The grains

were imaged using the camera system discussed in Sec. (3.2.3) with a spatial resolution of

(20.9± 0.4) µm/pixel.

Figure 4.14: An illustration depicting possible vertical mis-alignment of the camera system.
In order to find the direction of gravity, dust particles are dropped into the system when the
RF signal is turned off and there is no plasma. The camera coordinates are denoted with a
subscript “c” and are tilted relative to the lab coordinates. Gravity is straight down in the
lab coordinate system.

The presence of a magnetic field puts a tremendous amount of stress on the camera

components and the camera mounting hardware. This stress could cause slight spatial shifts

in the camera equipment which may change the direction of gravity with respect to the

camera reference frame. The camera shift and tilt is illustrated by the cartoon in Fig. (4.14).
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Camera coordinates are given the subscript “c” and by convention, the origin of the camera

coordinate system is located in the upper left hand corner of the image.

The direction of gravity was re-calibrated at each magnetic field setting by inserting dust

grains into the vacuum chamber when no plasma was present. In the absence of plasma,

the dust grains were assumed to be uncharged such that they fall in the direction of the

gravitational field — thus providing a calibration to account for the magnetic forces causing

the camera equipment to shift. The following data recording procedure was applied at each

magnetic field strength:

Data Recording Steps

S.1 Set the desired magnetic field strength.

S.2 Turn off the RF system so the grains fall through neutral gas only.

S.3 Record the falling grains to determine the direction of gravity.

S.4 Turn on the RF system so the grains fall through the plasma bulk.

S.5 Record the falling grains to determine the amount of g × B deflection.

S.6 Return to S.1.

Approximately 3 – 5 thousand dust grains were dropped vertically downward at each mag-

netic field setting. The average locations of a grain in each light streak (example streaks

are shown in Fig. (4.13)) was calculated using the CoPlA analysis software discussed in

Sec. (3.1.2). The top 200 pixels were removed from the image due to a laser reflection.

The distribution of average dust grain locations were processed into a 2D histogram with

10 vertical bins and 20 horizontal bins. The vertical bin width was ∆yc = 3.86 mm and the

horizontal bin width was ∆xc = 0.287 mm. Two example position histograms (in camera

coordinates) are shown in Fig. (4.15). Each horizontal row of the histogram data shown in

Fig. (4.15) was curve fit to a Gaussian distribution with a constant background offset. The

73



(a) (b)

Figure 4.15: An (xc, yc) falling dust grain streak center of intensity histogram in camera
coordinates. The top 200 pixels are cropped from the data due to a laser reflection. a) The
plasma is turned off and 13,687 dust grain streaks were measured. b) The plasma is turned
on and 12,032 dust grain streaks were measured. In both cases there are on average more
counts in the top-most bins because as the dust grains fall they may shift out of the image
plane thus making their detection more difficult.

mean of the curve fit was then used as the effective horizontal dust grain location in each

row of the histogram data. Examples of both the histogram row data and the corresponding

Gaussian curve fits are provided in Fig. (4.16).

As previously discussed, it was necessary to calibrate the camera shift at each magnetic

field strength due to magnetic fields shifting the equipment locations. This calibration was

performed by applying a linear fit through the average particle locations (from the histogram

and the Gaussian curve fits) when no plasma was present. This is illustrated in Fig. (4.17a).

The linear fit equation was

xc = mslopeyc + bo (4.25)

where contrary to popular convention, xc was treated as the dependent variable of the fit,

mslope is the slope, yc was treated as the independent variable in the fit, and bo is the x-

intercept. An illustration of the linear fit compared to the data when the plasma was turned

on is provided in Fig. (4.17). The slope from Eq. (4.25) was used to find the direction of

74



(a) (b)

(c) (d)

Figure 4.16: a), b) The top and bottom rows of the raw histogram data shown in Fig. (4.15).
The solid lines are the corresponding curve fits. c), d) The Gaussian curve fits for each row
of Fig. (4.15).

the gravitational field within the camera coordinate system. The rotation angle was given

by ϕ = arctan(mslope). The locations of the histogram means were shifted by the linear

fit x-intercept bo and then rotated into the laboratory coordinate system according to the
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(a) (b)

Figure 4.17: A summary of the deflection data and the resulting rotation from the camera
calibration at a magnetic field strength of Bz = -2.016 T (directed into the page). a) The
blue dots with error bars are from the data obtained while the plasma was turned on whereas
the green dots with error bars are from the data obtained when the plasma was turned off.
A straight line is fit through the no plasma data (dashed green line). The intercept and slope
of the no plasma linear fit were then used to rotate the plasma data (blue dots) into Lab
coordinates where gravity is along the y-axis. b) The plasma data (blue dots) expressed in
Lab coordinates where the gravitational field vector is straight down along the y-axis. The
dashed green line is the rotated linear fit from part a).

following transformation

 x

y

 =

 cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)


 xc

yc

 . (4.26)

The new coordinates (x, y) have no subscript and from here onward are the lab coordinates

where the gravitational field is along the y-axis. The error was propagated using standard

Gaussian error propagation.

Grain charge calculation method

The data shown in Fig. (4.17b) was scaled into laboratory coordinates using the 20.9

µm/pixel spatial calibration factor discussed in Sec. (3.2.3). The geometric center of the
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plasma chamber is at the origin of the (x, y) coordinate system. The dust grains exit the

funnel outlet at (xo, yo) = (0,70) mm. The dust grain charge was calculated by solving the

equations of motion, Eqs. (2.18 – 2.19), while performing an iterative minimization to find

the dust grain charge Zd which best describes the measured data. The minimization function

is given by

χ2 =

Ny∑
i=1

[
xi − x̃i(yi;Zd)

σi

]2

(4.27)

where Ny = 10 is the number of vertical histogram bins, xi is the horizontal position of

rotated deflection data from when the plasma is turned on, σi is the standard deviation of

the xi measurements, and x̃i(yi;Zd) is obtained from the solution of the equations of motion,

Eqs. (2.18 – 2.19).

4.2.3 Summary of measurement results

The initial conditions for solving Eqs. (2.18 – 2.19) were (xo, yo) = (0, 70) mm, vo,x = 0

cm/s, and the initial y-velocity is examined for the two limiting cases vo,y = 0 cm/s and

vo,y = -80 cm/s (approximately terminal speed). These initial y-velocities are the lower and

upper limiting cases of the dust grain speed exiting the collimating funnel. The upper limit

of vo,y = -80 cm/s is justified by the results shown in Fig. (2.5b). The lower limiting case vo,y

= 0 cm/s was included to show that the results do not have a strong dependency on vo,y due

to the relatively small amount of horizontal deflection. Fig. (4.20) provides a summary of

the best fit dust grain charge in both the vo,y limiting cases. The curve fit ODE solutions to

the data for all magnetic field settings are summarized in Figs. (4.18 – 4.19). The equations

of motion were integrated using the 4th order Runge-Kutta technique [68].
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(a) (b)

(c) (d)

Figure 4.18: A summary of the deflection data (blue dots with error bars), the curve fit
(dashed blue) used to obtain the dust grain charge Zd, and the expected dust trajectory
(dashed red) assuming 25% of the OML charge Zd = 210. The initial x-velocity was vo,x = 0
and initial y-velocity was terminal speed vo,y = −80 cm/s. The magnetic field is directed
into the page. a) Bz = -0.512 T, b) Bz = -0.768 T, c) Bz = -1.024 T, d) Bz = -1.248 T.
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(a) (b)

