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Abstract

This research focuses on the design, prototype implementation and standardization sta-

tus of persistent non-blocking collective operations for the Message Passing Interface (MPI)

standard, through functional extension of OpenMPI, an open-source MPI implementation.

MPI is an integral tool in the field of parallel computing, providing fundamental communi-

cation techniques for large scale computations. Optimization techniques such as persistence

(planned transfers) and non-blocking operations (overlapping communication and compu-

tation) have been present in point-to-point communication since MPI-1. Similarly, collec-

tive operations (communication patterns among groups of processes) have been historically

available as a tool to promote convenience and efficiency. More recently, the adoption of

non-blocking collective operations into the MPI standard has offered further performance

opportunity. For data-parallel and regular computations with fixed communication pat-

terns, more optimization potential can be revealed through the application of persistence to

these non-blocking collective functions, yet to be included in the MPI standard.

Persistent operations allow MPI implementations to make intelligent choices about al-

gorithm and resource utilization once, and amortize the decision cost across many uses in

a long-running program. This research presents the first prototype implementation of per-

sistence applied to non-blocking collective operations, and demonstrates the functionailty

of the corresponding APIS. Early performance results of this implementation and examples

illustrating the potential performance enhancements for such operations are presented. Fur-

ther enhancement of the current implementation prototype, and additional opportunities to

enhance performance through the application of these new APIs comprise future work.
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Chapter 1

Introduction

1.1 Overview

The pursuit of high performance, efficiency, and low overhead are essential in the field of

research computing. As an integral, widely employed component of the research computing

stack, the Message Passing Interface (MPI) and its corresponding implementations offer a

number of techniques that enable parallel applications to achieve these goals. Traditional

methods that support increased performance include the use of non-blocking communication

(the overlap of computation and communication) and collective operations (communication

patterns among groups of processes) which offer the potential for increased efficiency and

lower overhead. More recently, the introduction of non-blocking collective operations in

MPI-3 provided even further opportunity for efficiency, by combining these two approaches.

It is also conceivable that another traditional method, persistence (the reuse of arguments)

can be added as a way to shorten the critical path of MPI non-blocking collective opera-

tions,vimproving the potential efficiency of parallel applications.

In this effort, new functionality is being demonstrated; non-blocking collective commu-

nication that is also persistent, in complement to on-going proposals to the MPI Forum

for potential inclusion in the MPI-4 standard. Therefore, this work serves two purposes:

to comprise the required demonstration of functionality needed for full consideration of the

operations by the Forum, and, second, the basis for a series of implementation iterations

leading to practical inclusion of these functions in one or more implementations of MPI,

starting with OpenMPI.
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1.2 Background

The Message Passing Interface standard (MPI), initially drafted in 1993[5], defines a

set of fundamental communication principles for parallel computing. In its most basic form,

much like computer networking, this communication is the sharing of data between two end-

points over a common shared medium. Unlike networking, which takes place at lower modu-

lar levels, the endpoints involved in MPI communication are software processes, which offer

much more computational flexibility, but also require a more dynamic set of communication

capabilities. A prevalent set of these features includes collective operations, non-blocking

communication, and persistent requests.

1.2.1 Collective Operations

All basic communication in MPI takes place in a point-to-point approach, that is a single

sending endpoint sends a message to a single receiving endpoint over a shared medium. A

separate descriptor, a communicator, defines a boundary for a collection of these endpoints

(processes) for which communication can take place. As common patterns of communica-

tion emerge among these processes, it becomes convenient, if not necessary, to define these

as operations of their own. These common operational patterns are known as collectives–

a defined group of point-to-point operations that replicate certain communication patterns

among processes. These patterns are typically represented in code as communication schedul-

ing algorithms, where a set of point-to-point operations are grouped together into a data

structure best described as a communication schedule [10]. Common forms include broad-

cast, reduce, or scatter, where certain participating processes will initiate send or receive

calls based on the desired distribution and processing of data among them.
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(a) MPI Broadcast (b) MPI Allgather

Figure 1.1: Collective Operation Diagrams

1.2.2 Non-blocking Communication

In point-to-point communication, one endpoint may transmit data to another, and then

block any subsequent program instructions until the other process has received, processed,

and acknowledged the transmission. This method of blocking communication, while conve-

nient and reliable, introduces inefficiencies where independent computation is possible during

message transmission. Because even slight inefficiencies in parallel and iterative programming

can lead to significant latency as a program scales, a method for initiating communication

over a separate communication thread and returning immediately to the main program is

desirable. This non-blocking method of communication was defined for point-to-point oper-

ations in MPI-1 [5], and was eventually introduced for collective operations in MPI-3 [6]. In

comparison to blocking operations, non-blocking communication requires an additional ele-

ment, the communication request object, whereby the status of the communication (among

other things) can be tracked.
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Listing 1.1: Blocking Send

if(rank == 0) {

MPI_Send (&buf ,count ,MPI_INT ,1,1,

comm);

// block until return

do_work ();

}

Listing 1.2: Non-blocking Send

MPI_Request req;

if(rank == 0) {

MPI_Isend (&buf ,...,&req);

// returns immediately

do_work ();

MPI_Wait (&req ,

MPI_STATUS_IGNORE);

}

Figure 1.2: Sample MPI Program Code: Blocking Send vs. Non-Blocking Send

1.2.3 Persistence

It is often observed that, as non-blocking operations are used in iterative fashion, the

arguments passed to their corresponding functions are used repeatedly with little or no modi-

fication. In the case of pure non-blocking MPI operations, the request argument’s associated

data, or even the request object itself, is invalidated or released in memory upon return

from its corresponding operation, requiring (at minimum) a reassignment or (maximally)

full reallocation for each loop execution. Because of the potential size and complexity of the

communication request object, and the consequent overhead involved in its allocation and

reuse, persistent requests were introduced in MPI-1 for point-to-point non-blocking opera-

tions [16]. A persistent request is created once, either before loop execution, or (only) on the

first iteration, and then used repeatedly without the need to reallocate for subsequent op-

erations, allowing for reduced overhead between the process and its communication channel

[16].

The set of features discussed in this section: collective operations, non-blocking commu-

nication, and persistent communication request objects, are the building blocks of a parallel

programming capability for MPI: persistent non-blocking collectives, discussed and imple-

mented in this research.
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Listing 1.3: Non-blocking Send

MPI_Request req;

for (i=0; $i <$max; i++) {

MPI_Isend (&buf ,count ,MPI_INT

,1,1,comm ,&req);

do_work ();

MPI_Wait (&req ,

MPI_STATUS_IGNORE);

// request buffers released

}

Listing 1.4: Persistent Send

MPI_Request preq;

MPI_Isend_init (&buf ,..., &preq);

for (i=0; $i <$max; i++) {

MPI_Start (&preq);

do_work ();

MPI_Wait (&preq ,

MPI_STATUS_IGNORE);

// request buffers held

}

Figure 1.3: Sample MPI Program Code: Non-Blocking Send vs. Persistent Send

1.3 Motivations and Use Cases

The primary objective of persistence is to exploit temporal locality present in highly

iterated operations; that is, those operations in which the same arguments are passed con-

sistently among all processes participating in the operation (most often, the communicator

group’s scope). Rather than recreating an MPI request handle each time, a single request

object is created and reused for each loop execution.

Gallardo et al. [3, 7] offer convincing evidence that MPI implementations are not taking

the best decisions for collective operations as a function of group size, message length, and

operation. They show that the just-in-time choices can be significantly far from optimal, in

some cases for short transfer lengths, the case during which decision overhead would need

to be shortest with a current, non-persistent MPI collective. These performance deficiencies

motivate providing specific means for programmers to identify properties and reuse of MPI

collectives that would support cost-effective algorithmic choice at runtime.

Some of these potential performance improvements include datatype optimization, topol-

ogy caching, synchronization trees, communication schedules, and zero-copy; some of these

have been investigated recently by other researchers [2, 8, 12, 20, 21, 22, 23] and provide a

strong foundation for realizing these performance improvements. In [23], persistent version of

all-to-all operations using Bruck’s algorithm [1] were implemented using derived datatypes

5



to eliminate explicit data movement. Experimental results show that the persistent ver-

sions outperform the non-persistent versions by a factor of 2-3 for small message sizes. The

algorithm selection and datatype creation overheads are moved to the corresponding init

operations and the overhead amortized over multiple calls to the all-to-all function. In [22],

efficient schedules are computed locally and message combining algorithms are used to im-

plement isomorphic, sparse collective operations. The persistent version of these algorithms

move the computation of the schedules and derived datatype creation overhead to the ini-

tialization step and reuse them over repeated collective calls. These optimizations provide

significant reduction in the latency for small message sizes.

6



Chapter 2

Design

In MPI, a persistent operation consists of a one-off planning step, followed by zero or

more pairs of starting and completion operations, and finally a one-off step to recover (or

free) the resources used. Persistent operations for point-to-point communication have been

specified as part of MPI since MPI-1 [13]. However, this semantic has not yet officially been

extended to other MPI operations, most relatively: collective communication. The effective

addition of this feature requires an examination of several critical design considerations.

