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Abstract 

 

 

 The meteoric growth of global communication and networking infrastructure has resulted 

in demand for high-performance data centers. With the increase in power capacity of server 

electronics, thermal management of data centers has become a significant challenge, as the 

traditional air cooling technique is approaching its heat dissipation limit. Liquid immersion 

cooling is a liquid cooling technique that offers orders of magnitude higher heat transfer rates 

than air cooling, and also has the potential to reduce the energy needed for cooling data centers. 

While the liquid immersion solutions that are currently used in commercial applications provide 

some of these benefits, most of these solutions employ a large fluid inventory of expensive 

dielectric fluid to cool the server packages. A modular cooling solution that isolates each server 

blade will result in a smaller fluid inventory, which in turn would reduce the fluid costs and also 

improve the ease of maintenance. 

This study explores the thermal performance of a line replaceable, small form factor 

server cooling module with fluid inventory less than 2L. Flow boiling tests were performed on 

test boards with four high-performance dies in a square array. Three different test boards – 

boards with bare silicon, and silicon surfaces enhanced with microporous and microfinned heat 

sinks were tested. Novec 649 was used as the primary coolant in this study. Heat flux 

improvement of up to 50% was achieved by increasing the flow rate and decreasing the facility 

water temperature of the system. The use of enhanced surfaces provided significantly lower 

operating temperatures than the bare silicon surface.  
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In addition to the flow distribution system that delivers a parallel flow over to the heated 

surfaces, a flow distribution system that delivers impinging flow to the bottom row of heaters 

was also tested. For the microfinned surface, the highest heat flux recorded was 28.6 W/cm² 

which is roughly 185 W per die. The nucleation suppression phenomena in flow boiling was also 

investigated for this server model, and it was observed that the microfinned surface with 

impinging flow distribution system suppressed boiling activity for heat flux values of up to 18 

W/cm². High-speed imaging was performed to assess the boiling activity, and to understand the 

change in nucleation characteristics brought about by the change in parameters of this system. 
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Chapter 1: Introduction 

With the rapid progress of today’s society into the prime of the information age, the need 

for increase in networking and communication infrastructure is more than ever before. The 

developments in data transfer capability have a resulted in a highly interconnected world, in 

which online social networking has become an important part of life, where many businesses 

now cannot function without e-commerce, and media storage in computers and personal devices 

is being phased out by online audio/video streaming services. These demands have led to a 

dramatic increase in number and size of data center facilities. The other significant achievement 

in the development of electronic devices is the increase in computational power of the 

microprocessor, while simultaneously decreasing the footprint. Over recent years, computers, 

cell phones and other electronic devices have registered orders of magnitude improvement in 

performance and capability, while managing to become slim and compact. These developments 

in data center infrastructure and microprocessor power density pose new challenges, which 

require timely solutions necessary to sustain future development. 

1.1 Data Center Power Consumption 

In 2014, the total power consumed by the data center facilities across the United States 

was roughly 70 billion kWh, which is around 1.8% of the country’s annual electricity production 

[1]. From Figure 1, it can be observed that the growth in data center power consumption over 

recent years has been relatively flat. One of the reasons responsible for this flat trend is the 
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economic recession that has resulted in the decline in annual server shipment growth to 5% 

during 2005-2010, and further down to 3% after 2010. 

 

 

Figure 1: Historical data center power consumption in the United States [1] 

 

Another reason for this trend that is associated with actual improvement in energy 

utilization is the increase in the number of hyperscale data center facilities. To provide same 

services, these data centers require fewer severs than traditional data centers, as the servers in 

hyperscale facilities are configured for higher utilization rates. While other factors such as 

efficiency improvements in network, storage and infrastructure are cited as reasons for decrease 

in growth, the infrastructure improvements such as increase in data center cooling efficiency are 

observed only in large cloud data centers. A common metric that is used to quantify the energy 
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utilization in data centers power usage effectiveness (PUE), which is the ratio of the total energy 

delivered to the data center to the energy delivered to the computing or IT equipment. A PUE 

value of one is ideal, in which all the energy supplied to the data center is utilized for processing. 

According to the surveys by the Uptime Institute®, in which the institute’s network members 

self-reported the PUE values, the average PUE values have not significantly changed over the 

recent years [2]. Figure 2 shows these reported PUE values for 2011-2014.  

 

 

Figure 2: Self-reported average PUE values from 2011-2014 [2] 

 

The trend supports the assertion that the sluggish growth in data center power consumption is not 

primarily due to improved energy-efficiency. With energy costs on the rise and natural resources 

diminishing, measures to reduce the already substantial power consumption must be taken. One 

avenue for improvement is reducing the energy spent on data center cooling, which represents 

around 33% of the energy utilized by data centers [3]. 
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Improvements in energy efficiency of the air cooling techniques are being carried out 

across various levels, from reducing contact resistance at the chip level to optimizing air flow at 

the room and plenum levels. Strategies such as hot/cold aisle separation and server rack exhaust 

chimneys have been implemented to prevent mixing of hot and cold air streams, with reported 

energy savings of up to 59% over traditional open type data centers [4]. The environmental 

responsibility and economic incentive associated with cooling energy savings have motivated 

data center giants such as Google™ and Facebook™ to adopt a number of measures to reduce 

cooling power. These measures include the use free cooling energy by employing sea water for 

heat rejection and planning facilities at locations with cold climates, and other techniques such as 

use of evaporative cooling to bring chilled water into the room and air-side economizers to bring 

external air into the room. These steps have resulted in Google maintaining an average Twelve 

Month Trailing (TTM) PUE value of 1.12 for all its large-scale data centers [5], and TTM PUE 

value of 1.09 at Facebook’s Prineville datacenter facility [6].  

Parallel to the studies that focus on air cooling efficiency improvement, studies have been 

conducted to quantify the energy-efficiency of liquid cooling techniques for cooling server 

packages. Liquid immersion cooling has been used by a number of commercial entities and has 

been proven to substantially reduce cooling power. 3M™ claims that the use of two-phase liquid 

immersion cooling techniques can reduce cooling energy by more than 95%, while resulting in a 

smaller facility footprint, as the immersion cooled facilities require ten times less floor space 

than the air cooled facilities [7]. These claims are supported by the DataTank™ cooling modules 

offered by Allied Control, which use the 3M Novec™ family of dielectric fluids to achieve PUE 

values of 1.01 or less [8]. The cooling modules use the open bath immersion (OBI) cooling 
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technique, in which the server packages are immersed in large tanks containing the dielectric 

fluid. Green Revolution Cooling (GRC) uses a single-phase OBI approach for its CarnotJet™ 

system, where a dielectric mineral oil blend removes the heat from the server packages. The 

cooling system, when tested at Intel® New Mexico facility provided PUE of 1.02-1.03 [9]. 

Figure 3 shows a CarnotJet system. 

 

Figure 3: Immersion cooling system from Green Revolution Cooling [10] 

 

In contrast to the OBI approaches, the liquid cooling solution from Iceotope™ uses a 

modular approach in each server blade is encapsulated in a sealed system with individual fluid 

and electrical connections. Single-phase natural convection drives the primary fluid movement 

inside the enclosure. The primary fluid, which is from the Novec family of fluids, then rejects the 

heat into water that is circulated through a jacket. Figure 4 shows the cooling system from 

Iceotope. Using this approach, more than 80% of cooling energy reduction was recorded during 

the tests at University of Leeds [11]. 
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Figure 4: Iceotope liquid cooling system [11] [12] 

The current study focuses on a small form factor cooling model which follows the same 

modularity principle as the Iceotope cooling system, but with the capability to operate using 

convective two-phase heat transfer. This type of design offers reduced fluid inventory over the 

OBI approach, as the large tanks are replaced by small form factor server blades placed in racks. 

Another advantage of this design is the line replaceability and ease of access, as all the fluid and 

electrical connections are simple to connect/disconnect. 
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1.2 Heat Dissipation Requirements 

The advancements in manufacturing technologies used to fabricate microelectronics have 

resulted in progressive decrease in transistor spacing on an Integrated Circuit (IC), leading to 

smaller interconnect lengths and higher processing speeds. Dr. Gordon E. Moore’s prediction 

that the number of transistors on a chip would double every 2 years [13] has been proven to be 

accurate until recent years. The decrease in transistor density due to the current limitations in 

micro fabrication processes has led a slight deviation from Moore’s law [14]. The feature length 

that defines the transistor spacing is now at 14 nm [15], and Samsung™ has already released 

Qualcomm® Snapdragon™ 835 processor, which has a feature length of 10 nm [16]. The 

increasing transistor density results in a higher power density, which means more heat is now 

generated that must be dissipated to maintain the junction at operating temperature. This leads to 

an increase in heat flux value, as increasing the footprint of the processor to accommodate the 

increase in heat dissipation is counter to the consumer expectations of compact electronics. 

Relaxing the heat dissipation requirements would result in an increase in the junction 

temperature, which in turn would result in increased failure rates and decrease the reliability of 

electronic systems [17]. The International Technology Roadmap for Semiconductors (ITRS) 

specifies that the heat flux requirement for the 14 nm generation is greater than 100 W/cm² [18], 

and heat flux requirements are expected to reach up to 1000 W/cm² in the next decade [19]. 

These high heat flux values will render the traditional air-cooling solutions impractical for 

thermal management.   
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    𝑞 = ℎ ∗ 𝐴 ∗ (𝑇𝑠 − 𝑇∞)            (1) 

           𝑞" = ℎ ∗ 𝛥𝑇            (2) 

An analysis of Newton’s law of cooling indicates the potential avenues to increase heat 

dissipation. Equation 1 shows that the heat dissipated from a surface depends on the heat transfer 

coefficient, area of the surface, the surface temperature and the ambient temperature. At this 

point, it is clear that the surface area and the surface temperature cannot be modified. While 

reducing ambient temperature would result in increased heat dissipation, there are limitations to 

the lowest air temperature that can be achieved. Also, decreasing ambient air temperature is not 

economical as it increases air-conditioning costs. With these restrictions in heat flux and 

temperature values, the only possible way to achieve high heat flux values is to increase the heat 

transfer coefficient, which is clearly depicted in Equation 2.  

Figure 5 shows the heat transfer coefficients of various fluids under different heat transfer 

mechanisms. From the figure it can be observed that for a given heat transfer mechanism -- say 

natural convection, the liquid cooling techniques offer higher heat transfer coefficients than air 

cooling techniques. While the use of liquid cooling methods such as forced convection of water 

through cold plates mitigates some of the heat flux requirements, the heat transfer path from the 

junction to the fluid has multiple resistances such as contact and spreading resistances which    
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Figure 5: Heat transfer coefficients for various fluids and heat transfer mechanisms. 

Adapted from [20] 

 

decrease   the  overall  heat transfer coefficient of the system. On the other hand, liquid 

immersion cooling techniques have highly simplified heat transfer paths with fewer resistances, 

which result in high heat transfer coefficients. The two-phase liquid immersion systems offer 

orders of magnitude higher heat transfer rates than their single-phase counter parts, and prove to 

hold high potential in satisfying the growing heat flux demands. The current study investigates 

the highest achievable heat flux values in a small form factor server model that uses two-phase 

liquid immersion cooling, while maintaining die temperatures well below the current industry 

requirements. 
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Chapter 2: Literature Review 

This chapter aims to provide an overview of key research activities in the field of 

electronics cooling, to understand the motivation behind the current study and the factors that 

influenced its development. An outline of liquid cooling techniques in data centers is presented 

first, followed by an introduction to two-phase heat transfer. The rest of this chapter focuses on 

studies that pertain to tailored surfaces to improve boiling performance, different boiling 

processes employed in cooling electronics, nucleation suppression phenomenon in flow boiling 

and flow visualization techniques. 

2.1 Liquid Cooling in Data Centers 

 While liquid cooling solutions for data centers are developing at a rapid pace now more 

than ever, liquid cooling for electronics in general, is not a new technology. Prior to the 

introduction of complementary metal oxide semiconductor (CMOS) transistors as switching 

elements in ICs, bipolar transistors were used. Being less efficient than CMOS, the bipolar 

transistors generated significantly higher heat flux values to provide similar performance. The 

heat flux increase for bipolar and CMOS transistors, along with the computer system models that 

featured them, are shown in Figure 6. From this figure, it can be observed that the transition from 

bipolar to CMOS in the ‘90s resulted in significant reduction in heat flux values. To dissipate 

high heat flux values in electronic systems with bipolar transistor switching, computers in past 

have adapted liquid cooling solutions. 
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Figure 6: Heat flux demands of bipolar and CMOS transistors over time [21] 

One of the earliest applications of liquid cooling can be traced back to IBM®, with the 

water cooling system for the System/360 Model 91 Processor in 1964 [21]. This system used a 

hybrid air-to-water cooling technique, in which the heat exchangers placed between rows of 

circuit boards cooled the hot air that was leaving one board assembly before entering the next 

assembly. This improved the heat transfer from the boards, as much of the heat gained by the air 

from the boards was rejected to the chilled water in the heat exchanger before it entered the next 

board assembly. The schematic of this system is shown in Figure 7. Another significant 

application that incorporated liquid cooling in data centers is the thermal conduction module 

(TCM) from IBM, for the IBM 3081 computing system [22]. This design features several 
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components and systems, with a central objective of decreasing the resistances in the heat 

transfer path. The convection resistance is significantly reduced by replacing air cooling with a  

 

Figure 7: Cooling system in IBM System/360 [23] 

cold plate system that uses water as cooling fluid. Heat transfer from the chip to the cold plate is 

achieved through spring loaded piston arrangement inside cylinder housing filled with helium 

gas. The TCM module and the piston spring arrangement are shown in Figure 8. The piston and 

spring arrangement ensures proper contact between the chip and cold plate by compensating for 

chip alignment mismatch and stresses induced by the mismatch in coefficient of thermal 

expansion (CTE). Highly conductive metals were used in making springs and pistons used in this 

module. The inert helium gas, which is a good thermal conductor, enhances the conduction heat 

transfer by filling the gaps between the chip and the piston head, and also the gaps between the 



13 
 

spring and the cold plate. The TCM is approximately 150 mm x 150 mm x 60 mm in size, and 

can dissipate up to 300 W from an array of chip placed in 90 mm x 90 mm envelope [24]. 

 

 

Figure 8: Thermal conduction module from IBM [22] [23] 

Recent liquid cooling techniques include the IBM zEC 12 systems that have eliminated 

refrigeration systems and instead use a radiator system in which the water circulating in cold 

plates is cooled by air flow [25]. This system also features a backup heat sink attached to the 

electronic packages to allow for low clock speed operation, in the event of failure in the water 

cooling system. The schematic of this system is shown in Figure 9. 