(c) (d)

Figure 4.19: A summary of the deflection data (blue dots with error bars), the curve fit
(dashed blue) used to obtain the dust grain charge Zd, and the expected dust trajectory
(dashed red) assuming 25% of the OML charge Zd = 210. The initial x-velocity was vo,x = 0
and initial y-velocity was terminal speed vo,y = −80 cm/s. The magnetic field is directed
into the page. a) Bz = -1.504 T, b) Bz = -1.760 T, c) Bz = -2.016 T, d) Bz = -2.240 T.
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• Experiment parameter summary:

– Dust grain parameters

∗ Silica

∗ Mass density ρd = 2.2 g/cm3

∗ Radius ad = 0.25 µm

– RF parameters

∗ Frequency fRF = 13.56 MHz

∗ Power PRF ≈ 2 W

– Neutral gas parameters

∗ Argon

∗ Pressure pn = 0.67 Pa = 5 mTorr

Table 4.1: A summary of the graphical results shown in Fig. (4.20) including the peak to
peak voltage of the RF signal applied to the bottom electrode. There is no clear pattern
between the RF voltage and the charge measurement.

Magnetic Field Strength B (T) 0.512 0.768 1.024 1.248 1.504 1.760 2.016 2.240
Dust Charge Zd 41 35 23 28 9 7 19 6

RF Voltage VA (V) 116 111 149 147 149 133 144 180

Table 4.2: A summary of the rotation angle ϕ = arctan(mslope) used to find the direction of
gravity in the camera coordinate system. There is no clear pattern between the correction
angle and the magnetic field strength.

Magnetic Field Strength B (T) 0.512 0.768 1.024 1.248 1.504 1.760 2.016 2.240
Correction Angle ϕ (deg) 0.871 0.710 0.844 0.792 0.829 0.752 0.786 0.889
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Figure 4.20: A summary of the dust charge obtained from each case shown in Figs. (4.18 –
4.19). The number of electrons residing on the dust grain, Zd, versus magnetic field strength
for the limiting cases of vo,y = 0.0 (black dots) and vo,y = −80 cm/s (purple dots).

4.3 Discussion

The relatively small amount of horizontal deflection shown in Figs. (4.18 – 4.19) indicates

a much lower dust grain charge than predicted by the OML theory. The dust grain charge

Zd at all magnetic field strengths is summarized in Fig. (4.20). At the lowest magnetic field

strength of Bz = -0.512 T, the dust grain charge was calculated to be Zd ≈ 50, which is

only about 6% of the OML predicted value Zd,OML = 840. Tables (4.1 – 4.2) summarize the

RF peak-to-peak voltage and the correction angle used to find the direction of gravity in

the camera coordinate system and show that there is no pattern between them and the dust

grain charge measurements.

The dust grain charge measurements were significantly less than predicted by the OML

charging theory. This experimental result may provide insight into a new understanding
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of dust grain charging in strong magnetic fields. Modifications to the dust grain charging

dynamics are likely tied to the onset of strong electron magnetization. In the experiments

performed here, the electron Larmor radius is comparable to the grain size which could

modify the collection efficiency of electrons by the dust grain. However, before diving into a

discussion of modifications to grain charging dynamics in magnetic fields, it is important to

address some additional effects that could have influenced the measurement. The following

questions are addressed:

• Does the net deflection obtained from the collimation averaging technique closely cor-

respond to a trajectory that a single dust grain would otherwise follow?

• Although the dust grains are falling through the plasma bulk where quasi-neutrality

should apply, what effect could a radial electric field have? Are there any other forces

present?

• When several thousand dust grains are falling vertically downward, the bulk dust

grain motion may “knock” a substantial fraction of the neutral gas particles out of the

collimation region. This depletion of neutral gas could reduce the neutral drag on the

dust grains trailing behind the bulk motion. How would a reduced neutral gas drag in

the y-direction affect our measurements?

• What are some possible mechanisms leading to dust grain charge reduction when the

electrons are so strongly magnetized that their Larmor orbit size becomes comparable

to the dust grain dimension?

4.3.1 Simulations of collimated falling dust grains

The glass funnel collimation technique could, in cases where a grain collides with the

funnel wall immediately before exiting, cause a non-zero initial x-velocity in the ±x̂ direc-

tion. If the initial x-velocity vo,x was in the same direction as the dust grain g × B drift

motion, then the amount of drift could be greatly exaggerated. This effect would result in
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an artificially large calculated grain charge. On the other hand, if the initial x-velocity vo,x

were opposite the dust grain g × B drift direction, then the calculated grain charge may

be artificially small. The role of non-zero initial x-velocities is discussed in this section by

simulating several different sets of initial conditions.

(a) (b)

Figure 4.21: Parameters: Bz = -0.5 T, ad = 0.25 µm, Zd,OML = 840, and pn = 0.67 Pa.
Five cases are plotted for initial x-velocities on the interval (-1,1) cm/s. The dust grains are
assumed to fall independently with no inter-dust interactions. a) Possible trajectories for the
case where the grains exiting the funnel are starting with vo,y = 0. b) Possible trajectories
for the case where the grains exiting the funnel are starting with initial y-velocity of vo,y =
-80 cm/s at approximately terminal speed.

To start, the dust grain motion is simulated for several possible values of the initial

x-velocity on the interval vo,x = (−1, 1) cm/s while assuming the dust grains originate at

the initial position (xo, yo) = (0, 70) mm. The initial y-velocity is assigned the limiting cases

vo,y = 0 cm/s and vo,y = −80 cm/s. The results are summarized in Fig. (4.21) and show that

regardless of the initial y-velocity, when the grains have a large initial x-velocity vo,x = 1

cm/s opposite the g ×B drift motion, the grains quickly turn around and begin deflecting

in the expected −x̂ direction.

The analysis above does not include the possibility that several thousand dust grains

are exiting the funnel outlet at x-positions anywhere within the 1.6 mm ID of the funnel

outlet. In order to address this issue, we apply a Monte-Carlo technique to randomly assign
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Figure 4.22: Parameters: Bz = -0.5 T (into the page), ad = 0.25 µm, vo,y = -80 cm/s,
and pn = 0.67 Pa. Possible dust grain deflection trajectories obtained from the Monte-
Carlo analysis. Three cases are plotted for different assumed dust grain charges of Zd =
(840, 210, 50). The points with error bars are the Monte-Carlo simulation trajectories of
several thousand particles. The dashed colored lines are the best fit ODE solutions obtained
by applying the curve fit according to Eq. (4.27).

the initial conditions of the falling dust grains. The initial x-position xo was randomly

sampled from a uniform distribution on the interval (-0.8,0.8) mm and the initial x-velocity

was randomly sampled from a uniform distribution on the interval (-1,1) cm/s. The initial

y and vo,y values are the same as the previous analysis. The equations of motion were

integrated for these randomly assigned sets of initial conditions. The simulation data was

processed according to the same procedure discussed in Sec. (4.2.2). The simulation and

analysis procedure were repeated for several values of the dust grain charge. The results

are summarized in Fig. (4.22) and show that even when a substantial fraction of the dust

grains, on average, have a non-zero initial x-velocity and x-position, their net deflection

will represent a trajectory very similar to that of a single grain with an equivalent average

charge. The difference between the input charge used in the simulation versus the charge

obtained using the data analysis technique of Sec. (4.2.2) differs by, at most, approximately
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2%. Therefore, the grain collimation technique and histogram averaging procedure is a valid

method to obtain the average deflection of many falling grains — thus providing a measure

of an average grain charge that closely corresponds with that of a single grain.

