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Abstract

The description and control of the relative motion of spacecraft has attracted a great
deal of attention over the last five decades. This is as a result of its numerous applications
in rendezvous and proximity operations, spacecraft formation flying, distributed spacecraft
missions etc. Generally, the linearized, simplified model of the relative motion is described
using time-invariant, Hill-Clohessy-Wiltshire (HCW) equations developed in 1960s. This
model was based on the assumptions that, the chief and deputy spacecraft are in close
proximity and the chief spacecraft is in a near circular orbit.

The HCW equations have the disadvantage of not being able to capture the relative
dynamics over a long period of time or large separations. Hence, several new models and
equations of motion have been developed. In this work, two new linearized models of the
relative motion based on the harmonic balance and averaging methods are developed. Nu-
merical solutions show that the models can provide better approximations to the relative
motion than the HCW model.

Another innovative contribution of this dissertation is the development of closed-form
solutions of Riccati-type and Abel-type nonlinear spacecraft relative motion arising from the
second and third order approximation of the variation of the true latitude rate. The results
are new, closed-form analytical solutions of the true anomaly variation with time which give
a better understanding of the relative motion than using Cartesian coordinates.

Feedback controllers are designed for the relative motion via State Dependent Riccati
Equation (SDRE) control strategy. The key interest in the use of SDRE strategy is its ability
to provide an effective algorithm for synthesizing nonlinear feedback controls by allowing for
nonlinearities in the system states, while offering design flexibility through state dependent

weighting matrices.
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A human being is part of the whole, called by us the “Universe”, a part limited in time and
space. He experiences himself, his thoughts and feelings as something separated from the
rest, a kind of optical delusion of his consciousness. This delusion is a kind of prison for us,
restricting us to our personal desires and to affection for a few persons nearest us.

Our task must be to free ourselves from this prison by widening our circles of compassion
to embrace all living creatures and the whole of nature in its beauty.

~ Albert Einstein ~
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Chapter 1

Introduction

Insight into the orbital dynamics of spacecraft in close proximity can be gained by
linearizing the spacecraft relative equation of motion and ignoring the long-term effects of the
natural perturbation forces such as solar radiation pressure, atmospheric drag, nonsphericity
of the Earth (J; effects) etc. Relative motion studies have focused on linearized equations
and this approach has been used for decades to analyze very close proximity operations
[1,2]. The Hill-Clohessy-Wiltshire (HCW) equations describe a simplified model of orbital
relative motion and make two key explicit assumptions: deputy and chief spacecraft in close
proximity and a circular chief orbit. They are used for near-field rendezvous and proximity
operations. The assumption of a circular orbit presents a problem in modeling formation of
satellites in an elliptical orbit. Nonetheless, HCW-like techniques are still used.

Generally, the relative orbit is described using Hill frame coordinates with which it is
difficult to obtain precise orbit geometry [3]. Parameterizing the relative motion using the
Keplerian orbital elements simplifies the orbit description better than the use of Hill frame
coordinates. Rather than using position and velocity, the use of orbital elements has benefit
of having only one term (anomaly) that changes with time out of the six orbital elements,
and this reduces the number of terms to be tracked from six to one.

In this dissertation, third order (cubic) polynomial approximation of spacecraft relative
motion is developed. Two new linearization models are obtained by applying harmonic bal-
ance method and averaging technique to the cubic approximation. Also, this work presents
third order (Abel-type) and second order (Riccati-type) approximation of nonlinear differ-
ential equations describing the dynamics of the relative motion of deputy spacecraft with

respect to the chief spacecraft in terms of the orbit element differences. From this, two new



analytical solutions are developed. In addition, feedback controllers are designed via state
dependent Riccati equation (SDRE) technique.

This dissertation is organized as follows. Chapter 1 gives introductions on coordinate
systems and transformations, conversions between orbital elements to position and velocity,
spacecraft relative equations of motion, harmonic balance method, averaging method and
state dependent riccati equation. The derivation of the cubic approximation model of space-
craft relative motion is given in Chapter 2. Chapter 3 describes harmonic linearization of
spacecraft relative motion, while Chapter 4 describes the development of averaging model of
spacecraft relative motion. In chapter 5, closed-form solutions of Abel-type and Riccati-type
equations of relative motion, and the design of SDRE controllers are described in Chapter

6. The conclusions are given in Chapter 7.

1.1 Coordinate Systems and Transformations

1.1.1 Coordinate Systems

In principle, any coordinate system can be used for space mission geometry problems.
However, selection of the proper reference coordinates is often critical to developing a good
physical understanding, obtaining analytic expressions for key mission parameters, and re-
ducing the probability of error. Coordinate axes consist of three mutually perpendicular
axes that describe the three-dimensional coordinates of all points in space. For space appli-
cations, coordinate systems are often labeled using the location of a origin and the directions
of the coordinate axes. Typically, we choose the Earth’s center as the origin for problems in
orbit analysis or geometry on the Earth’s surface and the spacecraft’s position for problems
concerning the apparent motion of objects as seen from the spacecraft. The fundamental
plane (that is the Equator) contains the x-axis. The reference direction defines the x-axis.
The z-axis is in the direction normal to the fundamental plane and the y-axis completes the

right-hand orthogonal system.
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Figure 1.1: Earth Centered Inertial (ECI) Frame

Occasionally, coordinates are centered on a specific spacecraft instrument when we are
interested not only in viewing the outside world, but also in obstructions of the field of
view by other spacecraft components. Typical ways to fix the rotational orientation of a
coordinate system are with respect to inertial space, with respect to axes fixed in the Earth
or some other object being viewed, to the spacecraft, or to an instrument on the spacecraft.

Several coordinate systems are further described below.
(a) Earth Centered Inertial Frame (ECI)

The Earth Centered Inertial (ECI) frame, also referred to as the geocentric equatorial
coordinate system, is assumed to be inertially fixed in space but, in practice, it is slowly
shifting over time. Since a truly inertial system is impossible to realize, the standard J2000
system is adopted as the best representation of an ideal, inertial frame at a fixed epoch [3,4].
The shift of this frame is so slow relative to the motion of interest that it can reasonably be
neglected.

The fundamental plane is the Earth’s equatorial plane and the positive X-axis points in
the vernal equinox direction. The Z-axis points in the direction of the celestial north-pole
while the Y axis completes the orthogonality. The XYZ system is not fixed to the earth and
turning with it; rather, the geocentric equatorial frame is nonrotating with respect to the
stars (except for precession of the equinoxes) and the earth turns relative to it. The unit

vectors i, J , K lie along the X)Y and Z axes, respectively, and will be useful in describing
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Figure 1.2: Perifocal Coordinate System

vectors in the geocentric-equatorial system. Figure 1.1 shows Earth Centered Inertial Frame.
The position of a point in the ECI frame can be specified by either Cartesian coordinates or
inertial spherical coordinates. The scalar R is the distance between the center of the Earth

and the spacecraft. The Cartesian coordinates X,Y,Z are defined as

R=XI+YJ+ZK (1.1)

(b) Perifocal Coordinate System

In the perifocal reference frame, the x axis points at periapse, the z axis is normal to
the orbit plane, and the y axis completes the right-hand system. The perifocal unit vectors

attached to inertial coordinate axes can be represented as i,j, k and can be defined as follows:

i=¢
L _h
j:in:fﬁiE'

Here, e is the eccentricity vector and h is the angular momentum vector. The direction
cosine matrix that defines the orientation of the perifocal system with respect to the inertial
system is

(1.3)

[Cpr] = [ i

i o)
o)
=
_
| — |
oo
==
X [X
oo
==
—_
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Figure 1.3: Hill Reference Frame

Figure 1.2 shows the perifocal coordinate system. The position and velocity vectors can

be expressed as
rppr = Rcos fi + Rsin fj + 0k
A 3 (1.4)
VPER = \/% [— sin fl —+ (6 -+ cos f) .]}
where rppr and vpgrg are the position and velocity vectors in perifocal frame, f is the true

anomaly, p is the gravitational parameter, p is the semi-latus rectum and e = |e|.
(c) Hill Reference Frame

This is a local rotating frame whose origin coincides with the motion of the reference
trajectory. This frame, shown in Figure 1.3, is used to define the relative motion of a

spacecraft about a reference trajectory. The coordinates i,j, k can be expressed as

T _ R
1= 0

[R|
i _ RxV _ h 1.5
k_|R><V|_|h\ (1.5)
2 _ o _ hx
J-le——lthl

where, R and V are the position and velocity vectors of the reference trajectory. This frame

is also known as Local-Vertical Local-Horizontal (LVLH) frame.



1.1.2 Reference Frame Conversions

Rotation matrices are used to rotate a set of coordinates about an axis with a certain
angle 6. The following 3-by-3 matrices describe rotations about the z—, y— and z— axes,

respectively.

1 0 0 cosf) 0 —sind
Ci(0)=|0 cosf sinf |,Ca(0)= 0 1 0
0 —sinf cosb sinf 0 cosf
(1.6)
cosf) sinf 0
Cs(0)=| —sinf cosf 0
0 0 1

(a) Transformation from Perifocal frame to ECI frame

The Perifocal coordinates can be reached from ECI via three rotations:
i) Rotate Q about k
ii) Rotate ¢ about i

iii) Rotate w about k

where € is the right ascension of ascending node, ¢ is the inclination and w is the argument
of perigee. Rotating coordinates has the opposite effect of rotating the vector. Thus, in

ECI frame we have

epcr = Cg (Q) C1 (Z) Cg ((JJ) rYPER (17)

where rgc; is position vector in ECI frame.



The transformation matrix from Perifocal to ECI is

[Crp] = C5(©2) C1 (i) Cs (w)

coslcosw —sinsinwcosi —cos{)sinw —sinf)coswcossi  sin §2sin?

(1.8)
= | sinQsinw + cosQ2sinwcosi —sinsinw + cos 2 cosw cost — cos (2sint
sin wsing cos wsing cos1
while the transformation matrix from ECI to Perifocal is
[Cpi] = [Crp]™ = [Crp]" (1.9)
Therefore, position and velocity in ECI frame can be expressed as
rcos f
rpcr = [Crp] | rsin f
0
(1.10)

— (ﬁ) sin f
vior = [Crp] (ﬂ) (e + cos f)
0

The transformation from the perifocal frame to ECI is achieved using the transpose of [C;p].
(b) Transformation from Orbital frame to ECI frame

A satellite orbit is typically defined using six Keplerian orbital elements which, with the
exception of the true anomaly angle, have the advantage of being constant in time (assuming
the satellites are modeled as point masses and are not subjected to orbital perturbations).
If orbital propagation is conducted in the ECI frame it is necessary to convert the satellite
orbits from orbital elements into Cartesian position and velocity vectors in the ECI frame

at the start of any simulation.



If the Keplerian (i.e. unperturbed) initial position and velocity of a satellite is given in

the orbital frame as

cos f
ro=7T Sil’lf
0
- (1.11)

—sin f

Vo:\/% e+ cos f
0

where 7 = p/ (1 + ecos f), then the rotation of these vectors into the inertial frame is

R; = [Cio|ro = [Cor] ro = [Cs (w) C1 (i) Cs ()] ro
Vi =[Cio]vo

(1.12)

where R; and V; are the inertial position and velocity.
(c) Conversion between Inertial and HCW Coordinates

The deputy spacecraft’s position vector can be determined from the inertial position
using the expression
Rp = [Cu1l p1 (1.13)

T T
where, p; = Rp — R¢e, Rp = {XD Yy ZD] and Rgs = {Xc Yo ZC} are the

deputy and chief spacecraft inertial position vector and [Cyy| is the rotation matrix from
the ECI frame to the Hill frame given by

Rco [Ho xRe| Hg

[CHI]:{)A( vy i}:

Re  HoxRe Hc} (1.14)

Here, H¢ is the chief’s angular momentum per unit mass. The subscripts “D” and “C”

represent deputy and chief spacecraft. The rotation matrix from the Hill reference frame to



the ECI frame is
[Cru] = [Cui] ™! = [Cui)” (1.15)

In the Hill frame, the relative velocity can be expressed as
T
p'Hz[j; i z} (1.16)
while in the inertial frame it can be expressed as
pr=Rp—Re=Vp—Vg¢ (1.17)

The conversion of the relative position and velocity from ECI frame to HCW frame is

=|C
- _[ il pr (1.18)
Vu=pn= {CHI} pr+ [Cuil pr
and the inverse transformation is given as
= [Cyyl"
pr =Gl pu (1.19)

. > T .
Vi=pr= [CHI] PH + [CHI]T,OH
1.2 Conversion from Orbital Elements to Position and Velocity and Vice-Versa

In this section, procedures for the conversion of orbital elements to position and velocity

and vice-versa are shown.

1.2.1 Conversion from Orbital Elements to Position and Velocity

The steps highlighted below can be used to solve for the position vector R and velocity
vector V in geocentric equatorial coordinate system given the orbital elements: semi-major
axis, a, eccentricity, e, inclination, ¢, argument of perigee, w, right ascension of ascending

node, 2 and true anomaly, f.



a) Calculate the position R

a(l—e?)

R =
1+ ecos f

(1.20)

b) Calculate the position and velocity in perifocal frame using Eq. (1.4).
c) Calculate the transformation matrix using Eq. (1.8).

d) Calculate the ECI position and velocity vectors

R = [C]p]l‘pER:Xi+Yj+ZK
e e (1.21)
V = [CIP]VPER:XI+YJ+ZK

1.2.2 Conversion from Position and Velocity to Orbital Elements

Tracking stations provide R and V in geocentric equatorial coordinate system and they
can be used to solve for the classical orbital elements a, €, 7, (), w, f using the steps highlighted

below.

a) Calculation of eccentricity

e:<%_%)R—i(R'V)V (1.22)

e = exi -+ eyj -+ eZK

where e is the eccentricity vector, position R = |R|, and e,, e,, e, are the x, y and z

components of e.

b) Calculation of semi-major axis

where hy, hy, h. are the x, y and z components of the angular momentum vector h.

10



c)

Calculation of inclination angle

Since ¢ is the angle between h and K

h-K=|h

(1.24)
i = cos ! (%) a<T
Calculation of longitude of the ascending node

Since (2 is the angle between N and I

N=Kxh=NJI+N,J=-hI+h,J
(1.25)

Ng
N

N = |N|7Ni: |N| ‘i’COSQ:Nz’Q:C()Sfl (4)
If N,>0,Q<mandif NV, <0, > 7.

Calculation of argument of periapsis

Since w is the angle between N and e

N:-e=|N||e|cosw

= -1 (Ne
w = Cos (Ne>

(1.26)

Ife,>0,w<m andife, <0,w > .

Calculation of true anomaly

Since f is the angle between e and R

e-R =|e||R|cos f

(1.27)
f=cos™? (%)

FR- V<0, f>mandif R-V >0, f <m. All angles are in radian.
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1.3 Spacecraft Relative Equations of Motion

The relative orbital motion problem of a deputy spacecraft with respect to a chief
spacecraft is, usually, described using a set of differential equations of motion governing the
motion of the spacecraft relative to each other instead of describing their motion, separately,
relative to the Earth. A simplified model of the relative motion dynamics, valid only for
a chief in a circular orbit, is given by the time-invariant Hill-Clohessy-Wilshire (HCW)
equations in a Cartesian, rotating, Local Vertical, Local Horizontal (LVLH) coordinates.

As shown in Figure 1.4, a local-vertical /local-horizontal frame (LVLH) with unit vectors
(i,j, R), referred to as Hill frame, is attached to the chief. The in-plane motion is defined
by x and y while the out-of-plane motion is defined by the z axis. The inertial equation of

motion is given as

R=-LR (1.28)

Expressed in the Hill frame, the deputy’s position relative to the chief is given by p =
(x,y, z)T and the angular velocity of the frame is w = fk = T%IA( The position of the deputy

spacecraft relative to the center of the gravitational field is given by
r=R+p=(R+az)i+yj+zk (1.29)
Using the gravitational force, we have
i = _7% [(R+ )1+ 95 + 2K] (1.30)

Differentiating Eq. (1.29) twice with respect to time in the inertial frame we have

i=(i-2fy— fy— o+ (R—f°R))i+ (j+2fi+ fo— fy+ (Rf + 2Rf))j+ 2k
(1.31)

12



The chief spacecraft position vector relative to the Earth (orbit radius) can be written as
R = Ri (1.32)

Upon substitution of Eq. (1.32) into the relative equation of motion in Eq. (1.28) we can

express acceleration of the chief spacecraft as
R=—i (1.33)

Twice differentiation of Eq. (1.32) gives

R=(R-f*R)i+ (/*R+2fR)] (1.34)

Using the chief position vector (Eq. 1.32) and velocity v = Ri+R f , and taking the cross

product of R and V the angular momentum yields
h=Rxv=Rfk (1.35)

The angular momentum h is a constant, and the orbital motion lies in a plane perpendicular

to h. Differentiating the scalar form of Eq. (1.35),h = R2f, we have
ﬁ(h):i(RQf)zRmef:o (1.36)
dt dt '
Using Eqgs. (1.33), (1.34) and (1.36) then Eq. (1.31) can be rewritten as

i = (- 20y~ fy— fPo— 5 )i+ (5+ 2 + fa - )]+ 2k (1.37)

13



Deputy
Spacecraft

Orbit of the Deputy
Spacecraft

D Chief
Spacecraft

Periapsis

Elliptic Reference Orbit
of the Chief Spacecraft

Figure 1.4: Relative Motion of Deputy with respect to Chief Spacecraft in Elliptical Orbit

Equating Eq. (1.30) and Eq. (1.37) gives

P-2fy—fy—flo—f=—4%(R+x)

r

j+2fi+ fr— fry=—Ly (1.38)
i=—%z

T

Egs. (1.38) are the three second-order nonlinear differential equations of relative motion for
a chief in an elliptical orbit.
1.3.1 Spacecraft Linearized Relative Equation of Motion

The deputy spacecraft orbital radius is

r—R(l—i—Rx—l—I ]y%Q - (1.39)

If we assume that the distance of the deputy from the chief orbit is small compared to the
chief orbit radial distance, i.e. (2* + y* + 2?) < R?, then neglecting higher order terms gives

2m>1/2

~ R(1
" <+R

(1.40)
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We can express %, using a binomial series expansion and neglect second-order and higher

order terms, as
poop 295)—3/2 u ( w)
-~ =14+ — ~—|1—-3= 1.41
r3 R3< * R R3 R (1.41)

Therefore, retaining only linear terms, the following three approximations are made

—E(R+1z)~ —45 (R —2x)

_T%y i~ —%y (1.42)
—hrm —4s2

Substituting Eqgs. (1.42) into Egs. (1.38) yields

i—2fy— (f+ )z fy=0
j+2fi— (2= 4)y+fo= (1.43)
P4+ $52=0

These are the spacecraft linearized relative equations of motion with respect to an elliptical

reference orbit. In state-space form, these can be written as the following.

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
X = - ) ‘ x = A(t)x (1.44)
(f2+ %) f 0 0 2f 0
-f (fP-4) 0o -2f 0 0
0 0 &0 0 0

T
The state matrix A(t) and the state vector x = { r Yy z & U 2 are time-varying

function. Also, the parameters f , f and R are time-varying, periodic coefficients.
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1.3.2 Hill-Clohessy-Wiltshire (HCW) Equations

The relative motion of a deputy spacecraft with respect to a chief spacecraft that is
in a circular orbit about a central body can be described by the Hill-Clohessy-Willshire

differential equations for the relative motion. For a circular orbit, using the parameters

f=0,f=n=/u/R3 f2=pu/R*=n? reduce Egs. (1.43) to

i —2ny —3nx =0
i+ 2nd =0 (1.45)

F4n?2=0

where n = (u/ R3)1/ ? is the mean motion of the chief orbit. Eqs. (1.45) are referred to as

the Hill-Clohessy-Wilshire equations. In state-space form, Eq. (1.45) can be written as

X = x = Ax (1.46)

L) sinnt — (2% + 3950) cosnt + 2 (y—s + 2$0)

(%
y(t) =2 (2% + 31‘0) sinnt + 2 (%0) cosnt + (yo - 2@) — 3 (Yo + 2nxo) t (1.47)
(

n

) sin nt + zg cosnt
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and its derivative is

& (t) = @ cosnt + (2yo + 3nw) sinnt
v (t) = 2 (290 + 3nxg) cosnt — 2 sinnt — 3 (Yo + 2nxo)

Z (t) = Zp cosnt — nzgsinnt

(1.48)

where zg, Yo, 2o and Zg, 3o, Zo are the initial relative position and velocity components.

From simple harmonic oscillator theory, Egs. (1.47) and (1.48) can be written in the mag-

nitude phase form as [4]

x (t) = —Acos (nt + ) + 2 (%0 + 2:BO>
y (t) = 2Asin (nt + o) + (yo - 2%) — 3 (Yo + 2nxg) t
z (t) = Bsin (nt + j3)

and
& (t) = nAsin (nt + «)

Y (t) = 2nAcos (nt + a) — 3 (9o + 2nxo)

z (t) = nBcos (nt + 3)

where the amplitude and phase angle of the radial and in-track oscillation are,

. 2 %, 2 .
A:\/(ﬂfo> +<y0+3m0),a:atan ,L
n n 29 + 3nxg

Similarly, for the cross-track oscillation

N
B =/2?%+ <ZO> , [ = atan (nzo)
n 20

(1.49)

(1.50)

(1.51)

(1.52)

The amplitude of the in-track motion is twice the amplitude of the radial motion, and their

oscillations are 90 degrees out of phase. That is, the in-track oscillation is a quarter of a

period ahead of the radial oscillation.
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1.4 Harmonic Balance Method (HBM)

Most real-life physical systems that are of importance in medicine, physical sciences,
and engineering researches are nonlinear. Therefore, the differential equations governing the
evolution of the system’s variables are nonlinear. Linear equations are easier to characterize
mathematically and the tools for their analysis are well developed. The same is not true
for nonlinear equations. However, there are methods for finding approximate analytical
solutions. In solving nonlinear equations, quadratic and cubic approximations methods can
be used to approximate complex nonlinear equations tat can further be linearized using
harmonic balance, floquet, homotopy perturbation etc. Many of these methods are based on
attempting to find a solution as a combination of well-known mathematical functions.

The harmonic balance method is one of the most straight forward practical methods
for estimating periodic solutions. It is used to find periodic and quasi-periodic oscillations,
periodic and quasi-periodic conditions in automatic control theory, as well as stationary
conditions, and in the studies of the stability of solutions. The essence of the method is to
replace the nonlinear forces in the oscillating systems by specially-constructed linear func-
tions, so that the theory of linear differential equations may be employed to find approximate
solutions of the nonlinear systems [9]. The harmonic balance method can be applied to both
standard and truly nonlinear oscillator equations. Using this method, it is easy to formulate
the functional forms for approximating the periodic solutions.

In this section, a brief review of the theory of harmonic balance method is presented.
Simple dynamical systems are linearized using harmonic balance method. The conventional
linearization method, often used in engineering practice and which is only valid in a narrow
strip around the linearization point, is compared with the harmonically linearized system

using numerical solutions.
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1.4.1 General Principle of Harmonic Balance Method

The general principle of harmonic balance method described below is adapted from
the Encyclopedia of Mathematics [9]. Consider a nonlinear perturbed oscillator differential
equation

F+wirtef(z,2)=0,(0<e<1) (1.53)

where ¢ is a small parameter. Let the nonlinear forcing function be

F(x,@) =¢f (z,2) (1.54)
Harmonic linearization is the replacement of F'(z, &) by the linear function

F(x,2) = kz + \& (1.55)

where the parameters k and A are computed by the formulas

k(a) == 2fﬂf (acost), —awsin)) cos dip
0

2T (156)
A(a) = —=== [ f(acos sy, —awsin)sinpdy
0

where ¢ = wt + 0. If x = acos (wt + 0), a= constant, w = constant, the nonlinear force

F (z,7) is a periodic function of time, and its Fourier series expansion contains an infinite

number of harmonics, having the frequencies nw, n =1,2,..., i.e. it is of the form
F(z,4) =) F,cos (nwt+ 0,) (1.57)
n=0

The term Fjcos(wt+0;) is called the fundamental harmonic of the expansion (1.57). The

amplitude and the phase of the linear function F; coincide with the respective characteristics
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of the fundamental harmonic of the nonlinear force. For the differential equation

i+wir+ F(z,i) =0 (1.58)

which is typical in the theory of quasi-linear oscillations, the harmonic balance method

consists in replacing F' (z, &) by the equivalent linear force in Eq. (1.55) to give

P4 i+ kz =0 (1.59)

where k; = k+w?. It is usual to call F; the equivalent linear force, A the equivalent damping
coefficient and £ the equivalent elasticity coefficient. It has been proved that if the nonlinear

equation (1.53) has a solution of the form

x = acos (wt + 6) (1.60)

where,

a =o(e),w=o(e) (1.61)

then the order of the difference between the solutions of (1.53) and (1.59) is 2. In the
harmonic balance method the frequency of the oscillation depends on the amplitude (through
the quantities k and \). Using traditional linearization about the origin we have F' (z,z) =0
and Eq. (1.53) becomes

i+wr=0 (1.62)

Comparing the harmonic linearization result in Eq. (1.59) with the traditional linearization
result in Eq. (1.62) it can be easily seen that harmonic linearization gave an improved result

with correction terms to the frequency of the system.
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The motivations for the study of harmonic balance method are to use the method to
study the dynamics of satellite relative motion and to develop an improved, harmonically

linearized model.

1.4.2 Illustration of Harmonic Linearization of Simple Systems

The harmonic linearization of several simple nonlinear oscillators is carried out in order

to demonstrate the effectiveness of the method.
(a) Undamped, Nonlinear Oscillator with Quadratic Nonlinearity

Consider the following unforced, undamped nonlinear oscillator containing quadratic
nonlinearity

P+ax+er?=0,20=A, ©o=0 (1.63)
The conventional and harmonic linearization of Equation (1.63) is as follows.
i) Conventional Linearization

Using conventional linearization about the origin the nonlinear part is zero, i.e. ex? = 0,

and the linearized equation becomes

i4+r=0 (1.64)

This equation has the solution

x(t) =acost+ bsin t (1.65)
ii) Harmonic Linearization
First-order harmonic balance approximation (HB1):

The solution in Eq. (1.65) is used as assumed approximate solution and can be expressed

as x (t) = A cos (t + ¢1) = Acos ¢ where ¢ = t+¢; and A = v/a? + b2. The nonlinear term is
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linearized using the solution, substituting the trigonometric identity cos?¢ = % (14 cos2¢)

and ignoring higher harmonic term cos 2¢, as follows
AQ A2
ex? = cA’cos’p = ¢ (2(1 + cos 2¢) ) ~ 87 (1.66)

Substituting Eq. (1.66) into Eq. (1.63) gives the equivalent linear equation

AQ
:t+x+87:0 (1.67)
This equation has the eigenvalues
s+1=0,8=+j (1.68)

Using the assumed solution, at t = 0, xg = Acos (¢1), o = —Asin (¢1), ¢1 = arctan (—i—g)
1/2
and A = [ZL'02 - (io)z} ?

