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Abstract

This dissertation deals with inverse problems for parabolic partial differential equations

with an integral constraint and their applications in geology. We employ analytical and

numerical methods to analyze and approximate solutions of these inverse problems. We

consider an inverse diffusion coefficient problem for a parabolic equation that arises in science

and engineering, specifically, in geochronology, a branch of geology in which radiometric ages

are determined for rock formations and geological events. We investigate the corresponding

direct problem, where we use a finite element approximation for a 2D model to describe

the distribution of argon in mica crystals. Using a fixed point method, we show that the

inverse coefficient problem has a unique classical solution that depends continuously on the

data. We also consider an inverse source problem for a parabolic equation with Dirichlet and

Neumann boundary conditions. We prove the existence of both weak and classical solutions

to the inverse source problem subject to the Dirichlet boundary condition by means of

the Rothe method and the semigroup method, respectively. An energy method is used to

show uniqueness. In addition, we establish the existence and uniqueness of solutions to the

inverse source problem with the Neumann boundary condition. We derive and implement

numerical schemes that are used to compute approximate solutions of the inverse diffusion

coefficient problem and solutions of the inverse source problem with the Dirichlet boundary

condition. Our numerical algorithms employ a finite element discretization in space and the

implicit Euler method in time. To assess the accuracy of the approximation, we compute the

errors and estimate the rates of convergence. We conducted numerical experiments using the

mathematical programming software MATLAB. We finally outline a discussion of possible

future work.
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Chapter 1

Introduction

We are interested in two inverse problems arising in geochronology: in one problem,

the source and in the other the diffusion coefficient is unknown. We start with a brief

introduction to direct and inverse problems.

1.1 Direct and inverse problems

Inverse problems are widely used in science and engineering. We give a brief overview

of inverse problems and contrast them with direct problems. In direct problems, one tries

to determine exact or approximate functions that describe various quantities such as the

concentration of a chemical, the propagation of sound, heat, or seismic waves, and many

others. In direct problems the media properties of a given model described by equations, the

initial state of the process under investigation (in the case of a non-stationary process) and its

properties on the boundary (if considered in domains with boundaries) are known. However,

media properties are often not readily observable. This lack of specification in the model leads

to inverse problems, in which one is required to find, for example, equation coefficients from

the information about solutions of the direct problem. These coefficients usually represent

important media properties such as the heat conductivity, electrical conductivity, activation

energy and frequency factor for diffusion, etc. Other types of inverse problems deal with

determining the depth-time history of geologic units that formed deeply within Earth’s

crust. We refer to [30] for more examples. We provide an elementary example to illustrate

the formulation of a direct and inverse problems. Later, we will return to this example to

derive a formula for the age of a mineral.
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Example 1. Radioactive decay is a classical example for the separation of variables method

in ordinary differential equations (ODEs). In that process, the rate of radioactive decay is

proportional to the amount of the radioactive substance. It is described by the solution of the

Cauchy problem for an ordinary differential equation

dN

dt
= −λN(t), t ≥ 0,

and

N(0) = N0,

where N(t) is the amount of radioactive substance at a given time t, N0 is the amount of

substance at the initial time, and λ is the decay constant. The direct problem is as follows:

given the initial amount N0 and the decay constant λ, determine how the amount of substance

N(t) changes with time. The solution is written explicitly as

N(t) = N0e
−λt, t ≥ 0.

Assume now that the decay constant λ and the initial amount N0 are not known, but we can

measure the amount of the radioactive substance N(t) for certain values of t, namely

N(tk) = fk, k = 1, 2, · · · , Ñ , (1.1)

where fk is known for all k = 1, 2, · · · , Ñ , with Ñ some positive integer. A possible inverse

problem is to determine the initial amount N0 and the decay constant λ from the data (1.1).

We now begin to describe the model we will use in this dissertation.
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1.2 Model description

Our primary focus is on the following system

∂tu(x, t)− c(t)∆u(x, t) = f(x, t), in Ω× (0, Tf ], (1.2)

u(x, t) = g(x, t), on ∂Ω× [0, Tf ], (1.3)

and

u(x, 0) = u0(x), in Ω, (1.4)

where Ω is a bounded open set in Rd, d ≥ 1, with a C2 boundary ∂Ω. The model describes

the evolution in time of the concentration u(x, t) of a chemical throughout this dissertation.

In this chapter, Tf denotes the final time to distinguish it from the temperature T . In the

rest of the dissertation however, the final time will be denoted by T . The function u0 is the

initial condition, g is the boundary condition, f is the source function, and c is the diffusion

coefficient. For given c, f , g, and u0, the problem of finding u from the equations (1.2)–(1.4)

is the direct problem.

System (1.2)–(1.4) arises in the Potassium-Argon (K-Ar) methods of geochronology as

applied to measuring the ages of micas. These methods are based on the radioactive decay of

40K to stable 40Ar. Isotopes are defined as atoms of the same element with equal number of

protons but different number of neutrons in their nuclei. A stable isotope is an isotope that

does not change over a long period of time while an unstable or parent isotope is the one

that spontaneously changes the number of protons and/or neutrons by radioactive decay. A

daughter isotope is a stable isotope produced by the radioactive decay of a parent isotope.

In the K-Ar methods, the daughter isotope 40Ar can escape the molten rock, but begins to

accumulate as the rock crystallizes and cools. To calculate the time since cooling and onset

of 40Ar retention, a measurement of the ratio of the amount of 40Ar accumulated to the

amount of 40K remaining is taken [34]. In order to obtain this ratio, the amounts of argon

and potassium are measured by mass spectrometry of the gasses released when a rock sample

3



is melted in vacuum. Directly measuring the amount of 40K is inconvenient, suggesting that

a different method should be used instead. The 40Ar/39Ar dating method is a variation of

the K-Ar method in which 39Ar serves as a proxy for 40K. A sample is crushed and partial

crystals of the mineral are hand-selected for analysis and then irradiated with fast neutrons

to produce 39Ar from 39K. The sample is then degassed in a high vacuum system. The crystal

structure of the mineral degrades due to heat, and as the sample melts, trapped gases 40Ar

and the derived 39Ar are released and their amounts are measured.

Common micas (e.g., muscovite with chemical composition K2Al4Si6Al2O20(OH,F)4)

are silicate minerals with nearly perfect basal cleavage, whose shape can be described as a

domain Ω ⊂ Rd, d = 2 or d = 3. By cleavage we mean the tendency of crystalline materials

to split along a definite crystallographic structural planes. The geometry of these planes

defines the structure of material parameters of micas (an application of Neumann’s principle

in mineralogy) such as diffusion coefficients. The cleavage in micas allows us to consider and

analyze models in R2.

The function u(·, t) represents the concentration of argon within a mica at time t. Argon

is the most abundant noble gas in the Earth’s crust and the third most abundant gas in the

Earth’s atmosphere. Almost all of the argon in the atmosphere is radiogenic 40Ar, produced

by the radioactive decay of potassium 40K in the Earth’s crust, which itself is an isotope found

in mica crystals. A mica crystal has the structure of layers with crystal lattice composed of

aluminium and silicon and the atoms of 40K and 40Ar sandwiched between these layers. The

diffusion of argon is more rapid parallel to these layers than perpendicular to them. Figure 1.1

shows the images of mixed polyhedral and atomic (‘ball and stick’) representations of a

phlogopite structure, a mica with chemical composition K2Mg6Si6Al2O20(OH)4, drawn with

the Crystalmaker software package. The tetrahedra-octahedra-tetrahedra layers are filled

with silica and aluminum (blue tetrahedra) and magnesium (yellow octahedra). Oxygen

and hydroxyl (OH) are at the vertices of the polyhedra and they bind the layers together.

The interlayer sites are each formed by two six-sided rings of tetrahedra and are filled with

4



potassium (purple). For a brief overview of types of micas including their chemical formulas,

see [34, p.25-27].

Figure 1.1: Phlogopite rendered with Crystalmaker.

The coefficient c is a composition of a function D(·) and the temperature, which itself

is a function of time, that is, c(t) = D(T (t)), and the dependence of D on the temperature

T is given by the Arrhenius law

D(T ) = D0e
−E/RT , (1.5)

where D0 is the pre-exponential factor also called the frequency factor, E is the activation

energy which is the energy necessary for diffusion, and R is the gas constant. The gas

constant is the same for all chemicals including argon and it has the value R = 8.314. The

constants D0 and E are unique for every diffusant and are estimated from experiments or

postulated based on empirical data.

The thermal history is significant in studies of the Earth’s crust history due to the

proxy relationship between depth and temperature beneath Earth’s surface. Restricting the

temperature of geologic samples as a function of time permits us to reconstruct the different
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processes they have undergone and to better understand the Earth’s history. The source

term that takes into account the production of argon within the crystal can be considered

in the general form f(x, t). We often consider the specific form:

f(t) = λKfAre
−λKt, (1.6)

where λK is the rate of radiogenic decay of 40K and fAr is the fraction of 40K that yields

40Ar.

The problem of finding the diffusion coefficient c (or the source function f) from (1.2)–

(1.4) for given f , g and u0 (or, for given c, g and u0) is underdetermined, since we now

have two unknowns u and c (respectively, u and f). Additional data that we refer to as an

overdetermination condition is required. The additional data we consider throughout this

dissertation is in the form of an integral constraint given by

∫
Ω

u(x, t) dx = µ(t), for all t ∈ [0, Tf ]. (1.7)

Other common types of overdetermination conditions include (but are not limited to) the

solution u(x, Tf ) at final time, the solution u(x0, t) evaluated at an interior point x0 ∈ Ω or

the normal derivative of the solution ∂u(x0, t)/∂ν at a boundary point x0 ∈ ∂Ω for all times

0 < t < Tf , where ν is the outward unit vector normal to the boundary ∂Ω. The problem

of determining c or f , together with u from (1.2)–(1.4) and (1.7) is the inverse diffusion

coefficient problem or the inverse source problem, respectively. For the inverse source with a

Neumann boundary condition, we replace the Dirichlet boundary data (1.3) by a condition

of the form

∂u

∂ν
(x, t) = g(x, t) on ∂Ω. (1.8)

The rest of this chapter is organized as follows: in Section 1.3, we recall the known results

for the direct problem (1.2)–(1.4) and present details of numerical studies of approximate
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solutions to the direct problem (1.2)–(1.4). In Section 1.4, we establish a link between

the inverse source problem and the inverse diffusion coefficient problem, and motivate the

integral constraint. A literature review appears in Section 1.5. In Section 1.6, we summarize

the notation used throughout this dissertation.

1.3 The direct problem

We now investigate the determination of the concentration of argon from system (1.2)–

(1.4), which we will convert into apparent age as explained later. We also provide a geological

literature review, and a brief description of the finite element method and some numerical

results. The source function is taken in the form (1.6). We assume that the concentration

of argon is zero on the boundary. We also suppose that argon has zero initial concentration.

That is, we consider the system

∂tu(x, t)− c(t)∆u(x, t) = f(t), in Ω× (0, Tf ], (1.9)

u(x, t) = 0, on ∂Ω× [0, Tf ], (1.10)

and

u(x, 0) = 0, in Ω, (1.11)

where the final time Tf , the diffusion coefficient c and the source function f are given, and

u : Ω̄ × [0, Tf ] → R is the unknown. Again, c(t) = D(T (t)), and the dependence of D on

the temperature T is given by the Arrhenius law (1.5). The system is a special case of the

problem considered in [14, p. 372],

∂tu+ Lu = s, in Ω× (0, Tf ], (1.12)

u = 0, on ∂Ω× [0, Tf ], (1.13)

7



and

u = h, in Ω× {t = 0}, (1.14)

where L is a second-order partial differential operator having the form

Lu = −
d∑

i,j=1

(cij(x, t)uxi)xj +
d∑
i=1

bi(x, t)uxi + a(x, t)u,

for given source s : Ω × (0, Tf ] → R, initial data h : Ω → R, and coefficients cij, bi, a

(i, j = 1, · · · , d). Under the assumptions

cij, bi, a ∈ L∞(Ω× (0, Tf ]) (i, j = 1, · · · , d),

s ∈ L2(Ω× (0, Tf ]),

and

h ∈ L2(Ω),

the existence and uniqueness of weak solutions to (1.12)–(1.14) are established by the

Galerkin’s method and an energy method, respectively. See [14, Theorem 3, p. 378] for

existence and [14, Theorem 4, p. 379] for uniqueness. A function u ∈ L2(0, Tf ;H
1(Ω)), with

u′ ∈ L2(0, Tf ;H
−1(Ω)) is a weak solution of (1.12)–(1.14) provided

i. the weak equation 〈u′, v〉+B[u, v; t] = (s, v) holds

for all v ∈ H1
0 (Ω) and a.e. 0 ≤ t ≤ Tf and

ii. the initial condition u(0) = h is satisfied in C([0, T ];L2(Ω)).

Here, B is the time-dependent bilinear form

B[u, v; t] =

∫
Ω

d∑
i,j=1

cij(·, t)uxivxj +
d∑
i=1

bi(·, t)uxiv + a(·, t)uv dx,

8



which is defined for all u, v ∈ H1
0 (Ω) and a.e. 0 ≤ t ≤ Tf . See the definition in [14, p. 374].

The notation L2(0, Tf ;H
1(Ω)), L2(0, Tf ;H

−1(Ω)), H1
0 (Ω), and C([0, T ];L2(Ω)) is standard.

Geologists use the concentration of argon and potassium to determine the apparent age

of rocks. In this paragraph, we derive a formula for the apparent age of a mineral as a function

of the ratio of a radiogenic daughter product to its parent as widely used in geochronology.

Continuing with Example 1 of the radioactive decay, let N denote the number of radioactive

atoms of the parent potassium 40K and let D be the number of daughter atoms 40Ar. These

quantities satisfy a conservation of mass law, that is, N0 = N + D, where N0 is the initial

number of radioactive atoms. Thus, N = (N +D)e−λKt or eλKt = 1 + D
N

. Taking the natural

logarithm of both sides, we obtain a basic equation used in geochronology [34, p. 18]:

t =
1

λK

ln

(
1 +

D

N

)
.

To take into account the fact that 40K decays to 40Ca and 40Ar, the basic equation needs to

be modified. Namely, let fAr denote the fraction of the 40K decays that yields 40Ar. It is the

ratio of the relevant partial decay constants to the 40K decay constant. It follows from the

basic equation that, for the K-Ar dating method,

D

N
=

1

fAr

40Ar∗
40K

,

where
40Ar∗

40K
represents the ratio of radiogenic 40Ar to 40K present in the sample. In the

notation of (1.2)–(1.4), let u denote the concentration of argon at location x in the sample

at the final time. Denote by v the concentration of 40K at the final time. Then the apparent

age A(x) as a function of u and v is given by the formula

A(x) =
1

λK

ln

(
1 +

1

fAr

u

v

)
. (1.15)

9



We recall some results related to the direct problem (1.9)–(1.11) that appeared in the

geological literature. Much attention has been devoted to the one dimensional case.

In a seminal paper [11], Dodson introduced the concept of closure temperature defined

as the temperature of a mineral at the time corresponding to its apparent age, to take

into account the dependence of the diffusion coefficient D on temperature in (1.5). The

closure temperature is a function of the pre-exponential factor, the activation energy, the

diffusion radius, and the cooling rate of the rock. The relation between the apparent ages

of K-bearing minerals and the temperatures in plutonic rocks that cooled over millions of

years supports the closure temperature concept and shows ranges of closure temperatures

for various minerals (for instance, 350-400◦C for muscovite, 300-350◦C for biotite with a

diffusion radius of ca. 100 µm.)

Dodson’s model is applicable for histories linear in 1/T . Also, Dodson’s derivation of

the closure temperature value for a mineral assumes that the argon concentration at the

grain boundary is zero, or equivalently, the diffusant is quickly lost once it reaches the grain

boundary by lattice diffusion. This assumption is reasonable if argon transport is faster

in the grain boundary network than it is within the lattice, and if high concentrations of

40Ar are never retained within the pathways along which radiogenic argon escapes in the

atmosphere. However, there are many observations that imply exceptions to these criteria.

In some cases, biotite is apparently older than muscovite, or there may be wide variations

in apparent ages in small areas [45, p. 920]. Moreover, many metamorphic mineral grains

display complex intracrystalline age patterns. In the case of mica, for example, there may be

more 40Ar at the edge of the grain than in the center, a condition most easily explained by

diffusion of argon from the grain boundary network into the crystal, which is excess argon.

Other possible explanations for such behavior include the facts that the thermal history of

rocks is complex and may involve reheating events. Finally, if grains crystalize from a 40Ar-

rich fluid, they could incorporate 40Ar during growth. If 40Ar is not easily lost from the grain

10



boundary, then this will inhibit 40Ar loss from the grain interiors. See [45] and references

therein for more on diffusion mechanisms.

Among results of computational nature, J. Wheeler [45] developed DIFFARG, a program

written in MATLAB to compute apparent age profiles within grains and model them as a

function of any thermal history and boundary conditions. The core algorithm of the program

is a routine to approximate solutions of the diffusion equation in one dimension by one of the

two finite difference schemes: a fully explicit algorithm and a Crank-Nicholson algorithm.

DIFFARG is intended to be used for fitting observed apparent age profiles with computed

profiles by varying thermal history when the assumption of homogeneous volume diffusion of

argon is considered appropriate. It serves as a tool to explore general aspects of 40Ar diffusion

in minerals and their implications for geochronology. Infinite plane sheet, cylindrical, and

spherical model diffusion geometries may be selected. To model the diffusion of excess argon

in the surroundings, the diffusant concentration at the edge of the grain can vary with time.

The temperature history may be specified as a linear or any other monotonically decreasing

function of time to simulate rapid or slow cooling, it may incorporate a temperature pulse

to simulate a reheating event, or it can be arbitrarily defined by a user.

In [44], Watson, Wanser, and Farley developed general analytical solutions to the

anisotropic diffusion equation for a finite cylinder that capture both the internal distri-

bution of diffusant as a function of time and the fraction of diffusant lost during a specified

thermal history. These solutions were shown to conform to the existing analytical expres-

sions for limiting cases of diffusion in an infinite slab and infinite cylinder. Moreover, the

authors computed solutions by the finite difference method and observed a good match of

the numerical output with their analytical expressions. Their computations allowed to go

beyond some of the limitations of the analytical solutions and simulate complex natural

scenarios including non-zero and time-dependent boundary conditions and arbitrary initial

distribution of diffusant within the cylinder. However, their model does not allow evaluation

of the effects of a crystal geometry different from a cylinder.

11



Meanwhile, in the geological literature, Hames and Hodges [22], Hames and Andresen [23],

and Hodges, Hames, and Bowring [27] examined samples for which the contours of age show

asymmetry that is not consistent with the assumption of radial symmetry imposed by cylin-

drical geometry imposed in the previous papers.

Using the finite element method, we developed a 2-D model to describe argon diffusion in

mica crystals that are dominated by diffusion within the layers. This model allows modeling

of a user-defined thermal history and crystal shape. We evaluate this model by comparing

direct or in situ, laser based measurements of argon apparent age gradients with the output

of the program. As we will see in Section 1.3.2, modeling of previously published in situ

laser 40Ar/39Ar apparent age gradients in actual micas with this model allows for reasonably

accurate approximation. In the following two sections, we will provide a brief description of

the finite element method and present the numerical results.

1.3.1 The finite element method

We start by deriving the weak form of equation (1.9). To that end, we multiply it by a

function v ∈ H1
0 (Ω), integrate by parts in the second term on the left, and use the boundary

condition (1.10) to obtain the weak form of equation (1.9):

∫
Ω

∂tuv dx+

∫
Ω

c(t)∇u·∇v dx =

∫
Ω

f(t)v dx for all v ∈ H1
0 (Ω), and 0 < t ≤ Tf . (1.16)

We discretize problem (1.9)–(1.11), first in the spatial variable x, solving which results in

an approximate solution uh(·, t) that belongs to a finite dimensional, linear space Vh of

functions of x, called the finite element space. The function uh, which in the simplest case,

is a continuous, piecewise linear function on some partition of Ω, is a solution of an initial

value problem for a finite number of ODEs. The fully discrete approximation of this initial

value problem is obtained by approximating the time derivative using finite differences.
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Figure 1.2: Triangulation of a domain.

