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Abstract 
 

 

 Shape memory alloys (SMA) are uniquely alloyed metals that have the ability to change 

crystalline structure upon the application or removal of stress or upon heating or cooling. This 

change in crystalline structure gives SMA several properties that make them useful in robotics 

applications. For example, certain SMA can be used to create actuators that are simple, high 

strength, and inexpensive. However, poor electrical efficiency, a moderate lifetime, and complex 

mechanical behavior that makes them difficult to design into new applications and products have 

stymied the growth of these actuators as viable alternatives to more traditional actuators such as 

pneumatics or motors. In order to improve the integration of SMA actuators into modern 

mechanical applications, tools have been created that account for the complex thermal and 

mechanical behaviors of these materials under feedback controls. This was done through the 

development of thermo-electro-mechanical constitutive models which were then analyzed 

analytically and then solved numerically using routines present in multibody dynamics software 

ADAMS as well as through programs such as MATLAB. Models of varying complexity were 

implemented and compared to one another as well as to experimental results. The mechanical 

model utilizes 1-D constitutive equations that account for the material temperature and state of 

stress to determine the material state. The material state determines the electrical resistivity of the 

material, which drives Joule heating. Thermal cooling of the material is based on a heat transfer 

analysis of various geometries. These models contain information on material states that are very 

difficult to measure experimentally (such as crystalline phase fraction) and thus provide insight 

into the material behavior and design that experimental results cannot offer. The numerical models 

of material behavior also can then be used with a variety of control laws in order to test their 

stability and response time. 
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Chapter 1: Introduction 

 

Shape Memory Alloys (SMA) are specially alloyed metals that undergo a change in crystal 

geometry when thermally cycled that causes the alloy to constrict to recover residual strains upon 

heating and then elongate upon cooling in the presence of a preload. By far the most economical 

version of these shape memory alloys come in the form of nickel titanium alloys, which are 

colloquially known as nitinol. The remarkable properties of nitinol was discovered in 1962 when 

it was fabricated in order to make a missile nose cone for the Naval Ordinance Laboratory that 

would resist fatigue, heat, and force of impact. One specific sample was bent out of shape and was 

passed around at a meeting, when a scientist applied heat from his smoking pipe to the sample and 

watched as the accordion shaped strip of nitinol reverted into its previous non-deformed shape. 

  The motion of a shape memory alloy can be controlled by heating using electric current 

and cooling in a surrounding fluid, typically ambient air. Due to the mechanism of actuation being 

dictated by the speed at which convective heat transfer can lower the temperature of the wire, 

repeatability and response time of SMA actuators remains a challenge in cyclic actuations, so 

research has been done in categorizing the selection of specific SMA for their uses in various 

projects as well as their appropriate sizing.  SMA actuators – in this case a simple thin wire - can 

provides huge benefits in cost reduction and miniaturization of robotic devices, especially when 

the length of the SMA wire can be measured via self-sensing (i.e. without an additional position 

sensor). To simulate the behavior of these actuators accurately is difficult and requires many 

parameters that vary over time. Here, a general platform for design and analysis of SMA actuators 

in complex mechanical systems so that the benefits and obstacles of SMA actuators can be tested 

and overcome. The SMA wire actuator is coupled to a mechanical system in both a finite difference 
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scheme and multibody dynamics software, where it actuates the system based on feedback control 

laws.  The model is validated by comparing the simulated systems to experimental results. 

The objective of this research is to quantify a means of determining the temperature 

response accurately in a shape memory alloy actuator in order to determine how fast it can act in 

a control scheme and how suitable it is for various applications. This paper will go through the 

background of shape memory alloys and their method of operation and of the mathematical 

approach to the modelling of the heat transfer of an SMA actuator in Chapter 2. In Chapter 3, 

analytical approaches are investigated to determine ways to quantify the actuator temperature 

response, time response, efficiency, bandwidth, and distortion from measurement with a 

thermocouple. An electro-thermo-mechanical model of the actuator is derived with a statistically 

based and thermodynamically based kinetics model that provides a stable finite difference scheme 

to accurately predict the results of shape memory alloys in simple heating/cooling tests as well as 

in tensile testing. Finally, the developed models are directly compared to experimental results 

when paired with a variety of controller schemes. In Chapter 4, the same schemes are put into 

MSC ADAMS for multibody dynamics simulation of shape memory behavior and validated 

through the use of a ball-beam-balancer experiment. In Chapter 5, general conclusions and results 

are given. 
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Chapter 2: Background and Literature Review 

 

2.1 Introduction to Shape Memory Alloy Actuators 

 

 Shape Memory Alloys (SMA) are specially alloyed metals that undergo a change in crystal 

geometry when thermally cycled that causes the alloy to contract to recover residual strains upon 

heating. The wires can then elongate upon cooling in the presence of a preload. This actuation is 

controllable through heating using electric current and cooling in a surrounding fluid, typically 

ambient air. Natural convection relies on buoyant forces to carry heat away from the wire, which 

is a relatively slow process and limits the system bandwidth significantly for SMA actuators.  

Therefore, research has been performed in categorizing the selection of specific SMA for their 

uses in various projects as well as their appropriate sizing based on both their response time and 

their overall efficiency, which is by all accounts their greatest shortcomings. Despite these 

shortcomings, SMA actuators can provide huge benefits in cost reduction and miniaturization of 

robotic devices, especially when the length of the SMA wire can be reliably measured without the 

use of an additional position sensor (Figure 1).  

 
Figure 1. 16 DOF Hexapod using SMA Actuators 
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2.2 Mechanical Modelling 

The mechanism of actuation for shape memory alloys is a change in crystal structure initiated by 

a change in the material temperature and stress. The two crystalline structures of interest are 

Austenite (A), an interpenetrating simple cubic structure (B2 structure), and Martensite (M), a more 

complicated monoclinic structure (B19 structure and its distorted variants) [1]. The Martensite 

structure has the unique ability to undergo limited deformation upon the application of stress 

without breaking atomic bonds. This phenomenon is known as twinning, and the deformation 

allows for the shifting of atomic planes at the interface of the crystalline lattices of Martensite 

variants without causing permanent deformation. The realigned Martensite structure is then said 

to be detwinned and typically has high values of engineering strain when compared to the twinned 

Martensite. Upon the application of heat to Martensite, the crystalline structure will shift back to 

the same interpenetrating simple cubic structure of Austenite regardless of whether the Martensite 

was twinned or detwinned, and it is in this matter that shape memory alloys act as actuators (Figure 

2) [2]. 
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Figure 2. SMA Actuation Process 

 

The   material   does   not   instantly   transform   in   its entirety    from    one    state    to    

another. As such, intermediate fractions of the phases can be present at any given time.  

Conventionally, the phase composition is denoted by 𝜉, which is the detwinned Martensite phase 

fraction of the material which is bounded such that 0 ≤ 𝜉 ≤ 1. Oftentimes, the transition 

temperatures are considered to be defined as starting and ending temperatures that are functions of 

stress for a given SMA actuator (but not constant for the alloy as cold working, heat treatment, and 

the number of actuation cycles the actuator has undergone affect the properties) [3]. 

Conventionally, the start of 𝑀 → 𝐴 transformation is denoted as the Austenite Start (𝐴𝑠) 

temperature and the end of the 𝑀 → 𝐴 transformation is denoted as the Austenite Finish (𝐴𝑓) 

temperature. Likewise, the 𝐴 → 𝑀 transformation starts with the Martensite Start (𝑀𝑠) and 
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Martensite Finish (𝑀𝑓) temperatures. The region of temperatures between 𝐴𝑠 and 𝐴𝑓, as well as  

𝑀𝑠 and 𝑀𝑓 are traditionally referred to as transformation bands. In most models of mechanical 

behavior, these bands are considered to be the only active regions of transformation. A third 

crystalline structure is often seen upon cooling at lower stresses for the commonly used nickel 

titanium shape memory alloy, termed the R-phase. The R-phase crystalline lattice is essentially a 

distortion of the Austenite B2 crystalline lattice that does not provide the benefits of large strains 

that the Martensite to Austenite transformation does. As a result, experiments often try to eliminate 

the presence of the R-phase by cycling the actuator above a certain critical stress level [4, 5, 6, 7]. 

The relationships between the phase composition of an SMA and its temperature and stress are 

compactly presented on the materials’ phase diagram (Figure 3). 

 
Figure 3. SMA Phase Diagram 

 

Two bands of active transformation as shown in the phase diagram define the boundaries 

of the Austenite to Martensite transformation and vice versa. By either cooling the SMA or by 

applying external stress, the phase can be made to transform by crossing the Martensite (M) 

transformation band so long as a preload is applied so that the SMA operates above the critical 

preload stress. Similarly, by relieving stress or heating the phase crosses the Austenite (A) band. 
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These bands fall along the center of the transformation bands outlined by the 𝐴𝑠 and 𝐴𝑓 

temperatures and the 𝑀𝑠 and 𝑀𝑓 temperatures. These parameters can be seen to be linear functions 

of the stress applied to the SMA. The slope of the lines formed by the A and M transformation 

bands are denoted 𝐶𝐴 and 𝐶𝑀, respectively. The M crystal phase corresponds with an elongated 

wire that has a lower Young's modulus, while the A crystal phase corresponds with a contracted 

wire with a higher Young's modulus. The two transformation boundaries are separated by a large 

gap, where the entire piece of material can be a mixture of the two phases. The transformation 

bands themselves also do not coincide, and this gap in between the transformation bounds is the 

cause of hysteresis during cycling between the two transformation bounds. While Figure 3 

provides a good illustration of a general phase plane for SMA, more precise modeling of the 

transformation stresses has been done for specific SMA alloys [16, 17]. 

When holding stress constant and cycling heat, an SMA wire expands and contracts with 

the shape memory effect (Figure 4,lower). By maintaining temperature moderately high and 

cycling stress, the SMA wire stretches and returns to its original length in what is termed the super-

elastic effect (Figure 4, right). Both effects demonstrate the characteristic hysteresis of the material. 

 

Figure 4. Shape-memory and super-elastic effects showing their relationship to motion on the phase diagram. 
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The earliest form of the mechanical model was created by Tanaka for super-elastic alloys 

[8], which is expressed in rate form as: 

 
𝜎̇ = 𝐸(𝜉)𝜀̇ + 𝜃(𝜉)𝑇̇ + Ω(𝜉)𝜉̇ 

(2.2.1) 

This form identifies the stress (𝜎) on the actuator as a function of the strain (𝜀), the temperature 

(T), the coefficient of thermal expansion (𝜃), the transformation tensor (Ω), and the phase fraction 

(𝜉). The consistency of this model was recognized by Liang and Rogers to only be upheld for a 

certain form of the transformation tensor [9], where: 

 
Ω(𝜉) = −𝜀𝐿𝐸(𝜉) (2.2.2) 

This form identifies Ω as the stress associated with phase transformation neglecting applied stress 

from the mechanical system and 𝜀𝐿 the strain associated with phase transformation with no elastic 

deformation.  

A different type of model was proposed by Ikuta where instead of looking at the problem 

from a thermodynamics perspective, the two crystalline phases could be viewed as springs in a 

parallel configuration in what is termed the Voigt model [10]: 

 
𝜎 = (1 − 𝜉)𝜎𝐴 + 𝜉𝜎𝑀 = (𝐸𝐴(1 − 𝜉) + 𝐸𝑀𝜉)𝜀 (2.2.3) 

A similar model was purposed by Ivshin and Pence, which viewed the two phases as springs in a 

series configuration in what is termed the Reuss model [11]: 

 
𝜀 = (1 − 𝜉)𝜀𝐴 + 𝜉𝜀𝑀 = (

(1 − 𝜉)

𝐸𝐴
+
𝜉

𝐸𝑀
)𝜎 

(2.2.4) 

Both the Voigt and Reuss models use 𝐸𝐴 to denote the elastic modulus of the purely 

Austenite phase and 𝐸𝑀 to denote the elastic modulus of the purely Martensite phase. A 

constitutive model that could be achieved by decomposing the overall strain into its components 

of elastic deformation, transformation strain, and thermal expansion was developed by Brinson 

and Huang [12], such that: 
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𝜀 =
𝜎

𝐸(𝜉)
− 𝜀𝐿𝐸(𝜉) +

𝜃(𝜉)

𝐸(𝜉)
(𝑇0 − 𝑇) 

 

(2.2.5) 

Eq. 2.2.5 is generally accepted in this literature as the constitutive model for the actuator strain, 

where the elastic modulus must be allowed to change as a function of the phase fraction in order 

for the model to be accurate. Representing a shape memory alloy as springs in parallel as per the 

Voigt model would yield an effective elastic modulus given by: 

 𝐸 = (1 − 𝜉)𝐸𝐴 + 𝜉𝐸𝑀 (2.2.6) 

In contrast, the Reuss model representation of the elastic modulus would have the elastic modulus 

expressed in the form: 

 

𝐸 =
(1 − 𝜉)

𝐸𝐴
+
𝜉

𝐸𝑀
 

(2.2.7) 

 

The specific model chosen has been shown by Gurley to have only a small impact on the system 

inside of the transformation region [13]. 

 In the majority of cases, SMA actuators take the form of small diameter wires, so it is 

convenient to convert this intrinsic model to an actuator model using the wire diameter (d), cross 

sectional area (𝐴𝑐) and wire length (𝐿). The geometry is a function of the strain and Poisson’s ratio 

(𝜐) of the material such that [14]: 

 𝐿 = 𝐿0(1 + 𝜖) (2.2.8) 

 𝑑 = 𝑑0(1 − 𝜐𝜖) (2.2.9) 

𝐴𝑐 =
𝜋

4
𝑑2 (2.2.10) 

As a matter of convenience, the Poisson’s ratio of both the Austenite and Martensite phases 

is taken to be the same with values varying from 0.3 to 0.33 [15]. However, experimental data has 

shown that this value is only an effective approximation of the Poisson’s ratio, and that the 
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Poisson’s ratio does vary from 0.3 for the B2 crystalline structure of Austenite and 0.41 for the 

B19’ structure of Martensite [16, 17]. Denoting the different Poisson’s ratios for the different 

phases 𝜐𝐴 and 𝜐𝑀, respectively, the effective Poisson’s ratio can be found as a function of the 

Martensite phase fraction using the Voigt model such that: 

𝜐 = (1 − 𝜉)𝜐𝐴 + 𝜉𝜐𝑀 (2.2.11) 

The spring rate and spring force are then given by using Eq. 2.2.11 from the Poisson’s ratio, Eq. 

2.2.10 for the cross-sectional area, Eq. 2.2.8 for the actuator length, and Eq. 2.2.6 for the elastic 

modulus and substituting them into the definition of the spring rate and spring force: 

 𝐾𝑆𝑀𝐴 =
𝐴𝑐𝐸(𝜉)

𝐿
=
𝜋 [𝑑0 (1 − ((1 − 𝜉)𝜐𝐴 + 𝜉𝜐𝑀) 𝜖)]

2
[(1 − 𝜉)𝐸𝐴 + 𝜉𝐸𝑀]

4𝐿0(1 + 𝜖)
 (2.2.12) 

 𝐹𝑠𝑚𝑎 = 𝐾𝑆𝑀𝐴(𝜖 − 𝜖𝐿𝜉)𝐿0 =
𝜋(𝜖 − 𝜖𝐿𝜉)[𝑑0(1 − ((1 − 𝜉)𝜐𝐴 + 𝜉𝜐𝑀)𝜖)]

2
[(1 − 𝜉)𝐸𝐴 + 𝜉𝐸𝑀]

4(1 + 𝜖)
 (2.2.13) 
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2.3 Electrical Modelling 

 As with most macroscopic properties of a shape memory alloy, the electrical resistivity 

changes with the phase fraction [18]. The electrical resistivity (𝜌𝑒) has been modelled as a function 

of the phase fraction utilizing the Voigt model such that [19, 10]: 

 𝜌𝑒 = (1 − 𝜉)𝜌𝐴 + 𝜉𝜌𝑀 (2.3.1) 

The electrical resistivities of the Austenite phase and Martensite phase are denoted 𝜌𝐴 and 𝜌𝑀, 

respectively. These properties have a temperature dependence that can be adequately modelled as 

linear, which creates the form: 

 𝜌𝐴 = 𝜌𝐴0 + 𝛼𝐴(𝑇 − 𝑇0) (2.3.2) 

 𝜌𝑀 = 𝜌𝑀0 + 𝛼𝑀(𝑇 − 𝑇0) (2.3.3) 

where 𝑇0 is a reference temperature at which 𝜌𝑀0 and 𝜌𝐴0 are measured. A similar model that 

includes linear proportionality of resistivity to actuator stress has been proposed and is shown 

below with coefficients of proportionality 𝛽𝐴 and 𝛽𝑀 [4]: 

 𝜌𝐴 = 𝜌𝐴0 + 𝛼𝐴(𝑇 − 𝑇0) + 𝛽𝐴𝜎 (2.3.4) 

 𝜌𝑀 = 𝜌𝑀0 + 𝛼𝑀(𝑇 − 𝑇0) + 𝛽𝑀𝜎 (2.3.5) 

 The electrical resistivity can then be related to the actuator resistance by definition: 

The resistance as a function of known constants, initial geometry, actuator strain, and phase 

fraction is then found by substituting in Eq. 2.3.1 for the electric resistivity, Eq. 2.2.10 for the 

cross-sectional area, and Eq. 2.2.8 for the actuator length to yield: 

 
𝑅 = 

𝜌𝑒𝐿

𝐴𝑐
 

(2.3.6) 

 𝑅 =  
{(1 − 𝜉)[𝜌𝐴0 + 𝛼𝐴(𝑇 − 𝑇0)] + 𝜉[𝜌𝑀0 + 𝛼𝑀(𝑇 − 𝑇0)]}𝐿0(1 + 𝜖)

𝜋
4 [𝑑0 (1 − (

(1 − 𝜉)𝜐𝐴 + 𝜉𝜐𝑀) 𝜖)]
22

 (2.3.7) 
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2.4 Phase Kinetics Modelling 

Research into the phase kinetics of SMA has sought to explain how the Martensite phase 

fraction changes during the transformation period as a function of temperature and stress. The 

conditions for transformation are based on an interpretation of the phase diagram and determine 

when a transformation is going to occur. Several models exist that model the transformation 

conditions around the start and end transformation temperature [20, 11, 21]. However, some 

models exist that do not bound the conditions for transformation to within the start and finish 

temperatures. This is physically consistent with thermodynamics via the Clasius-Clapyron 

relationship [8], but it is not physically consistent with differential scanning calorimetry (DSC) 

experiments that show there is not a discontinuous start to transformation. This discrepancy can 

be reconciled if transformation temperatures are viewed as the endpoints of a distribution of a 

transformation region. If this assumption is used, the conditions of transformation are greatly 

simplified as they are only based on the directionality of the temperature and stress perpendicular 

to the transformation boundaries: 

if 

{
 

 𝑇̇ −
𝜎̇

𝐶𝐴
> 0 

𝑇̇ −
𝜎̇

𝐶𝑀
< 0 

}
 

 

  

 

then {
𝜉 𝑀→𝐴
𝜉 𝐴→𝑀

} 

 

(2.4.1) 

Models that explicitly bound themselves to within the transformation region are termed here as 

Class I models, whereas models that view transformation as a smooth distribution are termed here 

as Class II models. 

During transformation, the Martensite phase fraction is typically modelled as a function of 

the distance travelled across transformation boundaries. These functions use parameters that relate 



13 

 

stress and temperature states within the transformation regions to the distance to the transformation 

boundaries. For Class I models, these take the form: 

𝑥𝐼𝐴→𝑀 = −
𝑇 −

𝜎
𝐶𝑀

−𝑀𝑠

𝑀𝑠 −𝑀𝑓
 

 

(2.4.2a) 

𝑥𝐼𝑀→𝐴 = −
𝑇 −

𝜎
𝐶𝐴
− 𝐴𝑓

𝐴𝑓 − 𝐴𝑠
 

 

(2.4.2b) 

For Class II models, these parameters are based on the distance from the center bands of the 

distributions: 

 
𝑥𝐼𝐼𝐴→𝑀 = 𝐾𝑀 (𝑇 −

𝜎

𝐶𝑀
−𝑀) 

 

(2.4.3a) 

 
𝑥𝐼𝐼𝑀→𝐴 = 𝐾𝐴 (𝑇 −

𝜎

𝐶𝐴
− 𝐴) 

 

(2.4.3b) 

𝐾𝑀 and 𝐾𝐴 and are fitting parameters from DSC experiments that determine the distribution of the 

transformation band.  

Class II models can use any model in which the phase fraction is bounded between zero 

and one for all values of stress and temperature. Nearly all population growth models [22] can be 

used for fitting the phase fraction to these parameters. The most common model is the logistic 

function which is commonly used in population growth modeling, which can be written as [10, 23, 

24]: 

𝜉 𝑀→𝐴 =
𝜉𝑀

1 + exp (𝑥𝐼𝐼𝑀→𝐴)
 

(2.4.4a) 

𝜉 𝐴→𝑀 =
1 − 𝜉𝐴

1 + exp (𝑥𝐼𝐼𝑀→𝐴)
+ 𝜉𝐴 (2.4.4b) 
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Zotov expanded upon this model using X-Ray Power Diffractograms (XRD) and saw that 

the experimental data fit very well to the generalized logistics function (i.e. the Richards logistics 

function) such that the Martensite to Austenite transformation could be written as [25]: 

𝜉 𝑀→𝐴 =
𝜉𝑀

(1 + 𝜈𝐴exp (𝑥𝐼𝐼𝑀→𝐴))
1
𝜈𝐴⁄

 
(2.4.5a) 

The Austenite to Martensite transformation was then outlined by Gurley to be consistent with the 

previous exponential model [26]: 

𝜉 𝐴→𝑀 =
1 − 𝜉𝐴

(1 + 𝜈𝑀exp (𝑥𝐼𝐼𝐴→𝑀))
1
𝜈𝑀⁄
+ 𝜉𝐴 

(2.4.5b) 

The parameters 𝜈𝐴 and 𝜈𝑀 can be solved from empirically gathered from DSC experiments. 