Assumed solution with offset in z (HB 2):

For HB 2, the assumed solution is x(t) = Acos ¢ + Ag. Upon substituiton into the

nonlinear term we have
A2 A?
er? = e(Acosd+ Ag)’ ~ e <2 + 2ApAcos¢ + AS) =2cApr +¢ (2 — A%) (1.69)
Substituting Eq. (1.69) into Eq. (1.63) we have the following equivalent linear equation

A2
T4+ (14+2cA0)z+¢ <2—A(2)> =0 (1.70)
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Figure 1.5: Trajectory plots for & + 2z +e2?=0,e =01, 2 =1, 2 =0

Differentiating x(t) = Acos ¢ + Ay twice and substituting the result and Eq. (1.69) into Eq.
(1.63) yields

2
i+x+er? = —Acos ¢+ Acos ¢ + Ag + ¢ (é + 2ApAcos¢ + A§> =0 (1.71)

Eq. (1.71) reduces to

1
Ay + A3+ 55142 + 2cApAcos ¢ =0 (1.72)

Equating the constant part of Eq. (1.72) to zero gives

1
Ag+ eAZ + 5&42 =0 (1.73)

23



15
i N
4 \
1+ L7
e
o
05 — Nonlinear
H Nonlinear — — Conventional L L
f = = Conventional —-—-HB1 10 12
w af i —=wer oyl HB2 t(sec)
1
4 2
L TN P
e 1 £, LR
. \ y
R : /
> 0 N
At 1\ ;f
AN __..5" WA
N -
A5L - I ‘ [ L
a5 2 4 33 8 10 12
x ) t(sec)
P
1r — SN B AN
§ / \ /’Z_. . N - N \\ é
50—y o g _\\ / .\\\ - /
: - N N
At R 7‘/
—— Conventional
2 | — — HB1 \ \ \ ‘ ! ! |
0 2 [ HB2 g 10 12 14 16 18 20
t(sec)
2
' e /
T O[T T /f Oy Y
w 1 "// \ s Y //‘
AT - e/
2 I I I I I I . I I |
0 2 4 6 8 10 12 14 16 18 20
t(sec)
. . . .. 2 o . _
Figure 1.6: Trajectory plots for & +x +ex*=0,e =03,z =1,z

When A is small, neglecting A2 we have

1
AO = —55142

(1.74)

Figures 1.5 and 1.6 show velocities versus positions, trajectories of x and & versus time

and approximation errors of conventional linearization, HB 1 and HB 2. For ¢ = 0 and non-

zero initial conditions, irrespective of the models, the system becomes the normal harmonic

oscillator equation with sinusoidal solutions. As shown in the figures, the higher the value

of e, the greater the error in the linear approximation. The HB 2 has better results than

the conventional and HB 1 model, with lesser approximation error, because the offset in its

assumed solution contributed immensely to the better result.
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Small Initial Root Mean Square Error (RMSE)
Parameter Conditions
Conventional HB 1 HB 2
£ x T
sz Tpaw s Epygz Lz Ipmae
0 1 0 0 0 0 0 0 0
0.1 1 0 0.1842 0.1281 0.0414 0.0489 0.0168 0.0272
0.1 3 1 0.1656 0.1591 0.0884 0.1049 0.0648 0.0768
0.3 1 0 0.17173 0.6867 0.4704 0.4980 0.0968 0.1172
0.3 3 1 0.4423 1.3081 1.2903 1.1276 0.2338 0.2751

Table 1.1: Comparison of the root mean square errors (RMSE) of each of the model for
T+x+exr?=0

Table 1.1 shows the comparison of the root mean square errors (RMSE) of each model

calculated using RMSE = | [1 Zijl (z; — #;)° where z; is the true solution while Z; is the
approximated solution. For ¢ :] 7() (linear) all the models behaved like a simple harmonic
oscillator with zero RMSE. But, as the nonlinearity increases (¢ # 0) the RMSE in position
(xrymse) and velocity (fgysp) in the conventional model increases more than those of HB
1 and HB 2. As shown in the table, for different values of ¢, the HB 2 model has the least
amount of root mean square error. This shows that the model was able to capture the
dynamics, in a way, better than the other models. Although, as ¢ increases the error in HB

2 increases but not like that of HB 1.

(b) Undamped, Nonlinear Oscillator with Cubic Nonlinearity (Duffing

Equation)

Consider the following unforced, undamped nonlinear oscillator containing cubic non-
linearity

i+arter®=0m0=A, =0 (1.75)
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The conventional and harmonic linearization methods are applied to Equation (1.75) as

follows.
i) Conventional Linearization

Using conventional linearization about the origin the nonlinear part is zero, i.e. ex® = 0,

and the linearized equation becomes
i4+x=0 (1.76)
This equation has the solution
x(t) = acost + bsin t (1.77)
and eigenvalues s> +1 =0, s=4j.
ii) Harmonic Linearization
First-order harmonic balance approximation (HB1):

The solution in Eq. (1.77) can be expressed as x (t) = A cos (t + ¢1) = Acos ¢ where
¢ =t+ ¢, and A = +v/a? + b%. The nonlinear term is linearized using the solution, substitut-
ing the trigonometric identity cos®¢ = % cos ¢ + icos 3¢ and ignoring higher harmonic term

cos 3¢, as follows

A3 A?
i cos ¢ = 364 x (1.78)

1
ex® = eA’cos’p = e A’ (i cos ¢ + 708 3¢ ) ~

Substituting Eq. (1.78) into Eq. (1.75) we obtain harmonic balance model as

i+ (1 + iaAz) r=0 (1.79)
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Figure 1.7: Trajectory plots for & + 2z +e23=0,e =01, 2 =1, 2 =0
where the amplitude-frequency relationship and solution x(t) are given as

3cA?
4

2
W=11 ,x(t):Acos( 434 )t (1.80)

4

1/2
This equation has the eigenvalues s = (1 + %) / .
Assumed solution with offset in  (HB 2):

For the HB 2, the assumed solution z(t) = Acos ¢ + Ay with offset in z is used in the

harmonic linearization and the nonlinear term is linearized as follows

ex® = e(Acosp+ Ay)’ =« (A3cos3¢ + 3ApA%cos’p + 3AAZcosg + Ag) (1.81)
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Substituting the trigonometric identities cos®¢ = % coS gb—i—i cos 3¢ and cos?¢ = % (1 + cos2¢)

into Eq. (1.81) yields
ex <A3 {4 cos ¢ + 1 cos 3¢} + 3A0A2 {1+ cos2¢} + 3AAZcosp + A3> (1.82)

Eliminating the higher order harmonics and arrange the result in form of the assumed solu-

tion gives

ex® ~ 32 A% (Acos ¢+ Ag) + 3eAgA? + 3243 (Acos ¢ + Ag) — 2 A3

(1.83)
= (%SAQ + 3€A(2)) x+ 3eAgA? — 2e A
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Substituting Eq. (1.83) into Eq. (1.75) gives the equivalent linear equation
. 3 42 2 3 4 2 2
it <1+5{4A +3A0})x+5(4A0A —2AO) —0 (1.84)

Differentiating the solution z(t) = Acos ¢ + Ay twice and substituting the result and Eq.
(1.83) into Eq. (1.75) yields

i+a+exr® = —Acos ¢+ Acos ¢+ Ag+e <?1A3 cos ¢ + ;)AOAZ + 3AA3cosg + Ag) =0 (1.85)
Eq. (1.85) reduces to
3 2 3 3 3 2
Ag+e (2A0A + AO) +e€ (4A + 3AA0> cos¢p =0 (1.86)
Equating the constant part of Eq. (1.86) to zero and coefficient of cos ¢ to zero gives
3 2 3 3 43 2
Ao+ e <2A0A + A0> —0,e (4A + 3AA0) —0 (1.87)
Eq. (1.87) gives

1
A2 = —1A2 (1.88)

Figures 1.7 and 1.8 shows velocities versus positions, trajectories of x and & versus time
and the approximation errors in the conventional linearization, HB 1, and HB 2. For ¢ =0
and non-zero initial conditions, irrespective of the models, the system becomes the normal
harmonic oscillator equation with sinusoidal solutions. As shown in the figures, the higher
the value of €, the more the conventional model diverges from the nonlinear model. The HB
1 has better results than the conventional and HB 2 model because this system is a truly
nonlinear oscillator unlike the one with quadratic nonlinearity which performed better with

the inclusion of offset in the assumed solution.
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Small Initial Root Mean Square Error (RMSE)
Parameter Conditions
Conventional HB 1 HB 2
£ x T
sz Tpaw s Epygz Lz Ipmae
0 1 0 0 0 0 0 0 0
0.1 1 0 0.4955 0.3842 0.0031 0.0069 0.2877 0.3001
0.1 3 1 5.3242 5.0311 0.4275 0.6138 2.6356 3.3747
0.3 1 0 1.5025 1.2160 0.011 0.0215 0.7486 0.7417
0.3 3 1 11.1125 8.3347 1.4288 2.6678 0.9166 2.9863

Table 1.2: Comparison of the root mean square errors (RMSE) of each of the model for
T+x+erd=0

Table 1.2 shows the comparison of the root mean square errors (RMSE) of each model

A \2 . . . A .
L3 (xj — 2;)7, where z; is the true solution while Z; is the

calculated using RMSE = \/

o,
it

approximated solution. For ¢ = 0 (linear) all the models behaved like a simple harmonic
oscillator with zero RMSE. But, as the nonlinearity increases (¢ # 0) the RMSE in position
(xrymse) and velocity (£ garsp) in conventional model increases more than those of HB1 and
HB2.

As shown in the table, for different values of €, the HB 1 model has the least amount of
root mean square error. This shows that the model was able to capture the dynamics, in a
way, better than the other models. Although, as € increases the error in HB 1 increases but

not like that of HB 2.
(c) Undamped, Nonlinear System with Quadratic Nonlinearity

Consider the following unforced, undamped nonlinear oscillator with quadratic nonlin-
earity

i+er=0,20=A4, i9=0 (1.89)
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The conventional, harmonic and rectilinear linearizations are carried out on Eq. (1.89) as

follows.
i) Conventional Linearization

Using conventional linearization about the origin the nonlinear part is zero, i.e. ex? = 0,
and the linearized equation becomes

i=0 (1.90)

This equation has the unbounded solution
x(t)=a+bt (1.91)

and eigenvalues s = =40.
ii) Harmonic Linearization
First-order harmonic balance approximation (HB 1):

Using the solution z (t) = Acos ¢ the nonlinear term can be linearized as
A? A?
ex? = cA’cos’p = ¢ (2(1 + cos 2¢) ) ~ 87 (1.92)

Substituting Eq. (1.96) into Eq. (1.93) gives the equivalent linear equation

AQ
i+ 87 ~0 (1.93)

This equation has the eigenvalues s = +0.
Assumed solution with offset in (HB 2):

Using the solution z(t) = Acos ¢ + Ay the nonlinear term can be linearized as

A? A?
ex? = (Acos ¢ + AO)2 € (2 + 2ApAcos¢ + A3> = 2eApx + ¢ <2 — A3> (1.94)
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Figure 1.9: Trajectory plots for & +ex?* =0 =0.1,x =1, =0

The equivalent linear equation is
AQ
&+ 2eAgr + € (2 —A3> =0 (1.95)

Differentiating the solution x(t) = Acos ¢ + Ay twice and substituting the result and Eq.
(1.94) into Eq. (1.89) yields

2
i+ex® = —Acos ¢ + ¢ (é + 2ApAcos¢ + A%) =0 (1.96)
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Eq. (1.96) reduces to

A2
(—A+2cApA)cos ¢+ ¢ (2 + Ag) =0 (1.97)
Equating the constant part of Eq. (1.97) to zero gives
2 Lo

iii) Rectilinear Linearization
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This linearization approach is carried out using the solution x(t) = a+b t. Substitution

of this solution into the nonlinear term yields
ex’=¢ <a2 + 2abt + b2t2) =¢ (Za (a+bt) —a® + b2t2) ~ 2ear + € (—a2 + b2t2) (1.99)
Upon substitution of Eq. (1.99) into Eq. (1.89) we have
i+ 2eax + ¢ (—a? + b#2) = 0 (1.100)

At t = 0 we have the initial conditions o = a and g = b.

Small Initial Root Mean Square Error (RMSE)
Parameter Conditions
Conventional HB 1 HB 2 Rectilinear
£ x X
TRMsE Tpaese TRMSE * sy L rusE Fpuse XrusE L RusE
] 1 ] 0 o 0 ] o 0 0 o
0.1 1 0 5.7734 6.5551 | 4.6457 7.0861 1.5041 8.4680 6.4327 7.3036
0.1 3 1 16.2200 49.4404| 19.9718 52.2268 0.85474 60.2324 27.8619 54.0442
0.3 1 ] 11.1446 55.644 | 13.5306 56.5005 12.0384 59.9179 15.1535 56.7123
0.3 3 1 5.8840 23.6946| 7.0774 24,1499 8.8482 34.5626 13.1167 27.5117

Table 1.3: Comparison of the root mean square errors (RMSE) of each of the model for
i4ex®=0

Figures 1.9 and 1.10 show velocities versus positions, trajectories of x and & versus time
and approximation errors of conventional, rectilinear, HB1 and HB2 models. As shown in
the figures, the rectilinear and HB2 models behaved better than the HB1. The rectilinear
model gave a better approximation of the model than the other two models with lesser error.

Table 1.3 shows the comparison of the root mean square errors (RMSE) of each model

calculated using RMSE = \/ 1 '21 (z; — #;)° where z; is the true solution while Z; is the
]:

approximated solution. As the nonlinearity increases (¢ # 0) the root mean square error, in
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position (xgyse) and velocity (Zgayse), in rectilinear model increases more than those of

conventional, HB 1 and HB 2 models.
(d) Undamped, Nonlinear System with Cubic Nonlinearity

Consider the following unforced, undamped nonlinear oscillator with cubic nonlinearity
F4erd=0,20=A, =0 (1.101)

The conventional linearization, harmonic linearization and rectilinear linearization are car-

ried out on Eq. (1.101) as follows.
i) Conventional Linearization

Using conventional linearization about the origin the nonlinear part is zero, i.e. ex® = 0,

and the linearized equation becomes

=0 (1.102)

This equation has the unbounded solution
z(t)=a+0bt (1.103)

and eigenvalues of s = +0.
ii) Harmonic Linearization
First-order harmonic balance approximation (HB 1):

Using the solution is x(t) = Acos ¢ the nonlinear term is linearized as

3e A3 3e A2
cos ¢ = 1

1
ex® = eA3cos’p = A3 (3 cos ¢ + 1 cos 3¢ ) 2

; @ (1.104)
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Substituting Eq. (1.104) into Eq. (1.101) we obtain harmonic balance model

3
i+ ZeAQx =0 (1.105)
where the amplitude frequency relationship and solution x are given as
3 A2 3cA?
w? = 84 ,x(t) = Acos | 1/ €4 (1.106)

1/2
This equation has the eigenvalues s = :I:(#) / :

Assumed solution with offset in (HB 2):
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Figure 1.12: Trajectory plots for & +ex®* =0, =03,z =1,1 =0

Using the solution () = Acos ¢ + Ay the nonlinear term is linearized as follows
ex® =e(Acosp+ Ag)’ = ¢ (A3cos3gz5 + 3ApA%cos’p + 3AA2cosg + Ag) (1.107)

Substituting the trigonometric identities cos®¢p = % coS ¢+i cos 3¢ and cos?¢ = % (1 + cos2¢)

into Eq. (1.107) and eliminating the higher order terms yields

ex® ~ 3eA? (Acos g+ Ag) + 2cAg A% + 32 Af (Acos ¢ + Ag) — 2 A] (1.108)
= (%5142 + 35A3> x+ 3eAgA? — 2e A
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The equivalent linear equation is

I+e (2A2 + 3Ag) T+e <2A0A2 — 2A§) =0

(1.109)

Differentiating the solution z(t) = Acos ¢ + Ay twice and substituting the result and Eq.

(1.108) into Eq. (1.101) yields
4 exd = —Acos ¢+ ¢ (iA?’ cos ¢ + gAOA2 + 3AAZcosp + Ag) =0
Eq. (1.110) reduces to
(—A + iaAS—l—?)eAA%) cos ¢ +¢ <2A0A2 + AS) =0

From Eq. (111) we have

2 3 2
Small Initial Root Mean Square Error (RMSE)
Parameter Conditions
Conventional HB 1 HB 2 Rectilinear
El x ©
XrusE aese TrMsE X puese Lryse Tpyese XrusE LrusE
] 1 ] 0 o ] ] o ] 0 o
0.1 1 0 25.8940 3.5273 | 0.0703 0.0296 5.4798 0.5369 9.9393 1.1104
0.1 3 1 227.7839 30.2479| 0.3224 0.3859 58.5465 6.8192 20.5148 5.7623
0.3 1 ] 79.7478 10.3103| 0.099%8 0.0650 14.1955 1.8358 27.6079 3.5639
0.3 3 1 711.1128 92.4482| 1.7388 2.7145 147.6039 18.4945 20.2946 10.0462

(1.110)

(1.111)

(1.112)

Table 1.4: Comparison of the root mean square errors (RMSE) of each of the model for

F+exrd=0

iii) Reclinear Linearization
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This linearization approach is carried out using the solution x(t) = a + bt. Substitution

of this solution into the nonlinear term yields

ex® = e (a3 + 3a2bt + 3ab?t? + b3t3)

(1.113)
=g (a% + 3abt (a + bt) + b*t3) ~ 3ecabty + € (a® + b*t?)
Upon substitution of Eq. (1.113) into Eq. (1.101) we have
i+ 3eabtz + ¢ (a® + 1) = 0 (1.114)

At t = 0 we have the initial conditions g = a and ©q = b. Figures 1.11 and 1.12 show
velocities versus positions, trajectories of x and & versus time and approximation errors of
conventional, rectilinear, HB1 and HB2 models. As shown in the figures, the HB1 model
behaved well and gave a better approximation, with lesser error, than the other models.

Table 4 shows the comparison of the root mean square errors (RMSE) of each model

calculated using RMSE = \/}L > (z; — &;)* where z; is the true solution while #; is the
j=1

approximated solution. As the nonlinearity (¢ # 0) increases the RMSE, (xgysr) and veloc-

ity (Zrumse), in conventional, HB2 and rectilinear models increases more than that of HB1.

This shows that HB1 model is a better approximation model for this system.

1.5 Averaging Method

The formulation of the gravitational three-body problem as a perturbation of the two-
body problem by Lagrange in the late 18th century marked the beginning of the use of
averaging method. The method became one of the classical methods in analyzing nonlinear
oscillations after series of researches by Krylov, Bogoliubov, Mitropolsky etc. in 1930s. The
method is fairly general, thereby making it applicable to large number of nonlinear dynamical

systems and very useful because it is not restricted to periodic solutions. It can be used to
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obtain an approximate simplified system and to investigate the stability and bifurcation of

their equilibria (corresponding to periodic motions in the original system) [10-14].

1.5.1 Basic Idea of Averaging Method

The basic idea of the averaging method is as follows. Consider an equation of the form

i+ wr+ef(z,4)=0 (1.115)

where ¢ is a small parameter. For the case € = 0, using linear theory, the solution is

v = Asin (wt + ¢) (1.116)

T = wAcos (wt + ¢)

Egs. (1.116) are used as generating solutions. Krylov and Bogoliubov suggested that, for

smalle, the integration constants A and ¢ are slowly varying functions of time, that is,

A— At), ¢ — o(t) (1.117)

Using this fact, the generating solution takes the form

x = A(t)sin (wt + ¢(t)) (1.118)

T = wA(t) cos (wt + ¢(t))

Differentiating the first part of Egs. (1.118) and equating the result to the second part of
Egs. (1.116) gives
Asin (wt + ¢) + Ad cos (wt + ¢) = 0 (1.119)
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Figure 1.13: Averaging method steps

Differentiating the second part of Eqs. (1.122) and substituting the results and the second

part of Egs. (1.116) into Eq. (1.113) gives
A cos (wt + ¢) — Agsin (wt + ¢) = —gf (Asin (wt + ¢) ,wA cos (wt + ¢)) (1.120)

Averaging over one period we obtain

. 2m
A=—= [ f(Asinf,wAcosb)cosbdd
0

T 27w

(1.121)

2

. 27
¢=—5" /] f(Asinb,wAcos0)sin 0db
0

Under the integral A and ¢ are assumed to be time independent. This method has been

extensively used in plasma physics, control theory, theory of octillions etc.

1.5.2 Averaging Method Steps

The averaging method steps, diagramed in Figure 1.13, is based on attempting to find
approximate solution to a nonlinear equation. The polynomial approximation of the original
nonlinear equation contains two parts: linear terms and nonlinear terms. The solution of
the linear equation, known as the generating solution, is employed by the averaging method
to produce correction terms. The correction terms produce changes in amplitude or phase of
the generating solution. Combination of the correction terms with the generating solution

produces corrected solutions.
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1.6 State Dependent Riccati Equation (SDRE) Theory

In the SDRE approach for nonlinear control, a state-dependent coefficient (SDC) linear

structure is found and from this a stabilizing nonlinear controller is constructed.

1.6.1 Linear Quadratic Regulator (LQR)

The theory of optimal control is concerned with operating a dynamic system at minimum
cost. The case where the system dynamics are described by a set of linear differential
equations and the cost is described by a quadratic function is called the LQ problem. The
optimal control is provided by a linear-quadratic regulator (LQR), a well known control
systems design technique, used as a feedback controller to provide practical feedback gains.

Consider the linear time invariant (LTI) system
& = Ax + Bu, z(ty) = o (1.122)
and the performance index (cost functional)
J [zo,u] = /OOO {xTQa: + uTRu} dt,Q >0,R >0 (1.123)

where x(t) € R™ are the states, u(t) € R™ is the input (or control) vector, m < n, A € R**"
is the system matrix, B € R™*™ is the control input matrix, Q is an n X n symmetric positive
semidefinite matrix, R is an m x m symmetric positive definite matrix and n is the state
dimension.

Problem: The optimal control problem is to calculate the function u : [0, co] — R™ such

that J [u] is minimized. The LQR controller has the following form

u=—R*'BTPx(t) = —Kux(t) (1.124)
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where P € "*" is given by the positive (symmetric) semi definite solution of

0=PA+B"P+Q— PBR'B'P (1.125)

This equation is called the algebraic Riccati equation. It is solvable if the pair (A, B) is
controllable and (Q, A) is detectable.

In designing LQR controllers the following are of utmost importance for consideration:

a) LQR assumes full knowledge of the state z
b) (A, B) is given by design and cannot be modified

¢) (Q, R) are the controller design parameters. Large Q penalizes transients of z, large

R penalizes usage of control action u
d) A+ BK is Hurtwiz (asymptotically stable)
e) P is minimum in a certain sense

f) The associated J is minimized

1.6.2 State Dependent Riccati Equation (SDRE) Strategy

The LQR/LQG method is extremely powerful and widely used in applications where
linearizations of the nonlinear process representations are valid over large operating areas.
The State-Dependent Riccati Equation (SDRE) strategy provides an effective algorithm for
synthesizing nonlinear feedback controls by allowing for nonlinearities in the system states,
while offering design flexibility through state-dependent weighting matrices.

The SDRE method entails factorization of the nonlinear dynamics into the state vector
and its product with a matrix-valued function that depends on the state itself. In doing so,
the SDRE algorithm brings the nonlinear system to a non-unique linear structure having

matrices with state-dependent coefficients. The method includes minimizing a nonlinear
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performance index having a quadratic-like structure. An ARE, as given by the SDC matrices,
is then solved on-line to give the suboptimum control law. The coefficients of this Riccati
equation vary with the given point in state space. The algorithm thus involves solving,
at a given point in the state space, an algebraic state-dependent Riccati equation. The
non-uniqueness of the factorization creates extra degrees of freedom, which can be used to

enhance controller performance.
Extended Linearization of a Nonlinear System

Consider the deterministic, infinite-horizon nonlinear optimal regulation (stabilization)
problem, where the system is full- state observable, autonomous, nonlinear in the state, and

affine in the input, represented in the form

&= f(z) 4+ B(z)u,z(0) =z (1.126)

where € R" is the state vector, v € R™ is the control input vector, f(z) € C¥ and
B(x) € C¥ are smooth functions of approximate domain such that

(i) B(x) # 0 for all x

(i) £(0) = 0

Extended Linearization is the process of factorizing a nonlinear system into a linear-
like structure which contains SDC matrices. A continuous nonlinear matrix-valued function

always exists such that

flz) = A(x)x (1.127)

where A : R” — R™*" is found by algebraic factorization and is clearly non-unique when
n > 1. If A(z)x = f(z), then (A(x) + E(x))z = f(z) for any E(x) such that E(z)x = 0
Also, given A;(z)xr = f(x) and As(x)x = f(zx), then for any o € R

Az, ) = aAi(z) + (1 — a) Ay(z) = af(z) + (1 - ) f(z) = f(z) (1.128)
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is also a valid paramerization.
After extended linearization of the input-affine nonlinear system the constraint dynamics

can be written with a linear structure having state dependent coefficients
&= A(x)x + B(x)u,z(0) = xg (1.129)

which has a linear structure with state dependent matrices A(x) and B(z).
SDRE Method Formulation

Consider the minimization of the infinite-time performance criterionP(x) > 0
J [z0,u] = / 27 Q(2)z +u" R(x)u] dt, Q(x) > 0, R(x) > 0 (1.130)
0

The state and input weighting matrices are assumed state dependent. Under the specified
conditions, the LQR method is applied pointwise for (A(x), B(x)), (Q(x), R(z)) to generate

a nonlinear feedback control law, accepting only P(z) > 0,
u=—K(z)z(t) = R(x)"'Bz)" P(x)x(t), K : R" s R (1.131)
where P : R" — ™" satisfies
P(2)A(z) + A(x)"P(z) — P(2)B(2)R(z) ' B(2)" P(z) + Q(z) = 0 (1.132)

By applying this method one hopes to retain the good properties of the LQR control design
that the control law regulates the system to the origin, i.e.,lim;,..x(t) = 0, while keeping cost
low. Eq. (1.133) is the state-dependent algebraic Riccati equation (SDARE) associated with
the nonlinear quadratic cost function. Eq. (1.132) can be solved analytically to produce an
equation for each element of u, or it can be solved numerically at a sufficiently high sampling

rate.
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Main Stability Results

Assume that the following conditons hold [21, 22, 24]

1. The matrix valued functions A(z), B(z), Q(x), R(z) € C* (R").

2. The pairs (A(x), B(x)) and (A(x), QY 2(30)) are pointwise stabilizable, respectively,
detectable, state dependent parameterizations of the nonlinear system for all z € R". The

following theorems have been used to establish stability of the system.

Theorem 1.1 Under conditions of the Assumptions 1 and 2, the SDRE nonlinear feedback
solution and its associated state and costate trajectories satisfy the first necessary condition

for optimality of the nonlinear optimal regulator problem
u(z) = argmin H (x,\,u), A = P(x)z (1.133)

Theorem 1.2 Assume that all state dependent matrices are bounded functions along the

trajectories. Then, under the conditions of Theorem 1 the Pontriaguin optimality condition
A= —H (x,\u) (1.134)
is satisfied approximately by X = P(z)x at a quadratic rate along the trajectory.

1.6.3 SDRE Optimality Criterion

The performance index J is convex, so any stationary point is at least locally optimal.
From the performance index and constrained dynamics the Hamiltonian function can be

formed

H (2, \u) = ;xTQ(x)x +uT R(z)u+ AT [A(2)z + B(a)u] (1.135)
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with stationary conditions

AN=—H, (1.136)
&= A(z)r + B(z)u

Taking the derivative of Eq. (1.135) and using Eq. (1.131) we have

H, = R(z)u+ B (x)A = R(z) [~ R(z) "' B(x)" P(x)x| u+ BT (x)\

(1.137)
= B () [A — P(z)z]
This implies that for any choice of A
u(z) = —R(z) 'B(x)"\ = H, =0 (1.138)
where
A= P(x)x (1.139)

Satisfying Eq. (1.134) for all time will satisfy the H, optimality condition. Differentiating

Eq. (1.139) and dropping the notation (z) yields

A\ = P(z)x + P(x)i (1.140)
Using the optimality condition in Eq. (1.140) we have
: 1 1
A=—Qx— §ITQM — iuTqu - (a:TAf + AT + uTBf) A (1.141)

Using Egs. (1.140) and (1.141) we have

. 1 1
Pr+P (Ax — BR™'B"Px) = —Qm—ixTQxx—ﬁuTqu— (+"AT + A" + 2" PBR™'B]) Px

(1.142)
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After rearrangement we have the following form

-1 1

Pa;+ExTmeJr§uTqu+xTA§Pm—xTPBR—1B§ Pa+(PA+ AP~ PBR'B"P+Q)z =0
(1.143)

The term in bracket in Eq. (1.43) is the SDARE which equals zero and upon substituting

for u we obtain
| 1
Pz + ixTQxa: + ixTPBR_leR‘lBTPa: + 2" ATPy —2"PBR'BI Pz =0  (1.144)

Equation (1.152) is the SDRE optimality criterion which, if satisfied, guarantees the closed
loop solution is locally optimal and may be globally optimum. The summary of the SDRE
method is shown in Figure 1.14.