We now construct the finite element space Vh. Let Ω be a polygonal domain and let Th

denote a partition of Ω, or triangulation, into a set of non-overlapping triangles such that

no vertex of one triangle lies in the interior of the edge of another triangle. Let h denote the

maximum length of the edges of triangles in the triangulation Th (also called maximum mesh

size). A plot of an example of a triangulation with maximum mesh size h = 0.5 appears in

Figure 1.2. Denote by Vh the space of continuous functions on Ω (the closure of Ω) which

are linear on each triangle of Th and which vanish on the boundary ∂Ω. Let {xj}Np

j=1 be

the vertices interior to Ω called nodes or points of Th. Let Np be the number of nodes.

A function in Vh is then uniquely determined by its values at the nodes xj and therefore

depends on Np parameters. Let φj be the function in Vh that takes the value 1 at xj but

vanishes at all other vertices. Then {φj}Np

j=1 forms a basis for Vh, and every function v ∈ Vh

has a unique representation in terms of this basis. The spatially discrete problem, based on

the weak formulation (1.16) is to find uh(t) = uh(·, t), which belongs to Vh for all t ∈ [0, Tf ],

such that ∫
Ω

∂tuhv dx+

∫
Ω

c(t)∇uh · ∇v dx =

∫
Ω

f(t)v dx, (1.17)
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for all v ∈ Vh, and 0 < t ≤ Tf with uh(0) = 0. Using the basis {φj}Np

j=1 for Vh, we construct

a discrete approximation of the solution in the form

uh(x, t) =

Np∑
j=1

Uj(t)φj(x) with Uj(t) = uh(xj, t), (1.18)

where Uj(t) are differentiable functions for j = 1, 2, · · · , Np. Substituting v(x) = φi(x)

in (1.17) and using (1.18) we obtain a system of ODEs,

Np∑
j=1

dUj(t)

dt

∫
Ω

φj(x)φi(x) dx+ c(t)

Np∑
j=1

Uj(t)

∫
Ω

∇φj(x) · ∇φi(x) dx = f(t)

∫
Ω

φj(x) dx.

for i = 1, 2, · · · , Np. In matrix form, this system of ODEs can be written as

M
dU

dt
+KU = F,

for all t ∈ (0, Tf ], with U(0) = 0. We used the notation

U = (Ui)
t unknown solution vector,

M = (Mij), Mij =

∫
Ω

φj(x)φi(x) dx mass matrix and its elements,

K = (Kij), Kij = c(t)

∫
Ω

∇φj(x) · ∇φi(x) dx stiffness matrix and its elements,

and

F = (Fi), Fi = f(t)

∫
Ω

φj(x) dx load vector and its elements.

The superscript t denotes the matrix transpose. The mass and the stiffness matrices can be

shown to be positive definite. Thus the above system of ODEs can be rewritten as

dU

dt
+M−1KU = M−1F,
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for all t ∈ (0, Tf ], with U(0) = 0. Here, M−1 denotes the matrix inverse of M . This system

has a unique solution for all t ∈ (0, Tf ]. For details on the finite element method, including

error estimates see, for instance [43, Chapter 1] and [3, 8, 20, 33].

1.3.2 Numerical studies

In this section, we present some numerical results on the direct problem (1.9)–(1.11).

While MATLAB allows entering parameters of a model, including the equations and the

description of the domain using a graphical user interface, we implemented the description

of the polygonal domain and the construction of the approximate discrete solution program-

matically. We use the built-in MATLAB functions decsg to construct the 2D polygonal

domain Ω, initmesh to generate a triangular mesh on the domain Ω, assempde to assemble

the finite element matrices that represent the discretization of the PDE (M , K, F above),

and parabolic to produce the solution to the finite element approximation of the PDE (1.9)–

(1.11). For an illustration of the finite element approximation, we consider two muscovite

crystals with in situ 40Ar/39Ar age distribution and geometries described in the paper by

Hames and Andresen [23] (Figure 1.3), with nonlinear time-temperature histories postulated

on the basis of the samples’ geologic context (left column in Figure 1.4) and the resulting

apparent age distribution in model crystals (right column in Figure 1.4). We note that these

two muscovite crystals came from two different geologic structural levels of an area and expe-

rienced different time-temperature histories. (See [23] and references therein for description

of geological analytical methods and procedures used to determine 40Ar/39Ar ages.) For the

crystal in Figure 1.3 A, we prescribed the zero Neumann boundary condition (a condition

of the form (1.8) with g = 0) on the boundary segments along which the sample was cut

as illustrated in Figure 1.3 A and the homogeneous Dirichlet boundary condition on the

remaining edges. We specified the homogeneous Dirichlet boundary condition for the crystal

in Figure 1.3 B; the half-life of 40K is H = 1250 × 106 and we use the diffusion parameters

from Hames and Bowring [21]: E = 52 kcal/mol and D0 = 0.04 cm2/s. For the muscovite
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Figure 1.3: In situ 40Ar/39Ar age distribution in muscovite crystals from Hames and An-
dresen [23]. A: Laser fusion 40Ar/39Ar ages for spot analyses within a muscovite porphyrob-
last from Vestv̊agøy island, Lofoten, Norway. B: Laser 40Ar/39Ar fusion ages for a muscovite
porphyroblast in Røst island, Lofoten, Norway. Numerical values are ages in millions of
years with an analytical spot size of approximately 100 µm.

in Figure 1.4 (b), we show level curves for ages 375, 390, 405, and 420 Ma. We display level

curves for ages 270, 280, 290, 300, and 310 for the muscovite in Figure 1.4 (d). The resulting

apparent age in millions of years (Ma) is computed using formula (1.15) and can be read on

the accompanying color bar plot . We summarize in Table 1.1 the mesh sizes, the number of

elements (triangles) and the number of unknowns used in the finite element discretization.

Visual inspection of the age gradients in Figure 1.3 and the model results in Figure 1.4 are in

good agreement. Shaded areas in Figure 1.3 A indicate the positions of spot-fusion analyses

used to construct the age contours. We note that the zero Dirichlet boundary condition im-

poses argon loss from the crystal edge at all times for all temperatures. Consequently, there
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Figure 1.4: (a) Postulated T-t history 25s for muscovite crystal A in Figure 1.3; (b) apparent
age distribution in model for muscovite crystal A from Figure 1.3; (c) postulated T-t history
4E for muscovite crystal B in Figure 1.3; and (d) apparent age distribution in model for
muscovite crystal B from Figure 1.3.
The age values on the color bar are in Ma.
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Table 1.1: Model sources, mesh sizes, number of elements and unknowns.

Samples
Hames and

Andresen [23], A
Hames and

Andresen [23], B
Hodges, Hames,
and Bowring [27]

Maximum mesh size 0.05 0.05 0.011
Number of elements 56,094 27,888 13,374

Number of unknowns 28,307 14,145 6,820

is a limitation on argon accumulation throughout the crystal resulting in younger age range

in Figure 1.4 (b) and in Figure 1.4 (d) than observed in Figure 1.3 (notice the age range in

Figure 1.3 A, about 435 to 360 Ma and about 320 to 270 Ma in Figure 1.3 B ). We also con-

sider a biotite crystal with in situ 40Ar/39Ar age distribution and geometry reported in the

paper by Hodges, Hames, and Bowring [27] (Figure 1.5 (c)). The nonlinear time-temperature

history is postulated on the basis of the sample’s geologic context (Figure 1.5 (a)). The re-

sulting apparent age distribution in the model crystal appears in Figure 1.5 (b). This biotite

is from a low-pressure, high-temperature metamorphic area in central Arizona. For a more

detailed description of the geological methods and procedures used, see [27]. For this model,

we prescribe the homogeneous Dirichlet boundary condition and we use the diffusion pa-

rameters from Harrison, Duncan, and McDougall [24]: D0 = 0.077 cm2/s and E = 46.1

kcal/mol. We display the level curves for ages 1200, 1250, 1300, 1350 and 1400 Ma (again,

note the age range of about 1400 to 1200 Ma in Figure 1.5 (c)). The mesh size and the

resulting number of triangles and unknowns used in the finite element approximation are as

in Table 1.1. The agreement between the author’s initial interpretation of age gradients [27]

and the model results appears to be quite good by visual inspection. The purpose of these

studies is to demonstrate the ability of numerical modeling to describe intracrystalline age

gradients in actual micas with complex geometric shapes formed by diffusion over geologic

histories of interest.
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Figure 1.5: (a) Postulated temperature-time history for biotite crystal in Hodges, Hames,
and Bowring [27]; (b) apparent age distribution in biotite crystal from Hodges, Hames, and
Bowring [27]; and (c) in situ 40Ar/39Ar age distribution in biotite crystal from Hodges,
Hames, and Bowring [27].
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1.4 Inverse diffusion coefficient and inverse source problems

We now turn to inverse problems, which is the main focus of this dissertation. Before

proceeding to the inverse problems, in Section 1.4.1, we first provide a motivation for the

integral constraint based on the kind of data available to geologists. Then in Section 1.4.2,

we outline the connection between the problem with unknown source and the problem with

unknown diffusion coefficient. We conclude this section by introducing the inverse diffusion

coefficient problem and the inverse source problem.

1.4.1 Motivation for the integral constraint

As we mentioned earlier, in order to recover from (1.2)–(1.4) the diffusion coefficient

c together with the concentration u for given data in the form of a source f , an initial

condition u0, and a boundary condition g, we need additional information on the solution

of the direct problem u. Similarly, for given coefficient c, initial data u0, and boundary

condition g from (1.2)–(1.4), the recovery of the source f together with the concentration u

requires additional data. The additional information of our choice is the integral constraint

given by (1.7). This condition can be interpreted as the total mass of argon contained in the

spatial domain Ω.

We next describe how this type of data appears or is obtained in geochronology. We

evoke the description of the 40Ar/39Ar dating technique, a variation of the K-Ar dating

method, as described in Section 1.2. This method allows the measurements of the amounts

of the trapped gases 40Ar and 39Ar released when a sample is crushed and fragmentary

crystals of the mineral are hand-selected for analysis, then exposed to radiation with fast

neutrons and degassed in a high vacuum system. The function u represents the concentration

of argon at the final time, which once obtained is converted by geologists into apparent age by

a version of formula (1.15) that includes a proportionality constant for 39Ar production [34].

Thus the integral of u(x, t) over Ω (or the function µ(t) in (1.7)) corresponds to the measured

bulk age of the crystal.
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As a specific example, Eusden and Lux in [13] reported 40Ar/39Ar mineral ages from

muscovite in rocks exposed on Mount Washington, New Hampshire. These geologists showed

that the bulk ages of muscovite increase progressively from the bottom to the top of the

mountain. They used this relation to determine the exhumation rates of rocks. Exhumation

is the process by which rocks approach Earth’s surface. In that work, muscovite from each

sample was analyzed using the 40Ar/39Ar incremental heating method. See Figure 1.6 for

a plot of the reported data. The data were fit with a line whose slope is interpreted as the

exhumation rate. See Chapter 6 for another brief overview of applications of the integral

overdetermination condition.
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Figure 1.6: Age vs. elevation plot through relief of Mount Washington, New Hampshire with
data from Eusden and Lux [13].

1.4.2 Unknown source vs. unknown diffusion coefficient

We now establish a connection between the diffusion coefficient and the source. The

equation with a known time-dependent diffusion coefficient

∂tu(x, t)− c(t)∆u(x, t) = f(t), (1.19)

can be transformed into an equation with a constant diffusion coefficient via a change of the

time variable. The transformation is inspired by [9, p. 4]. We point out that the following
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method is limited to the case of the diffusion coefficient term being a function only of time.

We consider the special case when the source is of the form f(t) = λKfAre
−λKt, where λK is

the rate of decay of 40K and fAr is the fraction of 40K that yield 40Ar. A change of the time

variable in the more general case where f = f(x, t) is considered in Chapter 2. For a given

coefficient c, let ϕ be the solution of the problem

c(ϕ(t))ϕ′(t) = 1, ϕ(0) = 0, (1.20)

and let v(x, t) = u(x, ϕ(t)). Then v satisfies the equation

∂tv(x, t)−∆v(x, t) = s(t), where s(t) =
f(ϕ(t))

c(ϕ(t))
. (1.21)

Starting with equation (1.21), suppose we can find s(t) that satisfies (1.21). We determine

the unknown coefficient c in (1.19) as follows. From (1.20) and (1.21) we have that

f(ϕ(t))ϕ′(t) = s(t). Integrating and using the form of the source we obtain that

∫ t

0

λKfAre
−λKϕ(τ)ϕ′(τ) dτ =

∫ t

0

s(τ) dτ or − fAr

∫ t

0

[
e−λKϕ(τ)

]′
dτ =

∫ t

0

s(τ) dτ.

It follows that

ϕ(t) = − 1

λK

ln

(
1− 1

fAr

∫ t

0

s(τ) dτ

)
,

and

c(ϕ(t)) =
f(ϕ(t))

s(t)
=
λKfAr

s(t)
e−λKϕ(t) =

λK

s(t)

(
fAr −

∫ t

0

s(τ) dτ

)
.

1.5 Review of mathematical literature

In this section, we summarize results available for the inverse diffusion coefficient and

the inverse source problems. First, we review what is known about the former. Cannon
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and Rundell [5] treated this inverse problem with a homogeneous source (f = 0), nonho-

mogeneous boundary conditions, superharmonic initial condition and an overdetermination

condition (1.7) being the normal derivative evaluated at a boundary point, that is, with

additional data of the form

∂u

∂ν
(x0, t) = g(t), x0 ∈ ∂Ω, 0 ≤ t ≤ Tf .

Under the assumption that g is continuous on [0, Tf ], they proved existence and unique-

ness of classical solutions using a contraction mapping principle by introducing a compact

mapping in partially ordered Banach spaces. In addition, they obtained a stability result.

They argued that their method could be extended to the integral data in the form (1.7).

We follow their general outline and supply detailed arguments in Chapter 2. Specifically, we

will show the existence, uniqueness, and stability of classical solutions to the inverse diffu-

sion coefficient problem with a subharmonic initial condition using the Banach fixed point

theorem in partially ordered Banach spaces under the condition µ ∈ C1[0, Tf ]. We will also

provide numerical approximations of solutions. In [19], we considered the inverse diffusion

coefficient problem with time-dependent source f = f(t). Under the condition µ ∈ C1[0, Tf ],

we established the existence of weak solutions using Rothe’s method. Moreover, we pro-

vided numerical results using a finite element discretization in space and the implicit Euler

method in time. Ivanchov [29] investigated the problem of recovering the unknown diffusion

coefficient in the one-dimensional case for non-local boundary conditions and established

the existence by means of the Schauder fixed point theorem. The method of separation of

variables was used by Kanca and Ismailov [31] to establish well-posedness in one dimension.

An unknown diffusion coefficient also appears in elliptic problems, famously in the inverse

conductivity problem for the electric potential. This problem is investigated, for example, in

the book by Isakov [28]. Other types of inverse coefficient problems in elliptic and parabolic

equations are considered, for instance, in the book by Choulli [7].
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We conclude this section with a review of available results for the inverse source prob-

lem. Švadlenka and Omata [42] investigated the existence and regularity, and presented

results of numerical studies of an inverse time-dependent source problem with an integral

constraint that is constant in time. Ginder [17] developed the case of a non-constant integral

constraint and proved the existence of Hölder continuous weak solutions under the assump-

tion that µ ∈ C1[0, Tf ]. In both papers [42] and [17], the authors used the discrete Morse

flow, in which the parabolic problem is discretized in time and one searches for a minimizer

of the functional corresponding to the discretized problem. In [10], Dehghan developed finite

difference schemes and presented numerical results in the case of dimension 2. An applica-

tion of the boundary element method in one dimension is considered by Hazanee, Ismailov,

Lesnic, and Kerimov in [26]. Optimal control theory was used by Cao, Gunzburger and

Turner [6] to establish the existence of an inverse source problem with final overdetermina-

tion, in which the source function depends on both time and space. Rundell [41] investigated

parabolic and pseudo-parabolic inverse source problems with final time overdetermination

in which the sources depend only on the time variable or only on the space variables or for a

multiplicative source with unknown time-dependent term. An inverse source problem with

internal measurement is considered by Yang, Dehghan, Yu, and Luo in [46], and an inverse

source problem involving both the final time and internal measurements using the semigroup

method is treated by Hasanov and Slodička in [25]. Meir and Yavneh [35] solved an elliptic

problem with an integral constraint. In [18], we proved the existence and uniqueness of weak

solutions of the inverse source problem using Rothe’s method under the condition that µ

is Lipschitz continuous on [0, Tf ] and presented results of numerical studies. These results

appear in Chapter 3. Merazga and Bouziani [36] recovered a time-dependent function on the

boundary in a two-dimensional parabolic equation with a Neumann boundary condition and

integral overdetermination. The authors proved the existence, uniqueness, and continuous

dependence on data using the Rothe method.
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The rest of this dissertation is organized as follows. In Chapter 2, we will consider the

inverse diffusion coefficient problem (1.2)–(1.4) and (1.7) with g = 0. Given the final time

Tf , the source f , the initial data u0, and the integral data µ, we are required to determine

the time-dependent coefficient c(t) together with the concentration u. In the geochronology

applications, the diffusion coefficient is temperature-dependent and the temperature itself is

a function of time. Thus, solving the inverse diffusion coefficient problem is equivalent to re-

constructing the temperature history of rocks. In fact since c(t) = D(T (t)) and the Arrhenius

law gives D(T (t)) = D0e
−E/RT (t), once we determine c(t), we recover the temperature.

In Chapters 3, 4, and 5, we consider the inverse source problem for the model (1.2)–

(1.4) and (1.7). Based on the applications in geochronology as described before, the source

function depends only on time, that is f = f(t). In Chapter 3, we take g(x, t) = 0 for all

(x, t) ∈ ∂Ω × (0, Tf ) and u0(x) = 0 for all x ∈ Ω and use Rothe’s method and an energy

method to show the existence and uniqueness of weak solutions, respectively. Moreover, we

develop and implement a numerical scheme that can be used to approximate solutions of

this problem. Chapter 4 is dedicated to the existence and uniqueness of classical solutions

via semigroup theory and an energy method, respectively. Finally, Chapter 5 deals with the

inverse source problem with a Neumann boundary condition.

1.6 Notation

For the remainder of this dissertation, T denotes the final time, and throughout this

dissertation, we denote by

� L2(Ω): the space of square integrable functions defined on Ω with values in R;

� H1(Ω): the Sobolev space W 1,2(Ω) of locally summable functions u : Ω→ R such that

u ∈ L2(Ω), the weak derivative ∇u exists in the weak sense and belongs to L2(Ω);

25



� H1
0 (Ω): the closure of C∞c (Ω) in H1(Ω), where C∞c (Ω) is the space of infinitely differ-

entiable functions φ : Ω→ R, with compact support in Ω. The trace inequalities allow

us to interpret H1
0 (Ω) as the space of functions u ∈ H1(Ω) such that u = 0 on ∂Ω.

� H−1(Ω): the dual space to H1
0 (Ω);

� L2(0, T ;V ): the space of strongly measurable functions u : [0, T ]→ V with

‖u‖L2(0,T ;V ) :=

(∫ T

0

‖u(t)‖2
V dt

)1/2

<∞,

where V is a real Hilbert space with norm ‖ · ‖V . We often choose V to be H1(Ω),

H1
0 (Ω), or L2(Ω); a function u : [0, T ]→ V is strongly measurable if there exist simple

functions sk such that sk(t)→ u(t) for a.e. 0 ≤ t ≤ T .

� C([0, T ];V ): the space of continuous functions u : [0, T ]→ V with the norm

‖u‖C([0,T ];V ) := max
0≤t≤T

‖u(t)‖V <∞;

� (·, ·): the scalar product in L2(Ω);

� ‖ · ‖: the norm in L2(Ω);

� 〈·, ·〉: the duality pairing between functions in a space V and functions in its dual V ∗.
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Chapter 2

Fixed point method for inverse diffusion coefficient problem

2.1 Problem statement

We now consider the system

∂tu(x, t)− c(t)∆u(x, t) = f(x, t), (x, t) ∈ Ω× (0, T ], (2.1)

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (2.2)

u(x, 0) = u0(x), x ∈ Ω, (2.3)

and ∫
Ω

u(x, t) dx = µ(t), t ∈ [0, T ]. (2.4)

where Ω is a domain in Rd, d ≥ 1 with a C2 boundary ∂Ω. The problem we solve is as

follows: given the source function f : Ω × [0, T ] → R, the initial data u0 : Ω → R, and the

integral data µ : [0, T ]→ R, find the positive, time-dependent, coefficient c : [0, T ]→ (0,∞)

together with the concentration u : Ω × [0, T ] → R satisfying (2.1)–(2.4). Note that the

source is a function of space and time.