Efforts to bring the cooling systems closer to the server packages have resulted in the 

growth of hybrid air-water cooling systems. The operating principle of these systems is similar to 

that of the inter-board heat exchangers in the IBM System/360 computers. Heat exchangers are 

placed on the server racks, either at the side, top or rear location. The rear configuration has the 



14 
 

heat exchanger placed on door and is called a rear door heat exchanger (RDHx). In this system, 

cold air enters the server rack from the front, and gets heated through the heat transfer from the 

electronic packages in the rack. This hot air then passes through a heat exchanger setup mounted 

on the rear side of the rack, and rejects the heat into the liquid passed through the heat exchanger  

 

Figure 9: Schematic of IBM z Enterprise EC 12 processor cooling system [25]  

coils. In some designs, up to 100% of the heat is rejected by the hot air into the cooling liquid 

[26]. This system can provide supplemental cooling for few high density racks or provide total 

cooling to the racks, eliminating the need for hot/cold aisle separation in traditional data centers. 

The heat exchanger in this system uses water or refrigerants as cooling fluid. A schematic of this 

system is shown in Figure 10. The other heat exchangers such as the side and top mounted 

systems work on a similar principle. 

A notable early application of liquid immersion cooling was the cooling system in Cray-2 

supercomputer. Figure 11 shows eight printed circuit boards (PCB), stacked and packaged one 
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above the other to form a three dimensional module. This multichip module has a heat flux value 

of about 0.2 W/cm² per chip [27], a value that could be addressed by air cooling techniques.  

 

Figure 10: Schematic of ChilledDoor® rear door heat exchangers from Motivair™ [28]    

However, the high density of chips on the PCB required a volumetric flow rate of air that was 

not practical. To address this problem, single-phase liquid immersion cooling with FC-77 fluid 

was used as the cooling solution. Figure 12 shows the schematic from the patent filed for this 

system. Horizontal flow of coolant over the radially arranged chip modules is achieved through 

stand pipes with provisions to ensure uniform flow over each board in the stacks. The flow rate is 

approximately 0.0254 m/s (1 in./s) across the boards [29]. The pumping systems transport this 

fluid into and out of the reservoirs for heat rejection. Each module in this system measures 

0.1016 m x 0.2032 m x 0.0254 m (4 in x 8 in x 1 in) and could dissipate up to 700 W. The 
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volumetric heat dissipation of this system exceeds far beyond the capabilities of today’s air 

cooled servers. 

    

Figure 11: PCB module of the Cray-2 supercomputer [30] 

 

Figure 12: Liquid cooling system in Cray-2 supercomputer [29] 

Figure 12 shows a top section view of the computing system. FC-77 dielectric fluid flows 

over the heated surfaces from left inlet standpipe to the right outlet standpipe. Both 

standpipes have holes along the length (into and out of the paper) to provide equal flow to 

the PCB modules.     
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With the CMOS transistors approaching the same heat flux trends as that of the bipolar 

transistors, single-phase and two-phase liquid immersion solutions have re-emerged, as 

witnessed by the growth in commercial OBI solutions such as CarnotJet™, DataTank™ and 

IceoTope™ systems. The cooling module of the current study uses a two-phase immersion 

cooling system, and offers volumetric heat dissipation several times higher than the air cooled 

server. 

2.2 Fundamentals of Boiling Heat Transfer 

The importance of boiling in numerous engineering applications has motivated extensive 

studies on investigating the thermal performance and associated heat transfer mechanisms. A 

fundamental study by Nukiyama [31] provides information on the various regimes or stages in 

pool boiling. The experiments in this study were performed by heating platinum, nickel, 

nichrome, iron and fuse wires of known resistances through a supply of constant current. This 

power supply creates a constant heat flux input for which the surface temperature is measured 

through a Wheatstone bridge arrangement. Figure 13 provides the pool boiling curve that was 

pieced together from the experiments. The first regime up to point A is the natural convection 

regime, in which the surface temperature is less than the saturation temperature of the liquid in 

the pool. The density difference between the hot fluid close to the surface and the cold fluid far 

away from the surface creates fluid motion in the pool. The curve is approximately linear in this 

regime and the slope of this curve provides the heat transfer coefficient. As the heat flux is 

increased, the nucleation activity is initiated, and this point is called onset of nucleate boiling 

(ONB). The heat flux required to initiate the boiling activity is called incipience heat flux. The 

transition in the heat transfer mechanism from single-phase natural convection to partial boiling 
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is marked by decrease in surface temperature, since for the same heat flux value, boiling has 

more heat transfer rate than single-phase natural convection. This overshoot in temperature is 

observed only in increasing heat flux experiments, since the energy required to initiate nucleation 

is more than energy required to deactivate the nucleation activity. Between points A and B is the 

partial boiling regime in which heat transfer is due to both natural convection and boiling. The 

slope of the curve is now steeper, which means that compared to the convection regime a 

relatively large change in heat flux is required to increase the difference in surface temperature 

by an equivalent value. This increase in heat transfer rate is mainly due to the numerous 

nucleating bubbles removing the heat from the boiling surface and transferring it to the pool 

liquid. Between the points B and C is the fully developed boiling regime in which the boiling 

effects are highly dominant over the convective effects and the entire surface is nucleating.    
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Figure 13: Pool boiling curve [32]   

 This regime has very high heat transfer rates and is the most important regime from the 

electronics cooling perspective.  Increase in surface temperature is caused by increase in heat 

flux up to point C. Beyond this point, surface temperature increases by orders of magnitude 

without increase in heat flux and causes the wire to melt and burn out. This occurs due to the 

vapor bubbles agglomerating over the surface and forming a vapor blanket that impedes heat 

transfer to the pool liquid. Therefore the heat flux at point C is called burn out heat flux or 

critical heat flux (CHF). The heat transfer mechanisms beyond point C are of little importance to 

electronics cooling applications, as the surface temperatures beyond this point are higher than the 

melting point of solder metals used in the electronic packages, and therefore cause electronics to 

fail. Therefore to further improve the heat dissipation capability of two-phase immersion cooling 
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systems, the CHF value must be increased. To reduce the surface temperature for a given heat 

dissipation, the slope of the fully developed boiling regime, the regime in which the immersion 

cooling solutions would be operating, must be increased. 

2.3 Tailored Surfaces for Improving Boiling Heat Transfer 

Several studies have recorded the improvements in CHF and heat transfer coefficient 

brought about by tailored surface enhancements.  One of the earliest studies was performed by 

Berenson [33], who investigated the effect of surface material, roughness and cleanliness on pool 

boiling characteristics of n-pentane. In this study in which nickel, copper and inconel were used 

as surface materials, it was found that the nucleate boiling heat transfer coefficients changed by 

up to 600% with change in surface characteristics. The burnout heat flux or CHF, however, was 

independent of surface material, roughness or cleanliness. The role of surface enhancements on 

two-phase liquid cooling of electronics was investigated as early as 1974 by Oktay and 

Schmeckenbecher [34]. In this study, thermal performance of a dendritic heat sink made from 

nickel powder was compared to a solid heat sink and with the plain chip surface. The use of 

dendrite structures reduced the temperature overshoot at nucleation, as the dendrite structures 

started to nucleate at heat input of 0.5 W compared to the plain surface that nucleated at 3 W and 

had a surface temperature of 70°C. Following this study, surface enhancements with micro- and 

nano-scale features have been studied for performance improvement of electronics cooling 

applications.  

The presence of micro-scale porosities offers higher heat transfer rates, as the area to 

volume ratio in comparison to the plain surface is higher, along with increased nucleation 

density.  In addition, CHF improvement also happens due to reason that these porosities facilitate 
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boiling and two-phase flow within the surfaces. A traditional method of creating porous surfaces 

is by bonding of metal particles to form a thin surface on a base metal. Chien and Chang [35] 

investigated the effect of particle size and coating thickness on the evaporation resistance of test 

surface with water as working fluid under sub atmospheric conditions. Based on the results, they 

concluded that the best boiling performance and low evaporation resistance is achieved when the 

coating thickness to particle diameter ratio is 3.85. Campbell and Tuma [36] investigated the 

effect Boiling Enhancement Coating (BEC) on immersion cooling system by performing 

numerical simulations of the dual core POWER6 processor from IBM p575 supercomputer. By 

applying experimentally determined boiling heat transfer coefficient as convection boundary 

condition, they concluded that the immersion system with BEC would provide lower system 

resistance and in certain cases a lower junction temperature than the cold plate system that was 

used as the cooling solution in production IBM p575s. Using surfaces with the same BEC, 

Moreno [37] conducted experiments on 1 cm² horizontal surfaces with HFC-245fa as working 

fluid. The results from these experiments show that the use of BEC can provide up to 430% 

increase in heat transfer coefficients and 50% increase in CHF compared to the plain copper 

surface. By using the Boiling Enhancement Paint patented by You and O’Connor [38], the patent 

authors achieved a 109% increase in CHF and up to four times increase in heat transfer 

coefficients for a surface coating with silver flakes in comparison to a plain aluminum foil 

surface [39]. O’Connor et al. also developed a dielectric paint with diamond particles and painted 

it on to a silicon surfaces. This painted silicon surface showed a 224% improvement in CHF over 

non-painted surface, when operating at 45 K subcooling condition [40]. Using the Aluminum 

Particles/ Devcon Brushable Ceramic epoxy/Methyl-Ethyl-Keytone (ABM) coating developed 
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using the same patented coating technique, Rainey and You [41] performed pool boiling 

experiments on copper surfaces with FC-72 as working fluid. The tested surfaces include plain, 

plain with microporous coating, surface with square pin-fin array and pin-fin surfaces with 

microporous coating. The fin length was also a variable for both the pin-fin surfaces. The results 

indicate that the pin-fin surface with microporous coating and a fin length of 8 mm has the 

highest CHF recorded in the study with a value of 129.4 W/cm². Under similar conditions, the 

plain, uncoated surface has a CHF of 18.8 W/cm². The fin surface with microporous coating also 

has about a 41% higher CHF than the uncoated pin fin surface. Pool boiling experiments on 

silicon surfaces with diamond-base microporous coating was performed by Arik et al. [42] using 

FC-72 as working fluid for 1-3 atm system pressures and 0-72 K subcooling. The test system 

used the ATC 2.6 chip package with square die surface measuring 6.4 mm on side. The results 

indicate CHF values of up to 47 W/cm² for the coated surface under 3 atm pressure and 71.5 K 

subcooling, compared to the CHF of 34.6 W/cm² for uncoated surface operating under similar 

conditions. Under other conditions, CHF enhancement of up to a factor of 2 was observed for the 

coated surface. Parker and El-Genk [43] compared the pool boiling performance between smooth 

copper and porous graphite surfaces with FC-72 as working fluid. For subcooling values of 10 K, 

20 K and 30 K, the porous graphite surface has 63-94% higher CHF values than the smooth 

copper surface. In addition, the porous graphite surface does not have temperature overshoot 

during nucleation incipience compared to the 9-14 K overshoot in copper surfaces, and has 

higher heat transfer coefficients than the smooth copper surface.  

In addition to microporous coatings, many studies have also investigated the boiling 

performance improvement achieved with the introduction of finned surfaces. These surfaces 
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offer higher heat transfer area in single-phase regime that improves the heat transfer coefficients 

compared to the plain surface. In two-phase regime, these surfaces have higher surface area for 

nucleation, and therefore improve the nucleation density and two-phase heat transfer coefficient. 

These surfaces also offers nucleation at the fin surface at higher heat flux values, even when the 

base surface has vapor agglomeration. Honda et al. [44] conducted pool boiling investigations 

with FC-72 liquid on silicon chips with four different surface characteristics – plain smooth, 

plain rough, smooth micro-pin-fin and rough micro-pin-fin surfaces. The results show that the 

smooth micro-pin-fin surface has up to 2 times higher CHF than the plain smooth silicon surface. 

The micro-pin-fin surface with submicron roughness has the highest CHF of all the surface 

characteristics, with up to 2.3 times higher CHF than the plain smooth surface. Yuan et al. [45] 

performed similar investigations for a flow boiling configuration with FC-72, using a plain and 

two different micro-pin-fin surfaces with 60 and 120 μm fin heights. The results show that the fin 

surfaces with 120 μm have the highest CHF, with 60% higher than the plain surface. The fin 

surfaces with largest fin height also showed a higher response to CHF increase with increase in 

flow rate. 

With developments in nano scale manufacturing, two-phase thermal performance 

enhancement brought about by the inclusion of nano level surface features has been the focus of 

several investigations. Ujereh et al. [46] compared the pool boiling performance of plain silicon 

surface and Carbon Nano-Tube (CNT) coated surfaces. The results show that more than 35% 

improvement in CHF and 65% reduction of wall superheat can be achieved with a light array of 

fully CNT coated silicon surfaces. FC-72 was used as the working fluid in this study. Chen et al. 

[32] used arrays of copper and silicon nano wires as surface enhancement in a pool boiling study 



24 
 

with deionized water as working fluid. Compared to the plain silicon surface with a CHF of 

about 80 W/cm², the surfaces with nano wires achieved a CHF around 200W/cm². The heat 

transfer coefficient of the nano wire surfaces was twice that of the plain silicon surface.  

In summary, a review of studies that employed tailored surfaces in two-phase systems 

reveals that the use of surface enhancements improves boiling heat transfer in both pool boiling 

as well as flow boiling configurations. Most of the studies reviewed used dielectric fluids, fluids 

that have properties comparable to the dielectric fluid used in the current study. Also apparent is 

the effect of parameters such as subcooling and flow rate, which have the effect of further 

improving the thermal performance of these enhanced surfaces.        

2.4 Boiling Performance Enhancement Studies in Electronics Cooling 

The wide range of cooling requirements in electronic systems spanning different sizes 

and designs, and the highly local nature of two-phase heat transfer makes the two-phase 

electronics cooling less amenable to being numerically modeled and systematically generalized. 

Consequently, a significant portion of the literature has been gathered from experimental 

investigations. This section presents some of the studies that have been done in the domain of 

two-phase immersion cooling. Other techniques in two-phase cooling such as microchannels and 

spray cooling that are also actively being investigated, but a detailed discussion on these studies 

would be lengthy and out of the scope of this section.         