The Richards function simplifies to the original logistics function model when these two 

parameters are set equal to unity. This model has been shown to fit experimental data well [4, 5, 

6, 7]. The parameters 𝜉𝑀 and 𝜉𝐴 are hysteresis parameters that store the values of the phase fraction 

as the transformation reverses direction such that for 𝜉 𝑀→𝐴, 𝜉𝐴 = 𝜉 and for 𝜉 𝐴→𝑀, 𝜉𝑀 = 𝜉. This 

is the model that is selected in this literature as it is continuously differentiable except when the 

transformation reverses direction and can account for partial transformations in the material. It is 

worth noting that empirical models relating 𝜉 to temperature and stress have been developed 

experimentally by utilizing standard tensile testing and thermal cyclic testing for more precise 

modelling of various SMA alloys [27].  
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2.5 Analytical Heat Transfer Modelling 

2.5.1 External Heating 

SMA actuators undergo crystalline structure changes as energy is applied to or removed 

from the system in the form of heat or an applied stress. The heat applied to an SMA actuator is 

usually input via passing of electric current through the wire in robotics applications [28]. The 

amount of DC current (I) that passes through an SMA actuator is dictated by the resistance of the 

wire (Eq. 2.3.7) and the voltage across the actuator (∆𝑉) through Ohm’s Law: 

∆𝑉 = 𝐼𝑅 (2.5.1.1) 

This method of heating is known as Joule heating or Ohmic heating, and the total heating power 

provided by the electric current is given by: 

𝑃 = ∆𝑉𝐼 = 𝐼2𝑅 =
∆𝑉2

𝑅
 (2.5.1.2) 

If the voltage and current vary as functions in time, such as with AC current, then the average 

power input can be given as: 

𝑃𝑎𝑣𝑔 = 𝐼𝑅𝑀𝑆
2𝑅 (2.5.1.3) 

where 𝐼𝑅𝑀𝑆 is the root mean squared value of the current with respect with time. It is worth noting 

that as the frequency of AC current increases, the current density gradually accumulates near the 

outer edges of a wire in what is known as the skin effect. This increases the resistance of the wire 

and as such, increases the heat generated within the wire (with the heat generation no longer being 

uniform, but instead gradually more and more localized towards the edges of the actuator). 

Power can also be applied to a shape memory alloy by exposing it to an open flame, in 

which case the best analytical approach is to model the input power with the First Law of 

Thermodynamics and tabulated values regarding the heat of combustion of the ignited material: 

𝑃combustion =∑𝑁̇𝑝ℎ𝑝 −

𝑝

∑𝑁̇𝑟ℎ𝑟
𝑟

 (2.5.1.4) 
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where 𝑁𝑝 and 𝑁𝑟 are the number of moles of the combustion products and reactants, respectively, 

and ℎ𝑝 and ℎ𝑟 are the enthalpies of formation of the products and reactants, respectively. 

If heat is applied via the application of a warmer working fluid, then the analytical approach 

is to model the heat input using the governing equations of convective heat transfer. If it is applied 

via thermal radiation such as in an oven, the analytical approach is to use the governing laws of 

radiative heat transfer as outlined in a later section. 
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2.5.2 Conductive Heat Transfer 

Heat removal from the wire will occur via three means of heat transfer: conduction, 

convection, and radiation. Thermal conduction is the transfer of heat caused by microscopic 

collisions of particles inside of a body. These collisions transfer heat through the microscopic 

transfer of kinetic energy and potential energy, when summed are simply referred to as the internal 

energy of a body (U). Conduction of heat away from a wire actuator will occur primarily from the 

heated portion of the wire to the unheated portion of the wire that lies outside of where the wire is 

electrically connected. This effect causes a temperature gradient with noticeable boundary effects. 

The analytical approach to modelling thermal conduction stems from Fourier’s Law, which states 

that the density of the heat transferred via conduction is given by: 

𝑞′′𝑐𝑜𝑛𝑑 = −𝑘∇𝑇 (2.5.2.1) 

𝑘 is the thermal conductivity of the SMA material and ∇𝑇 is the temperature gradient. When 

Fourier’s Law is applied to a wire actuator, the temperature variance is most often modelled as 

lengthwise, and the rate of heat transfer is given by: 

𝑞𝑐𝑜𝑛𝑑 = −𝑘𝐴𝑐
𝑑𝑇

𝑑𝑥
 (2.5.2.2) 

 As with most macroscopic properties of an SMA, the thermal conductivity varies with the 

phase fraction. For example, the thermal conductivity of Martensitic nitinol (𝑘𝑀) is typically given 

as 8.0 
W

mK
  and the thermal conductivity of Austenitic nitinol (𝑘𝐴) is typically given as 18.0 

W

mK
 [15].  

To maintain consistency, during transformation the thermal conductivity is said to use the Voigt 

model such that: 

𝑘 = (1 − 𝜉)𝑘𝐴 + 𝜉𝑘𝑀 (2.5.2.3) 
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 For shape memory alloy wire actuators, thermal conduction leads to temperature gradients 

axially and radially along the wire. For ease of computation, it is often desirable to treat the actuator 

as a lumped capacitance that has a uniform temperature. This assumption grows increasingly 

inaccurate for shorter wires, where thermal boundary conditions become more prevalent. Research 

has been shown that for wire lengths above 148.8 mm this thermal boundary layer can safely be 

neglected [29]. 
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2.5.3 Convective Heat Transfer 

Convection is the transfer of heat to a fluid surrounding the system either through diffusion 

or through advection, where heat is carried away through bulk flow of the fluid. Forced convection 

is said to take place when advection is the dominant means of heat transfer, while natural 

convection is said to take place when diffusion of heat and buoyant forces are the primary means 

of carrying heat away from the system. Convective heat transfer is described by Newton’s Law of 

Cooling such that: 

𝑞𝑐𝑜𝑛𝑣 = ℎ𝐴𝑠(𝑇 − 𝑇𝑓𝑙𝑢𝑖𝑑) (2.5.3.1) 

𝐴𝑠 denotes the surface area of the system that is exposed to the working fluid which is held at a 

temperature 𝑇𝑓𝑙𝑢𝑖𝑑 when evaluated outside of the thermal boundary layer.  ℎ is the convective heat 

transfer coefficient, which is defined as: 

ℎ ≡
Nu̅̅ ̅̅ 𝐿𝐶𝑘𝑓𝑙𝑢𝑖𝑑

𝐿𝐶
 (2.5.3.2) 

𝑘𝑓𝑙𝑢𝑖𝑑 denotes the thermal conductivity of the working fluid evaluated at the film temperature 

(𝑇𝑓𝑖𝑙𝑚), which is commonly evaluated as 
𝑇 + 𝑇𝑓𝑙𝑢𝑖𝑑

2
. 𝐿𝐶 denotes the characteristic length, which is 

an arbitrarily chosen length scale of the system. The characteristic length is, for many systems, 

generally chosen to be the volume of the body divided by its surface area. For cylinders, it is often 

convenient to have the diameter be the characteristic length. Nu𝐿𝐶 denotes the Nusselt number, 

which is an empirically derived value based on the fluid properties. For a convection coefficient 

to apply over an entire surface, the surface averaged Nusselt number must be used. For SMA wire 

actuators, Eq. 2.5.3.2 becomes: 

  
ℎ =  

𝑘𝑓𝑙𝑢𝑖𝑑  Nu𝐷̅̅ ̅̅ ̅̅

𝑑
 (2.5.3.3) 

An extensive set of empirical models have been developed in order to find the surface averaged 

Nusselt number for a cylinder in a cross-flow. These relationships typically give the surface 
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averaged Nusselt number as a function of two dimensionless parameters: the Prandtl number and 

the Reynolds number, defined by Eqs. 2.5.9 and 2.5.10, respectively. 

Pr ≡ 
𝜐

𝛼
=  
𝑐𝑝𝜇

𝑘
          (2.5.3.4) 

Re𝐷 ≡ 
𝑣𝑑

𝜐
      (2.5.3.5) 

𝜐 is the fluid’s kinematic viscosity, 𝜇 is the dynamic viscosity, 𝑐𝑝 is the fluid’s specific heat, 

𝛼 is the fluid’s thermal diffusivity, d is the wire diameter, and v is the fluid velocity as it passed 

over the wire. These material properties can vary greatly depending on the temperature and 

pressure of the fluid. Because the Prandtl number, which is the ratio between momentum 

diffusivity and thermal diffusivity, only depends on the working fluid and the working fluid’s state, 

it is often provided as a tabulated value for a fluid. The Reynolds’ number, which is the ratio of 

inertial forces to viscous forces in a flow, always contains a length value as a scaling factor, and 

cannot be provided in a similar way.  

These parameters can be quantified by acknowledging that the Prandtl number gives a 

measurement of how fast heat is transferred through a flowing material with respect to how fast 

mass is transferred. The Reynolds number quantifies whether the flow of the cooling fluid is 

laminar or turbulent. During actuation, fluid pressure can be assumed to be roughly constant at 

atmospheric pressure, so these fluid properties all become strong functions of temperature. For 

common fluids such as air or water, their values are tabulated for a variety of temperatures, and 

using interpolation methods, can reveal fairly accurate values for any temperature. For a cylinder 

in cross-flow, the onset of turbulence is caused by the presence of an adverse pressure gradient 

caused by increasing pressures along the cylinder surface as the flow passes over. The increase in 
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pressure is caused by either friction drag caused by friction with the cylinder surface, or the 

development of a wake. 

An empirical correlation for the surface averaged Nusselt number due to Hilpert that has been 

modified to account for fluids of various Prandtl numbers is widely used for Pr ≥ 0.7 [30]: 

  Nu𝐷̅̅ ̅̅ ̅̅ = 𝐶Re𝐷
𝑚Pr1/3 (2.5.3.6) 

The constants in this equation are given in Table 1 for various ranges of Reynolds numbers: 

Table 1. Constants of Eq. 2.5.11 for a circular cylinder in a cross-flow 

 

𝐑𝐞𝑫 C m 

0.4-4 0.989 0.330 

4-40 0.911 0.385 

40-4,000 0.683 0.466 

4,000-40,000 0.193 0.618 

40,000-400,000 0.027 0.805 

 

  Another correlation was developed by Zukauskas [31] gives that for 0.7 ≤ Pr ≤ 500 and 

1 ≤ Re𝐷 ≤ 106: 

  
Nu𝐷̅̅ ̅̅ ̅̅ = 𝐶Re𝐷

𝑚Pr𝑛 (
Pr

Pr𝑠
) (2.5.3.7) 

All properties are evaluated at the fluid temperature except for Pr𝑠, which is the Prandtl number 

evaluated at the surface temperature of the cylinder. The constants C and m for this correlation are 

given in Table 5. The constant n is given by 

  𝑛 = {
0.37, Pr ≤ 10
0.36, Pr > 10

 (2.5.3.8) 

 
 

 

 

 

 



22 

 

 

Table 2. Constants of Eq. 2.5.3.8 for a circular cylinder in a cross-flow 

𝐑𝐞𝑫 C m 

1-40 0.75 0.4 

40-1,000 0.51 0.5 

1,000-20,000 0.26 0.6 

20,000-1,000,000 0.076 0.7 

 

One of the more widely used and accurate models is the Churchill-Bernstein relationship, 

typically considered valid for values of the product Re𝐷Pr greater than or equal to 0.2 [32]: 

  

Nu𝐷̅̅ ̅̅ ̅̅ = 0.3 + 
0.62Re𝐷

1/2Pr1/3

[1 + (
0.4
Pr )

2/3

]

1/4
 [1 + (

Re𝐷
282000

)
5/8

]

4/5

 
(2.5.3.9) 

The Churchill-Bernstein relationship uses all properties evaluated at film temperature and is 

popular because it is a single comprehensive equation and not a piecewise function. However, the 

relationship only promises up to 20% error when computing the heat transfer coefficient due to 

the averaging of the surface temperature, which in reality varies circumferentially as well as 

axially, as well as uncertainties associated with measuring the velocity of the air. 

For very low air velocities (or still air), the Churchill-Bernstein relationship fails to accurately 

capture the Nusselt number because natural convection is the predominant mode of heat transfer 

rather than forced convection. For an isothermal cylinder undergoing free convection, Morgan 

suggests that the Nusselt number can be computed from [33]: 

  
Nu𝐷̅̅ ̅̅ ̅̅ =  𝐶Ra𝐷

𝑛 (2.5.3.10) 

Ra denotes the Rayleigh number, defined as: 

Ra𝐷 ≡ Pr(
𝑑3𝑔∆𝑇𝛽

𝜐2
) (2.5.3.11) 
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Table 3. Constants of Eq. 2.5.3.10 for an isothermal circular cylinder in free convection 

𝐑𝐚𝑫 C n 

10-10 – 10-2 0.675 0.058 

10-2 – 102 1.02 0.148 

102 – 104 0.850 0.188 

104 – 107 0.480 0.250 

107 – 1012 0.125 0.333 

 

To avoid the use of a piecewise function, Churchill and Chu provided a single formula for 

the wide range of Ra𝐷  ≤ 1012 [34, p. 18]: 

  

Nu𝐷̅̅ ̅̅ ̅̅ =  

{
 
 

 
 

0.6 + 
0.387Ra𝐷

1/6

[1 + (
0.559
Pr )

9/16

]

8/27

}
 
 

 
 
2

 (2.5.3.12) 

g denotes the acceleration due to gravity and 𝛽 represents the expansion coefficient, which is also 

a function of temperature and is generally tabulated for common working fluids. The empirical 

relationship for vertical cylinders is noticeably similar, being given by the following relationship 

for certain cases where the diameter satisfies the criteria 𝑑 >  
35𝐿 

(
Ra

Pr
)1/4
 [34, p. 19]: 

 

Nu𝐷̅̅ ̅̅ ̅̅ =  

{
 
 

 
 

0.825 + 
0.387Ra1/6

[1 + (
0.492
Pr )

9/16

]

8/27

}
 
 

 
 
2

 (2.5.3.13) 

Eq. 2.5.3.13 is often called the thick cylinder limit because it only holds when the thermal boundary 

layer thickness is lower than the diameter of the wire such that the natural convection can be treated 

as if it is passing over a flat plate. Because this is oftentimes not the case for thin wire actuators, a 

relationship was formulated such that [35]: 
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Nu𝐿̅̅ ̅̅ ̅ =  
4

3
[

7RaLPr

5(20+21Pr)
]
1/4

+
4(272+315Pr)L

35(64+63Pr)D
                      (2.5.3.14) 

This formulation is unique when compared to the others because the characteristic length becomes 

the actuator length. This changes the definition of the convection coefficient so that it is defined 

in accordance to the actuator length instead of the actuator diameter. 

For higher levels of accuracy, tabulated values of the local and surface averaged Nusselt 

numbers for several types of boundary conditions for vertical, slender rods have been formulated 

by Cebeci [36]  and Sparrow [37]. Worth noting is the fact that in general, convective heat transfer 

is greater for vertically oriented wires than for horizontally oriented wires. This is due to the fact 

that horizontal wires impede the ability of air to rise and carry away heat. 
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2.5.4 Radiative Heat Transfer 

Thermal radiation is electromagnetic radiation given off by all bodies that have a temperature 

above absolute zero. This is caused by charged particles accelerating or magnetic dipoles being 

moved during collision of these particles. The Stefan-Boltzmann equation states that radiative heat 

transfer between an object and its surroundings can be described when the temperatures are 

denoted in Kelvin by: 

𝑞𝑟𝑎𝑑 = 𝜖𝜎𝑏𝐴𝑠(𝑇
4 − 𝑇∞

4) (2.5.4.1) 

 

𝜎𝑏 denotes the Stefan-Boltzmann constant and 𝑇∞ denotes the temperature of the surroundings. 

𝜖 is the object’s emissivity, which is a unitless parameter bounded between zero and one that 

reflects how effective a surface is at emitting energy. The value of the emissivity of a shape 

memory alloy is dependent on the material composition, surface finish, temperature, and geometry. 

Experimentally determined values for the emissivity for nickel titanium alloys have varied from 

values of 0.66 to 0.83 [38, 39]. 

Because radiation provides an inherent nonlinearity by definition, efforts to linearize radiative 

heat transfer so that it fits a similar form as convective heat transfer have been established, which 

leads to the definition of the radiative heat transfer coefficient, given by: 

ℎ𝑟𝑎𝑑 = 𝜖𝜎𝑏(𝑇
2 + 𝑇∞

2)(𝑇 + 𝑇∞) (2.5.4.2) 

The linearized form of the radiative heat transfer equation is given by incorporating Eq. 2.5.4.1 

into Eq. 2.5.4.2 and making assumptions regarding the average temperature T inside of the 

radiative heat transfer coefficient: 

𝑞𝑟𝑎𝑑 ≈ ℎ𝑟𝑎𝑑𝐴𝑠(𝑇 − 𝑇∞) (2.5.4.3) 
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2.5.5 Latent Heat of Transformation 

As an SMA undergoes a crystalline structure change, there is energy absorbed or released 

over the course of the phase transformation. This energy is termed the latent heat of transformation 

and is denoted in energy per unit mass form, called the specific latent heat, as ∆𝐻. Whereas the 

mechanisms of energy input and output reviewed thus far result in a direct change in the 

temperature of a material and are for this reason sometimes referred to as sources of sensible heat, 

latent heat is energy utilized only for the change in phase and is a constant temperature process. 

For nickel titanium, a typical value of the latent heat of transformation is -24.2 
J

g
  [40]. The power 

absorbed or released by the system during transformation is then given by: 

𝑞∆𝐻 = 𝑚∆𝐻𝜉̇ (2.5.5.1) 

 

The latent heat of transformation is often neglected because it causes a nonlinearity in the 

analytical analyses that cannot be resolved. However, in most simulations it is not a negligible 

quantity as it inputs a significant amount of power to slow the heating and cooling response. It is 

also worth noting that even if the actuator is contained in an otherwise adiabatic enclosure, that 

mechanically inducing a phase transformation will work to cycle the actuator temperature. The 

temperature change in the adiabatic case can be found as: 

∆𝑇𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 =
∆𝐻

𝑐𝑝
 (2.5.5.2) 

  

The potential significance of neglecting the latent heat of transformation in simulation with 

shape memory alloys is displayed in a comparison of the heating response of a five-centimeter-

long, 0.125 mm in diameter nickel titanium wire at constant load with the ambient temperature 

being held at twenty degrees Celsius (Figure 5). 
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Figure 5. Simulation of Heating Response with and without Latent Heat (3.7 V applied to 5 cm span of 0.125 mm 

diameter NiTi wire at room temperature) 

 

The latent heat of transformation provides an endothermic reaction within the actuator upon 

heating that impedes the heating of the actuator and provides an exothermic reaction upon cooling 

that impedes the cooling in the actuator. The steady state temperature is unaffected by these 

reactions, but the transient response is significantly affected.   
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2.5.6 First Law of Thermodynamics 

The First Law of Thermodynamics is a statement of the conservation of energy in terms of 

the energy of a control system. The law states that the total change of the internal energy of the 

system is equal to the energy input into the system subtracted by the work done by the system. The 

various mechanisms of how energy can be input (or lost) from the system comprised of an SMA 

actuator have been covered, but no expression for the work done by the system has been developed 

in the energy balance. The mechanical power output of an SMA actuator can be readily modelled 

by recognizing the in a thermodynamical analysis, the work done by a system to its surroundings 

is given for some system pressure 𝜑 and volume Λ: 

𝑊 = 𝜑∆Λ (2.5.6.1) 

This expression is readily expressed in rate form through the use of differentials: 

𝑊̇ = 𝜑
𝑑Λ

𝑑𝑡
 

(2.5.6.2) 

For the shape memory actuator, the pressure and volume can be described by: 

𝜑 = 𝜎𝐴𝑐 (2.5.6.3) 

Λ = 𝐴𝑐𝐿 (2.5.6.4) 

If the work done by the system is only accomplished through a phase transformation in the 

material, then it is often a decent assumption to state that the stress is a near constant value during 

the transformation because the preload stress causes the change in material stress due to the 

mechanical system to be negligible. In these situations, the power output of the SMA actuator is 

simply given by the term called the plasticity in literature [41]: 

𝑊̇ = 𝜑
𝑑Λ

𝑑𝑡
= 𝜎𝐴𝑐

𝑑(𝐴𝑐𝐿)

𝑑𝑡
= 𝜎𝐴𝑐𝐿𝜀𝐿𝜉̇ 

(2.5.6.5) 
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This type of formulation must also consider the cross-sectional area to be a constant value, 

thus neglecting the radial Poisson expansion that takes place during wire contraction. For a control 

volume made up of an SMA material heated by an electric current, the First Law of 

Thermodynamics then yields: 

𝑑𝑈

𝑑𝑡
= 𝑃 − 𝑞𝑐𝑜𝑛𝑣 − 𝑞𝑟𝑎𝑑 − 𝑞𝑐𝑜𝑛𝑑 − 𝑞∆𝐻 − 𝑊̇ 

(2.5.6.6) 

 

Decomposing this conservation of energy relation into its constitutive expressions and 

rearranging terms yields: 

 

 

𝑚(𝑐𝑝
𝜕𝑇

𝜕𝑡
 + 𝛥𝐻𝜉̇) = 𝐼2𝑅(𝜉) − ℎ𝐴𝑠(𝑇 − 𝑇𝑓𝑙𝑢𝑖𝑑) − 𝜖𝜎𝑏𝐴𝑠(𝑇

4 − 𝑇∞
4) − 𝑘𝐴𝑐 [

𝜕𝑇

𝜕𝑥
]
𝑏
+  𝜎𝐴𝑐𝜀𝐿𝐿𝜉̇ (2.5.6.7) 

 

where [
𝜕𝑇

𝜕𝑥
]
𝑏
 represents the temperature derivative with respect to temperature at the boundaries of 

the control volume. Radial variations in temperature tend to be neglected, but in cases where they 

are significant the analytical solutions to transient radial conduction problems with a convection 

boundary condition have a closed form for a constant initial temperature 𝑇𝑖 [42]: 