2.0.1 Initialization

The key interface concept that persistence adds to existing collective operations is the

planning step. In a similar manner to the definition for persistent point-to-point opera-

tions, the planning step can be seen as splitting the nonblocking function into separate

initialization and start functions. For example, the nonblocking function for a collective re-

duction, MPI IREDUCE, can be split into the initialization of a persistent collective reduction,

MPI IREDUCE INIT, and a separate function call to start that operation, MPI START.

It is expected that the planning and optimization step for persistent collective operations

would be expensive in both execution time and resource usage. For this reason, it could be

argued that the initialization functions for persistent collective communication should be

‘blocking’ rather than ‘nonblocking’. However, a blocking planning step does not guarantee

that all initialization activities must be complete before the first collective communication

operation takes place. Achieving such a guarantee would require a precise definition of

which activities must be completed as part of initialization. This would predetermine the

implementation choices in a manner that is not consistent with the ethos of MPI.

7



The initialization functions for persistent collective communication could be defined to

be ‘non-communicating’ to be consistent with the initialization functions for persistent point-

to-point communication. Such a restrictive semantic would prevent all non-trivial planning

and optimization activities from beginning until the first time the persistent collective com-

munication operation was started. One advantage of this approach is that the optimization

work occurs if and only if the operation is actually used. However, forcing this work to

be delayed until the first ‘start’ function call would have undesirable consequences on the

execution time and resource usage of the first collective communication.

Defining the initialization functions for persistent collective communication to be ‘local’

instead of ‘non-communicating’ is less restrictive. The MPI term ‘local’ only prevents local

execution from being dependent on remote MPI operations or remote MPI state. This would

permit some planning and optimization activities that involve communication with other

MPI processes to begin immediately and continue concurrently with user code and other

MPI function calls (if allowed by the thread support level). However, many advantageous

optimizations require knowledge of the function parameters supplied by the user at other MPI

processes. This in turn requires that the local initialization function call can be matched

with the correct initialization call at other MPI processes, which means it should not be

‘local’.

Requiring that all participating MPI processes must call the persistent collective initial-

ization function is a natural extension of the existing requirements for blocking and nonblock-

ing collective operations. It implies that persistent collective operations cannot be ‘matched’

with nonblocking or blocking collective operations, in the same way that nonblocking and

blocking collective operations cannot ‘match’ with each other. This is a necessary constraint

for certain desirable optimizations, such as any that require collective coordination among

all participating MPI processes.

Ordering is a more complex design decision. Blocking collective operations must be

called in the same order by all MPI processes in the same communicator. This ordering

8



requirement is extended to nonblocking collective functions but not to the completion of those

operations. Thus, if one MPI process calls MPI IBCAST followed by MPI IALLREDUCE using

a particular communicator, then all MPI processes in that communicator must call those

same nonblocking collective functions in that order and without any additional collective

operations using that communicator in between. In the absence of tags (or other operation

identifiers), ordering of collective function calls is necessary so that ‘matching’ calls can be

correctly distinguished. Thus, either the persistent collective initialization functions, or the

start functions, or both must obey this ordering constraint.

Layering the implementation of persistent collectives on top of the existing semantics

defined for nonblocking collectives would require that the ‘starts’ must be ordered (also

discussed in section 2.0.2), which would mean that the initialization functions would not need

to be ordered. However, for the optimization phase to begin before the first call to MPI START,

it must be possible to correctly ‘match’ the initialization function calls themselves without

reference to any specific instance of the communication operation. This provides a strong

motivation to require that the initialization functions must obey the collective ordering rule.

Thus, the best design choice for the semantics of the initialization functions is identical

to existing definition for nonblocking collective operations:

• called by all MPI processes in the communicator

• correctly ordered within the communicator

• begins communication with other MPI processes (for the purposes of initialization only

– the request is ‘inactive’ until the operation is started)

• returns ‘immediately’ with no dependency on the state of other MPI processes

• permits communication to continue concurrently with user code

• is permitted (but not required) to synchronize

• requires an additional MPI function call to guarantee completion

For this reason, we choose to prefix the names of the initialization functions with “I,” as is

the custom for nonblocking communication functions in MPI.

The optimization work begun in the initialization function could be completed:

9



• explicitly - via MPI WAIT or other completion functions, mandated to occur before the

first call to MPI START;

• implicitly - probably before the first call to MPI START, or at least before the first

communication completes;

• at any time - before, during, or after the first communication, or even on an ongoing

basis in response to system environment changes.

The restriction in the first option is unnecessary and contrary to the existing persistent

function call sequence. The last two options are indistinguishable to the user of the API

(other than by careful measurement of the time taken by MPI calls or via the MPI T interface,

if the MPI library chooses to expose such information).

2.0.2 Starting

For simplicity and consistency within MPI, persistent collective communication opera-

tions would ideally be started using exactly the same mechanisms as for persistent point-

to-point communication operations; that is, by calling either the MPI START function or the

MPI STARTALL function. There is currently no requirement for any specific ordering when

starting requests. Separate calls to MPI START can be made in any order and even concur-

rently using multiple threads, if permitted by the thread support level. The MPI STARTALL

function is defined to act as if each request were started using MPI START in some unspec-

ified order. Thus, the natural extension of persistent point-to-point semantics is to permit

persistent collective operations to be started in any order.

‘Matching’ of collective operations must be done once during initialization and is reused

for each instance of the actual communication operation. This could be implemented inside

an MPI library via tagged collective operations or by duplicating the communicator. The

tag could be assigned locally during the initialization function based entirely on its ordering.

Alternatively, a nonblocking communicator duplication could occur during initialization.

10



Storing the unique identity of the operation in the MPI REQUEST data structure permits

correct matching each time the operation is started.

However, the ability to start persistent collective operations with different orderings at

different MPI processes cannot be layered on top of current nonblocking collectives. Also,

some application use-cases do not require the additional flexibility and could guarantee that

persistent operations would always be started in the same order by all MPI processes within

a particular communicator, or within all communicators. Imposing or guaranteeing strict

ordering for starting persistent operations prevents the non-trivial use of MPI STARTALL and

requires thread synchronization in multi-threaded user code for correct usage of MPI START.

Both of these semantics could be supported in MPI by specifying an assertion via a new

MPI INFO key. Ordered usage is a subset of non-ordered usage so the default semantic should

be non-ordered usage and the INFO key should assert that the user will restrict themselves

to ordered usage.

If the default is ordered usage, then the INFO key would be a request for additional

functionality, i.e. non-ordered usage. If MPI cannot support that, then it would need a

mechanism to deny the user’s request, which suggests a requested/provided interface similar

to the thread support level in the MPI INIT THREAD function.

If the default is non-ordered usage, then a compliant MPI library must support both

semantics; the INFO key is an assertion that users will restrict themselves to ordered usage.

MPI may choose to ignore such information or exploit it. This seems to be more in keeping

with the original intent of the INFO key functionality. A model implementation, which

leveraged nonblocking collective implementation code, might require users to supply the

‘ordered’ INFO key assertion or to guarantee correct matching in some other way, such as

ensuring that only one persistent collective operation at a time be active for all participating

MPI processes.
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2.0.3 Completion

Completion of each persistent collective communication that was started with MPI START

or MPI STARTALL is accomplished by waiting for the request or by repeatedly testing the

request. All of the variants (‘all’, ‘any’, and ‘some’) of waiting and testing in MPI are

permissible and have the same meanings and semantics as for other MPI operations.

Some applications may wish to guarantee that all optimization activities have completed

without starting and completing the first actual communication operation. This desire could

be accommodated by creating the request in the active state during initialization and re-

quiring that it be completed prior to the first call to a start function. Normal usage for

persistent requests (based on the existing definition of persistent point-to-point communi-

cation) is that the request is created in the inactive state, ready for the first call to a start

function. However, no long-running activity—in particular no communication—is permitted

during point-to-point initialization, so there is no significant work to complete.

If this additional step were added to the sequence of function calls for persistent col-

lective operations, then consistency would dictate a similar addition to the specification of

persistent point-to-point operations. This also suggests that the restriction that prevents

communication could be lifted, enabling more aggressive optimization for these operations.

2.0.4 Freeing

The final step in the lifecycle for all MPI REQUESTs is to free their associated resources

by calling MPI REQUEST FREE. For persistent requests, this is only allowed when the request

is inactive. It is expected that each persistent collective operation could exclusively reserve

a significant quantity of limited system resources. Freeing the persistent request gives the

user direct influence over when those resources are released. Initializing too many persistent

operations without freeing their resources will eventually exhaust the capacity of the system,

which could cause impaired performance or even fatal errors.
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It is possible to free a persistent request without starting it. In this case, the response in

MPI to MPI REQUEST FREE may be just to mark the request as ready-to-be-freed. When the

optimization activities finish, MPI will immediately recover all the resources associated with

the request. Alternatively, MPI may respond by attempting to cancel, curtail, or truncate

the ongoing optimization activities - and then recover any remaining resources associated

with the request. Note that MPI REQUEST FREE is local, so none of these actions can block

and therefore likely must extend beyond the call to MPI REQUEST FREE.
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Chapter 3

Implementation

The prototype implementation of persistent non-blocking collective operations is re-

ferred to herein as LibPNBC. It is a derivative of LibNBC (a Library of Non-Blocking

Collectives), originally developed by Hoefler and Lumsdaine [10] as a platform-independent

library providing pure non-blocking collective functionality. LibPNBC (a Library of Per-

sistent Non-Blocking Collectives) re-identifies and augments this existing library with the

necessary elements needed for persistence. The implementation reflects the design through

the division of each collective operation into INIT and START functions, with a generic

conduit to enforce ordering semantics, and a method for storage and retreival of the com-

munication request object and schedule through memory management.