In the case of scalar z (see James R. Cloutier e tal (1996)), the only SDC parameteri-
zation is given by

a(x) = f(x)/x (1.145)



where f(z) = a(x)z. The state-dependent Riccati equation is given by

fo)p - g:((xx;pQ +q(x) =0 (1.146)

and its positive definite solution is

r(e) |flz) | | =) gP(x)q(x)
= 1.147
P 92<:c>{ s TN T 47
For the scalar case, the SDRE optimality criterion reduces to
1 1¢°
P+ S+ fgfn:p% + azpr — gga:p% =0 (1.148)
2 21?2 r

There exists only one global solution for the scalar case since the performance index is convex
and the differential constraint is linear in u. Therefore, the scalar nonlinear problem has the

global optimal solution

u(t) = ———

e (1.149)

f(x) + Sgn(x)\l f2(z) + W]

The stabilizing solution to an algebraic Riccati equation can be found using the eigen-

values of an associated Halmitonian matrix. The associated Hamiltonian matrix is given
by

e A(x) —B(z)R™'(z)BT(x) (1.150)

—Q(z) —AT(x)

The dynamics is given by the pointwise Hurwitz matrix
i = [A(x) — B(x)R(2)B" ()] 2 = Aa()z (1.151)

The Hamiltoniam matrix M has dimension 2n x 2n, with the property that its eigenvalues

are symmetric about both the real and imaginary axes. A stabilizing solution exists only
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if M has n eigenvalues in the open left-half plane from whose corresponding eigenvectors a
solution P can be found to Eq. (1.147). If the n eigenvectors are used to form a 2n x 2n

matrix, and we denote the n x n square blocks as X and Y, so that

The solution to Eq. (1.152) is given by P = XY 1.

1.6.4 Illustration of SDRE Control of Simple Systems

The examples below are used to illustrate application of the SDRE method to some
nonlinear regulator problems. The details of these problems can be found in References [21,

22, 24|
a) Nonlinear Regulator Scalar Problem

Minimize

[= ;/: (a® + u?)dt (1.153)

with respect to x and u subject to
t=x—2"+u (1.154)

The shortcomings of feedback linearization control against the SDRE control was shown by

Freeman and Kokotovic (1994) using this example. The stabilizing controller is given by

up = 2> — 2 (1.155)
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Figure 1.15: SDRE vs Feedback Linearizing Control Usage (Source: Freeman and Kokotovic

(1994))

and it results in the close dynamics of the form
(1.156)

The scalar nonlinear problem has the following characteristics
(1.157)

fx)=2—2%a(zx)=1—-2%g(x)=1,g=1,r=1

Application of the SDRE method to the nonlinear problem provides the state-dependent
(1.158)

Riccati equation is given by
2(1—x2)p—p2+1:()

that has the positive solution
(1.159)

plz)=1—2%+/(1 —22)*+1

o1



Using the control u = —p(z)z the optimal control derived for this problem is
Ut = — (w — 2*) — 2V/at =207 + 2 (1.160)

Despite the fact that it gives global exponential stability about = = 0, the feedback lin-
earization controller requires large amount of control activity that can cause instability in
the presence of actuator saturation or uncertainties. Unlike in the case of SDRE controller,

the feedback linearization controller cancelled out the beneficial nonlinearity —a3.

b) Multivariable Problem

This problem is extracted from the paper written by Cloutier et al [21]. Minimize
= zT z+u’ u | dt (1.161)

subject to the constraints

l"l :Il—I:f‘i‘Iz—f'ul
(1.162)

:t2:x1+a:%:v2—x2+u2

Four SDC parameterizations, A;(z), Ay(z), As(z) and Ay(x), of this problem are considered
in [21] by the authors.

1—a? 1 1—a22 1
Ai(z) = ;Ag(r) =

1 a;% —1 1+z120 —1
(1.163)
Az (z,a) = aAi(z) + (1 — ) As(z), Ay(z) =
0 o+ 3 —1
In Figures 1.16, the first figure shows the comparison between the SDRE solution and
Conjugate Gradient (CG) solution of the first parameterization A;(z). Near optimal state

response is obrtained. If the initial states are equal the parameterization forces the initial
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controls to be the same. As shown in the plot, the SDRE controls rapidly converge to
the optimal controls before the optimal controls reach zero. The second figure shows the
comparison between the SDRE solution and CG solution of Ay(x). Near optimal state
response is obtained and the SDRE controls converge to the optimal controls before the
optimal controls reach zero. The third figure shows the optimal trajectory o*(¢) and the
fourth shows the comparison between the SDRE solution and CG solution of Aj (x, o) which
are identical. The fourth parameterization is considered less than desirable since it converts
linear terms into nonlinear elements in the coefficient matrix which blow up if one state
approaches zero faster than the other. The fifth figure shows the state response and the

controls. A satisfactory stable state response is obtained despite the fact that u; is chattering.
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Figure 1.16: SDRE Control of the Parameterized Systems (Source: Cloutier et al [21])
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Chapter 2

Development of Cubic Approximation Model of Spacecraft Relative Motion

In this chapter, a cubic approximation model of spacecraft relative motion is developed.

2.1 Local-Vertical Local-Horizontal Components of Relative Motion

The two-body vector differential equation of motion is

F(t)=——1" . r(t) (2.1)

This is an un-approximated nonlinear second order vector (differential) equation and the
general solution to this equation does not admit any simple representation. The coordinate
system, shown in Fig. 2.1, moves with the origin “O” in a circular path of radius R with
the axes so that 1 is along the radial direction, j is along the along-track direction and k is
orthogonal to the orbit plane and it is along the cross track direction. The mean motion is
n=w= W where R is the chief satellite orbital radius. The angular rate of the frame
is w = wk. It is assumed that the distance of the deputy spacecraft from the chiefs orbit is
small compared to the chief orbit radial distance, i.e. p/R < 1 The position vector of the

chief orbit, expressed in the Hill frame, is
R = Ri (2.2)

and the distance between the chief and the deputy is p = zi+y]j+ zk. The position of a chief

satellite relative to the Earth is described by R, the position of a deputy satellite relative to
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the Earth is described by r, and the position of the deputy relative to the chief is p.
r=R+p (2.3)

The acceleration kinematics are described relative to a rotating reference frame attached
to the chief. The frame rotates with the chief’s orbital angular velocity w, and the chief is
assumed to be in a circular orbit, resulting in a constant angular velocity. The acceleration
in the LHS of Eq. (2.1) can be replaced using inertial acceleration formula. The absolute

acceleration a of point “O” is given as
A=2a,+W X T+ w X (WX Trep) + 20 X Viep + g (2.4)

Using Eq. (2.4), the inertial acceleration of the separation distance between the chief and

the deputy satellites can be expressed as
. . oo o
p=a,+wXp+ P +2w X pP+w X (w X p) (2.5)

Since the chief satellite is in a circular orbit with constant angular velocity then a, = 0,

w = 0 and Eq. (2.5) can be rewritten as
P="P+2w x ptw x (w X p) (2.6)
Then, the acceleration of the deputy is

f=R+2wxP+wx (Wxp)+ P (2.7)
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N Deputy
w Spacecraft

Spacecraft

Reference
(Circular) Orbit

Figure 2.1: Relative Motion of Deputy Spacecraft with respect to the Chief Spacecraft in
Circular Orbit

[ ] o

Here, () indicates vector differentiation with respect to the inertial frame, and ( ) indicates

vector differentiation with respect to the rotating frame. Also,

o= |v |- [50| <o | =[] 507 29

The chief and deputy accelerations are assumed to be Keplerian accelerations due to the

Earth,
R=-4R
= (2.9)
F— —Hp— ___H
F= =57 = ~frip (B+0)
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The relative motion of deputy satellite with respect to the chief satellite is shown in the

Figure 2.1. Equations (2.6), (2.8) can be used to write the vector equation,

o]} o _ % i
P 42w X PHw X (WX p) = R (R+p) + R3R (2.10)

for the relative motion of the deputy with respect to the chief. Expressing these equations in
local-vertical /local-horizontal components produces three nonlinear second-order differential

equations of motion.

i — 2ny — nlr = ——dite) + 5
y ((R+w)2+y2+z2)% 1
. ) _ _ Yy
J+2nz —ny ((R+x)2+y2+22)% (2.11)
é - — HZ 3
((R+a)*+y2+22) 2

2.2 Cubic Approximation Model of Spacecraft Relative Motion

To develop a polynomial approximation of the nonlinear equations of motion, the bino-

mial series expansion formula shown below is used.

(n-1) , n-D@-2)

n n
14+ p)"=14+np+ 5 a e Ip| <1 (2.12)

Using inner products rule,

_ _ —3/2
IR+l = [(R+p) - R+ )] /2 = (RTR + 2R p + "))

2.13)
-3/2 , N—3/2 (
BRL+0£)  =RP(1+ 2%+ 22)

:R—3(1+2

Upon substitution of

_2Rep oo (2.14)
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into Eq. (2.12) we have

Expanding Eq. (2.15) gives

- . - .p)2 . .
1+p) ¥ =1-3 (%) ~3 (%) i 15(21}1%5) n 15(1;;},;21(,),))

2 3 2 2
_|_15§%~4p) _ % {S(P]i#p) + 4(R'/;%6(p~p) + 8(R'/g6(p-p)

+4(R'P)(P'ﬂ)2 4 2(p-p)* (R-p) 4 (pé%)‘q’} T

RO RO
. 2 . . . 2
1 (3) 3 () - 2 g e
_35(Rp)°® _ 35(R-p)’(pp) _ 35(Rp)’(pp) _ 35(R-p)(p-p)’
2RS RS 2RO RS
_35(pp)*(Rep) _ 35(pp)° 4
SRS 16R0 T o

Equation (2.16) reduces to

p— . . . 2 . . . 2
(497 =13 (%)  § () + S + BB, wlep

_35®ep)’  105Rp)*(pp) _ 105Rep)(pp)* _ 35(pp)” |
2R6 4R6 8RS 16R6 o

Substituting Eq. (2.17) into Eq. (2.13) yields

IR+ pl~° = R3(1+p)
— R-3 {1 _3 (M) _3 (M) 4 15®0)° | 15Rep)(pp) 4 15(0:0)”

R2 2 \ R2 2R4 2R4 8R4
_35®Rp)’ _ 105Rp)*(pp) _ 105Rep)(pp)” _ 35(pp)” |
2R6 4R6 8RS 16 RS
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Substituting this into the vector equation of motion produces an approximation that is

a polynomial in p.

0/3)—|—2w X P+ x (w X p)

. 2 . . . 2 . 3
_ 105(R- 105(R- _35(p
( 41’25 ( p) ( 8}1__;)(,0 p)? 1(6/)}%%) } (R+p) + 4R,

Eq. (2.19) simplifies to

(o]0} o
P +2w X P+w X (w X p)

—— e -3 () R (3) - 3 ()R- 1 (3) o+ (555 R

+ (15(21;;1/))2) o+ (15(R2-]p{)4(pp )R+ (15 Rp)(pp)) o+ (15 p)* )R+ (15 p-p)* )p (2.20)
_ (35(21;;)3) R — (35(21}%-5) ) p— (105(1?22)6 (p~p)) R — ( 105<PZ§)6 W)) o

- (g () - (S5 R~ (52) o]

Substituting w2R? = 4, R = Ri, w = wk and p = zi + yj + zk into Eq. (2.20) the equation

of motion in LVLH components can be expressed as

1+ 35 + 2k + 2wk x (31 4+ g5 + 2k) + wk x (wk x (21 + yj + 2k))
—“]2%?3 Kazi—i- yj—l— zR) — 3@]%5 — S(R—? (a:i+yj+ zR)

2) 2 2.2 .2
§(a: +;/22+ )Rl_%(ac +;2+z)(171+y.]+2k)+15Rz R

2
+%RR4 (xl—i-y,]—l—zk) 157&(90 ;__;f +Z)R1
2 z X z i~
P (04 g 4 ok) 4 ) (2:21)
15 (= 2+y +2 )

. N T 3 L
5 T (xl +yj+ zk) — ?%Rl 3 (};6) (:Ul + )+ zk)
105 Rz

P (2 +y? + 2%) Rl - 1P B (a2 4 % + 22) (2l + yj + 2k)

PR 2 4y ) R - P 0 g 4 2)° (o] 4+ g + oK)

22 4y2422)% s 22 +y2+2 A A ~
_%%Rl - %UT) (:m +yj+ zk) + ]
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This can be written as

P+ 0 + 2k + 2wij — 2wy — wal — w2yj

= Kmi—l—yj—i—zf() — 3zi — 2 (xﬁ%—xyj—l—:czf() — 55 (2% + ¢ +22)1

—% (2 + zy? + 22?) i— % (yx® +° + yzQ)j — % (222 + 2y® + 23) k+ %xzi

+ 5% + S5 a%y) + S atek + 55 (28 + ay? + 22?) 1

+amr (@14 2% + 2222) 1+ (2% + 2 + 2y2%) ] + (32° + 229” + 22°) k) (2:22)
+1§57(12+?£j22>2 (21 + vj + 2Kk) + %7(m2+£;22>25 — Bl — 5 (o 2Py + 2%2k)

— 105 (2t + 2%y + 2222) 1 — 195 (2! + a?y? + 222?) (aﬁ i+ Zl;)

— 38 a(a? + 7+ 2T - R + 7 + 22)° (2l + o + k)

(@ + 22— 12 (a? P 4 22 (xf +yj+ zf() 4 }

Eliminating the higher order terms greater than cubic power in Eq. (2.22) gives the cubic

approximation model

P+ ) + 2k + 2wij — 2wy — wzl — w2yj

ZEQ 2 22
= —w? Hx—?)x—gazz—g( ﬂ;; ) — 5oy (2 + zy? + 22?)
22 + 55ad 4 325 (2F + ay? 4+ 22?) — 5 3}1 (2.23)

+ {y — 27y — 552 (P +y2® +y2®) + %ﬁy}j

+ {z — 3xz — 535 (B4 2a® + 2y?) + %ﬁz} R}
Eq. (2.23) contains radial, along-track and cross-track components of the relative motion.

2.3 Radial, Along-track and Cross-track Cubic Equation of Motion

Extracting the scalar components produces the following three scalar cubic equations

of motion.

(a) Radial Cubic Equation of Motion

3 3 3 4 6 6
¥ —2ny — n’r = —n? (—22: + EZEQ — ﬁyQ — ﬁzQ — ﬁx?’ + ﬁng + R2$22> (2.24)
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(b) Along-track Cubic Equation of Motion

. . 3 6 3 3
i + 2nd — n’y = —n? (y — ny + ﬁyﬁ — TWyZ2 — 2R2y3) (2.25)

(c) Cross-track Cubic Equation of Motion

(= —n? (z — ézaz + szz - iZ?JZ - 323) (2.26)

These expressions have nonlinear terms zy, zz,22, %, 22, 2%z, xy?, 22, y*z, 2%y, 23, >,

2% that may be linearized using harmonic-balance model. Therefore, in state space form,

Equations (2.24), (2.25) and (2.26) can be written as

x=Ax+F(x,y,2) (2.27)

where

A= (2.28)

0 0 —-n* 0 0

and the nonlinear part, F (z,y, z) of the equations is

0
0

F(z,y,2) = ! (2.29)

_m2(_ 3,2_3,2_3,2_ 4.3 6 .02 6 ..2
n ( 2r+ 3 3rY” T 2R% T ¥ T Ty +R2$Z>

_n2(_ 3,2__3,2_ 3.2 4.3, 6,.,2, 6,2
n ( 2r+ Zx 5k Y 3R~ 2L+ 2y —|—R2xz)

_2(, 3 6 ...2 3 .2 3 .3
n(z RRT + 72T sz Py 2R22>
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Chapter 3

Harmonic Linearization of Spacecraft Relative Motion Using Harmonic Balance Method

The method of harmonic-balance linearization, also known as the describing-function
method in control theory, is a powerful technique to approximate nonlinear dynamic systems
[16,17,18]. The harmonic-balance approximation corresponds to a truncated Fourier series
and allows for the systematic determination of the coefficients and frequencies of first-order
harmonics. The study of the motion of a deputy spacecraft relative to a chief spacecraft has
often utilized the linearized Clohessy-Wiltshire (CW) equations. The CW equations make
three explicit assumptions: (1) both spacecraft obey Keplerian motion, (2) close proximity
between the chief and deputy, and (3) the chief is in a circular orbit.

In this chapter, the method of harmonic balance is adapted to construct a new linear
approximation for satellite relative motion to help relax the close-proximity assumption. The
method is found to be useful in obtaining a more accurate linearized approximation than the
traditional approach of linearization about the origin. Figure 1, adapted from Reference 5,
illustrates the steps followed in finding an approximate model for a nonlinear system using
harmonic balance method. In developing the harmonic-balance model for spacecraft relative
motion, polynomial approximation is applied to the nonlinear equations in LVLH components
and it produced cubic equations of motion containing linear and nonlinear terms. The linear
equations corresponds to the Clohessy-Wiltshire equations. For the harmonic linearization,
the nonlinear terms are evaluated along the generating solution to produce linear correction
terms. The correction terms are combined with the original linear equations (CW equations)
to produce the harmonic balance model of the spacecraft relative motion.

The harmonic linearization of the cubic approximation model of spacecraft relative

motion is performed using the following assumed linear solutions [54]:
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equations of . -
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Equations of Motion approximation »| linearization balance model
Quadratic and aubic
terms

Figure 3.1: Steps followed in finding an approximate model for the nonlinear equation using
harmonic balance method

T = %cl + co sinnt + c3 cosnt
y = —3cit + 2c9 cos nt — 2czsin nt + ¢4 (3.1)

z = cgsinnt + cg cosnt

The state vector x and a vector of constants ¢ are defined as

x=[z y z % yé]T,c:[cl Co C3 C4 Cs Cﬁ]T (3.2)

Equations (3.1) and their derivatives can be arranged into a fundamental matrix W(¢).

T - % sin nt cosnt 0 0 0 - c1
Y —3t 2cosnt —2sinnt 0 0 0 Co
z 0 0 0 0 sinnt cosnt C3
o x - 0 ncosnt —nsinnt 0 0 0 C4 (3.3)
Y —3 —2nsinnt —2ncosnt 0 0 0 Cs
z 0 0 0 0 ncosnt —nsinnt Co
x(t) = VU(t)c

The constants can be evaluated in terms of the initial states x(to).

c = U (to)x(to) (3.4)
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3.1 Radial Direction Linearization
The radial cubic approximation model of relative motion, from Eqs. (2.24), is

3 3 3 4 6 6
i —2ngy — n’r = —n? (—21: + §x2 ~ SR 2 — EZQ - ﬁxzj’ + ﬁxyz + R2xz2> (3.5)

Each of the nonlinear terms is linearized by substituting the assumed linear solutions. For
the linearization the approach in Ogundele et al [5] is followed. The following trigonometric

identities are used in the linearization.

cos?nt = 1(1 4 cos 2nt),sin’nt = (1 — cos 2nt) (36)
cos’nt = % cosnt + i cos 3nt, sin’nt = % sinnt + i sin 3nt
The nonlinear term 2?2 is linearized as follows
2 4 5, 4 . 4 . 2.2 2.2
==+ ﬁclcg sinnt + Eclcg cosnt + 2cocz sinnt cosnt + c“sin“nt + c3“cos™nt  (3.7)
n

Substituting the trigonometric identities in Eq. (3.6) into Eq. (3.7) yields

1? = Lei? + dereasinnt + ejes cosnt + cacgsin 2nt + Lep?(1 — cos 2nt) + 2c32(1 + cos 2nt)

+2022(1 — cos2nt) + Les?(1 + cos 2nt)

(3.8)
Eliminating the higher order harmonics of time we have
4 1 1 4 4
2 =2+ —e? 4 =3’ + —crepsinnt + —cie3 cosnt (3.9)
n? 2 2 n n
Rearranging the equation in the form of the assumed linear solutions gives
s 1 5 1 5 4 , 4 ) 1, 1 5, 4 5, 4
TR e+ -t — "+ —c | —¢Fesinnt +cz3cosnt ) = " + -3t — —c1” + —cx
2 2 n? n o \n 2 2 n? n
(3.10)
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Similarly, following the same approach as in 22 we have

y? = 2co” + 237 — ¢4 + (2¢4 — 6c1t)y — 9c1*t? + Gejeqt (3.11)

22 = ;cf + ;062 (3.12)

= (—Tlgcl + ;;lclcg + 2?;10103 ) + (312612 + iCQQ + ic;f) T (3.13)

xy? = (—éc e’ + 2e1c5” + 2e1” + Zeegt — et + §012t2) (3.14)
+ (c? + 3% + ¢4 — 6creqt + 9, %) + ( c1Cq — —01215) Yy

2 = 4:;0105 + 43;10106 + (icf + icﬁ) T+ (;czcg) + ;cgc6> z (3.15)

These linear approximations are substituted into the cubic radial equation of motion and it

simplifies to

. : 3 4 1 1 1 1 1 9

& —2ngy —3n*r = —34n® (—9012 —30% — 303® + 3¢a® — 1057 — 3¢6% — Bcieat + 5012752)
4. 2/( 16 3 2 3 2,6, .2 9 9

+mn <—*301 — 5,C1C2" — 5-c1c37 + —C164” — 8n0105 - 8n0106
— 8¢ 204t =222 4+ 8 3t2)

—n? (ﬁclJrﬁ(——c + 12+ e e + des? + Lo —66104t+9612t2))

—n? (—% (=6c1t +2¢4) + 72 (%0164 - 177201275» Y — =’ (50205 + %Q‘SCG) z
(3.16)

The linearized radial equation of motion can be summarized as
i —2ngy — 3n’z = by (c,t) + ayy (¢,t) @ + ag (¢, 1) y + az (¢) 2 (3.17)

The additional terms in z, y and z and the nonhomogeneous term b; (¢, t) are the corrections
to the equation of motion for the radial direction. They are approximations of the cubic

powers that were retained in the expansion of the nonlinear equations of motion.
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3.2 Along-track Direction Linearization

The along-track cubic approximation model of relative motion, from Eqs. (2.17), is

. . 3 6 3 3
i+ 2nd — n*y = —n? (y - gpyr ﬁyac2 — 2—ng22 — 2R2y3) (3.18)

The nonlinear term xy in the in-track direction equation is linearized as follows.

zy = —8¢i%t — 3ereat sinnt — 3erest cosnt + Leyep cos nt + co? sin 2nt lim
+eac3 (14 cos2nt) — 2eiessin nt — cocs (1 — cos 2nt) — ¢3? sin 2nt (3.19)

+%clc4 + cocy Sin nt + c4c3 cosnt

Eliminating the higher order harmonics of time and rearranging the remaining terms in the

form of the assumed linear solutions gives

xy ~ —3cit (%61 + co sinnt 4+ c3 cos nt) + %cl (=31t + 2c9c08 nt — 2¢3sin nt + ¢4)
+5¢%t + ¢4 (%01 + cysinnt + c5 cos nt) — 2104

= (—%0104 -+ 201275) + <—301t —+ C4) T+ %Cly
(3.20)

Similarly,
2, 1,2 1,2 8 2 24 , 3 3 2 3 2
Ty = ZCQ Ccq + 103 Cqp — ?Cl Cq + pCl t— 16102 t— 16103 t
(3.21)
4 12 2 4 2 1.2 1 2
+ (50104 — Wcl t) T+ (pcl + ZCQ + 1 C3 )y

y® = (3ca?cq + 3es’cy — 2¢4 + (—9¢1¢0? — 9erez? + 18cicq?) t — Hdey2eqt? + Hdei3t3)

+ (3co? + 3c3? + 3cy® — 18cieqt + 27112 y
(3.22)
3

1 1
(052 + 062> 4=y (052 + 062> cit + <4c52 + 4062> Y+ (cace — c305) 2 (3.23)

1
2 ——
zy—4
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These linear approximations are substituted into the cubic along-tract equation of motion

and it simplifies to

j+2ni = 2n? (—%0104 + %cﬂt)
+ 5oz n? {%64012 + 2¢409% + 204057 + Leacs® + Seace® — 204

+ (—601022 —6crcs? 4+ 18cies® — 2e105” — Seiee® — 2—2013) t — bdesci 2t + 54613153}
+ {%TF (—=3cit 4+ ¢4) — %nQ (%clc4 - %clzt)] T

+[8ner + 55n? (— Mo + 207 + 2657 + 3 + s

+3¢6% — 18¢ieqt + 27012752)} Yy + 523n? (Cacs — C305) 2
(3.24)

The linearized out-of-plane in-track equation of motion can be summarized as follows
U+ 2nt = by (¢, t) + ag (¢, t) x4+ aga (¢, t) y + ass (¢) 2 (3.25)

The additional terms in z, y, z, and the nonhomogeneous term by (¢, t) are the corrections

to the along-track direction.

3.3 Cross-track Direction Linearization

The cross-track cubic approximation model of relative motion, from Egs. (2.17), is

. 3 6 3 3
5= —n? (z — BT + ﬁzﬁ — Q—Rsz2 — 2]%223) (3.26)

The nonlinear term zz in the cross-track direction equation is linearized as follows.

Tz = %0105 sin nt + %clcﬁ cos nt + cacssin®nt + cocg cos nt sinnt

(3.27)
+c3c5 cos ntsin nt + cscgeos’nt
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Substituting the trigonometric identities in Eq. (3.6) into Eq. (3.27) gives

Tz = %0105 sin nt + %clcﬁ cos nt + %0205 (1 — cos2nt) + %CZCﬁ sin 2nt (3.28)

—1—50305 sin 2nt + 50306 (1 4 cos 2nt)

Eliminating the higher order harmonics of time and rearranging the remaining terms in the

form of the assumed linear solutions gives

° (cssin nt + t)+1 +1 ! +1 +2 (3.29)
~ — S COs - - = - - — .
Tz ncl CsSIIl T Cg n 20265 203C6 20205 20306 nclz
Similarly,
1 2 4 1 1 1 1
ZL’2Z = EClCQC5 — E01C366 + <n2612 + 1022 + 4032) Z+ <2CQC5 + 20306) T (330)

y?z = (cacyce — c3c4C5 — 3ciCacst + 3ercsest) + (o + e32 + ¢4® — 6ereqt + 91 %t?) 2

+ (cocs — c305) Yy
(3.31)

3 3 3 3
23 = Z052 (cs sinnt 4 cg cosnt) + ZCGZ (c5sinnt + cg cosnt) = (4052 + 4062> z (3.32)

These linear approximations are substituted into the cubic cross-track equation of motion

and it simplifies to

3

s 2, _ 2 (1 1
Z2+n‘z= =N (50205 + 5030(5)

6 2(1 2 1 1 3
—®n (ﬁClCQCf} — ,C1C3Cs — 7C2C4Cp + 1C3C4C5 + 1 (C1C206 — 61C3C5) t)

(3.33)

6.2(1 1 3 .2
— 5z (50205 + 5030(5) T+ 57an” (cace — C3C5) Y

_n2(_6 6 (4.2 1.2 _ 3.2 _3.2_ 3 9,242
n( SRC1 T 72 (nQCl 7€C4 16C5 16 C6 2010475 4clt)>z

The linearized out-of-plane cross-track equation of motion can be summarized as follows

F4nPz=0bs(c,t) +as (¢)x+ as (c)y + ass (c,t) 2 (3.34)
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The additional terms in z, y, z and the nonhomogeneous term b (¢, t) are the corrections
to the cross-track direction. The expansion of radial, along-track and cross-track nonlinear

terms are shown in Appendix A.
Model Summary

The harmonic-balance model developed in the previous sections is summarized below.