𝑇(𝑟, 𝑡) =  𝑇∞ +
2

𝑏
(𝑇𝑖 − 𝑇∞) ∑

1

𝛽𝑚

𝐽1(𝛽𝑚𝑏)𝐽0(𝛽𝑚𝑟)

𝐽0
2(𝛽𝑚𝑏) + 𝐽1

2(𝛽𝑚𝑏)

∞

𝑚=1

𝑒−𝛽𝑚
2𝛼𝑡 (2.5.6.8) 

 

where 𝐽0 denotes the Bessel function of the zeroth kind, 𝐽1 denotes the Bessel function of the first 

kind, b represents the wire diameter, 𝛼 represents the thermal diffusivity of the material, 𝑇∞ 

represents the ambient temperature, and 𝛽𝑚 represents the solutions of the transcendental equation 

given by: 

𝛽𝑏𝐽1(𝛽𝑏) − Bi𝐽0(𝛽𝑏) = 0 (2.5.6.9) 

 



30 

 

where Bi is the Biot number for the problem. Due to the complexity of this solution, numerical 

methods are typically used for transient analysis of multidimensional problems and as such, the 

equation of the form Eq. 2.5.6.9 is generally not pursued here.  
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2.6 Discretized Heat Transfer Modelling 

Because analytical approaches to modelling the thermal response of shape memory alloys 

fail to capture nonlinearities present when including radiation or the latent heat of transformation, 

and provide nontrivial closed form solutions when accounting for temperature variance along the 

length of the actuator, numerical methods have been researched for the analysis of the shape 

memory actuators. One of the more prevalent means to numerically derive solutions to the 

conservation of energy relations is to discretize the system into control volumes centered at nodes 

and to solve for the temperature of those nodes with a finite difference scheme, which takes partial 

differential equations and approximates them with difference equations [43]. The governing 

equation behind the diffusion of heat through the actuator, for example, is the one dimensional 

heat equation: 

𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑥2
 (2.6.1) 

 

where 𝛼 is the thermal diffusivity of the medium. The second partial derivative of 

temperature with respect to position can be approximated for uniform grid spacing ∆𝑥 and node 

position index i using the central difference method, which is accurate to 𝑂(∆𝑥2): 

𝜕2𝑇

𝜕𝑥2
≈
𝑇𝑖+1 − 2𝑇𝑖 + 𝑇𝑖−1

∆𝑥2
 (2.6.2) 

 

The first derivative of temperature with respect to time can be approximated with a first order 

numerical derivative that is forward in time using the forward difference method. For a time step 

of ∆𝑡 and time index ℓ this yields: 

𝜕𝑇

𝜕𝑡
≈
𝑇𝑖
ℓ+1 − 𝑇𝑖

ℓ

∆𝑡
 (2.6.3) 
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There is no information given in these approximations for at what point in time that Eq. 2.6.2 

should be evaluated. To account for all possibilities, a weighting factor 𝛾 that varies from zero to 

one can be introduced such that: 

𝜕2𝑇

𝜕𝑥2
≈ 𝛾

𝑇𝑖+1
ℓ+1 − 2𝑇𝑖

ℓ+1 + 𝑇𝑖−1
ℓ+1

∆𝑥2
+ (1 − 𝛾)

𝑇𝑖+1
ℓ − 2𝑇𝑖

ℓ + 𝑇𝑖−1
ℓ

∆𝑥2
 (2.6.4) 

 

For 𝛾 = 1, this approximation is forward in time and yields the Forward Time Centered 

Space (FTCS) scheme: 

𝑇𝑖
ℓ+1 − 𝑇𝑖

ℓ

∆𝑡
= 𝛼

𝑇ℓ𝑖+1 − 2𝑇
ℓ
𝑖 + 𝑇

ℓ
𝑖−1

∆𝑥2
 (2.6.5) 

The discretized Fourier number is very convenient to introduce such that Fo =  
∆𝑡

𝛼∆𝑥
 and Eq. 2.6.4 

simplifies to an explicit recurrence relation: 

𝑇𝑖
ℓ+1 = (1 − 2Fo)𝑇𝑖

ℓ + Fo(𝑇ℓ𝑖+1 + 𝑇
ℓ
𝑖−1) (2.6.6) 

A well-known instability exists with this scheme in that for Fo >  
1

2
 the scheme is oscillatory and 

divergent due to the first coefficient in the expression. 

For 𝛾 = 0, this approximation is backwards in time and yields the Backwards Time 

Centered Space (BTCS) scheme which can be algebraically manipulated to yield: 

(1 + 2Fo)𝑇𝑖
ℓ+1 − Fo(𝑇𝑖+1

ℓ+1 + 𝑇𝑖−1
ℓ+1) = 𝑇𝑖

ℓ (2.6.7) 

This scheme is implicit and always converges to a stable solution. Because it is an implicit scheme, 

the entire system of equations presented in Eq. 2.6.5 must be solved simultaneously, greatly 

increasing the computation time. 
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For 𝛾 =
1

2
, this approximation is centered in time and is called the Crank-Nicholson 

method, which is always stable but can be subject to numerical oscillations. The Crank-Nicholson 

method is second order accurate in time as well as space.  

The heat equation can be easily appended with terms that allow for the inclusion of 

convection and radiation as well as volumetric heat generation (such as Ohmic heating and the 

latent heat of transformation), such that: 

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑥2
−
4ℎ

𝑑
(𝑇 − 𝑇∞) −

4𝜖𝜎𝑏
𝑑

(𝑇4 − 𝑇∞
4) +

4𝐼2𝑅 +𝑚∆𝐻𝜉̇

𝜋𝑑2𝐿
 

 

(2.6.8) 

Because the macroscopic property of thermal conductivity of each control volume depends 

on its phase composition, the discretized schemes become much more complicated because the 

conductivity must be allowed to vary throughout the entire material. Because properties such as 

the diameter and wire resistance is dependent on the kinetics and the mechanical model, each 

portion of the modelling must be coupled during each time step and to guarantee the stability of 

the solution, an implicit formulation must be crafted. For multidimensional problems, the same 

solution process can be followed and the results superimposed on one another. 

 Significant amounts of research have gone into modelling shape memory alloy actuators 

using finite difference schemes [44]. Huang developed a FDM scheme for lengthwise and radial 

conduction using the Crank-Nicholson method and allowed for varying thermal conductivities for 

a cooling response neglecting latent heat effects and the variation of material geometry [45]. 

Mirzaeifar presented an explicit first order forward-difference FDM scheme when analyzing radial 

conduction in actuators with uniaxial tension that accounted for latent heat effects that assumed 

constant material properties during phase transformation [46].  
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2.7 Wire Actuator Bandwidth 

 Because SMA actuators frequently use convection with still air at room temperature to 

transform from Austenite to Martensite, the transformation time is slow. This is well known as one 

of the biggest drawbacks of using a shape memory alloy actuator, and research has gone into 

empirically characterizing the system bandwidth for several situations. SMA actuators that cool 

down using still, ambient air typically have low bandwidths, often below 1 Hz. Because of these 

characteristically low bandwidths, care has to be taken to design a controller that will not operate 

so fast as to attenuate the system response [47]. This knowledge of the system bandwidth and how 

it changes with the wire diameter can also help a designer select the appropriate diameter wire for 

the actuator in a variety of automated mechanical systems.  

A variety of methods exist to raise this bandwidth into the range of 10 Hz to 20 Hz through the 

use of multiple actuators in agonist-antagonist pairs [48, 49, 50, 51, 52, 53]. An analysis of force 

tracking control was performed and displayed a system bandwidth of an SMA actuator of 

approximately 2 Hz [54]. An analysis of a robotic grip using a NiTi actuator using a 𝐻∞ control 

scheme revealed a system bandwidth of 0.48 Hz [55]. An anti-slack, rapid-heating, anti-overload 

differential PID control scheme acting on an antagonist pair of SMA actuators showed the ability 

to get 2 Hz tracking bandwidths [56, 57]. A neural network feedforward control scheme acting on 

an SMA actuator with an antagonist spring achieved a bandwidth of only 0.1 Hz [58]. Several 

takes on self-sensing with SMA actuators have been used in control schemes, yielding bandwidths 

between 0.15 Hz and 1 Hz [59, 60, 61]. An analysis on the frequency response of several SMA 

actuators of different diameters showed in detail how these actuators perform at frequencies 

ranging from 0.1 Hz to 100 Hz [62]. The system bandwidth of an SMA actuator has been shown 
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to increase as the wire diameter decreases for passively cooled systems, because the rate at which 

energy is transferred away from the wire is the limiting factor to system bandwidth [63].  
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2.8 Temperature Measurement  

  Because shape memory actuators are most commonly found as wire actuators of small 

diameters, direct measurement of temperature for characterization in experiment has proved a 

difficult task. Temperature measurements with IR sensors are usually distorted because the wire 

takes up a small field of view of the IR sensor, which averages the temperature of everything inside 

of its field of view. Likewise, direct measurement of the temperature with devices such as 

thermistors, RTDs, or a thermocouple can prove difficult because the temperature measurement 

device must be small enough to only attach to the wire actuator and not distort the temperature of 

the wire actuator via thermal conduction into the device. Particular interest has been paid to the 

use of small thermocouple probes due to their low cost and robustness.  

 Analytical approaches to the modelling of the errors encountered by probing a shape 

memory alloy with a thermocouple have been done by treating the thermocouple as a long, 

cylindrical fin [64].  Because the thermocouple by design consists of two metallic wires, often of 

the same diameter, an effective diameter of the thermocouple is typically denoted in the literature 

such that for metallic wire diameters 𝑑1 and 𝑑2 the effective thermocouple diameter is: 

𝑑𝑒𝑓𝑓 = 𝑑1√2 = 𝑑2√2 
(2.8.1) 

The localized loss of heat via conduction to the thermocouple has been modelled as infinitely long 

fin such that: 

𝑄 = √𝑘𝐴𝑐ℎ𝑃(𝑇𝑏 − 𝑇∞) (2.8.2) 

 

Analytical solutions that account for this loss of heat are possible for simplified situations such as 

when the shape memory actuator is considered adiabatic except for the heat loss to the 
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thermocouple and the SMA actuator is considered a semi-infinite body [65]. Other approaches 

have tended towards numerical analysis such as through FEM [64].   
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2.8 Multibody Dynamics Software and Numerical Simulation 

Multibody dynamic (MBD) systems consist of solid bodies, or links, that are connected to 

each other by joints that restrict their relative motion. The study of MBD is the analysis of how a 

system comprised of defined constraints (in the form of joints and prescribed motions between 

interconnected rigid or flexible bodies), move under the influence of forces [66]. Software 

packages such as ADAMS (Automated Dynamic Analysis of Mechanical Systems), DADS [67], 

COMSOL [68], ANSYS Rigid Body Dynamics [69] , and others enable these systems to recreate 

the dynamics of a wide variety of controlled systems with actuators such as electric motors or 

pneumatics. User-written subroutines and function expressions can be used to develop custom 

modules that work to recreate more complex interactions between sensors, shape memory 

actuators, and control laws that are not readily available in the program such as a mathematical 

model of the behavior of a shape memory alloy. Once these modules are created, it becomes much 

simpler to implement the actuator into complex multibody mechanical systems with multiple links 

and joints.  A multibody dynamics model was created for use in COMSOL to model the actuation 

of an end effector for a deployable system that would be used to collect small body samples from 

other planets, but this model was limited in scope because it failed to work for situations where 

the stress profile changed during operation [70]. 

Shape memory actuator models have been created and used in finite element analysis 

software simulations. Examples include micro-actuators working as a regulator valve in passing 

fluid flow [71], using an exponential model for general SMA behavior [8], and modelling a shape 

memory actuator in non-isothermal loading in ANSYS using a partial differential equation method 

[72].  
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Because the relationships that dictate the behavior of SMA actuators are highly nonlinear, 

accurate simulation of these actuators in actual dynamic systems is difficult and requires the 

storage of many parameters that vary over time. One of the biggest benefits to using a program 

like MSC ADAMS is the presence of accurate, easy to use, variable order and variable time step 

integrators suited for solving stiff differential equations. Two of the most prominent of these 

integrators are termed the GSTIFF integrator, developed by C.W. Gear, and the WSTIFF 

integrator. GSTIFF and WSTIFF are similar in formulation and behavior in that both use a 

backwards difference formulation. The main difference between the two is that the GSTIFF 

coefficients are calculated assuming a constant step size, whereas WSTIFF coefficients are a 

function of the step size. If the step size changes suddenly during integration, GSTIFF introduces 

a small error, while WSTIFF can handle step size changes without loss of accuracy. Sudden step 

size changes occur whenever there are discontinuous forces, discontinuous motions or abrupt 

events such as contact in the model. 
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Chapter 3: Heat Transfer Analysis 

 

3.1 Analytical Analysis and Approximate Solutions 

3.1.1 Analytically Derived Temperature Response 

The lumped capacitance heat transfer model of a constant cross-section SMA wire 

undergoing Ohmic heating from an electrical power source and cooling via convection from the 

surrounding air is typically given in the following form, which neglects radiation and conduction: 

  

𝑚(𝑐𝑝
𝑑𝑇

𝑑𝑡
 + 𝛥𝐻𝜉̇) = 𝐼2𝑅(𝜉) − ℎ𝐴𝑠(𝑇 − 𝑇∞) (3.1.1.1) 

If the SMA actuator cannot be considered to be of uniform temperature, a more complicated model 

can be invoked with the remaining assumption that radial conduction is negligible: 

𝑚(𝑐𝑝
𝜕𝑇

𝜕𝑡
 + 𝛥𝐻

𝜕𝜉

𝜕𝑡
) − 𝑘

𝜕2𝑇

𝜕𝑥2
= 𝐼2𝑅(𝜉) − ℎ𝐴𝑠(𝑇 − 𝑇∞) 

 

(3.1.1.2) 

These models can be simplified by making some significant assumptions regarding the convection 

coefficient, h. The 𝛥𝐻𝜉̇̇ term in the formulation represents the specific latent heat of transformation 

from one crystalline phase to another, which is often an ignored quantity so that the models become 

linear. However, a shape memory alloy such as nickel titanium will have a latent heat of 

transformation of roughly 24.2 Joules per gram, which is generally a non-negligible quantity [40]. 

The simplest analytical solution emerges when this quantity is neglected, the wire is assumed to 

be at uniform temperature, boundary effects are neglected. The assumption that the wire can be 

treated as uniform in temperature radially has been shown to typically match experimental results 

for wires with Biot numbers smaller than 0.1 where the Biot number is defined as: 

Bi =
ℎ𝑑

2𝑘
 (3.1.1.3) 
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One consideration to note is that for shorter wire lengths, there will be thermal boundary effects to 

take into account that will prevent the wire from being at a uniform temperature. These boundary 

effects will also be neglected in the analysis, as it has been shown that for wire lengths above 148.8 

mm this thermal boundary layer can safely be neglected [73].  These assumptions lead to the 

homogeneous form of the heat transfer equation: 

  
𝑚𝑐𝑝

𝑑𝑇

𝑑𝑡
+  ℎ𝐴𝑠𝑇 = 𝐼

2𝑅(𝜉) + ℎ𝐴𝑠𝑇∞ (3.1.1.4) 

This takes the form of a simple ordinary linear first order differential equation and can be rewritten 

into the following form to reveal the time constant:  

 𝑑𝑇

𝑑𝑡
+ (

ℎ𝐴𝑠
𝑚𝑐𝑝

)𝑇 =
𝐼2𝑅(𝜉)

𝑚𝑐𝑝
+ (

ℎ𝐴𝑠
𝑚𝑐𝑝

)𝑇∞  (3.1.1.5) 

Because the SMA wire can be considered as having a uniform cross-sectional area throughout its 

length, the surface area available for convection (𝐴𝑠) and the wire mass (𝑚) can be expressed as a 

function of wire diameter (d) and wire length (𝐿): 

 
𝐴𝑠 =  𝜋𝑑𝐿 and  𝑚 =  𝜌𝜋 (

𝑑

2
)
2

𝐿  (3.1.1.6) 

𝜌 denotes the wire’s volumetric density. Substituting these values into Eq. 3.1.1.5 allows the heat 

transfer model to take the following form: 

  
𝑑𝑇

𝑑𝑡
+ (

4ℎ𝜋𝑑𝐿 

 𝜌𝜋𝐿𝑑2𝑐𝑝
)𝑇 =

4𝐼2𝑅(𝜉)

𝜌𝜋𝐿𝑑2𝑐𝑝
+ (

4ℎ𝜋𝑑𝐿 

 𝜌𝜋𝐿𝑑2𝑐𝑝
)𝑇∞  (3.1.1.7) 

The solution to this differential equation, with the initial condition that the wire starts at a uniform 

temperature of 𝑇0 takes the following form: 
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𝑇(𝑡) =  𝑇∞ +

𝐼2𝑅

ℎ𝜋𝑑𝐿
+ ( 𝑇0 − 𝑇∞ −

𝐼2𝑅

ℎ𝜋𝑑𝐿
) 𝑒

−(
4ℎ 

𝜌𝑑𝑐𝑝
)𝑡

  (3.1.1.8) 

The basic observation are that the larger the diameter wire, the longer it takes to both heat and cool 

the system, and that the cooling response allows the wire temperature to exponentially decay to 

room temperature, with the response being independent of the length of the wire due to neglecting 

lengthwise variation in the temperature profile (Figure 6). 

 

 

Figure 6. Cooling Response from Analytical Solution 

 

An analytical solution can also be found for the case where the wire is not treated as a uniform 

temperature lengthwise, therein allowing for boundary effects to be accounted for. By assuming 

the initial conditions of the wire can fit a linear distribution plus an infinite sum of sinusoids of 

varying amplitude and frequency, the closed form solution of this equation is found to be [27]: 
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𝑇(𝑡, 𝑥) = ∑

4

𝐵1𝑛𝜋
∫ 𝑒

(𝐵2−(
𝑛𝜋
𝐿
)
2
)
𝑡−𝜏
𝐵1

𝑡

0

∞

𝑛=1

[𝑄(𝜏) − 𝐵2𝑇0 − 𝐵1
𝑑𝑇1
𝑑𝜏

+ 𝐵2𝑇1(𝜏)] sin (
𝑛𝜋𝑥

𝐿
) 𝑑𝜏

+∑(−1)𝑛+1
2

𝐵1𝑛𝜋
∫ 𝑒

(𝐵2−(
𝑛𝜋
𝐿
)
2
)
𝑡−𝜏
𝐵1

𝑡

0

∞

𝑛=1

[𝐵1 (
𝑑𝑇2
𝑑𝜏

−
𝑑𝑇1
𝑑𝜏
)

− 𝐵2(𝑇2(𝜏) − 𝑇1(𝜏))] sin (
𝑛𝜋𝑥

𝐿
) 𝑑𝜏 + 𝑇1(𝑡)

+ (
𝑥

𝐿
) [𝑇2(𝑡) − 𝑇1(𝑡)] +∑ [𝑎𝑛 sin (

𝑛𝜋𝑥

𝐿
)] 𝑒

(𝐵2−(
𝑛𝜋
𝐿
)
2
)
𝑡
𝐵1

∞

𝑛=1

 

where 𝑄(𝜏) =
4𝐼2𝑅

𝑘𝐿𝜋𝑑2
, 𝐵1 =

𝜌𝑐𝑝

𝑘
 , 𝐵2 = −

ℎ𝐿

𝜋𝑑𝐿𝑘
  

(3.1.9) 

For temperature function 𝑢𝑖(𝑡, 𝑥) being one of the solutions to the partial differential equation 

presented in Eq. 3.1.1.2 that necessarily satisfies the boundary conditions but not the initial 

conditions (only the infinite sum of all solutions can satisfy the initial conditions in most cases), 

the cooling response of this form will have the following appearance [74]: 

 

Figure 7. Cooling Response from Analytical Solution with Boundary Effects [74] 
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3.1.2 Convective Heat Transfer Coefficient 

Both analytical solutions are only as accurate as the approximation of the heat transfer 

coefficient. Utilizing the Nusselt number relationships established in Chapter 2, the convection 

coefficient can be computed for a wire in still air for a variety of wire diameters and temperatures: 

Table 4. Convection Coefficients in 
𝐖

𝐦𝟐𝐊
  

 

Utilizing the empirical relations for the surface averaged Nusselt number, a rough 

approximation for the heat transfer coefficient for use in the analytical solutions can be obtained 

for cases where natural convection with air as the working fluid is the dominant means of heat 

transfer. This approximation can be presented as a function of the wire diameter in millimeters, 

wire temperature in degrees Celsius (or Kelvin), and fluid temperature in degrees Celsius (or 

Kelvin) from fitting the data [75]: 

ℎ(𝑇,   𝑇∞, 𝑑) =
14.6(𝑇 −   𝑇∞)

1
8 

𝑑−4/5
[
W

m2K
] (3.1.2.1) 

Diameter (mm) 10°C 20°C 30°C 40°C 50°C 60°C

0.050 234.94 243.61 250.10 255.63 260.59 265.18

0.075 164.21 171.04 176.04 180.23 183.96 187.37

0.125 105.97 111.11 114.79 117.82 120.47 122.87

0.250 60.17 63.79 66.31 68.30 70.08 71.64

0.300 52.18 55.50 57.80 59.64 61.21 62.61

0.375 44.00 47.00 49.06 50.70 52.10 53.33

0.500 35.56 38.20 40.01 41.44 42.64 43.70

Convection Coefficient

Wire Temperature relative to Ambient Air
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This expression indicates that the heat transfer coefficient is a much stronger function of the wire 

diameter than of the temperature differential (Figure 8).  

 

Figure 8. Convection Coefficient as a Function of Wire Diameter and Temperature Differential 
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3.1.2 Analytical Modelling of Thermal and Transformation Bandwidths 

Utilizing the simplified form of the thermal model from Eq. 3.1.1.8, the heating and cooling 

bandwidth of the system can be found to be the inverse of the system eigenvalue such that: 

𝜆𝑐𝑜𝑜𝑙𝑖𝑛𝑔 =
4ℎ 

2𝜋𝜌𝑑𝑐𝑝
 

(3.1.2.1) 

Because the wire does not need to completely cool to its steady state temperature in order to 

actuate, the heating and cooling bandwidth does not accurately predict the system bandwidth. 