We define a solution as follows.

Definition 2.1. The pair (u, c) is a solution of (2.1)–(2.4) if:

1. The function c(t) is continuous for 0 ≤ t ≤ T , and satisfies the bounds 0 < c ≤ c(t) ≤ c̄,

for some constants c̄ and c.

2. The concentration u(x, t) is continuous for (x, t) ∈ Ω× [0, T ].
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3. The derivatives ∂tu, ∇u, ∂2u/∂xi∂xj exist and are continuous for (x, t) ∈ Ω × (0, T ),

1 ≤ i, j ≤ d.

4. Equations (2.1)–(2.4) hold in the classical sense.

We assume the following conditions on the data:

A1. � The source f(x, t) is locally Hölder continuous in x ∈ Ω with exponent β, uniformly

with respect to t.

� The source f(x, t) is twice continuously differentiable in x ∈ Ω for all t ∈ [0, T ],

continuous in [0, T ] for all x ∈ Ω and ∆f(x, t) ≤ 0 for all t ∈ [0, T ].

� The source f(x, t) > 0 for (x, t) ∈ ∂Ω× [0, T ].

A2. The initial condition u0 ∈ C2(Ω) satisfies ∆u0 < 0 in Ω and the compatibility condition

µ(0) =
∫

Ω
u0(x) dx holds.

For a given function c(t), we denote by u(x, t; c) the solution of the direct problem (2.1)–(2.3).

We assume the following on the integral data:

A3. The data µ ∈ C1[0, T ] satisfies for all 0 ≤ t ≤ T the estimate

c̄

∫
Ω

∆u(x, t; c̄) dx ≤ µ′(t)−
∫

Ω

f(x, t) dx ≤ c

∫
Ω

∆u(x, t; c) dx

for some positive constants c̄ and c.

Following [1], we denote by E[a, b] the ordered Banach space C[a, b] equipped with the

positive cone P = {f ∈ C[a, b] : f ≥ 0}. The partial order in P is given by: f ≥ g if

f(x) ≥ g(x) for all x ∈ [a, b].

We make the following transformation, as in [9, p. 4],

τ = α(t) =

∫ t

0

c(s) ds,
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and set

ũ(x, τ ; c) = u(x, t; c).

For c(t) > 0, the mapping α(t) is one-to-one. An application of the chain rule and the fact

that α′(t) = c(t) yield

∂τ ũ(x, τ)−∆ũ(x, τ) =
1

c(α−1(τ))

(
∂tu(x, α−1(τ))− c(α−1(τ))∆u(x, α−1(τ))

)
,

so that ũ then satisfies the system

∂τ ũ(x, τ)−∆ũ(x, τ) =
f(x, α−1(τ))

c(α−1(τ))
, (x, τ) ∈ Ω× (0, α(T )], (2.5)

ũ(x, τ) = 0, (x, τ) ∈ ∂Ω× [0, α(T )], (2.6)

and

ũ(x, 0) = u0(x), x ∈ Ω. (2.7)

In order to make use of the overdetermination condition (2.4), we define a map

T : c 7→
µ′(t)−

∫
Ω
f(x, t) dx∫

Ω
∆u(x, t; c) dx

, for c ∈ C([0, T ]; [c, c̄]).

In view of this definition, we see that, if the overdetermination condition (2.4) is satisfied

for some function c(t), then we must have c = T c. In fact, integrating (2.1) over Ω and

using (2.4), we obtain that

c(t) =
µ′(t)−

∫
Ω
f(x, t) dx∫

Ω
∆u(x, t; c) dx

= T c(t). (2.8)

Conversely, if T has a fixed point c, then (2.4) must hold for this function c. To see this,

note that, from the definition of T , we obtain that µ′(t) =
∫

Ω
f(x, t) + c(t)

∫
Ω

∆u(x, t; c) dx.
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From (2.1) it follows that

∫
Ω

∂tu(x, t; c) dx =

∫
Ω

f(x, t) + c(t)

∫
Ω

∆u(x, t; c) dx.

Using µ′(t) =
∫

Ω
∂tu(x, t; c) dx and integrating, we obtain that

µ(t)− µ(0) =

∫
Ω

u(x, t; c) dx−
∫

Ω

u0(x) dx.

The integral constraint (2.4) is satisfied thanks to the compatibility condition A2.

2.2 Technical lemmas

In view of the goal to determine the function c(t) from the overdetermination condi-

tion (2.4), our approach is to show that T is a contraction mapping and apply the Banach

fixed point theorem to prove that T has a unique fixed point. In order to show that T is

a contraction, we will first establish in Lemmas 2.1, 2.2, and 2.3 various properties of this

mapping. We first demonstrate that the mapping T is well defined.

Lemma 2.1. Suppose that Assumptions A1 and A2 hold. For c ∈ C([0, T ]; [c, c̄]) we have

that

∆u(x, t; c) < 0, for all 0 ≤ t ≤ T. (2.9)

In particular, the mapping T is well defined and maps continuous functions into continuous

functions.

Proof. The idea is to apply the Laplace operator to the differential equation and use the

maximum principle for ∆u. To that end, we first show that u ∈ C4(Ω) for all 0 ≤ t ≤ T .

This follows from the regularity of the source f . In fact, let w and w be the solutions of the
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problems

∂tw(x, t; c)− c(t)∆w(x, t; c) = f(x, t), (x, t) ∈ Ω× (0, T ],

w(x, t; c) = 0, (x, t) ∈ ∂Ω× [0, T ],

and

w(x, 0; c) = 0, x ∈ Ω,

and

∂tw(x, t; c)− c(t)∆w(x, t; c) = 0, (x, t) ∈ Ω× (0, T ], (2.10)

w(x, t; c) = 0, (x, t) ∈ ∂Ω× [0, T ],

and

w(x, 0; c) = u0(x), x ∈ Ω.

Since f ∈ C2(Ω) for all 0 ≤ t ≤ T , it is well known [4, p. 343] that ∂tw and ∆w are also

C2(Ω) for all 0 ≤ t ≤ T . So, w ∈ C4(Ω) for all 0 ≤ t ≤ T . Moreover, w ∈ C∞(Ω × (0, T ])

by [14, Theorem 8, p. 59]. Thus, ∂tw ∈ C∞(Ω) for all 0 ≤ t ≤ T . Consequently, we get that

u(x, t; c) = w(x, t; c)+w(x, t; c) is C4(Ω) for all 0 ≤ t ≤ T . Furthermore, since f ∈ C[0, T ] for

all x ∈ Ω, it follows that ∂tw ∈ C[0, T ] and ∂tu(x, t; c) = ∂tw(x, t; c) + ∂tw(x, t; c) ∈ C[0, T ]

for all x ∈ Ω. Hence u ∈ C1[0, T ] for all x ∈ Ω.

Applying the Laplace operator to the left-hand sides and right-hand sides of (2.1)

and (2.3), then using (2.2) with (2.1), we obtain that

∂t∆u(x, t)− c(t)∆(∆u(x, t)) = ∆f(x, t), (x, t) ∈ Ω× (0, T ],

∆u(x, t; c) = − 1

c(t)
f(x, t), (x, t) ∈ ∂Ω× [0, T ],

and

∆u(x, 0) = ∆u0(x), x ∈ Ω.
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The conclusion of the lemma follows by using Assumptions A1 and A2 and the maximum

principle. In particular, we have that

∫
Ω

∆u(x, t; c) dx < 0, for all 0 ≤ t ≤ T . (2.11)

Next, we show that the map T is increasing.

Lemma 2.2. Suppose Assumptions A1 and A2 are satisfied. For c ∈ C([0, T ]; [c, c̄]) we have

that ∫
Ω

∆u(x, t; c) dx is an increasing function of c.

In particular, the map T is increasing.

Proof. Let c1(t) ≤ c2(t) for all t ∈ [0, T ] and put v(x, t) = u(x, t; c1) − u(x, t; c2). Then v

satisfies

∂tv − c1(t)∆v = (∂tu(x, t; c1)− c1(t)∆u(x, t; c1))

− (∂tu(x, t; c2)− c2(t)∆u(x, t; c2))

+ (c1(t)− c2(t))∆u(x, t; c2)

= (c1(t)− c2(t))∆u(x, t; c2) ≥ 0,

where the last inequality follows from Lemma 2.1. Also, v(x, 0) = 0 in Ω and v(x, t) = 0 on

∂Ω × (0, T ]. Thus, by the maximum principle, we have that v(x, t) ≥ 0 in Ω × [0, T ] and

therefore,

0 ≥
∫
∂Ω

∂v

∂ν
dS(x) =

∫
Ω

∆v dx =

∫
Ω

∆u(x, t; c1) dx−
∫

Ω

∆u(x, t; c2) dx,
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where ν denotes the outward unit normal to the boundary ∂Ω. It follows that

T [c1] =
µ′(t)−

∫
Ω
f(x, t) dx∫

Ω
∆u(x, t; c1) dx

≤
µ′(t)−

∫
Ω
f(x, t) dx∫

Ω
∆u(x, t; c2) dx

= T [c2].

Lemma 2.3. Suppose Assumptions A1, A2 and A3 hold. Then the mapping T maps func-

tions with values in the interval [c, c̄] into functions with values in the interval [c, c̄].

Proof. Due to the monotonicity of T , it is enough to show that

T c ≥ c and T c̄ ≤ c̄. (2.12)

These two inequalities follow from the assumption on the integral constraint µ. Indeed using

Assumption A3 and (2.11), we obtain that

c ≤
µ′(t)−

∫
Ω
f(x, t) dx∫

Ω
∆u(x, t; c) dx

= T c and c̄ ≥
µ′(t)−

∫
Ω
f(x, t) dx∫

Ω
∆u(x, t; c̄) dx

= T c̄.

2.3 Well-posedness of the problem

We now turn to the main result of this chapter, namely the existence and uniqueness of

solutions to the inverse coefficient problem. The result is stated in the following theorem.

Theorem 2.4. Suppose Assumptions A1, A2, and A3 hold. Then there exists a unique

solution (u(x, t), c(t)) in the sense of Definition 2.1 to the inverse coefficient problem (2.1)–

(2.4) for all t ∈ [0, T ]. Moreover, the bounds for c(t) in Definition 2.1 correspond to c and c̄

in Assumption A3.

Proof. We first prove that the mapping T is a contraction on C([0, T0]; [c, c̄]) for a sufficiently

small T0 and then extend the solution smoothly by uniqueness to the interval [0, T ]. To that

33



end, note that from (2.5)–(2.7), ũ has a representation

ũ(x, τ ; c) = I(x, τ) +

∫ τ

0

∫
Ω

G(x, y; τ, s)
f(y, α−1(s))

c(α−1(s))
dy ds, (2.13)

for c ∈ C([0, T ]; [c, c̄]), where G denotes the Green function for the heat equation with the

Dirichlet boundary condition, and I denotes the contribution from the initial data. See [12,

p. 180] for a derivation of such a representation formula. Then I has the form

I(x, τ) =
∞∑
n=1

bnφn(x)e−λnτ or I(x, t; c) =
∞∑
n=1

bnφn(x)e−λn
∫ t
0 c(s) ds,

where λn and φn are, respectively, the eigenvalues and eigenfunctions of −∆ on the domain

Ω with zero Dirichlet boundary condition and bn are the components of the initial data u0

with respect to the basis (φn), that is bn =
∫

Ω
u0(x)φn(x) dx, n ≥ 1. Since f is continuous

and locally Hölder continuous in x ∈ Ω uniformly with respect to t, then ũ given by (2.13)

has continuous second derivatives with respect to x ∈ Ω, for 0 < t ≤ T [15, Theorem 4, p. 9]

and we have that

∫
Ω

∆ũ(x, τ ; c) dx =

∫
Ω

∆u(x, t; c) dx = I∆(x, t; c) +H(τ), (2.14)

where

I∆(x, t; c) =
∞∑
n=1

bne
−λn

∫ t
0 c(s) ds

∫
Ω

∆φn(x) dx

and

H(τ) =

∫ τ

0

ds

∫
Ω

∫
Ω

∆xG(x, y; τ, s)
f(y, α−1(s))

c(α−1(s))
dy dx.

Let c1, c2 ∈ C([0, T ]; [c, c̄]) be such that c1(t) ≤ c2(t) for all t ∈ [0, T ]. We have

∫
Ω

∆u(x, t; c2)−∆u(x, t; c1) dx =

∫
Ω

∆ũ(x, τ2; c2)−∆ũ(x, τ1; c1) dx,

= (I∆(x, t; c2)− I∆(x, t; c1)) + (H(τ2)−H(τ1)). (2.15)
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For the first difference on the right, we have that

I∆(x, t; c2)− I∆(x, t; c1) =
∑
n≥1

bn

∫
Ω

∆φn(x) dx
(
e−λn

∫ t
0 c2(s) ds − e−λn

∫ t
0 c1(s) ds

)
≤
∑
n≥1

|bn|
∣∣∣∣∫

Ω

∆φn(x) dx

∣∣∣∣ (1− e−λn
∫ t
0 |c2(s)−c1(s)| ds

)
e−λnct

≤
∑
n≥1

|bn|
∣∣∣∣∫

Ω

φn(x) dx

∣∣∣∣λ2
ne
−λnct

∫ t

0

|c2(s)− c1(s)| ds,

where the first inequality follows from the fact that

c ≤ c2(t) ≤ c̄ (2.16)

and the second inequality follows from 1− e−x ≤ x for all x ≥ 0. Thus,

I∆(x, t; c2)− I∆(x, t; c1) ≤ C1t sup
0≤s≤t

|c2(s)− c1(s)| , (2.17)

where C1 = C1(u0,Ω) is independent of c1(t), c2(t), and t.

To estimate the difference H(τ2) − H(τ1), we use the Mean Value Theorem. To that

end, we first show that H is continuously differentiable. We write H(τ) in the form

H(τ) =

∫
Ω

∆xV (x, τ) dx,

where

V (x, τ) =

∫ τ

0

∫
Ω

G(x, y; τ, s)
f(y, α−1(s))

c(α−1(s))
dy ds.

By [15, Theorem 5, p. 12], ∂V/∂τ exists and is continuous for x ∈ Ω, 0 < τ ≤ α(T ). Thus,

H ′(τ) exists and is continuous for 0 < τ ≤ α(T ). By the Mean Value Theorem, for all

τ1, τ2 ∈ (0, α(T )], there exists τ ∗ ∈ (τ1, τ2) such that H(τ2)−H(τ1) = H ′(τ ∗)(τ2− τ1). Next,
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we will compute H ′(τ). To that end, rewrite H(τ) in the form

H(τ) =

∫ τ

0

K(τ, s) ds,

where

K(τ, s) =

∫
Ω

∫
Ω

∆xG(x, y; τ, s)
f(y, α−1(s))

c(α−1(s))
dy dx.

Using the Leibniz rule, we have that

H ′(τ) = K(τ, τ) +

∫ τ

0

∂τK(τ, s) ds

=

∫
Ω

∆x

(
lim
s→τ

∫
Ω

G(x, y; τ, s)
f(y, α−1(s))

c(α−1(s))
dy

)
dx

+

∫ τ

0

∫
Ω

∫
Ω

∂τ∆xG(x, y; τ, s)
f(y, α−1(s))

c(α−1(s))
dy dx ds

=

∫
Ω

∆f(x, α−1(τ))

c(α−1(τ))
dx

+

∫ τ

0

∫
Ω

∫
Ω

∂τ∆xG(x, y; τ, s)
f(y, α−1(s))

c(α−1(s))
dy dx ds

where the last equality follows from [15, Theorem 1, p. 4]. Invoking Assumption A1, we

obtain that

H ′(τ) ≤
∫ τ

0

∫
Ω

∫
Ω

∣∣∣∣∂τ∆xG(x, y; τ, s)
f(y, α−1(s))

c(α−1(s))

∣∣∣∣ dy dx ds.
Recalling the estimates of the fundamental solution for the heat equation on bounded do-

mains (and hence for the Green’s function)

|∂τ∆xG(x, y; τ, s)| ≤ C

(τ − s)γ|x− y|d+4−2γ
, (2.18)

which follows from [15, Inequality 3.11, p. 97], where C = C(d, γ), and γ is a parameter

such that 0 < γ < 1 < 2 − β/2, d is the space dimension, and β is the Hölder exponent of

f . A derivation of this estimate appears in Appendix A. As in Appendix A, let B be a ball
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contained in Ω. We can write

∫
Ω

∂xG(x, y; τ, s)
f(y, α−1(s))

c(α−1(s))
dy =

f(ξ, α−1(s))

c(α−1(s))

∫
Ω

∂xG(x, y; τ, s) dy

+

∫
Ω

∂xG(x, y; τ, s)

(
f(y, α−1(s))− f(ξ, α−1(s))

c(α−1(s))

)
dy

=
f(ξ, α−1(s))

c(α−1(s))

∫
∂B

G(x, y; τ, s) cos(ν, η) dSη

+
f(ξ, α−1(s))

c(α−1(s))

∫
Ω\B

∂xG(x, y; τ, s) dy

+

∫
Ω

∂xG(x, y; τ, s)

(
f(y, α−1(s))− f(ξ, α−1(s))

c(α−1(s))

)
dy,

where, we used the divergence theorem for the first integral. Differentiating both sides with

respect to x and choosing ξ = x we have that

∫
Ω

∆xG(x, y; τ, s)
f(y, α−1(s))

c(α−1(s))
dy =

f(x, α−1(s))

c(α−1(s))

∫
∂B

∂

∂x
G(x, y; τ, s) cos(ν, η) dSη

+
f(x, α−1(s))

c(α−1(s))

∫
Ω\B

∆xG(x, y; τ, s) dy

+

∫
Ω

∆xG(x, y; τ, s)

(
f(y, α−1(s))− f(x, α−1(s))

c(α−1(s))

)
dy.