2.4.1 Pool Boiling 

The system in which the electronic packages are immersed in a pool of dielectric fluid 

maintained at a specified temperature is generally referred to a pool boiling system. The 
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temperature of the fluid can be maintained at its saturation temperature or at a subcooled 

temperature. Using the same experimental setup discussed in this study Gess et al. [47] 

performed pool boiling investigations for three different surfaces – bare silicon, microporous and 

microfinned. The thermal performance between FC-72 and Novec 649 fluids were compared and 

the different subcooling values for these dielectric fluids were also tested. Heat flux values of up 

to approximately 14 W/cm² were achieved for the microfinned surface at the highest subcooling 

used in the study. Using similar surface enhancements but in a more conventional pool boiling 

setting, Sridhar [48] achieved heat flux values of up to 47 W/cm² with the microfinned heat 

sinks. The change in thermal performance of a chip due to the presence of neighboring dies in a 

multi chip module was also investigated in this study. The pool boiling studies by Ramakrishnan 

[49] using Novec 649 and HFE-7100 fluids also investigated the thermal performance of 

microporous and microfinned heat sinks, and reported highest heat fluxes in the neighborhood of 

20 W/cm² for the microporous surfaces. This study also investigated the effect of fluid 

contamination by intentionally contaminating the working fluid with dioctyl phthalate. The 

results show that the microporous surface had the highest loss of performance with increase in 

superheats of up to 10°C. The microfinned heat sink was recommended to be used in operations 

prone to fluid contamination, as the large feature size has higher resistance to contamination and 

also offers better performance than the bare silicon surface. Other recent studies on pool boiling 

include the investigations by Jaikumar and Kandlikar [50], in which the surfaces with open 

microchannels along with porous fin tops were employed to achieve 270% enhancement in CHF 

compared to the plain surface. Copper surfaces (20 mm x 20 mm), in a horizontal orientation, 

with centrally machined 10 mm x 10 mm microchannels were used in this pool boiling study. 
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FC-87 was used as the working fluid. Five different test sections, each with a unique 

combination of channel width and depth were tested to determine the effect of channel geometry 

on boiling performance. The ratio of channel width to depth was identified to be an important 

parameter, and the highest performance recorded in this study was for a ratio of one. CHF values 

in the neighborhood of 65 W/cm² were reported by El-Genk [51], for upward facing microporous 

copper surfaces (10 mm x 10 mm) at 30K subcooling of the PF-5060 dielectric liquid. The other 

parameters tested in this pool boiling configuration include surface characteristics, working fluid, 

subcooling and surface orientation. Thiagarajan et al. [52] conducted pool boiling experiments 

with plain and microporous surfaces in a horizontal orientation, using HFE-7100 as working 

fluid. Two plain surfaces with different surface roughness values and three microporous surfaces 

with different coating thickness values were tested in this study. The results show up to 60% 

increase in CHF value for the microporous surface with smallest coating thickness, in 

comparison to the plain surfaces.  

It must be noted that while the studies reviewed above show the effect of different 

parameters on the thermal performance of the pool boiling system, a direct comparison between 

these studies cannot be made due to the large differences in the volume of the pool. While the 

studies by Sridhar [48] use a large pool that is similar to OBI approach, the studies by Gess [47] 

use a relatively smaller pool. Therefore, the highest heat flux values alone cannot be used to 

quantify the performance of the system. Nevertheless, it can be observed that for any pool 

boiling system, employing tailored surfaces and increasing the degree of subcooling will result in 

higher heat dissipation compared to a system with a plain surface and a saturated pool.         
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2.4.2 Flow Boiling  

In a flow boiling system, a fluid delivery system directs the dielectric fluid over the 

heated surfaces, which can be either in a fluid pool or a narrow channel. The fluid flow rate is an 

important parameter in this configuration. Flow boiling investigations for a vertical configuration 

similar to that of the current study were performed by Mudawar and Maddox [53], in which FC-

72 was used as the working fluid. The copper test surfaces measuring 12.7 mm x 12.7 mm were 

mounted in a narrow rectangular channel. The results showed that the fluid velocity and 

subcooling of the fluid had a significant impact on the CHF of the system. Two different CHF 

regimes – low velocity and high velocity regimes were identified and a correlation for low 

velocity CHF was proposed. Using the same system, but with different surface characteristics 

CHF values of up to 361 W/cm² was achieved in this system [54]. Willingham and Mudawar 

[55] further extended the flow boiling analysis to an array of nine 10 mm x 10 mm copper heat 

sources simulating microelectronic chips. The chip far away from the fluid inlet was the first to 

achieve nucleation incipience, generally monotonously followed by the lower upstream chips. 

Subcooling and flow rate were found to increase the onset of CHF and nucleation incipience for 

all the surfaces. In order to improve the uniformity of the boiling activity of the multiple chip 

surfaces, other heat sources were recommended to be placed beneath the multichip arrays. 

Rainey et al. [56] performed flow boiling experiments on plain and microporous copper surfaces 

with FC-72 as working fluid. The test surfaces, measuring 10 mm x 10 mm were placed 

horizontal in a square channel measuring 12.7 mm in side. In this study, the effects of subcooling 

and flow rate were also investigated. CHF values of around 85 W/cm² were recorded for the 

microporous surface, for the highest subcooling and flow rate used in this study. For the plain 
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surface, the CHF increased from around 15 W/cm² for the lowest subcooling and flow rate, to 

around 70 W/cm² for the highest values. Yuan et al. [45] performed experiments with 10 mm x 

10 mm silicon chip using FC-72 fluid. In this study in which the chip is horizontally placed in a 

rectangular channel, the effect of subcooling and flow rate were investigated. One plain surface 

and two different types of micro-pin-finned surfaces were used as test surfaces. CHF values of 

up to 145 W/cm² were achieved with the micro-pin-finned surface, for the highest subcooling 

and flow rate values used in this study. With the same experimental setup discussed in the 

current study, but with a different flow distribution system, Gess et al. [47] performed flow 

boiling experiments on two different surfaces using Novec 649 as working fluid. In this system 

with vertically oriented surfaces, the effect increasing flow rates was also investigated. The 

results show roughly 22% increase in heat dissipation for the microfinned surface and 19% 

increase for the microporous surface, in response to the increase in flow rate.  

Collectively, the aforementioned studies show that the flow rate has a substantial impact 

on the thermal performance of systems that employ dielectric fluids and have small heater 

surfaces similar to the heat dissipating elements in electronic systems. Once again, as with the 

case of pool boiling, comparison between these flow boiling studies cannot be performed, as 

most of these studies employ a narrow channel configuration, while the studies by Gess [47] and 

the current study use a cartridge configuration.                    

2.5 Impingement Boiling 

The two-phase technique in which the fluid flow is directed toward the surface is called 

impingement boiling.  The free jet system is one in which the liquid jet impinges on a surface 
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that is surrounded by a gaseous environment. If the surface is submerged in the same cooling 

fluid as that of the jet, the configuration is referred to as submerged jet system. If the surface is 

submerged, but the liquid surrounding the nozzle is constrained by an upper wall, this 

configuration is referred to as confined jet system. These systems are shown in Figure 14. The 

fluid field in the impingement system has different regions as shown in Figure 15. The flow 

region that is not affected by the presence of the impingement surface is called the free jet 

region. The flow out of the jet is marked by a presence of an inviscid region called the potential 

core. As the flow moves away from the jet orifice, the momentum exchange between the fluid 

from the jet and the surrounding fluid increases the free jet boundary, and the potential core 

contracts. As the jet flow approaches the impingement surface, the fluid decelerates in the z-

direction and accelerates in the r-direction. This region called the stagnation region and the 

stagnation point has the highest local pressure in this region. As the flow moves point in the   

 

Figure 14: (Left to right) free, submerged and confined jet configurations [57]  

transverse (r) direction, it continues to exchange momentum with the surrounding fluid. For the 

submerged jet configuration, the velocity profile of this transverse wall jet region has no slip 

boundary condition at both free jet and impingement surfaces. 
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Figure 15: Different regions in a submerged jet configuration [57] 

Some of the earliest studies on jet impingement boiling for electronics cooling 

applications were performed by Ma and Bergles [58], with the experiments on 5 mm x 5mm and 

3 mm x 3mm test surfaces using R-113 as working fluid. Two different jet orifice diameters were 

used and the effects of flow rate, subcooling and surface aging were also studied. The results 

indicated that the overshoot at nucleation incipience was reduced by increase in both flow 

velocity and subcooling. The boiling curves for different flow rates merged into a single curve in 

the fully developed boiling regime, but the curve for subcooled boiling was shifted leftwards to 

the saturated boiling curve. It was also found that surface aging had a positive impact on the 

boiling performance. Chrysler et al. [59] performed free and submerged jet studies on 6.5 mm 

square chip surface with FC-72 as working fluid. Two different flow rates and four different 

types of jets were tested in this study. All the jets had an orifice diameter of 0.5 mm. The jet 

orifice to chip distance was also a variable that was studied, and two different approaches – jet 
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pin and jet piston arrangements were implemented in adjusting this distance. The results showed 

up to 120 W/cm² CHF values for a flow volumetric rate of 2.2 cm³/s. For this flow rate, the 

average surface temperature of the chip relatively remained unchanged for orifice to chip 

distance greater than 1.75 mm. For values below this gap distance, the average temperature 

increased with decreasing gap distance. It was also observed that the performance of jet piston 

approach was comparable to that of the jet pin approach. Cardenas and Narayanan [60] 

conducted jet impingement boiling experiments for an unconfined submerged jet configuration, 

in which the FC-72 working fluid was maintained at its saturation temperature. The effects of jet 

nozzle diameter and the jet Reynolds number were also studied in this experiment. A 

horizontally oriented circular copper heater measuring 27.64 mm in diameter was used as the test 

surface. The results show that the impingement configuration has boiling enhancement of up to 

1.44 times compared to the pool boiling configuration. The highest CHF values reported in this 

study are in the neighborhood for 20 W/cm², for the smallest jet nozzle diameter working at 

highest jet Reynolds number. The effect of surface enhancements in two-phase impingement was 

investigated by Copeland [61], in a study on submerged jet impingement boiling on plain and 

pin-fin copper surfaces with a 1cm x 1cm base. In this study that used FC-72 as working fluid, 

the test parameters include pin-fin geometry, flow rate, nozzle diameter, and number of nozzles. 

CHF values from 45 W/cm² to 395 W/cm² for the combination of parameters tested. Correlations 

for single-phase heat transfer coefficients and CHF based on the aforementioned parameters 

were also provided in this study. Ndao et al. [62] performed impingement experiments on a 64 

pin-fin array etched to a silicon substrate with R134a as working fluid. Three different pin-fin 

geometry profiles – circular, square and hydrofoil were tested in this study. These profiles are 
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shown in Figure 16. The effects of flow rate, saturation pressure and surface aging were also 

investigated in this study and were found to have significant impact on boiling performance. The 

results indicate heat transfer coefficients of 150,000 W/m²K for the circular pin fins, and heat 

fluxes values of up to 275 W/cm² for the hydrofoil fins. The effects of surface characteristics on 

impingement boiling performance were also investigated by Rau and Garimella [63], for a 

confined submerged jet configuration. In this study that uses a single 3.75 mm jet, HFE-7100 is 

used as working fluid. Four different surface characteristics for the copper surfaces -- smooth, 

microporous coated, macrofinned and macrofinned with microporous coated pin fins were tested 

in this study. The base area of the copper surface was 25.4 mm x 25.4 mm. The effect of three 

different flow rates was also studied in these tests. The results indicate that the finned surface 

provide the highest CHF improvement, with the plain pin-fins providing up to 2.13 times  

 

Figure 16: Fin profiles used in the study by Ndao et al. [62] 

enhancement and the coated pin-fins providing up to 2.42 times enhancement compared to the 

plain surface. The highest enhancement provided by the plain microporous coated surface in 

comparison to plain surface is 1.51. The highest CHF reported in this study is 88.3 W/cm² for the 
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macrofinned surface with microporous coating at the highest flow rate used in the study. Jet 

impingement performance of a multichip arrangement was investigated by Mudawar and 

Wadsworth [64], for a 3 x 3 array of simulated copper chips cooled in a channel by FC-72 fluid. 

The effects of jet width, the height of the channel and impingement velocity were also 

investigated in this study. The results showed that the jet impingement system could maintain 

uniform heat fluxes and surface temperatures across 9 chip surfaces, and provide heat flux values 

of up to 250 W/cm² [65].  

In summary, the submerged two-phase jet impingement system can provide large heat 

dissipation values for applications in electronic thermal management. In addition to parameters 

such as surface characteristics, subcooling and flow rate at the nozzle exit, careful understanding 

of additional parameters such as jet configuration, size of the jet, number of jets and the effect of 

fluid interaction between multiple jets is highly essential in designing these systems.   

2.6 Nucleation Suppression in Flow Boiling 

In two-phase heat transfer, depending on the surface characteristics and other parameters 

such as subcooling, system pressure and other fluid properties, a certain thermal boundary layer 

thickness is required to initiate and sustain the nucleation activity. If the boundary layer 

thickness is not sufficiently large, the embryonic bubble will not be allowed to develop. This 

phenomenon of having a boundary layer thin enough that it cannot support nucleation is called 

nucleation suppression. For flow boiling in tubes and channels, nucleation suppression happens 

in saturated flow boiling. The increasing void fraction and acceleration transitions the flow from 

slug flow to churn flow and finally to annular flow regime. These regimes are shown in Figure 

17. This transition changes the heat transfer mechanism from vigorous nucleate boiling to liquid 
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film evaporation as the flow moves downstream. At some point, the liquid film is thin enough 

that the nucleation activity is suppressed. Increasing the mass flux or flow rate of the fluid 

flowing on a surface also decreases the thermal boundary layer thickness, and this can be used to 

suppress the nucleation activity. This phenomenon was studied by Thorncroft et al. for flow 

boiling on a vertical flat surface [66].  FC-87 was used as working fluid and a rectangular 

nichrome strip was used as the test surface in this study. The suppression point was determined 

from the flow boiling curves, by finding the intersection point between the convection regime 

that has a constant slope and the boiling regime that has a varying slope.  The effects of different 

inlet vapor quality and flow direction on nucleation suppression were also investigated in this 

study. The results were used in calculating a dimensionless ratio of maximum to minimum cavity 

size, which would indicate if nucleate suppression is possible. The correlation between this 

dimensionless variable and nucleation site density and the transition from convection to boiling 

regime were also discussed in this study. 

