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Abstract

Modern autonomous systems require complex and heavy computations. The complexity

can be reduced by eliminating or integrating redundant information. In the case of mobile

vehicles, occupancy grid map representations are conventionally adopted for path planning.

Based on a grid map, a reduced element map representation named a rectangular map or

an R-map has been introduced. The concept of R-map is integration of empty elements of a

grid map into fewer elements with maximal sizes. Since an R-map has a reduced number of

elements, path planning computations become much faster than conventional maps. Also,

because the R-map algorithm focuses only on free space, it is naturally suited for obstacle

avoidance.

The R-map can also be applied to map merging problems. Since R-maps represent

spaces with varied sizes of rectangles, this feature can be a good source to recognize certain

locations on the maps, unlike regular gridded cells. This work accomplishes map merging

of local maps with unknown factors in their orientations, accuracy, and scales using the

rectangular features from the R-map.

Further, this study extends the concept of the 2D R-map to 3D environments. Since

3D environments have an additional dimension of the z-axis, the process of R-mapping will

be slightly different from 2D R-mapping, and the integrated cells will be represented as

cuboids (volumes) instead of rectangles (areas). Those maximal empty cuboids (MECs) are

obstacle-free spaces, and autonomous vehicles can accomplish obstacle avoidance by moving

through a sequence of MECs. As applications, algorithms for path planning on R-maps

are provided for stationary- and maneuvering-target interception in cluttered environments.

This approach expects to provide a computational efficiency to guidance and navigation

problems of autonomous systems.
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Chapter 1

Introduction

The guidance and navigation of mobile vehicles in complex environments often depend

on a map of the environment. The most popular map representation is the occupancy

grid map (G-map), which expresses obstacles with 0 and free spaces with 1. Mapping

robots may generate G-maps with different resolutions. Lower-resolution maps consume

less data, but the obstacles are distorted and path planning with the maps can produce

unreliable paths. Higher-resolution maps that have increased resolutions by a factor of

n can produce more reliable paths, but the map of a two-dimensional (2D) environment

has n2 times more cells to consider. Thus, high-resolution G-maps require large memory

spaces and large computational times for processing [1, 2]. As a solution for the drawback

of G-maps, multiresolution cell decomposition has been suggested in [3–7] to minimize the

distortions of obstacles, thus the map has varied sizes of cells. Prazenica and Kurdila adopted

multiresolution decomposition for obstacle-location estimation to use in receding horizon

control formulation [8, 9]. As another solution, Ahn and Jeon introduced the concept of a

rectangular map (R-map) as a hybrid of a G-map and a topological map in [10]. A topological

map is a graph-based map, which only shows relationships between nodes by branches such

as a subway map [11,12]. The idea of R-maps is integration of empty cells of a grid map into

maximal empty rectangles (MERs), thus MERs are the nodes and their relationships are

the branches. Therefore, R-maps have a reduced number of cell elements and connections,

and they are computationally more efficient and require less memory space than G-maps

for their utilization, such as in path planning. Chapter 2 reviews this previously developed

2D R-map. Section 2.1 describes how to construct a 2D R-map with a simple example, and

Section 2.2 describes path planning on a 2D R-map of the Auburn University campus.
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In Chapter 3, the 2D R-map is applied to map-merging problems. Since R-maps rep-

resent spaces with varied sizes of rectangles, this feature can be a good source to recognize

certain locations on the maps, unlike regular gridded cells. Using this feature, R-maps allow

the estimation of common areas between two local maps to merge them into a global map.

In map-merging problems, the computational complexity depends on the sensor information

available from the mapping robots [14–17]. When the robots know their compass/heading

directions, real-time locations, etc., the complexity will be much reduced. Also, obstacle-

detecting sensors such as laser, mono/stereo camera, sonar, and infrared sensors have differ-

ent noise levels that affect the map accuracy [18]. In the case such information is unknown

and only map images are given, the three differences (orientation, accuracy and scale) be-

tween the maps make the map merging challenging. Map merging using rectangular features

finds the most similar areas between two local maps by minimizing the differences.

Further, this study advances the idea of the 2D R-map to three-dimensional (3D) spaces.

Chapter 4 explains how to construct 3D R-maps with detailed steps. The process of 3D R-

mapping is similar with the 2D R-mapping as integrating free cells into maximal empty areas

to reduce the number of cell elements. However, since 3D environments have an additional

dimension of the z-axis, the process of R-mapping will be slightly different and the integrated

cells will be represented as cuboids (volumes) instead of rectangles (areas). Those maximal

empty cuboids (MECs) are obstacle-free spaces and the algorithm of 3D R-map also provides

connections of the MECs, thus UAVs can accomplish obstacle avoidance by moving through

a sequence of MECs.

As an application of the 3D R-map, path planning is provided in Chapter 5. Using

the information of MECs from R-mapping, Dijkstra’s algorithm selects connected cuboids

between two points, then two methods of interpolation determine paths to follow passing

through the selected cuboids. In this Chapter, the target is assumed to be placed on a

stationary point.

2



For the case of a moving target, Chapter 6 suggests several approaches to intercept

the target. To avoid obstacles in a cluttered environment, the guidance laws can be im-

plemented on the R-map in a receding horizon approach, which takes the advantage of the

computationally efficient path planning.

The major contributions of this work are a data reduction and a feature extraction from

a map, thus this map representation can be adopted for map-utilizing applications such as

map merging and path planning.
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Chapter 2

Review of 2D R-mapping and Path Planning

The concept of the R-map has introduced by Ahn and Jeon [10]. Later, the detailed

algorithm and the demonstration of its efficiency in path planning have been provided by

the author [13]. This Chapter reviews the algorithm of 2D R-mapping and path planning

as follows. Section 2.1 describes the R-mapping algorithm with four steps. The process is

explained with a simple environment, and the result is provided on a representative envi-

ronment. Section 2.2 shows the use of R-maps in path planning. The paths between two

points can be various depending on weight definitions. Also, the computation time for path

planning along different resolutions of the maps is given and compared.

2.1 R-mapping

The main idea of the R-map is the integration of empty cells of the G-map into MERs.

The key issue of the R-map algorithm is finding MERs in the form of non-overlapping

rectangles. A flow chart of the algorithm which consists of four steps is shown in figure

2.1. First, it is assumed that a grid map is acquired from a mapping robot or other source.

This map can be expressed as an (m × n) binary matrix, 0 for obstacles and 1 for free

spaces. Here, unknown/unexplored areas can be considered as free spaces. The input to the

algorithm is this binary matrix, G. In step 1, a matrix cm is defined based on G. In step

2, surveys to find an MER proceed in cm column-by-column along the vertical direction.

The survey compares the current element and the previous element by four possibilities. In

step 3, corresponding elements of the MER from step 2 in G are updated to zeros to ensure

that the subsequent iterations only search the remaining free space. Then, step 1 through

step 3 are repeated until all elements in G have been set to zeros. After the iterations, a

4



Figure 2.1. A flow chart of R-map algorithm.

list of MERs in the order of the area size is acquired. In step 4, connections of the MERs

are computed. Finally, the algorithm returns a list of MERs and their connections. This

information will be utilized in applications of the R-map. The following sections describe

the four steps in more detail and provide results.

2.1.1 Step 1: Initialization

A G-map is defined as an (m × n) binary matrix G, where m is the total number of

rows and n is the total number of columns. Thus, m and n are associated with the y- and

x-axis, respectively, and the coordinates of each element in G are represented as G(y, x).

Figure 2.2a shows a G-map and figure 2.2b shows a (5× 5) binary matrix G as an example.
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(a) G-map (b) G (c) cm

Figure 2.2. (a) A (5× 5) grid map is acquired from a mapping robot. (b) The grid map can be expressed as
a binary matrix G. (c) A (6× 5) corresponding matrix cm is derived from G.

A corresponding ((m + 1) × n) matrix cm is derived from this G. Each element of cm,

cm(y, x), is computed by right-to-left x-wise summations of contiguous free-space elements

in G, thus the computing order of x is from n to 1. Also, an additional row with elements

equal to zeros is added to the bottom of cm, which is necessary for step 2.

cm(y, x) =



G(y, x) if y ≤ m, x = n

cm(y, x+ 1) + 1 if G(y, x) = 1, y ≤ m, x < n

0 if G(y, x) = 0, y ≤ m, x < n

0 if y = m+ 1

(2.1)

Figure 2.2c shows a (6× 5) matrix cm. Each element in cm is the number of free-elements

along the x-direction, and indicates the width of a possible rectangle.

2.1.2 Step 2: Finding the MER

This step finds the maximal empty rectangle (MER) by surveying every element column-

by-column in cm. The approach in this step is referred from Vandevoorde [19]. Initially,

best-rectangle is defined as zero. The survey starts from the first row (y = 1) of the first

column (x = 1), and proceeds through each row of a column before proceeding to the next

column. At the first row of each column, cm(1, x), the current element initializes a temporary
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matrix, T , that contains the current row number and the value of the current element.

T = [1, cm(1, x)] (2.2)

Proceeding to subsequent elements, the current element, cm(y, x), and the previous element,

cm(y − 1, x), are compared. If the value of the current element is greater than the value of

the previous element, a new entry is added to T .

T :=

 T

y, cm(y, x)

 (2.3)

Here, := indicates updating the variable on the left-hand side with the value on the right-

hand side. Each entry in T is a candidate MER, where the first element describes the starting

row and the second element describes the width.

If the current element of cm is lesser than the previous element, areas of possible rect-

angles are calculated by each entry in T to find any larger rectangle than best-rectangle.

The area is calculated by (height×width), where height is the number of elements from the

row of the current surveying element (y) to the row of each entry in T (the first column of

T ) and width is the value of the current entry in T (the second column of T ).

height = y − T (e, 1) (2.4a)

width = T (e, 2) (2.4b)

Here, e is an entry number. As areas are calculated, if there exists any larger rectangle than

best-rectangle, the larger rectangle replaces best-rectangle. To summarize, there are four

possibilities in the comparisons.

Case 2.1.1. cm(y, x) = cm(y − 1, x):

No changes are made to T .
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Case 2.1.2. cm(y, x) < cm(y − 1, x):

Calculate areas of possible rectangles with each entry in T , and update best-rectangle if

necessary. Also, as the areas are calculated, update any widths in T , T (e, 2), greater than

the current width, cm(y, x), to the current width.

min p ≡ min {p T (p, x) ≥ cm(y, x)} (2.5a)

T (min p, 2) := cm(y, x) (2.5b)

And this updating leaves redundant entries in T , because rectangles made with any T (p, q)

for p > min p will be within a rectangle made with T (min p, q), thus any entries T (p, q) for

all p > min p are removed from T .

Case 2.1.3. cm(y, x) > cm(y − 1, x):

Add the current element to T .

Case 2.1.4. cm(y, x) = 0:

Calculate areas of possible rectangles with each entry in T , and update best-rectangle if

necessary. After the area calculations, remove all elements from T and set T = [ · ].

The detailed process is illustrated here with cm shown in figure 2.2c. First, best-rectangle

and T are defined.

best-rectangle = 0

T = [ · ]
(2.6)

The survey begins with the first element in the first column, whose coordinate is cm(1, 1).

As mentioned, the first element is always added to T .

At first element : T =

[
1 2

]
(2.7)

The survey proceeds to the second element, cm(2, 1). Since the current element is

greater than the previous element, it is case 2.1.3 and the information of the current element
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is added to T .

At second element : cm(2, 1) = 3 > cm(1, 1) = 2

T =

1 2

2 3

 (2.8)

The third element, cm(3, 1), is the same with the previous element, thus case 2.1.1 is

applied and no changes are made in T .

At third element : cm(3, 1) = 3 = cm(2, 1) = 3

T =

1 2

2 3

 (2.9)

The fourth element, cm(4, 1), is lesser than the previous element, and case 2.1.2 is

applied. Areas of possible rectangles are calculated with T from equation 2.9 and compared.

At fourth element : cm(4, 1) = 1 < cm(3, 1) = 3 (2.10)

Currently, T from equation 2.9 has two entries (e = 1, 2) and the parameter is y = 4. Thus,

areas are calculated by equation 2.4.

for e = 1, height = y − T (e, 1) = 4− 1 = 3 (2.11a)

width = T (e, 2) = 2 (2.11b)

rectangle-1 = height× width = 3× 2 = 6 (2.11c)

Figure 2.3a shows the first entry in T , and figure 2.3b shows rectangle-1. Rectangle-1, which

has a larger area than best-rectangle replaces best-rectangle.

best-rectangle = rectangle-1 (with area of 6) (2.12)
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(a) first entry (e = 1) (b) rectangle-1

Figure 2.3. Rectangle-1 is found from the first entry in T .

(a) second entry (e = 2) (b) rectangle-2

Figure 2.4. Rectangle-2 is found from the second entry in T .

The area calculation is applied to the second entry in T .

for e = 2, height = y − T (e, 1) = 4− 2 = 2 (2.13a)

width = T (e, 2) = 3 (2.13b)

rectangle-2 = height× width = 2× 3 = 6 (2.13c)

Figure 2.4a shows the second entry in T , and figure 2.4b shows rectangle-2. Since rectangle-2

has the same area with rectangle-1, best-rectangle keeps rectangle-1. According to case

2.1.2, after area-calculations, any widths in T greater than the current width is updated to

the current width. In T from equation 2.9, widths of both entries, the elements in the second

column in T , are greater than the width of the current element, cm(4, 1) = 1, thus p = 1, 2
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and min p = 1. Then, the elements in the second column are updated to cm(4, 1) = 1, and

the second entry is removed from T .

