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ABSTRACT

This thesis is a study of the paper “Defining chaos” by Brian Hunt and Edward Ott [1]

with added details to make arguments easier to follow. They introduced a new entropy-

based definition of chaos called expansion entropy. A system is defined to be chaotic when

the expansion entropy is positive. Some benefits of this definition of chaos are that it is

applicable to attractors, repellers, and non-periodically forced systems; autonomous and

nonautonomous systems; and discrete and continuous time. We will explore the different

properties of expansion entropy as well as calculate the expansion entropy of different ex-

amples. Expansion entropy is compared with topological entropy under certain conditions.

Lastly, the limitations of nonentropy-based definitions of chaos are analyzed.
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1. Introduction

Chaos is studied in many fields of science and mathematics, and in each field there exist

different definitions for this phenomenon. The purpose of Hunt and Ott’s paper [1] is to study

the limitations of previous definitions of chaos as well as define an entropy-based definition

of chaos that does not possess the same restrictions as these other definitions.

When studying chaos, typically scientists look for two characteristics in a system. The

first is sensitivity to small perturbations which was studied by Lorenz [2] in his research on

weather patterns. Li and Yorke [3] studied the second characteristic which is a complex orbit

structure.

Hunt and Ott [1] believed that a sufficient definition of chaos should be general, simple,

and computable as well as contain the properties listed above. The desire for a general

definition is so that it applies to systems containing repellers [4](non-attracting sets) as well

as nonautonomous (time-dependent) time inputs. Repellers often occur in fields of study

such as fluid dynamics [5], celestial mechanics [6], chemistry [7], and atomic physics [8].

Since chaos occurs in these fields of study, it is also important to have a definition of chaos

that includes nonautonomous time inputs. These inputs have the potential to be quasi-

periodic [9], stochastic [10], or chaotic. When studying externally forced systems, we are

looking to see if a particular realization (observed output) of the system is chaotic instead

of determining if the external forcing is chaotic.

The following section introduces the new entropy-based definition for chaos that Hunt and

Ott [1] proposed and is called expansion entropy. It applies to an n-dimensional dynamical

system with restraining region S and can be written as the difference between two asymptotic

exponential rates. The first rate is the maximum over d ≤ n of the rate that the system

expands d-dimensional volume in S. The second is the rate that n-dimensional volume

leaves S (if the restraining region S is invariant, then this rate is 0). A system is defined to

be chaotic if the expansion entropy on a restraining region is positive.

Section 5 contains examples for the application of expansion entropy to different systems

as well as numerical evaluations in some examples. In Section 7, the definitions of expansion
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entropy and topological entropy are compared. Lastly, Section 8 presents other definitions

of chaos, and the limitations of these definitions are discussed. It is important to note

that the problem of detecting chaos in experimental data was not discussed in Hunt and

Ott’s paper [1], and likewise will not be discussed in this paper. The study of dynamics in

experimental data supplies extra problems, especially in the presence of externally forced

systems or non-attracting sets.

2. Expansion Entropy

Let the dynamical system be smooth and the state space be a finite-dimensional manifold

M . In general, for S ⊆ M , the volume of S is denoted µ(S) and dµ(x) is integration with

respect to the volume. In reference to expansion entropy, the restraining region S ⊆M must

be a closed set with finite volume. Note that S is not required to be invariant. Let f be

a family of maps ft′,t : M → M such that if x and x′ are the states of the system at time

t and t′ respectively, then ft′,t(x) = x′. These maps must satisfy the identities ft,t(x) = x

and ft′′,t(x) = ft′′,t′(ft′,t(x)). These maps are defined for discrete time as well as continuous

time. If the system is noninvertible, then the restriction t′ ≥ t is necessary. The system can

either be nonautonomous or autonomous, and in either case, the maps ft′,t are assumed to

be differentiable functions of x. If the system is autonomous (i.e. ft′,t(x) = fu′u(x) when

t′ − t = u′ − u), then ft′,t will be denoted as fT where T = t′ − t.

The singular values of a matrix A are defined to be the square roots of the eigenvalues of

ATA. If the linear transformation A is applied to the unit ball, the resulting image will be

an ellipse. The semiaxes of the ellipses are the singular values of A. Define G(A) to be the

product of the singular values that are greater than 1; if none exist, then define G(A) = 1.

In order to better understand this G value, suppose that A is an n × n matrix, and for

d ≤ n, let Pd be a d-dimensional plane in n-dimensional Euclidean space. Let W ⊆ Pd be a d-

dimensional ball. Suppose that A(W ) is the image of W under A and µd is the d-dimensional

volume. Then G(A) is the maximum over all orientations of Pd and the maximum over all
2



d ≤ n of µd(A(W ))
µd(W )

. Therefore, G(A) is viewed as the largest possible growth ratio of d-

dimensional volumes under A. For the definition of expansion entropy, G is applied to the

Jacobian Dft′,t and will therefore express a local volume growth ratio for ft′,t.

Let St′,t be the set of x ∈ S such that ft′′,t(x) ∈ S for all t′′ ∈ [t, t′]. Define

(1) Et′,t(f, S) =
1

µ(S)

∫
St′,t

G(Dft′,t(x))dµ(x).

Definition 2.1. Expansion entropy, denoted H0, is defined as

(2) H0(f, S) = lim
t′→∞

1

t′ − t
lnEt′,t(f, S).

H0(f, s) is considered well-defined only if the limit exists. Note that if the restraining

region S is not invariant and if the system f is nonautonomous, then H0 could depend on

the initial time t as well as f and S.

In order to better understand the definition of H0, we will express it in a slightly different

manner. To do this, make the substitution 1
µ(S)

= 1
µ(St′,t)

µ(St′,t)

µ(S)
in the definition of Et′,t(f, S).

Then (2) can be written as

(3) H0(f, S) = lim
t′→∞

1

t′ − t
ln Ẽt′,t(f, S)− 1

τ+

where

(4) Ẽt′,t(f, S) =
1

µ(St′,t)

∫
St′,t

G(Dft′,t(x))dµ(x)

and

(5)
1

τ+
= lim

t′→∞

1

t′ − t
ln

µ(S)

µ(St′,t)
.