4.3.2 Modifications to the g ×B drift model

Radial electric fields

In the model developed in Sec. (2.2), quasi-neutrality was assumed in the plasma bulk

where ne ≈ ni and thus E ≈ 0 far from the chamber walls, electrodes, and their corresponding

space charge sheaths. In the experiment performed in Sec. (4.2.3), the falling dust grains

were approximately 54 mm from both the driven RF electrode and the grounded electrode

along the axial direction. The camera observation region was approximately 4 x 4 cm2 and

was centered on the geometric center of the chamber so that the grains were approximately

150 mm away from the chamber walls along the radial direction. Since the falling grains were

a substantial distance from both the axial space charge sheaths near the electrodes and the

radial space charge sheaths near the chamber walls, it is unlikely that sheath electric fields

are influencing the dust grain motion. However, due to the presence of the strong magnetic

field, it may be possible that the sheath electric fields were able to penetrate deeper into the

plasma bulk and influencing the falling dust grain motion directly through the electrostatic

force. In this section, the influence of both the radial plasma sheath electric fields as well as

ambipolar electric fields on falling grain g × B drift motion is considered.

For an assumed 15 mm thick space charge sheath near each electrode, the grains were

approximately 40 mm away from the electrode sheath boundaries. Although this distance is

quite large, some possible upper limits on the radial electric field strength can be estimated

from previous sheath measurements. [50] observed rotating dust crystals in a plasma sheath

at a neutral pressure of pn = 50 Pa and magnetic field strength of B = 0.014 T. They found

that the radial component of the sheath electric field was well approximated by Er(r) =

0.3r[cm] V/cm where r is the radial distance in cm. Using this expression with r = 7 cm,
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the radial electric field in the MDPX device for the g x B drift experiment was 2.1 V/cm.

This value is also in agreement with a DC glow discharge experiment done by [134] where

it was shown that the electric field strength was approximately 2.4 V/cm over the neutral

pressure range (10 – 100) Pa. Furthermore, when analyzing the radial confinement of the

center of mass of a six particle dust cluster, it has also been shown that the radial electric

field does not have a strong dependence on the RF power [135]. Therefore, even though

the g × B experiments were performed at a lower neutral gas pressure and with possibly

different RF discharge conditions, the work of [50, 134, 135] provide a useful estimation of

an upper limit on possible radial electric field values.

While keeping in mind that the radial electric field strengths above are likely an over-

estimate of the actual electric fields in the plasma bulk, the g x B model of Sec. (2.2) is

modified to include a linear radial electric field of the form

Er(r) = Eo
r[cm]

7
r̂ (4.28)

where Eo > 0 is a positive constant and r is the radial distance in cm. The analysis is

restricted to a radially outward electric field such that the electric force FE = qdE = −eZdE

experienced by the dust grain is radially inward. If the force were radially outward, the

grain would be pushed away from the origin, which would increase the amount of deflection.

Furthermore, the work of [136, 137, 138] showed that for the case of unmagnetized ions (at

least to the extent that their Larmor radius is much larger than the scale of interest) and

magnetized electrons in a finite cylindrical geometry, the plasma potential will peak at r

= 0 and slowly decay in the radial direction such that a radially outward electric field is

present. The equations of motion were numerically integrated for several possible values of

Eo at Bz = -0.512 T and Bz = -2.016 T. The dust grain charge was assumed to be Zd = 210

(0.25% of the OML value). Fig. (4.23) summarizes the results and shows for a magnetic

field strength of Bz = -0.512 T, a radial electric field strength of Eo = 2.5 V/cm is required
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to approximately bring the dust grain trajectory in line with the deflection measurements.

At Bz = -2.016 T, Eo = 2.5 V/cm is insufficient to align the simulation results with the

measured data. Eo ≈ 2.5 V/cm is most likely substantially larger than typical values in the

plasma bulk. In order to verify that the electric field has likely been over-estimated, a radial

(a) (b)

Figure 4.23: Parameters: ad = 0.25 µm, Zd = 210, and vo,y = -80 cm/s. Single grain
trajectories according to a radially outward electric field given by Eq. (4.28). The blue
data points are the measurement data from Sec. (4.2.3) and were plotted for reference. a)
Bz = −0.512 T. b) Bz = −2.016 T.

double Langmuir probe scan taken in the plasma bulk of the MDPX device at pn = 1.33

Pa with an RF power of 2 Watts and zero magnetic field is shown in Fig. (4.24). The

maximum electric field strength obtained from a cubic spline fit of the space potential profile

was Eo ≈ 0.25 V/cm.

The radially outward electric field and corresponding central peak in the plasma poten-

tial is largely due to the so called “Simon short-circuit” effect [139] where ions are driven

radially outward and accelerated up to the Bohm speed to maintain flux balance. In the

Simon short-circuit model, there is a radially outward flow of ions from the central region

of the plasma to maintain flux balance. This radially outward flow of ions would exert a

radially outward drag force on the dust grains, which would oppose the inward electrostatic

force. However, theory has shown that for small dust grains such as the ad = 0.25 µm
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(a) (b)

Figure 4.24: Parameters: pn = 1.33 Pa, and PRF = 2 W (∼ 110 V peak-to-peak voltage). A
radial scan using a double-tip Langmuir probe. a) Radial profile of the space potential (blue
points) provided by S. LeBlanc of the Plasma Sciences Laboratory at Auburn University.
The dashed black line is the corresponding cubic spline fit to the space potential data. The
radial position was assumed to have 10% error. b) The radial electric field profile (solid black
line) obtained from the first derivative of the cubic spline fit in part a).

dust grains used in the g × B drift experiment, the direct electric force will exceed the ion

drag [63, 60, 140, 141]. As a result, a radial ion drag force is unlikely to play a significant

role in the measurements. Although it is unlikely that radially outward ion flows have a

strong influence on our results, it is important to note that the Simon short-circuit model

is not fully applicable because even at the minimum Bz = -0.5 T magnetic field, the ions

are already strongly magnetized with Larmor radii on the order of millimeters. Due to ion

magnetization, it could be possible that there are more localized electric fields existing on

length scales of the order of tens of ion Larmor radii. However, at the present time, there is

no comprehensive model that includes strongly magnetized ions. Despite the unknown role

of ion magnetization, if we crudely assume that ions are born at rest and accelerated to the

Bohm speed at the outer radial regions of the device, energy balance gives

Eamb ≈
kbTe

2ermax

(4.29)
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where rmax = 15 cm in MDPX device. For kbTe = 2 eV electrons, Eq. (4.29) gives Eamb ≈ 0.06

V/cm, which is far below electric field values that would significantly affect the dust grain

g ×B drift motion.

(a) (b)

Figure 4.25: Parameters: ad = 0.25 µm, Zd = 210, vo,y = -80 cm/s. Monte Carlo simulation
trajectories according to the method described in Sec. (4.3.1) for a radially outward electric
field given by Eq. (4.28). The values of the radial electric field are Eo = (0, 0.25, and 2.5)
V/cm colored with black, red, and green. The blue data points are the measurement data
from Sec. (4.2.3) and were provided for reference. a) Bz = −0.512 T, b) Bz = −2.016 T.