T —2ny — 3n*x = by (¢, t) + a1y (¢, t) x + ao (¢, t) y + ayz (c) 2
jj + 2nx = b2 (C, t) + a9 (C, t) T + agg (C, t) Yy + Qo3 (C) z (335)

Z+n?z =bs(c,t) + azi(c)z + az(c)y + ass(c, t)z

The model can also be expressed in state-space form as

0 0 0 1 0 0
0 0 0 0 1 0
. 0 0 0 0 0 1
X =
3712 + aqq (C, t) a2 (C, t) a3 (C) 0 2n 0
a19 (C, t) a929 (C, t) 923 (C) —2n 0 0
a3 (c) ass () ass (c,t) — n? 0 0 0
0
0
0
+
bl (C, t)
b2 (C, t)
b3 (C, t)

(3.36)
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Note that the harmonic balance model is linear time-varying. However, in the special case

that ¢; = 0, the model reduces to a linear time-invariant, bounded motions of the form

i —2ny — 3n’z = —3n? (—%CQZ —1e? + i — 1o — icﬁ)
(3.37)

6 ,2(1.2 1,2 2 1.2, 1.2 3ca 2 6 2 (1 1
—z=h (502 + 363"+ e+ 657+ 566 )x—i—ﬁny—ﬁn (50205+503cﬁ)z

. . 3 1 1
1+ 2nx = Wrﬂ (204022 + 2c4c5% + 104052 + 104062 — 2043)

(3.38)
+3an?y 4+ 2n? (2@2 + 2¢3% + 3ca® + 052 + icbﬂ) Y+ 5on? (cace — C35) 2

= 3 1 1 6 1 1
34 nly = §n2 (50205 + 50306) — ﬁnQ (—1020406 + 103c4c5>

6 2 (1 1 3 2 6 2 2
—gRzN (50205 + §C366) T+ szl (6206 — 0365) Y— g (—104 — 166" — 16C6 ) z

Compactly, this can be written as

T —2ny —3n*z =by (c) +ay () +ap(c)y+az(c)z
U4 2nt = by (¢) + ag1 (¢) x4 age (¢) y + ags (¢) 2 (3.40)

Z4n?z=0bs(c)+as (c)x+as(c)y+ass(c)z
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and in state space form we have

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
X = X
3n% + ay; (c) as (c) a3 (c) 0 2n 0
a9 (C) 929 (C) 923 (C) —2n 0 0
I ais (C) as3 (C) ass (C) - n2 0 0 0 |
0
0
0
+
by (c)
by (c)
L b3 (C) -

x=A(c)x+B(c)
(3.41)

Generating Solution Calibration

The harmonic-balance method is essentially a two-step linearization approach. The
nonlinear system is first linearized about the state-space origin, and the solution to the
resulting linear system is used to define a generating solution. The nonlinear system is then
linearized about the generating solution. The motivation is that the assumption of close
proximity to the generating solution may be more accurate than the original assumption
of close proximity to the origin. Recently, a method of coordinate calibration has been
developed to extract more accurate linearized solutions for nonlinear systems. The method
takes advantage of coordinate transformations with alternative coordinates that describe the

same system but enjoy a lower level of nonlinearity.
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Here, the calibration of the Cartesian coordinates, x, for the relative motion will be con-
sidered using transformations with the orbital-element differences, de. The nonlinear coor-
dinate transformation, de = b(x), from Cartesian coordinates to orbital-element differences
and the linearized coordinate transformation, x = Ade, from orbital element differences to

Cartesian coordinates are used. A calibrated initial condition is calculated as follows.

%, = Ab(xo) (3.42)

Linear propagation of the calibrated initial condition using the traditional linear model has
been seen to be more accurate than linear propagation of the true initial condition. For
the purposes of the harmonic-balance model, this calibrated solution can be used as the
generating solution. In forming the harmonic-balance model, this involves evaluating c(Xg)
as a function of the calibrated initial condition. The propagation of the harmonic-balance

model, however, still uses the true initial condition, xg.

3.4 Numerical Simulations

3.4.1 Bounded Motion Propagation

The equations of motion in radial, along-track and cross-track directions are integrated
using ode45. Table 3.1 shows the orbital elements of the chief and deputy. The subscripts
C and D represent the chief and the deputy while a is the semi-major axis (in km), e is the
eccentricity, ¢ is the inclination (in degree), € is the right ascension of ascending node (in
degree), w is the argument of perigee (in degree) and f is the true anomaly (in degree). The
orbit propagation was performed for six orbits and the simulations are carried out using two

different initial conditions; true and CW calibrated initial conditions.
(a) Uncalibrated Generating Solution

In this simulation, the CW, HB, cubic and nonlinear models are propagated using true

initial conditions, and the vector of constants c is also evaluated using true initial conditions.
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Table 3.1: Chief and deputy orbital elements for a spacecraft in LEO orbit

Chief Spacecraft Orbital Elements Deputy Spacecraft Orbital Elements

dp Ep e | Qe @ fe | ap €n In Qg @p 1o

7500 | 0 | 4 | s 10 00012/5.01] 5 | 15 20

]
L]
|
Ly
[ ]
L]

Table 3.2: Bounded Motion Errors over 1000 seconds using uncalibrated generating solution

Model Average Error (km)
HCW 0.325
HB 0.040

The simulation results are illustrated in Figure 3.2. These results indicate that the HB model
approximates the nonlinear dynamics more accurately than the CW model, at least over some
initial time interval. To emphasize this another plot of approximation errors focusing on the
first 1000 seconds is shown.

To quantify the approximation errors, the following error metric is defined for the average
€error.

tsim
1

() = 19(t) = p(t)ll 2= — [ e(tyat (3.43)

tes
stm 0

where p(t) is the nonlinear solution for the relative position, j(t) is one of the approximate
linear solutions, and %, is the length of time that has been simulated. The average error

for each linear solution is shown in Table 3.2.

(b) Calibrated Generating Solution

In this simulation, the HB, cubic and nonlinear models are propagated using true initial
conditions, while the vector of constants c¢ is evaluated using calibrated initial conditions.
For purposes of a fair or complete comparison, the CW solution is propagated using the

calibrated initial condition.
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Table 3.3: Bounded Motion Errors over 1000 seconds using calibrated generating solution

Model Average Error (km)
HCW 0.962
HBE 0.048

The simulation results are illustrated in Figure 3.3. The values for each linear model is
shown in Table 3.3. These results illustrate the improvement in accuracy of the HB model
when using the calibrated generating solution, compared with using the uncalibrated gener-
ating solution. When using the uncalibrated generating solution, the HB model exhibited
erroneous drift. When using the calibrated generating solution, the HB model maintained
better accuracy over a larger time span. However, averaged over the simulation interval, the
HB model using calibrated generating solution was less accurate than the calibrated CW
solution.

The tradeoff, though, is the initial error introduced in the calibrated CW solution. The
HB model has no such initial error. This is illustrated in the initial approximation errors
shown in Figure 3.3. The HB model using the calibrated generating solution is able to
provide good long term error without having to introduce initial error, unlike the calibrated

CW solution.

3.4.2 Unbounded Motion Propagation

(a) Uncalibrated Generating Solution
A second example is constructed with initial conditions defined identical to Table 3.1
except the deputys semi-major axis is changed to 7505 km. The CW, HB, cubic and nonlinear

models are propagated using true initial conditions, and the vector of constants c is also

evaluated using true initial conditions.
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Table 3.4: Unbounded Motion Errors over 1000 seconds using uncalibrated generating solu-

tion
Model Average Error (km)
HCW 0.325
HB 0.040

Table 3.5: Unbounded Motion Errors over 1000 seconds using calibrated generating solution

Model Average Error (km)
HCW 0.964
HB 0.046

Figure 3.4 shows the propagated solutions using the uncalibrated generating solution.
The HB method provides good accuracy initially, but the error appears to grow rapidly later
in the simulation interval. This may be related to how the HB model tries to approximate
the nonlinear system as a linear, time varying system. To focus on the initial accuracy, the

errors over the first 1000 seconds are shown in Table 3.4.

(b) Calibrated Generating Solution

The HB, cubic and nonlinear models are propagated using true initial conditions, while
the vector of constants c is evaluated using calibrated initial conditions. The CW solution
is propagated using the calibrated initial condition. Figure 3.5 illustrates drifting orbit
propagated solutions using calibrated generating solution and Table 3.5 shows errors over
1000 seconds.

The harmonic-balance model of relative motion between chief satellite, in circular orbit,
and deputy satellite has been presented. It results in an initial-condition dependent, linear
model for the relative motion. The model is time varying for drifting generating solutions,

but time-invariant for non-drifting generating solutions. The simulation results show that
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harmonic-balance model of satellite relative motion gives a more accurate linearized model
because it captured the motion better than the conventional method, Clohessy-Wiltshire
model. Also, the harmonic-balance model has lesser error than the Clohessy-Wiltshire model

of satellite relative motion.
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Figure 3.2: Bounded Motion Propagation Trajectories and Approximation Errors for Uncal-
ibrated Generating Solution
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Figure 3.3: Bounded Motion Propagation Trajectories and Approximation Errors for Cali-
brated Generating Solution
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Figure 3.4: Unbounded Motion Propagation Trajectories and Approximation Errors for Un-
calibrated Generating Solution
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Figure 3.5: Unbounded Motion Propagation Trajectories and Approximation Errors for Cal-
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Chapter 4

Development of Averaging Model of Spacecraft Relative Motion Using Averaging Method

The formulation of the gravitational three-body problem as a perturbation of the two-
body problem by Lagrange in the late 18th century marked the beginning of the use of
averaging method. The method became one of the classical methods in analyzing nonlinear
oscillations after series of researches by Krylov, Bogoliubov, Mitropolsky etc. in 1930s. The
method is fairly general, thereby making it applicable to large number of nonlinear dynamical
systems and very useful because it is not restricted to periodic solutions [6,13,14,15]. It can
be used to obtain an approximate simplified system and to investigate the stability and
bifurcation of their equilibria (corresponding to periodic motions in the original system)
[19,20,21]. In this chapter, approximate analytic solutions of the cubic approximation model

of the spacecraft relative equation is obtained via averaging method.

4.1 Cubic Approximation Model of Spacecraft Relative Motion

4.1.1 Cubic Model

In Cartesian coordinate the cubic approximation model of spacecraft relative motion is

given by (Ref [5,6])

e o9y 902 3,22, 3,22  3.22 62,2 6,2 .2 4 2.3

T —2ny — 3n"x = —4n7rt + pntyT + 5Entz Rz TY N 2" + mn’e

o . _ 3.2 6 .2, .2 3 2,2 3 .2

§+2ni = InPyr — 0Py’ + 5mnyz’ + 5n’y’ (4.1)
: 2, _ 3,2, _ 6,2 2 3 2.2 3 2.3

2Nz = gnir — gEnzrt + gmnt2Y” + gmn’e
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Egs. (4.1) can be expressed as

i —2ny —3n*r =cf (v,y,2,2,7, %)
i+ 2nd = £g (2, y, 2, &,9, ) (4.2)

Z+n’z=c¢h(x,y,2,2,9,2)

where,
f(z,y,4,9) = —2Ra® + Ry* + R2* — day?® — 4x2? — a7
g (w,y,4,9) = 2Ryr — dya® + yz* — ¢ (43)
h(z,y,&,9) = 2Rzx — 422 + zy? — 23
and p is the reltive position vector, n is the mean motion and R is the chief orbital radius.
The quantity € = 3u1/2R° is the perturbation parameter. The small parameter characterizes
the closeness of the system to a linear conservative one, while f, g and h are the nonlinear

functions. The nonlinear terms are: x2, y%,2%, xy?, v2? and 23 for the radial, yz, yz?, y22, y°

for the along-track and zz, za?, 22, 23 for the cross-track.

4.1.2 Bounded Solution

For ¢ = 0, that is no nonlinear terms, the system in Eqs. (4.2) reduced to the Hill-
Clohessy-Wilshire Equations.
& —2ny —3n*x =0
i+ 2ni =0 (4.4)
Z+n’2=0

Using linear theory, the HCW equations have the solutions [3,4]

x = Acos(nt+ ) + Topy
y = —2Asin (nt + ) — %nxofft + Yoff (4.5)
z = Bcos (nt + 3)
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The derivatives of these equations are

& = —nAsin (nt + «)
y = —2nAcos(nt + a) — Snx,sy (4.6)

2 = —nBcos (nt + f3)

where A and B are the amplitudes,a and 3 are the phases, x,;; and y,ss are the radial
and along-track offsets. In order to obtain bounded relative motion the secular growth in
along-track must be eliminated, and this can be done by setting x,¢s to be zero. Using this

fact, we have

x = Acos (nt + «)
y = —2Asin (nt + o) + Yoss (4.7)

z = Bcos (nt + )

and
& = —nAsin (nt + «)

Y= —2nAcos (nt + a) (4.8)
Z = —nBcos(nt+ f)
The bounded periodic solutions of HCW equations, shown in Egs. (4.7) and (4.8), are

suitable for formation flying missions.

4.2 Formulation of Slowly Varying Parameters

In this section, slowly varying parameters are formulated using the HCW solutions as
the generating solutions. The following relationships are obtained using Eqgs. (4.5) and (4.6).

v = =+ Sorp, & = 5 (Y= Yors + Inwopst) (49)

Yy = 2;”” - %nxofft + Yorsr Y = —2nT + FTopy
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Substituting Eqs. (4.9) into Eqgs. (4.2) we have the following three second order equations.

F+nir=cf(z,y,2) +n’Tops
§+n*y =eg(x,y,2) + nPyors — 30°Topst (4.10)

Z+n%z=ch(x,y,2)

4.2.1 Formulation of a System Amenable for Averaging

Using additive decomposition, the radial, along-track and cross-track slowly varying

parameters are formulated as follows.
(i) Radial Direction

The coordinates x and y can be additively decomposed into x = x1 + x5 and y = y; + ¥s.

Upon substitution into the radial equation we have

i+nr=cf(z,y,2) +n’Tops (4.11)
we have
il + flfz + n2 (.Tl + SL’Q) = €f (1‘1 + Za, U1 + Yo, 2, t) + n2xoff (4.12)
We can select z; such that
i1+ n*r = n’a.py (4.13)

Assuming the particular solution of Eq. (4.12) to be x1(t) = ¢; and upon substitution we
have

n2cl = n2xoff7 C1L = Zoff, X1 = Toff (414)

Using Eq. (4.5), x2(t) can be obtained as

x = x1(t) + x2(t) = Acos (nt + ) + Toff, T2(t) = Acos (nt + «) (4.15)
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Similarly, from Eq. (4.12) we can make the selection

Tg +nrg = ef (T1 + To, Y1 + Y2, 2, 1)

(ii) Along-track Direction

Let y = y1 + yo, then

U1+ n’y1 = n*Yops — %nsﬂﬁofft

o +nPys = g (w1 + 22,1 + Y2, 2, 1)

(4.16)

(4.17)

Let the particular solution of the first part of Eqs. (4.17) be written as y; = ¢; + ¢ot and

upon substitution we have

3 3
C1 = Yoff,Co = —§nxofft,y1 = Yoff — inxofft

Therefore, y>(t) can be obtained as

) 3 )
y=1uy1(t) +y2(t) = —2Asin (nt + a) — inxofft + Yorf, Y2(t) = —2Asin (nt + «)

(iii) Cross-track Direction

For the cross-track direction

z +n22’ =ch (xl +I27y1 _l'y?vzvt)

The homogeneous equation, ? + n%z = 0, has the solution

z = Bcos (nt + f3)
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From Eq. (4.16), (4.17) and (4.20) we have

i'Q + 712372 - Ef (331 + T2, Y1 + Yo, th)
Q2+n2y2 =£g (ZL‘l + X2, +y2,2,t) (422)

34 n?z Ié?h(xl + Zo, 1 +y2727t)

This system of equation is amenable for averaging.

4.2.2 Development of General Solution of the Averaged Equations

Using the Krylov and Bogoliubov approach [13,15] that, for small ¢, the integration

constants A, B, a and 6 are slowly varying functions of time, that is,
A— A(t),B — B(t),a — a(t),0 — 0(t) (4.23)
then, using Eqs. (4.7) and (4.8), the generating solutions take the form

x(t) = A(t)cos (nt + a(t)) + zof¢
y(t) = —2A(t) sin (nt + a(t)) — 3nzoprt + Yors (4.24)
z(t) = B(t)cos (nt + S(t))
with the derivatives
x(t) = —nA(t) sin (nt + a(t))
y(t) = —2nA(t) cos (nt + a(t)) — Enzopy (4.25)
2(t) = —nB(t) sin (nt + £(t))

Using Butenin approach [14], differentiating the generating solutions yields the systems

A cos (nt + a) — Aésin (nt + a) =0
—2Asin (nt 4+ a) — 2Ad cos (nt +a) =0 (4.26)
Bcos (nt 4+ 8) — Bfsin (nt + ) = 0
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and

—nAsin (nt + a) — nAd cos (nt 4+ o) = ef*
—2nA cos (nt + o) 4+ 2nAdsin (nt 4+ a) = eg* (4.27)
—nBsin (nt + ) — nBf cos (nt + ) = ch*

where,

[r=flxr+ 22,01 + 42, 2,0)
=f (A cos (nt + ) + xopp, —2Asin (nt + ) — Snxoppt + Yogs, B cos (nt + ﬁ))
g =g (x1+ 22,91 + Y2, 2, 1) (4.28)
=g (A cos (nt + ) + xopp, —2Asin (nt + ) — Snxoppt + Yors, B cos (nt + 5))
h* = h(x1 + 22,91 + Y2, 2, 1)

=h (A cos (nt + a) + Topp, —2Asin (nt + &) — 3nzoppt + Yors, B cos (nt + B))

The first parts of Equations (4.26) and (4.27) are the radial equations, the second parts are
the along-track equations and the third parts are the cross-track equations. Substitution of

the Egs. (4.5) and (4.6) into Eq. (4.3) yields

fr=—3A%0sp + (—2A%R — 8A%x,ps) cos’p — 1643 cos ¢gsin’e

+2 (4A%R — 16 A%z, 1) sin®¢ — 4AB? cos ¢cos®0 + (RB? — 4B%x,¢) cos*0

+ (16 A%y, pp — 24A*ntx,pp) cOS P sin

I ( 9AN* a2, + 12ANtxopsYory — 8AX2;; — 4ARx 55 — 4Ayfff) cos ¢ (4.20)
+ (16A:Uoffyoff — 4ARyopp — 24Antal;; + 6ARnt:voff) sin ¢

+ (16Amoffyoff — 4ARyo s — 24Antx§ff + 6ARntxoff) sin ¢

—In’tx 3ff -+ an 2 xoff + 12ntxoffyoff — 3RntZoffYoss

8,.3
—3@orr — 2Ralpy — dwopsyoss + Ry2
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g* = 8A3%sin’¢ + (6A*ntx,p — 4A%, 1) cos?e

+ (18 A%ntw,pp — 12A%y,54) sin’¢ + (BQyOff — %BQntxoff) cos?0

—2AB%cos* sin ¢ + 8A3cos’¢psin ¢ + (16 A%z, — 4A%R) cos ¢ sin ¢

- <2ARyoff — 8AZop Yoy + 12ANt27;p — 3ARnt:coff) cos ¢ (4.30)
- (%An%?mgﬁ — 18AntxofrYoss + 8Aa7§ff — 4ARx o5 + 6Ay§ff> sin ¢

+2n3 303, — AP tal; yorp + 6ntad;  — 3Rt + Sntaorpyls;

2 3
— 4555 Yors + 2RTopplYors — VS,

h* = —4A%Bcos’¢ cos 0 + (2ABR — 8ABx,;) cos ¢ cos 0 + 4A2 Bsin®¢ cos 0
+ (6ABntx,sp — 4ABY,sr) sin ¢ cos § — B3cos®0 (4.31)

+ ($Bn?t2a%;; — 3Bntaossyoss — ABals; + 2BR3gps + By?, ) cosf

Assuming that in the radial equations part of Eqgs. (4.26) and (4.27), A, =Adq =d in
the along-track part, A, = A&, = &, and in the cross-track part, B, = B,Bc = B, then Egs.
(4.26) and (4.27) are a system of equations in the variables A,, Ay, B., Ad,., Ady, . and can

be represented as

cos ¢ 0 0 —sin ¢ 0 0 A, 0
0 —2sin ¢ 0 0 —2cos ¢ 0 A, 0
0 0 cos 0 0 —sind c B 0
—nsin ¢ 0 0 —n.cos ¢ 0 0 Ad, - ef*
0 —2n cos ¢ 0 0 2n sin ¢ 0 Ady, eg*
0 0 —nsin @ 0 0 —n cos 6 Be eh*
) o o (432)
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The system in Eqgs. (4.32) have the determinant

cos @
0
0
—nsin ¢
0
0

—2sin ¢
0
0

—2n cos ¢

0

cos
0
0

—nsinf

—sin ¢
0
0
—nN.COoS @
0
0

0
—2cos ¢
0
0
2n sin ¢
0

= —4n3

(4.33)

0

—ncosf

where ¢ = nt + « and 6 = nt + 5. After substituting the right hand side of the system of

equations for the elements of the first to sixth columns we get

Ay = 4def*n?sin ¢, Ay = 2eg*n? cos ¢, Az = 4eh*n?sin 0

(4.34)
Ay = def*n?cos ¢, Ay = —2zg*n?sin ¢, Ag = 4ch*n? cos
Therefore, for the radial direction
dAr_g: Ef*smqﬁ
aooa (4.35)
Adc‘l”‘[ = % = —=f"cos¢
for the along-track direction
dAa _ Doy _ x
e (130
Ads‘t‘l = % = 59" sing
and for the cross-track direction
dBe — L1 — _£h*ginf
a8 (4.37)
Bdftc = % = —=h*cos0
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Averaging the right sides of Eqs. (4.35), (4.36) and (4.37) over the periods 27 /n, 27 /n
and 27 /n we get approximate equations for the determination of A, .., Ay, o, B, 8. for

each of the radial, along-track and cross-track equation as follows.

(i) Radial Direction
3 2w 2w 21

ddr _ _g(&) | f f*sin pdpdOdt

n\em 0 0 (4 38)
dor . 1 3 2m 2w 27‘(’ . '
= —als) J ] T cos ododbdt

Eq. (4.38) is the radial approximate equation. Substituting Eqs. (4.29), (4.30) and (4.31)
into Eq. (4.38) and evaluating the triple integral gives

A, = 22 (2y,pp — 9.4248nz,5¢) (R — 4,
(2y0s 1) ( ff) (4.30)

G, = <A2 + B? 4 59.218n%x2;; — 18.85nT0ppyops — 42%s; + 2RTops + 2y§ff)

Solving Eq. (4.39) yields

AT — Aoe(% (2yoff79.4248n:130ff) (R74xoff))t

o = £ (A2 4 B? +59.218n%%; — 18.85n&0gpyors — 422, + 2Rops + 207 ) t+ g
= Oélt + (7))
(4.40)
where A, and «, are the new radial amplitude and phase angle.
(ii) Along-track Direction
dA 3 2w 27 27 )
do = — 2 (L) [ ] [ g sin ¢dgdodt
000 (4.41)
doe . 3 27 2w 27
e = 2nA( ) Of Of Ofg cos ¢pdpdidt

Eq. (4.41) is the along-track approximate equation. Substituting Eqs. (4.29), (4.30) and

(4.31) into Eq. (4.41) and evaluating the triple integral simplifies to

A, = =024 2y o — 9.4248nx075) (R — 42,57)

Gy = —225¢ (4A2 + B* + 177.65n%x2,; — 56.549n2 05 Yo s — 8355 + 4RTopp + 6y§ff)
(4.42)
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and has the solution

Aa — Aoefo'iss (2yoff79.4248nxoff)(Rf4moff)t

= — 02 (4A2 + B? 4+ 177.65n%x2;; — 56.549n2 05 Yo — 82255 + 4R2opp + 6y§ff> t+ ap

= O./Qt + (7))
(4.43)
where A, and o, are the new along-track amplitude and phase angle.
(iii) Cross-track Direction
3 2w 2w 21

We = —£(&) [ [ | h*sin0dgdodt

a5 ) 30279279% (4.44)

b = — = (%) J ] cos fdododt

Eq. (4.44) is the cross-track approximate equation. Substituting Eqs. (4.29), (4.30) and

(4.31) into Eq. (4.44) and evaluating the triple integral gives

B. =0 (4.45)
Bc = —% (332 + 118.44712333” — 37.699nx0ffyoff - 16.Tsz + 8R.Toff + 4y§ff)

and has the solutions

Bc = BO
B, = —i25e (382 + 118.44n°x2; p — 37.699nT0ppyops — 16271, + 8Raopp + 4y§ff) t+ Bo

= Bit + Bo
(4.46)

where B. and . are the new cross-track amplitude and phase angle. To the first approxi-

mation, the averaged solutions are

xo(t) & A.(t) cos[(n + )t + ag]
Ya(t) = —2A,(t)sin [(n + aq) t + ao) (4.47)

2(t) & B.(t) cos[(n + B.) t + Po
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Therefore, the general solution is

z(t) = 21 + 29 & Ap(t) cos [(n + o) t + ap] + Tofy
y(t) =y1 +yo = —2A4,(t)sin[(n + aq) t + o) — %nflfofft + Yof f (4.48)
z(t) = B(t) cos[(n + B) t + P

4.3 Equivalent Linear Equations in Radial, Along - Track and Cross-Track Di-

rections

In this section, equivalent linear expressions are developed for radial, along-track and
cross-track directions. The approach here is similar to that in Ogundele et al [6]. In section

4.2.2, it was shown that a solution

z(t) = A(t)cos (nt + a(t)) + xopy
y(t) = —2A(t) sin (nt + a(t)) — 2nzopst + Yors (4.49)
z(t) = B(t)cos (nt + 5(t))
of the equations
E4nPr=cf(x,y,2) +n’Tops

y+n2y =é&g ($ayaz) +n2yoff - %n3$offt (45())

Z+n*z=ch(x,y,2)

has the equations of the first approximation in the form:

(a) Radial Direction

27 21 27
e — (L) T T [ psin dododt
PSS 0 000 (4.51)
o . 1 3 2w 2w 21 . ’
do —m(%) ({Ofg’f cos gpdodidt
(b) Along-track Direction
3 2w 2w 21
dcz?ta _ _i(% [ g* cos pdodBdt
0 (4.52)

g* sin pdpdfdt

O%:N‘?O\J
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(c) Cross-track Direction

dB 1 3 2w 27 21 .
= —£(%) ] | [ b sinfdedodt
n \ 2w 000

dt

21 21 21 (453)
W = (L) [T T W cosbdododt
000

dt 2n
The equivalent linearized equations for radial, along-track and cross-track directions are

derived as follows.