3.1 Requests and Scheduling

The primary objective of persistence is to minimize the inherent redundancy in iter-

ative parallel operations, where communicators repeatedly pass the same arguments. In

non-blocking communication, the request object, described in figure 3.2, is of particular

importance because of the potential overhead involved in its initialization. With persis-

tence, rather than reallocating an MPI request handle on each iteration, a single request

object is created once and reused for each subsequent invocation. This requires caching or

storage mechanisms within any component that attempts to implement persistence, so that

information about a request can be retrieved upon subsequent communication operations.

Because multiple communications occur, the nature of collective operations necessitates

similar storage capabilities through scheduling [10]. LibPNBC uses LibNBC’s definition of

a communication schedule as an execution plan consisting of one or more interdependent
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rounds, each containing zero or more point-to-point operations. During the initialization

phase, as the collective operation’s algorithm is selected and executed, each internal, atomic

send or receive request is added to the component’s internal schedule. When started, these

requests are then passed to the Point-to-point Messaging Layer (PML) and handled normally

before returning to the collective library, where the schedule progression continues until it is

complete. This progression algorithm is held in the component source file pnbc.c, specifically

the functions described in Figure 3.1.

Listing 3.1: PNBC Progress Function

int PNBC_Progress(PNBC_Handle *handle) {

res = ompi_request_test_all(...);

...

if (*delim == 0) { /* last round complete */ }

handle->row_offset = (delim + 1) - handle->schedule->data;

res = PNBC_Start_round(handle);

}

Listing 3.2: PNBC Start round Function

static inline int PNBC_Start_round(PNBC_Handle *handle) {

...

res = MCA_PML_CALL(...);

res = PNBC_Progress(handle);

}

Figure 3.1: PNBC Schedule Progress Functions (pnbc.c)

The data structure of the internal schedule need not be modified for persistence. How-

ever, pure non-blocking collective operations operate under the assumption that all com-

munication will be completed before returning to the MPI layer, relinquishing much of the

request information in the process.

A method for storing any corresponding collective scheduling data and associating it

with the request must be provided at initialization time, and retrieval must be possible when

the communication is started. This can be achieved through internal caching mechanisms
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within the component, assigning identifying information to each core request so that the nec-

essary schedule can be retrieved from non-volatile storage upon subsequent communication

operations. Alternatively, each request that is assigned to a schedule can be held in memory

until it is explicitly freed by the caller, when it is no longer needed. As seen in figure 3.2, the

PNBC Handle, which is a substruct of MPI Request, includes a PNBC Schedule object as

one of its variables which will remain accessible as long as it is not explicity freed internally,

and the MPI Request is maintained in memory.

Listing 3.3: PNBC Schedule Data Structure

struct PNBC_Schedule {

opal_object_t super;

volatile int size;

volatile int current_round_offset;

char *data;

};

Listing 3.4: MPI Request Data Structure

struct ompi_request_t {

opal_free_list_item_t super; //Base type

ompi_request_type_t req_type; //Enum indicating the type of the request

ompi_status_public_t req_status; //Completion status

void *req_complete; //Flag indicating wether request has completed

...

ompi_request_complete_fn_t req_complete_cb; //Called when request is MPI completed

ompi_mpi_object_t req_mpi_object; //Pointer to MPI object that created this request

};

Listing 3.5: PNBC Handle Data Structure

struct ompi_coll_libpnbc_request_t {

ompi_request_t super;

MPI_Comm comm;

long row_offset;

int tag;

volatile int req_count;

ompi_request_t **req_array;

PNBC_Comminfo *comminfo;

PNBC_Schedule *schedule;

void *tmpbuf;

};

typedef ompi_coll_libpnbc_request_t PNBC_Handle;

Figure 3.2: PNBC Relevant Data Structures
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3.2 Initialization

The first step in a persistent request is operation initialization. This step is implemented

by augmenting each individual collective operation within the component to include an

initialization API function of the form MPI ăcollą INIT e.g., MPI IBCAST INIT. The code

for these functions is held in each operation’s corresponding pnbc ăcollą.c source file within

the component subdirectory, as described in 3.9. These functions prepare the operations

for use, but stop short of actually starting the operation. This preparation involves the

initialization of the MPI Request (pnbc handle) object, and the selection and assignment of

an the collective schedule to the handle. In some cases, multiple algorithms may be present

for the calculation of the communication schedule to be used, which are typically selected

based on the communicator size and used for optimization.

To ensure the persistence of the MPI Request and the corresponding schedule, a method

for schedule caching must be provided by each collective operation’s initialization function.

LibPNBC must be able to retrieve a request’s corresponding schedule when it is started.

LibNBC itself provides a partial, experimental approach to schedule caching using height-

balanced trees to provide efficient lookups, even for a large number of requests. LibPNBC

uses a more simplistic approach of maintaining each request in memory until it is explicitly

freed by the caller.

The implemented initialization functions also include a placeholder for a MPI Info flag,

as dictated by the design described in chapter two. This parameter is currently unused, but

could be used in future implementations to determine the ordering semantics and potential

optimizations for certain use cases.
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Listing 3.6: Pseudocode: MPI ăcollą init

int ompi_coll_libpnbc_<coll>_init(..., MPI_Info info, ompi_request_t ** request, ...) {

PNBC_Schedule *schedule; // initalize schedule

PNBC_Handle *handle; // initialize request handle

<coll>_sched_<algorithm>(..., schedule, ...); // assign send, receives

PNBC_Init_handle (comm, &handle, ...); // assign default values to handle

handle->schedule = schedule; // assign schedule to the handle

*request = (ompi_request_t *) handle; // reassign the passed request to handle

return;

}

3.3 Starting

In the same manner as traditional point-to-point persistent operations, persistent collec-

tive operations rely on a call to a start function, i.e. MPI START to initiate the communi-

cation that was prepared by the initialization function. Implementing this in the LibPNBC

component required the addition of a new function to the existing component code, as well

as subsequent additions at higher levels in the MCA to make it visible to the MPI API. To

avoid challenges associated with mapping MPI START, our early implementation publishes

a temporary function, MPIX Start for use at the MPI layer. Future implementations will

need to provide the necessary bindings for MPI START when the MPI layer selects the

LibPNBC component at runtime.
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Listing 3.7: Pseudocode: MPIX Start

static const char FUNC_NAME[] = "MPIX_Start";

int MPIX_Start(MPI_Comm comm, MPI_Request *request) {

...

switch((*request)->req_type) {

...

default:

OPAL_CR_ENTER_LIBRARY();

// Invoke the coll component to perform the back-end operation

err = comm->c_coll->coll_libpnbc_start(request);

OPAL_CR_EXIT_LIBRARY();

}

}

Listing 3.8: Pseudocode: coll libpnbc start

int ompi_coll_libpnbc_start(ompi_request_t ** request) {

PNBC_Handle *handle;

PNBC_Schedule *schedule;

// assign handle to passed request, still pointing to

// the initialized handle from MPI_<coll>_init

handle = (PNBC_Handle *) *request;

schedule = handle->schedule; // assign schedule from handle

PNBC_Start_internal(handle, schedule); // begin schedule execution

return;

}

Figure 3.3: MPIX Start Functions

LibPNBC currently provides the function mappings and MPI layer hooks necessary to

fire both initialization and start functions required for persistence. The addition of the ini-

tialization and start functions, along with the memory maintenance of collective schedules,

into the existing LibNBC collective operations enables the base functionality of persistent

non-blocking collectives. This functionality is expected to provide a modest boost to inter-

process communication for large-scale use of collective operations. As LibNBC is used by

other MPI implementations, we view this model implementation and prototyping effort as

reusable beyond Open MPI, though with modifications, and much room for optimization.
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Listing 3.9: Blocking Send

for (i=0; $i<$max; i++) {

compute(bufA);

MPI_Bcast(bufA,...,rowcomm);

compute(bufB);

MPI_Reduce(bufB,...,colcomm);

}

Listing 3.10: Non-Blocking Send

for (i=0; $i<$max; i++) {

compute(bufA);

MPI_Ibcast(bufA,...,rowcomm, &req[0]);

compute(bufB);

MPI_Ireduce(bufB,...,colcomm, &req[1]);

MPI_Waitall(2, req, ...);

}

Listing 3.11: Persistent Send

MPI_Ibcast_init(..., &req[0]);

MPI_Ireduce_init(..., &req[1]);

for (i=0; $i<$max; i++) {

compute(bufA);

MPIX_Start(req[0]);

compute(bufB);

MPIX_Start(req[1]);

MPI_Waitall(2, req, ...);

}

MPI_Request_free(&req[0]);

MPI_Request_free(&req[1]);

Figure 3.4: Sample MPI Program Code: Non-Blocking Send vs. Persistent Send
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3.4 Development Methods and Tools

3.4.1 OpenMPI

As a widely-deployed, extensible, and well documented implementation of MPI, Open-

MPI has been chosen as the codebase on which to implement this initial prototype of persis-

tent non-blocking collectives. As of June 2017, the main development source code repository

for OpenMPI is provided publicly at https://github.com in the open-mpi/ompi repository

(https://github.com/open-mpi/ompi.git).