2.7 Flow Visualization Techniques 

To improve the performance of the two-phase cooling systems, knowledge of 

mechanisms that drive and limit the boiling heat transfer is highly essential. This is often 

achieved by performing high-speed imaging studies to capture the bubble characteristics such as 

the departure diameter, frequency and nucleation site density. Knowledge on flow field is also 

highly important, as the boiling performance is directly linked to the ability of the cold fluid to 

quench the surface. The design of two-phase systems must be done with care, with a special 

focus on the layout of the components. A design with components obstructing proper fluid 
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circulation will diminish the thermal capability of the system.  Particle image velocimetry (PIV) 

can be used to understand the flow field of a fluid system. PIV is a technique that creates flow 

field by tracking the motion of laser illuminated particles that move with the fluid. Early studies 

on the concept and application of this technique in fluid mechanics were performed by Meynart 

[68], who showed that the technique could be applied to two-dimensional fluid domain, and then 

extended it to more complex flows. Arghode et al. [69] applied this technique for flow  

 

Figure 17: Nucleation suppression in flow boiling [67] 
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visualization of the air through a perforated tile. The PIV results were compared with 

computational fluid dynamics (CFD) results, and the findings were used in developing new CFD 

strategies to improve the accuracy of the models. Pavlova and Amitay [70] used PIV in synthetic 

jet impingement system to generate the velocity fields, and used these velocity fields to create 

mean vorticity fields. The vorticity fields of jet impingement at two frequencies -- 420 Hz and 

1200 Hz were used to study the characteristics of the vortices in the flow field for each 

frequency. The PIV technique for smaller length scales called micro-PIV or µ-PIV, was used in 

the study of wavy microchannels by Gong et al. [71], and the PIV measurements were found to 

have good agreement with the CFD results. For the Re number range of the experiment, both µ-

PIV and CFD results also showed no secondary or re circulating flow within the channel. Using 

the same experimental setup discussed in this study, Gess et al. [47] performed single-phase PIV 

experiments for the flow boiling configuration for two different types of flow distributors. 

Measurements taken at three slices 5 mm apart were used in determining the mass flow rate over 

the heated surfaces for each flow distributor design. Comparison of these results aided in 

determining the optimal flow distributor. Further improvement was achieved through the 

implementation of flow guides, which improved the thermal performance by increasing the fluid 

flow to the heated surfaces. The PIV images before and after the flow guide implementation are 

shown in Figure 18. Gess also performed two-phase PIV experiments, but for the pool boiling 

configuration. As the bubbles in two-phase system can also reflect the incident laser light as the 

particles, a filter was used in the image capture system to remove the light reflected from these 

bubbles. The results from the two-phase PIV experiments were used in determining the map that 
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shows the quenching coolant entry points in this pool boiling system. This map is shown in 

Figure 19. 

 

Figure 18: Single-phase PIV images with (left) and without (right) flow guides [47] 

 

Figure 19: Flow map generated from two-phase PIV showing coolant entry points [47]    
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2.8 Objectives of this Study  

With the air cooling technique approaching its limit in cooling high-power electronics, 

the industry is increasingly adopting liquid cooling solutions such as cold plates and rear door 

heat exchangers. While these techniques mitigate some of the problems associated with 

traditional air cooling methods and offer improvements in heat dissipation and energy-efficiency, 

the heat transfer paths of these systems have multiple resistances from the junction to the cooling 

fluid that limit their cooling potential. The liquid immersion systems have lower system level 

resistances, as the cooling fluid is in direct contact with the heat dissipating surface. This feature 

and other advantages of two-phase cooling have resulted in increased commercial interest in OBI 

cooling solutions. While these OBI solutions dramatically reduce the footprint of the data center 

facility compared to air cooled facilities, they often use a large fluid inventory of expensive 

dielectric fluid in their cooling systems. Leakage or contamination of cooling fluid, or other 

issues with the large tank containing the fluid will render multiple server blades inoperable, 

which may significantly reduce the productivity of the datacenter facility. In contrast, a modular 

cooling paradigm with an individual cooling system for each blade will result in a substantial 

reduction of the fluid inventory. The use of quick disconnect couplings for fluid and electrical 

connections will enable easy line replacement, which will make it possible to perform a quick 

swapping of server blades when one particular blade needs maintenance or repair. The system 

discussed in this study is a small form factor, line-replaceable cooling module that was 

developed based on the aforementioned idea. This system has a fluid inventory of less than 2L, 

and has the capability to operate in flow boiling configuration. 
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The objective of the current study is to investigate the flow boiling characteristics of this 

server cooling module. From the review of boiling studies in electronics cooling, it can be 

concluded that the flow boiling performance can be improved by employing tailored surfaces, 

and increasing the subcooling and flow rate of the dielectric fluid. This study will quantify the 

thermal performance improvement brought about by varying the aforementioned parameters. In a 

preliminary effort understand the impact of impinging flow on the thermal performance of this 

system; this study will provide the heat transfer characteristics of the configuration that delivers 

an impinging flow to some of the surfaces. These studies will employ high-speed imaging to 

understand the qualitative changes in the nucleation characteristics brought about by varying the 

parameters. The nucleation suppression phenomenon in flow boiling will be investigated, and the 

implications of different surface characteristics and flow distributors will also be studied.
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Chapter 3: Experimental Setup  

The section describes the construction and operation of the experimental setup used in 

conducting this study. Details of the testing elements used to simulate the processing and 

memory modules, the cartridge enclosing these elements and the fluid systems used in removing 

the heat dissipated from these surfaces are provided. The key aspects of the surface 

enhancements used in improving the two-phase heat transfer performance are discussed. Details 

on hardware and essential parameters used in high-speed imaging are also provided. 

3.1 Enclosure Assembly 

The cartridge that encloses the electronics assembly is the main component of this 

experimental setup. The primary component within this enclosure assembly is an aluminum 

housing with the dimensions of 150 mm x 300 mm x 38 mm (H x L x W). Figure 20 shows the 

enclosure assembly. The housing is milled out of a solid aluminum block rather than being a 

welded assembly, in order to avoid cracks that might lead to the leakage of the highly wetting 

dielectric fluid contained in the assembly. Also, the single piece design avoids contaminants 

entering the cartridge, especially water, as Novec 649 dielectric fluid used in this study forms an 

acid when it mixes with water. Another reason for this single piece design is to improve the heat 

transfer between the condenser pin fins inside the cartridge and the coolant channels on top of 

the cartridge, by improving the contact between the surfaces. Figure 21 shows the coolant 

channels and the pin fin condenser milled out of the cartridge. If constructed separately,  
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Figure 20: Enclosure assembly 

this channel - condenser assembly would have higher contact resistance, and the introduction of 

a Thermal Interface Material (TIM) to reduce this resistance may bring compatibility issues with 

dielectric fluid. A mixture of deionized water and Dowtherm SR-1™ fluid is the system level 

coolant used in this setup. This coolant will be referred here on to as Chilled Water (CW). 

Ethylene-Propylene-Diene-Monomer (EPDM) gaskets provide sealing for the components  

    

Figure 21: Coolant channel (left) and pin fin condenser (right ) on top of the enclosure 
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attached to the housing. For visualization of flow field and the boiling activity, transparent 

polycarbonate viewing windows are placed on the front, bottom and right faces of the enclosure 

assembly. 

A Graham condenser is mounted on top of the enclosure assembly to maintain the 

internal pressure of the enclosure to be as close to ambient pressure as possible, as the increase in 

system pressure would increase the saturation temperature of the dielectric fluid, which in turn 

would increase the surface temperature necessary to start the boiling process which offers high 

heat transfer rates. Considering the small temperature budget of the electronic devices and the 

adverse effect the increased chip junction temperature has on reliability of electronics, increasing 

the surface temperature required to the reach boiling regime is not preferable. The Graham 

condenser also has chilled water connections to condense any vapor leaving the system. 

However, from sensible heat gain analyses, it was concluded that the cooling loop to the Graham 

condenser does not provide significant heat removal from the system [47].          

The Printed Circuit Board (PCB) housed within the cartridge and immersed in dielectric 

fluid, contains the heating elements that simulate the power dissipating devices in computing 

devices. These PST4 series test cells from Kokomo Semiconductors©  each measuring 0.25” x 

0.25” (6.32 mm x 6.34 mm),  are mapped into four square test sections to simulate the high 

power dissipating processing elements, and two rectangular test sections that simulate low power 

density Dual Inline Memory Module (DIMM). Each of these test cells have resistance heaters for 

controlled heat dissipation, and a five-diode array which is connected to the Data Acquisition 

(DAQ) system for temperature measurement. Figure 22 shows the circuit diagram for a test cell 
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with heating and temperature measurement provisions. Power is supplied to the resistance 

heaters in the test cells through a constant current source from an AMREL ™ SPS series power 

supply. Temperature measurements are conducted by exciting the five-diode array with a 2.2 mA 

current from a Keithley© Model 2401 source meter, and then measuring the voltage drop across 

the diodes. The voltage drop is proportional to the temperatures of the test cells with a sensitivity  

 

Figure 22: Circuit diagram of the thermal test cell 

of 10 mV/°C. The arrangement of these test cells into heaters on to a PCB, along with the 

spacing between heater surfaces is shown in Figure 23. Leak proof electrical connections for 

power and signal into the cartridge is achieved through the MIL-STD-83513 100-pin connector 

from the Glenair© 177-705H series. This connector press fits with the Glenair GMR 7590 series 

connector mounted on the PCB inside the cartridge. The power and signal then travel through the 

traces in the three layer PCB to reach the test cells through solder bump node vias penetrating 

through the PCB. Although there are 100 connections out of the PCB, this is still not sufficient to 

connect all the test cells to the source meter and DAQ system for temperature measurement. 

Therefore, temperature measurement is performed only at fourteen points, as shown by the 
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numbered cells in Figure 23. Furthermore, the inevitable failures in some of these temperature 

measurement points due to manufacturing problems and also the DAQ system limitations meant 

only certain diodes were functional for temperature measurement. Table 1 shows the list of these 

functional diodes for three different test vehicles used in this study. 

 

Figure 23: Test cell arrangement and PCB layout 

Table 1: Diode Temperature Measurement Locations 

Surface Active Diode locations from 

Figure 23 

Bare Silicon 2,3,4,6,7,8,9,11 

Microporous 2,3,6,7,8,9,10,12,13 

Microfinned 2,4,6,7,8,9,10,11,12 
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Experiments in measuring thermal performance of the system were performed by varying 

the power input into the system, and measuring the corresponding surface temperatures from the 

temperature measurement points. The temperature measurement was carried out after the system 

was assessed to be in steady-state. For a constant current supplied, from Ohm’s law, the 

stabilization of voltage drop across the surfaces indicate that the resistance of the heaters have 

stabilized. This stable resistance in turn implies that the surface temperatures have stabilized. 

This voltage stabilization criterion is implemented through a feedback loop written in the DAQ 

programming language. The voltage drop values are recorded for 2 minutes at a sampling rate of 

1 kHz, and these values are then averaged. The DAQ program repeats this measurement and 

averaging step, and compares it with the previous value. When the difference is less than the set 

difference value, the program performs temperature measurements.  The value of this voltage 

difference was set at 1.5 mV, based on the measurements to determine this criterion [47]. While 

the system satisfied this difference typically within 1-3 iterations in the boiling regime, the 

steady-state in the convection regime is usually based on the execution of this voltage drop check 

for a specified maximum number of iterations. Details of the DAQ system, such as wiring layout 

and LabVIEW virtual instrument (VI) are presented in Appendix-B.   The temperature 

measurement diodes were calibrated using a NIST–traceable thermistor with an accuracy of 

±0.01°C. Each of the three test surface vehicles has individual calibration curves. Details on 

calibration can be found in the study by Gess [47]. The enhanced surfaces were calibrated after 

adding enhancement heat sinks. The overall uncertainty for the thermal test cell’s temperature 

measurement was determined to be ±0.09°C. The uncertainty in heat flux measurement was 
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calculated to be ±0.23 W/cm². Details of the uncertainty calculations can be found in the 

previous study performed on this setup [47]. 

Located in the bottom of the cartridge is a flow distribution system that directs dielectric 

fluid to the surfaces that simulate processing elements. Cold fluid enters from bottom connection 

located on the left side of the cartridge and then to the flow distribution system. This fluid gets 

heated as it flows through the heated elements and leaves through the top connection. The plate 

with slots that directs flow over the surfaces will be referred to as flow distributor. This system 

uses two different flow distributors – parallel and impinging flow distributors. The parallel flow 

distributor delivers a flow parallel to the heated surfaces. The impinging flow distributor delivers 

an impinging flow to the bottom heated surfaces, and hits the center of the bottom surface. The 

angle of impingement is 36° to the die surface. Figure 24 shows the depictions of the parallel and 

impinging flow distributors. The dimensions of these flow distributors are shown in drawings   

presented in Appendix-A. All fluid connections into the cartridge are provided by the quick-

disconnect couplings from Colder© Products LC series.  
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Figure 24: Flow in parallel flow distributor (left) and impinging flow distributor (right) 

3.2 Fluid Supply and Control System 

The fluid flow system in this setup has two isolated coolant loops -- chilled water and 

dielectric fluid loops. These flow loops along with measurement devices are shown in Figure 25, 

identified by the Reference Numbers (RN). The dielectric flow loop has the pumping, metering 

and heat removal components for the dielectric fluid. Subcooled dielectric fluid is pumped into 

the enclosure through a Ismatec® MCP-Z standard series pump (RN 2) integrated with a GJ 

series external gear pump head from Micropump®. The flow rate of the dielectric fluid is 

controlled through the pump. However, the dielectric flow rate values are measured through a 

Sponsler Lo-Flo series flow meter (RN 6) (P/N: MF90-MB-PH-A-4X-V) with a Sponsler 3 wire 

analog transmitter (P/N : SP711-3) which converts the frequency signals from the flow meter 

into a 0-5 V signal that is compatible with the Data Acquisition system. The dielectric fluid is 
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heated up after flowing through the heated elements leaves the cartridge through the top, and 

rejects this sensible heat into the chilled water loop through a liquid-liquid heat exchanger      

(RN 3) from FlatPlate® P/N: FP3X8-14. The pool temperature is monitored through a 44007 

thermistor from Omega Engineering (RN 21) placed in a relatively quiescent part of the pool. All 

the thermocouples used in this system K-type probes of the M12 series from Omega 

Engineering. These thermocouples are used in measuring the dielectric fluid temperature (RNs 

13 &14), and chilled water temperature (RNs 15 through 20).    