T =

1 2

2 3

 → T =

[
1 1

]
(2.14)

The survey proceeds to the fifth element, cm(5, 1). The current element is greater than

the previous element, thus it is case 2.1.3 and the current element is added to T .

At fifth element : cm(5, 1) = 2 > cm(4, 1) = 1

T =

1 1

5 2

 (2.15)

At the sixth element, cm(6, 1), the current element is zero, and it is case 2.1.4. Therefore,

areas are calculated with T from equation 2.15. After area calculations, all elements will be

removed from T .

for e = 1, height = y − T (e, 1) = 6− 1 = 5 (2.16a)

width = T (e, 2) = 1 (2.16b)

rectangle-3 = height× width = 5× 1 = 5 (2.16c)

for e = 2, height = y − T (e, 1) = 6− 5 = 1 (2.17a)

width = T (e, 2) = 2 (2.17b)

rectangle-4 = height× width = 1× 2 = 2 (2.17c)

Figures 2.5 and 2.6 show each entry in T and rectangles-3 and -4, respectively. Since

rectangle-1 is the largest rectangle, equation 2.12 is kept as best-rectangle.
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(a) first entry (e = 1) (b) rectangle-3

Figure 2.5. Rectangle-3 is found from the first entry in T .

(a) second entry (e = 2) (b) rectangle-4

Figure 2.6. Rectangle-4 is found from the second entry in T .

best-rectangle = rectangle-1 (with area of 6) (2.18)

Also, all elements are removed from T .

T = [ · ] (2.19)

The survey proceeds to the second column. After surveying every element in cm in this

manner, the final best-rectangle becomes an MER, and an MER in the i-th iteration is saved

as

MERi = [yi, xi, heighti, widthi] (2.20)
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(a) MER1 in cm (b) MER1 in G

Figure 2.7. (a) MER1 is found from step 2. (b) Corresponding elements of MER1 in G are updated to
zeros. Steps 1 through 3 are repeated with the updated G until all elements have been set to zeros.

Here, yi and xi are the coordinates of the upper-left corner of MERi. In the case of this

example, rectangle-1 from equation 2.11 is the final best-rectangle, and it becomes an MER

in this first iteration.

MER1 = [1, 1, 3, 2] (2.21)

Equation 2.21 indicates that MER1 has its upper-left corner at cm(1, 1) (or G(1, 1)) and

the dimensions of (3× 2).

2.1.3 Step 3: Grid Map Update

This step updates elements of the MER in G to zeros to consider the MER as an obstacle.

For example, MER1 from step 2 is shown in figure 2.7a, and its corresponding elements in

G are updated to zeros as shown in figure 2.7b. This updating ensures that the subsequent

iterations only search the remaining free space.

With the updated G, steps 1 through 3 are repeated in an iterative fashion until all

elements in G have been set to zeros or until a desired threshold is reached in terms of

certain size or number of MERs, related to the desired R-map resolution. In the case of

this example, the iteration returns 7 MERs, and all elements in G have been set to zeros as

shown in figure 2.8a. A list of MERs is acquired in the order of sizes, from the biggest to
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(a) 7 MERs in G (b) Labeled-G

Figure 2.8. (a) After iterations, all elements in G have been set to zeros, and 7 MERs are found. (b)
Elements of each MER are updated to their rank, and additional elements equal to zero are added around
G, thus the dimension becomes (7× 7).

the smallest.

MER1 = [1, 1, 3, 2] (2.22a)

MER2 = [1, 5, 4, 1] (2.22b)

MER3 = [2, 3, 3, 1] (2.22c)

MER4 = [4, 1, 2, 1] (2.22d)

MER5 = [4, 4, 2, 1] (2.22e)

MER6 = [5, 2, 1, 1] (2.22f)

MER7 = [1, 4, 1, 1] (2.22g)

When all elements in G have been set to zeros as shown in figure 2.8a, it proceeds to the

next step.

2.1.4 Step 4: Computing Connection

This step finds the connections of MERs. To find what MERs are connected to each

MER, elements of each MER will be labeled as their MER’s rank in the manner of updating

elements of MERi to i. Also, additional elements equal to zero are added around G, thus
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G has a dimension of ((m + 2) × (n + 2)). By doing so, neighboring elements of an MER

indicate connecting MERs. As the dimension of G has changed, the coordinates of MERs

also should be changed.

MERG
i = [yi + 1, xi + 1, heighti, widthi] (2.23a)

= [Yi, Xi, heighti, widthi] (2.23b)

Here, Xi and Yi are the coordinates of the upper-left corner of MERi in the labeled-G as

shown in figure 2.8b. From the labeled-G, connections of an MER on each of the four sides

are obtained by listing the unique neighboring-values on each side, except zeros.

lefti = u[G(Yi : (Yi + heighti − 1), Xi − 1)] (2.24a)

righti = u[G(Yi : (Yi + heighti − 1), Xi + widthi)] (2.24b)

upperi = u[G(Yi − 1, Xi : (Xi + widthi − 1))] (2.24c)

loweri = u[G(Yi + heighti, Xi : (Xi + widthi − 1))] (2.24d)

Here, u means the unique values except zeros, and [A : B] means a list of continuous

numbers from A to B, for example, [2 : 4] = [2, 3, 4]. A complete list of connections of

MERi is obtained by applying u to all elements from equation 2.24.

ci = u[lefti, righti, upperi, loweri] (2.25)

Continuing the example, MER1 from equation 2.22a will have new coordinates for the

labeled-G.

MERG
1 = [2, 2, 3, 2] (2.26)
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(a) G-map (b) R-map

Figure 2.9. (a) G-map has 19 free-elements (empty cells) and 42 connections. (b) R-map has 7 free-elements
(MERs) and 12 connections.

And the connections of MER1 on each side are computed from figure 2.8b using equation

2.24.

left1 = u[G(2 : (2 + 3− 1), 2− 1)] = u[0, 0, 0] = [ · ] (2.27a)

right1 = u[G(2 : (2 + 3− 1), 2 + 2)] = u[0, 3, 3] = [3] (2.27b)

upper1 = u[G(2− 1, 2 : (2 + 2− 1))] = u[0, 0] = [ · ] (2.27c)

lower1 = u[G(2 + 3, 2 : (2 + 2− 1))] = u[4, 0] = [4] (2.27d)

Finally, a complete list of the connections of MER1 is obtained by equation 2.25. Also, the

connections of the rest MERs are computed in the same manner.

c1 = [3, 4] (2.28a)

c2 = [5, 7] (2.28b)

c3 = [1, 5] (2.28c)

c4 = [1, 6] (2.28d)

c5 = [2, 3] (2.28e)

c6 = [4] (2.28f)

c7 = [2] (2.28g)
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(a) G-map (b) Q-map (c) R-map

Figure 2.10. The Auburn University campus map in three different map representations.

Table 2.1. Comparisons of mapping with different map representations.

Resolutions 128×128 256×256 512×512
Map type G Q R G Q R G Q R
free elements 12,304 2,488 472 49,273 5,752 874 198,368 12,389 1,710
connections 45,640 8,728 1,556 189,712 21,412 3,086 778,384 47,568 6,170
mapping time (sec.) - 0.84 1.98 - 2.09 10.46 - 5.66 63.80

Therefore, the R-map algorithm returns MERs and their connections such as equations 2.22

and 2.28. Figure 2.9 shows the initial G-map and the final R-map.

2.1.5 Result

As an example of a complex environment, the Auburn University campus map with a

resolution of (128×128) is shown in figure 2.10 in three different map representations. First,

as mentioned, a G-map is a map from a mapping robot, and it has equal-sized elements.

Second, a Q-map (quadtree-decomposition map) is derived from a G-map, and it subdivides

a space into four quadrants if the space needs higher resolutions [38]. Thus, the cell elements

in Q-maps are in squares but can be in different sizes. Third, an R-map is similar with a

Q-map as reducing the number of cell elements, however while Q-maps subdivide a space, R-

maps integrate empty cells into maximal-sized rectangles. Thus, R-maps can have elements

in various sizes and shapes of rectangles instead of squares, and much fewer number of

elements than G-map and Q-map. Table 2.1 compares the three maps with three different

resolutions. R-map has a dramatically reduced number of elements and connections, and
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the difference with the other two maps gets bigger as the resolution gets higher. However,

the R-map requires an investment of computational time to construct. Notice that the

Matlab code for the Q-map uses a Matlab built-in function, qtdecomp. Also, the code for

the R-map is not optimized, and the R-mapping time would be different depending on the

implementation of the algorithm in the code.

2.2 Path Planning

The path planning problem for a mobile robot avoiding obstacles has been studied

for years [20–22]. This path planning on the R-map can be another approach for obsta-

cle avoidance. Because R-maps provide a reduced-element map representation focused on

maximal-sized obstacle-free spaces, it appears to be naturally suited for path-planning prob-

lems. For path planning with R-maps, Dijkstra’s algorithm [23] is applied. This cost-based

algorithm takes nodes and edges to calculate the optimal path between any two points on a

map. When the algorithm is applied to an R-map, MERs are considered as nodes and their

connections are considered as edges. Then the algorithm will select the lowest cost path

computing weights between two points. In this study, four different weight definitions are

considered. In each definition, W (j, k) is a cost to travel from MERj to MERk.

Definition 2.2.1. WA(j, k) = k. Weight by area. Since the R-map algorithm produces a

ranked list from the largest rectangle to the smallest rectangle, the list of MERs is in the

order of area. Thus, by simply giving a lower weight to a higher-ranked rectangle, their

weights are set by area and the algorithm selects a path of larger area.

Definition 2.2.2. WL(j, k) = (border length between MERj and MERk). Weight by bor-

der length. By giving a lower weight to an MER which has a longer connected-border length,

the algorithm selects a wider path.

Definition 2.2.3. WD(j, k) = (distance between the center points of MERj and MERk).

Weight by distance. By giving a lower weight to closer center points of two rectangles,
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(a) Weight by area, WA (b) Weight by border length, WL

(c) Weight by distance, WD (d) Weight by number of connections, WN

Figure 2.11. Path planning with the four different weight definitions. The path starts at the start point
(blue star) and ends at the finish point (red diamond) through the sequence of MERs (green rectangles).

the algorithm selects a shorter path to the destination, a classic application of Dijkstra’s

algorithm.

Definition 2.2.4. WN(j, k) = 1/(the dimension of ck). Weight by number of connections.

To give a lower weight to a rectangle which has more potential paths to the next rectangle,
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(a) G-map (b) Q-map (c) R-map

Figure 2.12. Path planning with different map representations.

Table 2.2. Comparisons of mapping and path planning with different representations.

Resolutions 128×128 256×256 512×512
Map type G Q R G Q R G Q R
free elements 12,304 2,488 472 49,273 5,752 874 198,368 12,389 1,710
connections 45,640 8,728 1,556 189,712 21,412 3,086 778,384 47,568 6,170
mapping time (sec.) - 0.84 1.98 - 2.09 10.46 - 5.66 63.80
path planning time (sec.) 1.53 1.17 0.28 17.64 2.72 0.49 284.99 6.09 0.91

find the number of connections of each rectangle. Thus, the result is a path that has diverse

alternative paths.

Note that WL(j, k) = WL(k, j) and WD(j, k) = WD(k, j), but WA(j, k) 6= WA(k, j) and

WN(j, k) 6= WN(k, j) (cost going is not the same as cost returning). Through Dijkstra’s

algorithm, a sequence of MERs is selected between start and finish points. To define a precise

path on the map, particular points within each selected MER are defined as waypoints.

Each MER has two waypoints: entering and exiting. Both waypoints are selected to cross

the center of connected-border of the previous and subsequent MERs. Examples of path

planning with the four different definitions on the (128 × 128) Auburn University campus

map are demonstrated in figure 2.11. The four paths are different depending on their weight

parameters, but some of the paths are similar, because rectangles with larger area also tend

to have longer border length and more connections.

For comparisons, the path planning is also performed on G-map and Q-map with the

weight by distance as shown in figure 2.12. The G-map takes weights of 1 for any two free
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cells that share a side, and the Q-map and the R-map take WD from definition 5.1.3. Table

2.2 specifies values for three different map representations. From the table, the R-map has

much fewer elements and connections to compute a path than the other maps. Consequently,

the computation time for path planning with the R-map becomes faster than with the other

maps as the resolution rises. Furthermore, paths from Q-maps or R-maps can be shorter

(not always) than G-maps, because paths from G-maps are always horizontal and vertical

segments and this staircase-path can be longer than diagonal paths from Q-maps or R-maps.

However, considering the total time of mapping and path planning, R-map is proper and

efficient in the case of multiple path planning on a complete map such as repeated path

planning missions in an environment that has permanent obstacles.
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Chapter 3

Map Merging

This chapter presents a new approach to map merging as another application of the R-

map. Map merging requires matching of features in the two maps. In this study, the maps

have three unknown factors: orientation, accuracy, and scale. Due to the possible variations

in those factors across the maps, it is desirable for the features to be scale and orientation

invariant. In the case of such problems, the rectangular features from R-maps can be useful

to find the best-shared rectangles from both maps. However, to achieve scale and orientation

invariance, matching of individual rectangles is not possible. Therefore, the approach used

here will match sets of three rectangles from each R-map. A set of three rectangles implicitly

defines a triangle. Based on recognizing matched features in the two maps, a translation,

rotation, and scaling transformation between the maps can be computed. In the following

section, a method is described to reduce the distortions in the R-maps generated by variations

in orientation. This method also has the potential to remove the requirement for orientation

invariant features. Then, the approach for matching triangles is described in detail. The

process is explained with simple maps as shown in figure 3.1, and the result with practical

maps from a mapping robot is presented in section 3.4.