The trajectories shown in Fig. (4.23) are for only a single falling dust grain. The shape

of the trajectories are also qualitatively similar to the data, so it could be possible that the

collimation technique is not valid when a radial electric field is present. For this reason, we

repeat the Monte Carlo analysis of the grain collimation technique discussed in Sec. (4.3.1)

with the addition of the radial electric field given by Eq. (4.28). The results are summarized

in Fig. (4.25) and clearly show that even when applying the Monte Carlo analysis to the

collimated dust grains, the simulated deflection curves do not align with the data. Therefore,

we conclude that even in the unlikely case that radial plasma sheath electric fields with a

strength of the order 2.5 V/cm were able to penetrate deep into the plasma bulk, the influence

of the radially inward electric force on the dust grains does not explain the large reduction

in the dust grain g × B deflection measurement.
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An azimuthal force

(a) (b)

Figure 4.26: Parameters: ad = 0.25 µm, Zd = 210, vo,y = -80 cm/s. Grain trajectories
for an azimuthal force with either a CW (Fo > 0) or CCW (Fo < 0) rotation according to
Eq. (4.30). a) Bz = −0.512 T, b) Bz = −2.016 T.

In this section, the equations of motion from Sec. (2.2) are modified with an additional

azimuthal force. The azimuthal force is assumed to have a linear radial dependence that

pushes the falling dust grains either clockwise (CW) or counter-clockwise (CCW). The linear

radial dependence was chosen because the presence of an azimuthal force may correspond

to, for example, an E × B driven ion drag force such as those observed in [142, 50, 143].

Depending on the direction of the radial electric field, this azimuthal drag force may either

be clockwise or counter-clockwise. The azimuthal force was modeled as

Fc(r) = Fo
r[cm]

7
φ̂ (4.30)

where Fo is a constant that can either be positive for CCW rotation or be negative for CW

rotation, and r is the radial distance in cm.

The equations of motion were numerically integrated for several possible values of Fo at

Bz = -0.512 T and Bz = -2.016 T. The dust charge was assumed to be Zd = 210. Fig. (4.26)

summarizes the results where the azimuthal force was normalized to the gravitational force
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according to

F̃c(r) =
Fc(r)

mdg
. (4.31)

These results clearly show that the presence of an azimuthal force (whether resulting from

an E x B driven ion drag or not), does not result in dust grain trajectories that align closely

with the measured data. Therefore, the possibility of the presence of an azimuthal force has

been ruled out.

Neutral drag reduction

In this section, the role of possibly anisotropic neutral gas drag is investigated. Anisotropy

of the neutral gas drag could be caused by the continual downward stream of collimated dust

grains pushing neutral gas particles out of the collimation region. If the grains are falling

with sufficient frequency that the natural diffusion of the neutral gas is no longer able to

repopulate the collimation region, then the neutral gas drag could be significantly modified.

In particular, the neutral drag could be decreased in the y-direction due to a lack of neu-

trals and possibly increased in the x-direction because the neutral density would be slightly

increased along the collimation zone walls. This possibility was explored by applying the

following modification of the Epstein drag that was presented in Sec. (1.2.5):

FD = −4

3
πa2

dmnvth,nnnδ · vv̂ (4.32)

where δ = (δx, δy) is used to alter the magnitudes of the x and y components of neutral drag.

The equations of motion were numerically integrated for several possible values of (δx, δy)

at Bz = -0.512 T and Bz = -2.016 T. The dust charge was assumed to be Zd = 210.

Fig. (4.27) summarizes the results. In the extreme limiting case where δy = 0 and δx = 2.88,

the simulated grain motion still does not closely align with the measured data. In this

limiting case, the y-motion is in near free-fall, but due to the coupling between the x and y

components of the motion through the magnetic force (i.e., Fx = −ωdvy and Fy = ωdvx), the
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force in the x-direction is also substantially increased. Therefore, the depletion of neutral

gas in the grain collimation zone does not affect the dust grain motion enough to cause a

false observation of substantially reduced dust grain charge as shown in Sec. (4.2.3).

(a) (b)

Figure 4.27: Parameters: ad = 0.25 µm, Zd = 210, and vo,y = -80 cm/s. Grain trajectories
for a modified neutral drag according to Eq. (4.32). a) Bz = −0.512 T, b) Bz = −2.016 T.

4.3.3 Possible mechanisms for grain charge reduction

It has been demonstrated that the effects of radial electric fields, azimuthal forces, and

neutral gas depletion are not able to explain the deflection measurements obtained from the

g × B drift experiment. As a result, it is important to consider possible mechanisms for

the apparent reduction of the dust charge in strong magnetic fields. There are effectively

two possible ways in which the grain charge could be reduced in the plasma bulk in strong

magnetic fields: First, the ion current to the grain is significantly increased. Second, the

electron current to the grain is significantly decreased. Both of these situations will be

examined in the following discussion.

E × B ion flows

As discussed in Sec. (1.3.2), there exists a slight modification to the usual OML theory

to account for an ion drift speed [22]. For ions with a flow speed uf , the shifted Maxwellian
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ion velocity distribution is

fi(vi;uf) =

(
mi

2πkbTi

) 3
2

exp−
(
mi(vi − uf)

2

2kbTi

)
. (4.33)

When substituting Eq. (1.38) and Eq. (4.33) into Eq. (1.39) and completing the integration,

the ion current to the grain becomes

Ii = Io,i

[
F1(ũ) + F2(ũ)

e2Zd

4πεoadkbTi

]
(4.34)

where Io,i is given by Eq. (1.45), ũ = uf/
√

2kbTi/mi is the normalized flow speed,

F1(ũ) =
√
π

(1 + 2ũ2)erf(4ũ)

4ũ
+

exp(−ũ2)

2
, (4.35)

F2(ũ) =
√
π

erf(ũ)

2ũ
, (4.36)

and

erf(ũ) =
2√
π

∫ ũ

0

exp (−x2)dx (4.37)

is the error function [28] that must be numerically integrated. In the limit ũ� 1, erf(ũ) ≈

2ũ/
√
π and Eq. (4.34) collapses to the usual OML current given by Eq. (1.44). In the fast

flow speed limit where ũ� 1, erf(ũ) ≈ 1 and Eq. (4.34) becomes

Ii = πa2
denouf

[
1 +

e2Zd

4πεoadmiu2
f

]
, (4.38)

which means that for very large values of the ion flow speed, the ion current no longer

depends on the grain charge and increases linearly in uf .

Fig. (4.28) shows the ion charging current as a function of the flow speed uf for several

values of the grain charge Zd. At small values of uf , the ion current is only slightly decreased

whereas when uf increases to several tens of times the ion thermal speed, the ion currents
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Figure 4.28: Parameters: ad = 0.25 µm, kbTi = 0.025 eV, kbTe = 2.0 eV, ne = ni = 1015

m−3. a) The ion charging current Eq. (4.34) versus ion flow speed for several fixed values
of the grain charge Zd. The black dashed vertical line marks the thermal speed of room
temperature ions where kbTi = 0.025 eV.

approach a linear dependence on uf and become independent of the grain charge. For E

× B driven ion flows in radial electric fields of the order Eo ≈ 1 V/cm, the flow speed is

uf ≈ 100 m/s. Ion flow speeds this small do not substantially change the ion current to the

grain. Therefore, we conclude that possible E × B driven ion flows in the plasma bulk are

unlikely to cause a significant deviation from the OML predicted value of the grain charge.