The chilled water loop provides system level heat removal and has the chilled water 

supply from a Fisher-Scientific™ Isotemp™ 1013D series chiller (RN 4). The flow rate from 

this chiller is back pressure driven and is controlled through threaded rod at the rear of the 

chiller. The chilled water loop is divided into three sub loops – Heat exchanger loop, chilled 

water header loop and Graham condenser loop. Flow meters from the FLR 1000 series from 

Omega Engineering are placed on each sub loop to monitor the flow rate (RNs 7, 8 and 9). The 

needle valves placed on each loop are used to independently control the chilled water flow rate 

(RNs 10, 11 and 12). In the pool boiling configuration of the system, the heat exchanger loop is 

disconnected from system and the chilled water header loop provides primary heat removal from 

the system. In flow boiling configuration, the heat exchanger loop provides primary cooling to 

the system and the chilled water header loop provides secondary cooling. The chiller output 

temperature can be controlled in 0.1°C increments, and this temperature will be referred to as  
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Legend 

Dielectric Fluid Supply   Chilled Water Supply 

Dielectric fluid Return   Chilled Water Return 

Reference Numbers 

1 Enclosure Assembly 8  CW Flow Meter (HX) 15 Thermocouple (HX Inlet) 

2 Dielectric Fluid Pump 9  CW Flow Meter (GC) 16 Thermocouple (HX Outlet) 

3 Liquid-Liquid HX 10 CW Needle Valve (Header)  17 Thermocouple ( CW Header Inlet) 

4 Chiller 11 CW Needle Valve (HX) 18 Thermocouple (CW Header Outlet) 

5 Graham Condenser 12 CW Needle Valve (GC) 19 Thermocouple (GC Inlet) 

6 Dielectric Flow Meter 13 Thermocouple (DF Inlet) 20 Thermocouple (GC Outlet) 

7 CW Flow Meter ( CW Header) 14 Thermocouple (DF Outlet) 21 Thermistor (Pool) 

   

 

Figure 25: Fluid supply and control system 
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facility water temperature throughout this study. The facility water temperatures used in this 

study are 7°C, 11°C and 15°C, which are typical for data center facilities that use chillers for heat 

rejection. For all the experiments in this study, the facility water flow rate was set at a constant 

value.  

3.3 Surface Enhancements 

The improvement in boiling heat transfer brought about by the addition of surface 

enhancements is an essential aspect to be investigated, as these enhancements provide higher 

heat transfer coefficients and reduced surface temperatures without the need for significant 

design changes to the cooling system. In addition to the bare silicon surface, thermal 

performance of the system with two surface enhancements – microporous (MP) and microfinned 

(MF) surfaces were also investigated in this study. Figure 26 shows these two surfaces along 

with the Scanning Electron Microscope (SEM) image of each surface. Both the surface 

enhancements are created by adding a layer of gold film to the exposed top surface of the bare 

silicon test cell and the back face of the microporous and microfinned heat sinks. The gold layers 

help in adhesion of the two surfaces with a metal foil from Indium Corporation©. The 

microfinned heat sink has a 1mm thick copper base and an array of 30 x 30 square fins that 

measure 400 μm on each side, 2 mm in height and spaced 400 μm apart. This heat sink was 

machined out of a solid copper block using Electrical Discharge Machining (EDM) process. The 

microporous heat sink also has a copper base and a top surface that is created by bonding silver 

coated copper spheres that are 10-50 μm in diameter. Further fabrication details of this structure 

are provided in Appendix-D.  
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For low heat flux values, both microporous and microfinned surfaces offer better thermal 

performance, as their heat transfer areas are higher compared to the bare silicon surface. The 

mechanisms that drive thermal performance improvement are different for the high heat fluxes in 

the fully developed boiling regime, which is important to electronics cooling applications. The 

interwoven structure of the microporous surface increases the number of cavities, which in turn 

increases the nucleation density and leads to higher two-phase heat transfer. Also, the surface 

tension of liquid travelling through these pores provides an added wicking force, which 

counteracts the shear force from the vapor travelling away from the surface. This increases the 

heat flux value required to cause vapor production that is needed to prevent effective rewetting 

of the surface, and therefore increases the highest heat dissipated by the cooling system. In the 

fully developed boiling regime, the microfinned surface has nucleation activity not only on the 

base of the heat sink, but also on the fin surfaces, including fin tips. This increase in nucleation 

density leads to higher heat transfer performance. At heat flux values near CHF, while the base 

of the microfinned heat sink has vapor agglomeration that blankets the surface and impedes heat 

transfer to the fluid, the fin regions that protrude beyond this vapor blanket can still support 

nucleation activity. This nucleation activity in the region beyond the vapor blanket enables heat 

from the surface to be rerouted to the fin regions, and this in turn increases the heat flux required 

to cause catastrophic failure. 

3.4 High-Speed Imaging System      

In order to understand the change in bubble characteristics of the different parameters 

used in this system, high-speed imaging was performed on the heated surfaces. A Phantom® 



52 
 

v310 high-speed camera from Vision Research was used in capturing the nucleation activity on 

the surfaces. The camera can operate between the frame rates of 200 frames per second (fps) to 

120000 fps. Frame rate values of 1000 fps or 2000 fps were typically used in this study. Higher 

magnification imaging was needed due to the small length-scale of the bubbles, which was 

performed using the K2/Sc microscopic lens from the Infinity Photo-Optical Company. 

Depending on whether imaging was needed for an entire surface or for features within the 

surface, two different objectives were used.  

 

Figure 26: Microporous (top) and microfinned (bottom) enhancement surfaces
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Chapter 4: Results and Discussion 

The results obtained for the flow boiling configuration of this cooling module are 

discussed in this chapter. In flow boiling, the primary heat removal is through the dielectric fluid 

flow and the chilled water header provides secondary cooling. Before starting the experimental 

runs to measure the flow boiling performance, the fluid system was thoroughly degassed to 

reduce the concentration of the dissolved gases in the fluid that are detrimental to the condenser 

performance. Degassing also removes the gases entrapped in the surface cavities, the presence of 

which might initiate nucleation at a lower heat flux than the actual incipience heat flux. The 

system is degassed for the corresponding facility water temperature by bringing the system to 

vigorous boiling and venting the dissolved gases through the Graham condenser. This process 

might result in reduction of the fluid level in the cartridge, and a small amount of fluid is added 

periodically to keep the fluid line above the dielectric exit port of the cartridge. After degassing, 

the flow boiling investigations are performed by increasing the power dissipated by the surfaces 

and measuring the corresponding surfaces temperatures after the system has reached the set 

steady-state criterion. This heat addition is continued until a visually determined termination 

point is reached, after which power supply to the surfaces is reduced. This power reduction is 

continued and the corresponding surface temperatures are measured again. The data from these 

runs are used in constructing the increasing and decreasing flow boiling curves. This experiment 

set is performed for a second time, to assess and ensure the repeatability of the experiments. The
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following sections present the results and observations for the different parameters used in this 

study. The relevant fluid properties of Novec 649 dielectric fluid are provided in Table 2. 

Table 2: Saturated fluid properties of Novec 649  

Property Value 

Saturation Temperature (Tsat) 49°C 

Liquid Density (ρl) 1517 kg/m³ 

Vapor Density (ρv) 12.6 kg/m³ 

Surface Tension (σ) 9.24 mN/m 

Latent heat of Vaporization (hlv) 87956 J/kg 

Liquid Specific Heat (Cpl) 1118 J/(kg·K) 

Liquid Thermal Conductivity (kl) 0.054 W/(m·K) 

Dynamic Viscosity (μl) 4.4 x 10-4 Pa·sec 

 

4.1 Parallel Flow Distribution System Results  

The thermal performance results of the system with parallel flow distributor are discussed 

in this section. The following subsections present the effect of facility water temperature, 

dielectric flow rate and surface characteristics. The values of parameters used in this study are 

provided in Table 3. 

Table 3: Parameters used in parallel flow distribution system studies 

Parameter Value/ description 

Facility Water Temperature (°C) 7, 11 and 15 

Novec 649 Flow Rate (mL/min) 360, 660, 960 and 1260  

Surface Characteristics Bare silicon, Microporous and Microfinned 
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4.1.1 Facility Water Temperature and Dielectric Flow Rate Effects 

For the fluid system in this study, decreasing the facility water temperature increases the 

subcooling of the Novec 649 fluid. For a given heat flux value, increase in the level of 

subcooling, or the temperature difference between the system fluid temperature and its saturation 

temperature, results in smaller bubble departure diameters from the heater surface. Therefore, as 

subcooling is increased, higher heat fluxes will be required to increase the bubble diameter, and 

cause vapor agglomeration that leads to CHF. Increasing the dielectric fluid flow rate in a 

subcooled system like the current study improves the convective transport, and provides better 

quenching for the heated surfaces. This improved vapor removal leads to the requirement of 

higher heat flux values to cause dryout patches on the surface. Therefore, both increasing the 

flow rate and decreasing the facility water temperature must increase the CHF limit of the 

system. While the aforementioned parameters have the effect of lifting the fully boiling curve 

upward, observations have shown that the surface temperatures in the fully developed boiling 

regime is less sensitive to the changes in flow rate and subcooling, and all the curves merge into 

a single curve in this regime. This is shown in Figure 27.  

For the bare silicon surface at a facility water temperature of 11°C, Figure 28 shows the 

effect of increasing the dielectric fluid flow rate. The heat flux values presented are calculated 

based on the foot print of all four surfaces, and each individual surface measures 25.4 mm x 25.4 

mm (1” x 1”). The curves presented here are for decreasing runs, as the temperature overshoot 

during nucleation incipience creates difficulties in comparing increasing heat flux runs. From 

Figure 28, it can be observed that the increasing flow rate values improve the highest heat 
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dissipated by the system, which is in line with the previous discussion. The increasing flow rates, 

however, have no significant effect on the surface temperatures throughout  

 

Figure 27: Effect of subcooling and flow rate on flow boiling curves [72] 

the flow boiling curve. Similar trends were also observed for the bare silicon surface at 7°C and 

15°C facility water temperatures. The highest heat dissipation values presented in Figure 28 are 

not necessarily the CHF values, but the heat flux value at which heat addition was stopped in the 

experiment to prevent any permanent damage to the test surfaces. This point of heat addition 

termination was decided based on visual observation of the boiling activity using the Phantom 

v310 high-speed camera. Figure 29 presents the screen-captured high-speed image of the bare 

silicon surface at this termination point. From the figure, it can be seen that boiling activity is  
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Bare silicon surface 

Facility water temperature:  11°C 

 

Figure 28: Effect of increasing flow rates on thermal performance of bare silicon surface 

with parallel flow distributor 

vigorous, featuring large vapor masses forming all over the surface, indicating an impending 

CHF. Figure 30 presents the effect of decreasing the facility water temperature for the system 

with bare silicon surfaces at a flow rate of 660 mL/min. In addition to the increase in heat 
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dissipation, the flow boiling curves show surface show reduced surface temperatures in the 

forced convection regime, and this trend continues into partial boiling regime but the temperature 

differences decrease along the way. The fully developed boiling regime is less sensitive to the 

change in facility water temperature. Similar trends were observed at other flow rate values 

tested in this study.  In addition to the boiling literature, the study by Rainey et al. [56] for 

 

Figure 29: Boiling activity at heat-addition termination point for the bare silicon surface 

electronics cooling applications has also shown similar flow boiling trends with changes in flow 

rate and subcooling. This study used a flat copper test surface with dimensions comparable to the 

current study, and used FC-72 dielectric fluid which has comparable properties to Novec 649 

used in current study. 

Table 4 shows the summary of thermal performance of the bare silicon surface under 

different values of facility water temperature and flow rate used in this study. From Table 4, it 



59 
 

can be seen that the increase in flow rate by 900 mL/min and decrease in facility water 

temperature by 8°C achieves up to 50% increase in heat dissipation. Achieving these operational  

Bare silicon surface  

Flow rate: 660 mL/min 

 

Figure 30: Effect of decreasing facility water temperatures on the boiling curves of 

bare silicon surface with parallel flow distributor 

parameters does not need additional equipment, as the facility water temperature of 7°C is within 

the typical range of chiller operation temperature for liquid cooling applications [73], and the 
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pumping power is not high due to the combination of gentle flow rates and low pressure drop 

across the system. The Rohsenow correlation shown in Equation 3 provides the relationship 

 
𝑞"

𝜇𝑙∗ℎ𝑙𝑣
[

𝜎

𝑔(𝜌𝑙−𝜌𝑣)
]

1

2
= (

1

𝐶𝑠𝑓
)

1

𝑟
∗ 𝑃𝑟

𝑙

−(
s

r
)
∗ [

𝐶𝑝𝑙[𝑇𝑤−𝑇𝑠𝑎𝑡(𝑃𝑙)]

ℎ𝑙𝑣
]

1

𝑟
  (3) 

between the wall heat flux and the surface temperature for the fully developed nucleate boiling 

heat transfer. Where the values for r and s in the equation are 0.33 and 1.7 respectively for a fluid 

like the dielectric fluid used in this study are. The other fluid properties are taken from Table 2 

which are the saturated properties of the fluid. The value of Csf is determined by the type of the 

fluid and the surface, and determination of this value could aid in prediction of nucleate boiling 

heat transfer to an accuracy of ±40%. With the values of heat flux, q” and average surface 

temperature, Tw determined from the experiments, other relevant properties of the fluid can be 

plugged into Equation 3 to determine the Csf value. The Csf values are listed in Table 4 for the 

bare silicon surface. This value is calculated by using the highest heat flux dissipated for a given 

facility water temperature and flow rate, along with the corresponding average surface 

temperature.   