3.1 Orthogonal Orientations

Human made environments tend to have features aligned along orthogonal angles. R-

maps and G-maps are also defined along orthogonal directions. Therefore, it is desirable to

use an R-map where the orthogonal angles that may exist within the environment have been

aligned with the orthogonal axes of the G-map. This allows areas in the environment to

be better consolidated within rectangles of the R-map, and improves the possible matches
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(a) map 1 (b) map 2

Figure 3.1. Two local maps of a simple environment. The maps have naturally different accuracy and scales
to each other, and intentionally rotated.

between R-maps. Performing this alignment also removes the need to solve for the orien-

tation transformation between R-maps. Instead, only four possible 90 degree orientation

transformations exist, and each possibility can be directly investigated.

The R-map algorithm is applied to figure 3.1 to extract rectangular features (MERs).

Figure 3.2 shows the result of R-mapping. Here, map 1 has 103 rectangles, and map 2 has

91 rectangles. Also, their connections on each side are acquired. Those rectangles of a given

area can appear quite different depending on the orientation of the maps. For example, in

figure 3.2, rectangle-1 in map 1 corresponds to some of the same area as rectangle-2 in map

2. But, the rectangles are significantly different size due to the different orientations of the

two maps. In this sense, R-maps have preferred directions: the orthogonal directions along

which they search for the height and width of the rectangles. This has two advantages:

first, empty spaces can be more efficiently filled with fewer rectangles and second, solving for

the relative orientation between the maps has been reduced to four possibilities which are

rotations of multiples of 90 degrees. Aligning the environment with the map grids proceeds

with two steps. First, points on the edges of the empty spaces are found by sorting the

neighboring rectangles. Second, the angles of those edges are found by random sample

consensus (RANSAC) [24].
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(a) map 1 (b) map 2

Figure 3.2. Results from the R-map algorithm. Map 1 and map 2 have 103 and 91 rectangles, respectively.

Figure 3.3. Zoomed in image of the top-left portion of figure 3.2a. A series of the largest neighbors along
each edge-direction divides which rectangles are on which side of the environment.

direction 1st 2nd 3rd 4th
upper 5 15 23 ·
lower 8 22 37 77
left 10 20 65 ·
right 4 41 89 ·

Table 3.1. The largest neighbors of rectangle-1 along each edge-direction.

The points on each edge are sorted by recognizing the largest neighboring rectangle

along each edge of a starting rectangle. A series of the largest neighbors along each edge-

direction divides which rectangles are on which side of the environment. Figure 3.3 is the
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top-left portion of the environment of figure 3.2a. Table 3.1 shows the series of the largest

neighbors to rectangle-1 in each edge-direction. Searching a series of the largest neighbors

stops when there are no further connections on any direction. For example, the largest

rectangles in the upper-direction are 5, 15 and 23. Those rectangles divide their neighbors:

their left neighbors are on NW-edge, and their right neighbors are on NE-edge, and those

neighbors are denoted as upper-left and upper-right connections of rectangle-1. Since the

series of the largest neighbors to upper-direction ends at the third connection, the series

to the other directions also take up to their third connections. The lists of edge-touching

rectangles on the eight directions from rectangle-1 are shown below.

c1UL = {5, 15, 23, 46, 72, 76, 78} (3.1a)

c1UR = {5, 15, 23, 50, 82, 81} (3.1b)

c1LU = {10, 20, 43, 65, 66, 68} (3.1c)

c1LD = {10, 20, 44, 65, 67, 69} (3.1d)

c1RU = {4, 19, 41, 50, 53, 82, 86, 89} (3.1e)

c1RD = {4, 24, 41, 51, 83, 87, 89} (3.1f)

c1DL = {8, 22, 37, 47, 73, 77} (3.1g)

c1DR = {8, 22, 37, 49, 77, 80} (3.1h)

Here, c1 is the connections of rectangle-1, and the subscripts U , L, R, and D are the direc-

tions to upper-, left-, right-, and lower-side, respectively, thus c1UL, for example, means the

connections on the upper-left side of rectangle-1. As it can be seen in figure 3.3, rectangles

on two directions cover one edge of the environment: c1UL and c1LU for NW-edge, c1UR and

c1RU for NE-edge, c1DL and c1LD for SW-edge, and c1DR and c1RD for SE-edge. Also, the

largest rectangle in the environment, rectangle-1, belongs to the edge-touching rectangles for

each edge. Thus in general, the list of rectangles on each edge of an empty space having the
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largest rectangle i can be written as

NWi = {i, ciUL, ciLU} (3.2a)

NEi = {i, ciUR, ciRU} (3.2b)

SWi = {i, ciDL, ciLD} (3.2c)

SEi = {i, ciDR, ciRD} (3.2d)

Because the rectangles in an R-map are of maximal sizes, larger rectangles are located closer

to the center of an empty space. Thus, equation 3.2 should be applied to larger rectangles,

i = 1, · · · , N , to extract rectangles on the edges of empty spaces, where N is a user-selected

variable.

Next, angles of the edges are computed, with the goal of aligning the edges with the R-

map axes. Two rectangles from each edge can make a line segment. Note that the coordinates

of an edge-touching vertex of a rectangle depend on the four edges in equation 3.2, and are

easily obtained using the properties of the rectangles: (y, x) for NW-edge, (y, x + w) for

NE-edge, (y + h, x) for SW-edge and (y + h, x + w) for SE-edge, where y, x are the upper-

left coordinates and h,w are the height and width of a rectangle. Combinations of two

rectangles from each given set of equation 3.2 make all possible line segments. The number

of two-combinations is denoted as

nedge
C2 =

nedge

2

 =
nedge!

2! (nedge − 2)!
(3.3)

where, nedge is the number of elements in a corresponding edge in equation 3.2. For example,

according to equation 3.2a, NW1 has 13 elements (nNW = 13), and equation 3.3 indicates

that there are 78 line segments on NW-edge. With those lines, to count the number of line

segments with similar slopes, the idea of RANSAC is applied here. Each line segment can

make a region by defining a tolerance, ±τ , in the y-axis. A data value within the region is
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(a) map 1 (b) map 2

Figure 3.4. Pairs of parallel lines: one yellow and one pink lines are a pair. The true rotation angles are

Λ
(1)
0 = 45◦ and Λ

(2)
0 = 225◦ counterclockwise, and estimated angles are Λ(1) = −45◦ and Λ(2) = −45◦ for

map 1 and map 2, respectively.

noted as inlier. This process is applied to the four edges. For each line segment, if there is a

line segment with the same slope on the facing-edges (NW-SE and NE-SW), the two parallel

lines are selected as a valid pair. The example in figure 3.4 illustrates the valid lines: one

yellow and one pink lines are a pair of parallel lines. Finally, the slope of a line segment with

the most inliers becomes the rotation angle, Λ, to place a map in the orthogonal orientation.

The true initial rotation angles of figure 3.4a and 3.4b are Λ
(1)
0 = 45◦ and Λ

(2)
0 = 225◦

counterclockwise, and the algorithm returns calculated rotation angles of Λ(1) = −45◦ and

Λ(2) = −45◦, respectively. Therefore, maps with the obstacle edges aligned with the R-map

axes are acquired by rotating the initial maps by the estimated angles as shown in figure

3.5: Λ
(1)
0 + Λ(1) = 0◦ and Λ

(2)
0 + Λ(2) = 180◦ for the map 1 and map 2, respectively.

When the edges of empty spaces are not aligned with the map grids, the R-map al-

gorithm returns smaller rectangles to fill out areas near edges. However, when the spaces

are in the orthogonal orientations so their edges are aligned with the map grids, the spaces

can be fitted with fewer and larger rectangles (the spaces may have micro-rectangles around

larger rectangles due to distortional uneven edges). As shown in figure 3.5, once the empty

spaces are in the orthogonal orientations, rectangles can be kept in the same dimensions

while rotating if the rotation angles are 90◦-angles (this is an advantage of using the max-

imal size of rectangles). Since both maps in figure 3.5 are in the orthogonal orientations
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(a) map 1 (b) map 2

Figure 3.5. Results from orthogonal-orientations algorithm. Orthogonally oriented maps are acquired

through rotating the initial maps by estimated angles: Λ
(1)
0 + Λ(1) = 0◦ and Λ

(2)
0 + Λ(2) = 180◦ for the

map 1 and map 2, respectively.

but the orientation-matching is unknown, an effort is required to select one from the four of

90◦-rotation angles to match their orientations.

3.2 Shared Triangles

To perform the map merging, features in each map need to be matched. To perform the

matching, feature vectors from each map are defined. Also, a norm of the difference between

a pair of feature vectors is defined as a cost. Then, a match is defined as the pair of vectors

that provide the lowest cost. In order to match maps that vary in scale and orientation,

the feature vector must be invariant to these transformations. The method described in

the previous section, however, aligns the map to within four possible 90 degree orientation

transformations, and this eliminates the need to solve for the orientation transformation

from matched features.

As the specific process, first, corresponding rectangles across the maps are collected.

Since it is assumed that two maps have some common spaces, it is also assumed that each

rectangle in map 1 has a corresponding rectangle in map 2, which has the same dimension.

However, because the maps have distortions and different scales, a tolerance, δ, is allowed

in defining corresponding rectangles. Due to the tolerance, each rectangle in map 1 will

28



have multiple corresponding rectangles in map 2 that have the same dimension within the

tolerance.

r
(1)
i =

{
r(2) areas between ((w

(1)
i − δ)× (h

(1)
i − δ)) and ((w

(1)
i + δ)× (h

(1)
i + δ))

}
(3.4)

Equation 3.4 means that the i-th rectangle in map 1, r
(1)
i , with a dimension of (w

(1)
i × h

(1)
i )

corresponds to every rectangles in map 2 smaller or larger than r
(1)
i by within the tolerance,

δ. Accordingly, to make a triangle having vertices of the center points of three rectangles,

equation 3.4 is evaluated for three rectangles in map 1. Therefore, one triangle in map 1

can be compared to multiple corresponding triangles in map 2 made by combinations of

vertices from each list. The total number of possible triangles in map 1 is the number of

combinations of rectangles in map 1.

n
(1)
r

C3 =

n(1)
r

3

 =
n

(1)
r !

3! (n
(1)
r − 3)!

(3.5)

Here, n
(1)
r is the total number of rectangles in map 1. For example, figure 3.5a has 71 rectan-

gles, and according to equation 3.5, there are 57, 155 possible triangles in map 1. However,

because micro-rectangles near the edges of the environment have non-remarkable features,

the computational burden can be reduced by eliminating small rectangles. If rectangles with

area less than 10 are eliminated from the list of rectangles in map 1, the number of possible

triangles will be reduced to 56, also the number of corresponding triangles in map 2 will

be reduced. One triangle in map 1 and one of its corresponding triangles in map 2 are a

set of shared-triangles. The rectangular and triangular features are extracted from the set

and compared to find the most similar set. Figure 3.6 illustrates a set of triangles made of

{ri, rj, rk} and {re, rf , rg}. To find the most similar rectangles not only in their dimensions

but also in their formations, the area of each rectangle, (w × h), and two vertex-angles, α

and β, are adopted as the features. Also, the areas are normalized for comparisons by the
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(a) map 1 (b) map 2

Figure 3.6. A set of shared-triangles. The feature vector, FV , contains triangular and rectangular features.
(a) A triangle is made by the center points of three rectangles, {ri, rj , rk}, in map 1. This triangle has multiple
corresponding triangles in map 2. (b) One of corresponding triangles is made of rectangles, {re, rf , rg}, in
map 2.

distance between the second and the third rectangles, d. Each triangle from map 1 and map

2 has a feature vector, FV .

FV (1) =



(wi × hi)/djk

(wj × hj)/djk

(wk × hk)/djk

αj

βk


, FV (2) =



(we × he)/dfg

(wf × hf )/dfg

(wg × hg)/dfg

αf

βg


(3.6)

A cost function, J , with the feature vectors is defined.

J =
∣∣FV (1) − FV (2)

∣∣T ·W · ∣∣FV (1) − FV (2)
∣∣ (3.7)

Here, W is a weight matrix to give weights to desired features. In this example, an identity

matrix is applied. The minimum cost refers a set of the best shared-triangles.

∆(1) = {ri, rj, rk}min(J) (3.8a)

∆(2) = {re, rf , rg}min(J) (3.8b)
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(a) map 1 (b) map 2

Figure 3.7. Results of shared-triangles algorithm. A set of the best shared-triangles has min(J). The ∆1’s
and ∆2’s in both maps are the correct shared-rectangles, but ∆3’s are incorrect due to different map scales.

Here, ∆(1) and ∆(2) denote the best shared-triangles in map 1 and map 2, respectively, and

contain rectangles in the order of size. Also, each element of ∆ is denoted as a subscript,

for example, ∆
(1)
1 means the first (the largest) rectangle of a triangle in map 1. Figure

3.7 shows ∆(1) and ∆(2) with the green triangles. In this figure, the first and the second

shared-rectangles are selected correctly (∆
(1)
1 = ∆

(2)
1 and ∆

(1)
2 = ∆

(2)
2 ), but the last shared-

rectangles in the triangular environment in both maps are not the same (∆
(1)
3 6= ∆

(2)
3 ). It

occurs because of the difference in map scales. Even though maps are in different scales,

it has been observed that the algorithm usually selects the correct ∆1’s and ∆2’s in both

maps, but not for the last rectangles, ∆3’s. This is because ∆1’s and ∆2’s are larger ones even

among all rectangles across map environments, and usually they are separated to each other

with some distance (even two neighboring larger rectangles have some distance between their

center points due to their dimensions). However, ∆3’s are smaller ones, and similar rectangles

can exist across the map. Therefore, ∆(1) and ∆(2) can have ∆3’s of similar dimensions but

at slightly different locations. The location error is limited because FV contains features for

the triangular-shape matching. The ∆3’s in map 1 and map 2 will be matched better as the

map scale is matched in the next section and this process is repeated with a re-scaled map.
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3.3 Scale matching and Merging

This step finally matches the orientations and scales between two maps using ∆’s. Be-

cause ∆’s are the common triangles in both maps, matching them yields the same orientation.