Therefore, H0 can be viewed as the difference of two exponential rates (the limits in

Equations (3) and (5)) with the following explanation. Let N initial conditions be uniformly

spread throughout S at time t; also assume that N is large (N → ∞). Equation (4) is
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the average (over trajectories remaining in S from time t to t′) of the maximum local d-

dimensional volume growth ratio along the trajectory. Therefore, the first term in Equation

(3) is the exponential growth rate of this average. As t′ increases, Equation (5) is the

exponential decay rate of the number of trajectories of initial conditions that remain in S

for all t′′ ∈ [t, t′].

As mentioned earlier, it is required that in order for a system to be considered chaotic

by the definition of expansion entropy, H0 > 0. This implies that for a chaotic system, the

exponential volume growth ratio must strictly exceed the exponential decay rate at which

trajectories leave S.

A few of the initial benefits of this definition for chaos is that it applies to nonautonomous

systems, it assigns an entropy value to all restraining regions in the manifold, and it implies a

computational method for numerically estimating H0 exists (Section 4). The last important

property of expansion entropy to note for now is that:

(6) S ′ ⊆ S =⇒ H0(f, S
′) ≤ H0(f, S).

If S ′ ⊆ S, then clearly S ′t′,t ⊆ St′,t, and as a result, Et′,t(f, S
′) ≤ Et′,t(f, S). This result is

important to note because if expansion entropy detects chaos in a set S ′, then it will also

detect chaos in any set containing S ′. This property is demonstrated in Example 5.2 where

the system contains a nonchaotic attractor as well as a chaotic repeller.

3. Expansion Entropy of the Inverse System

This section provides a proof that for an autonomous, invertible system, the expansion

entropy of the original function is the same as the expansion entropy of the inverse system.

As will be discussed in Section 7, this property is also true for topological entropy. In order

to prove this property for expansion entropy, first note the validity of the following corollary

of the Singular Value Decomposition Theorem.
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Corollary 3.1. For a square matrix, the product of the singular values is the absolute value

of its determinant.

Proof. Let A be an n× n matrix. The singular value decomposition of A is UΣV T where U

and V are unitary matrices. Then:

| detA| = | det(UΣV T )|

= | detU det Σ detV T |

= |(±1)(σ1 · · ·σn)(±1)|

= σ1 · · ·σn.

�

Theorem 3.2. If f is an autonomous, invertible system, then H0(f, S) = H0(f
−1, S).

Proof. First, note that ft,t′ = f−1t′,t (specifically, ft′,t(St′,t) = St,t′ and ft,t′(St,t′) = St′,t). It is

obvious then that Dft′,t(x) and Dft,t′(x
′) are inverses, which implies that the singular values

of Dft,t′(x
′) are the inverses of the singular values of Dft′,t(x). By Corollary 3.1, if A is an

invertible n× n matrix, then: | detA| = G(A)
G(A−1)

. For this problem, that means:

(7) | det(Dft′,t(x))| = G(Dft′,t(x))

G(Dft,t′(x′))
.

To prove this first part, only assume that ft′,t is invertible.

Et,t′(f, S) =
1

µ(S)

∫
St,t′

G(Dft,t′(x
′))dµ(x′)

=
1

µ(S)

∫
St′,t

G(Dft,t′(x
′))| detDft′,t(x)|dµ(x)

=
1

µ(S)

∫
St′,t

G(Dft′,t(x))dµ(x)

= Et′,t(f, S).
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Now assume that ft′,t is also autonomous. This means that ft′,t = ft′−t = fT and f−1T =

f−T . Then:

H0(f
−1, S) = lim

T→∞

1

T
lnET,0(f

−1, S)

= lim
T→∞

1

T
lnE−T,0(f, S)

= lim
T→∞

1

T
lnE0,−T (f, S)

= lim
T→∞

1

T
lnET,0(f, S)

= H0(f, S).

Therefore, for an autonomous, invertible system, the expansion entropy of a function is

equal to the expansion entropy of the inverse function. �

Since it is possible to use either ft′,t or ft,t′ to calculate the expansion entropy, one may

wonder if it matters which function is used. This question is explored in the next section.

4. Numerical Evaluation of Expansion Entropy

As mentioned earlier, a definition of chaos should have a computational method available

in order to test for chaos in a model. This section discusses the method of calculating

expansion entropy in this type of situation. To start, take a large number of initial conditions

{x1, ..., xN} that are spread uniformly on S. Next, take the trajectory of fT,0(xi) and the

tangent map DfT,0(xi) and evolve them forward in time as long as the trajectory is contained

in S. Next use a discrete sequence of times T and evaluate

(8) ÊT (f, S) =
1

N

N∑
i=1

′
G(DfT,0(xi)).

The prime after the summation indicates computing the sum for only the i values where

fT,0(xi) stays in S up to time T . Based on the definition of E given in Equation (1), we can

see that Ê is an estimate of E. If N and T are large, we expect to find an approximately
6



linear relationship when plotting ln ÊT (f, S) against T . Therefore, H0 can be estimated as

the slope of the straight line fitted to the data ( [11] is similar for two dimensions).

As one may imagine, judgement and experimentation are used to determine a sufficient

choice for N and T in order to gain reliable calculations from a computer. According to

Hunt and Ott [1], using 100 samples of size N is a good choice for the sample size. They

also recommend computing the mean and standard deviation of ln ÊT (f, S). This method

supplies a sampling error and a more reliable mean estimate than just computing ln ÊT (f, S)

for a single sample of 100N points. Examples 5.2 and 5.3 provide illustrations using this

numerical approach.

We have shown for an autonomous, invertible system that H0(f, S) = H0(f
−1, S), so

naturally it is important to wonder when it is better to use f or f−1 to calculate expansion

entropy in terms of computational cost and accuracy. In order to determine this, first

generalize the definition of the exponential decay rate to incorporate backwards time as well

as forwards as follows:

1

τ±
= lim
±T→±∞

1

±T
ln

µ(S)

µ(S±T,0)

where ST,0 is as defined earlier and S−T,0 is the set of initial conditions whose trajectories

remain in S from time 0 to −T .