Ion magnetization effects

Recall that the g × B drift experiments were performed at a neutral gas pressure of

pn = 0.67 Pa and magnetic field strengths of B ≥ 0.5 T. At these neutral gas pressures and

magnetic fields strengths, the ion Hall parameter is Hi ∼ 100 as shown in Fig. (1.1). This

means that the ions undergo approximately 100 Larmor orbits before undergoing a collision

with a neutral gas particle that may significantly alter the ion trajectory. Strictly speaking,

the ions are quite magnetized. However, the ion Larmor radius is of the order rL,i = 300 µm,
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which is substantially larger than the dust grain radius ad = 0.25 µm. Therefore, the ions

are still effectively unmagnetized on spatial scales comparable to the grain dimension. As a

result, the physics of the ion current to the grain should still be relatively OML-like and is

well described by Eq. (1.44).

Electron charging current reduction

During the discussion of the OML charging theory in Sec. (1.3.1), it was assumed that

the electrons obey the Boltzmann relation given by Eq. (1.5). The Boltzmann relation bares

the underlying assumption that the electrons quickly reach steady state and that the electric

field force dominates the magnetic force on dust grains. However, it is very likely that the

Boltzmann relation for the electrons is no longer true in the presence of strong magnetic

fields. At the moment, it is an active area of research debate as to whether or not the

Boltzmann relation still applies for strongly magnetized electrons in low temperature plasmas

[144, 145, 146, 147]– although some authors have shown evidence that the Boltzmann relation

is true in the sheath region but not in the pre-sheath or the bulk [148, 149, 150, 151]. For

these reasons, in the authors opinion, it is unclear whether or not an OML-like dust grain

charge should be expected in a magnetized plasma bulk. Therefore, possible mechanisms for

grain charge reduction via the reduction of electron current to the grain are discussed for

the remainder of this dissertation.

In order to examine the effect of electron current reduction, we modify the OML grain

charging equation given by Eq. (1.53) to include an electron current reduction factor β−1.

The ion current is left unchanged. The new temporal dust charging equation then becomes

dZd

dt
= −4πa2

dno

√
kbTe

2πme

[√
meTi

miTe

(
1 +

e2Zd

4πεoadkbTi

)
− β−1 exp

(
− e2Zd

4πεoadkbTe

)]
. (4.39)

Before proceeding, it is important to note that the insertion of the reduction factor β is purely

ad-hoc and at the current time, there is no first principles derivation of β. Nevertheless, β
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Figure 4.29: Parameters: ad = 0.25 µm, kbTi = 0.025 eV, kbTe = 2.0 eV, ne = ni = 1015

m−3. The magnitude of the electron and ion charging currents are plotted as a function of
the dust grain charge by solving Eq. (1.53) for several values of β. The time t90 is the time
taken for the dust grain charge to reach 90% of its equilibrium value. The electron currents
are dashed lines. The ion currents are the solid lines.

is used to determine to what extent the dust charge can be reduced by means of electron

current reduction.

Eq. (4.39) was numerically integrated for several values of the electron current reduction

factor β and is summarized in Fig. (4.29). When β = 200, the electron current is drastically

reduced such that the equilibrium charge of the dust grain is only Zd ≈ 50, which is in

approximate agreement with the B = 0.512 T results shown in Sec. (4.2.3). The equilibrium

charging timescale is approximately 25 µs for the β = 1 case and increases to 115 µs for

the β = 200 case which shows that the charging timescale of the dust grains may also be

increased in strong magnetic fields; however, in the g×B drift experiments performed in this

dissertation, the dust grains were in the plasma for tens of milliseconds which is much larger

than the equilibrium charging timescale estimation presented in this model. Based on the

results shown in Fig. (4.29), a reduced electron charging current may be able to explain the
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reduced grain charge observations. For the remainder of this dissertation, we hypothesize

about mechanisms through which the electron current can be reduced.

Electron magnetization and flux tubes

The electrons are significantly more magnetized than the ions and have a Hall parameter

of He ∼ 104 with a Larmor radius at B = 0.5 T of rL,e = 10 µm (see Fig. (1.2)) that

is comparable to the grain dimensions. Also, recall that the electron mean free path at

pn = 0.67 Pa is λ = 15 cm. This means that the electrons are effectively collisionless

between the 11 cm spacing of the MDPX electrodes. As a result, there is very little electron

diffusion perpendicular to the magnetic field and the electron charging currents to the grain

become flux-tube limited. This means that electrons beyond 1 Larmor diameter away from

the dust grain are unlikely to strike the dust grain. This effect is illustrated in Fig. (4.30).

Figure 4.30: A 2D cartoon illustration of flux-tube limited dust grain charging. At a fixed
radial position, there is only a very small range of perpendicular velocities corresponding to
Larmor orbits that will intersect with the grain. This most probable Larmor radius is given
by rL,e = mevth,e/(eB).

In addition to flux-tube limited charging, the characteristic inter-electron spacing when

ne ≈ 1015 m−3 is de ≈ 10 µm, which is of the order the Larmor radius at B = 0.5 T. In

the unmagnetized case, this fact goes relatively unnoticed due to the large electron thermal

speed leading to a large flux of electrons to the grain from anywhere within a mean free path

of the dust grain. However, when the electrons become magnetized, they are no longer able
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to freely move perpendicular to the magnetic field and the volume from which they originate

is significantly reduced. The characteristic spatial scales for the electrons are summarized in

Fig. (4.31).

(a) (b)

Figure 4.31: Parameters: ne = 1015 m−3 at pn = 0.67 Pa. a) The electron (red dots) inter-
particle spacing is to scale. The inter-neutral spacing is so small that it appears continuously
gray in color. The electron size and dust grain size (green dot) are not to scale. b) This is
part a) zoomed in to the sub-micron scale and was adapted from Fig. (2.1b). The electron
(red dot in the lower left hand corner) is the only one present on this small scale due to
the large inter-electron spacing. The inter-neutral spacing can now be seen as a random
distribution of gray dots. The dust grain outline (green dashes) is to scale whereas the
electron (red dot) size and the neutral (gray dots) sizes are not to scale.

The flux-tubes can be better understood by considering the Lagrangian of an electron

in both the centrally repulsive electric field of the negatively charged dust grain and an axial

magnetic field. The Lagrangian in polar coordinates (ρ, φ) is

L =
1

2
meρ̇

2 +
1

2
meρ

2φ̇2 − eρφ̇Aφ + eΦd(ρ) (4.40)
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where Φd(ρ) is given by Eq. (1.11) and

Aφ =
ρBz

2
φ̂ (4.41)

is the vector magnetic potential satisfying B = ∇×A for an axial magnetic field pointing

along the ẑ direction. When substituting Eq. (4.41) into Eq. (4.40), we get

L =
1

2
meρ̇

2 +
1

2
meρ

2φ̇2 − 1

2
meρ

2ωc,eφ̇+ eΦd(ρ). (4.42)

Eq. (4.42) is the standard Lagrangian function commonly found in textbooks such as [152,

153]. The Lagrangian does not contain explicit dependence on the coordinate φ, so we

immediately know that the canonical angular momentum

pφ =
∂L
∂φ̇

= meρ
2
(
φ̇− ωc,e

2

)
(4.43)

is a constant of the motion. It is important to note here that pφ here is analogous to J

in Sec. (1.3.2). This is an unfortunate notational clash that could not be avoided because

the literature pertaining to the ion trapping discussed in Sec. (1.3.2) historically uses J as

opposed to the canonical angular momentum pφ. In the absence of a magnetic field (i.e.