The final rotation angle, Λf , is obtained by matching bisector-vectors in both maps. The

bisector-vector is the vector from ∆1 to the midpoint between ∆2 and ∆3 in each map.

Because the maps are already in the orthogonal orientations, the final rotation angle should

be one of the 90◦-angles. From figure 3.7, Λf = 180◦. Rotating map 1 by Λf matches the

orientations of map 1 and map 2 as shown in figure 3.8. However, ∆3’s in both maps are

still incorrect shared-rectangles because of the different scales. For the scale matching, as

discussed in the previous section, ∆1’s and ∆2’s are mostly the correct shared-rectangles,

thus matching a dimension of ∆1’s yields the same scale. A scale ratio is defined as

ratio = w
(1)
∆1/w

(2)
∆1 (3.9)

where, w
(1)
∆1 and w

(2)
∆1 are the widths of ∆

(1)
1 and ∆

(2)
1 , respectively. Note that the heights of

them can be taken instead of the widths. By simply re-scaling map 2 by ratio, both maps

will finally become in the same scale. From the example of figure 3.8, ratio is 1.1176, and

this implies that map 1 is 1.1176 times larger than map 2, thus map 2 is re-scaled by 1.1176.

Since map 2 has been re-scaled, entire process from R-mapping should be repeated with the

re-scaled maps. Thus, the next iteration will return better estimations. The iteration stops

when the maps are in the same scale (ratio = 1). The maps in figure 3.9 are in the same

scale after 2 iterations, and the shared-triangles in both maps are the correct sets. Finally, a

merged map is accomplished by overlapping the center points of the shared-triangles. Figure

3.10a illustrates a merged map without re-scaling process (no iterations), thus the maps have

a worse fit. However, in figure 3.10b, the merged map has a better fit after iterations.
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(a) map 1 (b) map 2

Figure 3.8. Orientation-matched maps. The orientations are matched through rotating map 1 by Λf = 180◦.
∆3’s are still incorrect shared-rectangles (ratio = 1.1176).

(a) map 1 (b) map 2

Figure 3.9. Scale-matched maps (ratio = 1). The scales are matched through re-scaling map 2 by the
previous ratio. ∆3’s are the correct shared-rectangles.

(a) without re-scaling. (b) with re-scaling.

Figure 3.10. Merged maps. (a) Merging maps of figure 3.8 makes a worse fit. (b) Merging maps of figure
3.9 makes a better fit.
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3.4 Result

The practical maps of figure 3.11 is acquired from two identical ground robots. The

maps naturally have corruptions and different scales. The orientations of the maps are

intentionally rotated by Λ
(1)
0 = 27◦ and Λ

(2)
0 = 225◦ for map 1 and map 2, respectively. The

orthogonal-orientations algorithm estimates the rotation angles Λ(1) = 63.4349◦ and Λ(2) =

45◦ for each, thus both maps are in the orthogonal orientations through rotating the maps

by Λ
(1)
0 + Λ(1) = 90.4349◦ and Λ

(2)
0 + Λ(2) = 270◦, respectively. With the orthogonal oriented

maps, the shared-triangles algorithm returns ∆(1) = {r3, r10, r11} and ∆(2) = {r2, r6, r14} with

min(J) = 68.0174. By comparing the bisector-vectors from both maps, the final rotation

angle is Λf = 180◦, thus the maps are in the same orientation through rotating map 1 by

180◦. The scale ratio between the maps is ratio = 1.0313, and map 2 is re-scaled by 1.0313.

As map 2 has been re-scaled, the entire process is repeated with the re-scaled maps. After

the second iteration, ratio = 1.1515, and finally ratio = 1 after the third iteration. Figure

3.12 shows the final merged map, and it has a good fit of two local maps.

In the form of G-maps, map 1 and map 2 in figure 3.11 have resolutions (361 × 317)

and (393 × 393), respectively. The simulation was processed in Matlab on a normal laptop

PC, and the computation time is about 80 seconds through the three iterations. Simpler

environments in lower resolutions will take shorter computation time for map merging.
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(a) map 1 (b) map 2

Figure 3.11. Actual maps from two ground mapping robots. The three factors, orientations, accuracy and
scales, are unknown and may different to each other map.

Figure 3.12. Merged map of figure 3.11
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Chapter 4

3D R-mapping

This Chapter describes an enabling process to accomplish computational efficiency in

obstacle avoidance and target interception. The purpose of this process is the same as

2D R-mapping, i.e. integrating free cells into maximal empty areas to reduce the number

of cell elements by the four steps. However, since 3D environments have an additional

dimension of the z-axis, the process of R-mapping will be slightly different and the integrated

cells will be represented as cuboids (volumes) instead of rectangles (areas). Those maximal

empty cuboids (MECs) are obstacle-free spaces and the algorithm of 3D R-map also provides

connections of the MECs, thus UAVs can accomplish obstacle avoidance by moving through

a sequence of MECs.

A 3D environment can be represented as an (m × n × l) array or l layers of (m × n)

matrices as illustrated in figure 4.1. Here, y, x, and z are the axis on each direction, and

m, n, and l are the dimensions on each axis, respectively. For example, the coordinates of

each element in an (m×n× l) array are represented as (y, x, z), where (row, column, layer).

Also, obstacles and free spaces are represented as 0 and 1 in the array, respectively. This

binary array is defined as G, and four steps of 3D R-mapping begin with G. In step 1, a

corresponding array, cm, is derived from G. This cm is made by summations of contiguous

free-elements in both x and z directions. In step 2, the survey to find an MEC proceeds

element-by-element (y-direction) and column-by-column (x-direction) then layer-by-layer (z-

direction) in cm. The survey compares the current element and the previous element by four

possibilities. In step 3, corresponding elements of the MEC from step 2 in G are updated to

zeros to ensure that the subsequent iterations only search the remaining free space. Then,

step 1 through step 3 are repeated until all elements in G have been set to zeros. After the
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(a) (m× n× l) array (b) l layers of (m× n) matrices

Figure 4.1. A 3D environment can be represented as (a) a 3D array or (b) multiple layers of 2D matrices.

iterations, a list of MECs in the order of volume size is acquired. In step 4, connections of the

MECs are computed. Finally, the algorithm returns a list of MECs and their connections.

This information will be utilized in applications of R-maps. The following sections describe

the four steps in more detail and provide an example environment.

4.1 Step 1: Initialization

This step introduces an array, cm. First, a 3D grid environment with the dimensions

of (m× n× l) is defined as G, which can be also expressed as l layers of (m× n) matrices.

Figure 4.1b shows a (3×3×3) array as an example, where 0 and 1 indicate obstacles and free

spaces, respectively. Here, two matrices, cx and cz, are derived from the binary numbers.

In cx, each of whose elements is computed by right-to-left x-wise summations of contiguous

free-elements as shown in figure 4.2. Because the summation is from right to left in x-wise,

the computing-order of x in cx is from n to 1 and it is assumed that cx(y, n+ 1, z) = 0. In

cz, each of whose elements is computed by upper-to-lower z-wise summations of contiguous

free-elements as shown in figure 4.3. Also, because the summation is from upper to lower in

z-wise, the computing-order of z in cz is from l to 1, and it is assumed that cz(y, x, l+1) = 0.
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(a) 1st layer (z = 1) (b) 2nd layer (z = 2) (c) 3rd layer (z = 3)

Figure 4.2. cx is obtained by right-to-left x-wise summations of contiguous free-elements.

(a) 1st layer (x = 1) (b) 2nd layer (x = 2) (c) 3rd layer (x = 3)

Figure 4.3. cz is obtained by top-to-bottom z-wise summations of contiguous free-elements.

cx(y, x, z) =


cx(y, x+ 1, z) + 1 if G(y, x, z) = 1

0 if G(y, x, z) = 0

(4.1)

cz(y, x, z) =


cz(y, x, z + 1) + 1 if G(y, x, z) = 1

0 if G(y, x, z) = 0

(4.2)

Thus, each value in cx indicates number of free-cells on the right-side, and each value

in cz indicates number of free-cells on the upper-side. Finally, a corresponding array, cm, is

obtained by taking the values of cx as a real part and the values of cz as an imaginary part.

Also, additional elements equal to zero are added to the foremost of cm.

cm = cx+ cz · j (4.3)

cm(m+ 1, x, z) = 0 (4.4)
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(a) 1st layer (b) 1st layer (c) 2nd layer (d) 3rd layer

Figure 4.4. cm is obtained by a summation of cx as real numbers and cz as imaginary numbers. Also,
additional elements equal to zero are added to the foremost of cm.

Therefore, the dimensions of cm become (m+ 1, n, l), and each element contains values

that indicate the number of free-cells in the x- and z-directions. Figure 4.4 shows cm derived

from G, and it has the dimensions of (4× 3× 3).

4.2 Step 2: Finding the MEC

This step produces the maximal empty cuboid (MEC) from cm by surveying every ele-

ment. Note that a cuboid has the dimensions of (depth × length × height), and each of these

dimensions is associated with the y-, x-, and z-axis of an array, respectively, as shown in fig-

ure 4.5. In cm, each element consists of two distinct parts (R+Ij) as shown in figure 4.4: the

real part (R : x-wise summations) and the imaginary part (I : z-wise summations), which

determine the length (x-direction) and the height (z-direction) of potential cuboids, respec-

tively. Beginning at the first element, cm(1, 1, 1), the survey proceeds element-by-element in

the y-direction comparing the real numbers of the current element and the previous element,

R(cm(y, x, z)) and R(cm(y − 1, x, z)). Surveying in the y-direction and comparing the real

parts of cm find bottom rectangles of candidate MECs. As the survey proceeds, candidate

bottom rectangles are stored in a temporary matrix, T . At the first row of each column,

cm(1, x, z), the current element initializes T , that contains the current row number and the
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(a) a cuboid (b) 1st layer (c) 2nd layer (d) 3rd layer

Figure 4.5. Each dimension of a cuboid, (depth × length × height), is associated with the y-, x-, and z-axis,
respectively.

value of the current element.

T = [1, R(cm(1, x, z))] (4.5)

As proceeding to subsequent elements, a new entry is added to T if the value of the current

element is greater than the value of the previous element.

T :=

 T

y, R(cm(y, x, z))

 (4.6)

Here, := indicates updating the variable on the left-hand side with the value on the right-

hand side. Thus, T will have multiple entries, e, as the survey proceeds. Additionally, a

variable D is defined to avoid redundant searching in T .

There are four possibilities in the comparisons of the current and the previous elements.

Case 4.2.1. R(cm(y, x, z)) = R(cm(y − 1, x, z)):

No changes are made to T .

Case 4.2.2. R(cm((y, x, z)) < R(cm(y − 1, x, z)):

Calculate volumes of cuboids with each entry in T , and update largest–cuboid if necessary.

Also, as the volumes are calculated, update any length, T (e, 2), greater than the current

length, R(cm(y, x, z)), to the current length, and update D if necessary.
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Case 4.2.3. R(cm(y, x, z)) > R(cm(y − 1, x, z)):

Add a new element to T .

Case 4.2.4. R(cm(y, x, z)) = 0:

Calculate volumes of cuboids with each entry in T , and update largest–cuboid if necessary.

After the volume calculations, remove all temporary memories and set D = 0 and T = [ · ].

In the comparisons, when the current element is smaller than the previous element or

equal to zero, the dimensions of possible cuboids are computed from T to find any larger

volume. Possible depth is the number of elements in the y-axis from the row of the current

surveying element, y, to the row of the current entry in T , T (e, 1), which is y − T (e, 1).

Possible length is simply the real part of the current entry in T , which is T (e, 2). This

computation returns only the largest value for each depth and length, thus they determine

one bottom rectangle, (depth × length), of a potential cuboid. Although knowing only the

largest values for them was sufficient for 2D rectangles, in 3D cuboids, all possible rectangles

within the largest bottom rectangle should be considered because a smaller bottom rectangle

may have a taller height and a larger volume. For example, a narrow-and-tall cuboid can

have a larger volume than a wide-and-short cuboid. For this reason, multiple possibilities

should be considered for each depth and length from 1 up to y−T (e, 1) and 1 up to T (e, 2),

respectively. Accordingly, combinations of the multiple values from the two dimensions

produce multiple bottom rectangles within the largest possible bottom rectangle. Then, the

height of a potential cuboid is the number of empty cells in the z-axis up to where the bottom

dimensions can extend, which is the smallest imaginary number in the bottom dimensions,

min[I(bottom-rectangle)].

depth = [1 : (y − T (e, 1))] (4.7a)

length = [1 : T (e, 2)] (4.7b)

height = min[I(cm(T (e, 1) : (T (e, 1) + depth− 1), x : (x+ length− 1), z))] (4.7c)
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Here, [A : B] means a list of continuous numbers from A to B, for example, [1 : 3] = [1, 2, 3].