Notice that, for fixed x lying in the interior of B, each of the first two integrals on the

right-hand side in the above equation is a bounded function of τ and s. Thus we obtain that

∫ τ

0

∫
Ω

∫
Ω

∣∣∣∣∂τ∆xG(x, y; τ, s)
f(y, α−1(s))

c(α−1(s))

∣∣∣∣ dy dx ds
≤
∫ τ

0

1

c(α−1(s))

∫
Ω

∫
Ω

|∂τ∆xG(x, y; τ, s)| |f(y, α−1(s))− f(x, α−1(s))|.
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Since d + 4 − 2γ − β > d, using [15, Lemma 2, p. 14], inequality (2.18) and the Hölder

continuity of f , we get that

H ′(τ) ≤
∫ τ

0

C

(τ − s)γ
ds

∫
Ω

∫
Ω

|x− y|β

|x− y|d+4−2γ
dy dx

≤
∫ τ

0

C

(τ − s)γ
ds

∫
Ω

dx

|x|4−2γ−β , for γ < 1 < 2− β/2

≤
∫ τ

0

C

(τ − s)γ
ds =

C

1− γ
τ 1−γ.

where C = C(d, f). Since (τ ∗)1−γ < τ 1−γ
2 < (c̄T )1−γ, it follows that H ′(τ ∗) ≤ C2(d, T, f),

where C2(d, T, f) is a constant depending on the dimension d of the space, the final time T ,

and on the source f . Therefore

H(τ2)−H(τ1) ≤ C2(d, T, f)(τ2 − τ1) ≤ C2(d, T, f) t sup
0≤s≤t

|c2(s)− c1(s)|. (2.19)

Substituting (2.17) and (2.19) into (2.15) we get that

∣∣∣∣∫
Ω

∆u(x, t; c2)−∆u(x, t; c1) dx

∣∣∣∣ ≤ C(u0,Ω, d, T, f) t sup
0≤s≤t

|c2(s)− c1(s)| , (2.20)

where C(u0,Ω, d, T, f) is bounded and independent of c1(t) and c2(t). Note that, due to

Lemma 2.2, inequality (2.20) is valid with or without the absolute value in the left-hand

side. Hence taking the maximum over [0, T0], for any T0 < T , we obtain that

∥∥∥∥∫
Ω

∆u(x, t; c2)−∆u(x, t; c1) dx

∥∥∥∥
C[0,T0]

≤ C(u0,Ω, d, T, f)T0 ‖c2 − c1‖C[0,T0]. (2.21)

Next, we have that

|T [c1]− T [c2]| =
∣∣∣∣µ′(t)−

∫
Ω
f(x, t) dx∫

Ω
∆u(x, t; c1) dx

−
µ′(t)−

∫
Ω
f(x, t) dx∫

Ω
∆u(x, t; c2) dx

∣∣∣∣
=

∣∣∣∣∣
(∫

Ω
∆u(x, t; c2)−∆u(x, t; c1) dx

) (
µ′(t)−

∫
Ω
f(x, t) dx

)∫
Ω

∆u(x, t; c1) dx
∫

Ω
∆u(x, t; c2) dx

∣∣∣∣∣ .
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From Assumption A3 and equality (2.8), we get the estimates

∣∣∣∣µ′(t)− ∫
Ω

f(x, t) dx

∣∣∣∣ ≤M1 and

∣∣∣∣∫
Ω

∆u(x, t; c) dx

∣∣∣∣ ≤ M1

c
:= M2,

where M1 = c̄
∣∣∫

Ω
∆u(x, t; c̄) dx

∣∣. Moreover, from (2.1) and (2.4), we use the following

estimate to obtain an upper bound on the integral
∫

Ω
∆u(x, t; c) dx,

∫
Ω

∆u(x, t; c)−∆u0(x) dx ≤ 1

c

(
µ′(t)−

∫
Ω

f(x, t) dx− c
∫

Ω

∆u0(x) dx

)
.

Thus, using the previous estimates we get that

|T [c1]− T [c2]| ≤
M1

∣∣∫
Ω

∆u(x, t; c2)−∆u(x, t; c1) dx
∣∣∣∣∫

Ω
∆u0(x) dx

∣∣2 .

Taking the maximum over [0, T0] and using (2.21) we obtain that

‖T [c1]− T [c2]‖C[0,T0] ≤ C(u0,Ω, d, T, f)T0‖c1 − c2‖C[0,T0].

Thus T is a contraction mapping provided T0 is sufficiently small.

The existence and uniqueness of the fixed point in 0 ≤ t ≤ T0 follows by the Banach fixed

point theorem. In a similar way, we can show that T is a contraction on C([T1, T2], [c, c̄]), for

any subinterval [T1, T2] of [0, T ] such that T2−T1 <
T0
2

. Due to uniqueness, the corresponding

fixed points of T can be patched together smoothly. To see this, let

0 ≤ T1 < T2 < T3 < T4 ≤ T be such that Ti+1 − Ti < T0
2

, i = 1, 2, 3, and define

Ti,j : C([Ti, Tj]; [c, c̄])→ C([Ti, Tj]; [c, c̄]) by

Ti,j : (c, u0) 7→
µ′(t)−

∫
Ω
f(x, t) dx∫

Ω
∆u(x, t; c, u0) dx

,

where u(x, t; c, u0) is the solution of (2.1)–(2.3) with diffusion coefficient c and initial con-

dition u0. Denote by ci,j(u0) the fixed point of Ti,j(·, u0) in [Ti, Tj], 1 ≤ i < j ≤ 4, and let
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ui,j(·, t;u0) = ui,j(·, t; ci,j(u0), u0). Note that for a fixed u1 ∈ C(Ω) we have by uniqueness

that

c1,2(u1) = c1,3(u1)
∣∣
[T1,T2]

and, therefore, u1,2(·, T2;u1) = u1,3(·, T2;u1)
∣∣
[T1,T2]

:= u2,

where c1,3(u1)
∣∣
[T1,T2]

is c1,3(u1) restricted to the interval [T1, T2]. Similarly, we get that

c2,3(u2) = c2,4(u2)
∣∣
[T2,T3]

= c1,3(u1)
∣∣
[T2,T3]

,

u2,3(·, T3;u2) = u2,4(·, T3;u2)
∣∣
[T2,T3]

= u1,3(·, T3;u1)
∣∣
[T2,T3]

:= u3,

and

c3,4(u3) = c2,4(u2)
∣∣
[T3,T4]

, u3,4(·, T4;u3) = u2,4(·, T4;u2)
∣∣
[T3,T4]

.

Let c1,4(u1) be the extension of c1,3(u1) to [T1, T4] by c3,4(u3) and u1,4(u1) be the extension

to [T1, T4] of u1,3(u1) by u3,4(u3). Since c1,3(u1) ∈ C[T1, T3] and c2,4(u2) ∈ C[T2, T4], it

follows that c1,4(u1) ∈ C[T1, T4]. Also, we have that u1,4(u1) ∈ C2
1(Ω × [T1, T4]) due to the

corresponding regularity of u1,3(u1) and u2,4(u2). Continuing, after finitely many steps the

existence and uniqueness remain valid for 0 ≤ t ≤ T .

2.4 Continuous dependence on the data

Next, we study the stability of the problem. We show that the solution to the inverse

problem depends continuously on the data. The result is summarized in the following

Theorem 2.5. Suppose Assumptions A1, A2, and A3 hold and let c1 and c2 be the coeffi-

cients corresponding to the overdetermination data µ1 and µ2, respectively. Then

‖c1 − c2‖C[0,T ] ≤ C(u0,Ω, d, T, f)‖µ′1 − µ′2‖C[0,T ].

40



Proof. We have that

|T [c1]− T [c2]| =
∣∣∣∣µ′1(t)−

∫
Ω
f(x, t) dx∫

Ω
∆u(x, t; c1) dx

−
µ′2(t)−

∫
Ω
f(x, t) dx∫

Ω
∆u(x, t; c2) dx

∣∣∣∣
=

∣∣∣∣∣
(∫

Ω
∆u(x, t; c2)−∆u(x, t; c1) dx

) (
µ′1(t)−

∫
Ω
f(x, t) dx

)
+G∫

Ω
∆u(x, t; c1) dx

∫
Ω

∆u(x, t; c2) dx

∣∣∣∣∣ ,
where

G = (µ′1(t)− µ′2(t))

∫
Ω

∆u(x, t; c1) dx.

Thus

|T [c1]− T [c2]| ≤
M1

∣∣∫
Ω

∆u(x, t; c2)−∆u(x, t; c1) dx
∣∣+M2|µ′1(t)− µ′2(t)|∣∣∫

Ω
∆u0(x) dx

∣∣2 . (2.22)

Using (2.22) and (2.20) we have that

‖c1 − c2‖C[0,T ] ≤
M1

|
∫

Ω
∆u0(x) dx|2

∥∥∥∥∫
Ω

∆u(x, t; c2)−∆u(x, t; c1) dx

∥∥∥∥
C[0,T ]

+
M2

|
∫

Ω
∆u0(x) dx|2

‖µ′1 − µ′2‖C[0,T ]

≤ M1

|
∫

Ω
∆u0(x) dx|2

C(u0,Ω, d, T, f)‖c1 − c2‖C[0,T ]

+
M2

|
∫

Ω
∆u0(x) dx|2

‖µ′1 − µ′2‖C[0,T ].

Therefore

‖c1 − c2‖C[0,T ] ≤ C(u0,Ω, d, T, f)‖µ′1 − µ′2‖C[0,T ].

2.5 Numerical results

In this section, we present results of some numerical studies. In view of the applications

described earlier, we are interested in finding numerical approximation to solutions of the
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inverse problem with a source function that depends only on time, i.e f = f(t). First,

we develop a scheme which approximates this problem and then outline the steps in its

implementation.

2.5.1 Semi-discretization in time

Set t0 = 0, u0 = u0 and fix 0 < α < 1. For k ≥ 1 given uk−1, let ûk be the solution of

ûk − α∆ûk = uk−1, in Ω, (2.23)

and

ûk = 0, on ∂Ω. (2.24)

Let ũ be the solution of

ũ− α∆ũ = 1, in Ω, (2.25)

and

ũ = 0, on ∂Ω. (2.26)

We use the integral constraint to solve the following nonlinear equation in one variable for

tk

µ(tk) = µ̂k + µ̃

∫ tk

tk−1

f(t) dt, (2.27)

where

µ̃ =

∫
Ω

ũ dx, µ̂k =

∫
Ω

ûk dx.

See for example, the book by Ascher and Greif [2] for numerical methods for approximating

solutions of nonlinear equations in one variable. Finally, we find the approximate solution
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uk, the variable time step τ k, and the approximate diffusion coefficient ck as follows:

uk = ûk + ũ

∫ tk

tk−1

f(t) dt, (2.28)

τ k = tk − tk−1,

and

ck = α/τ k. (2.29)

We show that the decomposition (2.23)–(2.29) is equivalent to the discrete version of the

original differential equation (2.1)–(2.4).

From (2.28) we have that

uk − τ kck∆uk = ûk − τ kck∆ûk + (ũ− τ kck∆ũ)

∫ tk

tk−1

f(t) dt.

Using the auxiliary problems (2.23) and (2.25) with α given by (2.29) we have that

uk − τ kck∆uk = uk−1 +

∫ tk

tk−1

f(t) dt,

or that

uk − uk−1

τ k
− ck∆uk =

1

τ k

∫ tk

tk−1

f(t) dt,

which we recognize as the discrete version of equation (2.1). Also, from (2.27) and (2.28) it

is clear that the discrete equations for the boundary and integral conditions are all satisfied.

2.5.2 Computational algorithm

We outline the necessary steps for the implementation of the scheme we just described.

Choose 0 < α < 1, solve the following elliptic equation

ũ− α∆ũ = 1, x ∈ Ω,
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and

ũ = 0, x ∈ ∂Ω,

and compute µ̃ =
∫

Ω
ũ dx.

Next we set t0 = 0, u0 = u0 and repeat the steps below for k ≥ 1.

Step 1. Solve ûk − α∆ûk = uk−1, x ∈ Ω, ûk = 0, x ∈ ∂Ω and compute µ̂k.

Step 2. Solve the nonlinear equation µ(tk) = µ̂k + µ̃
∫ tk
tk−1 f(t) dt for tk.

Step 3. Compute the approximate solution uk = ûk + ũ
∫ tk
tk−1 f(t) dt.

Step 4. Find the time step τ k = tk−tk−1 and the approximate diffusion coefficient ck = α/τ k.

We repeat the Steps 1–4 as long as tk satisfies tk ≤ T .

2.5.3 Numerical examples and convergence rates

We consider several examples to illustrate the accuracy of our scheme. The domain Ω

is the square −1 ≤ x, y ≤ 1 in R2. The final time is taken to be T = 1, the source function

is f(t) = e−t, and the initial data is u0(x, y) = cos π
2
x cos π

2
y. Obviously, Assumption A1

is satisfied for this choice of source. Moreover, ∆u0(x, y) = −2
(
π
2

)2
cos π

2
x cos π

2
y < 0 for

all −1 ≤ x, y ≤ 1, so that Assumption A2 is satisfied. The choices of coefficients c we

use in our experiments are given in Table 2.1. They are chosen to be continuous and have

the same maximum value of 3 on the temporal interval [0, T ]. We specified a maximum

mesh size of 0.4 in our experiments, resulting in 82 elements and 52 unknowns. To generate

the data, we specify the diffusion coefficient as provided in Table 2.1 and run the forward

model to obtain a numerical approximation of the solution of the direct problem, which we

treat as the exact solution. We then compute the numerical integral of this solution and

use it as the data for our scheme. In our computational algorithm, we use the MATLAB

built-in functions parabolic to solve the parabolic system (2.1)–(2.3), assempde to solve the
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Table 2.1: Rate of convergence estimates from the slopes sc and su in inverse coefficient
scheme.

c 2t+ 1 9
4
t2 + 3

4
2 sin

(
π
2
t
)

+ 1 et + 3− e

sc 1.0088 1.0130 1.0090 1.0031

su 0.8935 0.9828 0.8918 0.8929

elliptic systems (2.23)–(2.24) and (2.25)–(2.26), and fzero to find roots of the nonlinear

equation (2.27). In Figure 2.1, we use the diffusion coefficient c(t) = 2 sin
(
π
2
t
)

+1 to graph a

2-D contour plot of the exact and approximate concentrations together with the error (their

differences) at the final time (computed with the discretization parameter α = 0.005). The

values of the concentration and its approximation as well as the error could be read on the

color bar plot. The error plot shows that the approximation to the concentration u is quite

accurate. Note that the discretization parameter α plays the role of the time step. We plot

in Figure 2.2 the four diffusion coefficients from Table 2.1, each with two approximations for

values of the discretization parameter α = 0.1, and 0.05. We see that the approximations

converge to the exact diffusion coefficient as the discretization parameter decreases. Error

estimates for the standard implicit scheme suggest that

max
0≤t≤T

|u(·, t)− uα(·, t)| = O(αsu), and max
0≤t≤T

|c(t)− cα(t)| = O(αsc),

for some su, sc > 0, where u and c denote the exact concentration and the exact diffusion

coefficient, respectively, and uα is the approximate concentration obtained in Step 3 and cα

is the approximate diffusion coefficient given in Step 4 of the computational algorithm in

Section 2.5.2. The log-log plots of the error as a function of the discretization parameter α

are depicted in Figure 2.3.
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Figure 2.1: (a) Exact concentration; (b) error for the diffusion coefficient c(t) = 2 sin
(
π
2
t
)
+1;

and (c) approximate concentration at the final time.
The concentration is non-dimensionalized.
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Figure 2.2: Exact coefficients and their approximations: (a) linear; (b) parabolic;
(c) exponential; and (d) sine.
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Figure 2.3: (a) Log-log error plots for the diffusion coefficient; (b) log-log error plots for the
concentration.

We also report in Table 2.1 the slopes su and sc which correspond to the rates of

convergence estimated using linear regression. These slopes suggest that su ≈ 1 and sc ≈ 1,

which is consistent with the standard parabolic error estimates.
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We present in Table 2.2 and Table 2.3 the values of the errors in the diffusion coefficient

c and the values of the errors in the concentration u, respectively, as well as the values of

α = 0.0020, 0.0030, 0.0040, 0.0050, 0.0060, 0.0070, 0.0080, 0.0090, 0.0100.

Table 2.2: Maximum error in the diffusion coefficient.

α

c 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100

2t+ 1 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100

9
4
t2 + 3

4
0.0011 0.0017 0.0023 0.0029 0.0035 0.0040 0.0046 0.0052 0.0058

2 sin
(
π
2
t
)

+ 1 0.0024 0.0037 0.0049 0.0061 0.0074 0.0086 0.0099 0.0111 0.0124

et + 3− e 0.0029 0.0044 0.0059 0.0074 0.0088 0.0103 0.0118 0.0133 0.0148

Table 2.3: Maximum error in the concentration for the inverse diffusion coefficient problem.

α

c 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100

2t+ 1 0.0077 0.0111 0.0144 0.0175 0.0207 0.0237 0.0265 0.0296 0.0322

9
4
t2 + 3

4
0.0087 0.0133 0.0178 0.0222 0.0265 0.0307 0.0347 0.0387 0.0425

2 sin
(
π
2
t
)

+ 1 0.0075 0.0108 0.0140 0.0171 0.0202 0.0231 0.0258 0.0288 0.0313

et + 3− e 0.0063 0.0092 0.0119 0.0146 0.0171 0.0196 0.0219 0.0244 0.0267
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Chapter 3

Rothe’s method for the inverse source problem

We now show the existence and uniqueness of weak solutions to the following inverse

source problem: given the final time T > 0 and the integral data µ : [0, T ] → R, find the

source function f : [0, T ]→ R together with the concentration u : Ω× [0, T ]→ R satisfying

∂tu(x, t)−∆u(x, t) = f(t), (x, t) ∈ Ω× (0, T ], (3.1)

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (3.2)

u(x, 0) = 0, x ∈ Ω, (3.3)

and ∫
Ω

u(x, t) dx = µ(t), t ∈ [0, T ]. (3.4)

The weak formulation is obtained by multiplying (3.1) and (3.4) by test functions

v ∈ L2(0, T ;H1
0 (Ω)) and φ ∈ L2(0, T ) respectively, integrating over Ω and using integration

by parts. In this formulation we seek u ∈ L2(0, T ;H1
0 (Ω)) with ∂tu ∈ L2(0, T ;H−1(Ω)) and

f ∈ L2(0, T ) such that

∫ T

0

〈∂tu, v〉+ (∇u,∇v) dt =

∫ T

0

(f, v) dt, for all v ∈ L2(0, T ;H1
0 (Ω)), (3.5)

and ∫ T

0

(φ(t), u(·, t)) dt =

∫ T

0

φ(t)µ(t) dt, for all φ ∈ L2(0, T ). (3.6)

Note that this definition is equivalent to finding u and f as above satisfying for a.e. t ∈ (0, T )

〈∂tu, v〉+ (∇u,∇v) = (f, v), for all v ∈ H1
0 (Ω), (3.7)
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and

(φ, u(·, t)) = φµ(t), for all φ ∈ R. (3.8)

3.1 Semi-discretization in time

We use the implicit Euler method for the time discretization of this system. To that

end, denote the time step by τ and divide the interval [0, T ] into N subintervals [tk−1, tk] of

the same length τ where k = 1, · · · , N . Let ũ be the weak solution of

ũ− τ∆ũ = τ, in Ω, (3.9)

and

ũ = 0, on ∂Ω. (3.10)

Define Lũ = ũ− τ∆ũ. Then Lũ > 0. By the maximum principle [14, Theorem 2, p. 346],

min
Ω̄
ũ > −max

∂Ω
ũ− = 0, where ũ− = −min(ũ, 0). Thus ũ > 0 in Ω.

In particular, we have that

0 <

∫
Ω

ũ dx = µ̃.

Set

t0 = 0, u0 = 0, û0 = u0, and f 0 =
µ(t0)− µ̂0

µ̃
, (3.11)

where

µ(t0) =

∫
Ω

u0 dx and µ̂0 =

∫
Ω

û0 dx.

For k ≥ 1, given uk−1, let ûk be the weak solutions of the problems

ûk − τ∆ûk = uk−1, in Ω, (3.12)
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and

ûk = 0, on ∂Ω. (3.13)

Define

fk =
µ(tk)− µ̂k

µ̃
, (3.14)

where

µ̂k =

∫
Ω

ûk dx and µ(tk) =

∫
Ω

uk dx.

Let

uk = ûk + fkũ. (3.15)

Next, we show that the decomposition (3.9)–(3.15) is equivalent to the discrete version of

the original system. First, note that from (3.10), (3.11), (3.13), and (3.15), the initial and

boundary conditions are satisfied. Moreover, from (3.9), (3.12), and (3.15) we have that

uk − τ∆uk = ûk + fkũ− τ∆(ûk + fkũ)

= ûk − τ∆ûk + fk(ũ− τ∆ũ)

= uk−1 + τfk.

The weak formulation is as follows: find uk ∈ H1
0 (Ω) and fk ∈ R such that

(uk, v) + τ(∇uk,∇v) = (uk−1, v) + (τfk, v), for all v ∈ H1
0 (Ω), (3.16)

and

(φ, uk) = φµ(tk), for all φ ∈ R, (3.17)

which we recognize as the implicit Euler scheme of the weak formulation (3.7)–(3.8) of

problem (3.1)–(3.4).
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3.2 Existence of solutions

We will use the Rothe method to prove existence of weak solutions to the inverse source

problem. The method involves an approximation of the time-dependent problem by a discrete

scheme. We prove uniform estimates for the solutions of the discrete equations. These

estimates allow us to obtain weakly convergent subsequences, which in turn converge to the

solution of the original time-dependent problem.

3.2.1 Estimate of the unknown source

In this section, we will derive an estimate for the unknown source that will allow us

to use the Rothe method for proving the existence of solutions. First, we derive a lower

bound for the integral µ̃ of the solution ũ of problem (3.9)–(3.10) in the following lemma.

This lower bound plays a crucial role in establishing the estimate of the unknown source in

Lemma 3.2.