In reference to the numerical evaluation of expansion entropy, 1
τ+

(respectively 1
τ−

) is the

exponential temporal decay rate of the number of initial conditions uniformly spread on S

at time 0 that have trajectories remaining in S up to time T (respectively −T ).

Theorem 4.1. As T →∞, the forward calculation of H0 is computationally more efficient

if 1
τ+
< 1

τ−
.

Proof. Assume that ft′,t is autonomous and invertible. First note that S−T,0 = fT,0(ST,0).

Subtract 1
τ+
− 1

τ−
:

1

τ+
− 1

τ−
= lim

T→∞

1

T
ln

µ(S)

µ(ST,0)
− lim

T→∞

1

T
ln

µ(S)

µ(S−T,0)

= lim
T→∞

1

T
ln
µ(S−T,0)

µ(ST,0)
= lim

T→∞

1

T
ln
µ(fT,0(ST,0))

µ(ST,0)
.
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Assume that fT,0 is volume contracting. Then the right hand side is negative:

1

τ+
− 1

τ−
< 0 =⇒ 1

τ+
<

1

τ−
.

What we have is that if fT,0 is volume contracting, then 1
τ+

< 1
τ−

. It is obvious this is

more computationally efficient since the forward time function is decreasing in volume. �

The general idea of this is to calculate H0 with the function that has the lowest decay rate.

Even if the system is still chaotic, it is still better to do the calculations with the function

that has less points leaving S on the time interval [t, t′].

Some common examples considered in chaos theory are the Hénon map and the Lorenz

system. Both systems are uniformly volume contracting for all points in the state space,

specifically this means that 1
τ+
< 1

τ−
. Contrarily, Hamiltonian systems are volume preserving

which means 1
τ+

= 1
τ−

.

5. Examples

Example 5.1. (Attracting and Repelling Fixed Points) A function f has an attracting

(respectively repelling) fixed point x0 if x0 is a fixed point and |Df(x0)| < 1 (respectively

|Df(x0)| > 1). Similarly, a function f has an attracting n-periodic point x0 if x0 is an n-

periodic point and |Dfn(x0)| < 1 (respectively |Dfn(x0)| > 1). Let f be a one-dimensional

continuously differentiable map with a fixed point x0. Assume that Df(x0) 6= ±1. Let S be

an interval such that x0 ∈ S and for all x ∈ S, Df(x) 6= ±1. Then H0(f, S) = 0.

Case 1: Attracting Fixed Point

Note that St′,t = S in this case. Since |Df(x0)| < 1 for all x ∈ S, then G(Dft′,t(x)) = 1

for all x ∈ S and t′ > t. Therefore,

Et′,t(f, S) =
1

µ(S)

∫
S

1dµ(x) = 1

=⇒ H0(f, S) = lim
t′→∞

ln 1

t′ − t
= 0.
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Case 2: Repelling Fixed Point

Suppose that |Df(x0)| > 1. In this case, St′,t is a subinterval of S whose endpoints map

to the endpoints of S under ft′,t. Specifically, this means that µ(ft′,t(St′,t)) = µ(S). Then,

Et′,t(f, S) =
1

µ(S)

∫
St′,t

G(Dft′,t(x))dµ(x)

=
1

µ(S)

∫
St′,t

|Dft′,t(x)|dµ(x)

=
1

µ(S)

∣∣∣∣∣
∫
St′,t

Dft′,t(x)dµ(x)

∣∣∣∣∣
=

1

µ(S)
µ(ft′,t(St′,t)) = 1

=⇒ H0(f, S) = lim
t′→∞

ln 1

t′ − t
= 0.

Therefore, isolated periodic points are not chaotic.

Example 5.2. (One-Dimensional Map with a Chaotic Repeller and an Attracting Fixed

Point) Let f be the function displayed in Figure 1 of [1]. Suppose that S = [−1, 1.5] and

S ′ = [0, 1] are the restraining regions. This function has an invariant Cantor set in S ′ which

will classify this example as chaotic by the definition of expansion entropy. The attracting

fixed point is x = −1
2

and it attracts almost every initial condition with respect to the

Lebesgue measure in S.

In order to prove this system is chaotic, first, calculate the expansion entropy of S ′. Note

that f is linear on S ′ with a derivative of 3 on
[
0, 1

3

]
and −2 on

[
1
2
, 1
]
. The invariant Cantor

set is made of all initial conditions in S ′ that never land in
(
1
3
, 1
2

)
.

Let L represent the interval
[
0, 1

3

]
and R represent the interval

[
1
2
, 1
]
. Then S ′T,0 is the

union of 2T intervals, each of which corresponds to a string of length T . Suppose that a

string has k L’s and T − k R’s, then the length of the interval will be 3−k(−2)k−T and the

derivative will be (3)k(−2)T−k. The integral of G(DfT ) on each interval will be 1, therefore

ET,0(f, S
′) = 2T . This means H0(f, S

′) = ln 2, and therefore f is chaotic on S ′. By Property

(6), f is also chaotic on S.
9



The numerical computation of H0 is computed next by first choosing a sample of size N

and range of T values. For each T , use Equation (8) to compute the estimate ÊT of ET,0

for 100 samples of N points. Next, compute the mean (solid curve) and standard deviation

(vertical bars) of these 100 samples. Figure 2 of [1] shows the results for N= 1000 and N=

100000 on S ′, and Figure 3 of [1] shows the results for the same N on S. The approximated

value of H0 is the slope of the solid curve in an appropriate scaling interval. For N , the

scaling interval can be judged by consistence of the results with a larger value of N as well

as the shortness of the error bars and straightness of the curve. Note that the scaling interval

of S is approximately the same as for S ′. Lastly, note that the slope of the solid curve is ln 2

which is the same result from the earlier calculation of H0.

Example 5.3. (Random One-Dimensional Map) Let f : [0, 2π) → [0, 2π) be defined as

f(θt) = θt+1 = [θt + αt + K sin θt] mod 2π, where K > 0 and αi are independent random

variables uniformly distributed on [0, 2π). This example is chaotic if K > 1.