Combinations of the elements from equations 4.7b and 4.7a make bottom rectangles, and

each of the bottom rectangle has its corresponding height depending on its dimensions as

shown in equation 4.7c. Therefore, these three dimensions make one possible cuboid with

a volume of (depth× length× height) having the entry element in cm, cm(T (e, 1), x, z), as

the bottom-left-rear corner of the cuboid.

However, multiple entries in T can produce some identical cuboids with the cuboids

previously found. Since these repetitive calculations can delay R-mapping, elements that

produce such repetitive cuboids need to be removed by defining a deletion parameter, D,

which is an optional process for faster R-mapping. This D is defined initially as zero, and it

takes the largest number among the values of depths in each volume calculation. A list of

depths that produces repetitive cuboids is the depths that the survey has been considered in

the previous volume calculations. The list of depths to be removed is calculated by D and

e, if the condition is satisfied.

eliminate–elements = [1 : (D − e+ 1)] if (D − e+ 1) > 0 (4.8)

By removing eliminate–elements from depth in equation 4.7a, the algorithm can avoid

redundant calculations.

Also, largest–cuboid is defined initially as zero, and as the volume calculations proceed,

any cuboid with a larger volume than the current largest–cuboid replaces largest–cuboid.

After surveying all elements of cm, the final largest–cuboid becomes an MEC of the i-th

iteration.

MECi = [yi, xi, zi, depthi, lengthi, heighti] (4.9)

Here, the first three values indicate the coordinates of the bottom-left-rear corner of MECi,

and the last three values are the dimensions of MECi.
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An example process is given here with cm shown in figure 4.4. First, largest–cuboid

and D are defined.

largest–cuboid = 0 (4.10)

D = 0 (4.11)

The survey begins with the first element in the first column of the first layer, which is

the top-left element in figure 4.4b, and whose coordinate is cm(1, 1, 1). As assumed, the first

element is added to T .

At first element: T =

[
1 1

]
(4.12)

The survey proceeds to the second element, cm(2, 1, 1). The comparison of the real parts

of the current and the previous elements is case 4.2.3, thus the current element is added to

T . Now, T has two entries.

At second element: R(cm(2, 1, 1)) = 3 > R(cm(1, 1, 1)) = 1

T =

1 1

2 3

 (4.13)

As the survey proceeds to the third element, cm(3, 1, 1), case 4.2.2 is applied.

At third element: R(cm(3, 1, 1)) = 2 < R(cm(2, 1, 1)) = 3 (4.14)

Without any changes to T of equation 4.13, volumes of possible cuboids are calculated and

compared to find any larger cuboid than largest–cuboid. The current parameters are y = 3

(third element) and e = 1, 2 (T has two entries), and consider each entry for the volume
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calculations.

for e = 1, depth = [1 : (y − T (e, 1))] = [1 : (3− 1)] = [1, 2]∗ (4.15a)

∗(D − e+ 1) = (0− 1 + 1) = 0 ≯ 0 (false) (4.15b)

→ no eliminate–elements in depth (4.15c)

length = [1 : T (e, 2)] = [1] (4.15d)

height1 = min[I(cm(1 : 1, 1 : 1, 1))] = min[2] = 2 (4.15e)

height2 = min[I(cm(1 : 2, 1 : 1, 1))] = min[2, 3] = 2 (4.15f)

cuboid-1 = depth(1)× length(1)× height1 = 1× 1× 2 = 2 (4.15g)

cuboid-2 = depth(2)× length(1)× height2 = 2× 1× 2 = 4 (4.15h)

From the first entry (e = 1) in T , the depth and length combinations produce two bottom

rectangles of (1×1) and (2×1) as shown in figures 4.6a and 4.7a. In this calculations, because

this is early in the survey, there are no repetitive cuboids yet and the elimination condition

is false as shown in equation 4.15b. Each bottom rectangle has its corresponding height as

shown in equations 4.15e and 4.15f. Therefore, two cuboids are found from the first entry in

T as shown in figures 4.6d and 4.7d, and they are compared. Currently, largest–cuboid is

zero, and as cuboid-2 from equation 4.15h is the largest volume, it replaces largest–cuboid.

largest–cuboid = cuboid-2 (with volume of 4) (4.16)
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(a) 1st layer (b) 2nd layer (c) 3rd layer (d) cuboid-1

Figure 4.6. (a) The bottom area (1× 1) has height = 2. (d) Cuboid-1 has a volume of (1× 1× 2) = 2.

(a) 1st layer (b) 2nd layer (c) 3rd layer (d) cuboid-2

Figure 4.7. (a) The bottom area (2× 1) has height = 2. (d) Cuboid-2 has a volume of (2× 1× 2) = 4.

The same process is applied to the second entry (e = 2) in T .

for e = 2, depth = [1 : (y − T (e, 1))] = [1 : (3− 2)] = [1]∗ (4.17a)

∗(D − e+ 1) = (0− 2 + 1) = −1 ≯ 0 (false) (4.17b)

→ no eliminate–elements in depth (4.17c)

length = [1 : T (e, 2)] = [1, 2, 3] (4.17d)

height1 = min[I(cm(2 : 2, 1 : 1, 1))] = min[3] = 3 (4.17e)

height2 = min[I(cm(2 : 2, 1 : 2, 1))] = min[3, 3] = 3 (4.17f)

height3 = min[I(cm(2 : 2, 1 : 3, 1))] = min[3, 3, 2] = 2 (4.17g)

cuboid-3 = depth(1)× length(1)× height1 = 1× 1× 3 = 3 (4.17h)

cuboid-4 = depth(1)× length(2)× height2 = 1× 2× 3 = 6 (4.17i)

cuboid-5 = depth(1)× length(3)× height3 = 1× 3× 2 = 6 (4.17j)
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(a) 1st layer (b) 2nd layer (c) 3rd layer (d) cuboid-3

Figure 4.8. (a) The bottom area (1× 1) has height = 3. (d) Cuboid-3 has a volume of (1× 1× 3) = 3.

(a) 1st layer (b) 2nd layer (c) 3rd layer (d) cuboid-4

Figure 4.9. (a) The bottom area (1× 2) has height = 3. (d) Cuboid-4 has a volume of (1× 2× 3) = 6.

(a) 1st layer (b) 2nd layer (c) 3rd layer (d) cuboid-5

Figure 4.10. (a) The bottom area (1× 3) has height = 2. (d) Cuboid-5 has a volume of (1× 3× 2) = 6.

Figures 4.8, 4.9, and 4.10 illustrate cuboids-3, -4, and -5, respectively. Cuboid-4 and cuboid-

5 have larger volumes than largest–cuboid, however because cuboid-4 has found earlier than

cuboid-5, it replaces largest–cuboid.

largest–cuboid = cuboid-4 (with volume of 6) (4.18)
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Also, D takes the largest value among depth of equations 4.15a and 4.17a.

D = 2 (4.19)

After the volume calculations, according to case 4.2.2, any length in T greater than the

current length are updated to the current length. The real part of the current element is the

current length, R(cm(3, 1, 1)) = 2, thus the length of the second entry in T , T (2, 2) = 3, is

updated to 2.

T =

1 1

2 3

 → T =

1 1

2 2

 (4.20)

This updating helps to find one or more new bottom rectangles with dimensions narrower

in the x-axis and longer in the y-axis that fit to the current length (R(cm(3, 1, 1)) = 2).

The survey proceeds to the fourth element, R(cm(4, 1, 1)) = 0, and it is case 4.2.4. With

the updated T from equation 4.20, volumes of possible cuboids are calculated and compared.

First, volume calculations with the first entry in T .

for e = 1, depth = [1 : (y − T (e, 1))] = [1 : (4− 1)] = [�1, �2, 3]∗ (4.21a)

∗(D − e+ 1) = (2− 1 + 1) = 2 > 0 (true) (4.21b)

→ eliminate–elements = [1 : (D − e+ 1)] = [1 : 2] = [1, 2] (4.21c)

length = [1 : T (e, 2)] = [1] (4.21d)

height1 = min[I(cm(1 : 3, 1 : 1, 1))] = min[2, 3, 2] = 2 (4.21e)

cuboid-6 = depth(1)× length(1)× height1 = 3× 1× 2 = 6 (4.21f)

In this calculation, the elimination condition becomes true as shown in equation 4.21b, and

elements that produce repetitive cuboids are found in equation 4.21c. Those elements are

removed from depth as shown in equation 4.21a. If they are not removed, depth = [1, 2]

and length = [1] will produce cuboid-1 and cuboid-2 again. Figure 4.11 illustrates cuboid-6.
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(a) 1st layer (b) 2nd layer (c) 3rd layer (d) cuboid-6

Figure 4.11. (a) The bottom area (3× 1) has height = 2. (d) Cuboid-6 has a volume of (3× 1× 2) = 6.

This cuboid-6 has the same volume with the current largest–cuboid as 6, thus cuboid-4 from

equation 4.18 is kept as largest–cuboid. The same process is applied to the second entry in

T .

for e = 2, depth = [1 : (y − T (e, 1))] = [1 : (4− 2)] = [�1, 2]∗ (4.22a)

∗(D − e+ 1) = (2− 2 + 1) = 1 > 0 (true) (4.22b)

→ eliminate–elements = [1 : (D − e+ 1)] = [1 : 1] = [1] (4.22c)

length = [1 : T (e, 2)] = [1, 2] (4.22d)

height1 = min[I(cm(2 : 3, 1 : 1, 1))] = min[3, 2] = 2 (4.22e)

height2 = min[I(cm(2 : 3, 1 : 2, 1))] = min[3, 3, 2, 3] = 2 (4.22f)

cuboid-7 = depth(1)× length(1)× height1 = 2× 1× 2 = 4 (4.22g)

cuboid-8 = depth(1)× length(2)× height2 = 2× 2× 2 = 8 (4.22h)

Figures 4.12 and 4.13 illustrate cuboid-7 and cuboid-8, respectively. Cuboid-8 has a larger

volume than largest–cuboid, and it replaces largest–cuboid. Also, according to case 4.2.4, all

temporary memories are removed, and the survey proceeds to the next column, cm(y, 2, z).

largest–cuboid = cuboid-8 (with volume of 8) (4.23)
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(a) 1st layer (b) 2nd layer (c) 3rd layer (d) cuboid-7

Figure 4.12. (a) The bottom area (2× 1) has height = 2. (d) Cuboid-7 has a volume of (2× 1× 2) = 4.

(a) 1st layer (b) 2nd layer (c) 3rd layer (d) cuboid-8

Figure 4.13. (a) The bottom area (2× 2) has height = 2. (d) Cuboid-8 has a volume of (2× 2× 2) = 8.

T = [ · ] and D = 0 (4.24)

After surveying every element in cm in this manner, the final largest–cuboid will be

an MEC. In this first iteration, for example, cuboid-8 is the final largest–cuboid, and the

information of cuboid-8 is saved as MEC1.

MEC1 = [2, 1, 1, 2, 2, 2] (4.25)

Generally, MEC1 is the largest cuboid in an environment, and MECs from the next iterations

will be smaller than this, thus a list of MECs will be in the order of volume size from the

largest to the smallest.
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(a) MEC1 (b) 1st layer (c) 2nd layer (d) 3rd layer

Figure 4.14. Corresponding elements of MEC1 (cuboid-8) in G are updated to zeros.

4.3 Step 3: Grid map update

This step updates corresponding elements of MECi in G to zeros to consider MECi as

an obstacle. For example, the corresponding elements of MEC1 in G are updated to zeros

as shown in figure 4.14. This updating ensures that the subsequent iterations only search

the remaining free space.

With the updated G, steps 1 though 3 are repeated in an iterative fashion until all

elements in G have been set to zeros. In the case of this example, the iterations occurred

nine times, and nine MECs are acquired.

MEC1 = [2, 1, 1, 2, 2, 2] (4.26a)

MEC2 = [1, 2, 3, 1, 3, 1] (4.26b)

MEC3 = [1, 1, 1, 1, 1, 2] (4.26c)

MEC4 = [1, 3, 1, 1, 2, 1] (4.26d)

MEC5 = [2, 3, 2, 1, 2, 1] (4.26e)

MEC6 = [1, 2, 2, 1, 1, 1] (4.26f)

MEC7 = [2, 1, 3, 1, 1, 1] (4.26g)

MEC8 = [1, 3, 3, 1, 1, 1] (4.26h)

MEC9 = [3, 3, 3, 1, 1, 1] (4.26i)
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4.4 Step 4: Computing connections

This step finds the connections of MECs. First, MECs are labeled by means of updating

the elements of each MECi to their rank, i. Also, additional elements equal to zero are added

around G, thus the dimensions of G become ((m+ 2)× (n+ 2)× (l + 2)). Accordingly, the

coordinates of MECi should be changed for the updated G.