Detailed development documentation and other critical information is provided at the

same location. Stable releases, publications, user documentation, and other relevant mate-

rials are also made available at https://www.open-mpi.org. Additionally, OpenMPI user and

developer mailing lists are available for public subscription (https://www.open-mpi.org/community/lists)

as an interactive resource.
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To summarize:

• Development Source Code: https://github.com/open-mpi/ompi.git

• Development Documentation: https://github.com/open-mpi/ompi/wiki

• Stable Releases and Additional Documentation: https://www.open-mpi.org

• Community Mailing Lists: https://www.open-mpi.org/community/lists

3.4.2 Open MPI Implementation Model

To promote portability, OpenMPI uses a layered implementation model, separating

functionality into three abstracted groups. OPAL, the Open Portability Abstraction Layer,

defines essential functionality for individual processes to interact with the operating system,

with some degree of platform independence. ORTE, the Open Runtime Environment pro-

vides a runtime system in which to perform process management and platform-specific API

interactions, i.e. interaction with workload managers. OMPI provides the interface syntax

and semantics necessary to initiate MPI functionality from the user application [17].

Figure 3.5: OpenMPI Abstraction Model[17]
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This model is reflected in the OpenMPI project directory structure and nomenclature,

and serves as a good reference for interpreting STDERR and STDOUT messages at compile

and run time.

3.4.3 The Modular Component Architecture

In OpenMPI, within each abstraction layer exists a file architecture known as the Mod-

ular Component Architecture (MCA), where additional functionaility can be added. The

MCA provides extensibility through the use of compiler toolchains, file nomenclature, syntax,

and protocol that guides build automation.

In broad terms, the MCA defines frameworks, and more narrowly, components c.f. Fig-

ure 3.6. Frameworks are generalized groups of similar operations, such as collective (coll) or

point-to-point (pml). A component is a set of specific functional implementations, within a

framework, consisting of algorithmically (or otherwise) differentiated code.

Figure 3.6: Modular Component Architecture Conceptual Model
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Nearly all of OpenMPIs core functionality, including point-to-point communication

(PML) and data transfer (BTL) is implemented in the MCA. Adding custom component-level

functionality involves following a loose protocol described in the OpenMPI documentation,

currently held at https://github.com/open-mpi/ompi/wiki, and in the framework source

code comments. Generally, it consists of the creation of a specific directory structure, the

developer’s choice of one of three standard makefile formats, and corresponding source code

with accompanying framework-specific semantics or syntax.

<trunk>
ë autogen.pl {{ automated build, initialization
ë mpi/<source language>{{ api-level functions
ë ompi

ë mca/<framework>
ë ./base {{ minimal, global framework functionality
ë ./<component>

ë configure.m4, configure.in, or makefile.am
ë [framework] <component> component.h {{ required interface
ë <framework> <component> component.c {{ required definitions
ë source code

ë opal
ë . . .

ë orte
ë . . .

Figure 3.7: OpenMPI Source: Locations of Interest

When properly located and defined, the build process for OpenMPI will crawl the MCA’s

frameworks looking for components and then incorporate the necessary compiler directives

into a standard configure script. This search and include process is performed using a GNU

Autotools based Perl script, autogen.pl, located at the root of the OpenMPI source.

By default, OpenMPI makes implicit decisions at runtime (via mpirun) on which com-

ponents are selected and enabled for use based on hard-coded priority levels and functionality

requested by the application. This selection process can be overridden by providing mpirun

with specific parameters specifying the desired component selection. This can be useful in
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debugging as a more deterministic way of selecting the desired code to be executed.

$ mpirun --mca coll libpnbc ,libnbc ,basic ,self -np 16 ./ mpi_program

Figure 3.8: Forcing Specific Component Selection at Runtime

3.4.4 Component Development

Figure 3.9 describes the structure of the LibPNBC MCA component. Each component

must provide a corresponding definition of itself within the framework interface which is

used to incorporate and publish any public functions for use at the API level. Much of this

identification is coded in the framework’s main interface .h file, in the case of LibPNBC,

coll.h. The collectives interface defines two primary structs: one for association with the

MPI communicator, and one for association with the module (running instance of a compo-

nent).

<trunk>/ompi/mca/coll
ë coll.h - collective framework main interface
ë libpnbc - libpnbc component subdirectory

ë coll libpnbc.h - libpnbc main header
ë coll libpnbc component.c - libpnbc component functions and pointers
ë Makefile.am - raw component makefile
ë Makefile.in - interpreted component makefile
ë owner.txt - component developer information
ë pnbc.c - global schedule and progress functions
ë pnbc i<coll>.c - collective operation init and algorithms
ë pnbc internal.h - datatypes, structs, and function prototypes
ë pnbc neighbor helpers.c - neighborhood collective helper functions
ë pnbc start.c - code for MPIX Start

Figure 3.9: LibPNBC Component Source Files
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3.4.5 Source Control

The source control system used for OpenMPI is git, with the source code published

via github.com in the open-mpi/ompi repository. In order to prepare for potential inclu-

sion of any new features into the main OpenMPI distribution, a user fork is created using

github.com’s fork utility. A new branch is then created, from which new code modifications

are made, and then potentially introduced into the main OpenMPI development repository

with a pull request. Once the forked development repository and branch are created, a

number of software tools and command line utilities can be used to effectively program and

debug the source code.

3.4.6 Software Tools

The prototype developed in this research was performed primarily using a Linux oper-

ating system with standard open-source tools for coding, debugging, and benchmarking. In

addition to a good terminal and text editor, some other recommended tools are:

• Linux GCC Toolchain

– gcc 4.9.3

– automake>“1.13

– autoconf>“2.69

– m4>1.4.16)

• Eclipse Parallel Tools Platform (CPP or PTP)

– GNU Debugger (GDB)

– GDB-MI (GDB Machine Interface Protocol)

– Session Debug Manager (SDM)

• Valgrind 3.11.0
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3.4.7 LibNBC

The implementation of persistent non-blocking collectives as demonstrated here, bor-

rows heavily from OpenMPIs Modular Component Architecture (MCA), in particular the

LibNBC component. LibNBC is currently distributed as part of the OpenMPI release, as

well as in other MPI implementations, and also as a standalone library. As is LibPNBC,

the original LibNBC component code as implemented in OpenMPI, is located within the

MCA directory structure. Detailed information is available from the LibNBC development

website, hosted at https://htor.inf.ethz.ch/research/nbcoll/libnbc.

$ cd <trunk >/ompi/ompi/mca/coll

$ cp -r libnbc/ libpnbc

$ cd libpnbc

$ rename nbc pnbc *nbc*

$ sed -i ’s/nbc/pnbc/g’ *.c Makefile .*

$ cd <trunk >

$ ./ autogen.pl

Figure 3.10: Initial Component Re-identification of LibNBC to LibPNBC

3.4.8 Build Process

After obtaining the source code, the autogen process typically needs to be run before

the first build attempt on a system, and when any significant changes to the MCA are made,

such as adding or removing components. Upon successful completion of autogen.pl, Open-

MPI code can be built using the typical configure, make, make install pattern[17].

As different functionality is tested, it is convenient to be able to switch between different

development versions of OpenMPI. The typical Linux environment variables for controlling

this are described in 3.12 in modulefile (tcl) format, which can be translated to export

commands for use in bash shell scripting.
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$ git clone openmpi_source

$ cd openmpi_source

$ ./ autogen.pl

$ mkdir ../ build

$ cd ../ build

$ ../ openmpi_source/configure --prefix =/ custom/path --with -devel -headers

$ make

$ make install

Figure 3.11: General OpenMPI Build Pattern

set root /my/custom/openmpi/install/location

prepend -path PATH $root/bin

prepend -path MANPATH $root/share/man/

setenv MPI_HOME $root

setenv MPI_RUN $root/bin/mpirun

prepend -path LD_RUN_PATH $root/lib

prepend -path LD_LIBRARY_PATH $root/lib

prepend -path CPATH $root/include

Figure 3.12: Environment Settings for Custom OpenMPI Installation
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Chapter 4

Results and Discussions

4.1 Benchmarking

A suitable starting point for performance evaluation and benchmarking of LibPNBC is

NBCBench, the corresponding microbenchmark used initially to evaluate LibNBC. The use

of NBCBench to measure the impact of persistence on collective operations leverages proven

benchmarking methods [11], and allows for direct comparison and validation of results with

prior benchmark tests. This fits well with the main objectives of this research, which are to

measure overhead, determine if there is any initial performance benefit from the persistence

API itself, and to identify any potential opportunities for optimization.