ωc,e = 0), the canonical angular momentum is the angular momentum. However, since ωc,e

is nonzero, pφ is the appropriate notation. The canonical radial momentum is given by

pρ =
∂L
∂ρ̇

= meρ̇. (4.44)

Eqs. (4.42 – 4.44) can be used to derive the Hamiltonian of the system

H =
1

2me

p2
ρ + Ueff(ρ) (4.45)

99



where

Ueff(ρ) =
1

2meρ2

(
pφ +meρ

2ωc,e

2

)2

− eΦd(ρ) (4.46)

is the 2D effective potential. Eq. (4.46) tells us that for each particular value of the canonical

angular momentum pφ, there is a corresponding effective potential Ueff that depends only on

the polar radial coordinate ρ. Several possible Ueff curves are shown in Fig. (4.32).

Figure 4.32: Parameters: Bz = 2 T, Zd = 100, ne = ni = 1015 m−3. Several possible
effective potentials governing the electron motion. The angular speeds are normalized such
that ṽo,φ = vo,φ/vth,e. The color scheme used here is also applied to Fig. (4.33) where more
detail about simulation parameters is given.

In order to better understand the electron dynamics, the equations of motion for the

electron were solved and their trajectories superimposed onto their corresponding effective

potential given by Eq. (4.46). A summary of the results is shown in Fig. (4.33). Recall that

the canonical momentum pφ is related to the angular speed vφ = ρφ̇ through Eq. (4.43). By

strategically choosing the initial starting location of the electron to be at (xo, yo) = (−3.88, 0)

µm such that φ = π and giving the electron an initial velocity vertically downward, the

angular speed at the starting location will be given by vo,φ = ρoφ̇o = vo,y cosφ where ρo
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(a) (b)

(c) (d)

Figure 4.33: Parameters: Bz = 2 T, Zd = 100, ne = ni = 1015 m−3, (xo, yo) = (−3.88, 0)
µm, and vo,x = 0. Several electron trajectories are plotted and superimposed on top of their
respective effective potential Ueff(ρ) given by Eq. (4.46). The angular speeds are normalized
such that ṽo,φ = vo,φ/vth,e = vo,y/vth,e since vo,y was initially chosen to be straight down from
an initial position that was on the x-axis. a) ṽo,φ = 1.0. b) ṽo,φ = 0.8. c) ṽo,φ = 0.7. d)
ṽo,φ = 0.4.

= 3.88 µm. The initial condition specifies pφ (a constant of the motion), and the effective

potential Ueff can then be plotted for that particular value of pφ.

The electron trajectories for several values of the angular velocity vφ,o are summarized

in Fig. (4.33). Based on the electron trajectories, it becomes obvious that at a particular
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location in space, only a very small range of electron perpendicular velocities correspond to

Larmor orbits which intersect with the dust grain. The curves in Fig. (4.33c) are color-coded

according to Fig. (4.32). In most cases, the electron trajectory will either encompass the

grain as shown by the yellow and black curves or never come close to the grain as shown in

the purple curve. The red curve is the only case for which the total energy of the electron

exceeds the repulsive effective potential and is able to hit the dust grain. In principle, there

exists many more possible sets of initial conditions that are able to strike the dust grain for

the particular value of ṽφ,o = 0.7; however, recall that the electrons are usually treated as

Maxwellian distributed with an energy of approximately kbTe = 2 eV, which places a limit

on the most probable values for the components of the electron velocity.

When the concept of electrons being trapped in 2D effective potential wells is extended

into the z-direction, the 2D circular orbit becomes a 3D flux tube. Electrons with a perpen-

dicular distance from the grain ρ > 2rL,e have trajectories that, regardless of their z-position,

will never intersect with the dust grain. In this way, each dust grain has a corresponding

cylindrical flux-tube volume from which electrons may be collected. Conversely, in the OML

theory case with unmagnetized electrons, the collection volume is a sphere. Therefore, the

total collection volume from which electrons may strike the dust grain is reduced from a

spherical to cylindrical shape when the electrons become strongly magnetized. As a very

crude geometric argument, consider the ratio of the volume of a flux-tube limited cylinder to

the volume of the Debye sphere surrounding a typical dust grain. This ratio can be expressed

as

Ṽ =
VB

Vd

=
πr2

L,eh
4
3
πL3

d

(4.47)

where the height of the flux-tube cylinder is h and Ld ≈ Li ≈ 30 µm for ions at kbTi = 0.025

eV and ni = 1015 m−3. When substituting Eq. (1.17) for rL,e of kbTe = 2 eV electrons,

Eq. (4.47) becomes

Ṽ ≈ 0.05

B2[T ]
(4.48)
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where the magnetic field strength B is given in Tesla and the height of the flux-cylinder was

assumed to be h = Ld. Although this approximation is crude, it clearly illustrates that the

volume from which electrons may come from to be collected by the dust grain is reduced by

a factor of approximately 20. Furthermore, in reality the electrons may stream in to strike

the grain from well outside the dust Debye sphere which further decreases the ratio given

by Eq. (4.48). This simple geometric argument shows that there is a large reduction in the

collection volume from which the electrons may be collected by the dust grain; however, the

flux of electrons within the cylindrical flux tube volume is unknown and will be the subject

of future investigations.

Kinetic electron charging

Figure 4.34: An example 3D simulation of an electron spiraling around a magnetic field.
Because the electron’s pitch angle is large, the electron orbit skips over the dust grain as it
travels along the z-direction.

To further illustrate the idea that the electron charging current to the grain is signifi-

cantly reduced, the z-component of the electron motion within a flux tube also needs to be

taken into account. Even if the electron has the correct Larmor orbit such that geometri-

cally speaking, it can intersect with the dust grain, a large parallel velocity will cause the

electron to effectively skip over the dust grain while spiraling along the magnetic field. This
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is illustrated in Fig. (4.34). The maximum distance traveled along the magnetic field can be

approximated as

∆z = vth,e∆t = vth,e
2π

ωc,e

(4.49)

where ∆z is the distance traveled along the field. In this case, assuming kbTe = 2.0 eV to

obtain the electron thermal speed,

∆z ≈ 34

B[T ]
µm (4.50)

where the magnetic field strength B is given in Tesla. Based on Eq. (4.50), it is easy to see

that for an electron spiraling along the magnetic field line, if the parallel velocity is even

1/10th of the thermal speed, then the ∆z is still much larger than the ad = 0.25 µm dust

grains used in the g × B drift experiments.