Neglecting the effects of latent heat of transformation and of radiation, the cooling response is that 

of exponential decay with a time constant (𝜏𝑐𝑜𝑜𝑙𝑖𝑛𝑔) given by the inverse of the cooling bandwidth. 

The transformation times can also be visually demonstrated for this cooling response. 

 

Figure 9. Newtonian Cooling with Transformation Times Labelled 

   

To accommodate for this fact, a corrected thermal bandwidth is crafted that linearly scales the 

cooling bandwidth based on the range of temperatures the wire is exposed to and the range of 

temperatures it must traverse in order to actuate (denoted here as the mean transformation 

temperatures A and M), such as: 
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𝜆𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =

{
 
 

 
 
(
2(
𝑀 + 𝐴
2 − 𝑇∞)

𝐴 −𝑀
)

4ℎ 

2𝜋𝜌𝑑𝑐𝑝
, 𝑇∞ <

𝑀 + 𝐴

2

0, 𝑇∞ ≥
𝑀 + 𝐴

2

 
(3.1.2.2) 

This type of scaling should give an upper estimate to the transformation bandwidth based 

on the fact that the upper temperature in the operating range and ambient temperature create 

bounds in which the transformation region lies centered. Obviously, 𝑇∞ lies outside of the 

transformation region the system cannot transform and the bandwidth is zero as a result. Because 

the transformation bounds are dependent on the stress which varies in operation, it is not possible 

to approximate the bandwidth without approximating the terms for the transformation boundaries. 

Eq. 3.1.12 was evaluated for three distinct cases of ambient air conditions, with an average actuator 

stress of 150 MPa, and a transformation band of high temperature nickel titanium with a ten-degree 

transformation band gap. The results were plotted in Figure 10. 

 

Figure 10. Thermal Transformation Bandwidths (Hz) 

 



48 

 

In stationary air, the bandwidth is not predicted to be a strong function of air temperature. 

By fitting the data with a power series, an approximation to the system bandwidth can be realized 

for natural convection in still air as a function of wire diameter (where the diameter is given in 

millimeters): 

𝜆𝑡ℎ𝑒𝑟𝑚𝑎𝑙 ≈
0.0086 

mm2

s
𝑑2

 [Hz] (3.1.2.3) 

A different analytical approach to solving for the bandwidth of the system given in Eq. 3.1.1.4 is 

to directly solve for the cycle time to complete transformation and designate the system bandwidth 

equal to: 

𝜆𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 ≈
1

𝑡𝐴→𝑀 + 𝑡𝑀→𝐴
 

(3.1.2.4) 

𝑡𝐴→𝑀 denotes the minimum 100% Martensite transformation time and 𝑡𝑀→𝐴 denotes the minimum 

Austenite transformation time. For cases where the input power is selected such that the 

transformation times are roughly equal to one another, which is desirable when using control laws 

such as sliding mode control, only the cooling response needs to be numerically analyzed and: 

𝜆𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 ≈
1

2𝑡𝐴→𝑀
 

(3.1.2.5) 

Taking Eq. 3.1.2.5 and setting the applied current to zero and the initial temperature to the 

Austenite transformation bound and the final temperature to the Martensite transformation bound 

yields: 

  
𝑀 =  𝑇∞ + ( 𝐴 − 𝑇∞)𝑒

−(
4ℎ 

𝜌𝑑𝑐𝑝
)𝑡

  (3.1.2.6) 
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Solving for the transformation time then yields: 

  𝑡𝐴→𝑀 ≈  − (
𝜌𝑑𝑐𝑝

4ℎ
) ln (

𝑀−𝑇∞

𝐴−𝑇∞
)  (3.1.2.7) 

The results of this analysis for nickel titanium alloys are presented in Table 5 for selected cases 

and includes a correction term for wire orientations of an angle 𝜃. Analytically, the bandwidths 

differ because the empirically derived Nusselt numbers differ for a change in this angle. 

Table 5. Transformation Bandwidths of Selected Cases 

 

In order to achieve a simple equation in the form of Eq 3.1.2.3, a power series fit was placed 

through the results of the second case due to the commonality of its conditions. The resulting 

expression for the transformation bandwidth is given by: 

 

𝜆𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 ≈
0.0099 

mm2

s + 0.0068 sin(𝜃)
mm2

s
𝑑2

 [Hz] (3.1.2.8) 
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3.1.3 Analytical Modelling of Wire Efficiency 

An approximation to the efficiency of an SMA wire by acknowledging that the work done 

by an SMA actuator that undergoes full transformation is given by: 

𝑊 = 𝐿𝜀𝐿Ω𝐴𝑐 (3.1.3.1) 

The efficiency can then be found assuming radiation and temperature variations through the 

material to be negligible: 

𝜂 =
𝜀𝐿Ω𝑑

4ℎ(𝑇 − 𝑇∞)𝑡𝑀→𝐴 + 𝜌𝑑(𝑐𝑝∆𝑇 + ∆𝐻)
 

(3.1.3.2) 

𝑡𝑀→𝐴 denotes the time taken for the actuation to occur. This value can be approximated by 

assuming the input power does not have to overcome convection to heat up the actuator: 

𝑡𝑀→𝐴 ≈
𝑚(𝑐𝑝∆𝑇 + ∆𝐻)

𝑉𝐼
=
𝜌𝜋𝑑2𝐿(𝑐𝑝(𝐴 − 𝑇∞) + ∆𝐻)

4𝑉𝐼
 (3.1.3.2) 

Substitution of this expression into Eq. 3.1.3.2 and substituting material properties of Flexinol 

High Temperature Nitinol [76] yields: 

𝜂 ≈
0.025309

[
0.026

m
V2

𝑑
(
𝐿
𝑉)

2

+ 1]

 

(3.1.3.3) 

The notable aspect about this expression is that it estimates that the maximum efficiency 

that the actuator can achieve is 2.531%. This characteristically low efficiency is often cited as one 

of the biggest detriments to using a shape memory alloy actuator outside of the slow bandwidth. 
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3.1.4 Analytical Modelling of Thermocouple Measurement Distortion 

An analytical approach to the modelling of a disturbance in the form of thermocouple 

connected directly to a wire actuator can be analytically modelled as an infinitely long fin 

connected to a heated base.  This type of model would then yield an expression for the heat carried 

away from the wire actuator: 

𝑄̇ = √𝑘𝐴𝑐ℎ𝑃tanh (𝜒𝐿)(𝑇𝑆𝑀𝐴 − 𝑇∞) (3.1.4.1) 

where all properties are of the thermocouple, P represents the perimeter of the thermocouple, 

L represents the length of the thermocouple, and 𝜒 is a dimensionless parameter given by 𝜒 =
ℎ𝑃

𝑘𝐴𝑐
. 

Given that a thermocouple consists of two separate wires of material, the average thermal 

conductivity between the materials should be used when performing the heat transfer analysis. For 

the most commonly used thermocouple, the K-type, these two wires are made of chromel (𝑘 =

19 
W

mK
) and alumel (𝑘 = 30 

W

mK
) which means the effective thermal conductivity can be modelled 

as two materials in parallel, such that: 

𝑘𝑇𝐶 =
𝑘1𝐴𝑐,1 + 𝑘2𝐴𝑐,2
𝐴𝑐,1 + 𝐴𝑐,2

 (3.1.4.2) 

Because the cross-sectional areas of the wires can often be considered identical in a thermocouple, 

the equivalent thermal conductivity can simply be analyzed as the average thermal conductivity 

between the two wires. For the K-type thermocouple, the equivalent thermal conductance is then 

𝑘𝑇𝐶,𝐾 ≈ 25.5 
W

mK
.  The average steady state temperature of a span of wire losing heat to the 

thermocouple and through convection is given by: 

𝑇𝑆𝑀𝐴,𝑇𝐶 =
∆𝑉2

𝑅
[

1

ℎ𝑆𝑀𝐴𝜋𝑑𝑆𝑀𝐴𝐿𝑆𝑀𝐴 +√𝑘𝑇𝐶𝐴𝑐𝑇𝐶ℎ𝑇𝐶𝑃𝑇𝐶 tanh(𝜒𝐿𝑇𝐶)
] + 𝑇∞ (3.1.4.3) 

The temperature disturbance caused at steady state is given by: 
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∆𝑇𝑑𝑖𝑠𝑡 =
∆𝑉2

𝑅
[

1

ℎ𝑆𝑀𝐴𝜋𝑑𝑆𝑀𝐴𝐿𝑆𝑀𝐴 +√𝑘𝑇𝐶𝐴𝑐𝑇𝐶ℎ𝑇𝐶𝑃𝑇𝐶 tanh(𝜒𝐿𝑇𝐶)
−

1

ℎ𝑆𝑀𝐴𝜋𝑑𝑆𝑀𝐴𝐿𝑆𝑀𝐴
] (3.1.4.4) 

The thermocouple probe can be modelled as a horizontal cylinder in crossflow and the equation 

becomes: 

∆𝑇𝑑𝑖𝑠𝑡 =
∆𝑉2

𝑅
[

2

2𝜋ℎ𝑆𝑀𝐴𝑑𝑆𝑀𝐴𝐿𝑆𝑀𝐴 + 𝜋𝑑𝑇𝐶
3/2
√𝑘𝑇𝐶ℎ𝑇𝐶 tanh (

4ℎ𝑇𝐶𝐿𝑇𝐶
𝑘𝑇𝐶𝑑𝑇𝐶

)
−

1

𝜋ℎ𝑆𝑀𝐴𝑑𝑆𝑀𝐴𝐿𝑆𝑀𝐴
] (3.1.4.5) 

Labelling the electric power generation of the small span of wire covered by the thermocouple as 

𝑄𝑔𝑒𝑛 and invoking Eq. 3.1.2.1 for approximations for the convection coefficient where the actuator 

is operating in still room temperature air (and approximating the convection coefficient 

dependence on ambient air temperature such that ℎ = 23𝑑−4/5 where the diameter is expressed in 

meters), the expression then simplifies to: 

∆𝑇𝑑𝑖𝑠𝑡 =
𝑄𝑔𝑒𝑛

𝜋
[

1

23𝑑𝑆𝑀𝐴
1/5𝐿𝑆𝑀𝐴 + 4.8𝑑𝑇𝐶

11/10
√𝑘𝑇𝐶 tanh (

4ℎ𝑇𝐶𝐿𝑇𝐶
𝑘𝑇𝐶𝑑𝑇𝐶

)
−

1

23𝑑𝑆𝑀𝐴
1/5𝐿𝑆𝑀𝐴

] (3.1.4.6) 

For the measurement of fine SMA wires, the thermocouple probe diameter is often very 

small and the ratio 
𝐿𝑇𝐶

𝑑𝑇𝐶
 is often a large number as a result. The hyperbolic tangent function acts as 

a sigmoid function in that lim
𝑥→∞

tanh 𝑥 = 1. As a result, it is oftentimes a decent approximation to 

state that tanh (
4ℎ𝑇𝐶𝐿𝑇𝐶

𝑘𝑇𝐶𝑑𝑇𝐶
) ≈ 1 and: 

∆𝑇𝑑𝑖𝑠𝑡 =
𝑄𝑔𝑒𝑛

𝜋
[

1

(23 m
5
6)𝑑𝑆𝑀𝐴

1/5𝐿𝑆𝑀𝐴 + (4.8
m22/9K1/2

W1/2 )𝑑𝑇𝐶
11/10

√𝑘𝑇𝐶

−
1

(23 m
5
6) 𝑑𝑆𝑀𝐴

1/5𝐿𝑆𝑀𝐴

] (3.1.4.7) 

 

Eq. 3.1.4.6 gives the average temperature drop for the entire span of wire. The localized 

temperature disturbance can be very roughly approximated by setting 𝐿𝑆𝑀𝐴 = 5𝑑𝑇𝐶 and scaling the 

generated heat term to accurately reflect the heat generation of just the small span of wire. This 
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type of approximation was performed for an example computation for a ten-centimeter span of 

wire subjected to one Watt of power generation and measured with various thermocouple types 

(Table 6). 

Table 6. Localized Temperature Drops of 10 cm SMA actuator due to Presence of Thermocouple 

 

 

The chosen power supply of one Watt is convenient because it allows for these values to 

linearly scale with the power supplied to the SMA actuator for a ten-centimeter span of wire. The 

basic observations of the values listed are first that the selected thermocouple should have a low a 

0.000025 0.000038 0.00005 0.000125 0.0002 0.00025 0.0005

0.00001 -0.891 -0.389 -0.226 -0.038 -0.015 -0.010 -0.003

0.000025 - -2.392 -1.396 -0.234 -0.095 -0.062 -0.018

0.00005 - - - -0.918 -0.375 -0.247 -0.070

0.000075 - - - -2.009 -0.829 -0.547 -0.157

0.0001 - - - -3.439 -1.437 -0.953 -0.275

0.000125 - - - - -2.177 -1.451 -0.424

0.00015 - - - - -3.023 -2.027 -0.600

0.000175 - - - - -3.949 -2.665 -0.801

0.0002 - - - - - -3.351 -1.023

0.000225 - - - - - -4.070 -1.263

0.00025 - - - - - - -1.519

0.000025 0.000038 0.00005 0.000125 0.0002 0.00025 0.0005

0.00001 -1.256 -0.548 -0.319 -0.053 -0.022 -0.014 -0.004

0.000025 - -3.352 -1.959 -0.329 -0.134 -0.088 -0.025

0.00005 - - - -1.285 -0.527 -0.347 -0.099

0.000075 - - - -2.781 -1.155 -0.764 -0.220

0.0001 - - - -4.696 -1.985 -1.321 -0.385

0.000125 - - - - -2.973 -1.993 -0.590

0.00015 - - - - -4.078 -2.755 -0.830

0.000175 - - - - -5.257 -3.582 -1.099

0.0002 - - - - - -4.449 -1.393

0.000225 - - - - - -5.336 -1.707

0.00025 - - - - - - -2.034

0.000025 0.000038 0.00005 0.000125 0.0002 0.00025 0.0005

0.00001 -2.544 -1.113 -0.648 -0.108 -0.044 -0.029 -0.008

0.000025 - -6.663 -3.917 -0.666 -0.271 -0.178 -0.051

0.00005 - - - -2.539 -1.052 -0.696 -0.200

0.000075 - - - -5.306 -2.255 -1.503 -0.440

0.0001 - - - -8.584 -3.758 -2.533 -0.759

0.000125 - - - - -5.438 -3.711 -1.142

0.00015 - - - - -7.184 -4.966 -1.574

0.000175 - - - - -8.910 -6.239 -2.040

0.0002 - - - - - -7.485 -2.526

0.000225 - - - - - -8.675 -3.019

0.00025 - - - - - - -3.509

J-Type Thermocouple, 10 cm long SMA actuator in room temperature air, 1 W applied power

Thermocouple Diameter (m)

SMA Diameter (m)

T-Type Thermocouple, 10 cm long SMA actuator in room temperature air, 1 W applied power

Thermocouple Diameter (m)

SMA Diameter (m)

SMA Diameter (m)

Thermocouple Diameter (m)

Approximate Steady State Localized Temperature Disturbance (deg C)

K-Type Thermocouple, 10 cm long SMA actuator in room temperature air, 1 W applied power
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thermal conductivity as is possible to limit the amount of heat that is dissipated from the shape 

memory actuator. Secondly, the temperature profile becomes more distorted as the thermocouple 

probe diameter increases in size with respect to the actuator diameter. For example, in order to 

obtain less than one degree Celsius of temperature disturbance per Watt of power supplied for a 

K-type thermocouple on a ten-centimeter span of wire, the diameter of the shape memory alloy 

actuator must be approximately five times the diameter of the thermocouple probe. As the span of 

wire increases, the localized temperature disturbance will also decrease as a result of the steady 

state temperature going down across the entire wire. 

The overall temperature disturbance to the measurement for a thermocouple placed onto a 

portion of an SMA actuator is quantified by comparison of the heat transfer lost to the 

thermocouple to the convective heat transfer that would take place if the thermocouple was not 

present (the fin effectiveness, denoted here as ϱ𝑓𝑖𝑛): 

ϱ𝑓𝑖𝑛 = 
√𝑘𝐴𝑐ℎ𝑃tanh (𝜒𝐿)

ℎ𝐴𝑏
 [unitless] (3.1.4.8) 

Simplifying this expression in terms of the geometrical properties of the thermocouple and the 

SMA actuator yields: 

ϱ𝑓𝑖𝑛 =
2√𝑘𝑇𝐶ℎ𝑇𝐶 tanh (

4ℎ𝑇𝐶𝐿𝑇𝐶
𝑘𝑇𝐶𝑑𝑇𝐶

)

ℎ𝑆𝑀𝐴𝑑𝑇𝐶
1/2

 (3.1.4.9) 

 

Again, the hyperbolic tangent term can be set to unity for an infinitely long fin: 

ϱ𝑓𝑖𝑛 =
2√𝑘𝑇𝐶ℎ𝑇𝐶 

ℎ𝑆𝑀𝐴𝑑𝑇𝐶
1/2

 (3.1.4.10) 
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The convection coefficient can be estimated for the thermocouple wires using Eq. 3.1.2.1 

if the working fluid surrounding the SMA actuator is air, otherwise it can be found by using the 

appropriate empirical relationship for the Nusselt number. For situations where Eq. 3.1.2.1 is a 

valid approximation, the temperature disturbance can be modelled as: 

ϱ𝑓𝑖𝑛 ≈ (0.417
m11/5K9/16

W1/2
)

√𝑘𝑇𝐶 

𝑑𝑆𝑀𝐴
4/5𝑑𝑇𝐶

9/10
(𝑇 − 𝑇∞)

−1/16 (3.1.4.11) 

 

For the K-type thermocouple, this relationship becomes:  

ϱ𝑇𝐶,𝐾 ≈
2.105 m17/10K1/16

𝑑𝑆𝑀𝐴
4/5𝑑𝑇𝐶

9/10
(𝑇 − 𝑇∞)

−1/16 (3.1.4.12) 

 

For an average case where 𝑇 − 𝑇∞ = 50℃, such a relationship for a K-type thermocouple becomes: 

ϱ𝑇𝐶,𝐾
𝑎𝑣𝑔 ≈

1.648 m17/10

𝑑𝑆𝑀𝐴
4/5𝑑𝑇𝐶

9/10
 (3.1.4.13) 

In general, the thermocouple effectiveness at removing heat can be expressed in this way as the 

following equation: 

ϱ𝑇𝐶 ≈
𝐴

𝑑𝑆𝑀𝐴
4/5𝑑𝑇𝐶

9/10
 (3.1.4.14) 

This constant can be derived for the commonly used thermocouple types for a variety of 

temperature ranges. The results are tabulated in Table 7. 

Table 7. Constant A in 𝐦𝟏.𝟕 for Thermocouple Fin Effectiveness Model 

 𝑻 − 𝑻∞ = 𝟎℃ 𝑻 − 𝑻∞ = 𝟏𝟎℃ 𝑻 − 𝑻∞ = 𝟓𝟎℃ 𝑻 − 𝑻∞ = 𝟏𝟎𝟎℃ 

K-Type 0 1.824 1.649 1.579 

J-Type 0 2.574 2.327 2.229 

N-Type 0 1.670 1.510 1.446 

T-Type 0 5.246 4.744 4.543 
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The analysis of the fin effectiveness reiterates that a thermocouple with low thermal 

conductivity constituent metals, such as the N-type or K-type thermocouple, will have a lower fin 

effectiveness and therefore not distort the temperature as much (with the heat loss due to 

convection being increased by 50% for these thermocouple types) when compared to 

thermocouples with higher thermal conductivities (such as the J-type or T-type, which can increase 

the local heat loss by well over 100% what it would have been from convection of the actuator 

alone). 
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3.2 Numerical Analysis with Finite Difference Method 

 Even with the lumped capacitance model presented in Equation 3.1.1, the response of a 

wire actuator cannot be obtained analytically. When radiation is also accounted for, the equations 

become even more nonlinear and a numerical approach becomes superior to an analytical 

approach. Using Eq. 2.5.22 as the basis of formulation for the lumped capacitance, or 0-D model, 

a numerical solution can be obtained through numerical integration of the following equation 

which represents an SMA wire actuator that is electrically crimped and tied off to one fixed end 

and the system plant (Figure 11). 