4.3.1 Radial Direction Equivalent Linear Equation

Using the notation

5 27 2 27
we(Ap) =mn — (_7;(217r> O/O/O/f* cos¢d¢d9dt) (4.54)

then A and 6 must satisfy the following equations

3 2w 2w 21 .
ddy _ _%(;) g g Of f* sin ¢pdodfdt (4.55)
fl—f = we(A,)

Taking the square of the expression (4.54) and neglect the terms containing £* as a factor,

then we get
3 21 27 27

2¢ /1
G(A,) = n® + j(%) / / / F* cos pdodbdt (4.56)
000
Defining a new function of the amplitude as
c 1 3 2 21 27 . 1 dA
h(A,) = nA<27T) [ ] [ 1 sinsdodsar = - (4.57)
000
Eqgs. (4.55) can be rewritten as
dd: — _ Ah(A,
at (4) (4.58)
% = we(Ar)
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By differentiating x(t) = A(t)cos¢ + x,ry we get

dr  dA dop |
i %comb Ad— sin¢g = h(A)Acos ¢ — Aw.(A)sin ¢ (4.59)

Once again, differentiating Eq. (4.59) results to

f% = %% cos¢+hdA cos ¢ — hAd¢’ sin ¢ — wesm¢ (4.60)
A‘fi“x S sing — Awe cos ¢
Making use of Egs. (4.59) and (4.60) we have
£+2h(A)d + ! (¢ = 2ops) = O (?) (4.61)
dr? dt of '
where,
dh(A)
2\ _ 2 _ 9 AWe
O () = =h*(A) (z — Topy) + h(A) dA (A)A= 1 cosh (4.62)

Therefore, it can be asserted that a solution to Eq. (4.61) with an accuracy up to a quantity
of order €2 in a neighborhood of zero will satisfy the linear differential equation of the form

d*x

d
=+ 2h(A) o + w2 (& — Tops) = 0 (4.63)

dt

The linear oscillator in Eq. (4.63) is the radial direction equivalent system. Since both A

and « are functions of time, the derivatives of = are

i =Acos¢— (n+c)Asing
. . (4.64)
= {A— (n+d)2A] cosp —2(n+da)Asing
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Using Eqs. (4.63) and (4.64) we have

[A— (n—l—o’z)ZA} cos ¢ — 2 (n + &) Asing + 2hA cos ¢ — 2h (n+ &) Asin ¢ + w?A cos ¢ = 0

Collecting sine and cosine terms we have

cosp: A — (n+a)*A + 2hA + w?A =0

sing: —2(n+d&)A—-2h(n+a&)A=0
Using the assumptions on the size A, ¢ and h that [18]

A < |A] 2 <11 ()
la] < n

hl < 5

we obtain

Eq. (4.63) may be rewritten as

d*z A\ dx \2
dt2_2<A>dt+(n+a) (x —zopp) =0

This is the radial equivalent linear equation which contains correction terms.

4.3.2 Along-track Direction Equivalent Linear Equation

Also, using the notation
21 27 27
*

e [ 1Y* .
we(Ay) =n — 2nA<27r) 0/0/ g" sin pdpdldt

0
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then A and ¢ must satisfy the following equations:

dAq _ _ e (L 2
dt — 2n\ 27w

d(z“ = we(Ay)

g* cos pdpdidt

oy
oy
o

(4.71)

Taking the square of the expression (4.70) and neglect the terms containing ¢* as a factor,

then we get
21 27 21

wi(Ay) =n® — ;(2;)30/0/0/9* sin pdpdOdt (4.72)

Defining a new function of the amplitude we have

21 27 27

e [ 1\° 1dA
S N
000
Eqgs. (4.71) can be rewritten as
dda — — Ah(A,
at (4a) (4.74)
% = we(A)
Differentiating y(t) = —2A(¢t) sin ¢ — nxofft + Yors We get
dA d
Zlg = —2% no— 2Ad(tb CoS ¢ — 3nazoff 2h(A)Asin ¢ —2Aw.(A) cos ¢ — 2na:off (4.75)

Once again, differentiating Eq. (4.75) results to

‘%’ = 252 Cfi‘? sin ¢ + 2h ; Sin ¢ + 2hA  COS O — 2dAw6 cos @ (4.76)

—2A‘2“X 7 COS¢+2Awe sin ¢

Using Eq. (4.74) we can rewrite Eq. (4.76) as

d?y dy 3 9
@ + 2h (A ) E + W (y + §nxofft — yoff> + 3h (Aa) NToff = @ (8 ) (477)
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where,

3 dh dw,
@ (82) = —h*(A,) (y + §nxofft - yoff> —2h (A,) Aﬂ sin ¢+ 2h (A,) A? dil cos¢ (4.78)

Therefore, it can be asserted that a solution to Eq. (4.77) with an accuracy up to a quantity
of order €2 in a neighborhood of zero will satisfy the linear differential equation of the form
d’y dy

3
ﬁ + 2h (Aa) E + wg (y + inxofft — yoff> + 3h (Aa) NToffy = 0 (479)

Since both A and ¢ are functions of time, the derivatives of y are

= —2Asind —2(n+a Acos¢ — 3nz,

j=-2 [A— (n—l—d)QA} sing — 4 (n + &) Acos ¢

From Egs. (4.79) and (4.80) we have

-2 [A — (n+d)2A} sing — 4 (n 4 &) Acos ¢
+2h (A,) (—ZA sing —2(n+ &) Acos ¢ — %m:off> +w? (—2Asin @) + 3h (Ay) nxopr =0

(4.81)
Collecting sine and cosine terms we have
cosgp: —4(n+a)A—4dh(n+da)A=0
e d- i) o
sing: —2[A— (n+a)°A] - 4hA — 2Aw? =0
The assumptions on the size A, & and h are that [7]
. . 2
Al <Az <11 ()
la| < n (4.83)

h] < oz
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Using these assumptions yields

h=— (i) w?=(n+a)’ (4.84)

Eq. (4.79) may be rewritten as

d*y A\ dy 2 3 A
w —2 (A) E + (n—l—a) <y+ §nx0fft — yoff> -3 Z NToff = 0 (485)

This is the along-track equivalent linear equation which contains correction terms

4.3.3 Cross-track Direction Linear Equation

Using the notation

o= (5]

[

o

T 2T 27
/ / h* cos Hdgbd@dt) (4.86)
00

and

oy
oy
oy

dB 13 .

B _ _e(L h* sin Odedodt

& (&) (4.87)
b — We(B)

dt

Taking the square of the expression (4.86) and neglect the terms containing £* as a factor,

then we get

T 2T 21

2
. 25(1)3 i
WHB) =n®+ = (5 0/ / / h* cos Oddddt (4.88)

00
Defining a new function of the amplitude we have

21 27 27

e /1\? . . dB
h(B):nB<27r> [ [ [ sinododsar ™ (4.89)
000
Eqgs. (4.87) can be rewritten as
B _ _pp(B
a (B) (4.90)
% = we(B)



Differentiating z(t) = B(t)cost we get

dz dB do . .
== cosf — B% sinf = h(B)B cos — Bw.(B) sinf (4.91)

Once again, differentiating Eq. (4.91) results to

d? d
0z —w?z — Pt

dt?

dw dh
2 2 AWe .
g h*z + hB 71 sm@—i—thBcose (4.92)

Therefore, it can be asserted that a solution to Eq. (4.92) with an accuracy up to a quantity

of order €% in a neighborhood of zero will satisfy the linear differential equation of the form

d?z dz
— +2h(B)—

o +wiz =0 (4.93)

Using the assumptions on the size B, § and h that [18]

Bl < |82 < Bl ()’

‘ 5“ <n (4.94)
hl < 5
Using these assumptions yields
By N
h=— <B> w? = (n+p) (4.95)
we obtained the linear equation
d*z B\ dz -\ 2
dt2—2<B>dt+(n+6)z:O (4.96)
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This is the cross-track equivalent linear equation which contains correction terms. Therefore,

the equivalent linear equations for the radial, along-track and cross-track are

T —2(%) %+ (n+6n) (z = opy) =0
%—2(%) %—l—(n—i—da)Q (y—k%nmofft—yoff) —3(%) nxoff—O
%—2(%)%4—(714—5) z2=0

4.3.4 Bounded Averaging Model

(4.97)

For the bounded relation motion case, in which z,5¢ = 0, we have the following for the

radial, along-track and cross-track:

(a) Radial Direction

L At — £ (424 B+ 2y
(2Ryoff )
A, = Age\ * —%(A2+BQ+2y2ff)t+oz0
z(t) = Aq(t) cos [(n + a,.) t + ]

(b) Along-track Direction

n

Au(t) = e WRewrst o, (1) = =022 (442 4 B + 6%, t + ag

dAs __ 0.5AR. dog __ 0.25 2 2 2
i = Oy, i = =00 (447 4 B2 + 6y3y)

y(t) = =2A,(t)sin [(n + aq) t + o] + Yoss

(c) Cross-track Direction
=0,% = — 012 (3p2 4 42, )
2(t) = B(t)cos[(n+ B)t+ Bo

and the equivalent linear equations reduced to

r—2(%) %+ (n+a) 'z =0
=2 E+ (n+ @) (Y= Yors) =0
%—2(%)‘;——1—(714-6) z2=0
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4.4 Numerical Simulations

The solutions obtained through the averaging method and the exact solutions are com-
pared using numerical simulations. Table 4.1 shows the orbital elements of the chief and
deputy spacecraft for the First Scenario. In the table, a is the semi-major axis in km, e is
the eccentricity, ¢ is the inclination in degree, €2 is the right ascension of ascending node in
degree, w is the argument of periapsis, and f is the true anomaly in degeree.

Table 4.1: First Scenario chief and deputy spacecraft orbital elements
Orbital Elements Chief Spacecraft Deputy Spacecraft

a (km) 7500 7500
e 0 0.0003

i (deg) 5 7

Q (deg) 5 5

w (deg) 10 15

f (deg) 25 20

4.4.1 First Scenario

In the First Scenario, the chief and deputy spacecraft have the same semi-major axis

7500 km. Figure 4.1 shows relative motion trajectories of the First Scenario.

4.4.2 Second Scenario

In the Second Scenario, the chief and deputy spacecraft have different semi-major axis.

The chief semi-major axis is 7500 km while the deputy semi-major axis is 7505 km.
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Figure 4.1: First Scenario Trajectories and Error Plots
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Chapter 5
Development of Closed Form Solutions of Nonlinear Spacecraft Relative Motion in Terms

of Orbital-Element Differences

The Hill-Clohessy-Wilshire (HCW) linearized equations of motion are generally used
to describe the relative motion of deputy spacecraft with respect to the chief spacecraft in
circular orbit using Hill frame coordinates (z, y, z) under the assumptions that the spacecraft
are very close to each other, the Earth is spherical and the nonlinear terms in the equations
of motion may be neglected. The Hill frame coordinates have the disadvantages that their
differential equations must be solved before the relative orbit geometry can be obtained and
the HCW equations are initial condition dependent valid only if the relative orbit dimension
is small in comparison to the chief orbit radius [1,2,3]. Recently, researchers have published
a number of papers to show the effectiveness and simplicity of the use of orbit element
differences which offers the advantage of better visualization of the relative orbit and slow
time variation [9,10,11]. This approach is considered in this chaptert to obtain Abel-type

and Riccati-type spacecraft equations of relative motion.

5.1 Nonlinear Equations of Motion for Orbital-Element Differences

Recently, to gain a better insight into the dynamics of the relative motion of deputy
spacecraft with respect to the chief spacecraft, much work have been done using orbital
elements [9,10,11]. Using Hill coordinate frames the relative orbit is determined with the

Cartesian coordinates

X=|lz vy 2z a9y 2 (5.1)
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where [ Ty z r and [ T oy 2 r are the position and velocity vectors. All the six vari-
ables, which vary with time per the Hill-Clohessy-Wilshire (HCW) second order differential
equations that govern relative motion [3], must be determined to be able to track the location
of the deputy spacecraft would be at a point in time. Rather than tracking all six variables
continuously the dynamics is simplified by using Keplerian elements. This has advantage of
having five constant orbital elements and one time-varying. Therefore, only one term (true
anomaly) which is time varying must be tracked over time. The orbit description is simplified
using orbit elements which vary slowly in the presence of perturbation forces such as third
body perturbation, atmospheric and solar drag. The dynamics of the relative motion of the
deputy with respect to the chief can also be described using the following six orbital element

set

€e=la 0 1 q ¢ Q (5.2)

where, a is the semi-major axis, # = w + f is the true of latitude, ¢ is the inclination,
g1 = ecosw, ¢ = esinw, €1 is the longitude of the ascending node, w is the argument of
periapse, f is the true-anomaly and e is the eccentricity. The relative motion between the

deputy and chief can be represented using the orbit element different vector as

T

5e:ed_ec: da 60 07 5(]1 5QQ 002 (53)

Here, e; and e, are the deputy and chief spacecraft orbital element vectors, respectively.
Taking the orbital element set in Eq. (5.2) as the chief spacecraft elements then the deputy
spacecraft elements are a + da, 0 + 66, i + i, g1 + dq1, q2 + dg2, and € + 6Q2. The linear
mapping between the Hill frame coordinates and the orbit element differences is presented

in References [3,11]. Using the orbit elements, the orbit radius can be expressed as

22
r = Cl(l q1 Q2)‘ (54)
(14 ¢y cosf + gasinb)
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with the variation

or = Lda+ Erd@ ! (2aq1 + 1 cosB) dq — r (2aqe + rsin6) dgs (5.5)
a Vi p p

The chief radial and transverse velocity components are defined by

Ve=7="2(q:18in6 — gy cos )

S

. (5.6)
Vi=rl= % (14 ¢y cosf + gosinf)

In terms of the orbit element differences, the Cartesian coordinate relative position vector

components are expressed as

x =or
y =1 (06 + cosiof2) (5.7)

y = 1 (sin 067 — cos 0sinio?)

while the relative velocity components are expressed as

i = —3r0a + (% — %) héd + (Vi.aqy + hsin ) ‘% + (Vyaga — hcos0) ‘%
Y= —%—‘25@ — V.00 + (3Viaqy + 2h cos6) 5% + (3Viags + 2hsin 0) 6% + V. cos 10 (5.8)
z2 = (Vycos0 + V,.sin0) §i + (V;sin 0 — V,. cos 0) sinidS2

Since 66 is the only time-varying parameter in Eq. (5.3), then the rate of change of the

orbit element differences vector, de, is

T
d&6=1060 00 0O (5.9)

This gives equations of relative motion of the deputy with respect to the chief in terms of the

orbital element differences. The true latitude rate 9, using the principle of the conservation
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of angular momentum A, can be expressed as

p (5.10)

72

Using Eq. (5.4) and the fact that h = \/up, the difference between the deputy and chief true

latitude rates may be expressed as

14 (q1 + dq1) cos (0 + 60)

= \/ 8 §M 2 5g2)2 Y]
[(a+ a){lf(q1+ q1)”—(q2+0g2) }] + (C]Q + 6q2) sin (9 + 59) (5.11)

— £ (1 + q cosf + gasinh)’

{a(1-ai-a)}

Eq. (5.11) is the nonlinear equation for the difference of latitude rate as a function of da,

36, ¢ and dgy. The variation of Eq. (5.10) is

- h [dp or
— (£ _9" 12
=1 ( 22 ) (5.12)
where,
op = géa —2a (q10q1 + q20q2) (5.13)

Using Eq. (5.12), Schaub and Junkins (2014) approximated 60 as a linear expression of de.

. h 2hV, h 2h h 2h .
00 = — 3 oa — Vi 00 + shag, + —-cosf | dq1 + Shag, + —sinf | dgo (5.14)
2ar? r2V, pr? pr pr? pr

For a better accuracy than the linear model in Eq. (5.14), the nonlinear equation can be
approximated into third order polynomial corresponding to Abel-type first order equation.

If the expansion is done to second order only we have a Riccati-type equation.
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5.2 Approximation of Orbital-Element Differences Equation of Motion

The equation of motion of the orbital element differences is nonlinear in the variation
of the true of latitude rate. For elliptic orbit, to prevent the variation of the difference
in true anomaly between two orbits the desired anomaly difference is usually expressed in
terms of a mean anomaly difference. However, the anomaly difference equation of motion
can be approximated into second, third and higher orders. The third order corresponds to
the Abel-type equation while the second order corresponds to the Riccatti type equation.

In this dissertation, two models of each of the third-order and second-order nonlinear
differential equations describing the dynamics of the relative motion of deputy spacecraft
with respect to the chief spacecraft in terms of the orbit element differences leading to the
formulation of Abel-Type and Riccati-Type differential equations are presented. Using well-

known techniques and methods, analytical solutions of the equations are developed.

5.2.1 Construction of Abel-Type Nonlinear Spacecraft Relative Equation of

Motion

In this section, Abel-Type orbital-element differences equations of motion are developed
as functions of all the four parameters da, 060, dq; and dgs using Taylor series expansion and

as a nonlinear function of only one time-varying parameter, §6.

(a) Approximation of Orbital-Element Differences Equations of Motion as a

Third-Order Function of Four Parameters

Here, the first model of the third order approximation is developed assuming that 56
is a nonlinear function of all the four parameters da, 06, dg; and dqy using Taylor series
expansion. Rearranging Eq. (5.11) in a form to which Taylor series expansion technique can

be applied we have the form [52]

-3/2

60 = g (6a) f (g1, 0qa,00) — n(1 + ¢ cos O + gy sin 9)2(1 — ¢ - qg) (5.15)
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where, n = \/u/a? is the mean motion, g (da) is a function of difference in semimajor axis

of the deputy and the chief, and f (01, 0qs,00) is a function of difference in ¢, go and 6.

g (da) = n(l + %“)73/2

2 —3/2
1+ (q1 + dq1) cos (6 4 60) 1— (g +6q1)° (5.16)
[ (0q1,0q2,00) = )
+ (g2 + 6g2) sin (6 + 56) —(g2 + 6¢o)
Application of Binomial series expansion gives
3 15 5 3D 3}
—nil— = — - — :
g (5a) = n { — (60) + <5 (60)" = 5 (a) (5.17)

Therefore, Eq. (5.15) yields

00 =n (1— £ (0a) + &5 (60)” = 125(6)°) f (01, 9g»,06)

by (5.18)

—n(1+ g cos + qo Sin0)2(1 — @ —q)

Applying Taylor series at the origin (0, 0,0) to f (d¢1, dgs, 0) and substituting into Eq. (5.18)

results to a special type of Abel-equation of first kind of the form
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50 =

+%5q15q2f6q16q2

+50q200 54,50 |

(0,0,0) +

+52%(da) f‘(ooo) + 5(60) faaae’ooo)

+ % (6q2) f5q2(5q2
_%5‘15Q159f5q169 ‘(0,0,0

—120a6¢200 54,50 ‘(0,0,0)

_@5a(59)2f§969 ‘(0,0,0)
138 50)700 |
+(0q1)” (642) Fogroqsdas
+ (6q1) (5Q2) Jéa1602642
+ (0q1) (0) (6g2) foqrs0

2

_?2’—256Lf ‘ (0,0,0) + no0 fsg ‘(07070) + néqlf&h
— 325008 fs0 | 0.0,0) — 320001 fia,

0,0,0) T 509100 fs4,60 ’(0,0,0) + 5000q1 fs05q,

(0,0,00 —

(0,0,0) —

0,0,0) T 19G2 f545 (0,0,0)

— 520adqs f5q,

(0,0,0) (0,0,0)

(0,0,0)

50002 f5054, (0,0,0) + 5002001 f5g260,
n 2

5(691> Joarsa
- 3%505‘.715QQf5q15q2

- %5a(5Q2)2f5q25q2

(0,0,0)

(0,0,0)
85a(81)* fogrsan
— —6a6q26q1f5ngq1
— 32600641 5050, |(0,0,0) — 526a605qs fs06q,

(60)*51 fsq, (60)*0q2fq,
f’é’a% (da) f‘(ooo) + % {(56]1) fsqi5q1601
000) + (861)” (80) fsg150160 ‘(0,0,0) +(691)° (692) foaroaman
0,00) + (0¢1) (6g2) (00) f54,64:60 ‘(0,0,0) + (5q1)* (66) fsq,6050,

6a: + (3a1) (38)” fsguon00 |(0.0.0) + (00) (501)° Frgasamon

(07070 (07070)

(0,0,0) (0,0,0)

(0,0,0)

15n
8a?

15n

+ (0,000 T go2

(0,0,0)

(0,0,0)

(0,0,0)

(0,0,0)

+(0a2)" (001) fogasqr5as
)" fs

042)" (80) faguo05q:

+(68) (0q1) (6G2) foosa:

+(06) (592)” frv5gs50:

+(59)2 (0q1) f50505:

0qs
3

+

0q2 4264202 |(0,0,0)

(
(
+(

Equation (5.19) is the first model of the third-order approximation of the rate of change of

the true-anomaly. Rewriting Eq. (5.19) in terms of Abel-Type equation as a function of true

0,00 + (0g2) (59>2f6q26959 ‘(0,0,0)

(07

0.0,0) + (0g2) (6q1) (60) fg269150 ‘(0,0,0) + (02)” (Oan) Js02600501
+ (002)" (80) f3qziqa00 ‘(0,0,0) + (8g2) (60) (6g1) f5q20050:
+(66) (0a1)* fsvsqroan
+ (60)% (6q1) fs08q006 ‘(0,0,0) + (60) (0g2) (6q1) f505g06a:

(0,0,0)

(0,0,0)

dg2 |(0,0,0)

(0,0,0) + (59)2 (6q2) fs054250 ’(0,0,0)

+ (59)2 (0G2) fs50505q

0,0) 0.0.0) + (60)? fsos050 ‘(0,0,0)}

of latitude difference we have

00 = p3(0)(30)° + pa(6)(360)” + p1(6)6 + po(0)
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(0,0,

0,0)

0)

(0,0,0)

(0,0,0)

(5.19)

(5.20)



The expressions for p3(6), p2(0), p1(8), po(#) are provided in Appendix D.

(b) Approximation of Orbital-Element Differences Equations of Motion as a

Third-Order Function of One Parameter

Here, 06 is approximated as a third order function of only one time-varying parameter,
true of latitude difference. The other three parameters, da,dq;,dqo, are constants. Using
series expansion technique and eliminating higher order terms above the cubic, we have the

following trigonometric functions

cos (0 4 60) ~ ¢ sin 0(50)° — 1 cos 0(50)° — sin 066 + cos 0
sin (6 + 66) ~ —% cos 0(50)° — +sin 0(00)* + cos H36 + sin §

cos2 (6 + 66) ~ §sin 20(50)° — 2 cos 20(60)* — 2sin 20 (66) + cos 26 20
sin2 (0 + 60) ~ —3 cos 20(66)° — 2sin 20(30)* + 2 cos 20 (66) + sin 26
and
cos?0 =  (cos20 + 1) ,sin* = 1 (1 — cos 26) ,2sin § cos § = sin 26
sin g = 6 — GO0 4 GO° _ (@0, @07 _ (5.22)
condo =1 ol o

Using Eq. (5.11), [1+ (q1 + 6q1) cos (8 4 360) + (g2 + dg2) sin (8 + 56)]* can be re-written as

[1+ (g1 + dq1) cos (6 + 60) + (g2 + dgz) sin (6 + (50)]2

(5.23)
= m3(0)(30)" + ma(0)(50)* + ma(0) (50) + mo(0)
Similarly, (1 + ¢, cos + ¢osin6)” can be expanded as
14 ¢y cos 0 + ¢osin 0)°
I+ @sinf) (5.24)

= (%q% - %qg) 0s 20 + q1¢2 8in 20 + 2q; cos 0 + 2¢2sin 0 + 1 + 347 + 343
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Defining Mp and Mg as

Mp = -
b \/ [(at6a) {1—(q1+5a1)°—(q2+642)* }]”

_ 1 ]
Me =\t s o)y

(5.25)

and substituting Eqgs. (5.23) and (5.24) into Eq. (5.11) yields a second model as a special

form of Abel-type equation of first kind
00 = k3(0)(60)° + ko(6)(66)” + k1(6)80 + ko () (5.26)
where, m3(0), m2(0), m1(0), mo(0) and ks(6), k2(0), k1(0), ko(6) are defined in Appendix E.

5.2.2 Construction of Riccati-Type Nonlinear Spacecraft Relative Equation of

Motion

In a manner similar to the derivation in Section 5.2.1, Riccati-Type orbital-element
differences equations of motion are developed as functions of all the four parameters da,
060, 0q; and dgo and as functions of only the parameter 66. Using Taylor series expansion
(in Appendix B) with (z,y,2) = (dq1,dq2,60) and (xg,yo,20) = (0,0,0), truncation after
quadratic terms gives the first model of a Riccati-type second-order approximation of orbital

element differences equations of motion as a function of all the four parameters as

60 = —35af ‘(o,o,m + (nfae ‘(0,0,0) + 5101 foqr50 ‘(0,0,0) + 31062 fogs00 ‘(07070>

+%”5Q1fae5q1 (0,0,0) T %n5q2f596qz (0,0,0) — %Z&lfée ’(0,0,0)) 00 + n5Q1f6q1 (0,0,0)
+n0qs f5q, (0,0,0) + %N5Q15Q2f5q15q2 (0,0,0) + %N5Q25Q1f5q26q1 (0,0,0) (5.27)
—%5@5Q1f5q1 (0,0,0) — %5@5Q2f5q2 (0,0,0) T %(5a)2f ’(0,0,0)
+%n(5q1)2f6q15q1 (0,0,0) + %n(5q2)2f5q25q2 (0,0,0) T %n(59>2f5959 ‘(0,0,0)
This can be written as
00 = pa(0)(30)° + p1(6)50 + po(0) (5.28)
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where,

PO(Q) = %nd(hé(hféqléqg (0,0,0) T+ %n6Q2§QIf5q25q1 (0,0,0) — %5G5QIf5q1 (0,0,0) — %5G5Q2f6q2

(0,0,0)
+122(50)" f |00.0) + 37(601)* fgssa [000) + 37(062)" Frgzsas | 000
—%Lf ‘(07070) 0a +nfsq (0,00 0G1 + N fsg |(0,0,0) 0G2
p1(0) = nfs ‘(070,0) + $10q1 fsq.50 ‘(0,0,0) + 5102 f5q,50 ‘(0,0,0) + 51001 o031 |(0.0.0)
+%H5Q2f595q2 (0,0,0) — %&Lfée ‘(070,0)
$2(0) = $1.f5050 | (0,0,0)
(5.29)

From Eq. (5.28), the second model of the Riccati-type second order approximation of orbital-
element differences equations of motion as a function of only one parameter is obtained,
taking ks(f) =0, as

00 = ko(0)(60)* + k1(0)56 + ko(6) (5.30)

The coefficients of Eq. (5.27) are shown in Appendix F.

5.2.3 Construction of Linearized Spacecraft Relative Equation of Motion

Using Taylor series expansion for first order approximation we have the equation

. 3n
00 = —%f ‘(0,0,0) da +nfse ‘(0,070) 00 + 1 f5q, 1(0,00) 0q1 + N fsg5 |(0,0,0) 0G2 (5.31)

This simplifies to

50 = . {(1 + g1 cos + gy sin0)*(1 — ¢? — qg)—?)/?} Sa
+2n {(—Q1 sinf + gz cos ) (14 1 cos O + gasinf) (1 — ¢i — q%)_3/2} 50

2cos6 (14 g cosl + qsinf) (1 — q2 — g3 8/
+n 1+a 2sinf) (1= ai =) S (5.32)

+3¢1(1 — g2 — ¢3)"*(1 + g1 cos 0 + gz sin 6)°

2sin 6 (1 4 g1 cos 0 + gy sin0) (1 — g2 — ¢3)

+3(ga + 0g2) (1 — 2 — @2)""*(1 + q1 cos 6 + o sin B)”
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Eq. (5.32) can be written as
06 = p11(6)66 + p1o(6) (5.33)

where,

p1o(0) = —% {(1 + g1 cos0 + g9 sin9)2(1 —q - q§)73/2} sa

2c080 (1 +qrcosf + qasind) (1 — ¢f — qg)_g/Q
+n 5(]1

+3¢1(1 = g2 = ¢3) """ (1 + ¢y cos 0 + go sin )

2sin 6 (1 + g1 cos 0 + gasin ) (1 — 2 — ¢2)°
+n 5/ ) 0q2
+3 (g2 + 0g2) (1 — ¢ — ) "*(1 + q1 cos 0 + g sin 0)

(5.34)

p1(0) = 2n {(—q1 sinf + ga cos ) (14 q1 cos§ + gasin ) (1 — ¢ — q%)—i’)/?} 60

Eq. (5.33) is the first model, linearized spacecraft relative equation of motion and it has the
same form as in the linear Equation (5.14). Considering the first order approximation only,
Eq. (5.30) becomes

60 = k1(0)060 + ko(6) (5.35)

Eq. (5.35) is the second model of linearized equation.