MECG
i = [yi + 1, xi + 1, zi + 1, depthi, lengthi, heighti] (4.27a)

= [Yi, Xi, Zi, depthi, lengthi, heighti] (4.27b)

Here, MECG
i means the corresponding MECi in the updated G. The connections of each

MEC can be recognized by looking at the neighboring elements on each side of MECG
i . A

list of connections on each side is obtained by taking the unique neighboring elements except

zeros, u[neighboring-elements], where u means the unique numbers except zeros.

loweri = u[G(Yi : (Yi + depthi − 1), Xi : (Xi + lengthi − 1), Zi − 1)] (4.28a)

upperi = u[G(Yi : (Yi + depthi − 1), Xi : (Xi + lengthi − 1), (Zi + heighti))] (4.28b)

lefti = u[G(Yi : (Yi + depthi − 1), (Xi − 1), Zi : (Zi + height− 1))] (4.28c)

righti = u[G(Yi : (Yi + depthi − 1), (Xi + lengthi), Zi : (Zi + height− 1))] (4.28d)

forei = u[G((Yi + depthi), Xi : (Xi + lengthi − 1), Zi : (Zi + height− 1))] (4.28e)

reari = u[G((Yi − 1), Xi : (Xi + lengthi − 1), Zi : (Zi + height− 1))] (4.28f)

Equation 4.28 shows lists of connections on the six sides of MECi. Finally, a list of complete

connections of MECi is the unique numbers among the connections on all sides.

ci = u[loweri, upperi, lefti, righti, forei, reari] (4.29)
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(a) 1st layer (b) 2nd layer (c) 3rd layer (d) 4th layer

Figure 4.15. Updated G has additional elements equal to zeros around it. Connections of MEC1 is neigh-
boring elements on each side (red elements).

For example, G is updated to a (5 × 5 × 5) array, and each element is updated to its rank

as shown in figure 4.15. Also, the coordinates of MEC1 from equation 4.26a is changed for

the updated G.

MECG
1 = [3, 2, 2, 2, 2, 2] (4.30)

The connections of MEC1 on each side are calculated by equation 4.28.

lower1 = u[G(3 : 4, 2 : 3, 1)] = [ · ] (4.31a)

upper1 = u[G(3 : 4, 2 : 3, 4)] = [2, 7] (4.31b)

left1 = u[G(3 : 4, 1, 2 : 3)] = [ · ] (4.31c)

right1 = u[G(3 : 4, 4, 2 : 3)] = [4, 5] (4.31d)

fore1 = u[G(5, 2 : 3, 2 : 3)] = [ · ] (4.31e)

rear1 = u[G(2, 2 : 3, 2 : 3)] = [3, 6] (4.31f)
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(a) G-map (b) R-map

Figure 4.16. Two different representations of a 3D environment. (a) G-map has 21 free elements and 66
connections. (b) R-map has 9 free elements and 26 connections.

Lists of complete connections of MEC1 and the rest MECs are calculated by equation 4.29.

c1 = [2, 3, 4, 5, 6, 7] (4.32a)

c2 = [1, 6, 7, 8, 9] (4.32b)

c3 = [1, 6] (4.32c)

c4 = [1, 5] (4.32d)

c5 = [1, 4, 9] (4.32e)

c6 = [1, 2, 3] (4.32f)

c7 = [1, 2] (4.32g)

c8 = [2] (4.32h)

c9 = [2, 5] (4.32i)

For example, equation 4.32a means that MEC1 is connected with MEC2, MEC3, MEC4,

MEC5, MEC6 and MEC7, and equation 4.31 specifies their directions.
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Therefore, the output of the R-map algorithm is a list of MECs and their connections.

Figure 4.16 shows the initial G-map and the final R-map. Here, the G-map has 21 free

elements (grid cells) and 66 connections, and the R-map has 9 free elements (MECs) and 26

connections.

4.5 Result

As a complex example, a 3D environment of New York City as shown in figure 4.17

is imported from Google Earth to Matlab. The results are shown in figures 4.18, 4.19,

and 4.20 with three different map representations in different resolutions. Here, the three

different map representations are G-map, O-map, and R-map. First, a G-map is a map from

a mapping robot, and it has cube-elements in the even size. Second, an O-map (octree-

decomposition map) is derived from a G-map, and it subdivides a space into eight octants

if the space needs higher resolutions [39]. Thus, the cell elements in O-maps are cubes,

but they can be in different sizes. Third, an R-map is similar with O-maps as reducing

the number of cell elements, however while O-maps subdivide a space, R-maps integrate

empty cells into maximal-sized cuboids. Thus, R-maps can have elements in various sizes

and shapes of cuboids instead of cubes, and much fewer number of elements than G-map and

O-map. Table 4.1 compares the three map representations in different resolutions. R-map

has a dramatically reduced number of elements and their connections, and the differences

with the other two maps get bigger as the resolution gets higher. However, the R-map

requires an investment of computational time to construct. Notice that the Matlab code for

the R-map is not optimized, and the R-mapping time would be different depending on the

implementation of the algorithm in the code.
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Figure 4.17. A 3D environment of New York City.

Table 4.1. Comparisons of mapping with different map representations.

Resolutions 16×16×16 32×32×32 64×64×64
Map type G O R G O R G O R
free elements 4,054 162 26 32,044 1,074 177 255,126 7,658 1,299
connections 22,724 938 140 185,458 6,326 1,072 1,498,296 43,970 8,176
mapping time (sec.) - 0.98 1.32 - 8.58 38.99 - 229.19 1,807.26
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(a) G-map
(grid removed)

(b) O-map (c) R-map

Figure 4.18. Three different map representations in (16× 16× 16) resolutions.

(a) G-map
(grid removed)

(b) O-map (c) R-map

Figure 4.19. Three different map representations in (32× 32× 32) resolutions.

(a) G-map
(grid removed)

(b) O-map (c) R-map

Figure 4.20. Three different map representations in (64× 64× 64) resolutions.
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Chapter 5

3D Path Planning

Path planning considers free spaces in a map to find an optimal path avoiding obstacles

between two points. Thus, computational performance of path planning depends on the

number of free elements. Since R-maps have fewer free elements than conventional maps,

a better performance is expected with R-maps. This Chapter explains how to determine a

path from a start point to a finish point on an R-map. First, a series of connected cuboids

between the two points will be selected by Dijkstra’s algorithm [23]. The series of cuboids

may differ by weight definitions. Second, the center points of sharing surfaces between the

cuboids become waypoints, and an agent will pass through the waypoints to get to the

finish point. Finally, two methods of interpolation are suggested to connect the waypoints

to provide an exact path to follow. As results, path planning is accomplished on G-, O-, and

R-maps of New York City to compare and discuss.

5.1 Selection of cuboids

The lists of dimensions and connections of cuboids (MECs) have acquired in the order of

size from the R-mapping algorithm. To utilize the information in path planning problems,

Dijkstra’s algorithm is applied considering the cuboids as nodes and the connections as

edges. Assume that there are start and finish points on a map and their locations are known,

then it is easy to recognize which cuboids the points are within by simply looking at the

corresponding elements of the points in the labeled G. Thus, start and finish nodes (cuboids)

are defined, and Dijkstra’s algorithm finds a series of nodes with the lowest cost from the

start node to the finish node. Weights are assigned to the edges by weight definitions.

Beginning at the start node, the costs to its neighbors are computed. Next, the lowest cost
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node is defined as the current node, and the previous node is out of consideration. The total

cost from the initial node to the current node is the summation of the costs along the path.

There might be multiple paths to a certain node. In this case, the lowest-cost path will be

the selected path and the others will be discarded.

Similar to 2D path planning, four weight definitions are considered again here. In each

definition, W (j, k) is a cost to travel from MECj to MECk.

Definition 5.1.1. WV (j, k) = k. Weight by volume. Since the list of MECs is in the order

of size, by simply giving a lower weight to a higher-ranked cuboid, the algorithm selects a

path of larger volume.

Definition 5.1.2. WS(j, k) = (area of sharing surface between MECj and MECk). Weight

by area of sharing surface. By giving a lower weight to an MEC, which has a larger area of

sharing surface with its neighboring cuboid, the algorithm selects a wider path.

Definition 5.1.3. WD(j, k) = (distance between the center points of MECj and MECk).

Weight by distance. By giving a lower weight to closer center points of two cuboids, the

algorithm selects a shorter path to the destination, a classic application of Dijkstra’s algo-

rithm.

Definition 5.1.4. WN(j, k) = 1/(the dimension of ck). Weight by number of connections.

To give a lower weight to a cuboid, which has more potential paths to the next cuboid,

find the number of connections of each cuboid. Thus, the result is a path that has diverse

alternative paths.

Note that WS(j, k) = WS(k, j) and WD(j, k) = WD(k, j), but WV (j, k) 6= WV (k, j) and

WN(j, k) 6= WN(k, j) (cost going is not the same as cost returning).

As an example, recall the dimensions and connections of MECs from equations 4.26

and 4.32, and construct a relationship diagram as illustrated in figure 5.1. Here, the weights

on the edges are the weight-by-distance (WD). Also, the environment is a (3 × 3 × 3)

array, and define a start point at (0.5, 0.5, 0.5) and a finish point at (2.8, 2.8, 2.8), which are

58



(a) (b) (c)

Figure 5.1. Dijkstra’s algorithm selects the lowest-cost path to a finish point.

within cuboid-3 and cuboid-9, respectively. Thus, the path calculation begins at node-3 and

continues until it considers node-9.

First, the current node is node-3 as shown in figure 5.1a, and the costs to its neighbors,

nodes-1 and -6, are computed.

At node-3, for path 3-1, cost = 1.5811 (5.1a)

for path 3-6, cost = 1.1180 (5.1b)

Next, previously considered node-3 is out of consideration, and the lowest-cost path in

equation 5.1 becomes the current node, which is node-6 as shown in figure 5.1b. The total

cost from the initial node via the current node to its neighbor is the summation of each

weight on the path.

At node-6, for path 3-6-1, cost = 1.1180 + 1.6583 = 2.7763 (discard) (5.2a)

for path 3-6-2, cost = 1.1180 + 1.4142 = 2.5322 (5.2b)

Here, since two different paths from node-3 to node-1 have been considered in equations 5.1a

and 5.2a, select the lowest-cost path and discard the other as shown in equation 5.2a.

Next, node-6 is out of consideration, and the lowest-cost path, equation 5.2b, becomes

the current node, node-2. The total costs to its neighbors are calculated in the same manner.
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At node-2, for path 3-6-2-7, cost = 1.1180 + 1.4142 + 1.000 = 3.5322 (5.3a)

for path 3-6-2-8, cost = 1.1180 + 1.4142 + 1.4142 = 3.9464 (5.3b)

for path 3-6-2-9, cost = 1.1180 + 1.4142 + 1.4142 = 3.9464 (5.3c)

Finally, the path between node-3 and node-9 is determined as computed in equation 5.3c.

Figure 5.2a represents the relationship with the nodes (pink dots) and the edges (pink

line segments) in the 3D space. The start and the finish points are the blue dots with the

letters ’S’ and ’F’, respectively, the selected cuboids are the blue cuboids. Also, the center

points of the selected cuboids are connected with the red line segments. Figures 5.2b to 5.2d

show the selected cuboids in 2D matrices.

5.2 Waypoint navigation

An agent can travel to the finish point by moving freely through the selected cuboids.

However, for efficient travelling, it would be better if the agent has an exact path to follow. To

make sure the path is inside of the selected cuboids and the agent travels avoiding obstacles,

control points or waypoints are defined. Here, the waypoints are the center points of the

sharing surfaces between two cuboids. For example, in figure 5.2c, cuboid-3 and cuboid-

6 have a sharing surface between the first and the second columns in the first row, thus

the waypoint between the two cuboids is the center point of the sharing surface. Table

5.1 shows the waypoints of the selected cuboids in figure 5.2a. Such waypoints will be

connected by interpolation methods: linear interpolation for straight line segments, and

spline interpolation for smooth curve segments.
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(a) 3D view

(b) 3rd layer

(c) 2nd layer

(d) 1st layer

Figure 5.2. The start point is in cuboid-3, and the finish point is in cuboid-9. A series of cuboids that
connects cuboids-3 and cuboid-9 in the shortest distance is 3-6-2-9.

Table 5.1. Waypoints in figure 5.2a.

Waypoint Coordinates
Cuboid

i xi yi zi
1 0.5 0.5 0.5 3
2 1.0 0.5 1.5 3, 6
3 1.5 0.5 2.0 6, 2
4 2.0 2.5 2.5 2, 9
5 2.8 2.8 2.8 9

5.3 Linear interpolation

Linear interpolation connects (n+1) waypoints with n line segments. Each line segment

is expressed as Li(s).

Li(s) = x(s)̂i+ y(s)ĵ + z(s)k̂ (5.4)

Here, s ∈ [0, 1] and i = 1, · · · , n. As illustrated in figure 5.3, each line segment starts at s = 0

and ends at s = 1. To specify the coefficient equations, x(s), y(s), and z(s), first define #»v
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Figure 5.3. The (n + 1) waypoints are connected by n line segments. Each line segment can be found by
interpolation methods.

as a direction vector, which has the same direction with a line between two points.

#»v = ri+1 − ri = (xi+1 − xi)̂i+ (yi+1 − yi)ĵ + (zi+1 − zi)k̂ (5.5)

Then, s times of #»v will be the same magnitude with the line. Finally, by moving to the

point i, the vector will be identical with the line segment, Li.

Li(s) = #»v s+ ri (5.6)

Therefore, each coefficient term in equation 5.4 can be obtained.

x(s) = (xi+1 − xi)s+ xi (5.7a)

y(s) = (yi+1 − yi)s+ yi (5.7b)

z(s) = (zi+1 − zi)s+ zi (5.7c)

For example, using the waypoints from table 5.1, equations of line segments are given.

There are five waypoints and four line segments.
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(a) Linear interpolation (b) Spline interpolation

Figure 5.4. Two methods of waypoint navigation.