NBCBench uses high precision timers to measure the execution time of a collective

operation. For a blocking collective, this is simply the difference between the end time and

start time of the operation. For a nonblocking collective, the operation time is measured in

the call to the operation as well as the additional call to MPI Wait. For persistent nonblocking

collectives the measurement includes the operation initialization (MPI <coll> INIT), start

(MPIX START) and completion (MPI WAIT). Each rank within a communicator performs these

measurements, which are ultimately aggregated and the median value is presented as output

[11]. The specifics of timing the persistent collective operations are shown in detail in

Figure 4.1 and Figure 4.2.

As described in Figure 4.2, MPI Wtime is issued at several different points in PNBCBench

to measure each step in the operation call pattern. The call to MPI Barrier before each iter-

ation is issued to prevent any significant process skew. Computational overlap is synthesized

in the call to docompute test, which issues a number of MPI Test calls in a time based

loop to simulate a independent computational workload. The benchmark program accepts
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MPI Barrier(comm);

start time = MPI Wtime();

MPI Ibcast(bufA,...,&req);

issue time = MPI Wtime();

test time = docompute test();

before wait = MPI Wtime();

MPI Wait(comm);

after wait = MPI Wtime();

total time = after wait - start time;

Figure 4.1: Pseudocode for NBCBench time measurements

MPI Barrier(comm);

start time = MPI Wtime();

if(needs init) {
MPIX Ialltoall init(bufA, ..., info, &preq);

}
MPIX Start(mpiargs->comm, &preq);

issue time = MPI Wtime();

test time = docompute test();

before wait = MPI Wtime();

MPI Wait(comm);

after wait = MPI Wtime();

total time = after wait - start time;

Figure 4.2: Pseudocode for PNBCBench time measurements

a collective operation and runs a user-defined number of trials in the exponential series 2n

with n within the range pmin to pmax, also user-defined.

The NBCBench and PNBCBench benchmark testing in this research was performed

using the Auburn University Hopper Cluster, a machine employing Lenovo System x3550 M5

servers with 2xE5-2660 Intel Haswell v3 CPUs at 2.60 GHz. Trials were performed from 2 to

512 MPI processes over a range of 4,096 to 262,144 byte data sizes. Each time measurement

using MPI Wtime() is repeated ten times and a reduction operation is performed for each

rank. NBCBench can perform a minimum, maximum, median, or average calculation for

this operation [19]. We have chosen median (the default) as the final time output for all

ranks being shown as the final time calculation.
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4.2 Overhead

The expected benefit of adding persistent requests is increased overall efficiency for

repeatedly used operations, where processes pass the same arguments across the group of

processes sharing a communicator many times in an iterative computation. The reuse of

requests in memory shortens the critical path of MPI nonblocking collective operation, and

thus should result in a shorter overall execution time. This was observed for the majority of

operations tested with the described benchmarking method.

Of particular interest is the amount of overhead, if any, that is associated with the ini-

tialization phase and the behavior of the operations after the MPIX START is issued. Because

the code for the LibPNBC MPIX I<coll> INIT functions is essentially the same as that of

the corresponding MPI I<coll> functions in LibNBC (with the exception of the immedi-

ate execution of the collective schedule) it is expected that initialization overhead would be

minimal. Given the absence of this granularity in LibNBC, there is no direct comparison

available. Thus, as seen in figure 3, the initialization phase is actually measured for both

the MPIX <coll> INIT and MPIX START and compared to the timing of MPI I<coll>.

For most operations, an increase in latency was observed for LibPNBC in the initial-

ization phase (cf, Figure 4.3a for MPIX Bcast init). This is likely because of the difference

in progress advancement between the two components. Because LibNBC processes requests

more dynamically, progress does not occur on the first schedule round for that component,

delaying the initial progress until the issuance of MPI TEST. LibPNBC does attempt progress

in the initial schedule round. For PNBC, this choice trades off latency against overlap; early

progress on the new operation encourages low latency, whereas delegating progress to the

Open MPI framework permits greater overlap. This is further supported by the results of

MPI TEST latency for most operations (cf, Figure 4.3b for the actual broadcast operation).

31



(a) MPI Bcast Initialization Overhead (b) Actual MPI Bcast test time

Figure 4.3: Initialization Overhead and Test Progress

4.3 Crossover

As the communicator size scales out, it is expected that the performance impact of

persistence will be more prevalent because of the inherent efficiency in memory allocation

and reference. A performance benefit should also be apparent with increasing message sizes,

as buffers remain relatively static for persistent requests within each iteration, allowing for

machine and network architectures to leverage optimization techniques such as caching and

pipelining. Additionally, for persistent collective operations, there is no need to duplicate

the instructional work of communication schedule creation within iterative computations.

As expected, in the majority of tested operations, a slight decrease in latency was ob-

served for LibPNBC over LibNBC in both communicator and message size. This is most

readily seen in Figure 4.4a for MPI Reduce scatter, where a significant speedup was observed

over LibNBC, particularly for larger message sizes in the p=256 communicator. Potentially,

one contributing factor to this is the relatively significant amount of overhead incurred in the

schedule creation for MPI Reduce scatter, which is a multiple round operation, consisting

of send, receive, operation, and barrier operations in higher frequency than all other mea-

sured collectives. Conversely LibPNBC underperformed LibNBC for the MPI Allgather and

MPI Alltoall operations, with slightly higher latencies as shown in Figure 4.4b. Further
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evaluation of the communication patterns of these outlying operations may provide addi-

tional insight into further optimization for persistence.

(a) MPI Reduce scatter Latency (p = 256) (b) MPI Allgather Latency (p = 256)

Figure 4.4: Operation Latency Outliers

Given that this first attempt at implementation of persistent nonblocking collectives

has not yet fully explored opportunities for optimization, these results indicate a potentially

impactful new communication method for MPI.
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Figure 4.5: Allgather Operation Benchmark Results
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Figure 4.6: Allreduce Operation Benchmark Results
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Figure 4.7: Alltoall Operation Benchmark Results
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Figure 4.8: Alltoallv Operation Benchmark Results
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Figure 4.9: Bcast Operation Benchmark Results
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Figure 4.10: Gather Operation Benchmark Results
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Figure 4.11: Gatherv Operation Benchmark Results
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Figure 4.12: Reduce Operation Benchmark Results
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Figure 4.13: Reduce scatter Operation Benchmark Results
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Figure 4.14: Scatter Operation Benchmark Results
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Figure 4.15: Scatterv Operation Benchmark Results
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Chapter 5

Future Work

The main future work following on from this prototype implementation of persistent

collective communication will be algorithmic improvements; that is, choosing appropriate

algorithms from a potentially wider optimization space and implementing the necessary

heuristics, operation schedule, and caching mechanisms. Some of these algorithms are dis-

cussed in Section 1.3. However, some additional work on the infrastructure code itself would

be beneficial both in terms of software engineering and performance optimization.

5.1 Point-to-Point Persistence

As described in 3.1, the core SEND and RECV operations executed internally by the

LibPNBC component are passed as non-blocking requests to the point-to-point layer. Con-

verting these core requests to persistent operations would likely provide further efficiency.

This functionality is held primarily in PNBC Start round function within the pnbc.c source

file, where calls are issued to MCA PML CALL() using the corresponding non-blocking

SEND or RECV operation.

5.2 Non-Algorithmic Optimizations

For both LibPNBC and LibNBC on which it is based, the schedules for all collective

operations recreate nonblocking point-to-point communication requests for each round just

before executing that round. This means that some of the time taken to perform the com-

munication is actually used to create parts of the schedule. For LibPNBC, this could be

improved by creating all rounds once at the beginning (during the initialization function)

and using persistent point-to-point communication requests at each round. However, that
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requires invasive code-changes to the whole scheduling storage/usage code and is beyond the

scope of the current prototype. Layering LibNBC on top of persistent point-to-point instead

of nonblocking point-to-point is also possible but it would give a performance benefit if the

schedule can be safely cached and reused. However, the memory used by the cached non-

blocking schedules cannot easily be recovered until MPI FINALIZE because MPI REQUEST FREE

has no effect on an inactive MPI REQUEST from a nonblocking operation.

Some implementations of point-to-point in Open MPI implement persistent point-to-

point using nonblocking point-to-point, re-creating a new nonblocking operation each time

MPI START is called. This suggests possible optimization work that could be done in the

point-to-point implementation on which both LibNBC and LibPNBC currently rely.

The LibNBC component was originally created as a library external to MPI, one reason

that its implementation is layered on top of MPI point-to-point functions. The LibPNBC

component has inherited this feature. However, now that these components are fully in-

tegrated into the Open MPI framework, other implementation options become available.

For example, the PML components (protocol/messaging layer) delegate to BTL components

(byte transfer layer) to transfer data; that suggests the collectives could be implemented

directly on top of the BTL components rather than via the point-to-point functions. By-

passing the PML components would remove point-to-point matching logic from the critical

path of nonblocking and persistent collective communication. Alternatively, collective opera-

tions could be implemented by directly using native network Remote Direct Memory Access

(RDMA) and Atomic Memory Operations (AMOs) in similarly to recent work that pro-

vided an optimized implementation of the MPI single-sided functionality for Open MPI [9].