Let S be the unit circle. Note that:∣∣∣∣dθTdθ0
∣∣∣∣ =

T−1∏
t=0

|1 +K cos θt|,

and

ET,0(f, S) =

〈
max

(∣∣∣∣dθTdθ0
∣∣∣∣ , 1)〉

θ0

where 〈· · · 〉x denotes the expected value of x. If θ0 is uniformly distributed, then θ0, θ1, ...

are independent and uniformly distributed. Then:〈∣∣∣∣dθTdθ0
∣∣∣∣〉

θ0,...,θT−1

=
T−1∏
t=0

〈|1 +K cos θt|〉θt

= 〈|1 +K cos θ|〉Tθ .

If
∣∣∣dθTdθ0 ∣∣∣ < 1 then clearly we get the result H0(f, S) = 0. Therefore, suppose that

∣∣∣dθTdθ0 ∣∣∣ > 1.
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H0(f, S) = lim
T→∞

1

T
lnET,0(f, S)

= lim
T→∞

1

T
ln 〈|1 +K cos θ|〉Tθ

= ln 〈|1 +K cos θ|〉θ = λ.

(In this case where the θ0’s are uniformly distributed, for simplicity we will call the expansion

entropy λ).

Case 1: 0 < K ≤ 1

〈|1 +K cos θ|〉θ = 〈1 +K cos θ〉θ = 1 +K 〈cos θ〉θ

= 1 +
K

2π

∫ 2π

0

cos θdθ = 1

=⇒ ln 〈|1 +K cos θ|〉θ = ln 1 = 0.

Case 2: K > 1

For simplicity, let a = cos−1(− 1
k
). Note that the angle a is located on the interval (π

2
, π)

and sin a =
√
K2−1
K

.

〈|1 +K cos θ|〉θ =
1

π

[∫ a

0

(1 +K cos θ)dθ −
∫ π

a

(1 +K cos θ)dθ

]
=

1

π

[
(θ +K sin θ)

∣∣a
0
− (θ +K sin θ)

∣∣b
a

]
=

1

π
[2a+ 2K sin a− π]

=
1

π
[2a+ 2

√
K2 − 1− π].

If K = 1, then a = π:

=⇒ 〈|1 +K cos θ|〉θ = 1.

If K →∞, then a = π
2
:

=⇒ 〈|1 +K cos θ|〉θ =∞.

11



Since 1
2π

[2a+2
√
K2 − 1−π] is monotonically increasing, then for K > 1, 〈|1 +K cos θ|〉θ > 1.

Therefore, λ = ln 〈|1 +K cos θ|〉θ > ln 1 = 0.

This next part is about calculating ET,0 when θ0 is not uniformly distributed. The maps

θt+1 = [θt + αt + K sin θt] mod 2π where K ≤ 1 are all diffeomorphisms. If θt = 0, then

θt+1 = αt. If θt = 2π, then θt+1 = 2π + αt. Since θt+1 is a diffeomorphism, then θt+1 is

one-one and onto. Therefore, it is clear that dθT
dθ0

> 0. This means that:

ET,0(f, S) =

〈
max

(
dθT
dθ0

, 1

)〉
θ0

<

〈
dθT
dθ0

+ 1

〉
θ0

=
1

2π

∫ 2π

0

dθT
dθ0

+ 1dθ0 =
1

2π
(θT + θ0)

∣∣2π
0

=
1

2π
(θT
∣∣2π
0

+ 2π) =
1

2π
(4π) = 2.

Therefore, ET,0 is not exponentially increasing. This means that H0 = 0 for 0 < K ≤ 1.

Numerical experiments also agree with the argument that H0 > 0 for K > 1, but estab-

lishing the transition to chaos (using the definition of expansion entropy) occurring exactly

at K = 1 requires further study. Figure 4 of [1] shows the results for the numerical cal-

culation at each T of Ê for 100 samples of size N= 1000000. The dashed line has slope

ln 〈|1 + 1.5 cos θ|〉θ which is slightly larger than the slope of the computational data.

Example 5.4. (Shear Map on the 2-Torus) Let θt+1 = [θt+ω] mod 2π where ω
2π

is irrational

[12] and φt+1 = [φt + θt] mod 2π. This is a shear map and it is not chaotic. There are two

types of shears,

Horizontal Shear: x′
y′

 =

x+my

y

 .
Vertical Shear: x′

y′

 =

 x

mx+ y

 .
If m > 0 (m < 0), then any points above the x-axis will shift to the right (left) and any

points below the x-axis will shift to the left (right). For this example, θ is the horizontal
12



variable and φ is the vertical variable. This means that our problem looks like:

ft+1,t

θt
φt

 =

θt+1

φt+1

 =

θt + ω

φt + θt

 ,
i.e. this problem is a vertical shear. This means ft′,t needs a constant in front of the horizontal

variable θ, specifically t′− t. Note that in order for this shear to make sense, it must be that

(t′ − t) ∈ Z. Specifically,

ft′,t

θt
φt

 =

θt′
φt′

 =

 θt + ω

φt + (t′ − t)θt

 =

 1 0

t′ − t 1

θt
φt

+

ω
0

 .

=⇒ Dft′,t

θt
φt

 =

 1 0

t′ − t 1

 .
To find the singular values, we must find the eigenvalues of (Dft′,t)

T (Dft′,t).

(Dft′,t)
T (Dft′,t) =

1 t′ − t

0 1

 1 0

t′ − t 1

 =

1 + (t′ − t)2 t′ − t

t′ − t 1



0 =

∣∣∣∣∣∣1 + (t′ − t)2 − λ t′ − t

t′ − t 1− λ

∣∣∣∣∣∣ = (1 + (t′ − t)2 − λ)(1− λ)− (t′ − t)2

= λ2 + (−2− (t′ − t)2)λ+ 1

=⇒ λ =
1

2

[
2 + (t′ − t)2 ±

√
(−2− (t′ − t)2)2 − 4

]
=

1

2

[
2 + (t′ − t)2 ±

√
(t′ − t)2(t′ − t)2 + 4

]
=

1

2

[
2 + (t′ − t)2 ± (t′ − t)

√
(t′ − t)2 + 4

]
.
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These are the eigenvalues of (Dft′,t)
T (Dft′,t). If we graph these two eigenvalues along with

(t′ − t)2 and (t′ − t)−2, we find that as t′ →∞:

λ1 =
1

2

[
2 + (t′ − t)2 + (t′ − t)

√
(t′ − t)2 + 4

]
−→ (t′ − t)2

λ2 =
1

2

[
2 + (t′ − t)2 − (t′ − t)

√
(t′ − t)2 + 4

]
−→ (t′ − t)−2.