5.3 Closed Form Solution of Abel-Type Nonlinear Equation of Relative Motion

The approach for the formulation of closed form solution followed closed to the approach
in Ogundele et al [52]. Substituting the transformation 66 = 66, + u(0)E(6) into Eq. (5.20)

we have the form

u = E?ps [u?’ + g (30300, + p) w?
i {303(60,)% + 29206, + p1 — 2} (5.36)
+ 51— {po — 00", + ps(06,)° + pa(06,)* + p1 (56, } ]

where,

du dE d (66,)
! _ [—— / frd p
U E , 00, 70

=pf =" (5.37)
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From Eq. (5.36), let

Ty, (BPs00y +p2) = 1(6) (5.38)
{3]73(59 )2 + 2p200, + p1 — E/} = By(6) (5.39)

E?ps P P E :
Eipg {po — 60", + p3(860,)® + p2(86,)% + py (59p)} = B3(0) (5.40)

Considering the case in which the system (5.38-5.40) satisfies 3;(6) = $2(0) = 0 and f5(0) =

®(0)we have the corresponding system

o (3p300, +p2) = 0 (5.41)
3ps(60,)% + 2206, + py — El_y (5.42)
E2p3 P P FE
T {po = 00, + p3(66,)* + pa(06,)” + p1 (66,) } = B(0) (5.43)

Solving for 66, in Eq. (5.41) and substituting on Eq. (5.42) and (5.43) the above system

reduces to
P2
00, = ——— 5.44
p 3p3 ( )
2 /
Y2 E
_ S 5.45
305 + p1 I ( )
1 P1pP2 217% 1 <p2>/}
—_ -+ — + — = o0 5.46
EB3ps {po 3ps  3p3  3\ps (6) (5.46)
From Eq. (5.45), E' is obtained as
P
E(0) = exp [ / <p1 — 2) ae} (5.47)
3p3
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The condition 31(0) = f2(0) = 0 and [3(0) = () reduces Eq. (5.36) to the well-known

canonical form of Abel equation of first kind

g = () + B(6), € = [ E*ps0t (5.48)

Expressing the canonical form as

e — () = N (€) = —Mi(€) + B(€) (5.49)
and imposing the right-hand side to be zero we have the system of equations

e — uH(€) — M (E) = 0
—M(€) + B(€) = 0

(5.50)

Eq. (5.50) has solution

1
o A

"= Jo—21 1+ de Ry TSNPk

(5.51)

Using Egs. (5.44) and (5.51) the general solution 60 = 66, + u(0)E() can be written as

E(0) P2

(98] Abe1Moder = - (5.52)
Abel—Modell \/C’—Zf(l—i—)\)dé‘ 3
and
A 1 pp2  2p5 1d <p2>}

P(£) — — e e C (2 5.53
©) [C—2[(1+NdgY?  Eps {po 3ps  3p3  3d0 \ps (5:53)

Consider an analytic solution with A(§) = 0, then Eq. (5.52) reduces to

E(0

[06] Abel—Moderr = ) -2 (5.54)

VC —2 [ psE2(0)do 3D
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For the second Abel-Type equation model (5.26), using the same approach as above,

substituting the transformation d6 = §6, + z(0)V (6) we have the form

o= V2 [2* + o (3k300, + ky) 2
+ i {3ks(00,)” + 2200, + ky — Y7 } 2
o {ko — 60, + ks(36,)° + ka(96,)° + k1 (56,) }]

with the canonical form

ze=2°(Q) + 2(¢)

where,

¢= /V2k:3d6), V(0) = exp V (kzl - ;i) dG]

The canonical form can be written as

2 — 22(¢) =12’ (¢) = —n2* () + ¥(¢)

and imposing the right-hand side to be zero we have the system of equations

2 —2°(¢) =12 (¢) = 0, = n2*(¢) + ¥(¢) =0

These equations have the solutions

2(0) ! () = 1

CEI DI C =2/ (Lt n)dc

Therefore, the general solution is

V() ke
JC—2[(+n)oc ks

[5 Q]Abel—ModeD =
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(5.57)

(5.58)

(5.59)

(5.60)

(5.61)



and

n 1 kiky 2K 1 (/@)}
U(C) = — ho— L2422 S22 5.62
© [C =2 (1+n)oc?  V3hs { D3k 3k 3\ky 562

Consider an analytic solution with n(¢) = 0 then Eq. (5.61) reduces to

V() ks

-2 63
VC =2 [ ksV2(0)do ks (563)

[5 0]Abe1—Model2 =

5.4 Closed Form Solution of Riccati-Type Nonlinear Relative Equation of Mo-

tion

The approach in Polyanin and Zaitsev (2002), and Haaheim and Stein (1969) is followed
for the formulation of the general solution of the Riccati Equation. It is a well-known fact
that once a particular solution 66, = §6,(6) of the Riccati equation is known then the general

solution of the equation can be written as

50 = 660,(0) + —— (5.64)

Upon substitution of Eq. (5.64) into Eq. (5.28) we have linear differential equation

dz

@ + {pl (9) + 2p2(9)59p} zZ+ p2(9) =0 (565)
with the solution
50
2(0) = ze VO — e_‘I’(g)/ p2(0)e¥@dp (5.66)
560
where
v(d " 0) + 2p2(0)06,, do !
0= [, 2(0) +202(0)00,) 0, 20 = 0 (567
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Therefore, the general solution can be expressed as

66(p2(0), p1(0), 66 >Riccati—Mode11

B (5.68)
= 00, + ¥ | 55t L — Ly " Opa(6 )]

Expanding the general solutions in a series gives

59(1)2(9)’ b1 (9)7 69P)Riccati—Modell
= 60, + ¥ (860 — 06,,) [1 + (660 — 06,,) Sy ¥ pa(6)06 (5.69)

(60 — 60)° (J30 €@ pa(6)96)” +(56 — 50,0)° (J0 ew)pQ(e)ae)S + ]

where

2
O =14+ 9(0) + v + + ... (5.70)

The general solution of the model 2 of Riccati equation in Eq. (5.30) is found in a

similar manner to the approach in Model 1. Let the general solution be represented as
30 = 30,(0) + —— (5.71)
Substituting Eq. (5.71) into Eq. (5.30) gives differential equation
dw

g+ R1(0) + 2k2(0)08,} w + ky(6) = 0 (5.72)

Eq. (5.72) has the solution

560
w(B) = woe " — PO [ ky(0)e” D df (5.73)
)
where
0 " 6 0)66.,| do 1 74
— 2 -V .
B(0) /590[k1<>+ ka(0)00,) d0, wo = 5 (5.74)
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Therefore, the general solution can be expressed as

06 (k2(6), k1(6), 06p)\togera(riceati)

B (5.75)
= 00, + O | g — [ O ka(60)d0)]

In series form, Eq. (5.75) becomes

660(g2(0), 91(0), 6QP)Mode12(Riccati)
= 00, + 7O (800 — 00,,) [1+ (900 — 00,,) J3, €* @k (0)d6 (5.76)
(860 — 86,0) (S8 Ok (6)d6)” +(506 — 6,,)° (Ji eﬁ<9>k2(e)de) +}

where,

PO =14 3(0) + + ... (5.77)

5.5 Closed Form Solution of Linearized Spacecraft Relative Equation of Motion

Using integrating factor method, the linear equation in Eq. (5.33) has the solution

[00] Model1 (inear) = (Cl + / “pro( d9> / pu (0 (5.78)

Expanding the exponential functions in a series yields

[60(0)]todenn (tinear) = {1 + ([ p1a(0)d0) + 3(f pra(0)d0)* + £(J p1a(6)d6)* + }

(5.79)
{er+ 1 (1= (T pu(0)do) + 2(J pu(0)do)? — (J pua(0)do)* + ..) pro(0)db |

Using integrating factor method, the second model linear equation (Eq. 5.35) has the solution

[56]Model2(linear) = €G (Cl + /eGk0(6)39> 7G = /kl (9)86 (580)
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In series form, Eq. (5.80) can be written as

[00)\toder2tinear) = {1 + ([ k1(0)df) + 5(/ k1 (0)d)* + s k1(0)do)® + }

(5.81)
{er+ (1= (S ka(0)dB) + 5(f ka(0)d)* — 5(J k1(0)dB)’ + ...) ko(6)do }

5.6 Numerical Simulations

In this section, numerical simulations are carried out for two scenarios. Scenario 1 is for

chief spacecraft in circular orbit and Scenario 2 is for chief spacecraft in elliptical orbit.

5.6.1 Scenario 1: Chief Spacecraft in Circular Orbit

The two cases of bounded and unbounded relative motion considered are shown below.

a) Case 1: Bounded motion for Circular Chief Orbit

Table 5.1 shows chief and deputy spacecraft orbital elements for Case 1.

Table 5.1: Case 1 chief and deputy spacecraft orbital elements
Orbital Elements Chief Spacecraft Deputy Spacecraft

a (km) 8500 8500
e 0 0.01305
i (deg) 60 60.7
Q (deg) 35 35.5009
w (deg) 20 20.5
f (deg) 0 0.6

b) Case 2: Unbounded motion for Circular Chief Orbit

Here, the semi-major axis of the deputy is 8500.10 km.

5.6.2 Scenario 2: Chief Spacecraft in Elliptical Orbit

a) Case 3: Bounded motion for Elliptical Chief Orbit

Table 5.2 shows chief and deputy spacecraft orbital elements for Case 3.
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Table 5.2: Case 3 chief and deputy spacecraft orbital elements
Orbital Elements Chief Spacecraft Deputy Spacecraft

a (km) 9500 9500

e 0.03 0.0309556
i (deg) 45 45.155
Q (deg) 30 30.5
w (deg) 275 275.55
£ (deg) 320 320.5

b) Case 4: Unbounded motion for Elliptical Chief Orbit

Here, the semi-major axis of the deputy is 8500.10 km.
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Figure 5.1: Case 1 Bounded Motion Trajectories for Circular Chief Orbit
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Chapter 6
Extended Linearization of Cubic Model of Spacecraft Relative Motion Using State

Dependent Riccati Equation

In this chapter, extended linearization method is applied to the cubic approximation
model of spacecraft relative motion to find the state-dependent coefficient (SDC) parameteri-
zation. LQR and SDRE controllers are designed for the three forms of SDC parameterization
of cubic models of spacecraft relative motion previously discussed. The key interest in the
SDRE approach is that, unlike LQR, it does not neglect the beneficial nonlinear terms. The
simulation results show that both the LQR and SDRE methods can be used to stabilize
the system. However, the LQR controller that uses the linearized model does not give good
approximation of the nonlinear model in the regions that are far from the equilibrium point.
On the other hand, the SDRE controller brings the system back to the equilibrium positions
with less control effort. Overall, the SDRE controller has better performance compared to

the LQR controller in the simulation results for the three parameterized systems.

6.1 Cubic Model of Spacecraft Relative Motion

The radial, along-track and cross-track spacecraft cubic equations of motion of deputy

spacecraft with respect to the chief spacecraft in circular orbit is given as (see Ref [6,28,52])

i—2ny —3n*x =cf (v,y,2,2,9, 2)
j+2nt =eg(z,y,2,1,9, %) (6.1)

Z+n’z=ch(x,y,2,2,9, %)
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where € = 3u/2R5 is a small parameter and

I 2 2 2 2 2 8,.3
f(z,y,d,9) = —2R2?* + Ry? + Rz* — dwy? — daz® — S
g(z,y,2,9) = 2Ryx — dyz® + y2* —y° (6.2)

h(z,y,&,9) = 2Rzx — 422 + zy? — 23

The deputy satellite equation of motion relative to the chief was obtained using local
vertical and local horizontal (LVLH) frame with Cartesian coordinates xyz. The mean

motion is n and R is the chief orbital radius. In matrix form, Eq. (6.1) can be expressed as

0 0 0 1 0 0 0
0 0 O 0 1 0 0
. 0 0 O 0 0 1 0
X = X+e
320 0 0 2n 0 f(z,y,2) (6.3)
0 0 0 —-2n 0 O g(z,y,2)
0 0 -m* 0 0 0 h(z,y,z)

x=Ax+¢eH (z,y, 2)
6.2 Extended Linearization of Cubic Model of Spacecraft Relative Motion

Extended linearization, also referred to as SDC or apparent linearization, is the process
by which a nonlinear system is transformed into a pseudo linear-like system. The SDC is
formulated by factorizing the nonlinear dynamics into the state vector and matrices that are

state dependent [26,27,28,29,30]. Consider the nonlinear dynamical system

x =1f(x,u),x(0) = x (6.4)

which can be represented as affine in the input system

x = f(x) + g(x)u,x(0) = x0,£(0) =0 (6.5)
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The SDC parameterization of Eq. (6.5) leads to the following system in which the system

and input matrices are explicit functions of the current state variables

x = A(x)x + B(x)u, x(0) = x (6.6)

where f(x) = A(x)x, g(x) = B(x) the state vector x € R"™, the input vector is u € R™, A(x)
is the n x n state-dependent matrix which can be obtained by mathematical factorization,
function f : R — R", B : R* — R™ and B # 0,Vx. A number of approaches have
been presented on how to get optimal parameterization from suboptimal parameterizations.
In general, A(x) is unique only if x is a scalar [24,25,27,33]. If we have two distinct SDC
parameterizations A(x) and As(x) then f(x) = A;(x)x = Ay(x)x and for any @ € R we

have hyper-plane composition

A(x,a) =aA;(x)x+ (1 — o) As(x)x = af (x) + (1 — a) f(x) = f(x) (6.7)

where A (x, a(x)) is an infinite family of SDC parameterizations. Due to the fact that there
are many available SDC parameterizations we can choose the most appropriate one using

the state-dependent controllability matrix given by [24]

M(x) = | B(x) A(x)B(x) ... A" (x)B(x) (6.8)
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If M(x) has full-rank then the system is controllable

of the cubic model of spacecraft relative motion

Ty
Ty
Te
x = f(z) =
3nry + 2nxs + ¢ (—QRx% + Rz2 + Ra? — 4dx 23 — 4ay23 —
—2nxy + € (2Rw179 — 42973 + Tox
—n2x3 + ¢ (2Rz 113 — 4327 + 1373
T
where, X = | 2y zo x3 74 x5 Tg ] . Taking the
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. Consider the following representation

(6.9)

8,.3
311

)

2 3

)
)

3 — La

3

gradient of Eq. (6.9) we have



0 0 0
0 0 0
0 0 0
—4Rxy — 422
% +¢ € (2Rxy — 8x119) € (2Rx3 — 8z113)
Vf(z) = —4x% — 822
2Rxy — 4?2
£ (2Rxy — 811x2) € 2eT9T3
+a% — 313
2Rx, — 422
e (2Rz3 — 87123) 2ex95 —n?4e
+x3 — 373
1 0 0
0 1 0
0 0 1
0 2n O
—2n 0 O
0 0 O

(6.10)
Evaluating the gradient at zero yields

Vf(0) = (6.11)

o
o
o
|
)
N
o

o o o

Equation (6.11) is the linearization of cubic approximation model about the origin. In this

section, we applied extended linearization technique to obtain three SDC parameterizations
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of the model for use in SDRE technique. For each of the SDC parameterization the relation-
ship between the linearization of the original nonlinear dynamical system about the origin

and the SDC parameterization evaluated at zero was shown. Also, it was assumed that

B = (6.12)

where B is a 6 x 3 matrix, O3 is a 3 X 3 null matrix and I3 is a 6 x 3 identity matrix.

6.2.1 Cubic Model SDC Parameterization 1

In this parameterization the system dynamics is defined by

X = ASDCl (X)X + Bu (613)

where Agpci(x) is a state dependent matrix and B is a constant value matrix. An SDC

parameterization is

0 0 0 1 0 O

0 0 0 0 1 0

0 0 0 0 0 1

Agsper(x) =

3n? —«¢ (2R:1:1 + 32} + 423 + 4x§) eRxy R4 0 2n 0

£ (2Rxy — 4129) —ex’ ET9T3 —2n 0 0

¢ (2Rx3 — 41y73) exows —m?>—¢er3 0 0 0

) (6.14)
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This parameterization has state-dependent controllability matrix

000 1 0 O
000 0 1 0

M (x) = (6.15)

010 -2n 0 O

001 0 00

with full rank 6 for all x € RS.

6.2.2 Cubic Model SDC Parameterization 2

Consider the cubic model, quadratically nonlinear in the state variables, as
X = ASDCQ(X)X + Bu(t) = (Ao -+ €I1ANL(X)) X + Bu(t) (616)

where the matrices Ay and B are constant-valued and Ay (x) is a state dependent matrix.

0000 1 0 0
000 0 1 0
000 0 01
A= (6.17)
32 0 0 0 2n 0
00 0 —2n 0 0
0 0n2 0 0 0
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0 0 0 000
0 0 0 00 0
Ani(x) =¢ ’ ’ ’ PO (6.18)
—(2R+321) (RZ —4m,) (RZ—4a5) 0 0 0
—day (2R - 2) @m0 00
4y zazy (2R-2) 00 0

The state dependent matrix Agpea(x) = Ag+ex1 Ay (x). This parameterization has state-

dependent controllability matrix

o o O
e}
S
e}
—
e}

My(x) = (6.19)

010 —-2n 0 O

with full rank 6.

6.2.3 Cubic Model SDC Parameterization 3

Since there exists at least two SDC parameterizations, there are an infinite number.
Given f(x) = Agpc1(x)x and f(x) = Agpea(x)x, then for any @ € R we have hyper-plane

composition

A (x,0) =aAgper1(X)x+ (1—a) Aspea(x)x =af (x)+ (1—a) f(x) = f(x) (6.20)
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which is a valid parameterization. The dynamics for the formulation of the control can be

written as
fEl = T4
jj? = XI5
.fg = Tg
(6.21)
i4 = 2nxs + 3nx) + ¢ (—ZRx% + Ra2 + Ra? — Axy23 — 423 — %xi’) +u
T5 = —2nxy + € (2R 19 — 42923 + 922 — 13) + 1
ig = —n’z3 + ¢ (2RT w3 — w323 + 2373 — 23) + U
The dynamics in Eq. (6.21) can be represented as
x = Agpcs(x)x + Bu (6.22)

where A gpcs(x) is state dependent coefficient, B is a constant matrix and u is the control. In
a similar approach to the terms with more than one multiple of the state can be represented

as
4exyx3 = ay (dexs) zy + (1 — o) (dexy ) 29
dex 22 = g (dexd) 11 + (1 — ) (dexyx3) T3
2¢e Rr1x9 = a3 (26 Rxy) 9 + (1 — 3) (26 R 14
4exon? = ay (4ex?) m9 + (1 — ) (dez1m2) 1 (6.23)
eTow3 = aj (ex3) xo + (1 — a5) (x213) T3
2¢e Rr1x3 = g (2e Rxy) o3 + (1 — ) (26 Reg) a4

dexsr? = oy (dex?) w3 + (1 — ) (dexyxs) o3

ex3rs = ag (ex3) x3 + (1 — ag) (ex2w3) T3
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Therefore, choosing a; = as = a4y = a5 = ay = ag = 0 and a3 = ag = 1 we have the

following parameterization

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3n? — 2¢Rxy
Aspes(x) = (eRxy — dexqixy)  (eRxs — dexqx3) 0 2n 0
—2eq?

—Aex1 29 (26 Ry — ex3) EToX3 —2n 0 O

—n? 4+ 2eRxy
0 €93 0 0 0

—4ex T3 — €T3

This parameterization has state-dependent controllability matrix

o o O
e}
e}
e}
—_
e}

M3s(x) = (6.25)

010 -2n 0 O

001 0 00
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with rank 6. Evaluating the state dependent matrices Agpc1(x), Aspcoa(X), Aspes(x) at

the origin we have

VE(0) = Aspci(0) = Aspc2(0) = Aspes(0) = Ag = (6.26)

Therefore,

f(x) = Aspc1(x)x = Aspea(X)x = Agpes(x)x (6.27)

6.3 Development of SDRE Controller for the SDC Parameterized Models

The SDRE approach to nonlinear dynamical system is similar to the use of LQR design
approach and it gives a suboptimal solution for the optimal control problem using a linear
quadratic cost function. The SDRE controller is designed by transforming the dynamical
system into a state dependent coefficient (SDC) form in which the system matrices are
functions of the state variables. The design has advantage over the LQR design in the sense
that it can capture the system nonlinearity at each time interval. A linear quadratic control

can be stated in the following form. Consider a linear, state dependent, dynamic system

x = A(x)x + B(x)u (6.28)

The matrix A(x), whose choice is non-unique, is a state-dependent stabilizable parameter-
ization of the nonlinear system in  if the pair (A(x), B(x)) is stabilizable for all x € R"

and is a state-dependent detectable parameterization of the nonlinear system in € if the
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pair(A(x), Q1/2(X)) is detectable for all x € R”. The main aim is to find a state feedback

control law which can minimize the performance cost function

3 (xg,1) = ; [ " Qe)x + uTR (x)u dr (6.29)

to

where Q(x) € R™ ™ is symmetric positive semi-definite (SPSD) matrix, R(x) € R™*™ is
symmetric positive definite (SPD) matrix and may be state dependent. The control accuracy
is measured by xTQ(x)x while the control effort is measured by uR(x)u. Unlike in the case
of other nonlinear control design methods, SDRE technique enables one to tradeoff between
the control accuracy and control effort. Instantaneous feedback gains are calculated with
the assumptions that the penalty (weighting) matrices Q and R, and system matrices, A
and B are constants. Similar to the case of an infinite horizon LQR controller, the feedback

gain for a given state can be calculated as [24],
u(x) = -K(x)x = —R(x) " (x)BT(x)P(x)x (6.30)

where P(x) > 0, P : R" — R™" is the unique, symmetric and positive definite solution of

the State-Dependent Riccati Equation (SDRE)
P(x)A(x)+AT(x)P(x) - P(x)B(x)R '(x)BT (x)P(x) + Q(x) = 0 (6.31)

Eq. (6.31) is made asymptotically stable by the control law.
For an SDC parameterization that is detectable and stabilizable, the SDRE method
produces a closed loop solution that is locally asymptotically stable. The closed loop solution

is given by the system

% = [A(x) - B®)R(x) " (x)BT(x)P(x)| x =Aa(x)x (6.32)
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If Ay(x) is Hurwitz and symmetric for all x then global stability holds and V(x) =xTx is a
Lyapunov function for the cost function. Using Taylor series expansion on Eq. (6.32) about

zero point gives
% = [A(0) — B(O)R(0)"'(0)BT(0)P(0)| x + O (x?) (6.33)

Eq. (6.34) shows that in a neighborhood about the origin, the linear term with constant sta-
ble coefficient matrix will dominate the higher order terms thereby yielding local asymptotic

stability. The SDRE optimality criterion is [6]
P(x) + [a(A(X)X)] P(x) + [a(B(X)u)] P(x)=0 (6.34)

Satisfaction of this criterion will enable the closed loop solution to have a local optimum and

may also be global minimum.

6.4 Numerical Simulation Results

The orbital elements of the chief and deputy spacecraft used for the simulation is shown

in Table 6.1.

6.4.1 SDC Prameterization 1 Numerical Results

The numerical simulations for the SDC parameterization 1 using SDRE and LQR ap-
proaches are shown below. Figures 6.1 and 6.2 show the state responses while Figure 6.3

shows the control input.

6.4.2 SDC Prameterization 2 Numerical Results

The numerical simulations for the SDC parameterization 2 using SDRE and LQR ap-
proaches are shown in the Figures 6.4, 6.5 and 6.6. Figures 6.4 and 6.5 show the state

responses while Figure 6.6 shows the control input.
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Table 6.1: Chief and deputy spacecraft orbital elements
Orbital Elements Chief Spacecraft Deputy Spacecraft
a (km) 7500 7500
e 0 0.3
i (deg) 4 35.01
Q (deg) 5 10
w (deg) 10 75
£ (deg) 25 120
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Figure 6.1: SDC Parameterization 1 x1, z9, x3 states using SDRE and LQR approaches
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6.4.3 SDC Prameterization 3 Numerical Results

The numerical simulations for the SDC parameterization 1 using SDRE and LQR ap-
proaches are shown in the Figures 6.7, 6.8 and 6.9. Figures 6.7 and 6.8 show the state
responses while Figure 6.9 shows the control input.

The simulation results show that both the LQR and the SDRE are able to stabilize the
spacecraft. However, the LQR controller which uses the linearized model did not give good
approximation of the nonlinear model in the regions that are far from the equilibrium point.
On the other hand, the SDRE controller did not cancel the beneficial nonlinear terms and
as a result brings the system back to the equilibrium positions with lesser control effort. In
overall, the LQR controller has better and improved performance over the LQR controller

as shown in the simulation results for the three parameterized systems.
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Chapter 7

Conclusion

The Hill-Clohessy-Wilshire (HCW) equations, a linearized model of relative motion, is
generally used to desribe spacecraft relative motion due to its simplicity. This model has
numerous applications in rendezvous and proximity operations, spacecraft formation flying,
distributed spacecraft missions, intercept operations etc. But, the assumption of a circular
orbit in the formulation of HCW equations is a problem for a formation of satellites in an
elliptical orbit.

Precise orbit geometry is difficult to obtain using Hill frame coordinates to describe the
relative orbit. But, parameterizing the relative motion using the Keplerian orbital elements
simplifies the orbit description better than using Hill frame coordinates. The use of orbital
elements is beneficial because it has only one term (true anomaly) that changes with time out
of the six orbital elements and this, thereby, reduces the number of variables to be tracked
from six to one.

The unapproximated differential equations governing the spacecraft relative motion are
nonlinear. The simplest linear equations, HCW equations, are easier to characterize mathe-
matically and the tools for their analysis are well developed. In solving the spacecraft non-
linear equations quadratic and cubic approximations methods can be used to approximate
the equations which can be further linearized using harmonic balance method, averaging
method, floquet, homotopy perturbation etc.

The State Dependent Riccati Equation (SDRE) method, based on the factorization of
the nonlinear dynamics into the state vector, brings a nonlinear system to a non-unique linear
structure having matrices with state dependent coefficients and gives suboptimum control

law. The algorithm thus involves solving, at a given point in the state space, an algebraic

151



state dependent Riccati equation. The non-uniqueness of the factorization creates extra
degrees of freedom, which can be used to enhance controller performance. In comparison
to Linear Quadratic Regulator (LQR) method, the SDRE method doe not cancel out the
beneficial nonlinear terms.

In this dissertation work, cubic approximation model of spacecraft relative motion is
developed. From this approximation, two new linearized models of the relative motion,
using harmonic balance and averaging methods, are obtained. The numerical solutions show
that the models can provide better approximations of the relative motion than the HCW
model.