Lemma 3.1. Suppose Ω ⊂ Rd is a domain that contains a ball B of radius r and let ũ be

the weak solution of the problem

ũ− τ∆ũ = τ, in Ω,

and

ũ = 0, on ∂Ω.

Then we have that ∫
Ω

ũ dx = µ̃ ≥ |B|
d+ 2

τ for τ <
r2

2d
,

where |B| denotes the volume of the ball B.

Proof. Let γ(d) denote the volume of the unit ball in Rd, then Rdγ(d) = |B| is the volume

of a ball with radius R in Rd, and Rd−1dγ(d) denotes the surface area of the sphere ∂B(0, R)

with radius R. We assume without loss of generality that the center of B is at the origin.
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Now, define for x ∈ B,

v =
τ

2

(
1− |x|

2

r2

)
.

Then

v − τ∆v =
τ

2

(
1− |x|

2

r2
+
τ

r2
∆|x|2

)
=
τ

2

(
1− |x|

2

r2
+

2τd

r2

)
≤ τ = ũ− τ∆ũ for τ <

r2

2d
.

Also, on ∂B, v = 0 < ũ. Therefore 0 < v < ũ in B by the comparison principle. Hence

µ̃ =

∫
Ω

ũ dx ≥
∫
B

ũ dx ≥
∫
B

v dx =
τ

2

∫
B

(
1− |x|

2

r2

)
dx

=
τ

2

(
|B| − 1

r2

∫ r

0

∫
∂B(0,R)

|x|2dS(x) dR

)
=
τ

2

(
|B| − 1

r2

∫ r

0

R2Rd−1dγ(d) dR

)
=
τ

2

(
|B| − dγ(d)rd+2

r2(d+ 2)

)
=
τ

2

(
|B| − dγ(d)rd

d+ 2

)
=
τ

2

(
|B| − d|B|

d+ 2

)
=
|B|
d+ 2

τ.

We proceed to establish an estimate of the unknown source. The tool we use is eigen-

function expansions as described below. The result appears in Lemma 3.2. We write the

solutions in H1
0 (Ω) of the equations

ũ− τ∆ũ = τ, ûk − τ∆ûk = uk−1, uk − τ∆uk = uk−1 + τfk, −∆ū = 1,

in terms of eigenfunctions

ũ =
∑
j≥1

Ũjwj, ûk =
∑
j≥1

Ûk
j wj, uk =

∑
j≥1

Uk
j wj, ū =

∑
j≥1

U jwj, (3.18)
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where wj are eigenfunctions of the Laplace operator in H1
0 (Ω) with homogeneous Dirichlet

boundary conditions corresponding to eigenvalues λj, that is wj ∈ H1
0 (Ω) satisfies

−∆wj = λjwj in Ω for j ≥ 1, (3.19)

with 0 < λ1 < λ2 ≤ λ3 · · · and λj → ∞ as j → ∞. From (3.9), (3.18), and (3.19) we have

that

ũ− τ∆ũ =
∑
j≥1

Ũjwj + τ
∑
j≥1

Ũj(−∆wj)

=
∑
j≥1

Ũj(1 + τλj)wj = τ
∑
j≥1

(1, wj)wj.

Therefore we have that for j ≥ 1,

Ũj(1 + τλj) = τ(1, wj),

and hence

Ũj =
τψj

1 + τλj
, (3.20)

where we denote

ψj = (1, wj) =

∫
Ω

wj dx.

Consequently, ∫
Ω

ũ dx = µ̃ =
∑
j≥1

τψ2
j

1 + τλj
. (3.21)

Similarly, (3.12), (3.18), and (3.19) imply that

ûk − τ∆ûk =
∑
j≥1

Ûk
j wj + τ

∑
j≥1

Ûk
j (−∆wj)

=
∑
j≥1

Ûk
j (1 + τλj)wj =

∑
j≥1

Uk−1
j wj,
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and so

Ûk
j =

Uk−1
j

1 + τλj
. (3.22)

Finally, from (3.18), we get that

−∆ū =
∑
j≥1

U j(−∆wj) =
∑
j≥1

U jλjwj =
∑
j≥1

ψjwj,

and thus U j = ψj/λj, so that

µ̄ =

∫
Ω

ū dx =
∑
j≥1

ψ2
j

λj
. (3.23)

These calculations allow us to deduce from (3.15) that

∑
j≥1

Uk
j wj =

∑
j≥1

Ûk
j wj + fk

∑
j≥1

Ũjwj,

and we obtain that for j ≥ 1 and all k ≥ 0

Uk
j = Ûk

j + fkŨj.

Using this equation together with (3.20)–(3.22) and a recursive procedure we obtain that

Uk
j = fk

τψj
1 + τλj

+
Uk−1
j

1 + τλj

= fk
τψj

1 + τλj
+

Uk−2
j

1 + τλj
+ fk−1 τψj

1 + τλj
1 + τλj

= fk
τψj

1 + τλj
+ fk−1 τψj

(1 + τλj)2
+

Uk−2
j

(1 + τλj)2

...

= fk
τψj

1 + τλj
+ fk−1 τψj

(1 + τλj)2
+ · · ·+ f 2 τψj

(1 + τλj)k−1
+ f 1 τψj

(1 + τλj)k
+

U0
j

(1 + τλj)k
.
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Since u0 = 0, we have that U0
j = 0 for all j ≥ 1 and for all k, j ≥ 1

Uk−1
j = fk−1 τψj

1 + τλj
+ fk−2 τψj

(1 + τλj)2
+ · · ·+ f 2 τψj

(1 + τλj)k−2
+ f 1 τψj

(1 + τλj)k−1
. (3.24)

From (3.12) we have that

uk−1 − ûk = −τ∆ûk = τ
∑
j≥1

Ûk
j (−∆wj) = τ

∑
j≥1

Ûk
j λjwj.

Integrating over Ω and using (3.22) yield

µ(tk−1)− µ̂k = τ
∑
j≥1

Ûk
j λjψj =

∑
j≥1

τλjψj
1 + τλj

Uk−1
j . (3.25)

From (3.14), and using (3.24) and (3.25), we derive a recursive relation for fk independent

of Uk−1
j ,

fk =
µ(tk)− µ̂k

µ̃
=
µ(tk)− µ(tk−1)

µ̃
+
µ(tk−1)− µ̂k

µ̃
(3.26)

=
µ(tk)− µ(tk−1)

µ̃
+
τ

µ̃

∑
j≥1

λjψj
1 + τλj

Uk−1
j

=
µ(tk)− µ(tk−1)

µ̃
+
τ

µ̃

∑
j≥1

λjψj
1 + τλj

(
fk−1τψj
1 + τλj

+
fk−2τψj

(1 + τλj)2
+ · · ·+ f 1τψj

(1 + τλj)k−1

)

=
µ(tk)− µ(tk−1)

µ̃
+
τ 2

µ̃

∑
j≥1

λjψ
2
j

(1 + τλj)k

(
fk−1(1 + τλj)

k−1

1 + τλj
+
fk−2(1 + τλj)

k−1

(1 + τλj)2
+ · · ·+ f 1

)

=
µ(tk)− µ(tk−1)

µ̃
+
τ 2

µ̃

∑
j≥1

λjψ
2
j

(1 + τλj)k
(
fk−1(1 + τλj)

k−2 + fk−2(1 + τλj)
k−3 + · · ·+ f 1

)
.

(3.27)

With the above computations, we are now ready to establish an estimate of the unknown

source.
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Lemma 3.2. Let Ω ⊂ Rd be a domain containing a ball B of radius r. Suppose µ is Lipschitz

continuous with Lipschitz constant L. Then for CΩ = Lmax

{
d+ 2

|B|
,

1

λ1µ̄

}
we have that

|fn| ≤ CΩ +
L

µ̄
nτ, n = 1, 2, · · · (3.28)

where µ̄ is defined in (3.23).

Proof. We will prove (3.28) by induction. The choice of the first quantity in the expression for

CΩ allows us to establish the basis of induction. Indeed, for n = 1, using Lemma 3.1, (3.26),

and the Lipschitz continuity of µ, we have that

|f 1| = |µ(t1)− µ(t0)|
µ̃

+
|µ(t0)− µ̂0|

µ̃
≤ d+ 2

|B|
L ≤ CΩ +

L

µ̄
τ.

Suppose that (3.28) holds for n = 1, 2, · · · , k − 1. Then from (3.27) we get that

|fk| ≤ Lτ

µ̃
+
τ 2

µ̃
CΩ

∑
j≥1

λjψ
2
j

(1 + τλj)k
[
(1 + τλj)

k−2 + (1 + τλj)
k−3 + · · ·+ 1

]
+
Lτ 3

µ̃µ̄

∑
j≥1

λjψ
2
j

(1 + τλj)k
[
(k − 1)(1 + τλj)

k−2 + (k − 2)(1 + τλj)
k−3 + · · ·+ 1

]
.

Note that (1 + τλj)
k−2 + (1 + τλj)

k−3 + · · · + 1, is a geometric series with common ratio

(1 + τλj) and whose sum is
(1 + τλj)

k−1 − 1

τλj
. Moreover, from the following geometric series

with common ratio x

xk − 1

x− 1
= xk−1 + xk−2 + · · ·+ x+ 1,

we have that, on the one hand,

d

dx

[
xk − 1

x− 1

]
= (k − 1)xk−2 + (k − 2)xk−3 + · · · 2x+ 1,
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and, on the other hand, that

d

dx

[
xk − 1

x− 1

]
=
kxk−1

x− 1
− xk

(x− 1)2
.

Combining, we get that

(k − 1)xk−2 + (k − 2)xk−3 + · · ·+ 2x+ 1 =
kxk−1

x− 1
− xk − 1

(x− 1)2
.

Therefore, with x = 1 + τλj, we obtain that

(k−1)(1+τλj)
k−2+(k−2)(1+τλj)

k−3+· · ·+2(1+τλj)+1 =
k(1 + τλj)

k−1

τλj
− (1 + τλj)

k − 1

τ 2λ2
j

.

Continuing with the estimate of fk,

|fk| ≤ Lτ

µ̃
+
τ 2

µ̃
CΩ

∑
j≥1

λjψ
2
j

(1 + τλj)k

[
(1 + τλj)

k−1 − 1

τλj

]

+
Lτ 3

µ̃µ̄

∑
j≥1

λjψ
2
j

(1 + τλj)k

[
k(1 + τλj)

k−1

τλj
− (1 + τλj)

k − 1

τ 2λ2
j

]

≤ Lτ

µ̃
+
CΩ

µ̃

∑
j≥1

τψ2
j

1 + τλj
− τ

µ̃
CΩ

∑
j≥1

ψ2
j

(1 + τλj)k

+
Lkτ

µ̃µ̄

∑
j≥1

τψ2
j

1 + τλj
− Lτ

µ̃µ̄

∑
j≥1

ψ2
j

λj
+
Lτ

µ̃µ̄

∑
j≥1

ψ2
j

λj(1 + τλj)k
.

From (3.21), (3.23), the definition of CΩ, and using
1

λj
≤ 1

λ1

for j ≥ 1, we obtain that

|fk| ≤ CΩ +
τ

µ̃

∑
j≥1

ψ2
j

(1 + τλj)k

(
L

µ̄λj
− CΩ

)
+
L

µ̄
kτ

≤ CΩ +
τ

µ̃

∑
j≥1

ψ2
j

(1 + τλj)k

(
L

µ̄λ1

− CΩ

)
+
L

µ̄
kτ

≤ CΩ +
L

µ̄
kτ,
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completing the induction step.

3.2.2 Rothe’s method

We now investigate the existence of solutions to the inverse source problem. The esti-

mate (3.28) is key to obtaining uniform bounds for fk and uk. We summarize the existence

result below.

Theorem 3.3. Let µ be Lipschitz continuous on [0, T ]. Then the problem (3.1)–(3.4) has a

solution f ∈ L2(0, T ), u ∈ L2(0, T ;H1(Ω)) with ∂tu ∈ L2(0, T ;H−1(Ω)).

Proof. We use backward differences to discretize the time-dependent problem (3.1)–(3.4), as

in Section 3.1 for k = 1, 2, · · · , N , and τ =
T

N
,

u0 = u0,
uk − uk−1

τ
−∆uk = fk, in Ω, (3.29)

for uk = ûk + fkũ, where ũ and ûk are solutions in H1
0 (Ω) of

ûk − τ∆ûk = uk−1, in Ω, (3.30)

and

ũ− τ∆ũ = τ, in Ω, (3.31)

with the property that ∫
Ω

uk dx = µ(tk). (3.32)

Clearly, problem (3.31) has a unique weak solution in H1
0 (Ω). Moreover, given uk−1 ∈ L2(Ω),

the equation (3.30) has a unique solution in H1
0 (Ω) for k = 1, 2, · · · , N .

We will establish uniform estimates on the L2-norms of uk, ∇uk, u
k − uk−1

τ
and the

L2-norm of fk. To that end, put v = uk in the weak form (3.16) to obtain that

‖uk‖2 + τ‖∇uk‖2 = (uk, uk−1) + (τfk, uk).
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Dropping the second term on the left-hand side and applying the Schwarz inequality yields

‖uk‖2 ≤ |(uk, uk−1)|+ |(τfk, uk)| ≤ τ |fk||Ω|1/2‖uk‖+ ‖uk‖‖uk−1‖.

Therefore

‖uk‖ ≤ τ |fk||Ω|1/2‖+ ‖uk−1‖.

Using (3.28), the fact that kτ ≤ T , and an iterative procedure for all k = 1, 2, · · · , N yield,

‖uk‖ ≤ ‖uk−1‖+ τ |Ω|1/2
(
CΩ +

L

µ̄
T

)
≤ ‖uk−2‖+ 2τ |Ω|1/2

(
CΩ +

L

µ̄
T

)
≤ ‖uk−3‖+ 3τ |Ω|1/2

(
CΩ +

L

µ̄
T

)
...

≤ ‖u0‖+ kτ |Ω|1/2
(
CΩ +

L

µ̄
T

)
≤ ‖u0‖+ T |Ω|1/2

(
CΩ +

L

µ̄
T

)
= ‖u0‖+ C(d,Ω, L, T ). (3.33)

Applying the triangle inequality to the second equation in (3.29) we get that

∥∥∥∥uk − uk−1

τ

∥∥∥∥ ≤ ‖∆uk‖+ |Ω|1/2
(
CΩ +

L

µ̄
T

)
≤ ‖uk‖H2(Ω) + |Ω|1/2

(
CΩ +

L

µ̄
T

)
.

Standard elliptic estimates, as in [16, Theorem 8.12, p. 186], under the condition that ∂Ω is

of class C2, yield that the weak solution uk ∈ H1
0 (Ω) of (3.29) is also in H2(Ω) and we have

that

‖uk‖H2(Ω) ≤ C(d, ∂Ω)
(
‖uk‖+ ‖uk−1‖+ ‖fk‖

)
.
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where d is the space dimension. Hence, (3.33) yields

‖uk‖H2(Ω) ≤ C(d,Ω, L, T, u0),

from which we deduce that, since ‖∇uk‖ ≤ ‖uk‖H2(Ω),

‖∇uk‖ ≤ C(d,Ω, L, T, u0), k = 1, 2, · · · , N. (3.34)

We conclude that

∥∥∥∥uk − uk−1

τ

∥∥∥∥ ≤ C(d,Ω, L, T, u0), k = 1, 2, · · · , N. (3.35)

Finally, from (3.28),

‖fk‖L2(0,T ) ≤ |Ω|1/2
(
CΩ +

L

µ̄
T

)
= C(Ω, d, T, L), k = 1, 2, · · · , N. (3.36)

Define approximations of u and f that are piece-wise linear and piece-wise constant in time,

as follows:

uτ (t) = uk−1 +
uk − uk−1

τ
(t− tk−1), t ∈ [tk−1, tk], k = 1, 2, · · · , N,

and

f τ (t) = fk, t ∈ [tk−1, tk], k = 1, 2, · · · , N.

Letting τ → 0, we obtain a solution of (3.1)–(3.4) as a weak limit of functions

{(uk, fk), k = 1, 2, · · · , N}. The functions uτ are elements of the space L2(0, T ;H1
0 (Ω)) and

satisfy ∂tu
τ =

uk − uk−1

τ
, t ∈ (tk−1, tk). Due to (3.33), (3.34), (3.35), and (3.36) we obtain
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the following uniform bounds

‖uτ‖L2(0,T ;L2(Ω)) ≤ C(d,Ω, L, T, u0), (3.37)

‖∇uτ‖L2(0,T ;L2(Ω)) ≤ C(d,Ω, L, T, u0), (3.38)

‖∂tuτ‖L2(0,T ;L2(Ω)) ≤ C(d,Ω, L, T, u0), (3.39)

and

‖f τ‖L2(0,T ) ≤ C(Ω, d, T, L). (3.40)

From the weak compactness of L2(0, T ) and L2(0, T ;L2(Ω)), there exist subsequences

τl, l = 1, 2, · · · , with τl → 0, for which f τl converges weakly in L2(0, T ) to some function

f ∈ L2(0, T ), the functions uτl , ∇uτl , and ∂tu
τl converge weakly in L2(0, T ;L2(Ω)) to u, ∇u,

and ∂tu, respectively, for some function u ∈ L2(0, T ;H1
0 (Ω)) with ∂tu ∈ L2(0, T ;H−1(Ω)).

To see, for example, that ∂tu
τl converges weakly to ∂tu, as in [39, Chapter 11], we denote

the weak limit of ∂tu
τl by U . Since U ∈ L2(0, T ;L2(Ω)), y(t) =

∫ t
0
U(s) ds exists and y(t) is

absolutely continuous, that is, y(t) ∈ AC(0, T ;L2(Ω)) with ∂ty(t) = U(t) in L2(0, T ;L2(Ω)).

Using the definition of uτ , we have that

∫ t

0

∂tu
τl(s) ds = uτl(t)− uτl(0).

By uniqueness of the weak limit, we obtain that

y(t) = u(t) in L2(0, T ;L2(Ω)).

Therefore, u ∈ AC(0, T ;L2(Ω)) and

∂tu(t) = U(t) in L2(0, T ;L2(Ω)).
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Moreover, from u(t) =
∫ t

0
U(s) ds, we deduce that u(0) = 0 in C(0, T ;L2(Ω)). The initial

condition (3.3) is satisfied in the classical sense. Furthermore, since u ∈ L2(0, T ;H1
0 (Ω)),

then for a.e. t ∈ (0, T ), u(t) ∈ H1
0 (Ω). The boundary condition (3.2) is satisfied in the sense

of traces. It remains to show that (u, f) satisfies (3.5)–(3.6). Recall the weak formulation

(
uk − uk−1

τ
, v

)
+ (∇uk,∇v) = (fk, v) for all v ∈ H1

0 (Ω),

and

(uk, φ) = φµ(tk) for all φ ∈ L2(0, T ).

Let v ∈ L2(0, T ;H1
0 (Ω)) and φ ∈ L2(0, T ) be arbitrary functions. Consider the previous

equations written for t = tk, k = 1, 2, · · · , N . We have, for a.e. 0 ≤ t ≤ T ,

〈∂tuτ (t), v(t)〉+ (∇uτ (t),∇v(t)) = (f τ (t), v(t)) ,

and

(uτ (t), φ(t)) = φ(t)µ(t).

Selecting convergent subsequences and integrating from 0 to T , we get that

∫ T

0

〈∂tuτl(t), v(t)〉 dt+

∫ T

0

(∇uτl(t),∇v(t)) dt =

∫ T

0

(f τl(t), v(t)) dt, (3.41)

and ∫ T

0

(uτl(t), φ(t)) dt =

∫ T

0

φ(t)µ(t) dt. (3.42)
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Due to the weak convergence of uτl , ∂tu
τl , ∇uτl , and f τl , we have that, for τl → 0

∫ T

0

〈∂tuτl , v(t)〉 dt→
∫ T

0

〈∂tu(t), v(t)〉 dt,∫ T

0

(uτl , φ(t)) dt→
∫ T

0

(u(t), φ(t)) dt,∫ T

0

(∇uτl(t),∇v(t)) dt→
∫ T

0

(∇u(t),∇v(t)) dt,

and ∫ T

0

(f τl(t), v(t)) dt→
∫ T

0

(f(t), v(t)) dt.