It is a little clearer in the graphs of the singular values that these functions are approxi-

mately the same:

σ1 =

(
1

2

[
2 + (t′ − t)2 + (t′ − t)

√
(t′ − t)2 + 4

]) 1
2

−→ (t′ − t)

σ2 =

(
1

2

[
2 + (t′ − t)2 − (t′ − t)

√
(t′ − t)2 + 4

]) 1
2

−→ (t′ − t)−1.

Assume (without loss of generality) that (t′ − t) > 1 (if (t′ − t) < 1, then (t′ − t)−1 > 1

and the calculations would then be the same).

Et′,t(f, S) =
1

µ(S)

∫
St′,t

G(Dft′,t(x))dµ(x)

=
1

µ(S)

∫
St′,t

(t′ − t)dµ(x)

=
1

µ(S)
(t′ − t)µ(St′,t) = t′ − t.

Therefore:

H0(f, S) = lim
t′→∞

1

t′ − t
ln(t′ − t) = 0.

Therefore this example is not chaotic. Specifically, this example illustrates a situation

where orbits are dense and nearby orbits separate over time (as in chaos), but the rate of

separation is linear instead of exponential.
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Example 5.5. (Horseshoe Map) The process of the Horseshoe map in R2 on the unit square

is drawn in Figure 6 of [1]. For this example, the restraining region is the unit square. From

step (a) to (b), a uniform horizontal compression is applied to the restraining region. A

bending formation is applied from step (b) to (c). Assume this bending only occurs in the

shaded region. Step (c) to (d) shows the portion of the horseshoe that remains in S after

one iteration.

Let ρ ∈
(
0, 1

2

)
be the factor by which S is compressed horizontally, then 1

ρ
is the factor that

S is stretched vertically, i.e. ρ and 1
ρ

are the singular values, but 1
ρ

is the only singular value

greater than 1. Specifically, G(Dft′,t) = 1
ρ
, and after t′ − t iterates, G(Dft′,t) =

(
1
ρ

)t′−t
.

After one iteration, the portion of the horseshoe inside the square is 2ρ, and after t′ − t

iterations, (2ρ)t
′−t remains in the square, i.e. µ(St′,t) = (2ρ)t

′−t. Then Et′,t(f, S) = 2t
′−t and

H0(f, S) = ln 2. Therefore, the Horseshoe map is chaotic in the unit square.

6. q-Order Expansion Entropy

Previous work on fractal dimensions determined that the box-counting dimension can be

generalized to a spectrum of dimensions (denoted Dq where q ∈ N0). The box-counting

dimension is the case when q = 0. Additionally, a spectrum of entropy-like values were

introduced by Grassberger and Procaccia [13] and these also depend on q ∈ N0. The previous

research on this topic implies that there may be a similar spectrum of q-order expansion

entropies (denoted Hq where q ∈ N0). With this idea in mind, this section will discuss a

definition for this q-order expansion entropy and explore its reliability.

Definition 6.1. The q-order expansion entropy is defined as

Hq(f, S) =
1

1− q
lim
t′→∞

1

t′ − t
ln

[∫
St′,t

[G(Dft′,t(x))]1−qdµ(x)

µ(St′,t)qµ(S)1−q

]

where G is the product of the singular values of Dft′,t(x) that are greater than 1.

Note that this definition of q-order expansion entropy matches the definition of expansion

entropy when q = 0. The following example is used to determine if Hq is as reliable as the

definition of H0.
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Example 6.2. This example calculates the q-order expansion entropy for the one-dimensional

map with a chaotic repeller and an attracting fixed point (Example 5.2). Recall that

S = [−1, 1.5] and S ′ = [0, 1]. First, calculate the expansion entropy of the set S ′. S ′T,0

is made up of 2T intervals which have length 3−k2k−T (for k = 0, ..., T ). This implies that

G(DfT ) = 3k2T−k. Note that the number of intervals with a given k is the binomial coeffi-

cient: C(T, k) = T !
k!(T−k)! . Then:∫

S′T,0

G(DfT )1−qdµ =
T∑
k=0

C(T, k)[3k2T−k]1−q[3−k2k−T ]

=
T∑
k=0

C(T, k)[3−kq2q(k−T )]

=
T∑
k=0

C(T, k)[(3−q)k(2−q)T−k]

= (3−q + 2−q)T .

The length of the points in S ′ that remain in S ′ through time T is (5
6
)T . Therefore:

Hq(f, S
′) =

1

1− q
lim
T→∞

1

T
ln

[∫
S′T,0

G(Df)1−qdµ

µ(S ′T,0)
qµ(S ′)1−q

]

=
1

1− q
lim
T→∞

1

T
ln

[
(3−q + 2−q)T(

5
6

)Tq
(1)1−q

]

=
1

1− q
lim
T→∞

1

T
ln

[
3−q(
5
6

)−q +
2−q(
5
6

)−q
]T

=
1

1− q
ln

[(
2

5

)q
+

(
3

5

)q]
.(9)

For this next part, take this evaluation of the q-order expansion entropy on S ′ and calculate

the results when q = 0,∞.