 

 

Figure 11. Simulation Test Case 

 

The equation of motion for the mass is given by: 

𝑚𝑥̈ =  𝑘𝑥 + 𝑐𝑥̇ + 𝐹(𝑡) − 𝐾𝑆𝑀𝐴𝐿(𝜀 − 𝜀𝐿𝜉) − 𝜃𝐸𝐴𝑐(𝑇 − 𝑇0) − 𝐹𝑝𝑟𝑒𝑙𝑜𝑎𝑑  (3.2.1) 

where 𝑘 is the spring rate, 𝑐 is the damping coefficient, x is the position of the mass, m is the mass, 

𝐹(𝑡) is any time-varying applied force to the mass, 𝜀 is the total strain of the wire which is defined 

as zero when the wire is in the Austenite phase with no elastic deformation, 𝜀𝐿𝜉 is the wire 

deformation caused by the phase change, 𝐴𝑐 is the cross-sectional area, 𝜃 is the thermal expansion 
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coefficient in terms of the stress imparted onto the actuator due to the temperature change in the 

actuator, 𝑇 is the temperature of the actuator, 𝑇0 is the initial actuator temperature, and 𝐹𝑝𝑟𝑒𝑙𝑜𝑎𝑑 is 

the preload force. The proceeding sections will derive schemes that can numerically solve for the 

temperature response in the wire for use in these equations of motion.  
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3.2.1 Lumped Capacitance Modelling [0-D Model] 

The simulation process would then solve for the time derivative of temperature at each 

time step using: 

  
𝑑𝑇

𝑑𝑡
= (

1

𝑚𝑐𝑝
){
∆𝑉2

𝑅
− [ℎ𝐴𝑠 + 2𝑘 (

𝐴𝑐
𝐿𝑒𝑛𝑑

)] (𝑇 − 𝑇𝑎𝑖𝑟) − 𝜖𝜎𝑏𝐴𝑠(𝑇
4 − 𝑇𝑎𝑖𝑟

4) −𝑚∆𝐻𝜉̇ + 𝜎𝐴𝑐𝜀𝐿𝜉̇} (3.2.1.1) 

The temperature can then be numerically integrated using a variety of integration schemes 

such as the Trapezoidal Method or Simpson’s Rule: 

𝑇(𝑡) = 𝑇𝑡−∆𝑡 + ∫
𝑑𝑇

𝑑𝑡

𝑡

𝑡−∆𝑡

𝑑𝑡 ≈ 𝑇𝑡−∆𝑡 + 
1

2
(
𝑑𝑇

𝑑𝑡 𝑡−∆𝑡
+
𝑑𝑇

𝑑𝑡 𝑡
)  (3.2.1.2) 

The kinetics model described by Eq. 2.4.5a and Equation 2.4.5b could then be used to 

define the new phase fraction of the lumped mass, which in turn can yield the new macroscopic 

properties for the next time step, as well as a value for 𝜉̇. The temperature equation can then be 

recursively solved for the same time step with an updated phase fraction derivative for more 

accurate results. The strain can then be computed with Eq. 2.2.5, which in turn cause Poisson 

expansion and changes the values of both the cross-sectional area and the surface area of the wire.  
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3.2.2 Axially Discretized Modelling [1-D Model] 

 The shortcomings of the lumped capacitance model is that it does not provide a good way 

to model disturbances along the wire like those that would be present from any sort of probe as 

part of a measurement device and it does not take into account boundary effects at the edges of the 

wire. In order to take into account these considerations, a 1-D model discretizes the SMA wire 

actuator along its length into a series of control volumes. The position index of each node will be 

denoted with i corresponding to a grid spacing of ∆𝑥 =
𝐿

𝑛−1
 where n is the total number of nodes. 

This discretization is illustrated in Figure 12, and 𝑛𝑏 is used to denote the boundary at which 

electricity is used to heat the wire. 

 

Figure 12. Axial Discretization of Wire Actuator 
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  The time step index is denoted with ℓ which corresponds to a time step of ∆𝑡 seconds after 

the preceding time step. The following equations are derived from the conservation of energy about 

a control volume centered around a node and are valid from nodes 𝑖 = 2 to 𝑖 = 𝑛 − 1: 

𝑞̇𝑐𝑜𝑛𝑑,   𝑖−1/2 = 𝑞̇𝑐𝑜𝑛𝑑,   𝑖+1/2 + 𝑞̇𝑐𝑜𝑛𝑣,   𝑖 + 𝑞̇𝑟𝑎𝑑,   𝑖 + 𝑞̇𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐,   𝑖 + 𝑞̇𝑙𝑎𝑡𝑒𝑛𝑡 ℎ𝑒𝑎𝑡,   𝑖 + 𝑞̇𝑠𝑡𝑜𝑟𝑒𝑑,   𝑖 (3.2.2.1) 

 Upon evaluation of each expression, a number of them are found to contain derivatives of 

temperature curve with respect to x. These derivatives are evaluated for a general case of time 

between the current time step ℓ and the time step ℓ + 1 by utilizing a weighting factor 𝛾, where 

0 ≤ 𝛾 ≤ 1, and evaluating the nodal temperatures at a time step of ℓ + 𝛾. Therefore, the 

conservation of energy equation given in Eq. 3.2.2.1 becomes: 

𝑘
𝑖−
1
2
𝜋𝑟2

𝑇𝑖−1
ℓ+𝛾

− 𝑇𝑖
ℓ+𝛾

∆𝑥
+ (𝐼2𝑅 + 𝜎𝐴𝑐𝐿𝜀𝐿

𝜉𝑖
ℓ+1 − 𝜉𝑖

ℓ

∆𝑡
) (
∆𝑥

𝐿
)

= 𝑘
𝑖+
1
2
𝜋𝑟2

𝑇𝑖
ℓ+𝛾

− 𝑇𝑖+1
ℓ+𝛾

∆𝑥
+ 2ℎ𝑖𝜋𝑟∆𝑥(𝑇𝑖

ℓ+𝛾
− 𝑇𝑎𝑖𝑟) + 2𝜖𝜎𝑏𝜋𝑟∆𝑥 ([𝑇𝑖

ℓ+𝛾
]
4
− 𝑇𝑎𝑖𝑟

4)

+ 𝜌𝜋𝑟2∆𝑥∆𝐻
𝜉𝑖
ℓ+1 − 𝜉𝑖

ℓ

∆𝑡
+ 𝜌𝑐𝑝𝜋𝑟

2∆𝑥
𝑇𝑖
ℓ+1 − 𝑇𝑖

ℓ

∆𝑡
 

(3.2.2.2) 

 While this is an adequate discretized model, a more accurate model can be developed by 

viewing the temperature profile in the wire as a series of lines that connect each nodal temperature 

and integrating the heat equation over the entire control volume. Formally, this is termed the weak 

form of the solution and is expressed as: 

 

 ∫ {𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
−
𝜕

𝜕𝑥
 [𝑘
𝜕𝑇

𝜕𝑥
] −

4ℎ

𝑑
(𝑇 − 𝑇∞) −

4𝜖𝜎𝑏
𝑑

(𝑇4 − 𝑇∞
4) − 𝑞̇′′′𝑔𝑒𝑛}

𝑥𝑖+∆𝑥/2

𝑥𝑖−∆𝑥/2

𝑑𝑥 = 0 
(3.2.1.3) 
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Performing this integration and discretizing the solution, the following system is obtained: 

𝑘
𝑖−
1
2

𝑇𝑖−1
ℓ+𝛾

− 𝑇𝑖
ℓ+𝛾

∆𝑥
+ 𝐼2𝑅 (

∆𝑥

𝜋𝑟2𝐿
)+ 𝜎𝜀𝐿∆𝑥

𝜉𝑖
ℓ+1 − 𝜉𝑖

ℓ

∆𝑡

= 𝑘
𝑖+
1
2

𝑇𝑖
ℓ+𝛾

− 𝑇𝑖+1
ℓ+𝛾

∆𝑥
+
2ℎ𝑖∆𝑥

𝑟
(3𝑇𝑖

ℓ+1 +
𝑇𝑖+1
ℓ+𝛾

+ 𝑇𝑖−1
ℓ+𝛾

2
− 4𝑇𝑎𝑖𝑟)

+
2𝜖𝜎𝑏∆𝑥

𝑟
([𝑇𝑖

ℓ+𝛾
]
4
− 𝑇𝑎𝑖𝑟

4) + 𝜌∆𝑥∆𝐻
𝜉𝑖
ℓ+1 − 𝜉𝑖

ℓ

∆𝑡

+ 𝜌𝑐𝑝
∆𝑥

∆𝑡
[
1

8
((𝑇𝑖+1

ℓ+1 + 𝑇𝑖−1
ℓ+1) − (𝑇𝑖+1

ℓ + 𝑇𝑖−1
ℓ )) +

3

4
(𝑇𝑖

ℓ+1 − 𝑇𝑖
ℓ)] 

(3.2.2.4) 

This can be algebraically manipulated to form an energy balance equation for each node: 

𝑓𝑖 = 0 = (1 −
ℎ𝑖Δ𝑥

2

𝑘
𝑖−
1
2
𝑟
)𝑇𝑖−1

ℓ+𝛾
− (1 +

𝑘
𝑖+
1
2

𝑘
𝑖−
1
2

+
6ℎ𝑖Δ𝑥

2

𝑘
𝑖−
1
2
𝑟
)𝑇𝑖

ℓ+𝛾
−
2𝜖𝜎𝑏Δ𝑥

2

𝑘
𝑖−
1
2
𝑟

(𝑇𝑖
ℓ+𝛾
)
4

+ (

𝑘
𝑖+
1
2

𝑘
𝑖−
1
2

−
ℎ𝑖Δ𝑥

2

𝑘
𝑖−
1
2
𝑟
)𝑇𝑖+1

ℓ+𝛾
+
8ℎ𝑖Δ𝑥

2

𝑘
𝑖−
1
2
𝑟
𝑇𝑎𝑖𝑟 +

2𝜖𝜎𝑏Δ𝑥
2

𝑘
𝑖−
1
2
𝑟

(𝑇𝑎𝑖𝑟)
4 + (

∆𝑥2

𝐿𝑘
𝑖−
1
2
𝜋𝑟2

) 𝐼2𝑅

+ (
∆𝑥2

𝑘
𝑖−
1
2

) [𝜎𝜀𝐿
𝜉𝑖
ℓ+1 − 𝜉𝑖

ℓ

∆𝑡
] −

𝜌∆𝑥2∆𝐻

𝑘
𝑖−
1
2

(
𝜉
𝑖
ℓ+1 − 𝜉

𝑖
ℓ

∆𝑡
)

−
𝜌𝑐𝑝Δ𝑥

2

𝑘
𝑖−
1
2
∆𝑡
[
1

8
((𝑇𝑖+1

ℓ+1 + 𝑇𝑖−1
ℓ+1) − (𝑇𝑖+1

ℓ + 𝑇𝑖−1
ℓ )) +

3

4
(𝑇𝑖

ℓ+1 − 𝑇𝑖
ℓ)] 

 

(3.2.2.5) 

 Because the thermal conductivity is likely to be different for control volumes in contact, 

an equivalent thermal conductivity is used that reflects the abrupt change for control volume 

interface between nodes 𝑖 and 𝑖 + 1: 

𝑘
𝑖+
1
2
=
2𝑘𝑖+1𝑘𝑖
𝑘𝑖+1 + 𝑘𝑖

 
(3.2.2.6) 
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In order to simplify the system the following constants can be defined: 

𝐶1 =
2ℎ𝑖Δ𝑥

2

𝑘
𝑖−
1

2

𝑟
= Bi (

∆𝑥

𝑟
)
2

 [dimensionless] (3.2.2.7) 

𝐶2 =
2𝜖𝜎𝑏Δ𝑥

2

𝑘
𝑖−
1

2

𝑟
 [𝐾−3] 

(3.2.2.8) 

𝐶3 =
𝜌𝑐𝑝∆𝑥

2

𝑘
𝑖−
1

2

∆𝑡
=
1

Fo
 [dimensionless] (3.2.2.9) 

𝑘𝑟 =
𝑘
𝑖+
1

2

𝑘
𝑖−
1

2

=
𝑘𝑖+1

𝑘𝑖−1
(
𝑘𝑖 + 𝑘𝑖−1

𝑘𝑖 + 𝑘𝑖+1
) [dimensionless] (3.2.2.10) 

𝐶𝐻 =
𝜌∆𝑥2∆𝐻

𝑘
𝑖−
1

2

 [K ∙ s] (3.2.2.11) 

𝐶𝑒 =
∆𝑥2

𝐿𝑘
𝑖−
1

2

𝜋𝑟2
 [
K

W
] (3.2.2.12) 

𝐶𝑊 =
∆𝑥2

𝑘
𝑖−
1

2

 [
K m2

W
] (3.2.2.13) 

The system then becomes: 

𝑓𝑖 = 0 = (1 −
𝐶1
2
)𝑇𝑖−1

ℓ+𝛾
− (1 + 𝑘𝑟 + 3𝐶1)𝑇𝑖

ℓ+𝛾
− 𝐶2(𝑇𝑖

ℓ+𝛾
)
4
+ (𝑘𝑟 −

𝐶1
2
)𝑇𝑖+1

ℓ+𝛾
+ 4𝐶1𝑇𝑎𝑖𝑟

+ 𝐶2(𝑇𝑎𝑖𝑟)4 + 𝐶𝑒𝐼2𝑅 + 𝐶𝑊 [𝜎𝜀𝐿
𝜉𝑖
ℓ+1 − 𝜉𝑖

ℓ

∆𝑡
] − 𝐶𝐻 (

𝜉
𝑖
ℓ+1 − 𝜉

𝑖
ℓ

∆𝑡
)

− 𝐶3 [
1

8
((𝑇𝑖+1

ℓ+1 + 𝑇𝑖−1
ℓ+1) − (𝑇𝑖+1

ℓ + 𝑇𝑖−1
ℓ )) +

3

4
(𝑇𝑖

ℓ+1 − 𝑇𝑖
ℓ)] 

(3.2.2.14) 

 For this analysis, it is preferred to let 𝛾 = 1, which is the Backward Time Centered Space 

solution method for the transient response of the thermal system, because it can be shown that this 

methodology is unconditionally stable for all grid spacing and time step increments. For contrast, 

letting 𝛾 = 0 would yield an explicit equation for the temperature at each node at the next time 
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step, but it can be shown that this method is unstable for Fo >
1

2
. The conservation of energy 

equations then become: 

𝑓𝑖 = 0 = (1 −
𝐶1
2
)𝑇𝑖−1

ℓ+1 − (1 + 𝑘𝑟 + 3𝐶1)𝑇𝑖
ℓ+1 − 𝐶2(𝑇𝑖

ℓ+1)
4
+ (𝑘𝑟 −

𝐶1
2
)𝑇𝑖+1

ℓ+1 + 4𝐶1𝑇𝑎𝑖𝑟

+ 𝐶2(𝑇𝑎𝑖𝑟)
4 + 𝐶𝑒𝐼

2𝑅 + 𝐶𝑊 [𝜎𝜀𝐿
𝜉𝑖
ℓ+1 − 𝜉𝑖

ℓ

∆𝑡
] − 𝐶𝐻 (

𝜉𝑖
ℓ+1 − 𝜉𝑖

ℓ

∆𝑡
)

− 𝐶3 [
1

8
((𝑇𝑖+1

ℓ+1 + 𝑇𝑖−1
ℓ+1) − (𝑇𝑖+1

ℓ + 𝑇𝑖−1
ℓ )) +

3

4
(𝑇𝑖

ℓ+1 − 𝑇𝑖
ℓ)] 

(3.2.2.15) 

Due to the nature of the third constant, it is more convenient to utilize the Fourier number and 

rewrite the constants such that:  

𝐶1 =
2ℎ𝑖Δ𝑥

2

𝑘
𝑖−
1

2

𝑟
Fo = BiFo (

∆𝑥

𝑟
)
2

 (3.2.2.16) 

𝐶2 =
2𝜖𝜎𝑏Δ𝑥

2

𝑘
𝑖−
1

2

𝑟
Fo 

(3.2.2.17) 

𝐶𝐻 =
𝜌∆𝑥2∆𝐻

𝑘
𝑖−
1

2

Fo =
∆𝐻∆𝑡

𝑐𝑝
 (3.2.2.18) 

𝐶𝑒 =
∆𝑥2

𝐿𝑘
𝑖−
1

2

𝜋𝑟2
Fo =

∆𝑡

𝜌𝑐𝑝𝐿𝜋𝑟2
 (3.2.2.19) 

𝐶𝑊 =
∆𝑥2

𝐿𝑘
𝑖−
1

2

Fo =
∆𝑡

𝜌𝑐𝑝𝐿
 (3.2.2.20) 

Now, the system of conservation of energy equations for the inner nodes becomes: 

𝑓𝑖 = 0 = (
1

8
− Fo +

𝐶1

2
)𝑇𝑖−1

ℓ+1 + (
3

4
+ Fo𝑘𝑟 + Fo + 3𝐶1) 𝑇𝑖

ℓ+1 − 𝐶2(𝑇𝑖
ℓ+1)

4
+ (

1

8
− Fo𝑘𝑟 +

𝐶1

2
)𝑇𝑖+1

ℓ+1

− 4𝐶1𝑇𝑎𝑖𝑟 − 𝐶2(𝑇𝑎𝑖𝑟)
4 − 𝐶𝑒𝐼

2𝑅 − 𝐶𝑊 [𝜎𝜀𝐿
𝜉𝑖
ℓ+1 − 𝜉𝑖

ℓ

∆𝑡
] + 𝐶𝐻 (

𝜉𝑖
ℓ+1 − 𝜉𝑖

ℓ

∆𝑡
)

−
1

8
((𝑇𝑖+1

ℓ + 𝑇𝑖−1
ℓ )) −

3

4
𝑇𝑖
ℓ 

(3.2.2.21) 
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 It is worth noting that although Eq. 3.2.2.19 is derived using a first order backwards 

difference method computation of both the actuator stress and nodal phase fraction, higher order 

numerical differentiation methods are utilized in simulations for numerical stability and 

smoothness of the solution. These numerical derivatives, all backwards in time of varying orders 

of accuracy are given for some time varying property 𝜓(𝑡) [77]: 

First Order:      
∂𝜓

∂t
≈
𝜓ℓ+1 −𝜓ℓ

∆𝑡
 (3.2.2.22a) 

Second Order: 
∂𝜓

∂t
≈
3𝜓ℓ+1 − 4𝜓ℓ + 𝜓ℓ+1

2∆𝑡
 (3.2.2.22b) 

Third Order:    
∂𝜓

∂t
≈
22𝜓ℓ+1 − 36𝜓ℓ + 18𝜓ℓ−1 − 4𝜓ℓ−2

12∆𝑡
 (3.2.2.22c) 

Fourth Order:  
∂𝜓

∂t
≈
25𝜓ℓ+1 − 48𝜓ℓ + 36𝜓ℓ−1 − 16𝜓ℓ−2 + 3𝜓ℓ−3

12∆𝑡
 (3.2.2.22d) 

Fifth Order:      
∂𝜓

∂t
≈
137𝜓ℓ+1 − 300𝜓ℓ + 300𝜓ℓ−1 − 200𝜓ℓ−2 + 75𝜓ℓ−3 − 12𝜓ℓ−4

60∆𝑡
 (3.2.2.22e) 

Sixth Order:     
∂𝜓

∂t
≈
147𝜓ℓ+1 − 360𝜓ℓ + 450𝜓ℓ−1 − 400𝜓ℓ−2 + 225𝜓ℓ−4 − 72𝜓ℓ−4 + 10𝜓ℓ−5

60∆𝑡
 (3.2.2.22f) 

For smoother solutions, it is suggested that a linear relationship be assumed for the phase 

fraction between each node such that the average phase fraction inside of each control volume is 

given by: 

[𝜉𝑖
𝑒𝑓𝑓
]
ℓ
=
2𝜉𝑖

ℓ + 𝜉𝑖−1
ℓ + 𝜉𝑖+1

ℓ

4
 (3.2.2.23) 

 This expression can then be differentiated to compute the phase fraction time derivative in 

recursive fashion in order to compute more accurate expressions for the nodal temperatures. 

However, it has been found through a number of simulations that this technique results in artificial 

cooling of the first unheated node outside of the electrically heated domain and artificial heating 

of the first heated node inside of the electrically heated domain. These errors at the interface are a 

result of a misrepresentation of the phase composition of the interface and a misapplication of the 
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latent heat of transformation as a result. Because of this, it is recommended that 𝜉𝑛𝑏
𝑒𝑓𝑓

= 𝜉𝑛𝑏
ℓ  and 

𝜉𝑛𝑏−1
𝑒𝑓𝑓

= 𝜉𝑛𝑏−1
ℓ . 

The two equations that define the boundary conditions for 𝑖 = 1 and 𝑖 = 𝑛 will be 

established based on the fact that the two boundary conditions must be explicitly given. The 

governing assumption for the boundary conditions will be that the boundaries are far enough from 

the electric crimps so as to be considered constant at the ambient temperature of the air. Therefore: 

𝑓1 = 0 = 𝑇1
ℓ+1 − 𝑇𝑎𝑖𝑟 (3.2.2.24) 

𝑓𝑛 = 0 = 𝑇𝑛
ℓ+1 − 𝑇𝑎𝑖𝑟 (3.2.2.25) 

The partial derivatives of 𝑓𝑖 with respect to nodal temperatures for the nodes ranging from 𝑖 = 1 

and 𝑖 = 𝑛 − 1 are given by: 

𝜕𝑓
𝑖

𝜕𝑇𝑖−1
ℓ+1 =

1

8
− Fo +

𝐶1
2

 (3.2.2.26) 

𝜕𝑓
𝑖

𝜕𝑇𝑖
ℓ+1 =

3

4
+ Fo𝑘𝑟 + 𝑘𝑟 + 3𝐶1 +  4𝐶2(𝑇𝑖

ℓ+1)
3
 

(3.2.2.27) 

𝜕𝑓
𝑖

𝜕𝑇𝑖+1
ℓ+1 =

1

8
− Fo𝑘𝑟 +

𝐶1
2

 (3.2.2.28) 

The partial derivatives of 𝑓𝑖 with respect to nodal temperatures for the boundary nodes at 𝑖 = 1 and 

𝑖 = 𝑛 − 1 are given by: 

𝜕𝑓
𝑖

𝜕𝑇𝑖−1
ℓ+1 = 0 (3.2.2.29) 

𝜕𝑓
𝑖

𝜕𝑇𝑖
ℓ+1

= 1 
(3.2.2.30) 

𝜕𝑓
𝑖

𝜕𝑇𝑖+1
ℓ+1 = 0 (3.2.2.31) 



67 

 

 The Jacobian, 𝐽,̿ of the system will take the form of a tridiagonal matrix and is invertible. 