The combined effect of flow rate and facility water temperature on the nucleation 

characteristics of the bare silicon surface is shown in Figure 31. It can be seen that the single-

phase heat transfer dominates the system with highest subcooling and flow rate. The nucleation 

density is higher for the system with lowest subcooling and flow rate, and this high nucleation 

density leads to vigorous boiling at a relatively lower heat flux than the system with high flow 

rate and subcooling. 
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Table 4: Thermal performance summary of bare silicon surfaces with parallel flow 

distributor 

Facility Water 

Temperature 

(°C) 

Flow Rate            

( mL/min) 

Heat Flux 

(W/cm²) 

Average 

Surface 

Temperature 

(°C) 

Csf 

7 

360 17.5 72.6 0.0046 

660 18.9 73.6 0.0047 

960 19.8 74.2 0.0047 

1260 20.5 74.1 0.0047 

11 

360 15.2 72.3 0.0048 

660 17.6 72.1 0.0045 

960 18.7 73.6 0.0047 

1260 19.1 73.9 0.0047 

15 

360 13.6 71.9 0.0049 

660 16.1 72.7 0.0048 

960 17.3 73.6 0.0048 

1260 17.7 74.2 0.0049 

 

Figure 32 shows the effect of increasing flow rate for the system with microporous 

surfaces at 15°C facility water temperature. The trends are similar to that of the bare silicon 

surface, with increase in heat dissipation and no significant changes in the surface temperatures 

all throughout the flow boiling curve. Figure 33 shows the effect of decreasing the facility water 

temperature for the system at flow rate of 360 mL/min. These results are also comparable to that 

of the bare silicon surface, with reduced temperatures in the convection regime continually 
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reducing up to the partial regime. Similar trends have been observed on microporous surfaces by 

Rainey et al. [56] in their flow boiling experiments.  

   

 (a)  360 mL/min & 15°C               (b) 1260 mL/min & 7°C 

Figure 31: Nucleation characteristics of bare silicon surfaces at the lowest flow rate and 

highest facility water temperature (a) and vice-versa (b) 

Table 5 shows the summary of thermal performance of the system with microporous 

surfaces at different flow rates and facility water temperatures. Experimental constraints due to 

performance issues in test surfaces limited the range of parameters tested. But the data from 

Table 5 alone is sufficient to show the significant impact of subcooling and flow rate on heat 

dissipated by the system. Figure 34 shows a screen-captured high-speed image of the vigorous 

boiling activity at which heat addition was stopped. The large vapor agglomeration on the 

surface is clearly discernible in this image 
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Microporous surface 

Facility water temperature: 15°C  

 

Figure 32: Effect of increasing flow rate on flow boiling curves of the microporous 

surface with parallel flow distributor  
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Microporous surface 

Flow rate: 660 mL/min 

 

Figure 33: Effect of decreasing facility water temperature on the flow boiling performance 

of microporous surfaces with parallel flow distributor 
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Figure 34: Screen-captured high-speed image shows the vigorous boiling activity at the 

heat-addition termination point for the microporous surface 

Table 5: Thermal performance summary of microporous surface with parallel flow 

distribution system 

Facility Water 

Temperature 

(°C) 

Flow Rate            

( mL/min) 

Heat Flux 

(W/cm²) 

Average 

Surface 

Temperature 

(°C) 

Csf 

7 360 20.4 69.2 0.0038 

11 360 19 68.9 0.0038 

15 

360 17.1 66.9 0.0035 

660 19.9 69.6 0.0039 

960 22.2 72 0.0041 

1260 22.8 72.1 0.0041 
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Microfinned surface 

Facility water temperature: 11°C 

 

Figure 35: Effect of increasing flow rate on thermal performance of the microfinned 

surface with parallel flow distribution system 
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Figure 35 shows the effect of increasing flow rates for the system with microfinned 

surfaces at 11°C facility water temperature. Unlike the bare silicon and microporous surfaces, the 

boiling curves for microfinned surface show a different response to change in flow rate. In 

addition to increase in heat dissipation, the increasing flow rates also reduce the surface 

temperatures in the forced convection and partial boiling regimes. The fully developed boiling 

regime, however, is less sensitive changes in flow rate. Similar trends are observed at the other 

two facility water temperature settings. This different response can be attributed to the increased 

heat transfer area with the extended fin surfaces, which provide higher single-phase heat transfer 

in the forced convection regime with increase in flow rate. This enhanced single-phase 

contribution continues into the partial boiling regime, and becomes progressively less dominant 

as the contribution from boiling heat transfer increases. Figure 36 shows the effect of decreasing 

the facility water temperature for the system at 660 mL/min flow rate. The trends here are 

comparable to bare silicon and microporous surfaces, with increase in heat transfer and reduction 

of surface temperatures in the convection and partial boiling regimes. In flow boiling 

experiments for silicon surfaces with micro pin-fin using FC-72 as working fluid, Yuan et al. 

[45] found similar trends in heat dissipation and surface temperatures for the parameter ranges of 

15-35 K level of subcooling and 0.5-2 m/s flow velocity. 

Table 6 shows the thermal performance of the microfinned surface for different values of 

flow rate and facility water temperatures. The change in parameters provides up to 40% 

improvement in heat dissipated by the system. For the microfinned surface, all the heat flux 

values discussed in this study are calculated based on the base area, not the total surface area. 
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Microfinned surface 

Flow rate: 660 mL/min 

 

Figure 36: Effect of decrease in facility water temperature on the thermal performance of 

the microfinned surface with parallel flow distributor 
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  4.1.2 Surface Enhancement Effects 

This section compares the effect of surface characteristics on the thermal performance of the 

cooling model. Table 7 provides the highest heat dissipation values recorded in this study for the 

bare silicon, microporous and microfinned surfaces. As the problems with the microporous 

surface did not allow for the measurement at highest flow rate and subcooling, the highest value 

recorded among the values tested is provided. From Table 7, it can be observed that while the 

microfinned surface provides heat flux enhancement over the bare silicon surface for some 

Table 6: Thermal performance summary for the microfinned surface with parallel 

flow distribution system   

Facility Water 

Temperature 

(°C) 

Flow Rate            

( mL/min) 

Heat Flux 

(W/cm²) 

Average 

Surface 

Temperature 

(°C) 

Csf 

7 

360 17.8 65.3 0.0032 

660 19.2 65.7 0.0032 

960 20.1 66.2 0.0032 

1260 20.8 66.6 0.0032 

11 

360 16.1 65.1 0.0032 

660 17.9 64.7 0.0030 

960 19.1 65.6 0.0032 

1260 19.6 66.1 0.0032 

15 

360 14.9 65.1 0.0033 

660 16.3 65.3 0.0033 

960 17.4 66.2 0.0034 

1260 18.3 65.9 0.0033 
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combinations of flow rate and facility water temperature, the highest heat flux recorded in this 

study for the microfinned surface is not substantially more than the highest heat flux of the bare 

silicon surface. It must be noted that the thermal performance comparisons and resulting 

conclusions presented throughout study are based on the highest heat dissipation values obtained 

with the author’s visual assessment of the boiling activity, and a comparison of actual CHF 

values might lead to different conclusions.  At the highest flow rates, while the bare silicon 

surfaces had a fairly uniform boiling activity across the four surfaces, the microfinned surface 

had a relatively non-uniform boiling activity between the top and bottom row of heater surfaces. 

At the highest heat flux value reported, the top row of heaters in the microfinned surface had a 

relatively higher boiling activity compared to the bottom heaters. To maintain uniform heat 

dissipation across all four surfaces, the heat addition had to be stopped after the top surfaces 

experienced vigorous boiling activity. Therefore, the bottom surfaces could reach higher heat 

flux values than heat flux values reported in Table 7. In terms of heat dissipation, the 

microporous surface outperforms both bare silicon and microfinned surface with heat flux values 

of up to 22.8 W/cm², even with 15°C facility water temperature and a flow rate of 1260 mL/min. 

This heat flux value corresponds to a heat dissipation of 588 W, or 147 W per chip. At this level, 

the volumetric heat dissipation of this system is 0.344 W/cm³. This dissipation is about 6.7 times 

higher than the volumetric dissipation of the air-cooled HP Proliant Gen8 server model [74]. For 

similar heat dissipation requirements, replacing air cooling with the model from current study 

will achieve dramatic reduction in data center size.  
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Table 7: Highest heat flux recorded in this study for different surfaces with parallel 

flow distribution system 

Surface Type 
Facility Water 

Temperature (°C) 
Flow Rate (mL/min) 

Highest Heat Flux 

Dissipated (W/cm²) 

Bare Silicon 7 1260 20.5 

Microfinned 7 1260 20.8 

Microporous 15 1260 22.8 

 

In terms of surface temperature, both microporous and microfinned surfaces perform 

better than the bare silicon surface. The highest surface temperature reported in this section for 

bare silicon surface is around 74°C, which is still significantly lower than the allowable junction 

temperatures of 85°C to 105°C.  Figure 37 compares all three surfaces at a fixed facility water 

temperature and dielectric flow rate. It can be observed from the figure that the microporous and 

microfinned surfaces operate at 6°C and 7°C temperatures lower than the bare silicon surface. 

This is a substantial decrease, when the available temperature budget of the electronic devices is 

considered. With the failure rate of the processor doubling for every 10°C increase in surface 

temperature [75], the use of surface enhancements in immersion cooling stands essential to the 

reliability of the electronic devices. 

To understand the enhancements brought about by the microfinned surfaces, high-speed 

imaging at 2000 fps was performed at a higher magnification to capture the bubble 

characteristics and the bubble-fin interaction. Figure 38 (a) - (d) screen-captured high-speed 

images for the microfinned surface at a flow rate of 360 mL/min and facility water temperature 

of 15°C. It can be observed from the images that the bubble nucleation is not just limited to the 
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spaces between the fins, but also the periphery of the fins and also the tip of the fins. The surface 

was characterized by a wide range of bubble sizes, even at low heat fluxes. As a vapor slug 

generated from the lower surface enters the gap between the fins, it is squeezed and distorted by 

the fins. This squeezing action results in the vapor slug sweeping the small bubbles that are 

formed on the fin surfaces. The detachment of vapor bubbles from the surface causes the liquid 

to flow and replace the vapor, which again initiates the nucleation activity. Therefore, the 

sweeping action provides a bubble detachment mechanism to improve heat transfer. It must be 

noted that this entire process happens only when the characteristic size of the vapor slug is larger 

than inter-fin spacing. Along the depth of the fins, this squeezing activity happens at multiple 

planes. Further exploration of the fin spacing and geometry that optimizes this effect could be 

used to improve the heat transfer of surfaces that are located upstream to the other heated 

surfaces. 
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Flow rate: 360 mL/min 

Facility water temperature: 7°C 

 

Figure 37: Comparison of thermal performance of three surfaces at a fixed facility water 

temperature and flow rate 
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(a) Capture time: t + 0 ms (b) Capture time: t + 8 ms 

  

(c) Capture time: t + 34 ms (d) Capture time: t + 43 ms 

 

Figure 38: Screen-captured high-speed images of microfinned surface showing the 

movement of vapor slug through the inter-fin spacing 
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4.2 Impinging Flow Distribution System Results 

The results presented in this section are for the system implemented with impinging flow 

distribution system. Table 8 provides the parameters used in these studies.    

Table 8: Parameters used in impinging flow distribution system studies 

Parameter Value/ description 

Facility Water Temperature (°C) 7 and 15 

Novec 649 Flow Rate (mL/min) 360, 1260 and 1650  

Surface Characteristics Bare silicon and Microfinned 

 

4.2.1 Dielectric Flow Rate and Facility Water Temperature Effects 

For the system with bare silicon surface at a facility water temperature of 7°C, the effect 

of increasing the flow rate from 360 mL/min to 1260 mL/min is presented in Figure 39. In the 

forced convection regime, the surface temperatures of the system with 1260 mL/min flow rate 

are lower than the system with 360 mL/min flow rate. This can be attributed to the effectiveness 

of the impinging flow distributor in disrupting the boundary layer, which impacts the bottom row 

of heaters, and increased mixing of the fluid in the pool that impacts the top row of heaters. 

However, for some of the heat flux values in the partial boiling regime, the two curves start 

merging into a single curve. This is due to the reason that the surfaces at 360 mL/min flow rate 

start nucleating at lower heat fluxes than the surfaces at 1260 mL/min, and since nucleate boiling 

has higher heat transfer rates than forced convection,  the surfaces have relatively smaller 

increase in surface temperatures. As the boiling contribution in the system with 1260 mL/min 
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flow rate increases, the surface temperature again becomes lower than the low flow rate system. 

Finally, the fully developed boiling curves for both flow rates approach into a single curve,  

Bare silicon surface 

Facility water temperature: 7°C 

 

Figure 39: Effect of increasing the flow rate on thermal performance of bare silicon 

surfaces with impinging flow distributor  

0

2

4

6

8

10

12

14

16

18

20

22

0 10 20 30 40 50 60 70 80

H
e
a

t 
fl

u
x

 d
is

s
ip

a
te

d
 b

y
 t

h
e

 p
ri

m
a

ry
 d

ie
 (

 W
/c

m
² 

)

Average surface temperature (°C)

360 mL/min

1260 mL/min

17.5 W/cm² 

20.7 W/cm² 



77 
 

showing that this regime is less sensitive to changes in flow rate. Figure 40 shows the effect of 

decreasing the facility water temperature of the system from 15°C to 7°C for the system with  

Bare silicon surface 

Flow rate: 1260 mL/min 

  

Figure 40: Effect of decreasing the facility water temperature on the thermal performance 

of bare silicon surface with impinging flow distributor 

bare silicon surfaces at a flow rate of 1260 mL/min. The surface temperatures in the convection 

regime are lower for the 7°C system, and this difference reduces through the partial boiling 
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regime and the curves collapse into a single curve in the fully developed boiling regime. The 

system at 360 mL/min shows a similar trend.  Table 9 shows the summary of thermal 

performance for the bare silicon surfaces with the impinging flow distributor. The improvement 

in heat dissipation with changes in flow rate and facility water temperature is approximately 

47%. 

Table 9: Thermal performance summary of the bare silicon surface with impinging flow 

distribution system 

Facility water 

temperature (°C) 

Flow rate 

(mL/min) 

Highest heat 

flux (W/cm²) 

Average 

surface 

temperature 

(°C) 

Csf 

7 
360 17.5 73.9 0.0049 

1260 20.7 73.7 0.0046 

15 
360 13.9 72.2 0.0049 

1260 18.1 72.8 0.0046 

 

Figure 41 shows the effect of flow rate on the flow boiling curves of the system with 

microfinned surfaces at a facility water temperature of 7°C. The change in flow rate from 360 

mL/min to 1260 mL/min has a substantial impact of the surface temperatures in the forced 

convection and partial boiling regimes, with up to a 10.5°C reduction. The increased heat 

transfer area of the microfinned surface, along with the high convective transport of the 

impinging flow distributors can be attributed to this enhanced response. The fully developed 

boiling curves, however, approach into a single curve. The system at the facility water 

temperature of 15°C also has a similar behavior. While the impinging flow distributor creates a 
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temperature reduction for all four surfaces, the benefits at higher flow rates, however, are heavily 

toward the bottom row of heaters. This is because of the fact that the impingement effects are 

only experienced by the heaters proximal to the flow inlet. The top rows of heaters receive  

Microfinned surface 

Facility water temperature: 7°C 

 

Figure 41: Effect of flow rate on thermal performance of microfinned surface with 

impinging flow distributor 
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roughly a parallel flow over the surfaces. If the system considered in current study is used in 

applications where there are high-power and low-power dies, the high-power elements with 

microfinned enhancements will be benefitted when placed proximal to impingement system. 