For sufficiently capable hardware, persistent collectives could be implemented by directly

programming the network hardware with triggered operations, thus reducing the software

overhead to a single instruction that begins the preprogrammed sequence and some form of

polling or interrupt/event for completion.
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5.3 Extension for MPI Endpoints

The MPI Forum is currently considering a proposal to introduce MPI endpoints to the

MPI Standard [18]. The proposed API for persistent collective communication naturally

extends to an environment that contains multiple MPI endpoints (as defined in the current

version of the proposal). However, the anticipated common use-cases for MPI endpoints

involve multiple communicating threads within each MPI process - in particular multiple

threads concurrently active in collective communication operations using different local end-

points representing different ranks in the same communicator. This usage poses additional

challenges to the implementation of both LibNBC and LibPNBC.

For LibNBC, either the schedule cache must be protected for multi-thread concurrent

accesses or duplicated for each thread or for each MPI endpoint (depending on the thread

support level) to isolate each cache and guarantee only single-thread access. For LibPNBC,

each MPI endpoint will create its own MPI REQUEST that will contain the schedule applicable

for that endpoint. This is potentially wasteful; endpoints might have to share certain common

data.

For implementations of LibNBC and LibPNBC layered on point-to-point, care must be

taken to ensure that these messages are matched correctly. Using the same communicator

(or a duplicate) with the collective operation should ensure that point-to-point messages can

be safely sent to, and received from any MPI endpoint by using the correct rank. The tag

would, as in the current implementation, identify which collective operation the message is

part of. However, using the parent communicator or MPI COMM WORLD would be problematic

since it would have inadequate addressability to disambiguate all the pair-wise messages.
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5.4 Other Future Work

Autotuners (e.g., [14]) could be used to explore the parameter space to choose collective

operations on one run, followed by profile-guided optimization for future runs. This sub-

stitutes a complex and long-running INIT with a quick table look up for those operations

optimized on the initial run. The availability of persistent collectives suggests further op-

timizations and functionality in the datatypes themselves. Two particular options include

the use of “highly optimized data type descriptions” when the operations that use them are

persistent (aka data-type crushing; (cf, early work on persistent send/receive plus optimized

datatypes in [4]). That is, the gather/scatter behavior of complex data types can be studied

at greater fixed cost when the reuse of such improved performance can be amortized over

many reuses. This is to first order an orthogonal optimization from the choice of the collective

algorithm itself. Additionally, so-called optimized or “active datatypes” [2, 8, 15, 20] offer

the potential to work with concepts such as circular buffers and other state-machine gen-

erated changes in persistent operations, thereby enhancing their generality while retaining

enhanced performance over late-binding alternatives.
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Chapter 6

Conclusion

This research has presented a design of the first prototype implementation of persistent,

collective communication operations in MPI-4. This model implementation, LibPNBC, is

based on LibNBC. This initial implementation has been based on Open MPI; porting to other

MPI middleware systems remains as future work. Functionality and acceptable performance

for a model implementation has been demonstrated. Optimized versions should be able to

achieve higher performance than either blocking or nonblocking operations for cases where

repetitive use of the same parameters across a group enables the selection of this operation in

lieu of the late-binding options currently standardized in MPI-3, and earlier. Additionally,

the model implementation serves as a functional basis for supporting the standardization

process that is presently being pursued in the MPI Forum.
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Chapter 7

Appendix A: APIs

7.1 Persistent Barrier Synchronization

MPI IBARRIER INIT(comm, info, request)

IN comm communicator (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI Ibarrier init(MPI Comm comm, MPI Info info, MPI Request *request)

MPI Ibarrier init(comm, info, request, ierror)

TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Info), INTENT(IN) :: info

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI IBARRIER INIT(COMM, INFO, REQUEST, IERROR)

INTEGER COMM, INFO, REQUEST, IERROR

Creates a nonblocking, persistent collective communication request for the barrier op-

eration.
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7.2 Persistent Broadcast

MPI IBCAST INIT(buffer, count, datatype, root, comm, info, request)

INOUT buffer starting address of buffer (choice)

IN count number of entries in buffer (non-negative integer)

IN datatype data type of buffer (handle)

IN root rank of broadcast root (integer)

IN comm communicator (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI Ibcast init(void* buffer, int count, MPI Datatype datatype,

int root, MPI Comm comm, MPI Info info, MPI Request *request)

MPI Ibcast init(buffer, count, datatype, root, comm, info, request, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer

INTEGER, INTENT(IN) :: count, root

TYPE(MPI Datatype), INTENT(IN) :: datatype

TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Info), INTENT(IN) :: info

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI IBCAST INIT(BUFFER, COUNT, DATATYPE, ROOT, COMM, INFO, REQUEST, IERROR)

<type> BUFFER(*)

INTEGER COUNT, DATATYPE, ROOT, COMM, INFO, REQUEST, IERROR
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Creates a nonblocking, persistent collective communication request for the broadcast

operation.
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7.3 Persistent Gather

MPI IGATHER INIT(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm,

info, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice, significant only at root)

IN recvcount number of elements for any single receive (non-negative

integer, significant only at root)

IN recvtype data type of recv buffer elements (significant only at root)

(handle)

IN root rank of receiving process (integer)

IN comm communicator (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI Igather init(const void* sendbuf, int sendcount,

MPI Datatype sendtype, void* recvbuf, int recvcount,

MPI Datatype recvtype, int root, MPI Comm comm, MPI Info info,

MPI Request *request)

MPI Igather init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

root, comm, info, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
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INTEGER, INTENT(IN) :: sendcount, recvcount, root

TYPE(MPI Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Info), INTENT(IN) :: info

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI IGATHER INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

ROOT, COMM, INFO, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, INFO,

REQUEST, IERROR

Creates a nonblocking, persistent collective communication request for the gather oper-

ation.
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MPI IGATHERV INIT(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root,

comm, info, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice, significant only at root)

IN recvcounts non-negative integer array (of length group size) contain-

ing the number of elements that are received from each

process (significant only at root)

IN displs integer array (of length group size). Entry i specifies the

displacement relative to recvbuf at which to place the

incoming data from process i (significant only at root)

IN recvtype data type of recv buffer elements (significant only at root)

(handle)

IN root rank of receiving process (integer)

IN comm communicator (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI Igatherv init(const void* sendbuf, int sendcount,

MPI Datatype sendtype, void* recvbuf, const int recvcounts[],

const int displs[], MPI Datatype recvtype, int root,

MPI Comm comm, MPI Info info, MPI Request *request)

MPI Igatherv init(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,

recvtype, root, comm, info, request, ierror)
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TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, root

INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)

TYPE(MPI Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Info), INTENT(IN) :: info

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI IGATHERV INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,

RECVTYPE, ROOT, COMM, INFO, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,

COMM, INFO, REQUEST, IERROR

Creates a nonblocking, persistent collective communication request for the gatherv op-

eration.
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7.4 Persistent Scatter

MPI ISCATTER INIT(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm,

info, request)

IN sendbuf address of send buffer (choice, significant only at root)

IN sendcount number of elements sent to each process (non-negative

integer, significant only at root)

IN sendtype data type of send buffer elements (significant only at

root) (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative inte-

ger)

IN recvtype data type of receive buffer elements (handle)

IN root rank of sending process (integer)

IN comm communicator (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI Iscatter init(const void* sendbuf, int sendcount,

MPI Datatype sendtype, void* recvbuf, int recvcount,

MPI Datatype recvtype, int root, MPI Comm comm, MPI Info info,

MPI Request *request)

MPI Iscatter init(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, root, comm, info, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

57



TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount, root

TYPE(MPI Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Info), INTENT(IN) :: info

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI ISCATTER INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, ROOT, COMM, INFO, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, INFO,

REQUEST, IERROR

Creates a nonblocking, persistent collective communication request for the scatter op-

eration.
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MPI ISCATTERV INIT(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root,

comm, info, request)

IN sendbuf address of send buffer (choice, significant only at root)

IN sendcounts non-negative integer array (of length group size) specify-

ing the number of elements to send to each rank

IN displs integer array (of length group size). Entry i specifies the

displacement (relative to sendbuf) from which to take the

outgoing data to process i

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative inte-

ger)

IN recvtype data type of receive buffer elements (handle)

IN root rank of sending process (integer)

IN comm communicator (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI Iscatterv init(const void* sendbuf, const int sendcounts[],

const int displs[], MPI Datatype sendtype, void* recvbuf,

int recvcount, MPI Datatype recvtype, int root, MPI Comm comm,

MPI Info info, MPI Request *request)

MPI Iscatterv init(sendbuf, sendcounts, displs, sendtype, recvbuf,

recvcount, recvtype, root, comm, info, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
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TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), displs(*)

INTEGER, INTENT(IN) :: recvcount, root

TYPE(MPI Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Info), INTENT(IN) :: info

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI ISCATTERV INIT(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF,

RECVCOUNT, RECVTYPE, ROOT, COMM, INFO, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,