Therefore, if an initial guess is made for the change in temperature of each node for the next time 

step which will be a vector of temperatures termed ∆𝑇ℓ+1̅̅ ̅̅ ̅̅ ̅̅ , Newton’s method allows for the values 

of ∆𝑇̅̅̅̅  to be improved through an iterative process such that: 

𝑓ℓ+1,   new̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑓ℓ+1,   old̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝐽 ̿∆𝑇ℓ+1̅̅ ̅̅ ̅̅ ̅̅  (3.2.2.32) 

∆𝑇ℓ+1̅̅ ̅̅ ̅̅ ̅̅ = 𝐽−̿1(𝑓ℓ+1,   new̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −  𝑓ℓ+1,   old̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) (3.2.2.33) 

Because the conservation of energy equations should sum to zero, 𝑓ℓ+1,   new̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is set to zero and: 

∆𝑇ℓ+1̅̅ ̅̅ ̅̅ ̅̅ = −𝐽−̿1𝑓ℓ+1,   old̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (3.2.2.34) 

This process may be iterated through as many times is required until the temperature at 

each node at the proceeding time step converges to a solution. The first iteration will use 

𝑇ℓ+1,   old̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑇ℓ̅̅ ̅ and compute the Jacobian that reflects this condition. The Jacobian is also updated 

upon updating the nodal temperatures with each iteration because the Jacobian is dependent on the 

nodal temperatures at the time step ℓ + 1 due to the radiation term. In order to check for the 

convergence of the simulation at each time step, the root mean squared value of the ∆𝑇ℓ+1̅̅ ̅̅ ̅̅ ̅̅  vector 

is used to evaluate the error for each iteration. The iterations at a given time step will cease when 

this value falls below a maximum allowable error band.  

Similarly to the lumped capacitance model, once the new temperatures are found, the phase 

fraction at the next time step can be computed. The solution the temperature and phase fraction 

are intertwined by definition due to latent heat, so as the phase fraction is solved for it must be 

used to recursively solve for the temperature. As the wire length changes, uniform spacing of the 

nodes is important to maintain the form of the system of equations, so grid spacing changes after 

every time step to reflect to resizing of the wire.  
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In order to reflect the fact that there are lengths of wire outside of where the electric crimps 

connect, a group of nodes are placed on both sides of the geometry outside of the inner nodes and 

their lengths of wire do not contribute to the computed resistance of the wire, nor does any current 

pass through them. Therefore, Equation 95 still applies to these nodes, but the term representing 

the electric power will be removed. In this way, the boundary effects can be numerically solved 

for.  

 The resistance of the electrically heated portion of wire is computed by summing the 

resistance of each control volume as though they were resistors in series such that: 

𝑅 =∑[𝜌𝑒]𝑖
∆𝑥

𝜋𝑟2

𝑛

𝑖=1

 (3.2.2.35) 

Once the nodal temperatures are solved for, the conductive heat transfer out of each face 

of the actuator, the heat transfer off of the wire, and the absorbed heat can be solved for: 

𝑞̇𝑐𝑜𝑛𝑑,𝑙𝑒𝑓𝑡 = −𝑘𝐴𝑐
𝑑𝑇

𝑑𝑥
|
𝑥=0

 (3.2.2.36) 

𝑞̇𝑐𝑜𝑛𝑑,𝑟𝑖𝑔ℎ𝑡 = −𝑘𝐴𝑐
𝑑𝑇

𝑑𝑥
|
𝑥=𝐿

 
(3.2.2.37) 

𝑞̇𝑜𝑓𝑓 = ∫ ℎ𝐴𝑠(𝑇𝑖 − 𝑇𝑓𝑙𝑢𝑖𝑑)𝑑𝑥
𝐿

0

+∫ 𝜖𝜎𝑏𝐴𝑠(𝑇𝑖
4 − 𝑇𝑓𝑙𝑢𝑖𝑑

4)𝑑𝑥
𝐿

0

 (3.2.2.38) 

𝑞̇𝑠𝑡𝑜𝑟𝑒𝑑 = ∫ 𝜌𝐴𝑐∆𝑥𝑐𝑝
𝑑𝑇𝑖
𝑑𝑡

𝐿

0

𝑑𝑥 + ∫ 𝜌𝐴𝑐∆𝑥
𝑑𝜉𝑖
𝑑𝑡

𝐿

0

𝑑𝑥 (3.2.2.39) 

Conservation of energy will dictate the following relationship between the quantities while 

transient effects are still noticeable (and the rate of energy storage in the actuator is not 

negligible): 

𝑞̇𝑐𝑜𝑛𝑑,𝑙𝑒𝑓𝑡 − 𝑞̇𝑐𝑜𝑛𝑑,𝑟𝑖𝑔ℎ𝑡 − 𝑞̇𝑜𝑓𝑓 = 𝑞̇𝑠𝑡𝑜𝑟𝑒𝑑 + 𝑞̇𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 + 𝐼
2𝑅 (3.2.2.40) 
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If steady state is reached and the time derivative of temperature at each node tends towards 

zero, the rate of energy storage in the actuator becomes negligible and the steady state relation 

between these quantities can be obtained: 

𝑞̇𝑐𝑜𝑛𝑑,𝑙𝑒𝑓𝑡 − 𝑞̇𝑐𝑜𝑛𝑑,𝑟𝑖𝑔ℎ𝑡 = 𝑞̇𝑜𝑓𝑓 + 𝐼
2𝑅 (3.2.2.41) 

Note that the effects of plasticity have been considered negligible due to their small contribution 

to the energy balance. These procedures will need to run until steady state is reached or until the 

controller stabilizes the system. To test for convergence of the solutions to steady state, a 

dimensionless heat transfer ratio is defined: 

𝑞∗ =
𝑞̇𝑠𝑡𝑜𝑟𝑒𝑑
𝑞̇𝑐𝑜𝑛𝑑,𝑙𝑒𝑓𝑡

 (3.2.2.42) 

Steady state can be said to have been reached as this quantity tends towards zero. For 

simulations that analyze a pure heating or cooling response, as time increases towards infinity the 

system should always tend towards steady state. This cannot be the only check for steady state, 

because as the number of nodes is reduced errors in the 𝑞̇𝑠𝑡𝑜𝑟𝑒𝑑 term emerge due to the lower 

resolution and numerical errors with the integration. In lieu of utilizing this parameter to check for 

steady state, two more reliable parameters can be developed instead: 

(𝑞∗)ℓ+1 − (𝑞∗)ℓ ≈ 0 as 𝑡 → 𝑡𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 (3.2.2.43) 

[
𝑑𝑇𝑖
𝑑𝑡
]
𝑎𝑣𝑔

=
∑ (

𝑑𝑇𝑖
𝑑𝑡
)𝑖=𝑛

𝑖=1

𝑛
→ 0 as 𝑡 → 𝑡𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 

(3.2.2.44) 
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3.2.3 Axially and Radially Discretized Modelling [2-D Model] 

 In order to capture the distribution of temperatures radially as well as lengthwise in an 

SMA actuator, the system must be discretized radially as well as lengthwise. Due to symmetry, 

these radial control volumes can be viewed as thin disks around the actuator centerline. The 

solution process is very similar to the 1-D case, except now the lengthwise temperature profiles 

are found for each line of nodes radially and then the radial effects are accounted for by moving 

line by line across each column of nodes lengthwise. The nodal position indices lengthwise and 

radially are denoted (i, j) and correspond with grid spacing of ∆𝑥 =
𝐿

𝑛𝐿−1
 and ∆𝑟 =

𝑟

𝑛𝑟−1
, 

respectively, where 𝑛𝐿 denotes the number of nodes lengthwise and 𝑛𝑟 denotes the number of 

nodes radially. The position 𝑗 =  1 corresponds with the centerline of the actuator. The time index 

is again denoted ℓ which corresponds to a time step of ∆𝑡.  

 

Figure 13. 2-D Discretization of Wire Actuator 
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 The first portion of the solution process is to compute the effects of lengthwise thermal 

conduction and electric energy generation as well as the latent heat of transformation for all rows 

of nodes, as well as convection and radiation for the surface nodes, by solving conservation of 

energy relations for each line of nodes along the length of the wire. By integrating the heat equation 

over the control volumes for the inner nodes described by 𝑖 ∈ [2, 𝑛𝐿 − 1] and 𝑗 ∈ [1, 𝑛𝐿 − 1], the 

conservation of energy equations are given by: 

𝑘
𝑖−
1
2
,   𝑗
𝜋 ((𝑟𝑗 +

∆𝑟

2
)2 − (𝑟𝑗 −

∆𝑟

2
)2)

𝑇𝑖−1,   𝑗
ℓ+𝛾

− 𝑇𝑖,   𝑗
ℓ+𝛾

∆𝑥

= 𝑘
𝑖+
1
2
,   𝑗
𝜋 ((𝑟𝑗 +

∆𝑟

2
)2 − (𝑟𝑗 −

∆𝑟

2
)2)

𝑇𝑖,   𝑗
ℓ+𝛾

− 𝑇𝑖+1,   𝑗
ℓ+𝛾

∆𝑥

− [𝐼2𝑅 + 𝜎𝐴𝑐𝐿𝜀𝐿
𝜉𝑖
ℓ+1 − 𝜉𝑖

ℓ

∆𝑡
] (
∆𝑥

𝐿
)(
((𝑟𝑗 +

∆𝑟
2
)2 − (𝑟𝑗 −

∆𝑟
2
)2)

𝑟2
)

+ 𝜌𝜋 ((𝑟𝑗 +
∆𝑟

2
)2 − (𝑟𝑗 −

∆𝑟

2
)2) ∆𝑥∆𝐻

𝜉𝑖,   𝑗
ℓ+1 − 𝜉𝑖,   𝑗

ℓ

∆𝑡

+ 𝜌𝑐𝑝𝜋 ((𝑟𝑗 +
∆𝑟

2
)2 − (𝑟𝑗 −

∆𝑟

2
)2)

∆𝑥

∆𝑡
[
1

8
((𝑇𝑖,𝑗

ℓ+1 + 𝑇𝑖,𝑗
ℓ+1) − (𝑇𝑖,𝑗

ℓ + 𝑇𝑖,𝑗
ℓ ))

+
3

4
(𝑇𝑖,𝑗

ℓ+1 − 𝑇𝑖,𝑗
ℓ )] 

(3.2.3.1) 

𝑟𝑗 denotes the position of the node that composes each discretized disk such that 𝑟𝑗 =

0, Δ𝑟, 2Δ𝑟,… , 𝑟. Note that the effects of radiation and convection are neglected because these 

nodes only transfer heat between them via conduction. This can be algebraically manipulated to 

form an energy balance equation for each node: 
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𝑓𝑖,𝑗 = 0 = 𝑇𝑖−1,𝑗
ℓ+𝛾

− (1 +
𝑘𝑖+1,𝑗

𝑘𝑖−1,𝑗
(
𝑘𝑖,𝑗 + 𝑘𝑖−1,𝑗

𝑘𝑖,𝑗 + 𝑘𝑖+1,𝑗
))𝑇𝑖,𝑗

ℓ+𝛾
+ (

𝑘𝑖+1,𝑗

𝑘𝑖−1,𝑗
(
𝑘𝑖,𝑗 + 𝑘𝑖−1,𝑗

𝑘𝑖,𝑗 + 𝑘𝑖+1,𝑗
))𝑇𝑖+1,𝑗

ℓ+𝛾

+ (
∆𝑥2

𝐿𝑘
𝑖−
1
2
,𝑗
𝜋𝑟2

) [𝐼2𝑅 + 𝜎𝐴𝑐𝐿𝜀𝐿
𝜉𝑖
ℓ+1 − 𝜉𝑖

ℓ

∆𝑡
] −

𝜌∆𝑥2∆𝐻

𝑘
𝑖−
1
2
,𝑗

(
𝜉𝑖
ℓ+1 − 𝜉𝑖

ℓ

∆𝑡
)

−
𝜌𝑐𝑝Δ𝑥

2

𝑘
𝑖−
1
2
,𝑗
∆𝑡
[
1

8
((𝑇𝑖,𝑗

ℓ+1 + 𝑇𝑖,𝑗
ℓ+1) − (𝑇𝑖,𝑗

ℓ + 𝑇𝑖,𝑗
ℓ )) +

3

4
(𝑇𝑖,𝑗

ℓ+1 − 𝑇𝑖,𝑗
ℓ )] 

(3.2.3.2) 

This expression is simplified through the use of the discretized lengthwise Fourier number: 

Fo∆x =
𝑘
𝑖−
1

2
,𝑗
∆𝑡

𝜌𝑐𝑝∆𝑥2
 (3.2.3.3) 

𝑘𝑟 =
𝑘
𝑖+
1

2
,𝑗

𝑘
𝑖−
1

2
,𝑗

=
𝑘𝑖+1,𝑗

𝑘𝑖−1,𝑗
(
𝑘𝑖,𝑗 + 𝑘𝑖−1,𝑗

𝑘𝑖,𝑗 + 𝑘𝑖+1,𝑗
) (3.2.3.4) 

The lengthwise conservation of energy equations for the inner nodes then becomes for 𝛾 = 1: 

𝑓𝑖,𝑗 = 0 = (
1

8
− Fo∆x) 𝑇𝑖−1,𝑗

ℓ+1 + (
3

4
+ Fo𝑘𝑟 + 𝑘𝑟)𝑇𝑖,𝑗

ℓ+1 + (
1

8
− Fo𝑘𝑟) 𝑇𝑖+1,𝑗

ℓ+1 − 𝐶𝑒𝐼
2𝑅 − 𝐶𝑊 [𝜎𝜀𝐿

𝜉𝑖
ℓ+1 − 𝜉𝑖

ℓ

∆𝑡
]

+ 𝐶𝐻 (
𝜉𝑖,𝑗
ℓ+1 − 𝜉𝑖,𝑗

ℓ

∆𝑡
) −

1

8
((𝑇𝑖+1,𝑗

ℓ + 𝑇𝑖−1,𝑗
ℓ )) −

3

4
𝑇𝑖,𝑗
ℓ  

(3.2.3.5) 

For the surface nodes described by 𝑖 ∈ [2, 𝑛𝐿 − 1] and 𝑗 = 𝑛𝑟, energy loss from convection and 

radiation are taken into account such that: 
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𝑘
𝑖−
1
2
,   𝑗
𝜋 (𝑟2 − (𝑟𝑗 −

∆𝑟

2
)2)

𝑇𝑖−1,𝑗
ℓ+𝛾

− 𝑇𝑖,𝑗
ℓ+𝛾

∆𝑥

= 𝑘
𝑖+
1
2
,   𝑗
𝜋 (𝑟2 − (𝑟𝑗 −

∆𝑟

2
)2)

𝑇𝑖,𝑗
ℓ+𝛾

− 𝑇𝑖+1,𝑗
ℓ+𝛾

∆𝑥

+ +2ℎ𝑖,𝑛𝑟𝜋𝑟∆𝑥 (3𝑇𝑖,𝑛𝑟 
ℓ+𝛾

+
𝑇𝑖−1,𝑗
ℓ+𝛾

+ 𝑇𝑖+1,𝑗
ℓ+𝛾

2
− 𝑇𝑎𝑖𝑟) + 2𝜖𝜎𝑏𝜋𝑟∆𝑥 ([𝑇𝑖,𝑛𝑟

ℓ+𝛾
]
4
− 𝑇𝑎𝑖𝑟

4)

+ [𝐼2𝑅 + 𝜎𝐴𝑐𝐿𝜀𝐿
𝜉𝑖
ℓ+1 − 𝜉𝑖

ℓ

∆𝑡
] (
∆𝑥

𝐿
)(
(𝑟2 − (𝑟𝑗 −

∆𝑟
2
)2)

𝑟2
)

+ 𝜌𝜋 ((𝑟𝑗 +
∆𝑟

2
)2 − (𝑟𝑗 −

∆𝑟

2
)2) ∆𝑥∆𝐻

𝜉𝑖,𝑗
ℓ+1 − 𝜉𝑖,𝑗

ℓ

∆𝑡

+ 𝜌𝑐𝑝𝜋 (𝑟
2 − (𝑟𝑗 −

∆𝑟

2
)2)

∆𝑥

∆𝑡
[
1

8
((𝑇𝑖,𝑗

ℓ+1 + 𝑇𝑖,𝑗
ℓ+1) − (𝑇𝑖,𝑗

ℓ + 𝑇𝑖,𝑗
ℓ )) +

3

4
(𝑇𝑖,𝑗

ℓ+1 − 𝑇𝑖,𝑗
ℓ )] 

(3.2.3.6) 

 

In order to simplify the system the following constants can be defined: 

𝐶1 =
2ℎ𝑖,𝑛𝑟Δ𝑥

2

𝑘
𝑖−
1

2
,𝑗
𝑟
FoΔ𝑥 = BiFoΔ𝑥 (

∆𝑥

𝑟
)
2

 (3.2.3.7) 

𝐶2 =
2𝜖𝜎𝑏Δ𝑥

2

𝑘
𝑖−
1

2
,𝑗
𝑟

FoΔ𝑥 
(3.2.3.8) 

𝐶𝐻 =
𝜌∆𝑥2∆𝐻

𝑘
𝑖−
1

2
,𝑗

FoΔ𝑥 =
∆𝐻∆𝑡

𝑐𝑝
 

(3.2.3.9) 

𝐶𝑒 =
∆𝑥2

𝐿𝑘
𝑖−
1

2
,𝑗
𝜋𝑟2
FoΔ𝑥 =

∆𝑡

𝜌𝑐𝑝𝐿𝜋𝑟2
 

(3.2.3.10) 

𝐶𝑊 =
∆𝑥2

𝑘
𝑖−
1
2
,𝑗

FoΔ𝑥 =
∆𝑡

𝜌𝑐𝑝
 

(3.2.3.11) 
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The lengthwise conservation of energy equations for the inner nodes then becomes for 𝛾 = 1: 

𝑓𝑖,𝑗 = 0 = (
1

8
− Fo∆x +

𝐶1
2
) 𝑇𝑖−1,𝑗

ℓ+1 + (
3

4
+ Fo∆x𝑘𝑟 + Fo∆x + 3𝐶1) 𝑇𝑖,𝑗

ℓ+1 + (
1

8
− Fo∆x𝑘𝑟 +

𝐶1
2
) 𝑇𝑖+1,𝑗

ℓ+1

− 𝐶𝑒𝐼
2𝑅 − 4𝐶1𝑇∞ − 𝐶𝑊 [𝜎𝜀𝐿

𝜉𝑖
ℓ+1 − 𝜉𝑖

ℓ

∆𝑡
] + 𝐶𝐻 (

𝜉𝑖,𝑗
ℓ+1 − 𝜉𝑖,𝑗

ℓ

∆𝑡
) −

1

8
((𝑇𝑖+1,𝑗

ℓ + 𝑇𝑖−1,𝑗
ℓ ))

−
3

4
𝑇𝑖,𝑗
ℓ  

(3.2.3.12) 

The two equations that define the boundary conditions for 𝑖 = 1 and 𝑖 = 𝑛 for all j will be 

established based on the fact that the two boundary conditions must be explicitly given. The 

governing assumption for the boundary conditions will be that the boundaries are far enough from 

the electric crimps so as to be considered constant at the ambient temperature of the air. Therefore: 

𝑓1,𝑗 = 0 = 𝑇1,𝑗
ℓ+1 − 𝑇𝑎𝑖𝑟 (3.2.3.13) 

𝑓𝑛𝑥,𝑗 = 0 = 𝑇𝑛𝑥,𝑗
ℓ+1 − 𝑇𝑎𝑖𝑟 (3.2.3.14) 

The Jacobian can then be formulated for each row of nodes and the temperature profile 

after lengthwise conduction is accounted for can be solved through Euler’s method using the form 

presented in Eq. 3.2.2.31. This process must be iterated to within some error bound. 