Case 1: q = 0

Hq=0(f, S
′) = ln

[(
2

5

)0

+

(
3

5

)0
]

= ln 2.
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Case 2: q =∞

lim
q→∞

Hq(f, S
′) = lim

q→∞

1

1− q
ln

[(
2

5

)q
+

(
3

5

)q]
= lim

q→∞

q

1− q
1

q
ln

[(
2

5

)q
+

(
3

5

)q]
= lim

q→∞

q

1− q
lim
q→∞

1

q
ln

[(
2

5

)q
+

(
3

5

)q]
= − lim

q→∞

1(
2
5

)q
+
(
3
5

)q [(2

5

)q
ln

2

5
+

(
3

5

)q
ln

3

5

]

= − lim
q→∞

ln 2
5

+
(
3
5

)q
ln 3

5

1 +
(
3
2

)q
= − lim

q→∞

(
3
2

)−q
ln 2

5
+ ln 3

5(
3
2

)−q
+ 1

= − ln
3

5
= ln

5

3
.

Since Hq is monotonically decreasing, ln 2 = H0 ≥ Hq ≥ H∞ = ln 5
3
. Specifically,

Hq(f, S
′) ∈ [ln 2, ln 5

3
].

Next, calculate the expansion entropy of S. First note that µ(ST,0) = 2.5 since all points

stay inside S for all T ≥ 0 and S = [−1, 1.5]. Also, since S ′ ⊆ S, then:

(3−q + 2−q)T ≤
∫
ST,0

G(DfT )1−qdµ.

Note also that G(DfT ) = 1 for initial conditions on the interval near x = −1
2

(since these

points have Df < 1). These initial conditions contribute at least c > 0 to the integral (where

c is the length of the contracting interval). This means:

c+ (3−q + 2−q)T ≤
∫
ST,0

G(DfT )1−qdµ.

There exists a constant C that is independent of T such that the contribution to the

integral of G(DfT )1−q from points in ST,0\S ′T,0 is bounded above by CT max[(3−q+2−q)T , 1].

The T in this upper bound comes from the trajectories that initially leave S ′ at time t =
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0, ..., T − 1. Therefore, the following bounds exist for the integral of G(DfT )1−q on ST,0:

c+ (3−q + 2−q)T ≤
∫
ST,0

G(DfT )1−qdµ ≤ CT max
[
(3−q + 2−q)T , 1

]
.

This implies for q 6= 1:

Hq(f, S) =
1

1− q
lim
T→∞

1

T
ln

[∫
ST,0

G(DfT )1−qdµ

µ(ST,0)qµ(S)1−q

]

≤ 1

1− q
lim
T→∞

1

T
ln

[
CT max

[
(3−q + 2−q)T , 1

]
µ(ST,0)qµ(S)1−q

]

=
1

1− q
lim
T→∞

1

T
ln

[
CT max

[
(3−q + 2−q)T , 1

]
µ(S)

]

=
1

1− q
lim
T→∞

1

T
ln

[
C

1
T T

1
T max [(3−q + 2−q), 1]

µ(S)
1
T

]T

=
1

1− q
lim
T→∞

ln

[
C

1
T T

1
T max [(3−q + 2−q), 1]

µ(S)
1
T

]

=
1

1− q
ln lim

T→∞

[
C

1
T T

1
T max [(3−q + 2−q), 1]

µ(S)
1
T

]

=
1

1− q
ln
[
max

(
3−q + 2−q, 1

)]
.(10)

It is important to note that there exists a critical number qc ∈ (0, 1) such that 3−qc +2−qc =

1. Then for q > qc, max(3−q + 2−q, 1) = 1 =⇒ Hq(f, S) = 0.

To summarize the results so far, according to Equations (8) and (9), H0(f, S
′) = H0(f, S) =

ln 2 (as were the results in Example 5.2), but Hq(f, S
′) > Hq(f, S) for q > 0 (see Figure 9

of [1]). Lastly, note that if the slopes 3 and/or (-2) were increased, then the critical number

qc could be made arbitrarily close to 0. Therefore, this example demonstrates how Hq may

not always detect chaos.

18



7. Topological Entropy

The notion of topological entropy was first introduced by Adler, Konheim, and McAn-

drews [14]; it applied to a continuous function f on a compact topological space X. An-

other definition of topological entropy was introduced if X is a metric space by Dinaburg

and Bowen [15] as follows. Let ε > 0 and x, y ∈ X. These points are (T, ε)-separated if

d(f i(x), f i(y)) > ε for some 0 ≤ i < T . Another way to use this distance is to introduce the

distance:

dT,f (x, y) = sup
0≤j<T

d(f j(x), f j(y)).

A set P ⊆ X with µ(P ) <∞ is said to (T, ε)-span X if there does not exist a point in X

that is (T, ε)-separated from every point in P . The minimum number of points needed to

(T, ε)-span X is notated as n(T, ε). N(T, ε) represents the maximum number of points in X

that are pairwise (T, ε)-separated. Define:

hn(T, ε) = lim sup
T→∞

1

T
lnn(T, ε)

and

hN(T, ε) = lim sup
T→∞

1

T
lnN(T, ε).

There is an interesting relationship between N(T, ε) and n(T, ε) as will be observed in the

following theorem.

Theorem 7.1. For ε > 0 and T ∈ N,

N(T, 2ε) ≤ n(T, ε) ≤ N(T, ε).

Proof. Let EN(T, ε) be a maximal (T, ε)-separated set for X and let x ∈ X. There is some

y ∈ EN(T, ε) such that dT,f (x, y) ≤ ε, because otherwise EN(T, ε) ∪ {x} would be a (T, ε)-

separated set for X and EN(T, ε) would not be maximal. Therefore EN(T, ε) (T, ε)-spans X,

and

N(T, ε) = #(EN(T, ε)) ≥ n(T, ε).
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Let EN(T, 2ε) be a maximal (T, 2ε)-separated set for X, and En(T, ε) be a minimal (T, ε)-

spanning set for X. Using the fact that En(T, ε) spans, we are going to define a map T :

EN(T, 2ε)→ En(T, ε). For x ∈ EN(T, 2ε) there is a y = T (x) ∈ En(T, ε) with dT,f (x, y) ≤ ε.

If T (x1) = T (x2) for x1, x2 ∈ EN(T, 2ε), then

dT,f (x1, x2) ≤ dT,f (x1, y) + dT,f (y, x2) ≤ 2ε.