Combining these limits with (3.41)–(3.42) we have that, for v(t) ∈ L2(0, T ;H1
0 (Ω)) and

φ ∈ L2(0, T ),

∫ T

0

〈∂tu(t), v(t)〉 dt+

∫ T

0

(∇u(t),∇v(t)) dt =

∫ T

0

(f(t), v(t)) dt,

and ∫ T

0

(u(t), φ(t)) dt =

∫ T

0

φ(t)µ(t) dt.

The couple (u, f) satisfies the differential equation (3.1) and the integral constraint (3.4) in

the sense of (3.5) and (3.6) completing the proof.

3.3 Uniqueness of solutions to the inverse source problem

Theorem 3.4. The weak solution u ∈ L2(0, T ;H1
0 (Ω)) with ∂tu ∈ L2(0, T ;H−1(Ω)) and

f ∈ L2(0, T ) to the inverse source problem (3.1)–(3.4) is unique.
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Proof. Suppose (u1, f1) and (u2, f2) are two solutions to the inverse source problem (3.1)–

(3.4). Let u = u1 − u2 and f = f1 − f2. Then (u, f) satisfies

∂tu(x, t)−∆u(x, t) = f(t), (x, t) ∈ Ω× (0, T ], (3.43)

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (3.44)

u(x, 0) = 0, x ∈ Ω, (3.45)

and ∫
Ω

u(x, t) dx = 0, t ∈ [0, T ]. (3.46)

Taking v = u in (3.7) we obtain that

〈∂tu, u〉+ ‖u‖2 = f(t)

∫
Ω

u(x, t) dx = 0 by (3.46).

That is,

〈∂tu, u〉 = −‖u‖2. (3.47)

Since u ∈ L2(0, T ;H1
0 (Ω)) with ∂tu ∈ L2(0, T ;H−1(Ω)), from [14, Theorem 3, p. 303],

u ∈ C([0, T ];L2(Ω)) and the mapping t 7→ ‖u(t)‖2 is absolutely continuous with

d

dt
‖u(t)‖2 = 2〈∂tu(t), u(t)〉 for a.e 0 ≤ t ≤ T .

Using (3.47), we get that

d

dt
‖u(t)‖2 = −2‖u(t)‖2 ≤ 0 for a.e 0 ≤ t ≤ T .

Since u(0) = 0, applying the differential form of Gronwall’s inequality [14, p. 708], we have

that

u(t) = 0 for a.e. 0 ≤ t ≤ T .
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Substituting in (3.43), it follows that f = 0. Therefore u1 = u2 and f1 = f2.

3.4 Numerical implementation and convergence studies

We now present several numerical results. We recall (see Section 3.1) that the solution

(uk, fk) of the discrete problem can be obtained by the iteration

uk = ûk + fkũ, with fk =
µ(tk)− µ̂k

µ̃
, (3.48)

where ûk and ũ are H1
0 (Ω) solutions of

ûk − τ∆ûk = uk−1, in Ω, (3.49)

and

ũ− τ∆ũ = τ, in Ω. (3.50)

We denote

µ(tk) =

∫
Ω

uk dx, µ̃ =

∫
Ω

ũ dx, and µ̂k =

∫
Ω

ûk dx.

3.4.1 Finite element approximation

To obtain a fully discrete approximation, the equations are discretized using a finite

element formulation in space as we described in Section 1.3.1. Let ukh, ũh, and ûkh be the

finite element approximations to uk, ũ, and ûk, respectively. The functions ukh, ũh, and ûkh

are continuous in the finite element space Vh. They are piecewise linear approximations to

uk, ũ, and ûk, respectively, linear on each triangle in the triangulation Th of the domain Ω

and vanishing on the boundary ∂Ω. From (3.49) and (3.50), we obtain the following weak

formulations, for every test function v ∈ Vh,

∫
Ω

vũh dx+ τ

∫
Ω

∇v · ∇ũh dx =

∫
Ω

τv dx,
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and ∫
Ω

vûkh dx+ τ

∫
Ω

∇v · ∇ûkh dx =

∫
Ω

vuk−1
h dx.

The functions ukh, ũh, and ûkh have representations

ukh(x) =

Np∑
j=1

ukjφj(x), ũh(x) =

Np∑
j=1

ũjφj(x), and ûkh(x) =

Np∑
j=1

ûkjφj(x),

with unknown ukj = uk(xj), ũj = ũ(xj), and ûkj = ûk(xj), where {φj}Np

j=1 are basis functions

for Vh and {xj}Np

j=1 are the interior vertices of Th. Taking test functions v = φi, i = 1, · · · , Np,

and using the representations above, after combining terms, we have that

Np∑
j=1

(∫
Ω

φiφj + τ∇φi · ∇φj dx
)
ũj =

∫
Ω

τφi dx,

and
Np∑
j=1

(∫
Ω

φiφj + τ∇φi · ∇φj dx
)
ûkj =

Np∑
j=1

uk−1
j

∫
Ω

φiφj dx,

or

Np∑
j=1

(Mij + τKij)ũj =

∫
Ω

τφi dx, i = 1, · · · , Np,

and
Np∑
j=1

(Mij + τKij)û
k
j =

Np∑
j=1

Miju
k−1
j , i, j = 1, · · · , Np,

where Mij and Kij are respectively the mass and stiffness matrices defined by

Mij =

∫
Ω

φjφi dx and Kij =

∫
Ω

∇φj · ∇φi dx, i, j = 1, · · · , Np.
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We obtain the linear systems of Np equations in Np unknown written in matrix form

(M + τK)Ũ = F, (3.51)

and

(M + τK)Ûk = MUk−1, (3.52)

where M , K and F are defined as follows

M = (Mij), K = (Kij), F = (Fi), and Fi =

∫
Ω

τφi(x) dx, i, j = 1, · · · , Np, (3.53)

and

Ũ = (ũj)
t, Ûk = (ûkj )

t, i, j = 1, · · · , Np, k = 1, 2, · · · , N.

As a consequence of (3.48),

Np∑
j=1

ukjφj(x) =

Np∑
j=1

(ûkj + fkũj)φj(x), that is, ukj = ûkj + fkũj,

and therefore,

Uk = Ûk + fkŨ , where Uk = (ukj )
t, j = 1, 2, · · · , Np, k = 1, 2, · · · , N.

3.4.2 The algorithm

We outline the steps in the numerical experiment. To test the convergence of the

algorithm, we first supply a source function f(t) and find the solution u of the direct prob-

lem (3.1)–(3.3). Then we compute the integral data µ(tk) =
∫

Ω
uk dx, k = 1, 2, · · · , N .

Step 1. Assemble the matrices K, M , and F .

Step 2. Calculate Ũ = (ũ1, ũ2, · · · , ũNp)t and compute its integral µ̃ over Ω.

For k = 1, 2, · · · , N , we follow the steps below.
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Step 3. Given Uk−1 = (uk−1
1 , uk−1

2 , · · · , uk−1
Np

)t, find Ûk = (ûk1, û
k
2, · · · , ûkNp

)t and compute its

integral µ̂k over Ω.

Step 4. Determine the approximate source fk =
µ(tk)− µ̂k

µ̃
.

Step 5. Determine the approximate solution Uk = (uk1, u
k
2, · · · , ukNp

)t with ukj = ûkj + fkũj,

j = 1, 2, · · · , Np.

We briefly describe the computation of the rates of convergence. Let (u, f) and (uτ , f τ )

denote the exact and approximate solutions of the inverse source problem (3.1)–(3.4), re-

spectively. We expect error for parabolic problems to satisfy estimates of the form

‖u− uτ‖ ≤ C1τ
δ1 and ‖f − f τ‖ ≤ C2τ

δ2 ,

where C1, C2, δ1, and δ2 are constants. To determine C1, C2, δ1, and δ2, we take the logarithm

of both sides of the above inequalities to get

log ‖u− uτ‖ ≤ C1 + δ1 log τ, log ‖f − f τ‖ ≤ C2 + δ2 log τ.

We recognize the rates of convergence as the slopes δ1 and δ2 of the linear functions

log ‖u − uτ‖ and log ‖f − f τ‖, respectively, as functions of log τ . We estimate the slopes

using the least squares.

3.4.3 Numerical studies and rates of convergence

We consider several examples to illustrate the accuracy of our scheme. To show how the

scheme handles domains with complicated geometries, we consider a muscovite crystal from

Hames and Andresen [23], plotted in Figure 3.1. The final time is taken to be T = 1. The

examples of the sources we use in our experiments are given in Table 3.1. All selected sources

attain the same maximum value of 4 on the temporal interval [0, T ]. In our experiments, we

chose a maximum mesh size of 0.05, resulting in 27,888 elements and 14,145 unknowns. In
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Table 3.1: Rate of convergence estimates from the slopes sf and su in inverse source scheme.

f 4t 3t2 + t 8 sin
(
π
6
t
)

5t − 1

sf 0.9930 0.9829 0.9923 0.9968

su 0.9781 0.9770 0.9767 0.9962

order to generate the data, we supplied a source function from Table 3.1 and ran the forward

model to obtain a numerical approximation to solutions of the direct problem, which we

treated as the exact solution. We then computed the numerical integral of the solution and

used it as the data for our scheme. In the computational algorithm, we use the built-in

MATLAB functions parabolic to solve the parabolic problem (3.1)–(3.3), and assempde to

assemble the matrices M , K, F and solve the elliptic equations (3.49) and (3.50). We plot

in Figure 3.1, the exact and approximate concentrations at the final time and the error,

computed with the source function f(t) = 8 sin(π
6
t). The graphs indicate that the error is

of order 10−3 in the approximation. In Figure 3.2, we depict the four source functions from

Table 3.1. In each case, we plot the exact source and approximate source using time steps

τ =
1

5
,

1

15
,

1

25
. These graphs illustrate that as the time step τ decreases, the approximate

source converges to the exact source uniformly. In Figure 3.3, we present the errors in the

approximate concentrations, and in the approximate sources for a time step in the range

[10−1, 10−2]. Error estimates for the standard implicit scheme suggest that

(∫ T

0

‖u(·, t)− uτ (·, t)‖2
L2(Ω) dt

)1/2

= O(τ su), and

(∫ T

0

|f(t)− f τ (t)|2 dt
)1/2

= O(τ sf ),

for some su, sf > 0, where u and f denote the exact concentration and the exact source,

respectively, and uτ and f τ are the approximate concentration and the approximate source.

The slopes su and sf which correspond to the estimated rates of convergence obtained using

the linear regression are given in Table 3.1. These slopes suggest that su ≈ 1 and sf ≈ 1,

which is consistent with standard parabolic error estimates.
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(a) (b)

(c)

Figure 3.1: (a) Exact concentration; (b) error for the source f(t) = 8 sin(π
6
t); and

(c) approximate concentration at the final time.
The concentration is non-dimensionalized.
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Figure 3.2: Exact sources and their approximations: (a) sine; (b) exponential; (c) linear;
and (d) parabolic.
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Figure 3.3: (a) Log-log error plots for the source; (b) log-log error plots for the concentration.
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Table 3.2 and Table 3.3 below contain the values of the errors in the source f and the

values of the errors in the concentration u, respectively, together with the values of the time

step τ .

Table 3.2: L2(0, T ) error in the source for the inverse source problem.

f

τ 4t 3t2 + t 8 sin
(
π
6
t
)

5t − 1

0.1000 0.1101 0.1247 0.1110 0.1250

0.0500 0.0559 0.0634 0.0563 0.0636

0.0333 0.0374 0.0426 0.0377 0.0426

0.0250 0.0281 0.0321 0.0283 0.0320

0.0200 0.0225 0.0257 0.0227 0.0255

0.0167 0.0187 0.0215 0.0189 0.0213

0.0143 0.0161 0.0185 0.0162 0.0182

0.0125 0.0140 0.0162 0.0142 0.0159

0.0111 0.0125 0.0144 0.0126 0.0141

0.0100 0.0112 0.0130 0.0113 0.0126

Table 3.3: L2(0, T ;L2(Ω)) error in the concentration.

f

τ 4t 3t2 + t 8 sin
(
π
6
t
)

5t − 1

0.1000 0.0286 0.0266 0.0291 0.0254

0.0500 0.0146 0.0136 0.0149 0.0129

0.0333 0.0098 0.0091 0.0100 0.0086

0.0250 0.0074 0.0069 0.0075 0.0065

0.0200 0.0060 0.0055 0.0061 0.0052

0.0167 0.0050 0.0046 0.0051 0.0043

0.0143 0.0043 0.0040 0.0044 0.0037

0.0125 0.0038 0.0035 0.0038 0.0032

0.0111 0.0033 0.0031 0.0034 0.0029

0.0100 0.0030 0.0028 0.0031 0.0026
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Chapter 4

A semigroup approach to the inverse source problem

We now return to the inverse source problem: given the final time T > 0, the boundary

data g : ∂Ω× (0, T )→ R, the initial data u0 : Ω→ R, and the integral data µ : [0, T )→ R,

find the time-dependent source function f : [0, T ] → R together with the concentration

u : Ω× [0, T )→ R satisfying

∂tu(x, t)−∆u(x, t) = f(t), in Ω× (0, T ), (4.1)

u(x, t) = g(x, t), in ∂Ω× (0, T ), (4.2)

u(x, 0) = u0(x), in Ω, (4.3)

and ∫
Ω

u(x, t) dx = µ(t), for all t ∈ [0, T ). (4.4)

We start by giving the meaning of solution (u, f) to the inverse source problem (4.1)–(4.4).

Definition 4.1. The pair (u, f) is a solution of (4.1)–(4.4) if:

1. The source function f(t) is continuous for 0 ≤ t ≤ T .

2. The concentration u(x, t) is continuous for (x, t) ∈ Ω× [0, T ).

3. The derivatives ∂tu, ∇u, ∂2u/∂xi∂xj exist and are continuous for (x, t) ∈ Ω × (0, T ),

1 ≤ i, j ≤ d.

4. The equations (4.1)–(4.4) hold in the classical sense.

We make the following assumptions on the data:
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A1. The boundary data g(x, t) is continuous for (x, t) ∈ ∂Ω× (0, T ).

A2. The initial condition u0 is of class C2(Ω).

A3. The integral data µ is of class C2[0, T ].

4.1 Existence of classical solutions

We show the existence and uniqueness of solutions to the inverse source problem (4.1)–

(4.4) using semigroup method. We summarize the result in the following

Theorem 4.1. Suppose Assumptions A1-A3 hold. Then the inverse source problem (4.1)–

(4.4) has a unique solution (u, f) in the sense of Definition 4.1.

Proof. The idea is to decompose the solution (u, f) of the inverse problem (4.1)–(4.4) into

the solution w of a heat equation and a solution (v, f) to an inverse problem. We then apply

perturbation theory for semigroups to the inverse problem (v, f). To that end, let w be the

unique classical solution of the direct problem

∂tw(x, t)−∆w(x, t) = 0, (x, t) ∈ Ω× (0, T ), (4.5)

w(x, 0) = u0(x), x ∈ Ω, (4.6)

and

w(x, t) = g(x, t), (x, t) ∈ ∂Ω× [0, T ). (4.7)

Define

ψ(t) :=

∫
Ω

w(x, t) dx, t ∈ [0, T ). (4.8)
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This choice of w allows us to homogenize the initial and boundary conditions of the inverse

source problem (4.1)–(4.4). Consider the following inverse source problem for (v, f),

∂tv(x, t)−∆v(x, t) = f(t), (x, t) ∈ Ω× (0, T ), (4.9)

v(x, 0) = 0, x ∈ Ω, (4.10)

v(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ), (4.11)

and ∫
Ω

v(x, t) dx = µ(t)− ψ(t), t ∈ [0, T ). (4.12)

We note that u = w + v. We integrate the terms in equation (4.9) over Ω and use Green’s

Theorem to obtain

∫
Ω

∂tv(x, t) dx−
∫

Ω

∆v(x, t) dx = µ′(t)− ψ′(t)−
∫
∂Ω

∂v

∂ν
dS = f(t)|Ω|,

and conclude that

f(t) =
1

|Ω|

(
µ′(t)− ψ′(t)−

∫
∂Ω

∂v

∂ν
dS

)
, t ∈ [0, T ). (4.13)

Using (4.13), equations (4.9)–(4.12) become

∂tv(x, t)−∆v(x, t) =
1

|Ω|

(
µ′(t)− ψ′(t)−

∫
∂Ω

∂v

∂ν
dS

)
, (x, t) ∈ Ω× (0, T ), (4.14)

v(x, 0) = 0, x ∈ Ω, (4.15)

and

v(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ). (4.16)

Since the term
∫
∂Ω

∂v
∂ν
dS is not known, we apply perturbation analysis to the system (4.14)–

(4.16). We interpret system (4.14)–(4.16) as the flow determined by a semigroup acting on
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L2(Ω). Let

D(A) = H1
0 (Ω) ∩H2(Ω), D(B) = H2(Ω),

and define

Av = ∆v, if v ∈ D(A), (4.17)

and

Bv = − 1

|Ω|

∫
∂Ω

∂v

∂ν
dS, if v ∈ D(B).

Therefore problem (4.14)–(4.16) can be written as

v′(t) = (A+B)v(t) +
1

|Ω|
(µ′(t)− ψ′(t)), t ∈ (0, T ), (4.18)

and

v(0) = 0. (4.19)

We will show that this inhomogeneous initial value problem has a unique solution v. This

in turn will imply the existence and uniqueness of the solution (u, f) of the inverse source

problem (4.1)–(4.4), where a representation of the source f(t) is given by (4.13) and the

existence and uniqueness of the function u is obtained from the decomposition u = v + w,

where w is the solution of (4.5)–(4.7). We divide the proof into three steps.

1. We first show that A is a closed operator. Note that A and B are linear operators

on L2(Ω). Moreover, the domain D(A) is dense in L2(Ω). To show that A is closed, let

{vk}∞k=1 ⊂ D(A) be a sequence such that

vk → v and Avk → h in L2(Ω). (4.20)
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We must show that v ∈ D(A) and Av = h. By using the H2-regularity for the elliptic

operator in (4.17) we have that [14, Theorem 4, p. 334]

||vk − vl||H2(Ω) ≤ C(Ω)(||Avk − Avl||L2(Ω) + ||vk − vl||L2(Ω)) for all k, l.

From (4.20), it follows that {vk}∞k=1 is a Cauchy sequence in H2(Ω). The completeness of

H2(Ω) implies that vk → v in H2(Ω). Thus v ∈ D(A) and Avk → Av in L2(Ω). Therefore

Av = h.

2. Next, we will show that the operators A and A + B are infinitesimal generators of

analytic semigroups. To that end, let ρ(A) denote the resolvent set of A and, for 0 < δ < π
2
,

define ∑
= {λ ∈ C : | arg λ| < π/2 + δ} ∪ {0}. (4.21)

Using the result stated in [37, Theorem 5.2, p. 61] that a closed densely defined operator A

with 0 ∈ ρ(A) generates an analytic semigroup if and only if there exist 0 < δ < π
2

and a

number M > 0 such that ρ(A) ⊃
∑

and ||(λI − A)−1|| ≤M/λ for λ ∈
∑

, λ 6= 0.

From the spectral theory for the operator A, it is known that ρ(A) ⊃
∑

. Consider

(λI − A)v = h, for h ∈ L2(Ω), λ ∈
∑

, λ 6= 0. (4.22)

Multiplying this equation by v and integrating over Ω, we see that

∫
Ω

λv2 dx−
∫

Ω

v∆v dx =

∫
Ω

h v dx.

Using Green’s theorem (in the second term) and Hölder’s inequality we get that

∣∣∣∣(Reλ)

∫
Ω

v2 dx+ i(Imλ)

∫
Ω

v2 dx+

∫
Ω

|∇v|2 dx
∣∣∣∣2 =

∣∣∣∣∫
Ω

h v dx

∣∣∣∣2 ,
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and [
(Reλ)

∫
Ω

v2 dx+

∫
Ω

|∇v|2 dx
]2

+

[
(Imλ)

∫
Ω

v2 dx

]2

≤ ‖h‖2‖v‖2, (4.23)

where Rez and Imz denote the real and imaginary parts of the complex number z. If Reλ ≥ 0

then [
(Reλ)

∫
Ω

v2 dx

]2

≤
[
(Reλ)

∫
Ω

v2 dx+

∫
Ω

|∇v|2 dx
]2

.