L1(s) =


x(s)

y(s)

z(s)

 =


0.5s+ 0.5

0.5

1.0s+ 0.5


if 0.5 ≤ x ≤ 1.0

if 0.5 ≤ y ≤ 0.5

if 0.5 ≤ z ≤ 1.5

(5.8)

L2(s) =


x(s)

y(s)

z(s)

 =


0.5s+ 1.0

0.5

0.5s+ 1.5


if 1.0 ≤ x ≤ 1.5

if 0.5 ≤ y ≤ 0.5

if 1.5 ≤ z ≤ 2.0

(5.9)

L3(s) =


x(s)

y(s)

z(s)

 =


0.5s+ 1.5

2.0s+ 0.5

0.5s+ 2.0


if 1.5 ≤ x ≤ 2.0

if 0.5 ≤ y ≤ 2.5

if 2.0 ≤ z ≤ 2.5

(5.10)

L4(s) =


x(s)

y(s)

z(s)

 =


0.8s+ 2.0

0.3s+ 2.5

0.3s+ 2.5


if 2.0 ≤ x ≤ 2.8

if 2.5 ≤ y ≤ 2.8

if 2.5 ≤ z ≤ 2.8

(5.11)

Finally, equations 5.8 to 5.11 provide a path to follow as shown in figure 5.4a.
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5.4 Spline interpolation

Spline interpolation connects (n + 1) waypoints with n curve segments. Each curve

segment is expressed as Si(s).

Si(s) = x(s)̂i+ y(s)ĵ + z(s)k̂ (5.12)

Here, s ∈ [0, 1] and i = 1, · · · , n. Figure 5.3 is applied again, however the notation of the line

segments will be Si instead of Li. The coefficient terms in equation 5.12 are cubic functions

as a path will be curves.

x(s) = axs
3 + bxs

2 + cxs+ dx (5.13a)

y(s) = ays
3 + bys

2 + cys+ dy (5.13b)

z(s) = azs
3 + bzs

2 + czs+ dz (5.13c)

Thus, total n line segments have 12n unknown coefficients. Those coefficients can be deter-

mined by several constraints.

First, curves should pass through interior waypoints, which means that each interior

waypoint has two line segments from both directions.

Si(1) = Si+1(0) = xi+1î+ yi+1ĵ + zi+1k̂ (5.14)

Here, i = 1 to (n− 1). This constraint makes (2n− 2) equations.

Second, the first and the last line segments should pass the start and the finish points,

respectively

S1(0) = x1î+ y1ĵ + z1k̂ (5.15a)

Sn(1) = xn+1î+ yn+1ĵ + zn+1k̂ (5.15b)

64



This constraint makes 2 equations.

Third, the first derivatives of two curves at each interior waypoint should be the same.

S ′i(1) = S ′i+1(0) (5.16)

Here, i = 1 to (n− 1). This constraint makes (n− 1) equations.

Fourth, the second derivatives of two curves at each interior waypoint should be the

same.

S ′′i (1) = S ′′i+1(0) (5.17)

Here i = 1 to (n− 1). This constraint makes (n− 1) equations.

Fifth, the second derivatives at the start and the finish points should be zeros.

S ′′1 (0) = 0 (5.18a)

S ′′n(1) = 0 (5.18b)

This constraint makes 2 equations.

The five constraints make 4n of Si equations and each of them consists of three of x(s),

y(s), and z(s) equations, thus (4n×3) equations are enough to find 12n unknown coefficients.

As an example, using the waypoints from table 5.1, equations of curve segments are

provided.
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S1(s) =


x(s)

y(s)

z(s)

 =


0.0530s3 + 0.0000s2 + 0.4137s+ 0.5000

−0.0894s3 + 0.0000s2 + 0.0999s+ 0.5000

−0.0788s3 + 0.0000s2 + 1.0338s+ 0.5000


if 0.5 ≤ x ≤ 1.0

if 0.5 ≤ y ≤ 0.5

if 0.5 ≤ z ≤ 1.5

(5.19)

S2(s) =


x(s)

y(s)

z(s)

 =


−0.1951s3 + 0.1680s2 + 0.5913s+ 1.0000

0.6198s3 − 0.2835s2 − 0.1999s+ 0.5000

0.0496s3 − 0.2498s2 + 0.7696s+ 1.5000


if 1.0 ≤ x ≤ 1.5

if 0.5 ≤ y ≤ 0.5

if 1.5 ≤ z ≤ 2.0

(5.20)

S3(s) =


x(s)

y(s)

z(s)

 =


0.1675s3 − 0.3241s2 + 0.4600s+ 1.5000

−0.5324s3 + 1.2801s2 + 0.6381s+ 0.5000

0.0332s3 − 0.1248s2 + 0.4546s+ 2.0000


if 1.5 ≤ x ≤ 2.0

if 0.5 ≤ y ≤ 2.5

if 2.0 ≤ z ≤ 2.5

(5.21)

S4(s) =


x(s)

y(s)

z(s)

 =


−0.1429s3 + 0.4078s2 + 0.5820s+ 2.0000

0.3664s3 − 1.0461s2 + 0.9789s+ 2.5000

−0.0071s3 + 0.0203s2 + 0.3024s+ 2.5000


if 2.0 ≤ x ≤ 2.8

if 2.5 ≤ y ≤ 2.8

if 2.5 ≤ z ≤ 2.8

(5.22)

The path calculated from equation 5.19 to 5.22 is illustrated in figure 5.4b.

5.5 Result

A series of connected cuboids between two points can be selected by Dijkstra’s algo-

rithm, also two interpolation methods to calculate an exact path passing through the cuboids

avoiding obstacles are suggested. As results, this process is applied to New York City en-

vironment in figure 5.5. This figure shows paths on the three different map representations

with the weight-by-distance (WD), and their resolutions are (32 × 32 × 32). The R-map
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(a) G-map (b) O-map (c) R-map

Figure 5.5. Path planning with weight by distance, WD, in (32× 32× 32) resolutions.

Table 5.2. Comparisons of mapping with different map representations.

Resolutions 16×16×16 32×32×32 64×64×64
Map type G O R G O R G O R
free elements 4,054 162 26 32,044 1,074 177 255,126 7,658 1,299
connections 22,724 938 140 185,458 6,326 1,072 1,498,296 43,970 8,176
mapping time (sec.) - 0.98 1.32 - 8.58 38.99 - 229.19 1,807.26
path planning time (sec.) 1.17 0.13 0.07 8.11 0.38 0.13 71.06 2.00 0.51

has advantages in path planning comparing with the other maps. As mentioned in 3D R-

mapping section, R-maps require more computational time in mapping than the other maps

because of additional algorithms. However, as shown in table 5.2, path planning on R-maps

is the fastest among the three map types due to a reduced number of elements, and the

differences in time become larger as the resolution rises. Also, the larger volume of elements

in R-maps allows smoother curves and fewer turns of a path. Therefore, for certain vehicles

or applications, the paths generated from the R-map may be inherently desirable. Consid-

ering the combined computational expenses of mapping and path planning, the R-map may

be more efficient for applications that require multiple path planning operations in a given

environment. For the (16× 16× 16) resolution, the R-map approach would be more efficient

than the G-map or O-map for any application requiring 6 or more paths to be planned.

For the (64× 64× 64) resolution, the R-map approach is more efficient for any application

requiring 1,060 or more paths.
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The results of path planning using the other three weights (WV ,WS, and WN) are also

shown in figures 5.6 to 5.8. Some paths produced by those weights can be similar, because a

cuboid with a larger volume has a bigger surface area and more connections to its neighboring

cuboids.
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(a) G-map (b) O-map (c) R-map

Figure 5.6. Path planning with weight by volume, WV , in (32× 32× 32) resolutions.

(a) G-map (b) O-map (c) R-map

Figure 5.7. Path planning with weight by area of sharing surface, WS , in (32× 32× 32) resolutions.

(a) G-map (b) O-map (c) R-map

Figure 5.8. Path planning with weight by number of connections, WN , in (32× 32× 32) resolutions.
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Chapter 6

Target Interception

This Chapter considers the guidance problem for target interception. The approach here

is to treat the problem as path planning to a moving target. Conventional strategies such as

pursuit and proportional guidance laws are still widely used in ground and aerial navigation

systems [25–35]. However, this problem becomes challenging in a cluttered environment to

perform the interception while avoiding obstacles. For target interception in a cluttered

environment, the guidance laws can be implemented on the R-map in a receding horizon

approach, which takes advantage of the computationally efficient path planning. Target

interception approaches used here have two assumptions: a map environment and target’s

dynamic information are known. Under the same assumptions, other approaches focus on

obstacles by means of keeping a safety distance between a pursuer and obstacles to avoid

collision [40, 41], however R-map approaches focus on empty spaces and a pursuer moves

along the selected cuboids. This Chapter has three sections. First, the traditional navigation

methods are reviewed and simulated in New York City environment. Second, two approaches

to determine the desired final location to use the navigation method on the R-map are

provided. Finally, both traditional and R-map approaches are compared and discussed.

6.1 Traditional Approaches

Conventional navigation methods such as pursuit and proportional navigation are easy

to develop and implement in navigation systems. However, those methods do not consider the

presence of obstacles in the environment. In this section, pure pursuit and pure proportional

navigation methods are briefly introduced and simulated to compare with the navigation on

R-maps in the last section.
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6.1.1 Pursuit Navigation

Pursuit navigation is a method to guide a pursuer toward a target. Specifically, the

pursuer’s location is a start point and the target’s location is a finish point, and path planning

is simple as finding a line segment between the two points. Accordingly, the pursuer’s velocity

always points toward the target’s current location, and its trajectory will be a target’s tail-

tracking path.

Figure 6.1 shows a simulation at t0. Here, the pursuer (blue triangle) and the target (red

triangle) are presented in the environment of New York City. The computed interception-

path (black dashed-line) is a straight line segment between the pursuer and the target. As

the target moves, the interception path is updated, and the pursuer follows the path until

the next update. Figure 6.2 shows the simulation at the interception moment, tI . Here,

the trajectories of the pursuer (blue line) and the target (red line) are illustrated. The

speeds of the target and the pursuer are constant as 1.0 and 1.5 3D grid cells per time unit,

respectively.

6.1.2 Proportional Navigation

Proportional navigation is often implemented as a guidance law giving a commanded

acceleration to drive the line-of-sight rate to zero, steering the pursuer on to an interception

triangle. The implementation used here assumes the current position and the velocity of the

target are known. Additionally, the speeds of the pursuer and the target are assumed to be

constant, and the direction of the pursuer’s velocity can be arbitrarily selected. A simula-

tion will be conducted against a maneuvering target. The approach to find a commanded

acceleration, ac, in a 3D environment is referred from Moran [37].
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(a) 3D view

(b) Top view

(c) Side view

Figure 6.1. Pure pursuit navigation: the computed interception path at t0.

(a) 3D view

(b) Top view

(c) Side view

Figure 6.2. Pure pursuit navigation: the final trajectories at tI .
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Initially, the positions, rP and rT , and the velocities, vP and vT , of a pursuer and a

target are defined.

rP =


rPx

rPy

rPz

 , rT =


rTx

rTy

rTz

 (6.1a)

vP =


vPx

vPy

vPz

 , vT =


vTx

vTy

vTz

 (6.1b)

Here, the subscripts x, y, and z indicate elements associated with corresponding axis.

The relative position and the relative velocity of the target respect to the pursuer, rTP

and vTP , are the subtractions of the vectors from equation 6.1.

rTP =


rTPx

rTPy

rTPz

= rT − rP (6.2a)

vTP =


vTPx

vTPy

vTPz

= vT − vP (6.2b)

Also, the distance between the pursuer and the target projected on the three planes is defined

as D.

D =


Dxy

Dyz

Dzx

 =


√
r2
TPx + r2

TPy√
r2
TPy + r2

TPz√
r2
TPz + r2

TPx

 (6.3)
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Then, the closing velocity, vc, projected on the planes are negative changing rate of the

distance.

vc =


vcxy

vcyz

vczx

 = −Ḋ =


− rTPxvTPx+rTPyvTPy

Dxy

− rTPyvTPy+rTPzvTPz

Dyz

− rTPzvTPz+rTPxvTPx

Dzx

 (6.4)

The line-of-sight (LOS) angle, λ, from the pursuer to the target projected on the planes is

λ =


λxy

λyz

λzx

 = atan


rTPy

rTPx

rTPz

rTPy

rTPx

rTPz

 (6.5)

and its changing rate is computed as

λ̇ =


λ̇xy

λ̇yz

λ̇zx

 =


rTPxvTPy−rTPyvTPx

r2TPx+r2TPy

rTPyvTPz−rTPzvTPy

r2TPy+r2TPz

rTPzvTPx−rTPxvTPz

r2TPz+r2TPx

 (6.6)

Finally, the acceleration command, ac, projected on the planes is obtained by the mul-

tiplication of the closing velocity and the LOS rate.

ac =


acxy

acyz

aczx

 = Nvc ◦ λ̇ (6.7)

Here, N is the proportionality constant that is generally between 3 and 5. Also, the circle

notation between vc and λ̇ is the element-wise multiplication (or Hadamard product), which

multiplies element by element of two vectors. Notice that equation 6.7 is for non-maneuvering

target. For maneuvering target, target’s acceleration term is added to ac. This guidance law
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for maneuvering target is called augmented proportional navigation (APN) [36].

ac =


acxy

acyz

aczx

 = Nvc ◦ λ̇+
NaT

2
(6.8)

Here, aT is the target’s acceleration. The elements of the acceleration command in equation

6.8 can be separated to the elements associated with the x-, y-, and z-axis by trigonometry,

thus the acceleration along each axis will be the summation of associated elements, which

becomes the pursuer’s acceleration, aP .

aP =


aPx

aPy

aPz

 =


acxysin(λxy)− aczxcos(λzx)

acyzsin(λyz)− acxycos(λxy)

−aczxsin(λxz) + acyzcos(λyz)

 (6.9)

Therefore, the pursuer’s next required velocity and position to keep the pursuer on

the interception path are calculated by the equations of motion using the current dynamic

information, rP , vP , and aP from equations 6.1 and 6.9.

vP (i+1) = aP (i)dt+ vP (i) (6.10a)

rP (i+1) = rP (i) +
1

2
(vP (i+1) + vP (i))dt (6.10b)

Here, dt is a time interval, and the subscripts (i) and (i+ 1) mean the current and the next

values after dt, respectively. This process is repeated as the target’s dynamic information is

updated.