Because EN(T, 2ε) is a (T, 2ε)-separated set, x1 = x2. This shows that T is one to one, and:

N(T, 2ε) = #(EN(T, 2ε))

≤ #(En(T, ε))

= n(T, ε).

Therefore:

N(T, 2ε) ≤ n(T, ε) ≤ N(T, ε).

�

It is important to note the results from the previous theorem because this means that

N(T, ε) and n(T, ε) have the same limit as ε → 0. Therefore, topological entropy is defined

as:

h(f,X) = lim
ε→0

hn(f, ε) = lim
ε→0

hN(f, ε).

Topological entropy and expansion entropy are actually the same when f is considered to

be a smooth, autonomous system on a compact manifold M with the restraining region S =

M . In order to verify this idea, first define Ñ(T, ε) as the maximum number of trajectories

at either time 0 or T that are distance ε apart.
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Lemma 7.2. Let f be a smooth, autonomous system on M which is a compact manifold.

Let the restraining region S = M . Then for ε > 0,

ET,0(f, S) ≈ Ñ(T, ε)

N(0, ε)
.

Proof. Assume ε > 0 is small enough that the remainder term in the first order Taylor

expansion of fT,0 is much smaller than ε for points within ε of each other, i.e.:

|fT,0(y)− fT,0(x)−DfT,0(x)(y − x)| � ε

for x, y ∈ S with |y − x| ≤ ε.

Cover S with N0 boxes whose diameters are ε. This means that N0 has the same order

of magnitude as the maximum number N(0, ε) of ε-separated points in S. Each box B

is contained in a ball of radius ε, and contains a ball whose radius has the same order

of magnitude as ε. Note that µ(B) ≈ µ(S)
N0

for small ε. Let χB be the center of B, and

σ1 ≥ · · · ≥ σn be the singular values of DfT,0(χB). Then fT,0(B) is contained in an ellipses

whose semiaxes are σ1ε, · · · , σnε. Also fT,0(B) contains an ellipses whose semiaxes have the

same order of magnitude as σ1ε, · · · , σnε.

Let d be the largest index such that σd > 1. Then the maximum number of ε-separated

points in fT,0(B) has the same order of magnitude as σ1 · · ·σd = G(DfT,0(χB)). Summing

over all B, the maximum number Ñ(T, ε) of trajectories that are ε-separated at either time

0 or T has the same order of magnitude as:

∑
B

G(DfT,0(χB)) ≈ 1

µ(B)

∫
S

G(DfT,0(x))dµ(x)

≈ N0

µ(S)

∫
S

G(DfT,0(x))dµ(x)

= N0ET,0(f, S)

=⇒ ET,0(f, S) ≈ Ñ(T, ε)

N(0, ε)

�

21



The above lemma shows that:

ET,0(f, S) = lim
ε→0

Ñ(T, ε)

N(0, ε)
.

Now we would like to revisit the claim that, under specific circumstances, topological

entropy equals expansion entropy. In order to expand on the definition of topological entropy,

notice that normalizing by N(0, ε) does not change the limit.

h(f, S) = lim
ε→0

lim sup
T→∞

1

T
lnN(T, ε)

= lim
ε→0

lim sup
T→∞

1

T
ln[N(T, ε)− lnN(0, ε)]

= lim
ε→0

lim sup
T→∞

1

T
ln
N(T, ε)

N(0, ε)
.

It is important to note that Ñ(t, ε) is a lower bound of N(T, ε). Stated below are the

definitions we have from our calculations of H0(f, S) and h(f, S).

H0(f, S) = lim
T→∞

lim
ε→0

1

T
ln
Ñ(T, ε)

N(0, ε)

and

h(f, S) = lim
ε→0

lim sup
T→∞

1

T
ln
N(T, ε)

N(0, ε)
.

The difference between the definition of topological entropy and expansion entropy is

that they take the same limits but in reverse order, and expansion entropy uses Ñ(f, S) ≤

N(f, S).

8. Other Definitions of Chaos

This section presents other definitions for chaos as well as some examples that show the

limits of these definitions. A general idea that is often an indicator of chaos is called sensi-

tive dependence (or sometimes “weak sensitive dependence”). This characteristic takes two

nearby initial conditions and states that at some point in time, their orbits will be far apart.
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Definition 8.1. Let M be a compact metric space. A continuous map f : M → M has

sensitive dependence if there exists ρ > 0 such that for all δ > 0 and all x ∈M , there exists

y ∈M with |x− y| < δ such that |f t(x)− f t(y)| > ρ for some t ≥ 0.

This definition does not consider the rate of separation, which implies the definition in-

correctly detects chaos if the rate of separation is linear (as in Example 5.4).

It is also possible to define sensitive dependence on a compact invariant set when the space

is not necessarily compact.

Definition 8.2. Let M be a metric space and J ⊆ M be a compact invariant set. A

continuous map f : J → J has sensitive dependence if there exists a ρ > 0 such that for

every δ > 0 and every x ∈ J , there exists y ∈ J with |x−y| < δ such that |f t(x)−f t(y)| > ρ

for some t ≥ 0.

The next definition was introduced by Devaney [16].

Definition 8.3. (Devaney Chaos) Let M be a compact metric space. A continuous map

f : M →M is chaotic if it satisfies the following conditions.

(i) f has sensitive dependence on M,

(ii) f has dense periodic points in M,

(iii) f has a dense orbit (i.e., there exists an initial condition x∗ such that for every y ∈ M

and every δ > 0, |f t(x∗)− y| < δ for some t ≥ 0).

It is also possible to define Devaney chaos on a compact invariant set J = f(J) by replacing

all the M ’s with J ’s in the above definition. Banks et al. [17] claimed that conditions (ii)

and (iii) implied (i).

23



Devaney’s definition does not detect chaos in some situations that most consider chaotic.

For example, the following map has quasi-periodic forcing:

(11) zt+1 = G(zt, θt), θt+1 = [θ + ω] mod 2π

where ω
2π

is an irrational number. This is a dynamical system with state x = (z, θ). Since

θ is quasi-periodic, there are no periodic points in the system, which implies this example

fails condition (ii) of Devaney chaos. Therefore, according to Devaney’s definition of chaos,

quasi-periodic functions can never be chaotic, but quasi-periodic functions are of practical

interest and can have a positive Lyapunov exponent on attractors.