4.3.4 Closing remarks and directions for future work

Some additional insight into the nature of electron motion and dust grain charging in

strong magnetic fields is provided by extending the effective potential given by Eq. (4.46) to

include the z-component such that

Ueff(ρ, z) =
1

2meρ2

(
pφ +meρ

2ωc,e

2

)2

− eΦd(ρ, z) (4.51)

where Φd is given by Eq. (1.11) while making the substitution r =
√
ρ2 + z2 and noting

that Φd < 0 so that the potential is repulsive between the negatively charged grain and the

electron. Two possible electron trajectories in the effective potential given by Eq. (4.51) are

shown in Fig. (4.35). The initial conditions of the two electrons are identical except the

initial y-position yo, which is changed by 1.3 · 10−5 %. The two electrons follow the same

trajectory while traveling in the −ẑ direction. They scatter off the dust grain and undergo

approximately three Larmor orbits in the z = 0 plane after which one electron scatters

104



backwards and the other scatters forward. Fig. (4.35b) is a superposition of the electron

motion and the effective potential given by Eq. (4.51) where the unstable equilibrium in the

z = 0 plane is clearly shown.

This example shows extreme sensitivity to initial conditions and further highlights the

complicated dynamics that electrons will undergo at the micron scale when scattering off

of micron sized dust grain in a strong magnetic field where the Larmor orbit is only a few

microns in diameter. A detailed study of the electron scattering function for various values

of the impact parameter needs to be performed. Chaotic electron motion in strong magnetic

fields has been simulated for the attractive Coulomb potential between an electron and

positively charged ion [154]; however, to the best of the author’s knowledge, no such analysis

has been done for strongly magnetized electrons interacting with the Debye potential of a

negatively charged dust grain. Furthermore, this same analysis could be further extended

to ion motion in the vicinity of the dust grain where the interaction is attractive. It may

be possible for ions to become trapped — similar to the discussion in at the beginning of

Sec. (1.3.2).

In addition to the Hamiltonian analysis performed above, a Monte Carlo analysis of

electron trajectories could also be performed by randomly sampling sets of initial conditions

for the electron motion. The electron velocity components could be randomly sampled from

a Maxwellian distribution at temperature kbTe and the initial positions randomly sampled

from a uniform distribution within a defined simulation volume. If the space of initial

conditions were sampled densely enough at several values of magnetic field strength, the

ratio of electrons striking the grain could be used to gain an understanding of dust grain

charging in strong magnetic fields.
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(a)

(b)

Figure 4.35: Parameters: ad = 0.25 µm, Zd = 1000, B = 2 T, (xo, zo) = (0, 12.89141)
µm, (vo,x, vo,y, vo,z) = (0.5, 0.5,−

√
2/2)vth,e, yo = 0.3174858 µm (black solid line), and yo =

0.3174860 µm (red dashed line). The equations of motion for each electron were integrated
separately and there was no interaction between the electrons. Both figures have been
spatially magnified and the initial locations of the electrons is not in view. The red and
black electrons are “launched” in the −ẑ direction with nearly the same initial conditions.
The overlapping trajectories appear as a red and black dashed line at the upper portion of
the plots. The trajectories do not separate until they come close to the z = 0 plane. a)
Trajectories in (x, y, z) space of two electrons. The red electron is forward scattered into the
−ẑ direction and the black electron back scattered into the ẑ direction. b) Trajectories in
cylindrical (ρ, z) space where ρ =

√
x2 + y2 of the electrons superimposed on the effective

potential given by Eq. (4.51).
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Chapter 5

Summary and Outlook

This experimental investigation into the nature of dust grain charging in strong mag-

netic fields has two primary results. First, the measurements presented here are based on

observations of dust grain g × B deflection, which is a direct magnetization effect on the

dust grains. To the best of the author’s knowledge, this is the first observation of a direct

magnetization effect on dust grains in a low temperature RF plasma bulk. One of the pri-

mary physics missions of the Magnetized Dusty Plasma Experiment (MDPX) was, arguably,

to observe direct magnetization effects on the dust grains. In addition, this magnetization

effect was observed with a very small dust grain Hall parameter (of the order 10−4), which

is a value far below which one would have a reasonable expectation of observing dust grain

Larmor motion in a plasma sheath. The g × B magnetization effect was observable be-

cause of the unique geometry of this experiment where the dust grains were falling through

the plasma bulk under the influence of the gravitational force. The gravitational force was

a large external driving force that prevented the neutral gas drag from bringing the dust

grains to rest — thus allowing for the measurement of very small magnetization effects over

a vertical distance traveled of approximately 4 cm.

Second, the measured dust grain charge was significantly less than the value predicted

by the unmagnetized OML charging theory. A careful analysis of the dust grain deflection

and some initial modeling was presented in Sec. (4.3.3) and showed that a reduced dust grain

charge is consistent with the experimental observations. In addition, the initial modeling

also showed that the equilibrium charging timescale for the dust grains could be increased

compared to the OML theory predictions. However, it was also shown that the increased

equilibrium charging timescale cannot fully explain the reduced grain charge measurement
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presented in this work because the falling dust grains were in the plasma bulk for tens

of milliseconds before entering the camera observation region. The dynamics of dust grain

charging is significantly modified by the strong magnetization of electrons which could reduce

the electron current to the dust grain and thus decrease the equilibrium charge. In particular,

when the electron Larmor radii become comparable to the dust grain dimension, the charging

volume surrounding a dust grain becomes flux-tube limited. A substantial fraction of the

electrons within the flux-tube volume may also miss the dust grain as they undergo cycloidal

motion along the magnetic field. These two factors may lead to a significantly reduced dust

grain charge in comparison to the OML model.

The measurements performed in this experimental work provide new insight into the

nature of dust grain charging dynamics in strongly magnetized plasmas. At this time, very

little theoretical work has been done in this area. It is the author’s hope that, as a result

of the measurements presented in this dissertation, further theoretical and experimental

investigations will be performed.
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Appendix A

Dimensional schematics

Figure A.1: A side-view dimensional schematic of the dropper electrodes and glass cylinder
discussed in Sec. (4.1.1). All dimensions are given in units of millimeters. From top to
bottom: Electrode 1 (E1) is grounded. Electrode 2 (E2) has an applied RF signal. Electrode
3 (E3) is an auxiliary electrode through which a DC signal may be applied to manipulate
the plasma sheath as well as assist in confining the plasma to the dropper volume.
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Figure A.2: A side-view dimensional schematic of the dropper mounting hardware used to
attach the dropper to an ISO-100 vacuum port as discussed in Sec. (4.1.1). All dimensions
are given in units of millimeters. The dropper electrodes (E1, E2, E3) and the glass cylinder
pictured in Fig. (A.1) is placed between the Delrin brackets pictured in the schematic above.
Four 10/32 (Imperial) cap screws are used to hold the entire assembly together as well as
attach it to an ISO-100 vacuum port.
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Figure A.3: A schematic view of the (measured) glass funnel dimensions that was used
to collimate dust grains as discussed in Sec. (4.2.1). All dimensions are given in units of
millimeters.
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Appendix B

Solution derivation for a falling grain with neutral gas drag

The equation of motion for an isolated falling dust grain according to the force diagram

in Fig. (4.6) is

md
dvy

dt
= −mdg − γvy (B.1)

where md is the mass of the grain, vy = vy(t) is the velocity of the grain, g is the gravitational

acceleration, and γ is the constant Epstein drag coefficient. By Dividing Eq. (B.1) by md,

defining Γ = γ/md, the equation of motion becomes:

dvy

dt
= −g − Γvy. (B.2)

Eq. (B.2) is a first-order separable differential equation. Each side can be separated and

integrated as follows: ∫ v

vo

dvy

Γvy + g
= −

∫ t

to

dt (B.3)