Adding the above inequality to (4.23), we obtain that

|λ|2‖v‖4 ≤ ‖v‖2‖h‖2.

That is,

‖v‖ ≤ 1

|λ|
‖h‖.

Since (4.22) implies that ‖v‖ = ‖(λI − A)−1h‖, it follows that

‖(λI − A)−1h‖ ≤ 1

|λ|
‖h‖.

This inequality holds for all h ∈ L2(Ω). Hence

‖(λI − A)−1‖ ≤ 1

|λ|
.

If Reλ < 0, we can find some K > 0 such that

|Reλ| ≤ K|Imλ|. (4.24)

As a consequence of (4.23),

|Imλ|‖v‖2 ≤ ‖v‖‖h‖.
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Thus, using (4.24),

||v|| ≤ ‖h‖
|Imλ|

=
‖h‖
|λ|
|Reλ|2 + |Imλ|2

|Imλ|
≤ M‖h‖
|λ|

.

Hence

||(λI − A)−1|| ≤ M

|λ|
.

This shows that A is the infinitesimal generator of an analytic semigroup.

Next, we show that A+B is the infinitesimal generator of an analytic semigroup. From

the definitions of D(A) and D(B) it is clear that D(A) ⊂ D(B). Furthermore, for v ∈ D(A),

we have that

||Bv|| = 1

|Ω|

∥∥∥∥∫
Ω

Av dx

∥∥∥∥ ≤ 1

|Ω|

∫
Ω

‖Av‖ dx ≤ ||Av||. (4.25)

Since A generates an analytic semigroup, using [40, Theorem 12.37, p. 420], we conclude

that A+B is also an infinitesimal generator of an analytic semigroup.

3. We now show that the inhomogeneous initial value problem (4.18) has a unique

solution v. Since analytic semigroups are strongly continuous semigroups (C0 semigroups),

A+B is the infinitesimal generator of a C0 semigroup S(t).

The initial value problem

v′(t) = (A+B)v(t) t ∈ (0, T ), (4.26)

and

v(0) = 0, (4.27)

has a unique solution S(t)v(0) on [0, T ) for every v(0) ∈ D(A+B). We use

[37, Theorem 1.3, p. 102], which says that a densely defined linear operator with nonempty

resolvent set is the infinitesimal generator of a C0 semigroup if and only if for every initial

data in the domain of the operator, the homogeneous initial value problem has a unique

solution. Note that the resolvent set ρ(A+B) of A+B is nonempty since ρ(A) is nonempty.
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Moreover, the domain of A+B, D(A+B) = D(A) is dense in L2(Ω) since D(A) is dense in

that space. For v(0) ∈ D(A+B), using the semigroup property, we have that

lim
s→0+

S(s)S(t)v(0)− S(t)v(0)

s
= lim

s→0+

S(t)S(s)v(0)− S(t)v(0)

s

= S(t) lim
s→0+

S(s)v(0)− v(0)

s

= S(t)(A+B)v(0).

Thus, S(t)v(0) ∈ D(A + B) and (A + B)S(t)v(0) = S(t)(A + B)v(0). Moreover, we have

that

d

dt
S(t)v(0) = (A+B)S(t)v(0) = S(t)(A+B)v(0).

Since v(0) = 0, zero is the only solution of the initial value problem (4.26)–(4.27). Finally,

we show that the initial value problem (4.18)–(4.19) has a unique solution v. This follows

from [37, Corollary 3.3, p. 113], which states that if a linear operator is an infinitesimal

generator of an analytic semigroup and the source function is locally Hölder continuous on

(0, T ], then for every initial data in the space under consideration, the inhomogeneous initial

value problem has a unique solution. First, note that v(0) = 0 ∈ L2(Ω). Also, the source

function
µ′(t)− ψ′(t)
|Ω|

is Hölder continuous on [0, T ] since µ ∈ C2[0, T ] and ψ ∈ C∞(0, T ]

using (4.8). See [14, Theorem 8, p. 59]. Moreover, if (4.18)–(4.19) has a solution v, then this

solution is given by

v(t) = S(t)v(0) +
1

|Ω|

∫ t

0

S(t− s)(µ′(s)− ψ′(s)) ds =
1

|Ω|

∫ t

0

S(s)(µ′(t− s)− ψ′(t− s)) ds,
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where S(t)v(0) is the solution of the initial value problem (4.26)–(4.27). It follows that v(t)

is differentiable for t > 0 and its derivative

v′(t) =
1

|Ω|
S(t)(µ′(0)− ψ′(0)) +

1

|Ω|

∫ t

0

S(s)(µ′′(t− s)− ψ′′(t− s)) ds

=
1

|Ω|
S(t)(µ′(0)− ψ′(0)) +

1

|Ω|

∫ t

0

S(t− s)(µ′′(s)− ψ′′(s)) ds

is continuous. The existence and uniqueness of (u, f) follows from the fact that u = v + w

and the representation (4.13) for the source function f .

4.2 Alternative method for the uniqueness of classical solutions

While the semigroup methods provide the existence and uniqueness of solutions, we give

an alternative proof of uniqueness of solutions of this problem. Using an energy argument,

we now show that the inverse source problem (4.1)–(4.4) has a unique solution. The method

used here is similar to the energy method employed to prove uniqueness of the weak solution

in Section 3.3. The distinction is that the differentiation of the energy function is done using

a differentiation rule, rather than applying Gronwall’s inequality as in Section 3.3. The result

is summarized as

Theorem 4.2. Suppose Assumptions A1-A3 hold. Then the solution (u, f) in the sense of

Definition 4.1 to the inverse source problem (4.1)–(4.4) is unique.

Proof. Suppose that (u1, f1) and (u2, f2) are two distinct solutions to the inverse source

problem (4.1)–(4.4). Let

u = u1 − u2 and f = f1 − f2. (4.28)
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Then the pair (u, f) satisfies

∂tu(x, t)−∆u(x, t) = f(t), in Ω× (0, T ], (4.29)

u(x, t) = 0, in ∂Ω× (0, T ], (4.30)

u(x, 0) = 0, in Ω, (4.31)

and ∫
Ω

u(x, t) dx = 0, for all t ∈ [0, T ]. (4.32)

Define

E(t) =

∫
Ω

u2(x, t) dx, for all 0 ≤ t ≤ T. (4.33)

As a result of (4.31) and (4.33), we have that

E(t) ≥ 0, for all 0 ≤ t ≤ T and E(0) = 0. (4.34)

Differentiating (4.33) with respect to time and using (4.29) and (4.32) we get that

E ′(t) =

∫
Ω

2u(x, t)∂tu(x, t) dx

= 2f(t)

∫
Ω

u(x, t) dx+ 2

∫
Ω

u(x, t)∆u(x, t) dx

= 2

∫
Ω

u(x, t)∆u(x, t) dx.

Integrating the last expression by parts and using (4.30) yields

E ′(t) = −2

∫
Ω

|∇u(x, t)|2 dx, for all 0 ≤ t ≤ T.

Thus,

E ′(t) ≤ 0 for all 0 ≤ t ≤ T. (4.35)
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From (4.34) and (4.35), we get that E(t) = 0 for all 0 ≤ t ≤ T. Substituting this in (4.33)

implies that u(x, t) = 0 in Ω × [0, T ]. Consequently, using (4.29),

f(t) = 0 for all 0 ≤ t ≤ T.

Therefore, we conclude from (4.28) that

u1 = u2 and f1 = f2.
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Chapter 5

Inverse source problem with a Neumann boundary condition

We consider the following system

∂tu(x, t)− c(t)∆u(x, t) = f(t), (x, t) ∈ Ω× (0, T ], (5.1)

∂u

∂ν
(x, t) = g(x, t), (x, t) ∈ ∂Ω× [0, T ], (5.2)

u(x, 0) = u0(x), x ∈ Ω, (5.3)

and ∫
Ω

u(x, t) dx = µ(t), t ∈ [0, T ], (5.4)

where ν is the outward unit vector normal to the boundary ∂Ω. The problem we solve is

as follows: given the final time T , the diffusion coefficient c : [0, T ] → (0,∞), the initial

data u0 : Ω → R, the Neumann boundary data g : ∂Ω × [0, T ] → R, and the integral data

µ : [0, T ] → R, find the time-dependent source function f : [0, T ] → R together with the

concentration u : Ω× [0, T ]→ R satisfying (5.1)–(5.4). We first give a definition of a solution

(u, f).

Definition 5.1. The couple (u, f) is a solution of (5.1)–(5.4) if:

1. The source f(t) is continuous for 0 ≤ t ≤ T .

2. The concentration u(x, t) is continuous for (x, t) ∈ Ω× [0, T ).

3. The derivatives ∂tu, ∇u, ∂2u/∂xi∂xj exist and are continuous for (x, t) ∈ Ω × (0, T ),

1 ≤ i, j ≤ d,

4. The equations in (5.1)–(5.4) are satisfied in the classical sense.
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For a given source function f(t), we denote by u(x, t; f) the solution of the direct

problem (5.1)–(5.3). We assume that the data satisfies the following hypotheses:

H1. The coefficient c(t) is continuous for 0 ≤ t ≤ T .

H2. The boundary condition g(x, t) is continuous for (x, t) ∈ ∂Ω× (0, T ).

H3. The initial data u0 is of class C2(Ω).

H4. The integral condition µ is of class C1[0, T ].

The following existence and uniqueness result for the inverse source problem (5.1)–(5.4)

holds.

Theorem 5.1. Suppose Hypotheses H1-H4 hold. Then the inverse source problem (5.1)–

(5.4) has a unique solution (u, f) in the sense of Definition 5.1.

Proof. We use the transformation

v(x, t) = u(x, t; f)−
∫ t

0

f(τ) dτ, (5.5)

to homogenize equation (5.1) and use the data (5.4) to recover u and f . To that end,

differentiate the terms in (5.5) with respect to time t to get,

∂tv(x, t) = ∂tu(x, t; f)−f(t) and apply the Laplace operator to get ∆v(x, t) = ∆u(x, t; f).

Thus, v is a solution of the direct problem

∂tv(x, t)− c(t)∆v(x, t) = 0, (x, t) ∈ Ω× (0, T ], (5.6)

∂v

∂ν
(x, t) = g(x, t), (x, t) ∈ ∂Ω× [0, T ], (5.7)

and

v(x, 0) = u0(x), x ∈ Ω. (5.8)
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It is well known that problem (5.6)–(5.8) has a unique solution v. Integrating the terms

in (5.5) over Ω we have that

∫
Ω

v(x, t) dx =

∫
Ω

u(x, t; f) dx− |Ω|
∫ t

0

f(τ) dτ = µ(t)− |Ω|
∫ t

0

f(τ) dτ.

Thus, ∫ t

0

f(τ) dτ =
1

|Ω|

(
µ(t)−

∫
Ω

v(x, t) dx

)
. (5.9)

Differentiating the terms in the above equation with respect to time yields

f(t) =
1

|Ω|

(
µ′(t)−

∫
Ω

∂tv(x, t) dx

)
. (5.10)

Using (5.9) and the transformation (5.5), we have that

u(x, t) = v(x, t) +
1

|Ω|

(
µ(t)−

∫
Ω

v(x, t) dx

)
, (5.11)

where v is the solution to the direct problem (5.6)–(5.8).
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Chapter 6

Discussion, future work, and conclusion

In this chapter, we summarize the work carried out throughout this dissertation and

outline some possible future work. We considered an inverse diffusion coefficient problem

subject to an integral constraint and the corresponding direct problem for a parabolic partial

differential equation. Moreover, we investigated an inverse source problem for a parabolic

equation with an integral constraint.

The direct problem describes a phenomenon in geochronology, in which the dating of

minerals is of significant interest. We have developed a numerical implementation of a 2-D

model using the finite element method to describe argon diffusion in mica crystals at the grain

scale for crystals of arbitrary shape with the assumption of (isotropic) diffusion within the

layers and no diffusion between them. Although we focused on 40Ar/39Ar ages in micas, the

results could be used for diffusion in any mineral at the scale of single crystals. Our model is

based on in situ laser measurements of diffusion gradients in the plane of diffusion that form

in micas in nature. We presented some examples of mica crystals with in situ 40Ar/39Ar age

distribution and geometries described in the geology literature. Compared to analytical and

numerical techniques for this problem found in the geological literature, our model provides

a better fit for describing the actual, natural systems than previous models. The better fit is

due to modeling the entire age distribution within a 2-D geometry that describes the natural

shape more closely. Our 2-D modeling shows the promise for future investigation of diffusion

parameters for micas and points to the ability to inform strategies for direct laboratory

measurements of intracrystalline age gradients. In this work, we prescribed the Dirichlet

and Neumann boundary conditions for the examples we presented, however, the model also

allows the specification of a mixed or Robin boundary condition. One of the key assumptions
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in this study is that the diffusion coefficient is spatially homogeneous. A possible future

work may be to consider the case of spatially heterogeneous diffusion coefficient. With such

heterogeneity, we can model fast diffusion pathways in crystals. Heterogeneous diffusion

coefficients could be expected in mixed phases or lattice structures with zones of high defect

concentration, as would occur in exsolved or altered K-feldspars. Another direction for future

work might be to expand the 2-D geometries to 3-D geometries that allow modeling for such

crystals as feldspars and biotites.

We showed the existence and uniqueness of classical solutions to the inverse diffusion

coefficient problem using fixed point theory. In the context of geochronology, this problem

amounts to reconstructing the temperature history of rocks. Moreover, we proved the exis-

tence of weak and classical solutions to the inverse source problem with the Dirichlet bound-

ary condition using the Rothe method and the semigroup theory, respectively. While the

semigroup method yielded uniqueness, we also proved uniqueness using an energy method.

Furthermore, we established the existence and uniqueness of the inverse source problem with

a Neumann boundary condition via a certain transformation.

For both the inverse source problem subject to the Dirichlet boundary condition and the

inverse diffusion coefficient problem, we developed and implemented numerical algorithms

to approximate their solutions. From model problems, we calculated the errors and reported

the rates of convergence, which we estimated using the linear regression. These rates are

consistent with the standard parabolic error estimates. The numerical results we presented

show the accuracy of our schemes.

We mention that our proof of uniqueness of solutions to the inverse source problem

with the Dirichlet boundary condition can be extended to prove uniqueness of solutions to
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non-linear problems of the form

∂tu(x, t)−∆u(x, t) + h(x, t, u) = f(t), (x, t) ∈ Ω× (0, T ], (6.1)

u(x, 0) = 0, x ∈ Ω, (6.2)

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (6.3)

and ∫
Ω

u(x, t) dx = µ(t), t ∈ (0, T ]. (6.4)

Specifically, we have, under the assumption that h is Lipschitz continuous with respect

to u, a weak solution (u, f) to the inverse problem (6.1)–(6.4) where f ∈ L2(0, T ) and

u ∈ L2(0, T ;H1
0 (Ω)) with ∂tu ∈ L2(0, T ;H−1(Ω)) is unique. It is expected that the proof will

follow by mimicking the argument in Section 3.3. However, the existence of this problem

using the Rothe method as in Chapter 3 is not easily extendable. In particular, we have

not been able to obtain an estimate for the source as in Lemma 3.2 using the eigenfunction

expansion.

While this dissertation is focused on the applications of the integral overdetermination

in geology, we note that inverse problems with integral overdetermination are widely used in

science and engineering. Another physical interpretation of the integral overdetermination

arises in measuring a physical parameter by a sensor. Any sensor, due to its finite size,

always performs some averaging of measured quantities. In the context of system (1.2)–

(1.4), the function u is measured by a sensor making some averaging over the domain Ω.

From a mathematical point of view, the results of such measurements can be interpreted as

integral data. See for instance, the book by Prilepko, Orlovsky, and Vasin [38, p. 60] for

more details. The results of this dissertation could then be applied to any application where

the integral data arises. Specifically, if we are given the data µ(t) for all time t, then we can

use the algorithms in Chapters 2 and 3 to recover the unknown functions.

Below are several directions that we are interested in pursuing for future work.
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� Develop a numerical scheme that takes into account the spatial dependence of the

source function for the diffusion coefficient problem. This generalization is relevant,

for example, when potassium has a non-constant initial concentration.

� Approximate solutions for a non-constant boundary condition.

� Perform rigorous error analysis and stability analysis for the two schemes introduced

in this dissertation.

� Find solutions of the inverse source problem with a source depending on both the space

variable and time. The case of multiplicative source, for example, could be considered in

the equation ∂tu(x, t)−∆u(x, t) = f(t)h(x) subject to initial and boundary conditions

together with an integral constraint of the form (6.4), where h(x) is known and f(t) is

to be determined.

� Investigate numerical solutions to the inverse source problem with a Neumann bound-

ary condition including error analysis and stability analysis.

� Study the regularity of solutions of the two inverse problems. As an illustration for

the inverse diffusion coefficient problem, note that, using the fixed point method in

Chapter 2, we obtained that the coefficient c ∈ C[0, T ] and the concentration

u ∈ C2
1(Ω× [0, T ]). Formally, since

c(t) =
µ′(t)−

∫
Ω
f(x, t) dx∫

Ω
∆u(x, t) dx

,

we get by differentiation that

c′(t) =

[
µ′′(t)−

∫
Ω
∂tf(x, t) dx

] ∫
Ω

∆u(x, t) dx− I(∫
Ω

∆u(x, t) dx
)2 , (6.5)

where

I =

[
µ′(t)−

∫
Ω

f(x, t) dx

] ∫
Ω

∂t(∆u(x, t)) dx.
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If we assume that µ ∈ C2[0, T ] and f ∈ C1[0, T ] for all x ∈ Ω, then in addition to the

assumptions on the data in Chapter 2 and ∆u ∈ C1[0, T ] for all x ∈ Ω, we have that

c ∈ C1[0, T ] and u ∈ C2[0, T ] for all x ∈ Ω. We note that the regularity of ∆u and the

regularity of u, as stated above, follow by the corresponding regularity of f , just as in

the proof of Lemma 2.1, namely by decomposing the system into two problems. The

representation (6.5) suggests that f and c on one hand, u and µ on the other hand have

the same regularity in the time variable. We anticipate that this observation could be

generalized. Our conjecture is as follows: in addition to the assumptions on the data

in Chapter 2, suppose µ ∈ Ck[0, T ] and f ∈ Ck−1[0, T ] for all x ∈ Ω, then we expect

that c ∈ Ck−1[0, T ] and u ∈ Ck[0, T ] for all x ∈ Ω and for any integer k ≥ 1.

Another important problem to consider is to recover a diffusion coefficient that depends

only on the space variable. That is, find c and u in the problem

∂tu(x, t)− c(x)∆u(x, t) = f(x, t), for all (x, t) ∈ Ω× (0, T ),

subject to an initial data u0 and some Dirichlet boundary condition. To solve this problem,

we assume that the final overdetermination is given, that is, we know the solution of the

direct problem at the final time. Namely,

u(x, T ) = E(x), for all x ∈ Ω, (6.6)

where E is a given function defined on Ω. Following the idea of Chapter 2, to account for

the overdetermination condition (6.6), we define a map

T : c 7→
E(x)− u0(x)−

∫ T
0
f(x, t) dt∫ T

0
∆u(x, t; c) dt

, (6.7)

and show that the mapping T given by (6.7) has a fixed point c if and only if the overdetermi-

nation condition (6.6) is satisfied for that function c. Therefore if we show that the mapping
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T has a fixed point, we will prove the existence (and uniqueness) of this problem. In order

to apply the Banach fixed point method to show that the mapping T is a contraction, we

form the following difference for coefficients c1 and c2 as in Chapter 2:

T [c1]− T [c2] =

(∫ T
0

∆u(x, t; c2)−∆u(x, t; c1) dt
)(

E(x)− u0(x)−
∫ T

0
f(x, t) dt

)
∫ T

0
∆u(x, t; c2) dt

∫ T
0

∆u(x, t; c1) dt
. (6.8)

We note that to handle the term similar to
∫ T

0
∆u(x, t; c2) − ∆u(x, t; c1) dt in Chapter 2,

we used the Green representation formula for the system (2.5)–(2.7), which we obtain from

the original system (2.1)–(2.3) by a transformation of the time variable that transferred the

time-dependent coefficient to the source. However, in the case when the coefficient depends

only on the space variable, the transformation is not obvious. The other terms in (6.8)

could be taken care of with arguments similar to those in Chapter 2. A possible alternative

approach to this problem is via Carleman estimates, as considered in the book by Klibanov

and Timonov [32] about inverse coefficient problems, with coefficients depending on the space

variable.