Another contribution of this work is the development of two basic models of Abel-type
(third-order) and Riccati-type (second-order) spacecraft equations of relative motion. The
models, which has only true-of latitude as time-varying, captured the dynamics better than
using position and velocity in which all the six parameters vary with time. Also, using
standard transformation techniques, closed form solutions of the Abel-type and Riccati-type
equations are developed. These equations can be used for spacecraft control, analysis and
maneuver planning.

Innovatively, feedback controllers are designed for the relative motion via State-Dependent
Riccati-Equation (SDRE) control strategy. The key interest in the use of SDRE strategy is
its ability to provide an effective algorithm for synthesizing nonlinear feedback controls by
allowing for nonlinearities in the system states, while offering design flexibility through state
dependent weighting matrices.

The future works can be extended to the case where chief spacecraft is in eccentric orbit.
Cubic approximation model of the eccentric case can be developed and various nonlinear
techniques such as averaging method, normal form, Lyapunov-Floquet (LF) transformation

can be applied to the cubic model for better analysis of the dynamics.
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(A.

Appendix A

Radial, Along-track and Cross-track Directions Nonlinear Terms

In this Appendix, Equations (A.1) to (A.6) are the expansions of radial nonlinear terms,
Equations (A.7) to (A.10) are the expansions of along-track nonlinear terms and Equations

11) to (A.14) are the expansions of cross-track nonlinear terms.

Radial Direction Nonlinear Terms
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Along-track Direction Nonlinear Terms
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+ 201375 + 167 (=3e1t + 2¢ cosnt — 2¢g sinnt + 64) — 3010%t + Lex?ey

+403 (—36115 + 2¢y cosnt — 2cgsinnt + ¢4) — 30103215 + i032c4

e (%01 + ¢y sinnt + ¢ cos nt) — Sele

= i62264 + i63264 — 8 —5C1 C4 + 2013t — 30102225 — %0103215 + (20104 — %612t) X

4 1
+ (ﬁClz + 1022 + *C32> y
= i02264 + l03264 - £ —5C C4 —|— ) Clgt — §01622t — 20103215

+ (deres - IQClzt)fﬁL( e+ e’ + et)y
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Y3 = —3cicat — 12¢1coc4t cosnt + 12¢; eyt sinnt + 24¢; cacst sin nt cos nt
+18¢12cqt? + 36¢1%cot? cos nt — 36¢;2¢c5t? sinnt — 27¢13t3

—12¢1c9%tcos®nt — 12¢yc5%tsin®nt + 2c9c4? cos nt + 8cy2cy cos’nit
—24¢;co’tcos®nt + 24cy cycst sin nt cosnt + 18¢;2cot? cos nt

+8cy3cos®nt + 8cycg?sin®nt cos nt — 2c5c4? sinnt — 8cocsey sin nt cos nit
+8¢52¢usin’nt + 16¢oc32sin®nt cos nt + 12¢cseqt sin nt + 24¢qcocst sin nt cos nt
= —3c1¢4%t — 12¢q 94t cosnt + 12¢ic5cqt sinnt + 12¢1cocst sin 2nt
+18¢;1%¢4t? + 36¢12cot? cos nt — 36¢;1%cst? sinnt — 27¢13t3

—6c109%t (1 + cos 2nt) — 6eies®t (1 — cos 2nt) + 2cac4® cos nt

+deg?eq (1 + cos 2nt) — degezey sin 2nt — 8cy?cy sinnt (1 + cos 2nt)
—12¢1cocyt cosnt — 12¢1¢9%t (1 + cos 2nt) + 12¢icocst sin 2nt

+18¢;2¢ot? cos nt + 8¢y® (% cosnt + § cos 3nt)

+4cyes® (1 — cos 2nt) cos nt — 2czcq® sinnt — degezey sin 2nt

+4c3?cy (1 — cos 2nt) + 8cgez?® (1 — cos 2nt) cosnt + 12¢iczc4t sinnt
+12¢icocst sin 2nt — 12¢1c3%t (1 — cos 2nt) — 18¢;2¢3t? sin nt

—4co?cs sinnt (cos 2nt 4+ 1) — 8¢z® (% sinnt — § sin Bnt) + c4®

+4cycq? cosnt — dceges® sinnt — 4deacsey sin 2nt — 6c¢1c4°t

—12¢1c9c4t cos nt + 12¢icseqt sinnt + 9ei2eqt® + 2¢9%cy (1 + cos 2nt)
+2¢3%¢4 (1 — cos 2nt)

= —18cicqt (=31t + 2 cosnt — 2ezsinnt + ¢y) — 36¢1%c4t? + 15¢1¢4%t
+27¢1%t% (=31t + 2c9 cosnt — 2cgsinnt + ¢4) + 5dei3t3 — 18¢,%cyt?

+3c4? (=31t + 2co cosnt — 2cgsinnt + ¢4) + et — 2c4°

+3c52 (—3c1t + 2c9 cosnt — 2cgsinnt + ¢q) — 3c1c0%t — co’cy

+3c32 (=31t + 29 cosnt — 2czsinnt + ¢4) + 3cyc3%t + c3?cy — 6cycp’t
+462204 — 1201032t + 263204

= (3co?cy + 3ez?ey — 2¢4® + (—9c100? — 93 + 18c1¢4?) t — Bdey®eqt? + 5dey3t3)
+ (3¢ + 3c3% + 3c4® — 18cieqt + 27c1%t2) y
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yz% = —3cic52tsin®nt — 6cicscgt sin nt cos nt — 3cicg’tcos’nt + 2cyc5? cos ntsinnt
+4cycsc6 sin ntcos?nt 4 2cac2cos®nt — 2escs?sin®nt — 4degescgsin®nt cos nt
—2¢5¢62 sin ntcos?nt + cyessin’nt + 2c4c5cq sin nt cos nt + cqcg?cos*nt
= —3c105%t (1 — cos 2nt) — 3cyescat sin 2nt — 2e1¢6%t (1 4 cos 2nt)
+cac5? cosnt (1 — cos 2nt) + 2cqcsc6 sinnt (1 + cos 2nt) + 2cqc6° (2 cosnt + 1 cos 3nt>
—2c5c5°2 (% sinnt — § sin Snt) — 2c3¢5¢6 (1 — cos 2nt) cos nt
—c3c6” sinnt (14 cos 2nt) + cqcs® (1 — cos 2nt) + cacscgsin 2nt + Leqce? (1 + cos 2nt)
= —%clc5zt + 502052 cosnt + %04052 — %ClCﬁQt — 503062 sinnt + 504062
—e305¢6 cosit — Seges? sinnt + cacscg sinnt + 3cace® cos nt
= %052 (=3c1t + 2¢o cosnt — 2cgsinnt + ¢4) + 5062 (=31t + 2c9 cosnt — 2cg sinnt + ¢y)
—c3cs (essinnt + ¢g cosnt) + cacg (¢5sinnt + cg cos nt)
— 2 (cs? + ¢6%) (—3ert + 2¢5 cosnt — 2¢5 sinnt + 1) — 2 (e5? + c6%) et + 5 (¢5% + c6?) e
= 1(cs + ¢6?) ca — 2 (5 + ¢6%) ert + ( cs® + 166 )y+(0266—03c5)z

(A.10)

Cross-track Direction Nonlinear Terms

Zr = %0105 sinnt + %clcﬁ cos nt + cocssin®nt + cocg cos nt sin nt + 3¢5 cos nt sin nt
+eycgcos’nt

= %0105 sin nt + %0106 cosnt + %(3205 (1 — cos2nt) + %0206 sin 2nt (A.11)
+%CgC5 sin 2nt + 50306 (1 + cos 2nt)

2

R 20 (c5 sinnt + cg cosnt) + %0205 + %0306 =1

1 2
5C2C5 + 5C3C6 + 7 C12

2x? = 42 c12cs sinnt + 201 cﬁcosnt + 01020581n nt + 010206 sin ntcosnt
+501C3C5 sin ntcosnt + 5016306603 Int —|— 20263658111 nt cos nt
+2¢9c506 sin ntcos?nt + cxea’sin’nt + cgea?sin®nt cos nt
+c52cs sinntcos®nt + c32cgeos®nt
= %01205 sinnt + %61206 cosnt + %010205 (1 — cos2nt) + %clcgce sin 2nt
—|—%C10305 sin 2nt + %010306 (1 4+ cos2nt) + caczes (1 — cos 2nt) cos nt
+cocseg sinnt (1 + cos 2nt) + cscp? (§ sin nt — l sin 3nt> + %05022 (1 — cos2nt) cosnt
+1 03 05 sinnt (1 + cos Znt) + c52c (3 cosnt + cos Bnt)

42 c12cs sinnt + 201 06 cosnt —l— 010205 + 010306 + 020305 COS nt
—1—5026306 sinnt + *6562 sinnt + *6662 cosnt + 703 cssinnt + 703 Cg COS Nt
= %cl (c5sinnt + cg cosnt) + cocs ( c1 + cosinnt + c3 cos nt
—%CQC5 (ﬁcl + ¢y sinnt + c3 cos nt) + 1010265 + c3¢6 ( c1 + cosinnt + c3 cos nt)
—%CngcG — %CSCG (%cl + ¢y sinnt + ¢3 cos nt) + ch 2 (cs sinnt + cg cos nt)
—1—1632 (essinnt + cg cosnt)

*010205 — *010306 + ( 201 + 02 + Cg ) Z+ ( CoCs + 0306) T

(A.12)
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2% = 9cser 2t sinnt + 9cger 22 cos nt — 12¢;cacst cos nt sin nt — 12¢; cacgtcos®nt
+12¢;csestsin®nt + 12¢; csegt sin nt cos nt — 6¢;cqcst sin nt — 6¢ycqcat cos nt
+4cscy’cos?nt sin nt + 4dcgea’cosnt + 4dcacycs cos nt sin nt + 4descycgeos®nt
—degeqessin®nt — degeqcg sin nt cos nt — 8cacscssin®nt cos nt — 8cycycg sin ntcos?nt
+4eses?sindnt + des?egsin®nt cos nt + cxeq? sinnt + cgeq® cos nt
= 9cser t? sinnt + 9cger*t2 cos nt — 6eyeacst sin 2nt — 6¢pcacgt (1 + cos 2nt)
+6¢1c305t (1 — cos 2nt) + 6y csegt sin 2nt — 6¢1cqcst sinnt — 6¢;cq4ct cos nt
+2¢509% (1 + cos 2nt) sin nt + dcgey? (% cosnt + § cos 3nt) + 2c9cyc5 Sin 2nt
+2c9¢4¢6 (1 + cos 2nt) — 2czeqcs (1 — cos 2nt) — 4degeycg sinnt cos nt
—4cgezes (1 — cos 2nt) cosnt — 4egegeg sinnt (1 + cos 2nt)
+4cse3? (% sinnt — § sin Snt) + 2c3%c6 (1 — cos 2nt) cos nt + csc4® sinnt + cgeq? cos nt
= 9¢,%t% (cs sinnt + cg cosnt) + cacs (—3cit + 2co cosnt — 2cz sinnt + ¢4) — 3eieacst
+co? (e sinnt + cg cosnt) + cacycg — czcs (—3cit + 2¢9 cosnt — 2cz sinnt + ¢4)
+3cic3est — c3eqcs — 6eieqt(cs sinnt + cg cosnt) + 32 (5 sinnt + cg cos nt)
+c4% (cs sinnt + cg cosnt)
= (cacycs — C3c405 — 3c1Cacsl + 3cicsest) + (e + 3% + ¢4® — 6creqt + 9¢,21?) 2
+ (cocg — c305) Yy

(A.13)

2% = ¢5%sin®nt 4 3cges2sinnt cos nt + 3escg’cos?nt sin nt + cgPcos nt

= ¢53 (% sinnt —  sin 3nt) + 3cges? (1 — cos 2nt) cos nt + 3c?cs (1 4 cos 2nt) sinnt
+cg? (% cosnt + 1 cos 3nt) = 3¢s® sinnt + 3cges® cosnt + gy sinnt + 2¢6% cosnt
— %052 (cssinnt + cg cosnt) + %062 (c5sinnt + cg cosnt) = (2052 + 3062) z

(A.14)
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Appendix B

Taylor Series Expansion
First-order Approximation of Taylor Series Expansion

f(x,y,2) = f (%0, Y0, 20) + (v — %0) fa (To, Y0, 20) + (¥ — Yo) Ty (70, Yo, 20) (B.1)
+ (2 = 20) [f= (%0, Yo, 20) '

Second-order Approximation of Taylor Series Expansion

f(z,y,2) = f(%0,Y0,20) + (¥ — T0) f2 (0, Y0, 20) + (¥ — Yo) Jy (70, Y0, 20)

+

+(x = 20) (¥ — o) fay ($07y0, 20) + (z — o) (2 — 20) fez (To, Yo, 20) (B.2)
+ (ZE - 900) (y — yo) Jye (70, Yo, Zo) + (y — y0)2fyy (ﬂfo,yo, 20) '
+(y — (2 = 20) fyz (70, Y0, 20) + (2 = 20) (¥ — T0) faz (T0, Yo, 20)

+(2 = 20) (¥ = Yo) foy (0, Y0, 20) +(2 — 20)* fz (20, 0, 70) }
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Third-order Approximation of Taylor Series Expansion

f(x,y,2) = f (20,40, 20) + (x — 20) fa (%0, Yo, 20) + (¥ — o) [y (To, Yo, 20)

+ (2 — 20) f- (0, Y0, 20) + 3 {(95 — 20)” fuu (o, Yo, 20)

+ (= 20) (Y — Y0) fay (xo,yo, 20) + (7 — 20) (2 — 20) fa= (0, Yo, 20)

+(z —20) (¥ — v0) fye (20, Y0, 20) + (y — yO)nyy (0, Yo, 20)

+ (¥ = vo) (2 = 20) fyz (T0, Y0, 20) + (2 — 20) (¥ — 20) fzz (T0, Yo, 20)

+ (2 = 20) (¥ — Yo) fay (70, Y0, 20) +(2 — 20)° f2= (0, Yo, Zo)}

+é {(SC - $0)3fmz (20, Yo, 20) + (v — 5130)2 (Y = Y0) fazy (%0, Yo, 20)

+(z — 930)2 (2 — 20) faaz (To, Yo, 20) + (T — $0)2 (Y — Y0) faye (70, Yo, 20)

+(z — 20) (¥ — %0)” fayy (To, Yo, 20) + (& — 20) (¥ — Y0) (2 — 20) faye (%o, Yo, 20)
+(x = 20)" (2 = 20) faze (20,90, 20) + (& = 20) (2 = 20) (Y = %0) fuzy (%0, Y0, 20)
+ (2 — 20) (2 — 20)2fxzz (%0, Yo, 20) + (¥ — o) (x — SUO)nym (70, Y0, 20)

+(y — o) (& — 20) fyay (To, Yo, 20) + (¥ — %0) (x — 20) (2 — 20) fya= (0, Yo, 20)
+(y = y0)” (7 — 20) fyye (To, Yo, 20) + (¥ — y0)3fyyy (0, Yo, 20)

+(y —y0)” (2 = 20) fyy= (T0, Y0, 20) + (¥ — yo) (2 — 20) (T — T0) fyzz (To, Yo, 20)
+ +(y — o)

+ +

+ +

+ +

_l’_
_l’_

—~

)
2
2
2
2

)
)
Yo)

—~

( Yo ) \Z — ZO)2fyzz (IO’ Yo, ZO)
(2 —20) ( — 20) (¥ — Y0) fay (To, Yo, 20)
(2= 20) (¥ — yo) (x — 20) faya (T, Yo, 20)

)
(¥ —90)” (2 — 20) fyzy (0, Yo, 20)
(Z - Zo) (96 - xo) fraa (an Yo, ~ 0)
( ( Z0)

2 — 20)° (¥ — 20) frez (To, Yo, 20

A~ o~

(Z - zO) (y - yO)szyy (ZE(), Yo, % 0) (Z - Z(])Q (y - yO) fzyz (ZE07 Yo, Z())
(z = ZO) (= 20) feoze (T0, Y0, 20) + (2 — 20)2 (¥ — Y0) fzzy (20, Yo, 20)
(2 — 20) fzzz Zo, Yo, 20 }—l— Ry (x,y, 2)
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Appendix C

Equations Containing Polynomial Functions

Frequently, there is a need to solve Abel’s differential equations of first and second
kind containing third-degree (cubic) polynomial and Riccati differential equation containing
second-degree (quadratic) polynomial. Both Abel and Riccati equation appear in differ-
ent physical and mathematical problems such as in oceanic circulation [34], in problems of
magneto-statics [43], control theory [49], fluid mechanics [47], cancer therapy [40] and in
solid mechanics [35]. Polyanin and Zaitsev [50] present the analytical solutions of special
type of these equations.

Abel Equations
An Abel equation of first kind has the general form (Harko and Mak 2015)

Vo = f(@)y° + fo(2)y” + fi(2)y + fo(w) (C.1)

Here, the notations d() /dx = (), d*()/dz* = ()", ... denote total derivatives. Mak and Harko
(2013) presented new method for generating a general solution of the nonlinear first kind
Abel type differential equation from a particular one. Polyanin and Zaitsev (2002), Mancas
and Rosu (2013) emphasized two connections between the dissipative nonlinear second order
differential equations and the Abel equations which in its first kind form have only cubic and
quadratic terms. They show how to obtain Abel solutions directly from the factorization of
second-order nonlinear equations. If y, = y,(z) is a particular solution of the Abel equation
(Polyanin and Zaitsev 2002, Salinas-Hernandez, Munoz-Vega, Sosa and Lopez-Carrera 2013,
Mak, Chan and Harko 2001) the substitution y = y, + 1/w reduces the equation to the Abel

equation of the second kind:

ww, = — <3f33/§ + 2 foy, + fl) w® = (3fsyp + fo) w — fs (C.2)

The transformation

&= /ngde,u = (y + 2) EVE=exp [/ (fl — 3‘?3) dx] (C.3)

brings the general form (C.1) to the normal (canonical) form

ug = u® + ®(¢) (C.4)
where, ,
1 Ld (f\  h 20

2= Fm lf“ 3 d <f3> 35 T 27f§] (C5)
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The analytic solution of Eq. (C.1) is given as (Polyanin and Zaitsev 2002)

2 2
y(x) = E(C’ - 2/f3E dx) - == (C.6)
3f3
Riccati Equations
The general form of a Riccati equation is
dy 2
i fo(z)y” + fi(x)y + fo(z) (C.7)

where fy, f1, fo are arbitrary real functions of x, with fy, f1, fo € C°°(I) defined on a real
interval I C R is one of the most studied first order nonlinear differential equations that
arises in different fields of mathematics and physics (Polyanin and Zaitsev 2002, Haaheim
and Stein 1969, Bastami, Belic and Petrovic 2010, Harko, Lobo and Mak 2014, Kamke
1959, Soare, Teodorescus and Toma 2007) named after the Italian mathematician Jacopo
Francesco Riccati (1724). It has the form which can be considered as the lowest order
nonlinear approximation to the derivative of a function in terms of the function itself. For
fo = 0, we obtain a linear equation and for fy = 0 we have the Bernoulli equation (Polyanin
and Zaitsev 2002).

Generally, it is well-known that only special cases can be treated because solutions
to the general Riccati equation are not available. To find the general solution one needs
only a particular solution. Given a particular solution y, = y,(z) of the Riccati equation,
the general solution of the Riccati equation can be written as (Polyanin and Zaitsev 2002,
Haaheim and Stein 1969, Bastami, Belic and Petrovic 2010, Harko, Lobo and Mak 2014)

-1

y [f2(2), fu(2), yp(2)] = yp() + B(2) | C — /‘D(ﬂ?)fz(w)dﬂf (C.8)

where

0(2) = exp{ [ 22()up(@) + fi(a)y] de (c9)

and C is an arbitrary constant of integration. The particular solution of the Riccati equation
satisfies

dy

d—; = fQ(x)yi + fi(x)y, + fo(z) (C.10)
The substitution u(z) = exp (— [ fo(x)ydx) reduces the general Riccati equation to a second
order linear equation

d2u 1 dfg(l’)
dr | folz) dx

FA@| %y fo@)fola) = 0 1)

If a particular solution is not known and the coefficients of the Riccati equation satisfy
the following specific condition

fa() + fi(z) + folz) = 0 (C.12)
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the Riccati equation will have the solution

y = K+ [[f2(z) — fo(2)] E(x)dx — E(x)
K+ [ [fa(2) + fo(2)] E(z)dx + E(x)

(C.13)

where K is an arbitrary constant of integration. If fo(x) = 1, and the functions f;(z) and
fo(z) are polynomials satisfying the condition (Polyanin and Zaitsev 2002, Harko, Lobo and
Mak 2014, Soare, Teodorescus and Toma 2014)

A = fi(z) — Qdf;iw) — 4fo(x) = constant (C.14)
then )
y=(z) = D) [fl(x) + \/Z} (C.15)

are both solutions of the Riccati equation (C.7). This paper presents two models of third-
order nonlinear differential equations describing the dynamics of the relative motion of deputy
spacecraft with respect to the chief spacecraft in terms of the orbit element differences leading
to the formulation of Abel-type differential equations. Using well known techniques and
methods, we developed analytical solutions of the Abel-type and Riccati-type spacecraft
nonlinear equations of motion of the first kind obtained.
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Appendix D

First Model Approximation of Abel-type Equation

In this appendix, elements of the coefficients of the first model of Abel-type equation

are provided.

Coefficients of First Model of Abel-type Equation

pO(G) = _%5G5Q1f6q1 (0,0,0) — *5@5Q2f6qz 000) + 56]15Q2f5q16q2 (0,0,0)
+%5q26q1f6q26q1 (0,0,0) éa? 5a f’ 0,0,0) 56]1) f6q15q1 (0,0,0)
+%(6Q2)2f5q25q2 (0,0,0) — 4a5a(5CI1) f6q16q1 (0,0,0) — ZT5615Q1592f5ql§qg (0,0,0)
—3—”6a5q25q1f5q25q1 (0,0,0) — %5(1(5Q2)2f5q25q2 (0,0,0) T éi?(éa) 0q1 fsq1 |(0,0,0)
éig(&l) 5Q2f5q2 (0,0,0) — %(5a)3f‘(0,0,0) + % {(5611) f6q16q16q1 (0,0,0) (D-l)
+(601)* (802) foqoarsaz | 000) + (661)* (32) Foarsasoar |(0,00)
+ (6a1) (6G2)° fsaqusassas |00.0) + (0G2) (5@1)° Fogusarsar |(0,0.0)
+(6g2)° (Oqn) J642601642 |(0,0,0) + (8g2)* (Oqn) J6a2602601 |(0,0,0)
+(5Q2)3f5q25q25q2 (0,0,0) — *f‘ 0,0,00a + 1 f54, (0,0,0) 0q1 + 1 f545 |(0,0,0) 0G2
p1(0) = nfse ’(0,0,0) — 3%5afs0 Jéq160 ‘ 0,0,0) T 50q1 f5054, |(0,0,0)

+%5QQf§q269 ‘(0,0,0) + §5C]2f595q2 (0,0,0) — @5a5611f5q159 ‘ 0,0,0)

—3*715615Q2f5q259 (0,0,0) — %5&5Q1faeaq1 ’(0,0,0) - *5615612f595q2 (0,0,0)
+§‘Z§(6a fs0 ’(0,0,0) + (501)% 015016 0,00 +(0q1) (0G2) fsq:5q250 ’(o,o,o) (D.2)
(5611) f5q1506q1 (0,0,0) (5(11) (5612) f5q1595q2 (0,0,0) + (5Q2)2f6q25q250 ‘(0,0,0) .
+(042) (601) fagootsa [(0:0.0) + (042)° Foquaton ‘ 00.0) + (661)° fo05q:60: ‘(o,o,o)
+(0q1) (0G2) fs05q1542 |(0,0,0) + (0G2) (9G1) f505425q: |(0,0,0)
+(6g2)° f50542542 {(0,0,0) + (0G2) (0G1) f5g5q150 ) (0,0,0)
p2(0) = 5 fs0s0 ‘(0,0,0) — 35 fs0s0 ‘(0,0,0) + % { 1) fsqus650 ’ (0,0,0)
+ (642) fsg25050 | (0,0,0) + (6G2) fo0sg200 ’(0,0 0) + (6q1) fs0sq,60 ’(000) (D.3)
+ (6q2) f50505q, |(0,0,0) + (0G1) f50505, (o,o,o)}
p3(0) = fso5050 ‘(o,o,o) (D.4)
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Taylor Series Partial Terms

_ —3/2
f ‘(0,0,0) = (14 g1 cosf + g sin 9)2<1 —q; — q%)

~3/2

f5Q1

0,00 =2cos8 (1 +qicosd+ gsinb) (1 —qf — ¢3)
+3q1(1 — 2 — g3) "2 (1 + g cos f + gy 5in §)°

—3/2

) /

fss [0,0,0) = 2800 (14 ¢y cos + gosin ) (1 — ¢ — ¢3
+3(qa + 0q2) (1 — ¢? — q§)75/2(1 + q1 cos 0 + go sin 9)2

. . 2 2 —3/2
fso ’(070,0) =2(—qsin@ + ga cosf) (1 + ¢y cosf + gz sin ) (1 —qi — q2)

—3/2 )—5/2

(000) = 2c08?0(1 — g7 — 3) " + 6g1 cos (1 — ¢7 — g3
+3q1(1 — ¢? — g3)*(1 + g1 cos 0 + gz sin 6)*
+1563 (1 — gf — 63) " (1 + q1 cos 6 + g sin )”
162 cosO(1 — ¢ — ¢2) " (1 + ¢ cos 0 + gz sin )

f5Q15q1

) —3/2
0,000 = 2cosfsind(1 — ¢i — ¢3) /

f5Q15qz
+6cos (1 + qycosh + gasind) (1 —q? — qg)_5/2
+15q1¢2(1 — ¢f — qg)q/Q(l + q1 cos 0 + go sin 6)2

6 sinf(1 — g2 — ¢2)"* (1 + g1 cos O + go sin 0)

) . ~3/2
foq160 ’(07070) = —2sinf (1 + gy cosf + g sin0) (1 — ¢ — ¢3) /

+2c080 (—q sin b + gy cos0) (1 — g2 — ¢3)
+6 (g1 + 6a1) (1 — g7 — g3) "% (= sin6 + gz cos ) (1 + g1 cos § + g sin )

—3/2

fsasoa |000) = 2sinbcos (1 —g¢f — ¢3)
+6¢1 sin 6 (1 + g1 cos + g2 sind) (1 — g7 — ¢3)
+15q1¢2(1 — ¢f — Q§)75/2(1 + ¢1 cos 0 + go sin 9)2

+6q cosO(1 — ¢ — q2)™* (1 + 1 cos O + go sin 0)

—5/2

. —3/2 . —5/2
000) = 25i0%0(1 — g% — ¢2) "% 4+ 6gosin (1 — 2 — ¢2) ™/

+302(1 — ¢7 — ¢3) "> (1 + q1 cos 6 + gy sin §)”
+15¢3(1 — ¢f — qg)qﬁ(l + g1 cos 0 + g sin (9)2
+6¢2sinf(1 — 2 — ¢2) "> (1 + q1 cos  + o sin 6)

f6q25q2

f54250 ‘(0,0,0) = 2c0s0 (1 + g1 cosO + gosin ) (1 — g2 — ¢3)

+2sin6 (—q; sinf + g cosb) (1 — ¢f — q%)*m
+3 (g2 + 0g2) (1 — ¢ — ¢3) (1 4 q1 cos 6 + gy sin )
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)—3/2