Figure 42 shows the effect of decreasing the facility water temperature in a system with 1260 

mL/min flow rate. Temperature differences of up to 6.5°C between the 15°C and 7°C curves can 

be observed from the figure. The differences continue to reduce in the partial boiling regime and 

diminish in the fully developed regime. Table 10 shows the thermal performance of the system 

under different values of facility water temperature and flow rate. Up to 34% improvement in 

heat dissipation has been obtained by increasing subcooling and flow rate. 
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Microfinned surface 

Flow rate: 1260 mL/min 

 

Figure 42: Effect of decrease in facility water temperature on thermal performance 

of microfinned surface with impinging flow distributor  
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Table 10: Thermal performance summary of the microfinned surface with 

impingement flow distribution system 

Facility water 

temperature (°C) 

Flow rate 

(mL/min) 

Highest heat 

flux (W/cm²) 

Average 

surface 

temperature 

(°C) 

Csf 

7 
360 17.9 63.8 0.0029 

1260 21.4 64.2 0.0028 

15 
360 15.5 62.2 0.0027 

1260 18.4 63 0.0027 

 

4.2.2 Impact of Surface Enhancement 

Table 11 provides the highest heat dissipation recorded in this study for the system for 

the bare silicon and microfinned surfaces with the impinging flow distributor implemented. As 

with the case of parallel flow distributor, while the microfinned surfaces showed heat dissipation 

improvement over the bare silicon surface at some flow rate and facility water temperature 

combinations, the highest recorded heat flux in this study for microfinned surface is not 

significantly more than the highest heat flux for the bare silicon surface. For high flow rates, the  

Table 11: Highest recorded heat flux for bare silicon and microfinned surfaces with 

impinging flow distributor at 1260 mL/min flow rate and 7°C facility water temperature 

Surface type Heat flux (W/cm²) 

Bare silicon 20.7 

Microfinned   21.4 
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Facility Water temperature: 15°C 

Flow rate: 1260 mL/min 

 

Figure 43: Thermal performance comparison for bare silicon and microfinned surfaces for 

impingement flow distribution system 

stark difference in the boiling activity between the top row and bottom row of heaters meant that 

the system was constrained by the top heater surfaces receiving roughly a parallel flow, which 
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temperature and flow rate. It can be observed that for similar heat flux values, the microfinned 

surface operates at substantially lower temperatures than the bare silicon surface. These results 

once again underscore the impact of surface enhancements on improving the reliability of the 

electronic systems used in immersion cooling applications. 

To quantify the highest performance of the impinging system, the system was set to the 

highest flow rate that could be consistently provided by the pump – 1650 mL/min, and the 

facility water temperature was set at 7°C. Only the lower pair of heaters was powered in these 

experiments. Both bare silicon and microfinned surfaces were tested in this study and the thermal 

performance of these surfaces are provided in Table 12. The highest heat flux recorded in these 

experiments is 28.6 W/cm², for the microfinned surfaces. This heat flux value represents a total 

heat dissipation of approximately 370 W or 185 W per die. This value is well above most of the 

high power chips in the market today. The surface temperature at this point is only around 62°C, 

which is well below even the 85°C operating temperature for electronics. Even at this limit, the 

system did not have vapor agglomeration all over the surface, but vigorous boiling at the top 

right section of the die as shown in Figure 44. This local effect is due to the reason that the 

current system employs only one slot that directs the fluid toward center of the die, and the 

boundary layer thickness is higher towards the top of the die. Designs that incorporate more fluid 

impingement points on the die may solve this problem, and further increase the heat flux limit of 

the microfinned surfaces. While the microfinned surfaces have the best performance, the bare 

silicon surfaces also show a substantial increase in heat dissipation value with around 320 W, or 

160 W per chip. The higher performance of the microfinned surface in impingement systems 



85 
 

compared to bare surface has also been recorded by Rau and Garimella [63], in a study that used 

HFE-7100 as working fluid.  

Table 12: Highest thermal performance recorded for the bare silicon and microfinned 

surfaces with impinging flow distributor with power only to bottom heated surfaces 

Surface 

characteristics 

Highest heat flux dissipated 

(W/cm²) 

Average surface temperature 

(°C) 

Bare silicon 24.8 73 

Microfinned 28.6 61.9 

 

 

Figure 44: Screen-captured high-speed image showing vigorous boiling activity only 

at the right corner of the microfinned surface 
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4.3 Flow Distributor Effects 

This section compares the impact of flow distribution system on the thermal performance 

of the cooling system. Table 13 provides the heat dissipation recorded for the bare silicon and 

microfinned surfaces under parallel and impingement flow distribution systems along with the 

corresponding average surface temperatures. It can be observed from Table 13 that for both 

surface characteristics, replacing the parallel flow distribution system with impinging system 

does not offer any improvement in thermal performance. As discussed in a preceding section, the 

reason for this lack of performance improvement can be attributed to the fact that the 

impingement effects are highly local to the bottom surfaces, and the top surfaces still receive 

roughly a parallel flow. To maintain uniform heat dissipation in the experiments with four dies 

powered, heat addition had to be stopped once the top dies achieved vigorous boiling. The 

mixing of the fluid in the pool due to the introduction of the impinging flow distribution does not 

seem to significantly affect the flow field of the top heater surfaces. As it was demonstrated  

Table 13: Highest heat flux comparison of parallel and impinging flow distributors 

Surface type Flow distributor Heat flux (W/cm²) Average surface 

temperature (°C) 

Bare silicon 
Parallel 20.4 73.7 

Impinging 20.7 73.8 

Microfinned 
Parallel 20.8 64.3 

Impinging 21.4 64.2 
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Bare silicon surface 

Facility water temperature: 7°C 

Flow rate: 360 mL/min 

 

Figure 45: Comparison of thermal performance of parallel and impinging flow distributors 

for the bare silicon surface for 360 mL/min flow rate 
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toward the end of the previous section, the impingement system can offer high heat 

dissipation capability for the surfaces in this system. Implementation of flow distributors that 

provide impingement on multiple points on the surface, for all four surfaces will ultimately 

increase the heat dissipation capability of the system. 

Figure 45 and Figure 46 show the flow boiling curves with the parallel and impinging 

flow distributors, for the bare silicon surface at a fixed facility water temperature and flow rate. It 

can be observed from the figures that at 360mL/min flow rate, the curves are almost on top of 

each other, showing similar thermal performance. At 1260 mL/min, the implementation of the 

impinging flow distribution system results in lower surface temperatures in the forced convection 

and this difference continued to decrease though the partial boiling regime. Similar trends are 

observed for the system at the facility water temperature of 15°C. The microfinned surface also 

shows a similar trend, as shown for the 1260 mL/min flow rate in Figure 47. To understand the 

effect of flow distributors on the boiling curves for only the bottom heater surfaces, the data from 

only the bottom two heater surfaces is plotted in Figure 48. While the surface temperatures in the 

boiling curves essentially follow the same trend as the boiling curve for the entire system as 

shown in Figure 47, the temperature difference between the parallel and impinging flow 

distributors is higher for the bottom two surfaces. Also, for the highest flow rate value, forced 

convection dominates the heat transfer in microfinned surfaces with impingement flow, even a 

high heat flux values. This strong contribution from forced convection has also been visually 

confirmed through high-speed imaging, with the observed lack of nucleation activity even at 
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Bare silicon surface 

Facility water temperature: 7°C 

Flow rate: 1260 mL/min 

 

Figure 46: Comparison of thermal performance of parallel and impinging flow distributors 

for the bare silicon surface for 1260 mL/min flow rate 
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also been observed from Figure 48, in which the parallel flow distributor has a forced convection 

regime marked by a relatively constant slope, after which the increasing contribution from  

Microfinned surface 

Facility water temperature: 7°C 

Flow rate: 1260 mL/min 

 

Figure 47: Comparison of thermal performance of parallel and impinging flow distributors 

for the microfinned surface for 1260 mL/min flow rate 
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nucleate heat transfer above a heat flux of about 5 W/cm² continually steepens the slope of the 

boiling curve. In contrast, the impinging flow distributor has a curve with relatively constant 

slope up to heat flux values in the neighborhood of 14 W/cm². Another notable aspect is that the 

impingement flow distribution offers forced convection dominated heat transfer coefficients, 

which are high enough to keep up with the nucleate boiling dominated heat transfer coefficients 

in the parallel flow distributor. 
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Microfinned surface 

Facility water temperature: 7°C 

Flow rate: 1260 mL/min 

 

  Figure 48: Comparison of thermal performance of parallel and impinging flow 

distributors only for the bottom microfinned surfaces at 1260 mL/min flow rate 
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4.4 Nucleation Suppression 

This section provides the results and observations from the investigations on the 

nucleation suppression phenomenon in this server module. The objective of the experiments in 

this study is to find the highest heat flux that can be dissipated by the system without any 

nucleation activity, for a fixed facility water temperature and for a flow rate of 1650 mL/min, 

which is highest flow rate used in this study. The study was carried out in two different ways. In 

one set of experiments, the facility water temperature of the system was set, followed by 

introducing a high flow rate of 1650 mL/min into the system, and finally adding a known heat 

flux to the surfaces. These sets will be refered to as flow-first runs from now on. In second set of 

experiments, the surfaces were first powered with a known heat flux, and then a flow rate of 

1650 mL/min was introduced. These experiments will be referred to as heat-first runs. In both 

these experiments, the presence of nucleation activity was determined visually with the use of 

the Phantom® v310 high-speed camera. The system was determined to be in steady state when 

the surface, inlet dielectric fluid, and exit dielectric fluid temperatures stabilized. The highest 

heat flux achieved without nucleation was determined by starting with a low heat flux, and 

repeating the experiment each time with a 0.5 W/cm² heat flux increment. The experiments were 

performed till nucleation activity was observed, and the value one increment lower than the 

nucleation heat flux is reported as the highest heat flux value. 

Figures 49 (a) – (d) show the change in nucleation activity for the bottom heated surfaces 

with the change in flow rate for the flow-first runs with parallel flow distributor. Equation 4 

presents a relation from Hsu model [76], which provides the criterion for nucleation incipience 
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on a surface. Depending on the fluid properties, subcooling and the thermal boundary layer 

thickness, there exists a range of cavity sizes that will support nucleation activity. Equation 4 

provides the minimum and maximum values of this range. The embryonic bubbles in cavity sizes 

below this range are too small to receive wall super heat and activate. For the cavity sizes above 

this range, the embryonic bubble is large enough to protrude above the superheated boundary 

layer and expose itself to the relative cooler fluid. This results in condensation of these bubbles, 

resulting in inhibition of bubble growth and its detachment from the surface. Therefore the 

cavities or sites with these bubbles remain inactive. The boundary layer thickness for the no flow     

  

(a) No flow (b) 500 mL/min 

  

(c) 1000 mL/min (d) 1650 mL/min 

Figure 49: Nucleation suppression in bare silicon surfaces 
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condition is a natural convection boundary, which is always thicker than the combined natural 

and forced convection boundary layers or forced convection dominated boundary layers. This 

results in the values from Equation 4 being higher, which means a wide range of cavities sizes 

can be active. This higher range increase the probability of nucleation in natural convection. In       

 { 
𝑟𝑐,𝑚𝑖𝑛

𝑟𝑐,𝑚𝑎𝑥
 } =

𝛿𝑡

4
[1 −

𝛳𝑠𝑎𝑡

𝛳𝑤
{
+
−

} √(1 −
𝛳𝑠𝑎𝑡

𝛳𝑤
)

2
−

12.8 𝜎 𝑇𝑠𝑎𝑡(𝑃𝑙)

𝜌𝑣  ℎ𝑙𝑣 𝛿𝑡 𝛳𝑤
]  (4) 

 𝛳𝑠𝑎𝑡 = 𝑇𝑠𝑎𝑡(𝑝𝑙) − 𝑇∞               𝛳𝑤 = 𝑇𝑤 − 𝑇∞        

forced convection, the thermal boundary layer thickness is related to the momentum boundary 

layer thickness and the Prandtl number. The thickness of the momentum boundary layer is 

inversely proportional to the Reynolds number (Re) as shown by the Equations 5 and 6 for 

laminar and turbulent flow over a flat plate, respectively. For the fluid system in this study, these 

equations are applicable to the  bare silicon surface with parallel flow distributor, especially for 

the bottom heated surfaces, since the three dimensional effects are less than that of the top 

surfaces due to the proximity to the flow distributor. The increasing flow rates increase the Re, 

and therefore decrease the thickness of the momentum and thermal boundary layers. This results 

in a lower range of nucleation cavity sizes according to Equation 4, leading to fewer nucleation 

sites. From Figures 49 (a) – (d),  it can be observed that for a given heat flux, increasing the flow 

rate reduces the number of nucleation sites for the bare silicon surface.   

 𝛿 = 5 ∗ 𝑥 ∗ 𝑅𝑒𝑥
−1/2

 (5) 

 𝛿 = 0.37 ∗ 𝑥 ∗ 𝑅𝑒𝑥
−1/5

 (6) 
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In a pool boiling system, the temperature change from wall temperature to saturation 

temperature occurs across a larger distance than that in flow boiling. This is shown in Figure 50. 