 Radial conduction must then be accounted for in each time step after the temperature 

changes caused by lengthwise conduction has been computed. For the inner nodes described by 

𝑖 ∈ [2, 𝑛𝐿 − 1] and 𝑗 ∈ [2, 𝑛𝑟], the conservation of energy equations are given by: 

𝑘
𝑖,𝑗−

1
2
2𝜋(𝑟𝑗 −

∆𝑟

2
)∆𝑥

𝑇𝑖,𝑗−1
ℓ+𝛾

− 𝑇𝑖,𝑗
ℓ+𝛾

∆𝑟

= 𝑘
𝑖,𝑗+

1
2
2𝜋(𝑟𝑗 +

∆𝑟

2
)∆𝑥

𝑇𝑖,   𝑗
ℓ+𝛾

− 𝑇𝑖,   𝑗+1
ℓ+𝛾

∆𝑟
+ 𝜌𝑐𝑝𝜋 ((𝑟𝑗 +

∆𝑟

2
)2 − (𝑟𝑗 −

∆𝑟

2
)2)∆𝑥

𝑇𝑖,𝑗
ℓ+1 − 𝑇𝑖,𝑗

ℓ

∆𝑡
 

(3.2.3.15) 

As before, while this is an adequate discretization, integration across the control volume of the 

radial heat equation allows for better results. The weak form of the radial heat equation is given 

by: 
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∫ [𝑟𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
−
𝜕

𝜕𝑟
(𝑘𝑟

𝜕𝑇

𝜕𝑟
)]

𝑟𝑗+∆𝑟/2

𝑟𝑗−∆𝑟/2

𝑑𝑟 
(3.2.3.16) 

Assuming that each nodal temperature can be connected by lines allows for the Trapezoidal rule 

to be utilized to perform these integrations. Letting 𝛾 = 1 and performing these integrations 

generates the following system of equations: 

𝑓𝑖,𝑗 = 0 = (
𝑟𝑗

2
+ FoΔ𝑟 + 𝑘𝑟𝑟𝑟FoΔ𝑟)𝑇𝑖,𝑗

ℓ+1 + (
3𝑟𝑗 − ∆𝑟

12
− FoΔ𝑟)𝑇𝑖,𝑗−1

ℓ+1

+ (
3𝑟𝑗 + ∆𝑟

12
− 𝑘𝑟𝑟𝑟FoΔ𝑟)𝑇𝑖,𝑗+1

ℓ+1 −
𝑟𝑗

2
𝑇𝑖,𝑗
ℓ −

3𝑟𝑗 + ∆𝑟

12
𝑇𝑖,𝑗+1
ℓ −

3𝑟𝑗 − ∆𝑟

12
𝑇𝑖,𝑗−1
ℓ  

(3.2.3.17) 

where: 

 

For the central control volume given by 𝑗 =  1, the discretized conservation of equations simplify 

because of symmetry and the conservation of energy for the central control volume is given by: 

𝑘
𝑖,𝑗+

1
2
2𝜋∆𝑟∆𝑥

𝑇𝑖,𝑗+1
ℓ+𝛾

− 𝑇𝑖,𝑗
ℓ+𝛾

∆𝑟
= 𝜌𝑐𝑝𝜋 (

Δ𝑟

2
)
2

∆𝑥
𝑇𝑖,𝑗
ℓ+1 − 𝑇𝑖,𝑗

ℓ

∆𝑡
 (3.2.3.21) 

Algebraically manipulating the system to generate a system of equations: 

𝑓𝑖,1 = 0 = 𝑇𝑖,𝑗+1
ℓ+𝛾

− 𝑇𝑖,𝑗
ℓ+𝛾

−
𝜌𝑐𝑝Δ𝑟

2

8𝑘
𝑖,𝑗+

1
2

(
𝑇𝑖,𝑗
ℓ+1 − 𝑇𝑖,𝑗

ℓ

∆𝑡
) (3.2.3.22) 

Fo∆r =
𝑘
𝑖−
1

2
,𝑗
(𝑟𝑗 −

∆𝑟
2 )∆𝑡

𝜌𝑐𝑝∆𝑟2
 

(3.2.3.18) 

𝑘𝑟 =
𝑘
𝑖,𝑗+

1

2

𝑘
𝑖,𝑗−

1

2

=
𝑘𝑖,𝑗+1

𝑘𝑖,𝑗−1
(
𝑘𝑖,𝑗 + 𝑘𝑖,𝑗−1

𝑘𝑖,𝑗 + 𝑘𝑖,𝑗+1
) 

(3.2.3.19) 

𝑟𝑟 =
𝑟𝑗 +

∆𝑟
2

𝑟𝑗 −
∆𝑟
2

 

(3.2.3.20) 
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To simplify this system, the discretized radial Fourier number is redefined for the system of 

equations reflecting the centerline such that: 

Fo∆r|𝑗=1 =

𝑘
𝑖,𝑗+

1
2
∆𝑡

𝜌𝑐𝑝∆𝑟2
 (3.2.3.23) 

Letting 𝛾 = 1 and rewriting the system of equations yields: 

𝑓𝑖,1 = 0 = (8Fo∆r|𝑗=1)𝑇𝑖,2
ℓ+1 + (−1 − 8Fo∆r|𝑗=1)𝑇𝑖,1

ℓ+1 + 𝑇𝑖,1
ℓ  (3.2.3.24) 

Finally, the surface control volume given by 𝑗 =  𝑛𝑟 will be treated as a boundary condition for 

the radial conduction problem. The Jacobian can then be formulated for each set of radial nodes, 

and Euler’s method can compute the temperature profile for the next time step. The phase fraction 

for each segment of the actuator can then be computed. From this information, the macroscopic 

properties of the actuator’s discretized sections can be found and the actuator geometry can be 

computed. One such property, the electrical resistance, is computed by first finding the resistance 

of each discretized disk via: 

𝑅𝑖,𝑗 =

{
 
 

 
 
𝜌𝑒|(𝑖,𝑗)(

Δ𝑥

𝜋 ((𝑟
𝑗
+
∆𝑟

2
)
2

− (𝑟
𝑗
−
∆𝑟

2
)
2

)
) , 𝑗 > 1

𝜌𝑒|(𝑖,1) (
4Δ𝑥

𝜋Δ𝑟2
)                  , 𝑗 = 1

 

The total resistance of the actuator is then found from treating the equivalent resistance 

of all of the rows of nodes as resistors in parallel such that: 

(3.2.3.25) 

𝑅 = (
1

∑ 𝑅𝑖,1
𝑖=𝑛𝐿−𝑛𝑏
𝑖=𝑛𝑏

+
1

∑ 𝑅𝑖,2
𝑖=𝑛𝐿−𝑛𝑏
𝑖=𝑛𝑏

+⋯+
1

∑ 𝑅𝑖,𝑛𝑟
𝑖=𝑛𝐿−𝑛𝑏
𝑖=𝑛𝑏

)

−1

 (3.2.3.26) 

Because each axis requires uniform grid spacing, both axes are resized at the end of each time 

step to accommodate for the actuator strain and Poisson contraction. The convergence criteria is 

similar to that of the 1-D model. 
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For each type of solution, the procedures can best be summarized as: 

1. Initialize all properties of the system. 

2. Compute initial macroscopic properties based on initial phase composition. 

3. Compute the voltage applied to the actuator based on the control scheme and find current 

from Ohm’s Law. 

4. Use tabulated values of fluid to find the surface averaged Nusselt number and convection 

coefficient. 

5. Use finite difference method to implicitly compute temperature profile at next time step 

assuming no change in phase composition from the previous time step. The Jacobi method 

may be over-relaxed without loss of solution stability for over-relaxation constants less 

than two.  

6. Use kinetics equations to compute phase composition at next time step. 

7. Repeat steps 5 and 6 but using the updated phase compositions in step 5 to gain better 

values for the latent heat of transformation and thus more accurate temperature profiles. 

8. Update the macroscopic properties of the system for the next time step using Voigt’s rule 

of mixing (includes Poisson’s ratio, Young’s modulus, electric resistivity, thermal 

conductivity, coefficient of thermal expansion, etc.). 

9. Update the mechanical system and formulate values of wire stress and strain for the next 

time step. 

10. Update the nodal spacing to reflect the change in wire geometries. 

11. Repeat steps 3 through 10 until the simulation is complete. 
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This process can be visualized using a flow chart as shown Figure 14. Where multiple line types 

are connected to a box, the solid lines are performed first and only followed by the dashed line 

when some type of error criteria is fulfilled ending the cycle. 

 

 

Figure 14. SMA Model Flow Chart 
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3.2.4 Numerical Simulations and Model Comparisons 

Simulations performed to compare the numerical solution during a heating and cooling cycle with 

the following parameters: 

Table 8. Simulation Parameters 

Symbol Variable Units Value 

Intrinsic Material Properties 

𝜃𝐴 
Coefficient of Thermal Expansion 

(Austenite) 
1/°C 11E-6 

𝜃𝑀 
Coefficient of Thermal Expansion 

(Martensite) 
1/°C 6.6E-6 

𝜖𝐿 Phase Transformation Strain N/A 0.04 

𝑇0 Initial Temperature °C 20 

𝐸𝐴 Elastic Modulus (Austenite) GPa 75 

𝐸𝑀 Elastic Modulus (Martensite) GPa 28 

𝜐𝐴 Poisson’s Ratio (Austenite) - 0.3 

𝜐𝑀 Poisson’s Ratio (Martensite) - 0.4 

𝜌𝐴0 Electrical Resistivity (Austenite) 𝜇Ωcm 84 

𝜌𝑀0 Electrical Resistivity (Martensite) 𝜇Ωcm 76 

𝛼𝐴 
Thermal Effect on Electrical 

Resistivity (Austenite) 
𝜇Ωcm /°C 0.05 

𝛼𝑀 
Thermal Effect on Electrical 

Resistivity (Martensite) 
𝜇Ωcm /°C 0.15 

𝑘𝐴 Thermal Conductivity (Austenite) 
W

mK
 18.0 

𝑘𝑀 Thermal Conductivity (Martensite) 
W

mK
 8.6 

𝑐𝑝 Specific Heat J/(kg °C) 836 

𝛥𝐻 Latent Heat of Transformation J/g -24.2 

𝜌 Density kg/m3 6450 

Kinetics Model Properties 

𝑀𝑠 Martensite Start Temperature °C 42 

𝑀𝑓 Martensite Finish Temperature °C 32 

𝐴𝑠 Austenite Start Temperature °C 68 

𝐴𝑓 Austenite Finish Temperature °C 78 

𝜈𝐴 
Transformation Center Offset 

Parameter 
- 1/8 

𝜈𝑀 
Transformation Center Offset 

Parameter 
- 1 

C𝐴 Effect of Stress on A MPa/°C 6.89 

C𝑀 Effect of Stress on M MPa/°C 6.89 

Mechanical Model Parameters 

𝑘𝑠 Spring Rate N/m 52.6 

𝑐𝑑 Viscous Damping Coefficient Ns/m 10.0 

𝑑 Actuator Diameter m 0.000125 

𝐿0 Initial Length m 0.05 

𝑉 Voltage Source V 3.3 

Simulation Parameters 

Δ𝑡 Time Step s 0.00001 

𝑛𝑥 Nodes (lengthwise) - 101 

𝑛𝑟 Nodes (radially) - 11 
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The first simulation was a heating/cooling cycle where a six centimeter span of wire would subject 

to a 3.7 V heating period of 0.12 seconds before cooling down for two seconds. The results are 

shown in Figure 15. 

 

Figure 15. Heating and Cooling Response 
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This simulation can also be used to show the hysteresis present in each model as a result of the 

shape memory effect. The wire strain is plotted against the temperature for each model in Figure 

16.  

 

Figure 16. Strain versus Temperature for Heating/Cooling Simulation 

 

Similarly, the wire strain and wire stress are plotted both against time and then against one another 

in Figure 17. The hysteresis in the response is again very visible.  
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Figure 17. Stress versus Strain for Heating/Cooling Simulation 
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For the next simulation, a sliding mode controller with a first order sliding surface was then 

simulated with the control laws with position error 𝑒 in meters and position error derivative 𝑒̇ in 

meters per second being given by: 

𝐷 = 0.65sign (𝑒̇ + 100𝑒) (3.2.4.1) 

This was simulated for all three discretized models and the simulation results are shown in Figure 

18. 

 
Figure 18. Discretized Model Comparison for Sliding Mode Control 
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3.3 Experimental Setup 

3.3.1 Bandwidth Determination Experiment 

Various diameter Dynalloy Flexinol Nitinol wire actuators were driven via an electrical 

current being passed through it at room temperature. The current, supplied from a 3.3 V PWM 

signal provided by a microcontroller, heats the wire and causes it to contract. This current was 

applied over a spectrum of frequencies in order to determine the system bandwidth. The measured 

change in position of the SMA actuator is the system gain, and this value was normalized so that 

the DC gain was equal to unity, and the constricted length characteristic of a total phase 

transformation into Austenite was equal to zero. The measurements of wire position were 

performed using a self-sensing technique with a probe located along the length of the actuator [78]. 

The experimental setup is shown in Figure 19. 

 
Figure 19. Bandwidth Determination Experiment utilizing SMA Actuator with Self-Sensing Probe 

 

  



85 

 

3.3.2 Model Verification with Controller Response 

 A test platform was constructed in which a shape memory actuator could be connected to 

a pendulum with an antagonist spring and different controllers could be tested in order to verify 

the results obtained from the numerical model. The length of the SMA actuator was obtained from 

three separate position sensors: a rotary encoder, a linear potentiometer, and the slide-sense 

methodology. The actuator was connected to a load cell so that the axial forces experienced by the 

actuator could be measured. The data was recorded through the use of a microcontroller and power 

was supplied by a variable power supply. 

 

Figure 20. SMA Test Platform 

 

Experiments were performed in order to quantify the properties of the system plant. The spring 

rate was determined by cycling the actuator through a complete phase transformation and 

measuring the load cell data versus the wire position measured by the linear potentiometer and 

utilizing Hooke’s Law to find a linear relationship between the quantities (Figure 21).  
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Figure 21. SMA Platform Spring Rate Data 

  

That data can be seen to be sufficiently linear, and applying a linear trend line to the data 

shows that the system plant has a stiffness coefficient of approximately 𝑘 = 52.696 
gf

cm
=

52.696 
N

m
. 

The damping coefficient of the plant was obtained through analysis of the transient 

response of the system to an impulse and modelling the damping as viscous damping. Because the 

viscous damping model was utilized, the damping coefficient was determined from an analysis of 

the logarithmic decrement, 𝛿, given by: 

𝛿 =
1

𝑛
ln (

𝑥(𝑡)

𝑥(𝑡 + 𝑛𝑇)
) (3.3.2.1) 

𝑥(𝑡) denotes the amplitude at time 𝑡 and 𝑥(𝑡 + 𝑛𝑇) represents the amplitude of the signal 𝑛 peaks 

away from the original measurement. The logarithmic decrement is related to the damping ratio 

coefficient via: 
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𝜁 =
1

√1 + (
2𝜋
𝛿
)
2
 

(3.3.2.2) 

In order to isolate the effects of phase transformation on the damping coefficient, the impulse was 

applied to the system when the wire remained hot during the response (Figure 22) and when the 

wire remained cold during the response (Figure 23) 

 
Figure 22. SMA Test Platform Damping Analysis (Hot Wire) 

 

The logarithmic decrement between peaks was found for the hot wire analysis such that: 

𝛿1−2 = ln (
9

7
) = 0.2513 (3.3.2.3) 

𝛿2−3 = ln (
7

2
) = 1.2527 

(3.3.2.4) 

This process was continued for each peak and the results were averaged to get an effective 

logarithmic decrement of 0.63344. From Eq. 3.3.2.2, the damping ratio is then: 

𝜁ℎ𝑜𝑡 =
1

√1 + (
2𝜋

0.63344)
2
= 0.10036 

(3.3.2.5) 
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Figure 23. SMA Test Platform Damping Analysis (Cold Wire) 

 

The logarithmic decrement between peaks was found for the hot wire analysis such that: 

𝛿1−2 = ln (
0.4288

0.2275
) = 0.63384 (3.3.2.6a) 

𝛿2−3 = ln (
0.2275

0.1138
) = 0.6927 

(3.3.2.6b) 

This process was continued for each peak and the results were averaged to get an effective 

logarithmic decrement of 0.537097. From Eq. 3.3.2.2, the damping ratio is then: 

𝜁𝑐𝑜𝑙𝑑 =
1

√1 + (
2𝜋

0.537097
)
2
= 0.08571 

(3.3.2.7) 

The hot wire causes the system to be more heavily damped, which is indicative of energy loss 

during phase transformation. The effective viscous damping ratio of the system for this analysis 

is taken to be the average between the hot and cold wire values such that: 

𝜁𝑝𝑙𝑎𝑛𝑡 =
𝜁ℎ𝑜𝑡 + 𝜁𝑐𝑜𝑙𝑑

2
= 0.093035 (3.3.2.8) 
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The damping coefficient with the SMA actuator replaced by a spring was also computed for 

comparison. 

 

Figure 24. SMA Platform Damping Analysis (Two Antagonist Springs) 

 

The logarithmic decrement analysis would reveal a damping ratio of 0.030226 that is more 

consistent peak to peak, but also much lower than the computed damping ratio of the plant. This 

confirms that friction losses in the bearing constitute only a small portion of the overall damping 

effects in the system, and losses in the SMA wire constitute the majority of the losses. From Figure 

24, the damped natural frequency can be obtained as approximately 11 Hz. The natural frequency 

of the system is then given by: 

𝜔𝑛 =
𝜔𝑑

√1 − 𝜁2
 (3.3.2.9) 

The natural frequency of the system can then be obtained as 69.119 radians per second, which can 

be related to the plant inertia from: 

𝑚 =
𝑘

𝜔𝑛2
 (3.3.2.10) 
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Substitution of the stiffness found from Figure 21 into this expression yields a system inertia of 

0.01103 kg. The critical damping coefficient of the system is then given by: 

𝑐𝑐𝑟 = 2√𝑚𝑘𝑠𝑝 = 1.529 
Ns

m
 (3.3.2.11) 

The system damping coefficient is then determined from the definition of the damping ratio: 

𝑐 = 𝑐𝑐𝑟𝜁𝑝𝑙𝑎𝑛𝑡 = 2√𝑚𝑘 = 0.093035 (1.529 
Ns

m
) = 0.1423 

Ns

m
 (3.3.2.12) 
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3.3.3 Model Verification with Temperature Response and Boundary Effects 

An experiment dedicated to verifying the heat transfer models was developed by 

connecting SMA wire actuators into a tensile testing machine. The density of the wire actuator 

was determined by weighing the wire and dividing its weight by its volume. The electrical 

resistivity of the wire was likewise determined by measuring its resistance and using the definition 

of electrical resistivity. The SMA wire actuators were connected to a variable power supply by 

soldering wires to crimps that were crimped to the SMA actuator. This allowed for a precise 

measurement of the distance between the two crimps. The wires were then connected to the 

variable power supply through the use of alligator clips. The resistance of the alligator clips and 

the wires soldered to the crimps were measured for use in running of the simulations. The length 

of wire electrically connected and the length of wire outside of the crimps were both measured 

before the experiment.  

A 36 AWG K-type thermocouple was verified to accurately log data, and then was 

electrically insulated and placed in contact with the wire actuator. Heating and cooling curves were 

logged for various voltages passing through various diameter SMA actuators in order to verify the 

model. In order to isolate the thermal model from the phase kinetics and mechanical modelling, 

superelastic wire was used because it would remain in the Austenite phase for the duration of the 

experiment. Shape memory wires were then used to test the interactions between the kinetics 

model and the thermal modelling. Finally, a FLIR camera was used to examine the boundary 

effects for comparison with the discretized modelling. 
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Figure 25. Ohmic Heating Experiment 
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3.4 Results and Conclusions 

3.4.1 Bandwidth Determination 

 

 The frequency response of a 0.125 mm diameter actuator from an increasing sinusoidal 

input with frequencies ranging from 0 to 1.4 Hz is provided in Figure 26, with the cutoff frequency 

being graphically denoted by the star symbol. 

 
Figure 26. Sinusoidal Sweep Results (0.125 mm diameter) 

 

The results of this experiment show that at a frequency of approximately 0.65 Hz, the gain has 

shifted –3 dB (to about 70.7%) of its DC value. The corrected bandwidth derived from the 

analytical solution would predict a system bandwidth of 0.5504 Hz, which carries fifteen percent 

error when compared to the experimental results. This is because this solution utilizes a correction 

factor based on the complete temperature range experienced by the actuator which is likely to carry 

some error and because this value neglects the impact of changes in the crystalline structure of the 

SMA actuator. The transformation bandwidth formulation predicts a transformation bandwidth of 
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0.6304 Hz, assuming the wire remains horizontal during operation. This value has a three percent 

error with the experimental results. 

 The frequency response of a 0.3 mm diameter actuator from an increasing sinusoidal input 

with frequencies ranging from 0 to 0.12 Hz is provided in Figure 26, with the cutoff frequency 

being denoted graphically with a star symbol. 

 
Figure 27. Sinusoidal Sweep Results (0.3 mm diameter) 

 

The results of this experiment show that at a frequency of approximately 0.09 Hz, the gain has 

shifted –3 dB (to about 70.7%) of its DC value. The corrected bandwidth derived from the 

analytical solution would predict a system bandwidth of 0.0956 Hz, which carries approximately 

six percent error when compared to the experimental results. The transformation bandwidth 

formulation predicts a system bandwidth of 0.11 Hz, which carries a twenty percent error when 

compared to the experimental results. 
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Error is the numerically based bandwidth formulations are attributed to the system being non-

ideal, as Eq. 3.1.11 is derived for ambient, still air with a temperature of 25 degrees Celsius. If the 

ambient temperature is significantly different than room temperature, or there is air movement 

around the wire, then this approximation will experience some degree of error. Also, if the 

fundamental assumption that the rate of cooling matches the rate of heating is violated, and the 

speed at which the wire heats up is significantly different than the speed at which it cools, this will 

also lead to a degree of error because the numerically based bandwidth formulation assumes 

comparable rates of heating and cooling. Because the rate of cooling is faster for smaller diameter 

wires, this assumption becomes more applicable for smaller wires and less applicable for larger 

ones. As a result, the analytically based bandwidth estimate is sufficient for larger actuators and 

the numerically based bandwidth estimate is more suitable for smaller actuators. An additional 

source of error comes from the self-sensing measurement technique. This technique provides a 

resolution of 1.5 degrees out of 90 degrees of travel, or about 0.0167 on the normalized plot of 

position, limiting the accuracy at which the system bandwidth can be obtained. 
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3.4.2 Model Verification with Controller Response 

The experiment used sliding mode control with a second order sliding surface to drive the wire to 

a reference position. The simulations were compared to the experimental results and are provided 

in Figure 28. 

 

Figure 28. Experimental Results (MATLAB Simulation vs. Experiment for SMC) 

 

As expected, the 2-D model most accurately captured the transient response and all three 

models converge to the reference position in similar time and in accordance to the experiment. The 

controller was predicted to be stable with very little overshoot, which is the predicted response and 

what was observed in the experiment. 
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3.4.3 Model Verification with Thermal Response and Boundary Effects 

The thermocouple was initially placed into ice water and removed into room temperature 

air in order test if it could accurately read both zero degrees Celsius and room temperature. The 

thermocouple was found to adequately display both freezing temperatures and room temperatures 

with a time constant of approximately three seconds (Figure 29).  

 

Figure 29. Thermocouple Measurement Validation 

 

The experiments were carried out in accordance to parameters found in Table 9.  

Table 9. Model Verification Experiment Log 

 
Wire 

Length 

(cm) 

Wire 

Diameter 

(mm) 

Applied 

Voltage 

(V) 

Wire Type 
Wire Density 

(
𝐤𝐠

𝐦𝟑) 

Electric Resistivity 

(𝝁𝛀 𝐜𝐦) 

Run #1 18.0 0.5 1.6 Superelastic 7666 10.0 

Run #2 18.0 0.5 2.0 Superelastic 7666 10.0 

Run #3 18.0 0.5 2.5 Superelastic 7666 10.0 

Run #4 18.0 0.5 3.0 Superelastic 7666 10.0 

Run #5 21.0 0.25 1.0 Superelastic 6450 10.0 

Run #6 21.0 0.25 2.0 Superelastic 6450 10.0 

Run #7 21.0 0.25 3.0 Superelastic 6450 10.0 

Run #8 19.5 0.375 2.5 Shape Memory 6450 
A: 84 

M: 76 
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The experimental data is compared directly to the lumped capacitance modelling which 

accounts for heat loss from thermal conduction to the boundaries, convection to the air, thermal 

radiation to the surroundings, and the latent heat of transformation (where applicable).  