Suppose that G does not depend on θ, i.e. zt+1 = G(zt). It is possible that z can satisfy the

definition of Devaney chaos. By considering the state x = (z, θ) with θ still quasi-periodic,

the system still does not satisfy condition (ii) of Devaney chaos even though the chaotic

dynamics of z do not change.

Robinson [12] believes that in reference to Devaney’s definition for chaos, the requirement

of a dense set of periodic orbits does not appear “central to the idea of chaos.” Therefore he

(and another mathematician Wiggins [18]) proposed the following definition.

Definition 8.4. (Robinson-Chaos) Let M be a compact metric space. A continuous map

f : M →M is chaotic if it satisfies conditions (i) and (iii) of Devaney Chaos.

Since Robinson’s definition of chaos does not use condition (ii) of Devaney chaos, then it

is possible that systems like (11) could be considered chaotic. The problem with Robinson’s

definition of chaos is seen with the example of the shear map on the torus discussed in Exam-

ple 5.4. This example was considered by Robinson [12]. The results discussed earlier showed

that orbits in this system were dense and nearby points had a linear rate of separation in

time. Robinson’s definition of chaos classifies this example as chaotic, but the two Lyapunov

exponents of the system are zero. Therefore, according to the Lyapunov exponents, this

system is not chaotic. Since the separation of points is linear, this example is considered

nonchaotic (for further reading on strange nonchaotic attractors, see [9]).
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The idea of a “scrambled set” was introduced by Li and Yorke [3] as a definition of

chaos. This definition works well for one-dimensional maps (which are the examples they

considered), but we will look at an example of higher dimensions where the definition will

fail.

Definition 8.5. Let M be a compact metric space and J ⊆ M be uncountably infinite.

Suppose that f : M →M . J is a scrambled set if for all x, y ∈ J with x 6= y,

lim sup
t→∞

|f t(x)− f t(y)| > 0, lim inf
t→∞

|f t(x)− f t(y)| = 0.

The first conclusion says that the distance between orbits of two distinct points will be

larger than a fixed positive number infinitely many times. The second conclusion states

that the distance between these distinct orbits will be arbitrarily close an infinite number of

times.

One benefit to using the definition of a scrambled set is it takes some nonchaotic examples

with sensitive dependence and classifies them as not chaotic. For example, consider the

shear map on the torus from Example 5.4 again. Since the θ-distance between two orbits

stays constant, the second condition of Li and York’s definition is not satisfied. Therefore,

the shear map does not have a scrambled set. Note that if the θ-distance is zero, then the

φ-distance would supply the same result.

A limitation of the uncountable scrambled set definition is that it includes examples that

are regarded generally as nonchaotic just as Robinson’s definition of chaos. One example

of this problem is considered by Robinson [12] and Ott and Yorke [19] in Figure 1 of both

papers. The example is a two-dimensional flow with an attracting homoclinic orbit. A finite

piece of a trajectory that converges to the homoclinic orbit forms an uncountable scrambled

set. Therefore, the compact invariant set created by the homoclinic orbit (along with its

interior) shows scrambling.

With the information provided so far in this section, it is clear that using definitions based

on sensitive dependence are problematic when trying to provide a definition of chaos that is

generally applicable. The remaining portion of this section will be discussing another widely
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used definition of chaos. It is quite beneficial to define a chaotic attractor using Lyapunov

exponents. The problematic case would be using Milnor’s definition [20] of an attractor (see

below), so first is stated the better definition of a chaotic attractor.

Definition 8.6. (Attractor of a Map) Let A be a bounded set with a dense orbit such that

there exists an ε-neighborhood Aε such that:

∞⋂
t=0

f t(At) = A.

Then a chaotic attractor of f is an attractor with positive Lyapunov exponent.

Before introducing Milnor’s definition of an attractor, define the omega limit set ω(x) of

a point x ∈M as the collection of all accumulation points for the sequence x, f(x), f 2(x), ...

of successive images of x.

Definition 8.7. (Milnor’s Definition of an Attractor) A closed subset A ⊆M is an attractor

if it satisfies the following conditions

(i) the realm of attraction ρ(A), which consists of all points x ∈ M for which ω(x) ⊆ A,

must have strictly positive Lebesgue measure, and

(ii) there is no strictly smaller closed set A′ ⊆ A so that ρ(A′) coincides with ρ(A) up to a

set of measure zero.

To see why Milnor’s definition of a chaotic attractor can be problematic, consider the

function f(x) given in Figure 8 of [1]. This function is 0 at x = ±1 and remains 0 for

x ∈ (−∞,−1] ∪ [1,∞). Let x0 ∈ [a, b], then x1 > 1 and xi = 0 for i ≥ 2. Specifically,

any point on [a, b] (this interval has positive Lebesgue measure) will have a trajectory that

remains at 0 after two iterations. Therefore, the unstable fixed point x = 0 is a Milnor

attractor. Since df
dx
> 1 at x = 0, then the Lyapunov exponent is positive, however, it seems

odd to classify the set x = 0 as chaotic.

This example is theoretical as opposed to practical, so in general, it is typically sufficient

to use the presence of a positive Lyapunov exponent as a definition of a chaotic attractor.
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The main issue with Lyapunov exponents is found in dealing with repellers. It is possible

to have a fixed point that is a repeller with positive Lyapunov exponent, but that situation

is not considered chaotic. If expansion entropy is used as the definition for chaos, then the

fixed point repeller and Milnor example problems are resolved (see Example 5.1).

9. Conclusion

Expansion entropy possesses several desirable properties for defining chaos [Section 2-4]

including being defined in a general manner so that it applies to many types of systems (i.e.

autonomous, nonautonomous, discrete/continuous time, etc.). Some previous definitions of

chaos required the use of an invariant set which can be difficult when the sets are unknown or

do not exist, but expansion entropy only requires a bounded restraining region. Sections 6-8

discuss the limitations of these other definitions of chaos and prove that in those instances,

expansion entropy detects chaos better than previous definitions of chaos.
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