This means that in pool boiling, embryonic vapor bubble formed on the surface is surrounded by 

a fluid that has a relatively higher superheat than the flow boiling system. As the degree of 

superheat is not constant across the boundary layer in both pool as well as flow boiling systems, 

a mean or effective superheat ΔTe is used for comparison. In pool boiling system, the mean 

superheat value is close to the wall superheat value ΔT , due to the relatively gentle slope of the 

temperature profile. In flow boiling system, the temperature profile is steeper, and the mean 

superheat is significantly lower than the wall superheat. This low mean superheat value implies 

that  nucleation activity decreases along the flow direction for the flow boiling surface, up to the 

point where the local superheat around the bubble periphery is low enough that it cannot support 

nucleation. Heat transfer from this point is through the evaporation of the thin film above the 

surface.      
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Figure 50: Temperature profiles for pool boiling system (left) and flow boiling 

system (right) 

Table 14 provides the nucleation suppression data for the bare silicon surface. The 

highest heat flux values that cause suppression on all four surfaces, and also only the bottom two 

surfaces located close to the flow distribution inlet are presented. It can be seen from Table 14 

that for a given facility water temperature, the value of heat flux that can be suppressed is 

generally higher for the flow-first runs compared to the heat-first runs. This apparent hysteresis 

in the suppression heat flux can be attributed to the difference in flow field between flow-first 

and heat-first runs, the latter being different due to the introduction of flow into a system with 

already active nucleation sites. Also, it can be seen that the increase in subcooling slightly 

increases the value of heat flux that can be suppressed. This is in accordance with Equation 4, in 

which decreasing T∞ reduces the range of the nucleation cavity sizes. Comparing parallel and 
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Table 14: Summary of heat flux values with nucleation suppression for bare silicon surface      

Highest heat flux with no nucleation activity (W/cm²) 

Parallel flow distribution system 

Facility water temperature : 7°C 

 Heated surface  Flow-first runs Heat-first runs 

All four surfaces  3 2.5 

Bottom two surfaces 3.5 2.5 

Facility water temperature : 15°C 

 Heated surface  Flow-first runs Heat-first runs 

All four surfaces  2 2 

Bottom two surfaces 3 2 

Impinging flow distribution system 

Facility water temperature : 7°C 

 Heated surface  Flow-first runs Heat-first runs 

All four surfaces  3 2 

Bottom two surfaces 5 3 

Facility water temperature : 15°C 

 Heated surface  Flow-first runs Heat-first runs 

All four surfaces  2.5 2 

Bottom two surfaces 4 2.5 

 

impinging systems, it can be observed that for the bottom heated surfaces in flow-first runs, the 

impinging system has relatively higher heat flux values than the parallel system. This is due to 

the more efficient boundary layer disruption mechanism of the impinging flow, compared to the 

parallel flow path. 
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The nucleation suppression phenomenon for the microfinned surface is shown in Figures 

51 (a) – (d). These figures represent the high-speed images for the bottom heated surfaces for 

flow-first runs with the impingement flow distribution system. Figures 51 (c) and (d) show the  

  

(a) No flow 

 

(b) 1650 mL/min 

 

  

(c) No flow – higher magnification 

 

(d) 1650 mL/min – higher 

magnification 

 

Figure 51: Nucleation suppression in  microfinned surfaces 

surfaces at a higher magnification, from which the nucleating bubbles can be clearly discerned 

from other surface features.        

The heat flux values supported without nucleation activity, for the microfinned surface, 

are listed for different parameters in Table 15. The parallel flow distribution system for the 
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microfinned shows some increase in heat flux values compared to the same flow distributor for 

the bare silicon surface. This is due to the increase in single-phase heat transfer coefficient due to 

the higher heat transfer area of the microfinned surfaces. For the same heat flux value higher heat 

transfer coefficient results in lower wall temperature, which decreases the ϴw values. Lower ϴw 

increases the second term of Equation 4 inside the square bracket, and in effect reduces the range 

of cavity sizes. For the microfinned surfaces, the impingment flow distribution system for the 

microfinned surface shows a more interesting trend. The bottom two surfaces under this flow 

distributor support very high heat flux values without nucleation activity, with 15 W/cm² for 

15°C facility water temperature, and as high as 18 W/cm² for 7°C facility water temperature. For 

the heat-first runs, as the system starts with no flow addition, therefore the highest heat flux that 

can be added to the system for a given facility temperature is the highest heat flux supported by 

pool boiling. Nucleation activity at this heat flux value was suppressed by the addition of flow 

during the heat-first runs, and as is it not known if the flow can suppress any more than this heat 

flux value, it is labeled as the “pool boiling limit” in Table 15. These high values of nucleation 

suppression heat flux can be attributed to the combination of two effects – high heat transfer area 

due to the extended surface of the microfinned surface and effective disruption of the boundary 

layer with the impinging flow. This combination also offers high heat-transfer coefficients, 

which results in multiple parameters in Equation 4 that favor nucleation suppression.   
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Table 15: Summary of heat flux values with nucleation suppression for microfinned surface      

Highest heat flux with no nucleation activity (W/cm²) 

Parallel flow distribution system 

Facility water temperature : 7°C 

Heated surface Flow-first runs Heat-first runs 

All four surfaces 4 3 

Bottom two surfaces 5 3 

Facility water temperature : 15°C 

Heated surface Flow-first runs Heat-first runs 

All four surfaces 3.5 2.5 

Bottom two surfaces 4.5 2.5 

Impinging flow distribution system 

Facility water temperature : 7°C 

Heated surface Flow-first runs Heat-first runs 

All four surfaces 5.5 5 

Bottom two surfaces 18 Pool boiling limit 

Facility water temperature : 15°C 

Heated surface Flow-first runs Heat-first runs 

All four surfaces 5 4.5 

Bottom two surfaces 15 Pool boiling limit 
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Chapter 5: Conclusions 

Experimental investigations were conducted to quantify the effect of facility water 

temperature, flow rate, surface characteristics and flow distribution system on the flow boiling 

performance of a small form factor server cooling model. The results indicate that the decrease in 

facility water temperature by 8°C and increase in flow rate by 900 mL/min results in a heat 

dissipation improvement of up to 50% for the bare silicon surface and up to 40% for the 

microfinned surface. The values of facility water temperature used in this study are typically 

used in data center facilities that have a chiller for heat rejection. The flow rate values used in 

this experiment are gentle, with the highest value approximately close to 1.25 L/min. While 

some flow boiling curves show changes in surface temperatures in the forced convection and 

partial boiling regimes, the surface temperatures in the  fully developed boiling regime for all the 

flow boiling curves in this study are less sensitive to the changes in flow rate and facility water 

temperature.   

The use of surface enhancements offers improved reliability of the electronic packages 

the server cooling module, as both microporous and microfinned surfaces operate at significantly 

lower temperatures than the bare silicon surface for similar heat flux values. In terms of heat 

dissipation, the microporous surface outperforms both bare silicon and microfinned surfaces with 

heat flux values of up to 22.8 W/cm², even at the highest facility water temperature tested in this 
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study. For the highest subcooling and flow rate tested in this study, the microfinned surface did 

not offer significant improvement in heat dissipation over the bare silicon surface. 

The thermal performance of the impinging flow distribution system is similar to that of 

the parallel flow distribution system, since the impingement effects are local to the bottom row 

of heaters. Studies performed by only powering the bottom row of heaters showed up to 28.6 

W/cm² heat flux for the microfinned surface, indicating the potential of the impingement system 

in improving heat dissipation. 

     The nucleation suppression phenomenon in flow boiling was investigated for this 

cooling module. It was observed that the microfinned surface with impinging flow distributor 

could support heat flux values of up to 18 W/cm² without any nucleation activity for the highest 

flow rate tested in this study.  

5.1 Suggestions for future studies 

From the literature review, for similar subcooling and flow rate, it was observed that the 

microfinned surface generally offers higher heat dissipation over the plain surface. This was not 

the case in the current study. As it was discussed in the results section, at higher flow rates, there 

is a significant difference in boiling activity between the top and bottom microfinned surfaces. 

Modifications in the flow distribution system to improve the uniformity of boiling activity may 

result in higher heat dissipation for the microfinned surface.     

The impingement flow distribution system used in the current study provided 

impingement only to the bottom surfaces, and also only to the center plane of the bottom heated 
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surfaces. A flow distribution system that delivers impinging flow at multiple points across all 

four surfaces would result in better convective transport and disruption of boundary layer in each 

surface, and ultimately increase the heat dissipation capability of the system.      
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Appendix A 

Flow Distributor Component Drawings 

This section provides the component drawings for the parallel and impingement flow 

distribution systems. The drawing for the parallel flow distribution has been reproduced from the 

study by Gess [47]. The study [47] also provides detailed engineering drawings for design and 

assembly of the enclosure system. 
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Appendix B 

Data Acquisition System 

The data acquisition system in this study employs multiple different data acquisition 

cards from National Instruments (NI) to measure voltage, current, temperature and to provide 

digital output signal for supplying excitation current to different temperature measurement 

diodes.  The LabView software from NI was used for collecting and processing the data from the 

various sensors in the experimental setup. The details of data collection can be found in Chapter 

3 of this study. A snapshot of front panel in the LabView virtual instrument (VI) is shown in 

Figure B.1. The wiring schematic for the power supply and temperature measurement 

connections to thermal test cells is shown in Figure B.2, and the schematic for other sensors such 

as thermocouples and flow meters is shown in Figure B.3. 
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Appendix C 

Sample Calculations 

Csf  Calculation 

Manipulate the Rohsenow Correlation, Equation 3, to solve for Csf: 

𝐶𝑠𝑓 =
1

{
𝑞′′

µ𝑙ℎ𝑙𝑣
∗ [

𝜎

𝑔∗(𝜌𝑙− 𝜌𝑣)
]

1

2
∗ 𝑃𝑟

𝑠

𝑟 ∗ [
𝑐𝑝𝑙∗[𝑇𝑤−𝑇𝑠𝑎𝑡]

ℎ𝑙𝑣
]

−1/𝑟

}

𝑟 

 

As an example, the Csf value for the microporous surface was calculated using the base 

dimensions, or that interfacing with the 1” x 1” thermal test cell.  The heat flux was calculated 

with the measured voltage and measured current, divided by this base area as shown below: 

 

𝑞" =  
(42.44 𝑉𝑜𝑙𝑡𝑠 ∗ 5.24 𝐴𝑚𝑝𝑠) + (42.12 𝑉𝑜𝑙𝑡𝑠 ∗ 5.23 𝐴𝑚𝑝𝑠)

4 ∗ 6.45 𝑥 10−4 𝑚2
 

 

𝑞" =  17.15 𝑥 104  
𝑊

𝑚2
 𝑜𝑟 17.15 

𝑊

𝑐𝑚2
  

 

The wall temperature is calculated by averaging the diode temperatures across the four dies 

 

𝑇𝑤 =  
59.45 °𝐶 +  57.53°𝐶 +  74.59 °𝐶 + 65.81 °𝐶 + 69.19 °𝐶 +  74.51 °𝐶 +  70.04 °𝐶 +  66.17°𝐶 +  65.21 °𝐶

9
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𝑇𝑤 =  66.9 °𝐶 

 

Using Novec as the working fluid, its associated saturated properties from Table 2, along with 

the measured average surface temperature, the Csf value is calculated below.   

𝑃𝑟 =

µ𝑙

𝜌𝑙

𝑘𝑙

𝜌𝑙∗𝑐𝑝

 

𝑃𝑟 =

4.4 𝑥 10−4 (𝑃𝑎∗sec)

1517 
𝑘𝑔

𝑚3

0.054 
𝑊

𝑚∗𝐾

1517 
𝑘𝑔

𝑚3∗1118 
𝐽

𝑘𝑔∗𝐾

 

𝑃𝑟 = 9.11 

  

𝐶𝑠𝑓 =
1

{
17.15𝑥 104 𝑊

𝑚2

4.4 𝑥 10−4 (𝑃𝑎∗𝑠𝑒𝑐)∗88 𝑥 103 𝐽

𝑘𝑔

∗ [
9.24 𝑥 10−3 𝑁

𝑚

9.81 
𝑚

𝑠𝑒𝑐2∗(1517 
𝑘𝑔

𝑚3− 12.6 
𝑘𝑔

𝑚3)
]

1

2

∗ 9.11
1.7

0.33 ∗ [
1118 

𝐽

𝑘𝑔∗𝐾
∗[66.9 °𝐶−49° 𝐶]

88 𝑥 103 
𝐽

𝑘𝑔

]

−1/0.33

}

0.33 

𝐶𝑠𝑓 = 0.0035 

 

This is the final Csf  value shown on the left plot for Table 5 associated with the 360 mL/min 

dielectric fluid flow rate and 7°C facility water temperature data. 
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Appendix D 

Microporous Surface Enhancement Fabrication Procedure 

The following is information received from the manufacturer documenting the 

manufacture of the microporous surface used in the current study.   

Introduction 

The patented 3M™ Microporous Metallic Boiling Enhancement Coating (MMBEC) was 

developed to provide optimal boiling heat transfer coefficients with 3M™ Novec™ Engineered 

Fluids. 3M MMBEC is made with 3M™ developmental material L-20227. This powder is 

composed of sub-20μm copper particles coated with 0.5 wt% silver. L-20227 particles are 

applied to a copper substrate in a layer about 150μm thick and then fused at elevated 

temperature, typically 850ºC in the absence of oxygen. The silver diffuses into the copper, 

temporarily forming a eutectic that melts and re-solidifies, before cooling, as diffusion 

progresses. This method provides: 

• High thermal conductivity ligament between particles 

• Ligaments present at all particle contact points 

• Pores size provides optimal nucleation sites for Novec™ fluids 

• Coating properties relatively insensitive to processing conditions 
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Figure D.1: Scanning Electron Micrograph of 3M MMBCE 

Below are directions for the standard 3M technique for applying and fusing L-20227 

powder. Other techniques are allowed and may be preferred depending on the equipment 

available. 

Application 

L-20227 particles are mixed with Dow 704 silicone diffusion pump oil to achieve a 

mixture that is 13% oil by weight. This mixture is applied to a flat copper substrate using 

standard screen printing techniques and a Sefar 45 180 mesh polyester screen (45-180 W IM 

E11F 0.5 30d STD) with the desired pattern. The resultant coating contains 0.052g/cm2 L20227 

particles. 

Notes: Particles may be applied dry (for example by knife coating) or using any volatile binder 

that will be removed in and compatible with the fusing process. 
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Fusing 

Fusing is done at 0.01 milliTorr in a vacuum furnace. Temperature is raised to 300ºC and 

paused for 20 minutes to remove the oil. Temperature is then raised to 850ºC and held for 1 hour. 

Notes: Inert atmospheres may be used in place of or in addition to vacuum to control oxygen 

levels. Ramp rates and equilibrium times were dictated by oven capabilities and temperature 

uniformity. Higher ramp rates and shorter equilibrium times may be possible if equipment 

allows. 

Notes 

Resultant coating thickness should be approximately 150μm. A minimum thickness of 

100μm is required to achieve optimal performance. Heat transfer coefficients will drop 

precipitously as the thickness is reduced below this level. Thicknesses up to 300μm will perform 

well. 

 

 
 

Figure D.2 : Photo of 3M MMBCE fused to a copper test disk 

 