 

 
Figure 30. Heating Response (Run #1) 
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Figure 31. Cooling Response (Run #1) 

 

 

 

 
Figure 32. Heating Response (Run #2) 
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Figure 33. Cooling Response (Run #2) 

 

 
Figure 34. Heating Response (Run #3) 
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Figure 35. Cooling Response (Run #3) 

 

 
Figure 36. Heating Response (Run #4) 
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Figure 37. Cooling Response (Run #4) 

 

 
Figure 38. Heating Response (Run #5) 

 

 



103 

 

 
Figure 39. Cooling Response (Run #5) 

 

 
Figure 40. Heating Response (Run #6) 
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Figure 41. Cooling Response (Run #6) 

 

 
Figure 42. Heating Response (Run #7) 

 

 



105 

 

 
Figure 43. Cooling Response (Run #7) 

 

The shape memory alloy wire was tested in such a way that the complete transformation could be 

observed.  

 

Figure 44. Experimental Shape Memory Effect (Run #8) 
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Figure 45. Thermal Cycling with Complete Transformation (Run #8) 

 

The results of the experiments carried out on the superelastic and shape memory wires are 

summarized through the use of the mean squared error of the simulation versus the measured 

temperature response and the average percent error of the predicted response. These results are 

summarized in Table 10. To compute an average percent error across the entire transient response, 

a non-dimensionalized version of temperature was crafted such that 𝑇∗ =
𝑇

𝑇∞
, where 𝑇∞ and 𝑇 are 

given as absolute temperatures (e.g. in Kelvin). The percent error may then be defined as: 

% error =
|𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
∗ − 𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

∗ |

𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
∗ ×100%  (3.4.3.1) 
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Table 10. Thermal Modelling Error Statistical Breakdown 

Experiment Root Mean Squared Error (℃) 
Average Normalized 

Percent Error (%) 

Run #1 Heating 1.22 0.366 

Run #1 Cooling 0.57 0.156 

Run #2 Heating 1.58 0.449 

Run #2 Cooling 1.82 0.452 

Run #3 Heating 1.16 0.244 

Run #3 Cooling 0.84 0.144 

Run #4 Heating 2.10 0.536 

Run #4 Cooling 2.02 0.426 

Run #5 Heating 1.00 0.301 

Run #5 Cooling 0.77 0.168 

Run #6 Heating 1.85 0.502 

Run #6 Cooling 3.05 0.878 

Run #7 Heating 2.22 0.539 

Run #7 Cooling 2.47 0.643 

Run #8 Thermal Cycle 1.82 0.481 

 

The lumped capacitance model captures the behavior of the thermal response relatively well. 

The sources of error that do emerge can be attributed to the accuracy of the thermocouple, which 

is given as ±2℃, as well as the time constant of the thermocouple probe combined with the delay 

effects of converting the raw thermocouple data into temperature data. There are also errors in 

assuming the temperature does not vary along the wire as is implied by the lumped capacitance 

model and also a reason why the time constants for heating and cooling are close to one another 

in each experiment, but not exactly the same. An additional source of error comes from the inability 

to directly measure the specific heat capacity to a great deal of precision for use in the simulation. 

Because of this, tabulated values in literature were used instead. Finally, the empirical methods 

used to find the convection coefficient during the simulation carry with them a potential error as 

high as twenty percent. 
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The results of logging the temperature profile in Run #6 are shown in Figure 46. Note that the 

temperature gradient is very sharp and that outside of the crimps the actuator is fairly close to room 

temperature. 

 

Figure 46. FLIR Image of Boundary Effects 

Figure 47 shows the predicted response for the same experiment. Note that the center of the wire 

is the hottest portion, which is intuitive as the centerline is the furthest away from the surface of 

the wire which loses heat to convection and radiation. Also note that the temperature gradient is 

very sharp in the simulation, lending some credence to the accuracy of the solution.  

 

Figure 47. Simulation of Heating/Cooling Response 
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Chapter 4: Multibody Dynamics Implementation 

4.1 Model Implementation 

The constitutive equations that describe the behavior and heat transfer of Nitinol wire were 

placed into ADAMS, the multibody dynamics solver. ADAMS was chosen because the variable 

step integrators would allow for high accuracy in using the constitutive model, and would allow 

for controllers to be tested via simulation before experiments would have to be performed.  Some 

parameters, such as the phase composition, cannot be measured in practice and a module that could 

show these parameters accurately is of inherent value. 

Because ADAMS utilizes the Newton-Raphson method of solving for roots whilst 

searching for a converged solution at every integration step, it naturally succumbs to the method’s 

inability to accurately handle functions that are not “well behaved”. This means that functions with 

rapidly changing derivatives, or discontinuities, will often not lead to a convergent solution. 

Therefore, a variety of smoothing functions exist to replace the hard logic of an operator such as 

the IF() operator which is utilized in the constitutive model specified in Equation 2.4.1. An 

example of these smoothing operators would be the STEP() or STEP5() operators, which can be 

used to smooth transitions with either cubic or fifth order polynomials, the hyperbolic tangent 

function TANH(), or the HAVSIN() function, which utilizes the haversine function. These 

operations can be expressed mathematically as: 

 

STEP(𝑡, 𝑡0, 𝑥0, 𝑡1, 𝑥1) =

{
 
 

 
 

𝑥0, 𝑡 < 𝑡0

𝑥0 − (𝑥1 − 𝑥0) (
𝑡 − 𝑡0
𝑡1 − 𝑡0

)
2

(3 − 2(
𝑡 − 𝑡0
𝑡1 − 𝑡0

)) , 𝑡0 ≤ 𝑡 ≤ 𝑡1

𝑥1, 𝑡 ≥ 𝑡1

 (4.1.1) 

 

STEP5(𝑡, 𝑡0, 𝑥0, 𝑡1, 𝑥1) =

{
 

 
𝑥0, 𝑡 < 𝑡0

𝑥0 − (𝑥1 − 𝑥0) (
𝑡 − 𝑡0
𝑡1 − 𝑡0

)
3

(10 − 15 (
𝑡 − 𝑡0
𝑡1 − 𝑡0

) + 6 (
𝑡 − 𝑡0
𝑡1 − 𝑡0

)
2

) , 𝑡0 ≤ 𝑡 ≤ 𝑡1

𝑥1, 𝑡 ≥ 𝑡1

 

 

(4.1.2) 
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HAVSIN(𝑡, 𝑡0, 𝑥0, 𝑡1, 𝑥1) =

{
 
 

 
 

𝑥0, 𝑡 < 𝑡0

𝑥0 + 𝑥1
2

+
𝑥1 − 𝑥0
2

(sin (π (
𝑡 − 𝑡0
𝑡1 − 𝑡0

) −
π

2
)) , 𝑡0 ≤ 𝑡 ≤ 𝑡1

𝑥1, 𝑡 ≥ 𝑡1

 

 

(4.1.3) 

A comparison of the different smoothing functions is provided below (Figure 48).  

 

Figure 48. Smoothing Function Comparison in ADAMS 

Whilst these smoothing operators all have advantages and drawbacks, the STEP5() 

operator was selected as it returns the most consistent results. The constitutive model then takes 

the following form using MSC ADAMS syntax: 

𝜉 = STEP5 {
𝑑𝑇

𝑑𝑡
−
𝜎̇

C
 , −1,   𝜉𝐴→𝑀 , 1 , 𝜉𝑀→𝐴 } (4.1.4) 

𝜉𝐴 = STEP5 {
𝑑𝑇

𝑑𝑡
−
𝜎̇

C𝐴
, −1,  𝜉𝐴, 1, 𝜉 } (4.1.5) 

𝜉𝑀 = STEP5 {
𝑑𝑇

𝑑𝑡
−
𝜎̇

C𝑀
, −1,   𝜉, 1,  𝜉𝑀 } (4.1.6) 

The first argument of these operators is the independent variable under evaluation. If the 

independent variable is below the second argument, then the third argument is returned. Likewise, 

if it is above the fourth argument, then the fifth argument is returned. If the independent variable 

is between the second and fourth arguments, then the returned value is interpolated between the 

third and fifth arguments using a fifth order polynomial, which ensures that the time response of 
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the phase fraction and its time derivative are continuous and differentiable. In order to reference 

variables from the previous integration time step, elements called sensors are utilized which store 

these values and can be referenced by calling the function SENVAL(). The wire module functions 

by computing the actuator strain using the above model to compute the crystalline phase 

composition, and using the capabilities of the ADAMS software to find the force applied to the 

wire. 
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4.2 Model Verification 

  The first application of the SMA module was to apply it to a simple application where the 

anchored wire holds up a five gram hanging mass. The force of gravity acting on the mass serves 

as a preload force. To demonstrate the super-elastic effect, the temperature of the wire is held 

constant (beyond the A transformation region) and an oscillating force is then applied to the mass, 

given by: 

 
𝐹(𝑡) = (0.1 N)𝑡 + (0.5 N)(1 − cos(2𝜋𝑡)) (4.2.1) 

The resulting crystalline phase composition (from Eq. 4.1.4) and strains, are then plotted (Figure 

49) 

 

 

Figure 49. Superelastic Effect in ADAMS 
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By holding the stress constant and instead oscillating the temperature with the function expression 

found in Eq. 4.1.8, the shape memory effect can instead be seen (Figure 50): 

 𝑇(𝑡) = (23 °C)𝑡 + (10 °C)(1 − cos (2𝜋𝑡)) (4.1.8) 

   

 

Figure 50. Shape Memory Effect in ADAMS 

Both simulations demonstrate the characteristic hysteresis of the SMA. This set of routines 

is useful because it allows for more information to come from simulations (such as phase 

composition) than can be measured in an actual experiment. This includes the crystalline phase 

composition, the wire resistivity, and the wire temperature. If a temperature sensor were used, the 

wire temperature would be difficult to measure to a high degree of accuracy because probe 

invariably change the wire temperature.  
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4.3 Experimental Setup 

In order to verify the ADAMS model was working for a dynamics system, a ball-beam 

balancer was modelled and run with a variety of control laws (Figure 51). 

 

Figure 51. Ball-Beam-Balancer ADAMS Model 

 

The model includes two twelve-inch-long brass tubes with an outer diameter of 7/32” and a wall 

thickness of 0.014 inches. The end pieces and the pivot piece are given mass properties of ABS. 

The pivot is placed 3.5 inches away from the center of the brass tubes. A beam angle of seven 

degrees corresponds to 𝜉 = 0. The nitinol wire is connected to a 12 V supply and regulated using 

pulse-width modulation (PWM). A complete list of properties is provided in Table 11. 

Table 11. Ball-on-a-Beam Properties 

 

Property Value Units Formulation

Mass [m] 0.0027 kg Standard

Radius [R] 0.019939 m Standard

Volume [V] 3.32E-05 m^3 (4/3)π*R^3

Density [ρ] 81.31395 kg/m^3 m/V

Contact Angle [ϴ] 46.90837 degrees arctan(Fy/Fz)

Rolling Radius [r] 0.014560696 m R*sin(ϴ)

Moment of Inertia [J] 4.29369E-07 kg m^2 (2/5)*m*R^2

Effective Inertia [meff] 0.00473 kg (J/(r^2)) + m

Property Value Units Formulation

Mass [M] 0.04691 kg SolidWorks

Moment of Inertia about 

Assembly COM [I0]
546.48 g cm^2 SolidWorks

Distance from Pivot to 

Assembly COM [d]
0.14 cm SolidWorks

Moment of Inertia about 

Assembly Pivot [IP]
547.40 g cm^2 I0 + M*d^2

Ball Properties

Beam Properties
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In order to control the position of the ball, sliding mode control is used in a cascaded 

controller arrangement (Figure 53). PID control is used with the ball position error to create a 

desired beam angle. The controller then uses the angle error to apply send power from a 12 V 

supply using duty cycles ranging from 0 % to 28% depending on the control law (where 𝑒𝑥 denotes 

the ball position error, θ denotes the beam angle, and D denotes the duty): 

 

 𝜃𝑑𝑒𝑠 = 𝐾𝑒𝑥 +𝐾(𝑎 + 𝑏)𝑒𝑥̇ +𝐾(𝑎 ∗ 𝑏)∫ 𝑒𝑥𝑑𝑡
𝑡

0

 (4.3.1) 

 𝑒𝜃 =  𝜃 − 𝜃𝑑𝑒𝑠 (4.3.2) 

The gains for the angle controller were tuned by first constructing the transfer function from the 

beam angle to the ball position. The ball acceleration is related to the ball’s angular acceleration 

by: 

 𝑥̈ = 𝑟𝑒𝑓𝑓∅̈ (4.3.3) 

where 𝑟𝑒𝑓𝑓 is the effective rolling radius of the ball. The torque experienced by the ball is given 

by: 

 𝑇𝑏𝑎𝑙𝑙 = 𝑚𝑔𝑟𝑒𝑓𝑓 sin(𝜃) = 𝐽∅̈ (4.3.4) 

The friction experienced by the ball is given by: 

 
𝐹𝑓 =

𝑇𝑏𝑎𝑙𝑙
𝑟𝑒𝑓𝑓

 (4.3.5) 

The equation of motion is then found to be: 

 
𝑚𝑥̈ = 𝑚𝑔 sin(𝜃) −

𝐽∅̈

𝑟𝑒𝑓𝑓
 (4.3.6) 
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Mapping this expression into the Laplace domain yields the desired transfer function: 

 𝑋(𝑠)

𝜃(𝑠)
=

𝑚𝑔

(
𝐽

𝑟𝑒𝑓𝑓2
+𝑚)𝑠2

=
5.605

𝑠2
 

(4.3.7) 

The angular PID controller was then tuned in order to achieve a damping ratio of 0.707, which is 

accomplished with poles places at -0.15 and -1.0 with a controller gain of 0.062 as shown in Figure 

52. 

 

Figure 52. Pole Placement in MATLAB using SISO tool 

 

From this point, two control laws were tested. The first is a separate PI control that takes the angle 

error and generates a duty cycle based on the following law:  

 

𝐷𝑃𝐼 = 𝑒𝜃 + 0.01∫ 𝑒𝜃𝑑𝑡
𝑡

0

 (4.3.3) 

The SMC control laws are governed by the following block diagram representation (Figure 53) 
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Figure 53. SMC Control Laws Block Diagram 

 

𝐷𝑆𝑀𝐶 = {
0.28,     for 𝑒𝜃̇ + 100𝑒𝜃 > 0 
0,          for  𝑒𝜃̇ + 100𝑒𝜃 ≤ 0

 (4.3.4) 

The pulse wave associated with a given duty generates a rectangle waveform that can be 

simply modelled by using the constant RMS value for the voltage over the interval in which the 

duty is turned on. This is because the pulse frequency of 11 kHz is much greater than the system 

bandwidth of 0.55 Hz. This voltage is then given by: 

 𝑉𝑅𝑀𝑆 = 𝑉𝑝𝑒𝑎𝑘√𝐷 (4.3.5) 

During simulation of the SMC control laws, the average resistance of the wire was found 

to be approximately 16 ohms. This means that approximately 2.52 Watts of electrical power is sent 

through the wire during heating. The cooling power of the wire can fall anywhere between 0.7 and 

1.2 Watts (depending on the wire temperature) from results found during simulation, which is 

approximately half of the heating power. This means that the heating of the wire and cooling of 

the wire should occur at approximately the same rate, which indicates that 28% duty is a fairly 

good value to use with the sliding mode control laws. 
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     The dimensions of all the components used for the experimental assembly are identical to those 

used in the ADAMS simulation. The end-pieces of the beam and the pivot point are 3D printed of 

ABS plastic. A steel shaft is placed through two bearings and the printed pivot piece, which is free 

to rotate as the shaft rotates. The printed pivot piece has a screw placed at the bottom in order to 

attach the wire without melting the plastic. High temperature NiTi wire [76] with 0.125 mm 

diameter was selected as the SMA actuator and is attached from this mounting point to a bearing 

located 24 centimeters away from the pivot mount when the beam is perfectly horizontal. The 

pivot is offset so that the SMA actuator is given a preload in order to provide the necessary 

antagonism so that the beam can be free to rotate in both directions from horizontal. The nitinol 

wire was soldered to an electrically conducting wire that was connected to a Teensy 3.2 

microcontroller. This microcontroller sent out a controlled PWM signal at 11 kHz, drawing power 

from a nearby 12 V battery.  A Sharp GP 2Y0A41SK0F IR range sensor [79] was mounted onto 

the larger ABS end piece and used to read the position of the ball along the beam (Figure 54). The 

beam angle was read from using a dual measurement technique with the SMA wire in which the 

voltage is measured at three locations along the wire (at ground, at a stationary probe over which 

the wire slides, and where the wire attaches to the pivot). The change in wire length can be found 

by making the assumption that the resistance is constant throughout the wire and using a self-

sensing technique to derive the wire’s length [78] . Knowledge of this length yields the beam angle. 

A linear potentiometer was used to verify these measurements. A complete Austenitic 

transformation corresponded to roughly a seven degree angle of inclination.  
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Figure 54. Experimental ball-on-a-beam assembly (SMA wire is Highlighted for visibility) 

The ball’s starting position during experimentation is on the far side of the beam away from 

the IR sensor, and the NiTi actuator starts heated up and completely transformed into Austenite, 

so as to tilt the beam in a way that the ball will roll back towards the IR sensor. The set point was 

set to be 15 cm away from the ABS end piece on which the IR sensor was mounted. The results of 

the ball position were logged through use of the serial logging available through the 

microcontroller; data was passed through a low-pass filter to cancel out some noise in the sensor 

readings and plotted in MATLAB. 
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4.4 Results and Conclusions 

The results of running the balance beam experiment with the PID control laws are plotted 

below (Figure 55). Note that the red line corresponds to the steady state position of the ball, thus 

the ball can be said to have a steady state error of roughly one centimeter. 

 

Figure 55. Ball Position Error using PID Control (Experiment) 

The results of the simulation were recorded for five seconds after the ball was free to move (Figure 

56). The dotted line denotes the steady state position of the ball. 

 

Figure 56. Ball Position Error using PID Control (ADAMS) 
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The results match very well with the experimental data, even predicting the steady state 

error (with the simulation prediction being a steady state error of 0.7 centimeters). The results of 

the system response when utilizing the sliding mode control laws is then given below (Figure 57). 

 

Figure 57. Ball Position Error using SMC Control (ADAMS) 

Sliding mode control results in zero steady state error. Whilst the plots are not shown here, the 

beam angle was also much more stable than with PID control, having an extremely damped 

response.   



122 

 

 

Figure 58. Ball Position Error using SMC Control (Experiment) 

The experimental results (Figure 58)Figure 58. Ball Position Error using SMC Control (Experiment) show 

very similar responses until after the ball starts to settle into position. The small oscillations at this 

point can be attributed to small amounts of air flow over the wire causing some disturbance in the 

system via small phase changes in the wire itself. 

The high levels of accuracy in predicting how the controllers behave show that the constitutive 

equations allow for the effective modelling of the SMA crystalline fraction as a result of 

temperature and stress inputs. This crystalline phase percentage can be used to define the 

macroscopic properties of the material, which in turn are fed into the heat transfer model developed 

from Eq. 3.2.1.1, which returns the new temperature inputs for modelling crystalline phase 

percentages at later time steps. Some common simplifying assumptions, such as neglecting the 

latent heat of transformation, are not made in this model so as to increase its degree of accuracy 

versus other models. This model has a very wide scope of potential applications, as it is able to 

account for changes in temperature and stress and accurately modelling these effects.  
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This improved constitutive model was fed into MSC ADAMS, and simulations showed 

that a variety of control schemes that could be used to control the ball position using an SMA wire. 

For experiments run with the cascaded controller scheme with the selected PID control laws, there 

was always a degree of steady state error for our chosen gains. The ADAMS simulations of these 

same experiments captures this steady state error, and also captures to a high degree of accuracy 

the rise time, settle time, and overshoot present in the actual model. The SMC control scheme was 

implemented because of its robustness in the face of the nonlinearities of SMA behavior, and this 

model under the same initial conditions features no steady state error and a much higher level of 

damping in comparison to the PID control scheme.  

An investigation was also performed to see the effect on higher convection coefficients on 

the time it would take for the ball to stabilize. In general, a higher convection coefficient (such as 

for cases where the wire is exposed to a crossflow) results in a faster response time, until the 

convection coefficient reaches a certain value at which the response time is not significantly 

affected (Figure 59). 

 

Figure 59. Simulation with varying Convection Coefficients 
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The results of the simulations run with the SMA actuator module are always presented in 

the postprocessor with the following animation, displaying real-time tracking of the beam angle 

as well as the phase fraction (Figure 60): 

 
Figure 60. Post-Processing Environment for User 

  

The temperature of the wire can also be displayed, but user written routines have been 

implemented that show the temperature of the wire on a color scale where red is indicative of 

hotter temperatures and blue is indicative of colder temperatures.  
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Chapter 5: Discussion and Conclusion 

This literature presents a variety of analytical and numerically derived models that work to 

predict the behavior of shape memory alloy actuators in robotics applications. The analytical 

approaches are suitable for gaining insights on if shape memory alloys are a suitable alternative to 

more traditional actuators due to their problems of low bandwidths and low efficiency. The 

numerical techniques and simulations have been shown to accurately capture the temperature 

response and kinetic response to a controller input, making them suitable for the prototyping phase 

of a design. The lumped capacitance model, such as the one used in the MSC ADAMS simulations 

is suitable for most long, thin actuators and not computationally expensive to evaluate. However, 

for shorter spans of wires, boundary effects can heavily influence the amount of strain delivered 

by the actuator and the lengthwise discretization techniques can provide an adequate representation 

of these effects. For larger diameter actuators, radial discretization may prove useful to 

demonstrate the radial temperature gradient and its effect on the wire temperature response and 

ultimately its response to control laws.  

Future research should be done on the kinetics modelling and how it feeds into the 

temperature model. The nature of the schemes presented here is to model the temperature 

implicitly and then solve for the phase fraction and ultimately the actuator stress and strain 

explicitly and then reiterating the same time step with the new values of the phase fraction and 

stress. While this does prove to be a stable solution process for small time steps, the kinetics model 

as is currently implemented requires very small time steps, especially when the transformation 

reverses directions and a discontinuity arises, to remain accurate.  
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