COMM, INFO,REQUEST, IERROR

Creates a nonblocking, persistent collective communication request for the scatterv op-

eration.
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7.5 Persistent Gather-to-all

MPI IALLGATHER INIT(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm,

info, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements received from any process (non-negative

integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI Iallgather init(const void* sendbuf, int sendcount,

MPI Datatype sendtype, void* recvbuf, int recvcount,

MPI Datatype recvtype, MPI Comm comm, MPI Info info,

MPI Request *request)

MPI Iallgather init(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm, info, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI Comm), INTENT(IN) :: comm
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TYPE(MPI Info), INTENT(IN) :: info

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI IALLGATHER INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, COMM, INFO, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, INFO, REQUEST,

IERROR

Creates a nonblocking, persistent collective communication request for the allgather

operation.
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MPI IALLGATHERV INIT(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype,

comm, info, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcounts non-negative integer array (of length group size) contain-

ing the number of elements that are received from each

process

IN displs integer array (of length group size). Entry i specifies the

displacement (relative to recvbuf) at which to place the

incoming data from process i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI Iallgatherv init(const void* sendbuf, int sendcount,

MPI Datatype sendtype, void* recvbuf, const int recvcounts[],

const int displs[], MPI Datatype recvtype, MPI Comm comm,

MPI Info info, MPI Request* request)

MPI Iallgatherv init(sendbuf, sendcount, sendtype, recvbuf, recvcounts,

displs, recvtype, comm, info, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
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INTEGER, INTENT(IN) :: sendcount

INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)

TYPE(MPI Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Info), INTENT(IN) :: info

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI IALLGATHERV INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS,

DISPLS, RECVTYPE, COMM, INFO, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,

INFO, REQUEST, IERROR

Creates a nonblocking, persistent collective communication request for the allgatherv

operation.
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7.6 Persistent All-to-All Scatter/Gather

MPI IALLTOALL INIT(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, info,

request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each process (non-negative

integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements received from any process (non-negative

integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI Ialltoall init(const void* sendbuf, int sendcount,

MPI Datatype sendtype, void* recvbuf, int recvcount,

MPI Datatype recvtype, MPI Comm comm, MPI Info info,

MPI Request *request)

MPI Alltoall init(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm, info, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI Datatype), INTENT(IN) :: sendtype, recvtype
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TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Info), INTENT(IN) :: info

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI IALLTOALL INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, COMM, INFO, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, INFO, REQUEST,

IERROR

Creates a nonblocking, persistent collective communication request for the alltoall op-

eration.
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MPI IALLTOALLV INIT(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls,

recvtype, comm, info, request)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length group size) specify-

ing the number of elements to send to each rank

IN sdispls integer array (of length group size). Entry j specifies the

displacement (relative to sendbuf) from which to take the

outgoing data destined for process j

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcounts non-negative integer array (of length group size) speci-

fying the number of elements that can be received from

each rank

IN rdispls integer array (of length group size). Entry i specifies the

displacement (relative to recvbuf) at which to place the

incoming data from process i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI Ialltoallv init(const void* sendbuf, const int sendcounts[],

const int sdispls[], MPI Datatype sendtype, void* recvbuf,

const int recvcounts[], const int rdispls[],

MPI Datatype recvtype, MPI Comm comm, MPI info info,

MPI Request *request)

67



MPI Ialltoallv init(sendbuf, sendcounts, sdispls, sendtype, recvbuf,

recvcounts, rdispls, recvtype, comm, info, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),

recvcounts(*), rdispls(*)

TYPE(MPI Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI ALLTOALLV INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF,

RECVCOUNTS, RDISPLS, RECVTYPE, COMM, INFO, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),

RECVTYPE, COMM, INFO, REQUEST, IERROR

Creates a nonblocking, persistent collective communication request for the alltoallv op-

eration.
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MPI ALLTOALLW INIT(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls,

recvtypes, comm, info, request)

IN sendbuf starting address of send buffer (choice)

IN sendcounts integer array (of length group size) specifying the number

of elements to send to each rank (array of non-negative

integers)

IN sdispls integer array (of length group size). Entry j specifies the

displacement in bytes (relative to sendbuf) from which to

take the outgoing data destined for process j (array of

integers)

IN sendtypes array of datatypes (of length group size). Entry j specifies

the type of data to send to process j (array of handles)

OUT recvbuf address of receive buffer (choice)

IN recvcounts integer array (of length group size) specifying the number

of elements that can be received from each rank (array

of non-negative integers)

IN rdispls integer array (of length group size). Entry i specifies the

displacement in bytes (relative to recvbuf) at which to

place the incoming data from process i (array of integers)

IN recvtypes array of datatypes (of length group size). Entry i specifies

the type of data received from process i (array of handles)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI Alltoallw init(const void* sendbuf, const int sendcounts[],

const int sdispls[], const MPI Datatype sendtypes[],
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void* recvbuf, const int recvcounts[], const int rdispls[],

const MPI Datatype recvtypes[], MPI Comm comm, MPI Info info,

MPI Request *request)

MPI Alltoallw init(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,

recvcounts, rdispls, recvtypes, comm, info, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),

recvcounts(*), rdispls(*)

TYPE(MPI Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*),

recvtypes(*)

TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI ALLTOALLW INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF,

RECVCOUNTS, RDISPLS, RECVTYPES, COMM, INFO, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*),

RDISPLS(*), RECVTYPES(*), COMM, INFO, REQUEST, IERROR

Creates a nonblocking, persistent collective communication request for the alltoallw

operation.

70



7.7 Persistent Reduce

MPI REDUCE INIT(sendbuf, recvbuf, count, datatype, op, root, comm, info, request)

IN sendbuf address of send buffer (choice)

OUT recvbuf address of receive buffer (choice, significant only at root)

IN count number of elements in send buffer (non-negative integer)

IN datatype data type of elements of send buffer (handle)

IN op reduce operation (handle)

IN root rank of root process (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI Reduce init(const void* sendbuf, void* recvbuf, int count,

MPI Datatype datatype, MPI Op op, int root, MPI Comm comm,

MPI Info info, MPI Request *request)

MPI Reduce init(sendbuf, recvbuf, count, datatype, op, root, comm, info,

request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: count, root

TYPE(MPI Datatype), INTENT(IN) :: datatype

TYPE(MPI Op), INTENT(IN) :: op

TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror
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MPI REDUCE INIT(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, INFO,

REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, ROOT, COMM, INFO, REQUEST, IERROR

Creates a nonblocking, persistent collective communication request for the reduce oper-

ation.
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7.8 Persistent All-Reduce

MPI ALLREDUCE INIT(sendbuf, recvbuf, count, datatype, op, comm, info, request)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN count number of elements in send buffer (non-negative integer)

IN datatype data type of elements of send buffer (handle)

IN op operation (handle)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI Allreduce init(const void* sendbuf, void* recvbuf, int count,

MPI Datatype datatype, MPI Op op, MPI Comm comm,

MPI Request *request)

MPI Allreduce init(sendbuf, recvbuf, count, datatype, op, comm, info,

request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: count

TYPE(MPI Datatype), INTENT(IN) :: datatype

TYPE(MPI Op), INTENT(IN) :: op

TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI ALLREDUCE INIT(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, INFO,

REQUEST, IERROR)
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<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, INFO, REQUEST, IERROR

Creates a nonblocking, persistent collective communication request for the allreduce

operation.
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7.9 Persistent Reduce-Scatter with Equal Blocks

MPI REDUCE SCATTER BLOCK INIT(sendbuf, recvbuf, recvcount, datatype, op, comm, info,

request)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN recvcount element count per block (non-negative integer)

IN datatype data type of elements of send and receive buffers (handle)

IN op operation (handle)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI Reduce scatter block init(const void* sendbuf, void* recvbuf,

int recvcount, MPI Datatype datatype, MPI Op op, MPI Comm comm,

MPI Info info, MPI Request *request)

MPI Reduce scatter block init(sendbuf, recvbuf, recvcount, datatype, op,

comm, info, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: recvcount

TYPE(MPI Datatype), INTENT(IN) :: datatype

TYPE(MPI Op), INTENT(IN) :: op

TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror
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MPI REDUCE SCATTER BLOCK INIT(SENDBUF, RECVBUF, RECVCOUNT, DATATYPE, OP,

COMM, INFO, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER RECVCOUNT, DATATYPE, OP, COMM, INFO, REQUEST, IERROR

Creates a nonblocking, persistent collective communication request for the reduce-

scatter with equal blocks operation.
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7.10 Persistent Reduce-Scatter

MPI REDUCE SCATTER INIT(sendbuf, recvbuf, recvcounts, datatype, op, comm, info, request)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array specifying the number of ele-

ments in result distributed to each process. Array must

be identical on all calling processes.