Finally, inverse problems are almost always ill-posed. In real life applications, the data

contains noise. One possibility for future work is to add noise to the numerical data and use

regularization techniques to stabilize the numerical approximations.
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Appendix A

Estimates of the fundamental solution for the heat equation

Following [15], we recall and derive some estimates for the fundamental solution (and

hence, for the Green function). These estimates are used in Section 2.3. Let

w(x, t; ξ, τ) = (t− τ)−d/2 exp

[
− |x− ξ|

2

4(t− τ)

]
,

and

Z(x, t; ξ, τ) = (2
√
π)−dw(x, t; ξ, τ).

Given f , consider the volume potential V (x, t) defined by

V (x, t) =

∫ t

0

∫
Ω

Z(x, t; ξ, τ)f(ξ, τ) dξ dτ.

Note that

lim
τ→t

∫
Ω

Z(x, t; ξ, τ)f(ξ, τ) dξ = f(x, t)

and that the volume potential is an improper integral since the integrand has a singularity

at x = ξ, t = τ . However, the singularity is integrable. To see that, we write w in the form

w(x, t; ξ, τ) = (t− τ)−γ(|x− ξ|2)γ−d/2
[
|x− ξ|2

t− τ

]d/2−γ
exp

[
− |x− ξ|

2

4(t− τ)

]
.

Then,

|w(x, t; ξ, τ)| = 1

(t− τ)γ|x− ξ|d−2γ

[
|x− ξ|2

t− τ

]d/2−γ
exp

[
− |x− ξ|

2

4(t− τ)

]
≤ C

(t− τ)γ|x− ξ|d−2γ
, 0 < γ < 1, (A.1)
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where the last inequality follows from the bound sme−εs ≤ C, with s =
|x− ξ|2

t− τ
, m = d/2−γ,

ε = 1/4, and C depends only on m and ε. Thus, C = C(d, γ). Similarly

∂

∂xi
w(x, t; ξ, τ) = (t− τ)−d/2

(
−2(xi − ξi)

4(t− τ)

)
exp

[
− |x− ξ|

2

4(t− τ)

]

and therefore

∣∣∣∣ ∂∂xiw(x, t; ξ, τ)

∣∣∣∣ = (t− τ)−d/2−1

∣∣∣∣(xi − ξi)2

∣∣∣∣ exp

[
− |x− ξ|

2

4(t− τ)

]
=
|(xi − ξi)|
2(t− τ)γ

(
|x− ξ|2

)γ−d/2−1
[
|x− ξ|2

t− τ

]d/2+1−γ

exp

[
− |x− ξ|

2

4(t− τ)

]
≤ C

(t− τ)γ|x− ξ|d+1−2γ
,

1

2
< γ < 1.

In a similar fashion, we obtain that

∂2w(x, t; ξ, τ)

∂x2
i

= (t− τ)−d/2
(
− 1

2(t− τ)
+

(xi− ξi)2

4(t− τ)2

)
exp

[
− |x− ξ|

2

4(t− τ)

]
, (A.2)

and hence ∣∣∣∣∂2w(x, t; ξ, τ)

∂x2
i

∣∣∣∣ ≤ C

(t− τ)γ|x− ξ|d+2−2γ
. (A.3)

Let

J(x, t, τ) =

∫
Ω

Z(x, t; ξ, τ)f(ξ, τ) dξ,

then

V (x, t) =

∫ t

0

J(x, t, τ) dτ.

To estimate the second order derivative of J assume that f(x, t) is a continuous function on

Ω × [0, T ] and locally Hölder continuous in x ∈ Ω with exponent β, uniformly with respect

to t. For a second order parabolic operator in general form, see [15, Theorems 3-4, p. 8-12].
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Using [15, Theorem 3, p. 8] we have that

∂V (x, t)

∂xi
=

∫ t

0

∂J(x, t, τ)

∂xi
dτ.

We write ∂J(x, t, τ)/∂xi in the form

∂J(x, t, τ)

∂xi
= f(y, τ)

∫
Ω

∂

∂xi
w(x, t; ξ, τ) dξ +

∫
Ω

∂

∂xi
Z(x, t; ξ, τ)[f(ξ, τ)− f(y, τ)] dξ,

where y is a fixed point. Let B be a fixed ball in Ω. We have that

∫
Ω

∂

∂xi
w(x, t; ξ, τ) dξ =

∫
B

∂

∂xi
w(x, t; ξ, τ) dξ +

∫
Ω\B

∂

∂xi
w(x, t; ξ, τ) dξ

=

∫
∂B

w(x, t; η, τ) cos(ν, ηi) dSη +

∫
Ω\B

∂

∂xi
w(x, t; ξ, τ) dξ,

where ν is the outward pointing normal to ∂B. Thus,

∂J(x, t, τ)

∂xi
= f(y, τ)

[∫
∂B

w(x, t; η, τ) cos(ν, ηi) dSη +

∫
Ω\B

∂

∂xi
w(x, t; ξ, τ) dξ

]
+

∫
Ω

∂

∂xi
Z(x, t; ξ, τ)[f(ξ, τ)− f(y, τ)] dξ.

Differentiating the terms in the equation above with respect to xi, we obtain that

∂2J(x, t, τ)

∂x2
i

= f(y, τ)

[∫
∂B

∂

∂xi
w(x, t; η, τ) cos(ν, ηi) dSη +

∫
Ω\B

∂2

∂x2
i

w(x, t; ξ, τ) dξ

]
+

∫
Ω

∂2

∂x2
i

Z(x, t; ξ, τ)[f(ξ, τ)− f(y, τ)] dξ.

We choose y = x and get that

∂2J(x, t, τ)

∂x2
i

= f(x, τ)

∫
∂B

∂

∂xi
w(x, t; η, τ) cos(ν, ηi) dSη

+ f(x, τ)

∫
Ω\B

∂2

∂x2
i

w(x, t; ξ, τ) dξ +

∫
Ω

∂2

∂x2
i

Z(x, t; ξ, τ)[f(ξ, τ)− f(x, τ)] dξ. (A.4)
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Let x be a fixed point in the interior of B. Then each of the first two integrals in (A.4) is a

bounded function of t and τ . Using (A.3) and the fact that f is locally Holder continuous

in x ∈ Ω, uniformly with respect to t, we obtain that

∣∣∣∣∫
Ω

∂2

∂x2
i

Z(x, t; ξ, τ)[f(ξ, τ)− f(x, τ)] dξ

∣∣∣∣ ≤ C

(t− τ)γ

∫
Ω

dξ

|x− ξ|d+2−2γ−β

≤ C

(t− τ)γ
,

if 1 − (β/2) < γ < 1, and the constant C is independent of (x, t, τ) provided that x is

restricted to a closed subset of Ω. From (A.4), we conclude that

∣∣∣∣∂2J(x, t, τ)

∂x2
i

∣∣∣∣ ≤ C

(t− τ)γ
, 1− (β/2) < γ < 1.

That is, ∣∣∣∣∫
Ω

∂2

∂x2
i

Z(x, t; ξ, τ)f(ξ, τ) dξ

∣∣∣∣ ≤ C

(t− τ)γ
, 1− (β/2) < γ < 1. (A.5)

Finally, we derive an estimate for ∂τ∆xw(x, t; ξ, τ). From (A.2), we get that

∆xw(x, t; ξ, τ) = (t− τ)−d/2
(
− d

2(t− τ)
+
|x− ξ|2

4(t− τ)2

)
exp

[
− |x− ξ|

2

4(t− τ)

]
,

and thus,

∂τ∆xw(x, t; ξ, τ) =
d

2
(d/2 + 1)(t− τ)−d/2−2 exp

[
− |x− ξ|

2

4(t− τ)

]
− d

2
|x− ξ|2(t− τ)−d/2−3 exp

[
− |x− ξ|

2

4(t− τ)

]
+

1

4
(−d/2− 2)(t− τ)−d/2−3 exp

[
− |x− ξ|

2

4(t− τ)

]
+

1

16
|x− ξ|4(t− τ)−d/2−4 exp

[
− |x− ξ|

2

4(t− τ)

]
.
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Using a decomposition as in (A.1), each of the four terms on the right-hand side of the

equation above is bounded by

C(d)

(t− τ)γ|x− ξ|d+4−2γ
,

with different values of the constant C(d). To see that, we illustrate the process by estimating

the fourth term F :=
1

16
|x− ξ|4(t− τ)−d/2−4 exp

[
− |x− ξ|

2

4(t− τ)

]
as follows:

F =
|x− ξ|4

16(t− τ)γ

[
|x− ξ|2

t− τ

]d/2+4−γ

(|x− ξ|2)−d/2−4+γ exp

[
− |x− ξ|

2

4(t− τ)

]
≤ C(d) |x− ξ|4

16(t− τ)γ
|x− ξ|−d−8+2γ

≤ C(d)

(t− τ)γ|x− ξ|d+4−2γ
.

Consequently,

|∂τ∆xw(x, t; ξ, τ)| ≤ C(d)

(t− τ)γ|x− ξ|d+4−2γ
.

100



Appendix B

Matlab code for the inverse source problem

We present MATLAB code for the main program computing the approximate solutions

of the inverse source problem in Chapter 3. We refer to Section 3.4 for an outline of the

algorithm. For an illustration of the program output, we plot the exact and approximate

exponential source functions in Figure B.1.

Listing B.1: Main program.

f unc t i on [ p , e , t , t l i s t , u exact , u approx , source exac t , source approx , L2u error , ...

s ou r c eL2 e r r o r ] = inve r s eSourc e (N, hmax ,T)

% This f i l e shows how to s o l v e the i n v e r s e source problem 'ut − l a p l a c e (u) = f ( t ) ' s u b j e c t s

% to zero i n i t i a l and zero D i r i c h l e t boundary c o n d i t i o n s on the domain 'Omega x [ 0 ,T] ' where

% 'Omega' i s a 2D s p a t i a l domain implemented in the f i l e ' geometryInverseSource .m' . The mesh

% i s d i s c r i b e d by 'p' ( matrix o f po in t s ) , 'e '( matrix o f edges ) and 't '( matrix o f t r i a n g l e s ) .

% 'T' i s the f i n a l time . 'Hmax' i s the max mesh s i z e . 'N' i s the t o t a l number o f time s t ep s .

% Cal l the geometry cons ide r ed to s o l v e the PDE

[ dl , numberOfEdges ] =geometryInverseSource ( ) ;

% Boundary Condit ion vec to r 'dir i ch le tBC ' f o r each edge : MATLAB employs the D i r i c h l e t

% boundary cond i t i on h*u = r , and the Genera l i zed boundary c o n d i t i o n s

% n\ cdot ( c *\ nabla u) + q*u = g . In our case , u = 0 on the boundary , h = 1 , r = q = g = 0 .

r = '0' ;

d i r i ch l e tBC = [ 1 1 1 1 1 l ength ( r ) '0' '0' '1' r ] ' ;

% The f i r s t row o f d i r i ch l e tBC r e p r e s e n t s the number o f PDE; the second row conta in s the

% number o f D i r i c h l e t boundary cond i t i on ; the th i r d row conta in s the l ength f o r the s t r i n g s

% r e p r e s e n t i n g q ; the four th row conta in s the l ength f o r the s p r i n g s r e p r e s e n t i n g g ; the

% f i f t h row conta in s the l ength f o r the s t r i n g s r e p r e s e n t i n g h ; the s i x t h row conta in s the

% length f o r the s t r i n g s r e p r e s e n t i n g r . The f o l l o w i n g rows conta in text e x p r e s s i o n s

% r e p r e s e n t i n g the ac tua l boundary c o n d i t i o n s f o r q , g , h , r , r e s p e c t i v e l y .

% b : boundary Condit ion matrix that r e p r e s e n t s a l l o f the boundary segments

b = repmat ( d i r i ch letBC , 1 , numberOfEdges ) ;

% ' in itmesh ' gene ra t e s a mesh on the domain 'Omega'
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[ p , e , t ] = in i tmesh ( dl , 'Hmax' ,hmax) ;

% 'tau ' i s the time step f o r the d i s c r e t i z a t i o n . ' t l i s t ' conta in s the t imes at which the

% p a r a b o l i c s o l u t i o n i s computed . 'u0' i s the i n i t i a l cond i t i on

tau = T/N; t l i s t = 0 : tau :T; u0=ze ro s ( s i z e (p , 2 ) , 1 ) ;

% Def ine c o e f f i c i e n t s f o r the PDE 'ut − l a p l a c e (u) = f ( t ) ' .

a = 0 ; c = 1 ; d = 1 ; f = @source ;

% 'parabo l i c ' s o l v e s a p a r a b o l i c problem . 'u exact ' i s the s o l u t i o n o f the cont inuous PDE

u exact = p a r a b o l i c ( u0 , t l i s t , b , p , e , t , c , a , f , d ) ;

% I n t e r p o l a t e the s o l u t i o n u exact from node data to t r i a n g l e midpoints data

u i n t e r p = pde intrp (p , t , u exact ) ;

% Compute the area o f each t r i a n g l e in the mesh . 'pdetrg ' r e tu rn s the area o f each t r i a n g l e .

area = pdetrg (p , t ) ;

% Find mu( t ) , the i n t e g r a l o f the s o l u t i o n over the s p a t i a l domain 'Omega' .

mu = ze ro s (1 ,N+1) ; % Al l o ca t e mu

f o r k = 1 :N+1

mu( k ) = dot ( area , u i n t e r p (k , : ) ) ;

end

% ' source exac t ' i s the known source supp l i ed to s o l v e the d i r e c t problem

s ou r c e e xa c t = source (p , t , u exact , t l i s t ) ;

% Def ine the PDE c o e f f i c i e n t s f o r ' u t i l d e − tau * l a p l a c e ( u t i l d e ) = tau '

c = tau ; a = 1 ; f = tau ;

% 'assempde ' assembles s t i f f n e s s matrix K, the mass matrix M and r i g h t s i d e F o f PDE

% problem . Q, G, H and R are c o n t r i b u t i o n s from the boundary

[K,M, F,Q,G,H,R] = assempde (b , p , e , t , c , a , f ) ;

u t i l d e = assempde (K,M, F,Q,G,H,R) ;

% I n t e r p o l a t e the s o l u t i o n u t i l d e from node data to t r i a n g l e midpoint data

u t i l d e i n t e r p = pde intrp (p , t , u t i l d e ) ;

% Find the i n t e g r a l o f the s o l u t i o n u t i l d e

mu t i lde = dot ( area , u t i l d e i n t e r p ) ;

% u hat i s the s o l u t i o n o f the a u x i l i a r y problem 'u hat ˆk − tau *Laplace ( u hat ˆk ) = uˆ{k−1}'

% 'mu hat ' i s the i n t e g r a l o f 'u hat ˆk'
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u hat = ze ro s ( s i z e (p , 2 ) ,N+1) ;

u h a t i n t e r p = pde intrp (p , t , u hat ) ;

mu hat = ze ro s (1 ,N+1) ;

% u approx i s the approximate PDE s o l u t i o n from the scheme

% ' source approx ' i s the approximate source term obtained from the scheme

u approx = ze ro s ( s i z e (p , 2 ) ,N+1) ;

source approx = ze ro s (1 ,N+1) ;

% Calcu la te the approximate s o l u t i o n s

f o r k = 1 :N

F = source approx ( k ) *M* u t i l d e + M*u hat ( : , k ) ;

u hat ( : , k+1) = assempde (K,M, F,Q,G,H,R) ;

u h a t i n t e r p ( k +1 , : ) = pde intrp (p , t , u hat ( : , k+1) ) ;

mu hat ( k+1) = dot ( area , u h a t i n t e r p ( k +1 , : ) ) ;

source approx ( k+1) = (mu( k+1) − mu hat ( k+1) ) / mu t i lde ;

u approx ( : , k+1) = source approx ( k+1)* u t i l d e + u hat ( : , k+1) ;

end

% Compute the L2 e r r o r in u exact

u approx in te rp = pde intrp (p , t , u approx ) ;

u e r r o r = u i n t e r p − u approx in te rp ;

L2u e r ro r squa re = ze ro s (1 ,N+1) ;

f o r k=1:N+1

L2u e r ro r squa re ( k ) = dot ( area , ( abs ( u e r r o r (k , : ) ) ) . ˆ 2 ) ;

end

L2u er ror = s q r t ( t rapz ( t l i s t , L2u e r ro r squa re ) ) ;

% Error in the source s ou r c e e xa c t

s o u r c e d i f f e r e n c e = source approx − s ou r c e e xa c t ;

s o u r c e d i f f e r e n c e s q u a r e = ( abs ( s o u r c e d i f f e r e n c e ) ) . ˆ 2 ;

% ' trapz ' r e tu rn s the approximate i n t e g r a l v ia the t r a p e z o i d a l method

s o u r c e e r r o r s q u a r e = trapz ( t l i s t , s o u r c e d i f f e r e n c e s q u a r e ) ;

s ou r c eL2 e r r o r = s q r t ( s o u r c e e r r o r s q u a r e ) ;

% Write the source func t i on as a nested func t i on : here we use an exponent i a l f unc t i on

func t i on S = source (p , t , u0 , time )

S = exp ( log (5 ) * time ) − 1 ;

end

end

103



Listing B.2: Geometry file.

f unc t i on [ dl , numberOfEdges ] = geometryInverseSource ( )

% x−coo rd ina t e s o f v e r t i c e s o f the polygon in mm

X =[.201 1 .871 4 .893 5 .757 6 .909 7 .139 6 .477 6 .001 5 .469 5 .268 2 .678 2 .203 1 .583 .737 0 ] ;

% y−coo rd ina t e s o f v e r t i c e s o f the polygon in mm

Y =[.000 .139 .000 .083 .139 1 .225 2 .088 2 .562 3 .063 4 .417 4 .029 2 .562 2 .133 1 .866 . 2 5 0 ] ;

% Number o f l i n e segments on the boundary o f the polygon

numberOfEdges = s i z e (X, 2 ) ;

% Code f o r gene ra t ing the polygon : row 1 conta in s 2 , which i s the number code f o r polygon .

% Row 2 conta in s the number 'numberOfEdges ' o f l i n e segments on the

% boundary o f the polygon . The next 'numberOfEdges ' rows conta in the

% x−coo rd ina t e s o f v e r t i c e s . The next

% 'numberOfEdges ' rows conta in the y−coo rd ina t e s v e r t i c e s

polygon = [ 2 numberOfEdges X Y] ' ;

% 'decsg ' ana lyze s the Const ruct ive S o l i d Geometry model drawn and

% c o n s t r u c t s a s e t o f d i s j o i n t minimal reg ions , bounded by boundary

% segments and border segments . . .

d l = decsg ( polygon ) ;

end
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Listing B.3: Demonstration file.

% This program computes approximate s o l u t i o n s o f the i n v e r s e source problem .

% We only p l o t the exact and approximate exponent i a l s ou r c e s . The main

% func t i on i s implemented in ” inve r s eSource .m” , which c a l l s the domain implemented in

% ” geometryInverseSource .m” .

c l o s e a l l

hmax = 0 . 0 5 ; N = 50 ; T = 1 ;

[ p , e , t , t l i s t , u exact , u approx , source exac t , source approx , ...

L2u error , s ou r c eL2 e r r o r ] = inve r s eSourc e (N, hmax ,T) ;

f i g u r e ;

p l o t ( t l i s t , s ource exac t , 'b−' , t l i s t , source approx , 'r−−' )

l egend ( 'Exact source ' , 'Approx source ' , 'Locat ion ' , 'north ' )

x l a b e l ( ' time ' )

y l a b e l ( 'Source f u n c t i o n s ' )

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

0

0.5

1

1.5

2

2.5

3

3.5

4

S
ou

rc
e 

fu
nc

tio
ns

Exact source
Approx source

Figure B.1: Output of the program: approximation of the source f(t) = 5t − 1.
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