1

Γ
ln

(
Γvy + g

Γvo + g

)
= −(t− to) (B.4)

where vo is the initial velocity at the initial time to. Exponentiate both sides of Eq. (B.4)

and solve for vy to show that

vy(t) =
1

Γ
(Γvo + g) exp (−Γ(t− to))− g

Γ
. (B.5)
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Recall that vy = dy/dt and hence Eq. (B.5) can be integrated once more to obtain the general

solution to Eq. (B.2):

y − yo = − 1

Γ2
(Γvo + g) exp(−Γ(t− to))−

g

Γ
(t− to) (B.6)

where yo is the initial position at the initial time to.
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Appendix C

Solution derivation for a g × B drifting grain with neutral gas drag

The equation of motion for a dust grain according to the force diagram in Fig. (2.4a) is

given by the following coupled system of equations:

md
dvx

dt
= qdBzvy − γvx (C.1)

and

md
dvy

dt
= −qdBzvx − γvy −mdg (C.2)

where md is the mass of the dust grain, vx = vx(t) and vy = vy(t) are the horizontal and

vertical velocities, qd is the dust grain charge, Bz is the magnetic field strength, γ is the

constant Epstein drag coefficient, and g is the gravitational acceleration. Dividing Eqs. (C.1

– C.2) through by md and defining ωd = −qdBz/md, the system of equations above can be

written as:

d

dt

 vx

vy

 =

 −Γ −ωd

ωd −Γ


 vx

vy

+

 0

−g

 . (C.3)

Eq. (C.3) is a non-homogeneous linear first order system of coupled ODE’s that can be

expressed more concisely as:

dv

dt
= A · v + Fo (C.4)

where

A =

 −Γ −ωd

ωd −Γ

 , (C.5)
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Fo =

 0

−g

 , (C.6)

and

v =

 vx

vy

 . (C.7)

Eq. (C.4) can be solved using the standard techniques of ordinary differential equations

such as those found in [155]. We start by considering only the following homogeneous system:

dvh

dt
= A · vh. (C.8)

The first step in solving Eq. (C.8) is to consider the following eigen-system:

(A− λI) · η = 0 (C.9)

where λ are the eigenvalues and η are the eigenvectors. We solve Eq. (C.9) by finding the

characteristic equation and solving for its roots. The characteristic equation is:

|A− λI| = (Γ + λ)2 + ω2
d = 0 (C.10)

and its corresponding roots (i.e. the eigenvalues) are

λ± = −Γ± iωd. (C.11)

The presence of real and imaginary components of the roots indicate that, as expected,

there is a damped oscillation. The imaginary term corresponds to oscillations (i.e. the

usual Larmor motion) whereas the real component corresponds to damped motion (i.e. the

neutral drag). The first eigenvector, η+, is calculated by back substituting the root, λ+, into
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Eq. (C.9) and then solving the corresponding homogeneous system to obtain the following:

η+ =

 i

1

 . (C.12)

The partial solution to Eq. (C.8) from the first eigenvalue and eigenvector is:

v+(t) = exp(−Γt+ iωdt)

 i

1

 (C.13)

When the coefficient matrix, Eq. (C.5), is real and the eigenvalues, Eq. (C.11), occur on a

conjugate pair, such as the case presented here, the solution to the homogeneous system,

Eq. (C.8), can now be obtained directly using only the first eigenvector and its corresponding

solution by separating the real and imaginary components of the v+ eigenvector such that

v+(t) = a(t) + ib(t). (C.14)

When the real and imaginary components of Eq. (C.13) are separated according to Eq. (C.14),

the general solution to the original homogeneous equation for the velocity of the falling grain,

Eq. (C.8), can be written as the following linear combination:

vh(t) = C1a(t) + C2b(t) (C.15)

Applying Euler’s formula to Eq. (C.13) to isolate the real and imaginary components gives:

a(t) = exp(−Γt)

 − sin(ωdt)

cos(ωdt)

 (C.16)
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and

b(t) = exp(−Γt)

 cos(ωdt)

sin(ωdt)

 (C.17)

so that

vh(t) = C1 exp(−Γt)

 − sin(ωdt)

cos(ωdt)

+ C2 exp(−Γt)

 cos(ωdt)

sin(ωdt)

 . (C.18)

In summary, for the homogeneous solution (i.e., the absence of external forces such as grav-

ity), the velocities exponentially decay to zero. For the limiting case, where neutral drag

is removed such that Γ = 0, we get the expected oscillating Larmor motion solutions for a

charged particle oscillating in an external magnetic field.

Now that the homogeneous solution to Eq. (C.4) has been found, the final step is to

find the particular solution. In order to find the particular solution, using the usual method

of solving ODE’s, we guess a particular solution of the form:

vp(t) = uo + two (C.19)

where uo and wo are constant vectors and t time. We differentiate Eq. (C.19) according to

Eq. (C.4) and get the following:

dvp

dt
= A · vp + Fo = wo = A · uo + tA ·wo + Fo. (C.20)

Collecting like-terms and rearranging them all on the LHS gives:

t[A ·wo] + [A · uo −wo + Fo] = 0. (C.21)
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Referring back to Eq. (C.5), in order for Eq. (C.21) to be true for all values of t, each term

in square brackets ([...]) must vanish identically. Consider the first term on the RHS side:

t[A ·wo] = 0 (C.22)

In order for the above equation to be true, we require that the determinant of A must vanish,

|A| = Γ2 − ω2
d = 0. In general, this is not the case. Therefore, we can conclude that wo = 0

(meaning that A is a nonsingular matrix). The second term on the LHS of Eq. (C.21) is

now:

[A · uo + Fo] = 0 (C.23)

Eq. (C.23) is the 2-dimensional system of equations:

 Γ ωd

ωd −Γ


 uo,x

uo,y

 =

 0

−g

 (C.24)

with a solution of

uo,x =
g

ωd(1 + Γ2/ω2
d)

(C.25)

and

uo,y = −
Γ
ωd
g

ωd(1 + Γ2/ω2
d)

(C.26)

Combining the particular solution with the homogeneous solution, we get:

v(t) = D1 exp(−Γt)

 − sin(ωdt)

cos(ωdt)

+D2 exp(−Γt)

 cos(ωdt)

sin(ωdt)


+

g

ωd(1 + Γ2/ω2
d)

 1

−Γ/ωd

 .

(C.27)

The arbitrary constants, D1 and D2 are set by the initial conditions of the falling particle.
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Appendix D

Diagram of the flood fill technique

Figure D.1: An illustration of the flood fill technique. All pixels above the intensity threshold
are labeled with a 1 (i.e., True). All pixels below the intensity threshold are labeled with
a 0 (i.e., False). The black star located at pixel (i, j) marks the seed pixel. Starting from
the seed pixel, all local neighbors (north, east, south, and west) are examined to see if their
intensity is above the threshold. If above the threshold, the pixels are added to a stack data
structure. In this example, the east and south pixels are above the threshold and are marked
by blue stars and text in the tree diagram. In the next step, the algorithm chooses a pixel
location (i.e., the locations marked by blue stars) from the stack data structure and then
examines that pixel’s local neighbors to see if they satisfy the threshold condition. In this
way, the flood-fill algorithm iterates until the stack is empty and all connected pixels above
the intensity threshold are found.
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