IN datatype data type of elements of input buffer (handle)

IN op operation (handle)

IN comm communicator (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI Reduce scatter init(const void* sendbuf, void* recvbuf,

const int recvcounts[], MPI Datatype datatype, MPI Op op,

MPI Comm comm, MPI Info info, MPI Request *request)

MPI Reduce scatter init(sendbuf, recvbuf, recvcounts, datatype, op, comm,

info, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*)

TYPE(MPI Datatype), INTENT(IN) :: datatype

TYPE(MPI Op), INTENT(IN) :: op

TYPE(MPI Comm), INTENT(IN) :: comm

77



TYPE(MPI Info), INTENT(IN) :: info

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI REDUCE SCATTER INIT(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,

INFO, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, INFO, REQUEST, IERROR

Creates a nonblocking, persistent collective communication request for the reduce-

scatter operation.
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7.11 Persistent Inclusive Scan

MPI SCAN INIT(sendbuf, recvbuf, count, datatype, op, comm, info, request)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN count number of elements in input buffer (non-negative integer)

IN datatype data type of elements of input buffer (handle)

IN op operation (handle)

IN comm communicator (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI Scan init(const void* sendbuf, void* recvbuf, int count,

MPI Datatype datatype, MPI Op op, MPI Comm comm, MPI Info info,

MPI Request *request)

MPI Scan init(sendbuf, recvbuf, count, datatype, op, comm, info, request,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: count

TYPE(MPI Datatype), INTENT(IN) :: datatype

TYPE(MPI Op), INTENT(IN) :: op

TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Info), INTENT(IN) :: info

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror
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MPI SCAN INIT(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, INFO, REQUEST,

IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, INFO, REQUEST, IERROR

Creates a nonblocking, persistent collective communication request for the inclusive scan

operation.
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7.12 Persistent Exclusive Scan

MPI EXSCAN INIT(sendbuf, recvbuf, count, datatype, op, comm, info, request)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN count number of elements in input buffer (non-negative integer)

IN datatype data type of elements of input buffer (handle)

IN op operation (handle)

IN comm intracommunicator (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI Exscan init(const void* sendbuf, void* recvbuf, int count,

MPI Datatype datatype, MPI Op op, MPI Comm comm, MPI Info info,

MPI Request *request)

MPI Exscan init(sendbuf, recvbuf, count, datatype, op, comm, info, request,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: count

TYPE(MPI Datatype), INTENT(IN) :: datatype

TYPE(MPI Op), INTENT(IN) :: op

TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Info), INTENT(IN) :: info

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror
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MPI EXSCAN INIT(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, INFO, REQUEST,

IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, INFO, REQUEST, IERROR

Creates a nonblocking, persistent collective communication request for the exclusive

scan operation.
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7.13 Persistent Neighborhood Gather

MPI INEIGHBOR ALLGATHER INIT(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm, info, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor (non-negative

integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcount number of elements received from each neighbor (non-

negative integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI Ineighbor allgather init(const void* sendbuf, int sendcount,

MPI Datatype sendtype, void* recvbuf, int recvcount,

MPI Datatype recvtype, MPI Comm comm, MPI Info info,

MPI Request *request)

MPI Ineighbor allgather init(sendbuf, sendcount, sendtype, recvbuf,

recvcount, recvtype, comm, info, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI Datatype), INTENT(IN) :: sendtype, recvtype
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TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Info), INTENT(IN) :: info

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI INEIGHBOR ALLGATHER INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF,

RECVCOUNT, RECVTYPE, COMM, INFO, REQUEST, IERROR)

ătypeą SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, INFO, REQUEST,

IERROR

Creates a nonblocking, persistent collective communication request for the neighborhood

allgather operation.
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MPI INEIGHBOR ALLGATHERV INIT(sendbuf, sendcount, sendtype, recvbuf, recvcounts,

displs, recvtype, comm, info, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor (non-negative

integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree) contain-

ing the number of elements that are received from each

neighbor

IN displs integer array (of length indegree). Entry i specifies the

displacement (relative to recvbuf) at which to place the

incoming data from neighbor i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI Ineighbor allgatherv init(const void* sendbuf, int sendcount,

MPI Datatype sendtype, void* recvbuf, const int recvcounts[],

const int displs[], MPI Datatype recvtype, MPI Comm comm,

MPI Info info, MPI Request *request)

MPI Ineighbor allgatherv init(sendbuf, sendcount, sendtype, recvbuf,

recvcounts, displs, recvtype, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
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TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount

INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)

TYPE(MPI Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Info), INTENT(IN) :: info

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI NEIGHBOR ALLGATHERV INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF,

RECVCOUNTS, DISPLS, RECVTYPE, COMM, INFO, REQUEST, IERROR)

ătypeą SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,

INFO, REQUEST, IERROR

Creates a persistent collective communication request for the neighborhood allgatherv

operation.
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7.14 Persistent Neighborhood Alltoall

MPI INEIGHBOR ALLTOALL INIT(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm, info, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor (non-negative

integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcount number of elements received from each neighbor (non-

negative integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI Ineighbor alltoall init(const void* sendbuf, int sendcount,

MPI Datatype sendtype, void* recvbuf, int recvcount,

MPI Datatype recvtype, MPI Comm comm, MPI Info info,

MPI Request *request)

MPI Ineighbor alltoall init(sendbuf, sendcount, sendtype, recvbuf,

recvcount, recvtype, comm, info, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI Datatype), INTENT(IN) :: sendtype, recvtype
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TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Request), INTENT(OUT) :: request

TYPE(MPI Info), INTENT(IN) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI INEIGHBOR ALLTOALL INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF,

RECVCOUNT, RECVTYPE, COMM, INFO, REQUEST, IERROR)

ătypeą SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, INFO, REQUEST,

IERROR

Creates a nonblocking, persistent collective communication request for the neighborhood

alltoall operation.
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MPI INEIGHBOR ALLTOALLV INIT(sendbuf, sendcounts, sdispls, sendtype, recvbuf,

recvcounts, rdispls, recvtype, comm, info, request)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length outdegree) specify-

ing the number of elements to send to each neighbor

IN sdispls integer array (of length outdegree). Entry j specifies the

displacement (relative to sendbuf) from which send the

outgoing data to neighbor j

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree) specify-

ing the number of elements that are received from each

neighbor

IN rdispls integer array (of length indegree). Entry i specifies the

displacement (relative to recvbuf) at which to place the

incoming data from neighbor i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI Ineighbor alltoallv init(const void* sendbuf,

const int sendcounts[], const int sdispls[],

MPI Datatype sendtype, void* recvbuf, const int recvcounts[],

const int rdispls[], MPI Datatype recvtype, MPI Comm comm,

MPI Info info, MPI Request *request)
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MPI Ineighbor alltoallv init(sendbuf, sendcounts, sdispls, sendtype,

recvbuf, recvcounts, rdispls, recvtype, comm, info, request,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),

recvcounts(*), rdispls(*)

TYPE(MPI Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Info), INTENT(IN) :: info

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI INEIGHBOR ALLTOALLV INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE,

RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, INFO, REQUEST,

IERROR)

ătypeą SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),

RECVTYPE, COMM, INFO, REQUEST, IERROR

Creates a nonblocking, persistent collective communication request for the neighborhood

alltoallv operation.
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MPI INEIGHBOR ALLTOALLW INIT(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,

recvcounts, rdispls, recvtypes, comm, info, request)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length outdegree) specify-

ing the number of elements to send to each neighbor

IN sdispls integer array (of length outdegree). Entry j specifies the

displacement in bytes (relative to sendbuf) from which to

take the outgoing data destined for neighbor j (array of

integers)

IN sendtypes array of datatypes (of length outdegree). Entry j specifies

the type of data to send to neighbor j (array of handles)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree) specify-

ing the number of elements that are received from each

neighbor

IN rdispls integer array (of length indegree). Entry i specifies the

displacement in bytes (relative to recvbuf) at which to

place the incoming data from neighbor i (array of inte-

gers)

IN recvtypes array of datatypes (of length indegree). Entry i speci-

fies the type of data received from neighbor i (array of

handles)

IN comm communicator with topology structure (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI Ineighbor alltoallw init(const void* sendbuf,

const int sendcounts[], const MPI Aint sdispls[],
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const MPI Datatype sendtypes[], void* recvbuf,

const int recvcounts[], const MPI Aint rdispls[],

const MPI Datatype recvtypes[], MPI Comm comm, MPI Info info,

MPI Request *request)

MPI Ineighbor alltoallw init(sendbuf, sendcounts, sdispls, sendtypes,

recvbuf, recvcounts, rdispls, recvtypes, comm, info, request,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), recvcounts(*)

INTEGER(KIND=MPI ADDRESS KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*),

rdispls(*)

TYPE(MPI Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*),

recvtypes(*)

TYPE(MPI Comm), INTENT(IN) :: comm

TYPE(MPI Info), INTENT(IN) :: info

TYPE(MPI Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI INEIGHBOR ALLTOALLW INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES,

RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPES, COMM, INFO, REQUEST,

IERROR)

ătypeą SENDBUF(*), RECVBUF(*)

INTEGER(KIND=MPI ADDRESS KIND) SDISPLS(*), RDISPLS(*)

INTEGER SENDCOUNTS(*), SENDTYPES(*), RECVCOUNTS(*), RECVTYPES(*), COMM,

INFO, REQUEST, IERROR
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Creates a nonblocking, persistent collective communication request for the neighborhood

alltoallw operation.
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