A simulation is shown in figure 6.3. The figure shows the trajectories of the pursuer

(blue line) and the target (red line) at the interception moment, tI . The LOS (black line
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(a) 3D view

(b) Top view

(c) Side view

Figure 6.3. Pure proportional navigation: the final trajectories and the LOS at tI .

segments) at each sensing moment is also illustrated. The speeds of the target and the

pursuer are constant as 1.0 and 1.5 3D grid cells per time unit, respectively.

6.2 R-map Approaches

Obstacle avoidance can be achieved by applying the R-map based path planning. The

process of path planning at each planning iteration has two steps: first, select a desired final

location, and second, apply the path planning method from the previous Chapter. In this

section, two methods to determine the desired final location are provided.

6.2.1 Pursuit Navigation

As described in the previous section, the desired final location in pursuit navigation

is the target’s current location. With the two points of the start and the finish, the path

planning method from the previous Chapter can be applied to plan an obstacle collision-free
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(a) 3D view

(b) Top view

(c) Side view

Figure 6.4. Pursuit navigation on R-map: the computed interception path at t0.

(a) 3D view

(b) Top view

(c) Side view

Figure 6.5. Pursuit navigation on R-map: the final trajectories at tI .
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path between the two points. This planning process is repeated as the target’s location is

updated.

Figure 6.4 shows a simulation at t0. The computed interception-path (black dashed-line)

passes the center points (pink dots) of the selected cuboids, thus it is an obstacle collision-free

path. Also, the cuboids that the pursuer has been inside are illustrated as blue transparent-

cuboids. As the target moves, the interception path is updated, and the pursuer follows

it until the next planning iteration. Figure 6.5 shows the simulation at the interception

moment, tI . Here, the pursuer’s trajectory (blue line) is obstacle collision-free. The speeds

of the target and the pursuer are constant as 1.0 and 1.5 3D grid cells, respectively.

6.2.2 Interception-Triangle Navigation

For pursuit navigation, it is actually desired for the pursuer to be at this location at the

current time. However, the interception triangle determines the desired final location and an

actual pursuer trajectory that can be followed over time if the target is moving with constant

velocity. The presence of obstacles, though, forces deviation from this path, and requires a

receding horizon implementation. The detailed process is given here. It is assumed that the

target’s velocity and the pursuer’s speed are known.

The target’s location at time t is defined with the initial position, rT,0, and the assumed

constant velocity, vT .

rT (t) = rT,0 + vT t (6.11)

Also, the pursuer’s location at time t is defined with the initial position, rP,0, and the

constant velocity, vP = vP l̂.

rP (t) = rP,0 + vP t (6.12)
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Here, the magnitude vP is known, but the direction l̂ is unknown. Solve for l̂ to make the

pursuer intercept the target at an unknown interception time, tI .

rP (tI) = rT (tI) (6.13a)

rP,0 + vP l̂tI = rT,0 + vT tI (6.13b)

This vector equations can be expressed in components of an arbitrary coordinate frame to

produce three quadratic equations in terms of the unknowns l1, l2, l3 and tI . The constraint

that l21 + l22 + l23 = 1 gives a fourth quadratic equation. Solving a system of four quadratic

equations for four unknowns is generally difficult. However, the process can be simplified by

selecting an advantageous coordinate system. First, equation 6.13b is rearranged.

(
vP l̂− vT

)
tI = rT,0 − rP,0 (6.14)

Next, the coordinate system is defined as

ê1 =
rT,0 − rP,0
‖rT,0 − rP,0‖

(6.15a)

ê2 = ê3 × ê1 (6.15b)

ê3 =
ê1 × vT
‖ê1 × vT‖

(6.15c)

Then, the factors in equation 6.14 can be written in terms of these coordinate vectors.

rT,0 − rP,0 = ‖rT,0 − rP,0‖ ê2 (6.16a)

vT = vT,1ê1 + vT,2ê2 (6.16b)

l̂ = l1ê1 + l2ê2 + l3ê3 (6.16c)

Note that vT has no ê3 component, as ê3 is defined to be perpendicular to vT . And, l1, l2

and l3 are the unknowns to be found.
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Substitute equation 6.16 to equation 6.14.

(vP l1 − vT,1) tI ê1 + (vP l2 − vT,2) tI ê2 + vP l3tI ê3 = ‖rT,0 − rP,0‖ ê1 (6.17)

From equation 6.17, it is recognized that the ê3 component of vP is zero, because the pur-

suer’s velocity will be coplanar with the relative position and the target’s velocity. Further,

the pursuer and the target have equal velocity components in the ê2 direction. Equation

6.17 yields the following.

l3 = 0 (6.18a)

l2 =
vT,2
vP

(6.18b)

l1 =
√

1− l22 =

√
1−

(
vT,2
vP

)2

(6.18c)

tI =
‖rT,0 − rP,0‖
vP l1 − vT,1

=
‖rT,0 − rP,0‖√
v2
P − v2

T,2 − vT,1
(6.18d)

Note that the positive square root is selected in equations 6.18c and 6.18d to give the smallest

possible real solution for tI .

The solution from equation 6.18 is for components of l̂ in the e coordinate frame, and

in terms of vT components in the e coordinate frame. The components of vT are likely given

in terms of some other coordinate frame i, and the solution for l̂ should be in the same

coordinate frame. Therefore, it is required to transform between these coordinate frames. A

rotation matrix is defined as

[C] =

[
[ê1]i [ê2]i [ê3]i

]
(6.19)

where, [ê1]i, [ê2]i, and [ê3]i are computed by evaluating equation 6.15 using rT,0, rP,0, and vT

in i components. Then at the start of the method, vT is transformed from i to e components.
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(a) 3D view

(b) Top view

(c) Side view

Figure 6.6. Interception-triangle navigation on R-map: the computed interception path at t0.

(a) 3D view

(b) Top view

(c) Side view

Figure 6.7. Interception-triangle navigation on R-map: the final trajectories at tI .
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[vT ]e = [C]ᵀ [vT ]i (6.20)

Once the solution for l̂ is computed from equations 6.18a, 6.18b, and 6.18c, it can be

transformed from e to i components.

[
l̂
]
i

= [C]
[
l̂
]
e

(6.21)

Finally, with this l̂, the interception point can be calculated by evaluating either equation

6.11 or 6.12 at tI . This process iterates as the target’s dynamic information is updated.

Figure 6.6 shows a simulation with this method. Here, the speeds of the target and

the pursuer are constant as 1.0 and 1.5 3D grid cells per time unit, respectively. The

velocities of the target (red dashed-line) and the pursuer (blue dashed-line) are illustrated.

The intersection point of those two lines is the desired final location. If the intersection

point is inside an obstacle, the algorithm selects the closest out-of-obstacle point from it

on the line of target’s velocity, as an alternative final location. When both target and

pursuer have constant velocities and are not affected by obstacles, the blue dashed-line is

the actual path that the pursuer can follow in time to intercept the target. However, due

to the maneuvering target in this simulation and the pursuer’s need to avoid obstacles, the

actual trajectory generally deviates (see appendix A for more simulations).

6.3 Discussion

The four approaches require different sensing information to compute an interception

path: only the LOS for pure pursuit, the closing velocity and the LOS (and the target’s

acceleration if it maneuvers) for pure proportional, the target’s position vector for pursuit

on R-map, and the position and velocity vectors for triangle on R-map.

Figure 6.8 compares the paths from the four approaches. Here, the interception time

of each approach is as following: pure pursuit tI = 24, pure proportional tI = 16, pursuit
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on Rmap tI = 33, and triangle on Rmap tI = 26. The paths from the two R-map ap-

proaches require more time to intercept the target. Notice that the interception time will

vary depending on the environment.

Figure 6.9 shows the pursuer’s heading angle. It is assumed that the pursuer is initially

heading to the North (zero angle at t0), and the clockwise direction is the positive azimuth

angle. Figure 6.10 shows the change of the pursuer’s heading angle. As shown in this figure,

the paths from the traditional approaches, figures 6.10a and 6.10b, do not have radical

changes (paths are smooth curves). However, the paths from the R-map approaches, figures

6.10c and 6.10d, require several maneuvers to avoid obstacles.
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(a) Top view

(b) Side view

Figure 6.8. Simulation 1: four target interception strategies.
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(a) Pure pursuit (b) Pure proportional

(c) Pursuit on Rmap (d) Triangle on Rmap

Figure 6.9. Simulation 1: angles of the pursuer’s heading.

(a) Pure pursuit (b) Pure proportional

(c) Pursuit on Rmap (d) Triangle on Rmap

Figure 6.10. Simulation 1: change of angles of the pursuer’s heading.
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Chapter 7

Conclusions

This dissertation explored development of R-maps for 2D and 3D environments. R-maps

help to build higher-resolution maps with fewer elements by applying the maximal empty

rectangle problem. The R-map representation has several advantages. First, by focusing

on the maximal empty rectangles (cuboids), it is naturally suited to obstacle avoidance.

Second, by using a reduced number of elements, R-maps are more efficient for path-planning

algorithms such as Dijkstra’s algorithm. Last, by integration of empty cells into a larger

rectangle, R-maps reduce redundant data, thus they are efficient for data saving. Therefore,

R-maps could also be beneficial for sharing map information between cooperative agents

with limited communication bandwidth.

Further, this work introduced a new approach to map-merging problems using the idea

of R-map. The key technique in this approach is extracting the properties and connections

of rectangles from maps that allows to match orientations and scales, and find overlapping

points. Because the three factors are unknown, the final merged map is an estimated map

by minimizing differences of the factors. To expect a good fit of two maps in a merged

map, initial maps require two conditions. First, the environment in each map should have

at least one pair of parallel edges and longer makes a better estimation. Thus, empty

spaces such as rectangles or trapezoids are essential to place the maps in the orthogonal

orientations by aligning the parallel edges with the map grids. Second, the initial maps

should have at least three of separate rectangular spaces or a non-rectangular space to find

three rectangles as shared-triangles. Hence, the R-map algorithm produces rectangles, and

the shared-triangle algorithm is able to find three of common rectangles. Fortunately, many

practical environments meet the two conditions.
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This work also discussed 3D R-map based path planning on the environment of New

York City. The paths can be diverse by the different weight definitions, thus an agent can

select a weight depending on the goal of its mission. In the case of a moving target, navigation

methods were applied to the R-map to intercept the target while avoiding obstacles. Two

approaches were introduced to determine the desired final location, and compared with the

traditional approaches. Because the R-map yields rapid path planning, R-maps could be

a solution to the real-time path-planning problems such as target interception in cluttered

environments.

The contribution of developing the 3D R-map regarding path planning and target inter-

ception is that the R-map can make any path planning algorithm efficient. This dissertation

illustrated path planning with Dijkstra’s algorithm, however other map-based algorithms

such as A* and RRT (rapidly exploring random tree) also can be adopted and accomplish

rapid path planning.

Future work could include further investigation on cooperation of multiple agents. For

example, tracking/intercepting multiple targets avoiding obstacles, making a swarm in the

largest cuboid, or hiding beside obstacles by moving to small cuboids. In addition, the idea

of R-map could be applied to the field of image processing by means of multi-resolution

images to save data amount.
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Appendix A

More simulations on target interception

A.1 Simulation 2

In this simulation, the target moves with constant velocity as illustrated in figure A.4.

Here, the interception time of each approach is computed as following: tI = 24 for pure

pursuit, tI = 17 for pure proportional, tI = 26 for pursuit on R-map, and tI = 16 for

triangle on R-map. For the path from triangle on R-map, the algorithm computed a straight

interception-path after avoiding obstacles (blue line), which is an actual path to follow in

time to intercept the target, because the target has constant velocity and is in the same

cuboid with the pursuer.

A.2 Simulation 3

In this simulation, the target maneuvers, but the initial locations of the pursuer and the

target are different from simulation 1 in figure 6.8. The interception time of each approach

is computed as following: tI = 16 for pure pursuit, tI = 13 for pure proportional, tI = 30

for pursuit on R-map, and tI = 17 for triangle on R-map. The order of interception times is

the same with the simulation 1.
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(a) Top view

(b) Side view

Figure A.1. Simulation 2: four target interception strategies.
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(a) Pure pursuit (b) Pure proportional

(c) Pursuit on Rmap (d) Triangle on Rmap

Figure A.2. Simulation 2: angles of the pursuer’s heading.

(a) Pure pursuit (b) Pure proportional

(c) Pursuit on Rmap (d) Triangle on Rmap

Figure A.3. Simulation 2: change of angles of the pursuer’s heading.
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(a) Top view

(b) Front view

Figure A.4. Simulation 3: four target interception strategies.
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(a) Pure pursuit (b) Pure proportional

(c) Pursuit on Rmap (d) Triangle on Rmap

Figure A.5. Simulation 3: angles of the pursuer’s heading.

(a) Pure pursuit (b) Pure proportional

(c) Pursuit on Rmap (d) Triangle on Rmap

Figure A.6. Simulation 3: change of angles of the pursuer’s heading.
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