(0,0,0) = —2sin6 (1 +q1 cosf + Q2 sin 8) (1 — q% — q%
+2cos 0 (—qr sinf + gy cosf) (1 — ¢ — q%)_?’/2
+6q1 (—q18in 0 + ga cos ) (1 + qy cos O + gasin ) (1 — ¢? — q§)75/2

f§06q1

)73/2

0,00 =2cosd (1 + g cosd + gosinb) (1 — ¢f — ¢3
+2sin6 (—q; sinf + ga cos @) (1 — g% — qg)_g/2
+6q2 (—q18in 0 + gz cos ) (1 + q cos 0 + gosin ) (1 — ¢? — ¢3)

15054

—5/2

f5650 ’(0,0,0) = 2(—q1sinf + ¢, cos 9)2(1 - Q% - q%)f?’/Q

+2 (—q1cos0 — gasin ) (1 + ¢y cosf + gosin6) (1 — ¢f — q%)fs/2

—5/2

fsqisai6a: |0,0,0) = 6q1cos?0(1 — g7 — Q22)_5/2 +6cosf(1 — ¢ — ¢u?)
+30cosfg:2(1 — ¢ — ) * +15¢2 (1 — ¢ — @2®)"*(1 + g1 cosf + o sin 0)*
+6¢; cos (1 — g7 — Q22)75/2 (1 + g cosf + gosin )
+30¢1(1 — ¢f — Q22)_7/2(1 + 1 cos B + g sin 9)2
+105¢:3(1 — ¢ — g2) "*(1 + g1 cos 0 + go sin 6)°
+30¢1% cos (1 — ¢f — Q22)77/2 (1 + gy cosf + gosind)
+12¢; cos O(1 — g2 — g22)"* (1 + g1 cos 0 + go sin 0)
+30g13 cos B(1 — ¢ — 22) " * (1 + g1 cos 0 + gy sin 0)
+6q1%cos?0(1 — ¢2 — q22)_5/2

/ )77/2

(0,0,0) = 66]200529(1 - Q12 - Q22)75 ? + 30q1G2 cos O(1 — (J12 - Q22
+15q1¢2(1 — ¢f — qg)*7/2(1 + ¢y cos 0 + gy sin )?
6, sin (1 — ¢ — g2) """ (1 + g1 cos 0 + gz sin )
+105¢3¢2(1 — ¢f — qg)_gﬂ(l + ¢y cos 0 + gy sin 0)°
+30¢7sin0(1 — ¢F — q3)""* (1 + g1 cos 0 + gy sin )
+30¢3qy cos 0(1 — ¢3 — q%)_7/2 (14 g1 cos0 + gz8in6)
+6¢2sinfcosO(1 — g2 — ¢2)

f5¢h 0q16q2

Foarsarsn |0.0.0) = —4cosOsinO(1 — g% — go2) ™ — 6y sin O(1 — q,* — g2) "
+6q1(1 — 12 — qzz)ﬁr’/2 (—q1sinf + ga cos ) (1 + q1 cosf + gz sin 6)
+30q:%(1 — 1% — q22)_7/2 (—q1sinf + ga cos ) (1 + ¢y cosf + qa sin 6)
—6q1%sin0(1 — ¢ — QQQ)_5/2 (14 g1 cosf + gz sin6)

+6q12 cos (1 — ;% — q22)75/2 (—q1sinf + go cos )
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(0,0,0) = 6¢1 cosfsin (1 — ¢f — q%)_tﬂ)/2 + 6cos?0(1 — ¢? — ¢3)~ 5/2
+30q; cos O (1 + qrcos @ + gosinf) (1 — g7 — q3)~ 7/2
+15¢2(1 — ¢f — Qg)q/z(l + ¢y cos 0 + gy sin 0)°
+105¢3¢2(1 — ¢f — QQ)_9/2(1 + q1 cos 0 + @2 sin 6)2
+30¢1g2 cos (1 — ¢2 — q3)~ /2 (1 + g cosf + gosinf)
+6sinf(1 — q3 — q3)~ 5/2 (14 ¢y cosf + qosinf)
+30q: sin (1 — ¢ — ¢2) "% (1 4 1 cos 0 + go sin )
+6q; sin O cosO(1 — g2 — ¢2)?

f5Q15¢J25¢11

(D.21)

(0,0,0) = 6¢2 cos Osin (1 — ¢ — q%)_B/2 +6cosfsinf(1 — ¢} — q%)_s‘/2

+30g2 cos 6 (1 + qrcos @ + gosinf) (1 — g2 — q3)~ /2
+15¢1(1 — ¢f — C]%)77/2(1 + g1 cos 6 + go sin 9)
+105¢35(1 — ¢} — q%)_g/Z(l + 1 cos B + g sin 9)2 (D.22)
+30q1go sin 0(1 — ¢3 — qg)‘m (1 + g1 cosf + g2 sin @)
+30q1q28in (1 — ¢f — q§)77/2 (14 g1 cosf + gosin6)
+6qsin?0(1 — g2 — @2)

f5q15q25q2

. —3/2 —3/2
Fonsantn [000) = —25i0%0(1 — g2 — ¢2) " + 2c050(1 — g2 — ¢3) "

—6sind (14 g cosf + gosinf) (1 — q1 ) 5/2
+6cosf (—qy sinf + g cos ) (1 — ¢ — q3)~ 572
+30q1q2(1 — ¢3 — q%)_7/2 (1+ g1 cos + gasinf) (—q; sin 6 + go cos 6)
+6q cosO(1 — g2 — ¢2) " (1 + g1 cos 0 + go sin 6)
+6¢; sin0(1 — ¢3 — q%)_5/2 (—q18in 6@ + g2 cos )

(D.23)

00) = —2sinfcosf(1 — ¢i — q%)*m

fsa160501 (0,
—6¢1 sinf (14 q1cosb + gosind) (1 — 2 — ¢3)
—2cosfsinf(1 — ¢ — @) > + 6¢1 cos 0 (—qy sin 0 + gz cos ) (1 — ¢2 —
+6(1 —q1 ) 572 (—q18in @ + gz cos ) (1 4 gy cos + go sin ) (D.24)
+30(q1 + 0q1)° (1 — @2 — ¢2)~ /2 (—q1sinf + gz cos0) (1 + q1 cos € + g sin )
+6q1sin 0(1 — ¢ — ¢2)"* (1 + q1 cos 6 + go sin 0)
+61 cos O(1 — g? — g3) 7" (

—5/2
@) 5/2

—qy sinf + g cos 6)
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)—3/2

fsaq6062 |(0,0,0) = —2sinfcosO(1 — ¢ — g3
~25in0 (1 + g1 cosf + gy sin ) (1 — g2 — g2) ™2

—2c08%0(1 — ¢} — ¢3)~** + 6z cos 0 (—qy sin 0 + gz cos 0) (1 — g% — ¢3)

+30q102(1 — ¢f = ¢3) " (~qusin0 + g cos 0) (1 + g1 cos 0 + gz sin )
+6q cos (1 — ¢2 — ¢2) " (1 + g1 cos 0 + go sin 6)

+6¢; sin0(1 — ¢3 — (]%)_5/2 (—q1sinf + g, cos 0)

—5/2

(D.25)

. —3/2
J5q15050 ‘(0,0,0) = —2cosf (1 + qicos0 + gosin6) (1 — ¢f — q3) /

—2sin6 )32

—2sinf e

+2cosf (—qycosf — qasin®) (1 — ¢ — ¢3

+6q1(1 — ¢ — ¢2)* (—q1 cos 0 — gosin0) (1 + g1 cos 0 + go sin 0)
+6q1(1 —qf — qg)_5/2(—q1 sin 6 + g cos 9)2

1800+ gy cos0) (1 — g2 — ¢

q1sinf + g cos) (1 — ¢ — ¢3)
)—3/2

(_
- (D.26)

—3/2
fsqu6q:160,
—6q¢; sin @ (1 + gy cos + gz sin @) (1 —/qf —¢3)
)=3/2

(0,000 = —2sinfcosd(1 — ¢f — ¢3)
—5/2
—2sinfcosd(1 — ¢ — ¢3
+6q; cos O (—q1 sin 6 + gy cos0) (1 — ¢2 — ¢3)
+6 (—qysinf + gz cos 0) (1 + gy cos + gz sin ) (1 — ¢F — q%)_s/2
—6q; sinf (1 + q; cosf + gosinf) (1 — g7 — q§)75/2

+6q1 cos 0 (—qy sinf + gz cos ) (1 — ¢F — (]%)_5/2

+30¢2 (1 + gy cos O + qosin @) (—qy sin @ + gz cos 0) (1 — ¢ — ¢3

—5/2
(D.27)

)—7/2

000) = —2sin?0(1 — 2 — ¢2)=3/2)
)—5/2

f5q25q15Q2
—6gosin @ (1 + gy cos O + qasind) (1 — ¢ — g3
+2c0820(1 — ¢? — ¢2) 32 + 6¢y cos O (—qy sinf 4 gy cos 0) (1 — ¢ — ¢3)
+6q; cos 0 (1 + q; cos 0 + qosinf) (1 — ¢F — q§)75/2
+6q; sin 6 (—qi sinf + go cos ) (1 — g2 — g2) >
+30q1G2 (—q18in 0 + go cos ) (1 + q cos @ + gosinf) (1 — g2 — ¢

—5/2
(D.28)

)—7/2
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f5q254156 ‘(0,0,0) = —2cosf (14 qicosf + gosinf) (1 — Q% q%)_3/2
—2sin0 (—qysinf + g cos0) (1 — ¢ — q3)~ 3/2
—2sin0 (—qysinf + gz cos0) (1 — ¢ — ¢3)~ 3/2 (D.29)
+2cosf (—qy cosf — qosinf) (1 — ¢ — q3)” 8/2 '
+6q1 (—q1 cos 0 — gz sin6) (1 + ¢y cos + gosin ) (1 — ¢? — q%)_k—’/2
+6q; (—q1sinf + gz cos @) (—qy sinf + gy cos0) (1 — ¢¢ — qg)_5/2

. —5/2 . —7/2
Fsassassar |0.00) = 6a15in®0(1 — & — ¢3) "> + 30qugosin (1 — ¢ — g3)”"/

+15¢1¢2(1 4 q1 cos 0 + o sin 0)* (1 — ¢% — q2)_7/2
+6¢3 cos O (1 + g1 cos b +qgsin9) (1— q1 Q)" 5/2
+105¢2q1 (1 + q1 cos 0 + g sin 0)*(1 — ¢ — g3)~9/2
+30¢2 cos (1 — ¢ — ¢2)""*(1 + g1 cos 0 + gy sin A)?
+30q1¢3sin 0 (1 + gy cos 0 + g sin0) (1 — ¢F — qg)_5/2
+6¢2 sin fcosf(1 — g% — ¢2)?

(D.30)

Jsa26a2602 |(0,0,0) = 6(]2811129(1 - (J% - q%)_5/2 +6sin (1 — Q% - q%)_5/2
+30¢3 sin0(1 — ¢3 — q%)_5/2 +3(1+ g1 cos 0 + g2 sin0)*(1 — ¢2 — q%)_k—’/2
+15g3(1 + g1 cos§ + gosin 0)°(1 — g7 — g3) "
+6¢2sin0(1 — ¢3 — qg)f‘r’/2 (1+ g1 cosf + gosin0)
+30q2(1 + 1 cos O + gosin 0)*(1 — g2 — qg)_”2 (D.31)
+105¢3(1 + g1 cos 0 + g sin 0)*(1 — ¢ —qg)‘9/2 '

+30sin6g3 (1 + q; cos O + gz sinf) (1 — q1 —q3)” /2

+12¢osin 6 (1 + gy cos 0 + gasin ) (1 — g2 — ¢3)~ 5/2

+30g3sin 0 (1 4 g1 cosf + qasinf) (1 — g2 — ¢2)~""”
+6e3sin*0(1 — gf - 3)""*

foq204200 ’(0,0,0) = 4sin fcost(1 — g? — g3) =3/ + 6y cos (1 — g3 — g3) "
+642(1 — g — g3) "

(1 4+ ¢y cosB + gasinf) (—q; sin + gz cos )
+30g3 (—q

1SN0 + gocos0) (1 + g cos O + gosind) (1 — g2 — ¢2)~""? (D.32)
+6q5 cos 6 (1 + gy cos O + gz sin0) (1 — ¢F — (]5)_5/2

+6@2sin0(1 — ¢ — ¢2) "% (—qy sin 0 + g cos 0)
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f6q2596q1

0.00) = 2cos20(1 — ¢} — ¢3)=3/2)
+6q; cos 6 (1 + qy cos + qosinf) (1 — ¢F — qg)_5/2
—2sin?0(1 — ¢? — ¢3) =3/ + 6¢y sin 0 (—qy sin @ + gz cos ) (1 — ¢F — q%)—5/2
+151¢2(1 — ¢f — 3) 7P (1 + 1 cos b + gosinf)?
+6¢2 cos O(1 4 ¢1 cos 0 + gosin 0)* (1 — ¢ — q%)_5/2

(D.33)

Foastsas |(000) = 25in feosd(1 — ¢ — g3)
+6q2 cos 0 (1 + q; cos 0 + qosinf) (1 — ¢F — q%)f“r’/2
+2sin fcost(1 — g2 — ¢2) ™
+6g2 sin 0 (—q1 sin 0 + g2 cos ) (1 — ¢ — q%)_5/2
+3(1— 2 — @) (1 + q1 cos 0 + go sin )?
F15¢2(1+ qrcos + gosin 0)2(1 — g2 — ¢2)/?

+6qsinf(1 — g2 — ¢2)"* (1 + q1 cos 6 + gz sin 6)

(D.34)

. —3/2
f5q25q15Q1 (0,0,0) — —2sin QCOSQ(l - Q% - qg) /

—6qy sin 0 (14 1 cosd + gasin0) (1 — g2 — ¢2) />
—2sin fcosf(1 — g% — ¢2) >/
+6q, cos 0 (—q1sin € + g cos 0) (1 — ¢f — qg)_S/Q (D.35)
+6 (—q1sin 6 + ga cos0) (1 + gy cos O + gasin ) (1 — ¢F — q%)ﬁt)/2 '
—6q; sin 6 (1 4 1 cosd + gasin ) (1 — g2 — ¢2)
+6q1 cos 0 (—qysinf + gz cos0) (1 — 2 — g2) "
+30q% (1 + g1 cos O + qosinf) (—qy sin @ + go cos ) (1 — ¢2 — qg)q/2

Fsasamsan |(000) = —2sin*0(1 — ¢f — ¢5) =%/
—6g2sin @ (1 + gy cos O + gosin ) (1 — ¢2 — q%)_5/2
+2008%0(1 — g7 — ¢3) %% + 6gz cos § (—qu sin 0 + gz cos0) (1 — ¢F — 3) " (D.36)
+6q; cos O (1 + gy cos O + gosin ) (1 — ¢? _qg)—5/2 ‘
+6q; sin 6 (—qy sin 0 + go cos0) (1 — ¢? — q%)_s/2

+30q1q2 (—q1 Sin 0 + g5 cos 0) (1 + qy cosf + gasin ) (1 — g2 — g2) """

fs0260166 ‘(0,0,0) = —2cosf (1 + g cosd + gzsin6) (1 — ¢? — q%)_?’/2
—2sinf (—q; sinf + gocos 9) (1 — g% — qg)_3/2
—2sin0 (—qysinf + g cos0) (1 — ¢3 — q%)_?’/2 (D.37)
+2cosf (—qi cos — gasinf) (1 — ¢? —q%)fg/2 '
+6q1 (—q1 cos0 — g2 sin6) (1 + ¢y cos O + gasin ) (1 — g% — q%)_5/2
+6q1 (—q1sin 0 + gz cos ) (—qysin 6 + go cos 0) (1 — ¢? — q%)_s/2
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fs05q260:
—2sin%0(1 — ¢? — q%)_?’/2 + 6q1 sin 0 (—q; sinf + ga cos8) (1 — ¢F —
—6go sin @ (1 + ¢y cos O + gasin ) (1 — ¢? — ¢3)(=>/?
+6q2 cos 0 (—qy sinf + ga cos0) (1 — ¢3 — 2) "

. ~7/2
+30g (—qu sin 6 + gy cos8) (1 + g1 cosf + gosinf) (1 — g2 — ¢2) ™"/

~3/2

f50542502 |(0.0,0) = 2sincost(1 — g — g3)
+6q cos 0 (1 + gy cos 0 + qosin @) (1 — ¢f —
+2sinfcosf(1 — g3 — q%)_?’/2 + 6¢2 sin 0 (—qp sin 6 + ¢ cos 0) (1—q%— q2)_5/2
+6 (—q1siné + gacosb) (1 + ¢ 0059+qgsin9) (1—q—q) 5/2
+6g2 cos 6 (1 + 1 cos0 + gosind) (1 — ¢ —q3)~ 5/2
+6¢2 8in 6 (—q1 sin 6 + go cos 0) (1 — ¢ — q%)_5/2
+30¢2 (1 + q1 cos 0 + gasin ) (—q; sin 0 + gy cos 0) (1 — ¢ — q3)

5/2
@)

~7/2

15654256 ‘(0,0,0) = —2sin6 (1 + qi cosf + gosin ) (1 — ¢ — q%>,3/2
+2cosf (—qy sinf + gy cos0) (1 — ¢3 q2)_3/2
+2cosf (—q1sinf + gocos ) (1 — q1 a3)” 3/2
+2sin6 (—qicos — gasin) (1 — ¢? — ¢3)~ 3/2
+6q2 (—q1 cos0 — gasin ) (1 + q; cos 6 + gosinf) (1 — q% - (1%)75/2
+6q2 (—q1 sin 0 + gz cos ) (—qysin @ + gacos 0) (1 — ¢2 — ¢3)~ 5/2
. . 9 o\-3/2
fs65654: |(0,0,0) = —28in6 (—q1sind + ga cos ) (1 — i — ¢3)
+6q1(—q1 sin 0 + g cos 0)° (1 — ¢? — ¢2) "
—2cos 0 (14 ¢ cosb + gosinf) (1 — q% q2>,3/2
+2cosf (—qi cost — qusinf) (1 — ¢ — q3)” 3/2
+6q1 (—q1 cos0 — gasin ) (1 + gy cos O + gasinf) (1 — ¢? — q%)_B/2
: 3/2
1565654 (0,0,0) = 2cos B (—qysin @ + gz cos 0) (1 — CI1 q5 )
+6q2(—q1 sin 6 + gz cos 0)* (1 — g2 — ¢2)
—2sinf (1 + g cosf + gasin®) (1 — g2 — qg)_?)/2
+2sin6 (—qy cos 0 — gasinf) (1 — ¢? — q%)_?’/2 o

+6q2 (—q1 cos 0 — gosin ) (1 + g cos O + gosin ) (1 — 2 — ¢3)
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0,0,0) = 2c08?0(1 — ¢ — q%)_g/2 + 6q1 cos @ (1 4+ g1 cos + gz sin ) (1 — ¢ —
5/2
%)

qs

2)—5/2
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f595959 ‘(000 = 2( q1 cosf — q2 st) ( q1 sin 6 + @2 COS 9) (1 — ql q2)_3/2
+2 (g1 8in € — go cos @) (1 + ¢ cos O + gasinf) (1 — q1 a3 3/2 (D.43)

+2(—q1cosf — gasinf) (—qysinf + gz cos @) (1 — ¢? — ¢3)~ 8/2

f(0q1,0q2,60) = f ’(0,0,0) + 0q1 fsq, [(0,0,0) + 0G2f545 |(0,0,0) + 00 f50 ‘(0,0,0)
+% {(5Q1)2f5q15q1 0,0,0) T 001962 fs41545 (0,0,0) + 0G100 f54,50 ‘(0,0,0)

+0G20q1 f5q25q: |(0,0,0) + (3¢2)° fsqntan 0,0,0) +0G200 fs4,50 | (0,0,0) + 000q1 f5654,
+000G2 f3054, |(0.00) +(50)” f3080 ‘(o,o,o)} + £{060)* fsarsasan | 0.0.0)

+(601)° (502) Fsquoaaas |00, 0) T (691)% (80) foguoqao ‘(0,0,0) +(601)° (802) fogrsqman (0,0,0)
+ (001) (042)° Foaysanian | 0,00 + (601) (302) (90) Fiuaguan [0.00) + (51)° (0) Foguatsan

(0,0,0)

(0,0,0)
+ (5Q1) ( ) (5Q2) f5q1695q2 (0,0,0) (5611) ((59)2f5q15059 ‘(0,0,0) + (5(12) (5Q1)2f5q25q16q1 (0,0,0)
+(02)° (601) Frgsqrsas 00,0 + (502) (561) (80) fagooqon ‘(0,0,0) + (02)* (601) fsguoqmom |(0.00)
+(002)° fiqmoanoas | 00,0 + (502)* (80) foguoquao ‘(0,0,0) + (6g2) (60) (6q1) fsgs508a1 |(0,0,0)
+(5q2)” (86) fsgro050: |(0.00) + (5G2) (50)* figu0s6 ‘(o,o,o) +(60) (601)* favsaroa: | (0.0.0)
+(06) (5q1) (042) fovoquoas |(0.0.0) + (86)° (6q1) Fsvsg,s0 ‘(0,0,0) + (60) (842) (6q1) f50542801 |(0,0,0)
+(860) (392)” f56605502 |(00.0) + (00)% (52) fro5q250 ’(0,0,0) + (60)* (591) fso5080 |(0.0.0)
+(59)2 (042) f508054 |(0,0,0) +(59)3f595950 ‘(0,0,0)} + Ry (8¢1,0¢2,90)

(D.44)
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Appendix E
Second Model Approximation of Abel-type Equation

Coefficients of Abel-type Second Model

k3(0) = Mpms3(0)
— (g2 + 9q2) cos 0 + (q1 + dq1) sin 6

k2<0) = MDm2(9)
= Mp { (_((h + 5(]1)2 + (g2 + 5q2)2) cos20 — 2 (q1 + dq1) (g2 + dg2) sin 20
—(q1 + 6q1) cos 0 — (g2 + 0go) sin 0

kzl(é) = MDml(O)
o, { 2 (g1 + 6a1) (g2 + 642) 0520 + (— (g1 + 51)” + (g2 + 3g2)*) sin 26
+2 (g2 + 0g2) cos @ — 2 (q1 + dq1) sin b

ko(0) = Mpmo(6) — Mc { (34t = 363) c0s20 + qugosin 20 }
+1 4+ 5q7 + 305 + 2q1 cos 6 + 2¢y sin 6
= {Mp (14 31+ 001)" + 3(a2 + 02)°) — Mo (1 + 33 + 3a2) }
+ {%MD ((Q1 +oq)” — (ga + 5q2)2) — Mg (%q% — %q%)} cos 20
+{Mp (q1 + 0q1) (g2 + 6g2) — Mcqiga} sin 260
+{2Mp (q1 + 6q1) — 2Mcqy } cos 6
+{2Mp (g2 + 6q2) — 2Mcqo} siné
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M { —4(q1 4+ 0q1) (g2 + o) cos 20 + 2 ((Ch + 56]1)2 — (g2 + 5@2)2) sin 20

}
}

}

(E.1)

(E.2)

(E.3)



Appendix F
First Model Approximation of Riccati-type Equation

Coefficients of First Model of Riccati-type Equation

. -3/2
f ‘(07070) = (14 g1 cosf + gosin 9)2(1 — q% — q%)

Jsar |(0,00) = 2cos0 (14 g1 cosf + g sinf) (1 — @ — q%)_?’/2
+3q1(1 — ¢7 — g3)""*(1 + q1 cos O + gosin )
f50s [0,0,0) = 2800 (14 1 cosf + gosin ) (1 — ¢f — q§>73/2

+3q2(1 — qf - qg)—5/2(1 + q1cos0 + go sin9)2

. . —3/2
fs0 ‘(0,0,0) =2 (—Ch sin 6 + ¢ cos 9) (1 + g1 cosf + gasin 9) (1 - Q% - q%)

. . —3/2
fso ‘(0,070) =2(—q18in@ + gy cos0) (14 g1 cos + go sin ) (1 T q%)

—3/2 —5/2
)/ )/

000) = 2c05*0(1 — qf — ¢3) "+ 6qucos (1 — ¢f — g3
+3q1(1 —qf - qg)*5/2(1 + ¢ cost + gasin 9)2
+15¢2(1 — ¢ — ¢2) (1 + q1 cos 0 + o sin 0)°
+6¢% cos0(1 — ¢% — q%)_s/2 (14 q1cosf + qosinf)

f6q16q1

-3/2

(0,000 = 2cosfsind(1 — ¢f — ¢3) +6cos6 (1 + qcosf + qasinf) (1 — ¢?
+15q1¢2(1 — ¢f — q%)_”?(l + q1 cos B + go sin 0)2
+6qsinf(1 — g2 — ¢2)"* (1 + g1 cos 6 + go sin 6)

f51115q2

f6q150 ’(0,0,0) = —2sind (1 + q1 cos 0 + o sin 9) (1 - CI% - CI%)_g/2

+2cosf (—q; sinf + ggcos ) (1 — g7 — C]%)_g/2
+6 (q1 +0q1) (1 = ¢} — 8) ™" (~ sin + go cos 0) (1 + g1 cos f + gosin )
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(F.6)

2)75/2

(F.7)

(F.8)



(0,0,0) = 2sinfcosO(1 — ¢ — qg)_g/2 +6q1sin 6 (1 + g cos 0 + qosinf) (1 — ¢3 — q%)_5/2

+15q1¢2(1 — ¢f — C]%)_B/Q(l ~+ ¢1 cos 0 + g sin 9)2
+6gscosO(1 — g2 — ¢2) "> (1 + q1 cos O + go sin 6)

f5Q25Q1

(F.9)

000) = 2sin20(1 — ¢ — 2) ™ + 6gy sin O(1 — @2 — ¢2) >
+3¢2(1 — % — q%)75/2<1 + ¢1 cos 0 + go sin 6)2
+15¢3(1 — ¢ — qg)_7/2(1 + q1 cos 0 + @2 sin 9)2
+6¢2sin0(1 — ¢ — ¢2) "> (14 1 cos 0 + g sin 0)

f5QQ5qz

(F.10)

f&qzée ‘(0,0,0) = 2cos 0 (1 + qicost + qo sin@) (1 - Q% - q%)73/2

+28in 6 (—q sin 6 + gy cos0) (1 — g2 — ¢3) >/ (F.11)
+3(qo + 0q2) (1 — g% — q%)_5/2(1 + g1 cosf + o sinh)?
—3/2
) /

0,00 =2sind (1 + g cosd + gosinb) (1 — ¢f — ¢5

+2cosf (—qy sinf + gocosB) (1 — ¢ — g2)/* (F.12)
+6¢; (—q1 sinf + gz cos0) (1 + ¢y cos € + gosin )

f696q1

)—3/2

0,00 =2cos0 (1 +qicosd+ gosinb) (1 —qf — g3
+25in6 (—q, sin 6 + gocos0) (1 — g2 — ¢3) >/ (F.13)
+6¢2 (—q1 sin + gz cos ) (1 + gy cos € + g sin )

f66(5q2

Js050 ’(0,0,0) = 2(—q18in 6 + gy cos 0)*(1 — ¢ — q§)73/2 (F.14)
+2(—q1cos0 — qasin®) (1 + gy cos O + gasinb) (1 — ¢ — q%)f?’/2 '
f(0q1,0q0,00) = f ‘(0,0,0) +0q1 f5q: |(0,0,0) + 0G2f54. |(0,0,0) + 00 f50 ‘(0,0,0)
+3 {(5Q1)2f6q15q1 0,0,0) T 0G10q2 fs41542 |(0,0,0) + 0G108 f54,50 ‘(0,0,0) + 042041 f54254 |(0,0,0)
+(5Q2)2féq25q2 0,0,0) T 0200 f54,50 ’(0,0,0) + 00041 f505q: |(0,0,0)
+000qs f5654. |(0,0,0) +(59)2f5959 ‘(0,0,0) }
(F.15)
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